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Abstract

The paper develops a numerical approach to the calculation of mobilities for a cir-

cular plate with a tapered central hole of power-law profile. The exact solution of

the corresponding flexural wave equation that exists for m = 2 has been used in

the process of the numerical solution of the corresponding boundary problem. Note

that this value of m belongs to the power-law range m ≥ 2 associated with zero

reflection of quasi-plane waves from a tapered hole in geometrical acoustics approx-

imation. Two cases of added damping in the central hole area have been considered:

a thin absorbing layer and a constrained layer. Cross and point mobilities have been

calculated for both these cases. The obtained results for point and cross mobilities

show a substantial suppression of resonant peaks (up to 17 dB), in comparison with

the cases of a plate with an uncovered hole of the same power-law profile and of

a reference circular plate of constant thickness covered or uncovered by a thin ab-

sorbing layer. Further theoretical and experimental research is needed to examine

applications of the obtained numerical results to more practical situations, e.g. to

rectangular plates or other structures with arbitrary locations of tapered holes.
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1 Introduction

The knowledge of plate vibrations is of key importance in the design of struc-

tures. The reduction of unwanted vibrations is important for structural se-

curity, stability and comfort (both tactile and acoustic). This reduction can

be accomplished through both manipulation of the structure to move natu-

ral frequencies of vibration out of the range of operating frequencies or the

damping of existing plate vibrations. There are numerous examples of prac-

tical methods and commercial products used to alter the natural frequencies

of plates, reduce the vibration at key frequencies or attenuate vibrations at

certain frequency ranges.

There has been significant research into the natural frequencies of vibration

of constant thickness plates, of different shapes and materials, of which the

development of simple bending plate models has been critical. Various com-

mon boundary conditions have been represented to determine mode shapes

and resonances of simple shapes [1][2]. Many of these are based on analytical

methods, as the equations of motion are relatively simple to solve, some are

based on numerical methods for complex or mixed boundary conditions and

experimental measurements where methods such as finite elements are not

practical.
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There are fewer examples of work conducted into the vibrations of cylindrical

plates where the thickness varies according to the radius, primarily due to the

increased complexity of the equations of motion restricting the availability of

analytical solutions.

The thickness, h(r), of the plates examined in the literature vary with the plate

radius according to a linear, polynomial or exponential variation. All tend to

introduce a taper coefficient ε which determines the thickness variation with

r such that h(r) = εrm, where m can be a positive or negative real number

(from an initial thickness h0). For the former, the plate is thinner at the centre

of the plate. The linear variation occurs when m = ±1.

There are even fewer examples of work conducted into the advantages of damp-

ing variable thickness plates. This is despite authors specialising in damping

vibrations recognising at an early stage that the thickness and properties of

the damping layer relative to the base plate are of key importance [3]. How-

ever, recent investigations have taken place which have shown the potential

advantages (for vibration reductions) of tapered plates and beams of speci-

fied profile [4][5]. These investigations have shown the potential to reduce the

amplitude of vibration of beams and rectangular plates by including a wedge

where the thickness of the plate reduces from h0 to zero in a short distance,

x, from one edge such that h(x) = εxm.

It can be shown that a flexural wave of single frequency moving through a

wedge which has a reduction in thickness slows down and grows in amplitude,

an exchange which is governed by the conservation of energy in a small control

volume. According to the geometrical-acoustics theory developed in [4][5], a

wave travelling towards a wedge of profile m ≥ 2 would asymptotically slow
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down, never reach the end of the wedge and therefore could never reflect back.

The reflection coefficient from the free edge then becomes zero, when m ≥ 2.

In practical terms, the main problem in utilising this effect is that a truncation

must be included to the wedge, as the material thickness is eventually stopped

by the limitations of the machining process. Then reflection occurs from the

free edge and the wave moves back towards the plate. Krylov has suggested

using small amounts of damping material at the leading edge to attenuate

the waves as much as possible (see [4][5]), with success as demonstrated in

Krylov et al. for elastic plates of power-law profile [6] and in O’Boy et al. [7]

for rectangular plates with attached wedges.

In this paper, we consider a numerical model of profiled cylindrical holes inside

cylindrical plates of constant thickness, to quantify the potential reduction

in resonant vibration amplitudes which are possible to obtain in this two-

dimensional geometry. Note that two-dimensional power-law holes for plate

bending waves have been recently considered by Krylov [8] using geometrical

acoustics theory. Their successful application for damping resonant vibrations

in elliptical plates has been demonstrated experimentally by Gautier et al. [9].

In the present paper we develop a wave model of a cylindrical plate with a

small wedge-like profiled hole located in the centre that follows a quadratic

power-law design.

This paper contains a description of a numerical model which can predict the

natural frequencies and mode shapes of vibration of a cylindrical plate with

and without a wedge-like hole, as well as the associated frequency response

function. Section 3 contains a description of the model, with details of the

implementation given in section 4. This is then used in section 5 to provide
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a comparison between three different plates; i) plain circular plate of outer

radius r = Ro, ii) circular annulus plate with outer radius r = Ro and inner

radius Ri, iii) a circular plate of outer radius r = Ro with a tapered hole at

the centre.

The wedge-like hole which is incorporated into the plate has a local thickness

h(r) which is given by h(r) = εr2, as the previous work [8] shows that the

near zero reflection coefficient from the free edge starts when the power-law is

m = 2. This quadratic power-law also allows the use of an analytical solution

to the bending plate equation of motion. An illustration of the composite plate

is provided in Fig. 1 where a small cross section has been removed to show

the change in thickness with a variation in radial position.

Three different damping configurations are demonstrated; i) Material damping

inherent in all elastic materials, ii) a thin constant layer thickness damping

applied over the wedge, iii) A thick damping layer which fills the wedge hole

and is constrained by another thin layer on the top surface such that the

exterior of the plate is smooth.

Conclusions are presented in section 6. The overall aim of the paper is to

demonstrate the viable potential for damping a circular plate with a circu-

lar wedge-like hole of profile m = 2. The paper uses a single excitation and

response method (an arbitrary position) to examine the plate response for

different damping configurations. For a single frequency this point may line

up with vibration nodes and anti-nodes, which are especially problematic at

lower frequencies. Therefore the analysis is carried out over a broad frequency

range and the results analysed over many resonant peaks to mitigate against

this effect, however with a single arbitrary point measurement, it is not pos-
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sible to determine the overall loss factor in the whole plate, therefore this is

not carried out.

2 Existing solutions for cylindrical plates

This section contains a brief literature review for vibrations of cylindrical

plates, detailing the numerous approximations which have been used to solve

some of the equations of motion.

A number of specific instances where analytical solutions for circular plate

vibration are available have been provided by Conway [10], who finds a solution

which varies according to the profiles m = 2/3 and m = 18/21, but only when

the plate material has a Poisson’s ratio ν = 1/9 and ν = 5/21 respectively,

limiting its applicability. A linear variation is also presented with m = 1 and

ν = 0.3, close to the properties of steel. A more arbitrary solution is used in

this paper, that of the profile m = 2 with arbitrary Poisson’s ratio.

A numerical solution is provided by Harris [11] for a plate where the thickness

tapers parabolically (m = 2) to zero at the outer radius. Harris utilises a

series expansion for the displacement term and an arrangement of a series of

infinite matrices to determine an infinite number of natural frequencies and

corresponding mode shapes across the radius of the plate. As this is a purely

numerical solution, it does not depend on restrictions to the value of Poisson’s

ratio, however Harris states that the solution becomes less dependent on this

ratio with increasing frequency.

