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Elastic wave dispersion in

microstructured membranes

By Mariateresa Lombardo and Harm Askes

Department of Civil and Structural Engineering, University of Sheffield, Mappin
Street, Sheffield S1 3JD, UK

The effect of microstructural properties on the wave dispersion in linear elastic mem-
branes is addressed in this paper. The periodic spring-mass lattice at the lower level
of observation is continualised and a gradient-enriched membrane model is obtained
to account for the characteristic microstructural length scale of the material. In the
first part of this study, analytical investigations show that the proposed model is
able to capture correctly the physical phenomena of wave dispersion in microstruc-
tured membrane which is overlooked by classical continuum theories. In the second
part, a finite element discretisation of microstructured membrane is formulated by
introducing the pertinent inertia and stiffness terms. Importantly, the proposed
modifications do not increase the size of the problem with respect to the classical
elasticity. Numerical simulations are included for validation purposes. The results
confirm that the structural characteristics of the material can have a huge impact
on the vibrational properties, particularly in the high-frequency range.

Keywords: continualisation; higher-order continuum; lattice model;
microstructure; Padé approximation; wave dispersion

1. Introduction

A tensioned membrane can be considered as the simplest example of a two- dimen-
sional vibrating system, although also more complex structures may be regarded
as membranes, whose fundamental characteristic is the incapability of conveying
moments or shear forces. Currently, innovative practical applications exist for these
structural models such as antennas and solar sails for space applications, biotech-
nological prostheses, and lightweight roofs designed in architecture and structural
engineering (Jenkins & Korde 2006). The use of composite materials for these high
performance systems is becoming fundamental, and the request of specific properties
has increased the design of fabric materials providing the flexibility and lightweight
characteristics appropriate for membrane structures. Composite membranes possess
a relevant microscopic structure that often influences significantly the correspond-
ing macroscopic response. Consequently, accurate modelling of such structures and
materials requires that the microstructure is accounted for.

In mechanical problems involving materials with microstructure, the existence
of microscopic internal characteristic lengths, whose origin may be the lattice pe-
riod for a discrete system or the inclusion size for an inhomogeneous material,
introduces a size dependence into the structural response on the macroscopic level.
These effects may be accurately analyzed including each individual microstructural
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element in a discrete model. However, this approach leads to a considerable compu-
tational effort because the number of degrees of freedom is normally very large. The
strategy of replacing such a discrete model with an equivalent continuum, charac-
terizing the average mechanical behavior of the actual discrete or inhomogeneous
material, offers a efficient alternative since the continuum mechanics approach is
computationally less expensive.

Although classical continuum theories are adequate for many static situations,
their validity is limited for problems involving dynamic analysis in the high-frequency
regime, wherein microstructural effects are more significant. The dispersion of waves
propagating through a heterogeneous or discrete medium is extensively documented
by experimentalists, and this cannot be adequately simulated using standard con-
tinuum material models (Erofeyev 2003, Jakata & Every 2008). Dispersion is the
phenomenon that waves with different wave lengths propagate with different ve-
locities. Because a propagating wave is assumed as a superposition of harmonic
components, its shape is altered when the components have different wave speeds.
Waves that propagate through a classical medium are not dispersive, i.e. the wave
speed is constant, independent of wave length, and waves travelling through this
medium maintain a constant shape.

Enhanced continuum models constitute a class of continua accounting for the
intrinsic length of microstructural details in the macrostructural material model,
normally by means of additional (temporal or spatial) derivatives of the relevant
state variables. It was shown that the wave dispersion in dynamics can be real-
istically restored by the addition of higher-order inertia terms and higher-order
stiffness terms in the governing equations, see for instance the recent overview in
Papargyri-Beskou et al. (2009). To this end, continualisation or homogenization
strategies were proposed to account for the heterogeneous or discrete nature of
materials. Following the philosophy of homogenization theory, the cases of mono-
dimensional systems have been discussed in the works of Chen & Fish (2001) and
Fish et al. (2002) with the aim to obtain dispersive continuum models for periodic
heterogeneous media. If the material at the lower scale can be assumed to be a
discrete medium, continualisation techniques can be used to translate the discrete
nature into a gradient-enriched continuum with the aim to preserve the essential
link between the degrees of freedom of the actual model and those of the continuum
(see, for instance, Metrikine & Askes 2002). Investigations regarding the dispersion
properties of granular material, whose discreteness can be recognized at the obser-
vation level, can be found in Chang & Gao (1995), Mühlhaus & Oka (1996), Suiker
et al. (2001) and Suiker & de Borst (2005), although care must be taken that the
resulting continuum model is stable (Metrikine & Askes 2002).