The use of series expansions in the displacement function is more common.

For example, Jain [12] has also studied the same plate form as Harris, how-
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ever he provides a greater detail on the convergence of the infinite series and

factors which influence the lowest mode shapes. He has included an in-plane

force in the plate and studied the natural frequencies for clamped and simply

supported boundary conditions.

The inclusion of in-plane forces and also elastic restraints was studied by both

Laura [13] and Gupta [14][15]. The latter used a series solution of the dis-

placement function when the taper coefficient is altered. The inclusion of the

elastic restraints is important in the formulation as it more accurately reflects

practical applications of plate structures, rather than the more idealised sim-

ply supported or clamped boundary conditions more usually assumed. The

solutions are provided for the case where the thickness varies linearly and also

parabolically. The method by the group led by Laura is nominally for a linear

variation in thickness, however, they use a polynomial approach to approx-

imate the displacement function and then implement Galerkin’s method to

minimise the error between this approximation and the differential equation.

Since this is a general numerical method, it can be used for any m with any

value of the taper coefficient (subject to computational limits).

Another numerical approach to determining the natural frequencies of vibra-

tion is to use the Rayleigh-Ritz method, for example see Singh [16] who finds

the first four frequencies and nodal radii for a plate with an exponential thick-

ness variation. No discussion on convergence is given or limits on applicability

other than to say that the integrals involved must be completed accurately.

Comparisons are made with a constant thickness plate and a linear variation.

Other authors using the Rayleigh-Ritz method include Singh [17], Gupta [18]

and Taher [19], where in the latter case the accuracy was determined through

comparisons with finite element calculations.
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A less common approach has been given by Elishakoff [20], who rather than

specifying the form of the numerical displacement on the plate, instead spec-

ifies a plate vibration mode and then determines a stiffness function which

leads to the natural frequency (named the inverse problem). This has been

used with success on several profiles of cylindrical plates including a parabolic

thickness variation where the outer plate radius is clamped as a boundary

condition.

The complexity of the equation of motion for variable thickness plates can be

simplified by assuming that the thickness varies slowly with a change in radius.

Then, perturbation theory allows the displacement function to be separated

into a mean and small perturbation component. Yang proposes this method

and uses it to solve the case of a linear wedge shape, with comparisons to

finite element results [21]. Yang finds that although the method is available

for arbitrary m, the use at higher taper coefficients leads up to a 6.5 percent

variation in natural frequencies.

A final example of a numerical method is by Wang [22], who uses a differential

quadrature (DQ) method to evaluate the natural frequencies of vibration of a

plate whose thickness varies fromm = ±1. This method allows highly accurate

solutions to differential equations to be found using only a small number of

grid points. Wang uses prescribed rotational stiffnesses on the plate edges to

realise boundary conditions from free edges to completely clamped.

Most of the authors represented above do not discuss limitations of their solu-

tions other than stating that at times, the solutions are singular at r = 0 (and

are therefore not considered), nor do they consider applications of tapering in

circular plates to damping structural vibrations (through an analysis of the
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amplitude of modal displacement). All of these aspects will be considered in

the following sections of the present paper.

3 Numerical model

In order to be able to predict the vibration of a circular plate with and without

a profiled wedge-like hole, two separate sections are required. With reference

to Fig. 2, two constant thickness discs are created, joined at a specified radius.

At this join a boundary condition force is applied to excite the structure. At

the centre of the disc, a profiled section can be included, which terminates at

a truncation radius.

For notation, the outer radius of the first constant thickness plate is Ro, the in-

ner radius, Rf (this is where the force will be applied) and thickness h, density

ρ, Young’s modulus E and Poisson’s ratio ν. The second constant thickness

plate has outer radius Rf and inner radius Ri, the vibration is measured at a

radius Rm with the same material properties as previously described.

At the centre of the composite plate is a power-law profiled hole, hereby re-

ferred to as the wedge-like hole with subscript w. The outer radius is Ri and

inner radius Rt (the truncation position) with material properties Ew, ρw and

νw.

The initial solution is determined assuming a vertical plate displacement

w(r, θ, t) = w(r)einθe−iωt. The variables θ and t are the circumferential angle

and time respectively. Fourier transforms can be taken to express the displace-

ment as functions of the angular order n and frequency ω. The displacement

of the wedge-like section is denoted ww(r, θ, ω). The forward Fourier transform
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and subsequent inversion are defined as,

w̃(r, n, ω)=
1

(2π)2

∫
∞

−∞

∫ π

−π
w(r, θ, t) e−inθ eiωt dθ dt, (1)

w(r, θ, t)=
∫
∞

−∞

∞∑
n=−∞

w̃(r, n, ω) einθe−iωt dω. (2)

The damping is applied as a complex Young’s modulus, so that E = E(1+iη),

where η is the loss factor as has been used in previous studies [7]. The loss

factor associated with the wedge-like section material is ηw, where it is assumed

that the mass of the damping layer is not significant in comparison to the

wedge material. In addition, the loss factor applied to the wedge is assumed

not to vary with frequency, although the implementation of the numerical

method means that any frequency dependent damping could be applied.

3.1 Circular plate of constant thickness

The vibration of an isotropic, constant thickness radial plate is well docu-

mented, see for example [1][2]. A short description is provided here for com-

pleteness.

The equation of motion of a constant thickness annulus is given by [12],

−D∇4w(r, θ, t) = ρh
∂2w(r, θ, t)

∂t2
, (3)

where D = Eh3/12(1− ν2) is the bending stiffness and ∇4 is the differential

operator in polar coordinates,

∇2∇2 =

(
∂2

∂r2
+
1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
∂2

∂r2
+
1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
. (4)
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We apply the form of the solution for displacement to the equation of motion,

D∇4w(r, θ)− ρhω2w(r, θ) = 0. (5)

Now defining β4 = ρhω2/D, so that the equation becomes D∇4w(r, θ) −

β4w(r, θ) = 0. We then write the total displacement as the sum of two distinct

solutions, w(r, θ) = w1 + w2 where,

∇2w1 + β2w1 = 0, ∇2w2 − β2w2 = 0. (6)

If w1 = f(r)einθ then after substitution into the above it can be shown that a

solution exists in terms of Bessel’s functions with constants c1 and c2.

w1 = (c1Jn(βr) + c2Yn(βr)) e
inθe−iωt. (7)

Similarly, the alternative solution includes modified Bessel’s functions, In(βr) =

Jn(iβr)),

w2 = (c3In(βr) + c4Kn(βr)) e
inθe−iωt. (8)

For a solid cylindrical disc of constant cross section, the constants c2 and c4

are zero, as the corresponding Bessel’s functions are singular at r = 0.

This standard solution to the vibration displacement of a circular plate con-

tains four constants. The model presented in this paper utilises two such con-

stant thickness plates, therefore we have eight constants to determine. Four of

these will immediately be satisfied as the two circular surfaces are common,

therefore displacement, slope, bending moment and shear force are common

at the radius r = Rf . The complete solution for the displacement on the sur-

face of the constant thickness plate is now known and the implementation is

11



described in further detail in section 4.

w(r, θ, ω) = (c1Jn(βr) + c2Yn(βr) + c3In(βr) + c4Kn(βr)) e
inθe−iωt. (9)

3.2 Circular tapered plate of specified profile

In order to solve the equation of motion for the wedge-like section in Fig. 2, we

consider the profile to follow h(r) = εrm where ε and m are positive constants.

In this case, the solution is complicated by the fact that the bending stiffness

alters as a function of the radius. The equation of motion for this case is given

by Harris [11],

ρwhw
∂2ww(r, θ, t)

∂t2
= (1− vw)♦

4{Dw, ww(r, θ, t)}−∇
2[Dw∇

2ww(r, θ, t)], (10)

where ♦4{D,w} is the bilinear operator in polar coordinates (it is assumed

that the bending stiffness is not a function of θ).

♦4{D,w} =
∂2D

∂r2

(
1

r

∂w

∂r
+

1

r2
∂2w

∂θ2

)
+

∂2w

∂r2

(
1

r

∂D

∂r

)
. (11)

To complete the equation of motion, requires the differentiation of both D

and w with respect to r.

∇2
[
D∇2w

]
=

∂

∂r

[
∂

∂r

[
D∇2w

]]
+
1

r

∂

∂r

[
D∇2w

]
+

D

r2
∂2

∂θ2
∇2w, (12)

where after expansion of these terms, it may be shown that the full equation

of motion can be written [1][12],
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∂4ww

∂r4
[Dw] +

∂3ww

∂r3

(
2

r

[
Dw + r

∂Dw

∂r

])
+

∂2ww

∂r2

(
∂2Dw

∂r2
+

∂Dw

∂r

[
2

r
+

ν

r

]
+Dw

[
−
1

r2

])

+
∂ww

∂r

(
ν

r

∂2Dw

∂r2
−

1

r2
∂Dw

∂r
+Dw

[
1

r3

])
+

∂2ww

∂θ2

(
ν

r2
∂2Dw

∂r2
+

∂Dw

∂r

[
−
3

r3

]
+Dw

[
4

r4

])

+
∂4ww

∂θ4

(
Dw

r4

)
+

∂4ww

∂r2∂θ2

(
2Dw

r2

)
+

∂3ww

∂r∂θ2

(
−
2Dw

r3
+

2

r2
∂Dw

∂r

)
+ ρwhw

∂2ww

∂t2
= 0. (13)

Defining Γ = Ewε
3/12(1− ν2

w) allows the bending stiffness and derivatives to

be written as,

Dw = Γr3m ,
∂Dw

∂r
= 3mΓr3m−1 ,

∂2Dw

∂r2
= 3m(3m− 1)Γr3m−2. (14)

Substitution of these into the equation of motion and rearranging yields,

r4
∂4ww

∂r4
+ r3

∂3ww

∂r3
(2 + 6m) + r2

∂2ww

∂r2

(
3m(3m+ 1 + ν)− (1 + 2n2)

)

+ r
∂ww

∂r

(
3m(3m− 1)ν − 3m(1 + 2n2) + (1 + 2n2)

)

+ww

(
3m(3n2 − [3m− 1]νn2) + n2(n2 − 4)

)
−
12ρwω

2(1− ν2)

Ewε2
wwr

4−2m = 0.(15)

As was pointed out by Conway [10], the only case where the last term in Eq.

(15) becomes independent of r is when the profile is given by m = 2, which

corresponds to the near zero free edge reflection coefficient in the framework

of geometrical acoustics approximation [8]. Then the equation becomes homo-

geneous and an analytical solution is available for the case where n = 0. To

remove the radius in each of the differentials, a change of variable is employed

to z by assuming that r = ez. Then the equation of motion can be written,

∂4ww

∂z4
+

∂3ww

∂z3
(8)+

∂2ww

∂z2

(
10 + 6ν − 2n2

)
+

∂ww

∂z

(
−24 + 24ν − 8n2

)
+ww

(
n2[n2 − 30ν + 14]−K

)
= 0, (16)

where K = 12ρwω2(1−ν2)
Ewε2

. The solution to this differential equation is found by
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substituting w(z) = eλz and finding the roots of the subsequent characteristic

quartic equation. Conway provides the four solutions for n = 0 as,

λ1,2,3,4 = −2±

√
7− 3ν ±

√
9(1− ν2) +K, (17)

where the radial displacement is then given with reference to four constants.

ww(r, θ, ω) = c9r
λ1 + c10r

λ2 + c11r
λ3 + c12r

λ4 . (18)

For the case where n �= 0, the roots in this paper are determined numerically

using Lodovico Ferrari’s method for quartic equations. For a wedge which

includes a truncation radius, we then have four individual constants to deter-

mine.

The displacement of the plate and wedge surfaces are now to be found due to

harmonic forcing. It is also useful to express the results as a function of the

surface velocity, found using ẇ(ω)/p0 = iωw(ω)/p0 where the dot represents

a differentiation with respect to time.

4 Implementation to determine the vibration amplitude

For the composite model comprising two constant thickness plates and one

wedge-like section, we have twelve constants to determine. Therefore, twelve

boundary conditions are required to determine the forced vibration case. This

section provides the details of these conditions.

The solution method utilises three matrices; the matrix C is a twelve by one

containing the constants c1 to c12. We then introduce two further matrices,

so that W=XC, where W is a twelve by one in size containing the specific
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boundary conditions (e.g. bending moment is zero at r = Rt) and X is a

twelve by twelve containing the specific equations from sections 3.1 and 3.2.

The boundary conditions applied are provided in tables 1 and 2, where the

only non-zero element of W is shown to be the prescribed force p at r = Rf

applied as an impulse p(Rf) = δf (when Fourier transforms are taken, this

becomes a unity term). The full non-zero terms of the matrices are provided

for completeness in the appendix, after Fourier transforms have been applied.

For a given angular order and frequency, the matrices are populated and nu-

merically solved to find the twelve constants. Once these are known, it is

possible to determine the displacement at a given radius Rm by using Eq. (9).

In this paper, the results are shown as cross point mobilities ẇ(Rm, n, ω)/p(Rf),

defined as the velocity of the plate surface at a radial position Rm when a force

is applied at a radial position Rf . The amplitude of this response is shown on

a decibel scale (ẇ/p) dB which has been non-dimensionalised with a reference

value of 1 m/s/N.

4.1 Plate dimensions and properties

The results presented in this paper are predictions based on the vibration of

a plate made of mild steel. The dimensions of the plates are provided in table

3 with notations for the dimensions as shown in Fig. 2.
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4.2 Composite damping applied to the wedge-like section

The material damping in the plate is a constant value derived from informa-

tion provided in the literature. However, once an additional layer of damping

material is applied to the plate, the overall damping changes. The details of

the three damping methods used in this paper are provided in this section.

The plate material is assumed to be mild steel with an inherent damping value

of η = 0.006 [3] (which also applies to the wedge-like section if no additional

damping material is applied). Any additional damping is provided through

the use of a viscoelastic material (the subscript d applies) with the following

properties; The Young’s modulus is Ed = 1× 107 Pa and damping loss factor

ηd = 0.2. For the case where the damping is applied as a thin layer, it is

assumed that the compressed layer has a thickness of hd = 0.3 mm, therefore

the extensional stiffness of the damping layer is significantly less than the

wedge or plate (3 kN/m compared to 950 MN/m). It is assumed that the

mass of the damping layer is small in comparison to the mass of the wedge,

which is reasonable given the density of most damping materials is significantly

less than the density of mild steel. This paper uses a simple approximation of

the composite damping in a plate of variable thickness, however the equations

for the loss factor utilising thick viscoelastic layers which are also stiff in

comparison to the base plate have been examined in [5], where the difference

is only important at the very tip of the power-law. When considering the case

of a constrained layer damping treatment, these additional terms are required

over a wider range and have been used in this paper.