The aim of this contribution is to validate the accuracy of enhanced contin-
uum analysis of a membrane with microstructure subject to dynamic loading. The
effectiveness in the high-frequency range is investigated by means of dispersion re-
lations. The derivation of a membrane continuum model has been already discussed
for nonlinear and linear dynamics of lattices by Rosenau (1987) and Andrianov &
Awrejcewicz (2008). However, for reason of clarity the main steps in the derivation
procedure will be recapped in § 2. With the aim to better understand the limits
of validity of the higher-order continua in the context of dynamic problems, the
analysis of the dispersion properties of transverse waves propagating along differ-
ent direction is presented in § 3. The spatial discretization with finite elements and
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the time integration of the field equations are detailed in § 4. Finally, numerical
analyses of a microstructured membrane are treated in § 5 with the aim to ver-
ify that the enhanced continuum models provide more realistic results than the
classical continuum theory.

2. Transverse vibrations of a two-dimensional lattice and
continualization methods

In this section the continualisation approach is employed for the construction of
continuum models from associated periodic structures. The microstructured mem-
brane is modelled by a regular lattice and taking advantage of the periodicity of
the structure, the equation of motion for an inner cell is derived. Then, truncated
Taylor series expansions are used to approximate the difference equations by differ-
ential equations. In this manner, the microstructural effects are accounted for by
means of higher-order gradients naturally appearing in the continuum equations.

The equations governing the transverse vibrations of a two-dimensional lattice
have been derived, for reasons of simplicity, assuming the hypotheses of linear elas-
ticity. The equation of motion obtained via the standard continualisation approach
is presented, and it is shown that reduces to standard elastic continuum when we
account for only the first terms in the series whereas the higher-order terms increase
the order of the partial differential equations. It follows that supplementary bound-
ary conditions are required to define a well-posed problem. In order to avoid this
inconvenience, the Padé approximants are introduced yielding a more effective con-
tinuum model; incidentally Padé approximants also help in overcoming instabilities
as explained in § 3.

(a) Discrete model

The two-dimensional spring-mass lattice that will be analyzed consists of a re-
peating arrangement of N1×N2 identical particles of massM , connected by springs.
The interparticle distances are denoted by ℓx and ℓy, in x and y directions respec-
tively. As outlined in Rosenau (1987), due to the spatial periodicity of the system,
the dynamics of such structures can be studied by considering only a unit cell as
depicted in figure 1. If the lattice experiences small displacements in transverse
direction (i.e. z) compared to its initial position in the x− y plane, the membrane
vibrations can be studied in the linear regime (Andrianov & Awrejcewicz 2008).

The equation of motion governing the free transverse vibrations of an element
located in the mth row and nth column is obtained by balance of forces in vertical
direction as

M
∂2um,n

∂t2
= [(Fm+1,n − Fm−1,n) + (Fm,n+1 − Fm,n−1)] (2.1)

m = 0, 1, . . . , N1; n = 0, 1, . . . , N2

where um,n = um,n(t) = u(xm, yn; t) is the transverse displacement of the mass and
Fi,j is the recall force of the stretched springs connecting the nearest-neighbour
particles.

For small displacements, we may assume that the contribution of Fi,j at all
points in the lattice remains close to its equilibrium value and each contribution
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Figure 1. Two-dimensional discrete lattice in the (x, y) plane.

has the form

Fm+1,n − Fm−1,n =
Fx

ℓx
[(um+1,n − um,n)− (um,n − um−1,n)] (2.2a)

Fm,n+1 − Fm,n−1 =
Fy

ℓy
[(um,n+1 − um,n)− (um,n − um,n−1)] (2.2b)

where now Fi is the force of the spring in direction i.
For the sake of simplicity we employ a square lattice, so that Fx = Fy and

ℓx = ℓy, and inserting equations (2.2) into equation (2.1) the equation of motion
reads

M
∂2um,n

∂t2
= T [um+1,n − 2um,n + um−1,n] + T [um,n+1 − 2um,n + um,n−1] (2.3)

where T = F
ℓ is an in-plane tensile load. The following boundary and initial condi-

tions are applied

u0,n = uN1,m = um,0 = um,N2
= 0 (2.4a)

um,n(t) =
∂

∂t
um,n(t) = 0 (2.4b)

To continualize the equation (2.3), the simplest strategy suggests to replace the
discrete degrees of freedom by a continuous variable field.