As the thickness of the wedge-like section changes with the radial position, the
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overall composite damping will also be a function of the radius. It would be

possible to accurately model this change using a large number of thin vertical

slices of plate, each of a slightly different height and damping, however, this

would require a large number of numerical matrices. As a simplification, the

equivalent composite damping for a wedge with a thin damping layer is deter-

mined based on the integrated reflection coefficient for a beam of quadratic

power-law profile found through the application of geometrical acoustics ap-

proximation.

This equivalent loss factor is determined in two steps. Initially, the local com-

posite loss factor is calculated for all radial positions on the wedge, using the

work provided in Ross, Kerwin and Ungar [3]. For the case of a single layer of

viscoelastic material applied to an isotropic, constant thickness elastic plate,

the form given by Oberst (see also O’Boy et al. [7]) is utilised, where the

composite damping for a given height of the wedge is given by,

ηcomp(r) =

ηD
EDhD

Ewhw

⎡
⎣4
(
hD

hw

)2

+ 6

(
hD

hw

)
+ 3

⎤
⎦

1 +
EDhD

Ewhw

⎡
⎣4
(
hD

hw

)2

+ 6

(
hD

hw

)
+ 5

⎤
⎦
. (19)

It can be seen that the optimum damping is highly dependent on the exten-

sional stiffness of the two materials. If the extensional stiffness of the damping

layer is too high, or comparable to the base layer, then the assumptions in

Eq. (19) break down. In addition, the profile of the wedge-like section will

not follow a quadratic power-law design. The local composite damping for a

single layer of damping material is shown in Fig. 3. The application of Eq. (19)

assumes that the plate is a constant thickness, therefore the second step in

deriving the equivalent loss factor for a damped wedge is to apply this method
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for many discrete steps of thickness.

In order that the numerical model is not split into a significantly large number

of radial slices (each of slightly differing thickness), we require an equivalent

single loss factor for the wedge without any applied damping layer which

provides the same reflection coefficient as one with a damping layer. Krylov

has determined the reflection coefficient for a flexural wave travelling into a

1D wedge material which reflects off a truncation using geometrical acoustics

approximation. Although this is a 1D analysis, it will be used in this paper

to determine the equivalent loss factor which is then substituted into the

equations of motion for a radial wedge (the distance will be taken as a radial

position).

The reflection coefficient R0 for a flexural wave travelling into and out of a

plain quadratic power-law wedge can be written [4],

R0 = exp

{
−2

121/4ω1/2[ρ(1 − ν2)]1/4

4ε1/2E1/4
η
∫ Ri

Rt

1

r
dr

}
, (20)

where it is assumed that the material is isotropic with constant damping loss

factor η.

When a thin damping layer is applied to the surface of the wedge, the local

composite loss factor then changes with distance into the wedge, rising signif-

icantly close to the truncation point. The integration in Eq. (20) must then

also take into account this variation inside the integral.

R0 = exp

{
−2

121/4ω1/2[ρ(1 − ν2)]1/4

4ε1/2E1/4

∫ Ri

Rt

1

r
ηcomp(r)dr

}
. (21)

The expression for the local composite damping, Eq. (19), is substituted into

Eq. (21) and the evaluation of the integral is completed numerically. If we
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assume that the reflection coefficients should be identical, we can determine a

single equivalent loss factor which does not vary with the radial position, for

a material which is isotropic but with the same reflection coefficient as one

which is damped.

ηequiv =
∫ Ri

Rt

1

r
ηcomp(r)dr/

∫ Ri

Rt

1

r
dr. (22)

Through the completion of Eq. (22), the equivalent composite damping for the

wedge with a thin damping layer is determined as η = 0.015. Modifying the

thickness of the compressed damping layers yields the equivalent damping loss

factors given in Table 4. Although this analysis for the composite damping is

based on the equations of viscoelastic damping in constant thickness beams,

by integrating the reflection coefficient for a large number of radial positions,

each taking into account the thickness of damping material, base plate and

their properties, we are able to obtain an estimate of the overall damping in

the tapering wedge section for a flexural wave travelling through the section.

The accuracy of this estimated average loss factor depends on the assumption

that the damping of any point in the tapering section can be represented by a

thin control volume of constant thickness damping film on a constant thickness

base plate, therefore the change in thickness of the profile should be small (the

assumptions would likely lead to larger errors for large power-laws).

An alternative damping method to be considered is the case of constrained

layer damping, where the volume left by the machining of the wedge shape

is filled with a depth of viscoelastic material and then a thin layer of mild

steel placed on top, see Fig. 3. The main advantage of this method is that

the external surface of the plate is smooth and flat. However, the equations

19



in this case are slightly more complicated and are provided in Ross, Kerwin

and Ungar (see Eq. (20) of [3]). These equations are used in this paper to

estimate the local composite loss factor for a thick viscoelastic layer which is

constrained.

The constraining layer (denoted with the subscript c) is assumed to be of the

same material as the wedge, with a thickness hc = 0.1 mm. The composite

damping of the plate using this constrained layer method compared with the

thin layer is shown in Fig. 4. The constrained layer provides a greater loss

factor at an earlier point on the wedge, except at the point closest to the

truncation radius. At this point the constraining layer is thicker than the

wedge and begins to dominate the equation.

It is also clear that it is only really useful to damp the final 4 cm of the wedge

shaped section, otherwise the properties of the wedge material dominate. The

effectiveness of damping the thin wedge material is shown. Therefore, for op-

timum damping, the plate must taper to as thin as possible in as short a

distance as possible, but without creating such a large impedance change that

waves travelling into the wedge are reflected.

The average composite damping utilised in the results section for constrained

layer damped wedge-like section is η = 0.0286 for frequencies less than 500 Hz

rising rapidly to approximately η = 0.0798 above this. This could be increased

by removing the constraining layer closer to the truncation point, where it

appears to be less efficient, reducing the local composite loss factor.
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5 Results

In this section, the results for the vibration of the different plates are pro-

vided. As shown in the mathematical derivation of the numerical model, the

vibration of the plate surface can be presented as functions of the amplitude

of displacement of certain modes or as functions of spatial coordinates. In

this paper, we present selected results for both, although the application of

damped wedge-like holes is not restricted to any single mode of vibration.

In order to obtain confidence in the predictions provided by the numerical

model, comparisons are made against experimental measurements on an an-

nulus machined from mild steel which has a lower overall diameter than the

results presented in the rest of the paper. One key advantage is that the res-

onances are more spread out in frequency, such that an accurate comparison

can be made.

Once the predictions for the model are validated, the mode shapes for different

values of the angular order are then presented, then the Fourier inversion

is carried out from n to θ and results for the vibration amplitudes of the

composite plate with different damping methods are then shown as cross point

mobility functions where the forcing and measurement locations are assumed

to occur at θ = 0 rad.

5.1 Validation of numerical models against experimental measurements

The comparison between the numerical predictions and experimental mea-

surements is considered separately from the results in the rest of the paper in
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order to ensure that any predictions made have sufficient accuracy in terms

of the frequency location of any resonances and their amplitudes. Two plates

were machined from the same piece of cold rolled mild steel with the same

material properties as shown in Table 3. In order to be able to identify indi-

vidual resonances more clearly, the overall diameter of the plate is reduced to

0.5 m, with a thickness of 5.07 mm. The first plate is a simple annulus with

a free edge at a diameter of 0.20 m and no damping applied. The second is

an identical plate, however, at the diameter of 0.20 m, a wedge indentation

is machined following a quadratic power-law profile, which terminates at a

truncation diameter of 10 mm. The power-law profile is machined in 50 dis-

crete step positions, although it will be assumed that this is approximately

similar to a continuous profile. A thin elastic damping material was placed on

the end of the wedge, with parameters approximately matching the numerical

predictions in this paper, however, due to the difficulty in determining the

accurate local loss factor (as the damping tape adhesive varied in different

positions on the discrete surface) the comparisons of amplitude variation will

be minimised.

The driving point mobility was measured at an arbitrary diameter of 0.35 m

using a standard Bruel and Kjaer accelerometer (series 4371) and a broad-

band electromagnetic shaker through a Bruel and Kjaer force transducer (se-

ries 8200). The acceleration, recorded in 8 Hz increments up to a frequency

of 6.4 kHz was subsequently converted into velocity during post processing.

The experimental measurements were carried out at the Noise and Vibration

Laboratory of Loughborough University with the assistance of E. P. Bowyer,

using a supporting rig designed to replicate free boundary conditions on the

outer surfaces.
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The numerical calculations also used a sampling interval of 8 Hz, with all other

parameters replicated as in the experimental measurements. The comparison

between the numerical predictions of an annular plate and the experimental

measurements is shown in Fig. 5. The location of each of the resonances and

anti-resonances is broadly well matched, for example, the resonances at 0.59,

2.22, 2.78, 3.38, 3.98 and 4.7 kHz have errors in the peak frequency location

of 1.7%, 2.7%, 1.4%, 0.3%, 1.3% and 0.2% respectively.

The comparison of the predicted amplitudes against experimental measure-

ments is less accurate at lower frequencies, most likely due to low frequency

damping thorough the boundary conditions on the edges of the plate. At fre-

quencies of 0.59, 2.22, 2.78, 3.38 and 4.7 kHz the difference in peak amplitudes

are 6 dB, 10 dB, 1 dB, 0.5 dB and 0.1 dB respectively. We may therefore

conclude that the numerical model and solution method provides sufficient

accuracy once above an excitation frequency of 2.5 kHz.

The experimental measurements are then repeated on a plate which has a cen-

tral indentation profile following a quadratic power-law design. This is covered

with a layer of damping material. The results are shown in Fig. 6, where it

may be seen again that the location of the frequencies are broadly correct. In

this case, the low frequency amplitudes are better matched however, the mea-

surements show much more variable damping at higher frequencies than the

predictions indicate. These variations are likely to be due to the inconsistent

local adhesion of the damping tape to the metal surface, even after cleaning

with alcohol solution. Further comparison and practical implementation of

this damping method will require a more efficient attachment method for the

damping material to the metal plate.
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The model does agree with the experimental measurements sufficiently to

have confidence in the predictions though. As an example, at the resonance

at 2.75 kHz, the error in the frequency location is only 1.1%, with an error

in amplitude of only 1 dB. The numerical model is now used to calculate the

cross point mobility of the composite plate with dimensions as shown in Table

3.

5.2 Composite plate resonances as functions of angular order

The cross mobility measurements of the composite plate, with a constant

thickness plate of outer radius r = Ro and inner radius Ri and a wedge

attachment terminating at a radius Rt are shown in Fig. 7 for three different

angular orders. In the frequency range 0-5 kHz, there are only three resonances

for each order, each representing an additional nodal diameter on the plate.

Examples of these response shapes are provided in Figs. 8(a)-(i), illustrated

as displacements at a single time. The amplitude on the wedge close to the

termination point is not shown, as it becomes large in comparison to that

on the main plate surface (such that the nodal lines cannot be seen clearly),

although these displacements are small in comparison to the plate thickness.

The figures (a)-(c) refer to the n = 0 mode, while (d)-(f) relate to n = 2

and (g)-(i) refer to n = 4. Without a truncation in the circular plate on the

power-law profile, the assumptions in the differential equation leading to the

equation of motion are violated, as the amplitude becomes far greater than the

thickness in the immediate vicinity of r = 0. However, as soon as a truncation

is introduced, the amplitude, while still large, never becomes infinitely high.

Although there will still be some errors in this model, it provides an effective
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and simple model for vibrations including quadratic tapered geometries. If

the truncation position of the profile is further reduced (through a different

machining technique to that described in this paper), it is likely that large

displacement terms would be required in the equation of motion, or the use of

the full equations of elasticity to provide an analysis in the immediate vicinity

of r = 0. In this paper, we assume that the displacement on any part of the

plate or profiled surface is small in comparison to the plate thickness.

Analysis of the amplitude of displacement in each mode shows that it is pos-

sible to neglect values of angular order greater than n = 30 in the Fourier

inversion, as the cut-on frequencies extend higher than 10 kHz. Therefore the

Fourier sum can be written as, w(θ) = w̃(n = 0) + (
∑n=30

n=1 w̃(n)(einθ + e−inθ).

5.3 Comparison of damped circular plate to damped composite structure

The Fourier sum over angular order is now completed, with results presented

at an angle θ = 0 rad. The cross point mobility calculations for a solid constant

thickness disc of radius r = Ro are shown in Fig. 9(a), with a comparison to

a disc which has a circular inner hole at r = Ri. The overall amplitude of the

response from the small disc is between 5-10 dB higher as shown in Fig. 9(c)

which provides further detail for the frequencies below 750 Hz. Once above

a frequency of 2.5 kHz, the resonances start to diverge from each other such

that the peaks and troughs do not line up at the same frequency.

In the subsequent plot, Fig. 9(b), the lighter of these two discs (outer radius

Ro and inner radius Ri) is compared to a similar disc, with an additional

profiled wedge section extending from Ri to Rt. Two trends are apparent,
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that the overall amplitude response is similar to the solid disc, except at the

lowest frequency where the amplitude is significantly higher, see the detailed

low frequency region in Fig. 9(d).

It is therefore apparent that except at very low frequencies, the inclusion of a

profiled wedge section does not alter the overall mobility response of a solid

plate, only the location of those frequencies. Therefore the addition of a free

wedge-like section can not be considered as a possible damping method for

vibrating structures.

We now present results for two damping methodologies. In Fig. 10 a thin

damping layer is applied to the whole of the constant thickness plate. This

is likely to be the most common method of damping unwanted vibrations

which lead either to fatigue or acoustic problems. However, it is also extremely

inefficient.

For an excitation frequency below 500 Hz, the additional damping layer pro-

vides little reduction in the amplitude. For a mid-frequency range, the re-

duction is only 2-2.5 dB and above 3 kHz, where the damping would be ex-

pected to have the most impact, the reduction is only 2.5-3 dB. This matches

the predictions by Ross, Kerwin and Ungar [3] in section 4.2, who showed

that the extensional stiffness of the plate layer dominates that of the damp-

ing layer, resulting in a very low composite damping coefficient (in this case

η = 8.45×10−3). Even through adhering a damping layer to the whole surface

and covering the whole plate with damping film, the effect is minimal. This

contrasts with the enhanced amplitude reduction found by damping a profiled

wedge section. In Fig. 11, the amplitude response of the same disc is compared

with one where a profiled wedge-like section has been added (covered with the
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same thickness of damping film). The composite damping for the wedge is now

a larger coefficient η = 1.51 × 10−2, as the thickness of the damping layer is

comparable to the thickness of the wedge close to the centre of the plate.

At the lowest frequencies, the amplitude response of the damped wedge plate

is still much higher. However, as the frequency increases, the amplitude is

reduced by between 7-14 dB, with the largest reductions appearing at the

higher frequency range. In this case, the volume of damping material is far

smaller than that needed to cover the whole plate and yet the reductions are

more significant.