(b) Classical continuum approximation

Following the hypothesis of a dense lattice, a continuum approximation involves
introducing a continuum displacement field um,n ≡ u(x, y; t), whereas the displace-
ments of the neighbouring particles um±1,n and um,n±1 are replaced by u(x± ℓ, y)
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and u(x, y ± ℓ), respectively. Using Taylor series expansions the displacements of
the neighbouring particles can be approximated according to

um±1,n = u(x± ℓ, y; t) = u± ℓ
∂u

∂x
+

ℓ2

2

∂2u

∂x2
+ . . . (2.5a)

um,n±1 = u(x, y ± ℓ; t) = u± ℓ
∂u

∂y
+

ℓ2

2

∂2u

∂y2
+ . . . (2.5b)

For notational simplicity, the dependence of u on the spatial coordinates and on
the time t is not explicitly shown. The accuracy of the derived continuum depends
on the number of terms included in the Taylor series. Taking into account the terms
up to the second derivatives and introducing in equation (2.3) the continuum field
variables, the membrane-like continuum approximation is obtained

ρ
∂2u

∂t2
= T

[∂2u

∂x2
+

∂2u

∂y2

]
(2.6)

where ρ = M
ℓ2 is the mass density. If the uniform tension T is sufficiently large, the

transverse displacement is small (so that T does not change significantly). Equation
(2.6) represents the classical equation of transverse motion for a vibrating mem-
brane uniformly stretched, bounded by a surface Γ, with initial conditions u0 and
∂u0

∂t , and boundary conditions fixed along a portion of the edge ΓD, i.e. u = 0 on

ΓD and free along the boundary ΓN , i.e. T ∂u
∂t = 0 on ΓN . The applicability of

classical continuum models in dynamics is, however, restricted to a limited range
of frequencies as will be highlighted in § 3 dedicated to the dispersion analysis.

(c) The quasi-continuum method and Padé approximation

Although the application of a model with derivative of more than second order
allow us to include the effect of microstructure via the parameter ℓ in the con-
tinuum model, the higher order of the resulting differential equation complicates
the solution of continuous problems. An alternative continualisation procedure can
be realised using the quasi-continuum approximations. This technique consists in
the reduction of the differential-difference equation (2.3) to a partial differential
equation. The continuum model is not obtained by simply replacing the difference
operator in equation (2.3) by the analogous differential operator. In the first stage,
the backward and forward shifts operators are introduced and for the displacements
of adjacent masses the following symbolic notations hold

um±1,n =

[
exp

(
±ℓ

∂

∂x

)]
um,n (2.7a)

um,n±1 =

[
exp

(
±ℓ

∂

∂y

)]
um,n (2.7b)

By means of equations (2.7a) and (2.7b) and the relation um,n = u, the discrete
equation (2.3) is converted into a pseudo-differential equation as follows

M
∂2u

∂t2
= T

[
exp

(
ℓ
∂

∂x

)
− 2 + exp

(
−ℓ

∂

∂x

)]
u (2.8a)

+ T

[
exp

(
ℓ
∂

∂y

)
− 2 + exp

(
−ℓ

∂

∂y

)]
u (2.8b)
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The differential operators in square brackets can be developed into Taylor series in
the neighbourhood of zero (McLaurin series)

exp

(
ℓ
∂

∂x

)
− 2 + exp

(
−ℓ

∂

∂x

)
= ℓ2

∂2

∂x2
+

ℓ4

12

∂4

∂x4
+

ℓ6

360

∂6

∂x6
+ . . . (2.9a)

exp

(
ℓ
∂

∂y

)
− 2 + exp

(
−ℓ

∂

∂y

)
= ℓ2

∂2

∂y2
+

ℓ4

12

∂4

∂y4
+

ℓ6

360

∂6

∂y6
+ . . . (2.9b)

Taking into account only the first term in the expansions (2.9), one obtains again
the classical continuum approximation given in equation (2.6). Furthermore, the
accuracy of the approximation can be increased keeping the next terms in the
series, and the higher order approximation reads

M
∂2u

∂t2
= T

[
ℓ2∇2u+

ℓ4

12

(
∂4u

∂x4
+

∂4u

∂y4

)]
(2.10)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 .
An alternative continuum model has been developed by using the one-point

Padé approximation of the differential operator appearing on the right hand side
of equation (2.10). For more details regarding the Padé approximants we refer the
reader to the works by Rosenau (1986), Wattis (2000), Kevrekidis et al. (2002)
and Andrianov & Awrejcewicz (2005). Taking into account only two terms in the
expansion, the operator in square brackets can be developed by means of the Padé
approximation

ℓ2∇2 +
ℓ4

12

(
∂4

∂x4
+

∂4

∂y4

)
≈

ℓ2∇2 −
ℓ4

6

∂4

∂x2 ∂y2

1−
ℓ2

12
∇2

(2.11)

which leads to the following continuum model

ρ

(
1− ℓ2

12
∇2

)
∂2u

∂t2
= T

[
∇2u− ℓ2

6

∂4u

∂x2∂y2

]
(2.12)

The characteristic length ℓ is carried by the adjunctive inertia term on the left
hand side and by the stiffness contribute on the right hand side. Also note that the
introduction of the higher-order inertia and stiffness terms leads to a continuum
model able to represent the wave dispersion in the microstructured material. A more
detailed explanation of this issue will be given in the subsequent section devoted to
the dispersion analysis.

3. Dispersion analysis

The dispersive character of plane waves due to inherent material characteristic
length is consistent with experimental observation. Specifically, this effect becomes
significant when the wavelength of the physical phenomena of interest decreases to
the order of the internal length, as, for example, in problems related to shock waves.
The regularization procedures introduced in the previous section are developed with
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the aim to define a phenomenological nonlocal continuum which models dispersion
phenomena by capturing the characteristics of the microstructure. The effectiveness
of the enhanced continuum models to represent the wave propagation characteristics
of a lattice system can be evaluated by analysis of the dispersion curves. The aim
of this section is to carry out a comparative study of the dispersion properties for
the enhanced continuum models presented in the previous section.

(a) Dispersion relations for the lattice model and the classical continuum
approximation

In the analysis of plane waves propagation in two-dimensional periodic discrete
structures, a dispersion equation can be obtained by substituting into equation (2.3)
a harmonic wave of the form

um,n = A exp[i(ωt− kxxm − kyyn)] (3.1)

where ω is the angular frequency, A is the amplitude, i =
√
−1 is the imaginary

unit and xm = mℓ and yn = nℓ are the spatial coordinates, respectively. In a two-
dimensional model, transverse waves travel along an arbitrary direction that is at
an angle θ, which represents the angle between the wavevector k and the x axis.
In equation (3.1) kx = k cos θ and ky = sin θ define the components of the wave
number in the x and y direction, respectively. The dispersion relation is a function
ω = f(kx, ky) which contains information of the wave propagation characteristics
of the considered material and, from the equation of motion (2.3), for the discrete
lattice model is obtained as follows

ω̃ = ±

√
4 sin2

(
kxℓ

2

)
+ 4 sin2

(
kyℓ

2

)
(3.2)

where ω̃ = ω
√

T
ρℓ2 is a non-dimensional frequency parameter. In the analysis of

wave dispersion the non-dimensional wave numbers kxℓ and kyℓ are varied to in-
vestigate the frequencies at which waves propagate and the direction of the body
wave propagation.

The dispersion relation expressed in equation (3.2) is evidently periodic in
the interval kxℓ, kyℓ ∈ [−π, π] and it is also symmetric with respect to the axes
kxℓ = 0 and kyℓ = 0. These properties allow us to restrict the analysis to the
range kxℓ, kyℓ ∈ [0, π] that reflects the so called first Brillouin zone. A particu-
larly convenient representation of the dispersion relations employs iso-frequency
curves whose graphical interpretation provides information on the dispersion prop-
erties. The curves determined by equation (3.2) are represented in normalized form
(kxℓ− kyℓ plane for fixed values of ω̃) in figure 2(a).