A disadvantage of damping vibrations using small profiled sections is that

the original plate is now not flat and smooth. A possible solution could be

to utilise a constrained layer damping method, where the constraining layer

is of the same material as the plate and is flush with the top surface. An

added advantage would be an expected increase in shear damping, especially

at higher frequencies.

This comparison is shown in Fig. 12 where the composite damping is now a

higher η = 7.98 × 10−2 for the majority of the frequency range. It can be

shown that the effect of this damping method is to achieve an additional 1-

3 dB reduction over the thin damping layer. This is highly dependent on the

frequency (at low frequencies the overall reduction is between 3-8 dB, whereas

at the highest frequencies a 17 dB overall reduction is possible).

Further work is required to compare these predictions to those which are found

when the numerical terms incorporating rotary inertia and shear deformation

are included in the plate equations. Also, comparisons with experimental mea-

surements will verify the predicted large 16 dB increase in amplitude at the
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first mode of vibration.

The predictions have shown the benefit of including a damped wedge-like

structure to minimise amplitude of vibration. A summary table of the am-

plitude reductions is provided in table 5. The reference plate is the circular

plate with outer and inner dimensions Ro and Ri respectively. The subsequent

reductions and increases are then shown for the alternative plates.

This paper has shown that lightly damped tapered wedge indentations can

provide a greater reduction in peak vibration amplitude than can be found

by covering the whole plate with damping tape. We now provide additional

results for the case where the thickness of the damping film attached to the

wedge is varied, by the number of layers applied. The comparison of the peak

vibration amplitude of the cylindrical plate incorporating a damped wedge

indentation is shown in Fig. 13 where the number of damping layers applied

to the wedge are varied, implemented through a variable equivalent loss factor

as discussed in section 4.2.

The upper frequency range of the results are shown, where it may be seen that

the mobility response can be separated into longitudinal modes of vibration

and across width modes. The damping applied to the wedge only substantially

affects the longitudinal modes and therefore the resonances at 2.94 kHz and

3.48 kHz do not show any appreciable difference in amplitude with an increase

in the number of applied damping layers, as expected.

Calculations carried out according to the above mentioned approach show that

the amplitude of the longitudinal modes varies substantially with an increase

in the number of damping layers, decreasing by 4, 5.5, 7.5 and 7.75 dB for

two, three, six and eight layers respectively at a frequency of 2.55 kHz. At
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the higher frequency of 3.74 kHz, these reductions are 2.6, 4.0, 5.5, 6.2 dB

respectively. The advantage of increasing the number of layers is clear through

the amplitude reductions, at the expense of an increase in the mass of the

damping layers applied. Of interest is that, according to the above calculations,

the plate with approximately eight layers of damping tape reduces the overall

amplitude by slightly more than the reduction found through the use of the

constrained layer method. This is due to a greater local loss factor closer to the

tip of the wedge indentation, where the constraining layer is not as efficient

and actually increases the extensional stiffness significantly. However, the clear

potential disadvantage is that the outer plate surface is not flat and smooth,

which may be important for different applications.

6 Conclusions

Mobilities for a circular plate with a tapered central hole of power-law profile

have been numerically calculated using the exact solution of the corresponding

flexural wave equation that exists form = 2. Note that this value ofm belongs

to the range m ≥ 2 that defines zero reflection of quasi-plane waves from a

tapered hole in geometrical acoustics approximation.

Two cases of added damping in the central hole area have been considered: a

thin absorbing layer and a constrained layer. Cross point mobilities have been

calculated for both these cases in a situation when the points of excitation and

observation are characterised by the same polar angle. In a particular case of

equal polar radii these give results for point mobilities.

The obtained results for point and cross mobilities show a substantial sup-
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pression of resonant peaks (up to 17 dB), in comparison with the cases of a

plate with an uncovered hole of the same power-law profile and of a reference

circular plate of constant thickness covered or uncovered by a thin absorbing

layer. Apparently, this suppression is associated with the near zero reflection

coefficient caused by a tapered hole with m = 2.

Although the geometry of a circular plate with a tapered hole of power-law

profile considered in this paper is highly symmetrical and applicable to a re-

stricted number of practical applications, the obtained numerical results for

mobilities are important as they give a clear idea of what degree of damping

can be expected from two-dimensional power-law profile holes. It is expected

that the same order of damping will also take place in a variety of practical

situations, e.g. for rectangular plates or other structures with arbitrary loca-

tions of tapered holes, etc. Further theoretical and experimental research is

needed to examine these expectations.
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Appendix: Terms for a circular plate with a profiled wedge addition

The matrices relating to the numerical model of the composite plate (two

constant thickness circular plates with a profiled wedge section at the centre)

utilise a notation W = X C. The full terms of these matrices are provided in

this section for completeness (the expression einθe−iωt has been omitted).

The matrix C of constants is twelve rows by one column. The first four relate

to the first constant thickness plate, the next four relate to the second constant

thickness plate and the final four relate to the wedge.

C = (c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12)
T .

The matrix W contains the results of the boundary conditions, whose only

non-zero term is W [6] = 1 as the prescribed shear force applied as an impulse

at the join between the two constant thickness plates r = Rf .

The matrix X contains the applied boundary conditions, a twelve by twelve in

size. The non-zero entry for Jn(βRo) in the first boundary condition is given

by,

X [1, 1] =

(
n(n− 1)(1− ν)

R2
o

− β2

)
Jn(βRo) +

(
β

Ro
(1− ν)

)
Jn+1(βRo),

where the subsequent terms for X[1,2], X[1,3] and X[1,4] can be found by

substituting Yn, In, Kn respectively instead of Jn.

Similarly the second boundary condition has an entry,
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X [2, 1]=

(
n2(n− 2)

R3
o

−
β2n

Ro

+
(3− ν)n2

R3
o

−
(2− ν)n3

R3
o

)
Jn(βRo) +(

β3 +
β(1− ν)n2

R2
o

)
Jn+1(βRo),

The third to the sixth boundary conditions are applied at a radius r = Rf ,

the forcing location. The terms in Jn are;

X [3, 1] = Jn(βRf), X [3, 5] = −X [3, 1].

X [4, 1] =

(
n

Rf

)
Jn(βRf)− βJn+1(βRf ), X [4, 5] = −X [4, 1].

X[5, 1] =

(
n(n− 1)(1− ν)

R2
f

− β2

)
Jn(βRf)+

(
β

Rf
(1− ν)

)
Jn+1(βRf ), X[5, 5] = −X [5, 1].

X [6, 1]=

(
n2(n− 2)

R3
f

−
β2n

Rf
+
(3− ν)n2

R3
f

−
(2− ν)n3

R3
f

)
Jn(βRf ) +

(
β3 +

β(1− ν)n2

R2
f

)
Jn+1(βRf), X [6, 5] = −X [6, 1].

The matrix terms X[3,2], X[3,3], X[3,4] and X[3,6], X[3,7], X[3,8] are deter-

mined by substituting the alternate Bessel’s functions to Jn.

The final six boundary conditions relate to the join between the second con-

stant thickness plate and the profiled wedge. The boundary conditions applied

at this radius, r = Ri are,

X [7, 1] = Jn(βRi).

X [8, 1] =
(
n

Ri

)
Jn(βRi)− βJn+1(βRi).

X[9, 1] =

(
n(n− 1)(1− ν)

R2
i

− β2

)
Jn(βRi) +

(
β

Ri

(1− ν)

)
Jn+1(βRi).

32



X [10, 1]=

(
n2(n− 2)

R3
i

−
β2n

Ri

+
(3− ν)n2

R3
i

−
(2− ν)n3

R3
i

)
Jn(βRi) +(

β3 +
β(1− ν)n2

R2
i

)
Jn+1(βRi).