The wave group velocity cg for undamped structures is the velocity of propaga-
tion of vibrational energy, and may be expressed in the form

cg =
dω

dk
=

∂ω

∂kx
i+

∂ω

∂ky
j (3.3)

where i and j are the unit vectors in the x and y directions , respectively. It should
be noted that the group velocity is normal to the curves in the kx − ky plane for
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Figure 2. Dispersion curves for a square lattice and the classical continuum: (a) directional
characteristics for wave propagating through the square lattice; (b) comparison of disper-
sion curves for the square lattice at different direction of propagation and the classical
continuum approximation.

fixed ω and its magnitude is equal to the gradient of the dispersion surface. Hence,
the direction of propagation of a wave at given frequency can be estimated by
taking the normal to the iso-frequency contour lines (Langley 1997). This property
in particular can be utilized to identify regions within the structure where waves
at certain frequencies do not propagate in specified directions.

In § 2 the discrete equation of motion has been transformed in a continuum
model taking advantage of the continualisation approach. As previously illustrated,
if in the series expansion only the terms up to the second derivatives are retained, the
equation of motion yields the wave equation based upon a classical continuum model
expressed by equation (2.6). Substituting into equation of motion the harmonic wave
of the continuum form

u(x, y; t) = A exp[i(ωt− kxx− kyy)] (3.4)

we find the solution

ω̃ = kℓ (3.5)

This equation shows that the classical continuum is not dispersive because the
frequency ω is directly proportional to the wavenumber k.

The dispersion relations of the square lattice and the classical continuum model,
as represented by equation (3.2) and equation (3.5), respectively, have been plotted
in figure 2(b), which displays the behaviour of the dimensionless frequency ω̃ in
terms of the normalized wave number kℓ. The dispersion curve for the continuum
model is represented as a solid straight line through the origin, while the discon-
tinuous lines represent the dispersion properties of the lattice for different angles
θ in the range [0, π

4 ]. The comparison illustrates that the physical motion of the
lattice system is well described by the classical continuum model for longer-wave
limit. This means that when the wavelengths are much larger than the structural
inhomogeneity of the lattice (kℓ → 0 or kℓ ≪ 1), the waves are not affected by the
heterogeneity of the membrane.
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Figure 3. The ω̃ − kℓ dispersion curves for the fourth-order approximation of
equation (3.7).

On the other hand, the dispersion becomes evident in the short-waves range,
when the phase velocity cp of the harmonic waves, that is the speed at which the
phase of any one component of the wave travels, is different from the group velocity
cg. The phase velocity cp can be expressed as

cp =
ω√

k2x + k2y

(3.6)

and is graphically represented by the secant slope of the dispersion curves while
the group velocity cg is represented by the tangential slope. By inspection of the
curves the local continuum model appears unable to predict the decrease of phase
velocity for increasing wavenumbers.

(b) Dispersion relations for higher-order continua

Retaining more terms in the series gives an enhanced continuum model rep-
resented by equation (2.10). Explicitly, we seek solutions of the harmonic form
expressed by equation (3.4) that inserted into equation (2.10) give the relationship
between the frequency ω and the wavenumber k, which in non-dimensional form
turns out to be

ω̃ = ±kℓ

√
1− (kℓ)2

12

(
1− sin2 2θ

2

)
(3.7)

From a mathematical point of view, the model governed by equation (3.7) produces
wave dispersion if the function under the square root is greater than zero. When k
exceeds a critical value for fixed direction of propagation, the wave does not possess
real frequency and the solution is unstable. The dispersion curves for the higher-
order continuum, depicted in figure 3, show a downward branch crossing the axis
ω̃ at values of kℓ at which instability occurs. Because of the limitation due to the
stability criterion, the applicability of equation (2.10) is restricted to the dynamic
phenomena that do not involve short waves.

If asymptotic analysis is resorted to, a way to deal with the instability problem
in the fourth-order continuum model suggests replacing the fourth-order derivative
in equation (2.10) with mixed double time double space derivatives (Pichugin et al.
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Figure 4. Dispersion curves for the enhanced continuum: (a) dispersion curves for different
directions of propagation; (b),(c),(d) comparison of dispersion curves for the classical
continuum, the square lattice and the Padé model for different directions of propagation.

2008). With the aim of restoring in the continuum approximation the dispersion
property due to the discreteness of the square lattice whilst at the same avoiding
instabilities, the Padé approximations can be employed. In the following, the model
introduced in equation (2.12) is referred to as Padé continuum.

Solving the dispersion equation for the expected harmonic travelling wave, the
following expression can be found

ω̃ = ±kℓ

√√√√√√√1 +
(kℓ)2

24
sin2 2θ

1 +
(kℓ)2

12

(3.8)

It is worth remarking that the model is unconditionally stable since the frequencies
defined by equation (3.8) are real in the complete range of wave numbers.

In figure 4 the dispersion curves for the Padé model are plotted in accordance
with the relationships obtained for the square lattice and the classical continuum
model for different directions of propagation. The plots show that at the long-
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range limit kℓ → 0, the tangential slopes of the dispersion curves, corresponding to
the group velocity vg = ∂ω

∂k , are equal to those of the lattice model and the local
continuum. For increasing wave numbers curves start to deviate from those of the
discrete lattice model. However, they are located below the bold line that represents
the local continuum model, and the group velocity is smaller than the one obtained
for the local model, for all directions.

We note that the dispersion curve for the Padé continuum with θ = 0 tends to
an horizontal asymptote. In this case, the slope (group velocity) for transverse wave
is zero and frequencies above the limit value cannot propagate. Thus the model acts
as a filter, where only relatively low frequencies are transmitted along the θ = 0
direction.

By considering its definition, the group velocity of waves for the Padé continuum
can be found to depend on the wavenumber and the direction of propagation as

cg = ± c
288 + (kℓ)2

(
24 + (kℓ)2

)
sin2(2θ)

√
2 (12 + (kℓ)2)

√
24 + (kℓ)2 sin2(2θ)

12 + (kℓ)2

(3.9)

where c =
√

T
ρ is the classical wave speed. This expression allow us to verify that

propagating waves cannot transfer energy infinitely fast. In the long-wave limit, the
group velocity takes the following form

lim
k→0

cg = ± c (3.10)

and for short waves

lim
k→∞

cg = ± c
sin2(2θ)√

2
< c ∀θ (3.11)

Thus, the model governed by equation (2.12) is stable and provides lower and upper
bounds for the speed of energy transfer by propagating waves (Metrikine 2006).

4. Discretization of the equation of motion

With the aim of finding approximate solutions of equation (2.12) governing the
dynamics of the membrane structure modelled by using the enhanced continuum,
in this section a spatial discretization based on the finite element method is car-
ried out and the conditions for the convergence are reported. A weak form of the
initial-boundary value problem is taken premultiplying equation (2.12) by a weight
function v and integrating over the domain Ω, that is∫

Ω

v

[
ρ

(
1− ℓ2

12
∇2

)
∂2u

∂t2

]
dΩ =

∫
Ω

v

[
T

(
∇2u− ℓ2

6

∂4u

∂x2∂y2

)
+ p

]
dΩ (4.1)

The term p represents the influence of a transverse applied force per unit area and it
has been introduced in the last integral of equation (4.1) in order to generalize the
initial-boundary value problem. Next, the divergence theorem is used to distribute
the differentiation among v and u, so the weak form of equation (2.12) is written
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as ∫
Ω

vρüdΩ +

∫
Ω

ρ
ℓ2

12

(
∂v

∂x

∂ü

∂x
+

∂v

∂y

∂ü

∂y

)
dΩ

+

∫
Ω

T

(
∂v

∂x

∂u

∂x
+

∂v

∂y

∂u

∂y

)
dΩ +

∫
Ω

T
ℓ2

6

∂2v

∂x∂y

∂2u

∂x∂y
dΩ =

∫
Ω

vpdΩ

+

∮
Γ

vT

[
nx

(
1− ℓ2

12

∂2

∂y2
+ ρ

ℓ2

12

∂2

∂t2

)
∂u

∂x
+ ny

(
1− ℓ2

12

∂2

∂x2
+ ρ

ℓ2

12

∂2

∂t2

)
∂u

∂y

]
dΓ

+

∮
Γ

T
ℓ2

12

(
∂v

∂x
ny +

∂v

∂y
nx

)
∂2u

∂x∂y
dΓ (4.2)

where nx and ny are the components of the unit normal vector on the boundary
Γ and a superimposed dot denotes the full derivative with respect to time. On the
right side of the equation (4.2) the boundary integrals are collected whose contri-
bution will be discussed afterwards in relation to the precise form of the boundary
conditions of the problem. At this stage we assume homogeneous boundary condi-
tions, so the boundary integrals cancel.