X [7, 9] = −Rλ1

i , X[7, 10] = −Rλ2

i , X[7, 11] = −Rλ3

i , X [7, 12] = −Rλ4

i .

X [8, 9]=−λ1R
λ1−1
i , X [8, 10] = −λ2R

λ2−1
i

X [8, 11]=−λ3R
λ3−1
i , X [8, 12] = −λ4R

λ4−1
i .

At r = Rt, the truncation radius of the wedge, the final two boundary condi-

tions reflect a free edge condition.
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List of figure and table captions

Fig. 1. A circular plate incorporating a profiled wedge-like section at the centre. A

small element has been removed to illustrate the change in thickness with radial

position.

Fig. 2. Cross section of the composite model, composed of two constant thickness

plates and one tapered plate, all of circular shape. The point at which a force is

applied and vibration displacement measured are also shown.

Fig. 3. Constrained layer damping; The wedge-like hole volume is filled with a

viscoelastic damping layer and a thin material layer is placed on top, such that the

overall plate surface is flat.

Fig. 4. Composite damping coefficient of the profiled wedge comparing a constrained

layer damping solution with a thin layer of damping film of constant thickness. The

wedge-like section radius extends from r = Rt to Ri.

Fig. 5. Comparison of the predicted driving point mobility ẇ(Rm, θ = 0, ω)/p(Rm)

for an annulus against experimental measurements.

Fig. 6. Comparison of the predicted driving point mobility ẇ(Rm, θ = 0, ω)/p(Rm)

for an annulus with a damped quadratic power-law indentation machined into it,

against experimental measurements.
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Fig. 7. Cross point mobility calculations of the composite plate, ẇ(Rm, n, ω)/p(Rf )

for three angular orders (n = 0, 2, 4).

Fig. 8. Examples of the displacement response shapes at prescribed frequencies

and angular orders; For a frequency (a) f = 0.22 kHz, (b) f = 1.85 kHz, (c)

f = 3.74 kHz, (d) f = 0.49 kHz, (e) f = 1.20 kHz, (f) f = 2.20 kHz, (g)

f = 0.98 kHz, (h) f = 1.90 kHz, (i) f = 3.10 kHz.

Fig. 9. Comparison of the cross point mobility calculations of three differ-

ent plates after the Fourier sum over angular order has been completed,

ẇ(Rm, θ = 0, ω)/p(Rf ). Plates are a) a constant thickness plate from r = Ro to

r = 0 against a constant thickness plate from r = Ro to r = Ri; b) a constant thick-

ness plate from r = Ro to r = Ri compared against a constant thickness plate from

r = Ro to r = Ri with a profiled wedge section from Ri to Rt. The low frequency

regions of these two results are shown in detail in figures c) and d) respectively

where the same legends apply.

Fig. 10. Comparison of the cross point mobility calculations of two different plates,

ẇ(Rm, θ = 0, ω)/p(Rf ). Plates are a constant thickness plate from r = Ro to r = Ri

with only inherent metal damping against the same plate covered with a layer of

damping film (the composite damping coefficient is η = 8.45 × 10−3).

Fig. 11. Comparison of the cross point mobility calculations of two different plates,

ẇ(Rm, θ = 0, ω)/p(Rf ). Plates are a constant thickness plate from r = Ro to r = Ri

with only inherent metal damping against the same plate with a profiled wedge

section from r = Ri to Rt covered with a layer of damping film (the composite

damping coefficient is η = 1.51 × 10−2).
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Fig. 12. Comparison of the cross point mobility calculations of two different plates,

ẇ(Rm, θ = 0, ω)/p(Rf ). Plates are a constant thickness plate from r = Ro to r = Ri

with a profiled wedge attachment from r = Ri to Rt compared with the same plate

when the wedge-like hole is covered with a constrained layer damping solution (the

composite damping coefficient is η = 7.98 × 10−2).

Fig. 13. Comparison of the cross point mobility calculations of the cylindrical plate

with a damped wedge profile, ẇ(Rm, θ = 0, ω)/p(Rf ). The thickness of damping

layer applied to the surface is varied such that the peak amplitude response is

further reduced.
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Table 1

Boundary conditions applied to the outer constant thickness plate (1) and the inner

constant thickness plate (2).

Table 2

Boundary conditions applied to the inner constant thickness plate and the wedge-

like section.

Table 3

Parameters of the composite plate used in the numerical predictions.

Table 4

Equivalent loss factors for a wedge with a different number of layers of thin elastic

damping tape applied to the surface.

Table 5

Summary of potential reductions in plate resonance using different damping meth-

ods. The reference calculation is the cross mobility response of a constant thickness

plate of outer radius r = Ro and inner radius Ri. The subsequent reductions in

dB re 1m/s/N are given for the reference plate covered with damping film, the

reference plate with an undamped and damped wedge section and finally with a

constrained layer damping applied to the wedge section.
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List of figures, tables and captions

Fig. 1. A circular plate incorporating a profiled wedge-like section at the centre. A

small element has been removed to illustrate the change in thickness with radial

position.
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Profiled element Constant thickness plate Constant thickness plate

Wedge truncation radius
Wedge outer radius

Vibration forcing radius
Vibration measurement radius

Overall outer plate radius

Axis of rotation
Cross section of overall plate

Rt

Ri

Ro

Rm

Rf

Fig. 2. Cross section of the composite model, composed of two constant thickness

plates and one tapered plate, all of circular shape. The point at which a force is

applied and vibration displacement measured are also shown.
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Wedge of composite plate

Viscoelastic damping layer

Axis of rotation
Constraining layer

Rt
Ri

hc hd

hw

Fig. 3. Constrained layer damping; The wedge-like hole volume is filled with a

viscoelastic damping layer and a thin material layer is placed on top, such that the

overall plate surface is flat.
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Fig. 4. Composite damping coefficient of the profiled wedge comparing a constrained

layer damping solution with a thin layer of damping film of constant thickness. The

wedge-like section radius extends from r = Rt to Ri.
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Fig. 5. Comparison of the predicted driving point mobility ẇ(Rm, θ = 0, ω)/p(Rm)

for an annulus against experimental measurements.
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Fig. 6. Comparison of the predicted driving point mobility ẇ(Rm, θ = 0, ω)/p(Rm)

for an annulus with a damped quadratic power-law indentation machined into it,

against experimental measurements.
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Fig. 7. Cross point mobility calculations of the composite plate, ẇ(Rm, n, ω)/p(Rf )

for three angular orders (n = 0, 2, 4).
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(a) n = 0 (b) n = 0 (c) n = 0

(d) n = 2 (e) n = 2 (f) n = 2

(g) n = 4 (h) n = 4 (i) n = 4

Fig. 8. Examples of the displacement response shapes at prescribed frequencies

and angular orders; For a frequency (a) f = 0.22 kHz, (b) f = 1.85 kHz, (c)

f = 3.74 kHz, (d) f = 0.49 kHz, (e) f = 1.20 kHz, (f) f = 2.20 kHz, (g)

f = 0.98 kHz, (h) f = 1.90 kHz, (i) f = 3.10 kHz.
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Fig. 9. Comparison of the cross point mobility calculations of three differ-

ent plates after the Fourier sum over angular order has been completed,

ẇ(Rm, θ = 0, ω)/p(Rf ). Plates are a) a constant thickness plate from r = Ro to

r = 0 against a constant thickness plate from r = Ro to r = Ri; b) a constant thick-

ness plate from r = Ro to r = Ri compared against a constant thickness plate from

r = Ro to r = Ri with a profiled wedge section from Ri to Rt. The low frequency

regions of these two results are shown in detail in figures c) and d) respectively

48



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−60

−50

−40

−30

−20

−10

0

Frequency [kHz]

dB
 re

 1
 m

/s
/N

1dB 2dB 2.75dB

Constant thickness disc from Ro to Ri
Constant thickness disc from Ro to Ri with damping film

Fig. 10. Comparison of the cross point mobility calculations of two different plates,

ẇ(Rm, θ = 0, ω)/p(Rf ). Plates are a constant thickness plate from r = Ro to r = Ri

with only inherent metal damping against the same plate covered with a layer of

damping film (the composite damping coefficient is η = 8.45 × 10−3).
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Fig. 11. Comparison of the cross point mobility calculations of two different plates,

ẇ(Rm, θ = 0, ω)/p(Rf ). Plates are a constant thickness plate from r = Ro to r = Ri

with only inherent metal damping against the same plate with a profiled wedge

section from r = Ri to Rt covered with a layer of damping film (the composite

damping coefficient is η = 1.51 × 10−2).
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Fig. 12. Comparison of the cross point mobility calculations of two different plates,

ẇ(Rm, θ = 0, ω)/p(Rf ). Plates are a constant thickness plate from r = Ro to r = Ri

with a profiled wedge attachment from r = Ri to Rt compared with the same plate

when the wedge-like hole is covered with a constrained layer damping solution (the

composite damping coefficient is η = 7.98 × 10−2).
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Fig. 13. Comparison of the cross point mobility calculations of the cylindrical plate

with a damped wedge profile, ẇ(Rm, θ = 0, ω)/p(Rf ). The thickness of damping

layer applied to the surface is varied such that the peak amplitude response is

further reduced.
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Radius Condition Description

r = Ro Bending moment is zero ∂2w(Ro,n)
∂r2 + ν

(
1
r
∂w(Ro,n)

∂r − n2

R2
o
w(Ro, n)

)
= 0

r = Ro Shear force is zero ∂3w(Ro,n)
∂r3 + 1

r
∂2w(Ro,n)

∂r2 − 1
r2

∂w(Ro,n)
∂r

− (2−ν)n2

r2
∂w(Ro,n)

∂r + (3−ν)n2

r3 w(Ro, n) = 0

r = Rf Displacement is common for the

two constant thickness plates

w(Rf , n)|Plate 1 −w(Rf , n)|Plate 2 = 0

r = Rf First derivative is common for

the two constant thickness plates

∂w(Rf ,n)
∂r |Plate 1 −

∂w(Rf ,n)
∂r |Plate 2 = 0

r = Rf Bending moment is common for

the two constant thickness plates

[
∂2w(Rf ,n)

∂r2
+ ν

(
1
r
∂w(Rf ,n)

∂r − n2

R2

f

w(Rf , n)

)]
Plate 1

-

[
∂2w(Rf ,n)

∂r2
+ ν

(
1
r
∂w(Rf ,n)

∂r − n2

R2

f

w(Rf , n)

)]
Plate 2

=0

r = Rf Shear force is common prescribed

value

[
∂3w(Rf ,n)

∂r3
+ 1

r
∂2w(Rf ,n)

∂r2
− 1

r2
∂w(Rf ,n)

∂r

− (2−ν)n2

r2
∂w(Rf ,n)

∂r + (3−ν)n2

r3
w(Rf , n)

]
Plate 1

−

[
∂3w(Rf ,n)

∂r3
+ 1

r
∂2w(Rf ,n)

∂r2
− 1

r2
∂w(Rf ,n)

∂r

− (2−ν)n2

r2
∂w(Rf ,n)

∂r + (3−ν)n2

r3
w(Rf , n)

]
Plate 2

= δf

Table 1

Boundary conditions applied to the outer constant thickness plate (1) and the inner

constant thickness plate (2).
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Radius Condition Description

r = Ri Displacement is common for the

constant thickness plate and the

wedge

w(Ri, n)|Plate 2 − ww(Ri, n) = 0

r = Ri First derivative is common for

the constant thickness plate and

the wedge

∂w(Ri,n)
∂r |Plate 2 −

∂ww(Ri,n)
∂r = 0

r = Ri Bending moment is common for

the constant thickness plate and

the wedge

[
∂2w(Ri,n)

∂r2
+ ν

(
1
r
∂w(Ri,n)

∂r − n2

R2

i

w(Ri, n)
)]

Plate 2

−∂2ww(Ri,n)
∂r2

= 0

r = Ri Shear force is common for the

constant thickness plate and the

wedge

[
∂3w(Ri,n)

∂r3
+ 1

r
∂2w(Ri,n)

∂r2
− 1

r2
∂w(Ri,n)

∂r

− (2−ν)n2

r2
∂w(Ri,n)

∂r + (3−ν)n2

r3 w(Ri, n)
]
Plate 2

−∂3ww(Ri,n)
∂r3

= 0

r = Rt Bending moment is zero on the

wedge truncation point

∂2ww(Rt,n)
∂r2

+ ν
(
1
r
∂ww(Rt,n)

∂r − n2

R2

t

ww(Rt, n)
)
= 0

r = Rt Shear force is zero on the wedge

truncation point

∂3ww(Rt,n)
∂r3

+ 1
r
∂2ww(Rt,n)

∂r2
− 1

r2
∂ww(Rt,n)

∂r

− (2−ν)n2

r2
∂ww(Rt,n)

∂r + (3−ν)n2

r3
ww(Rt, n) = 0

Table 2

Boundary conditions applied to the inner constant thickness plate and the wedge-

like section.
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Parameter Notation Value

Young’s modulus E 190 GPa

Density ρ 7800 kg/m3

Poisson’s ratio ν 0.30

Damping η 0.006

Outer radius Ro 0.30 m

Forcing location Rf 0.12 m

Inner radius Ri 0.10 m

Measurement radius Rm 0.10 m

Truncation radius Rt 0.005 m

Initial thickness h 0.005 m

Damping loss factor ηD 0.2

Damping layer thickness hD 0.3 mm

Table 3

Parameters of the composite plate used in the numerical predictions.
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Number of layers of damping tape applied Equivalent loss factor

One 0.0151

Two 0.0356

Three 0.0488

Six 0.0720

Eight 0.0814

Ten 0.0889

Table 4

Equivalent loss factors for a wedge with a different number of layers of thin elastic

damping tape applied to the surface.
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Approximate

frequency [kHz]

0.3 0.7 1.5 2.4 3.1 3.6 5.0

Plate and

reductions

Reference [dB] 2.0 -10.0 -2.0 -12.0 -8.5 -10.0 -18.0

Reference with thin

damping film

0.0 -1.0 -2.0 -2.5 -2.75 -3.0 -2.75

Reference with un-

damped wedge

-9.0 -7.5 -3.5 -4.5 -5.0 -3.0 -10.0

Reference with thin

damping film on

wedge

8.0 -0.5 -4.0 -13.5 -10.0 -7.0 -15.5

Reference with

constrained layer

damped wedge

13.0 -7.5 -7.5 -6.0 -17.0 -12.0 -17.0

Table 5

Summary of potential reductions in plate resonance using different damping meth-

ods. The reference calculation is the cross mobility response of a constant thickness

plate of outer radius r = Ro and inner radius Ri. The subsequent approximate re-

ductions in dB re 1m/s/N are given for the reference plate covered with damping

film, the reference plate with an undamped and damped wedge section and finally

with a constrained layer damping applied to the wedge section.
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