In deriving the finite element equations, the computational domain Ω is parti-
tioned into bilinear isoparametric quadrilateral finite elements. This finite element
is designated in the sequel as Q4 finite element (quadrilateral finite element with
four nodes). The classical nodal interpolation procedure of the displacement field
is assumed and the time dependence is separated from the spatial variation. The
unknown displacement field u(x, y, t) is approximated over a typical finite element
Ωe by using standard polynomial shape functions Nj (j = 1, . . . , 4), as follows

u(x, y, t) =
∑
j

dej(t)N
e
j (x, y) (4.3)

where dj , j = 1, . . . , 4 are the nodal displacements of the jth node of the element.
The weight function v is also discretized with the same shape functions. Because
the weak form involves first-order and second-order mixed partial derivatives, C 0

continuous shape functions can be used avoiding the cumbersome C 1-continuity in
the numerical implementation.

Substituting the finite element approximation in the weak form, the correspond-
ing matrix form of equation (4.2) is given by

[M0 +M2] d̈+ [K0 +K2] d = P (4.4)

with

M
(0)
ij =

∫
Ωe

ρNe
i N

e
j dΩ K

(0)
ij =

∫
Ωe

T

(
∂Ne

i

∂x

∂Ne
j

∂x
+

∂Ne
i

∂y

∂Ne
j

∂y

)
dΩ (4.5)

are the classical elasticity contributions to the element mass and stiffness matrices,
respectively, while

M
(2)
ij =

∫
Ωe

ρ
ℓ2

12

(
∂Ne

i

∂x

∂Ne
j

∂x
+

∂Ne
i

∂y

∂Ne
j

∂y

)
dΩ (4.6a)

K
(2)
ij =

∫
Ωe

T
ℓ2

6

∂2Ne
i

∂x∂y

∂2Ne
j

∂x∂y
dΩ (4.6b)
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are the adjunctive contributions to the element mass and stiffness matrices related
to the enhanced continuum, and

Pi =

∫
Ωe

Ne
i p dΩ (4.7)

is the nodal force vector given by the externally applied pressure.
The equation of motion can be easily discretized and solved in the time domain

by applying Newmark’s time integration method. For an unconditionally stable
solution, the constant-average acceleration scheme is used with no restriction on
the time step.

(a) Convergence and accuracy of the finite element solution

The finite element method provides an approximate solution for a mathematical
model associated with an actual physical problem. To proof the convergence of the
numerical solution to the exact solution of the governing equations as the number
of elements increases, a measurement for its quality is required. If an exact solution
is not available, the convergence can be measured only on the fact that some con-
ditions contained in the mathematical model must be ultimately (at convergence)
satisfied (Reddy 1993).

The accuracy of the FEM for the membrane problem when the enhanced con-
tinuum model is used may be assessed, for instance, from the convergence of the
strain energy. The strain energy actually contained in the finite element model can
be evaluated via

U =
1

2
dT [K0 +K2]d (4.8)

In order to illustrate the performance of the Q4 membrane elements, the con-
vergence in strain energy is shown in figures 5(a) and 5(b) for two sequences of
uniform and skewed meshes obtained halving the element size for the static prob-
lem of a membrane simply supported on the boundary and loaded by a uniform
pressure. The plots give an error estimate if the convergence of strain energy has
been achieved. In fact, as both meshes are refined, the strain energy approaches the
exact solution from below.

Another, more frequently used, approach of quantifying the discretization error
is the relative energy norm defined as follows

e =

√
U − Uref

Uref
(4.9)

where the reference energy Uref corresponds to the finest mesh. This measure of
error is closely related to the error on the derivative of the computed displacement
field.

Error estimates of the type equation (4.9) are very useful because they give
qualitative information on the accuracy of the approximate solution, whether or
not the true solution is known. The energy norm as a function of mesh refinement
is reported in figures 5(c) and 5(d) in logarithmic scaling such that an algebraic
curve is mapped onto a straight line. It can be clearly seen that the error decreases
with the mesh refinement.
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Figure 5. Convergence of the numerical energy and convergence rate for a sequence of
meshes with regular (a,c) and quasi-regular (b,d) patterns.

The error in the energy norm is proportional to h that represents a typical
length of an element side and it is expressed as

e = Ch−(k+1−m) (4.10)

where k is the degree at which the interpolant polynomial is complete and m is
the order of the highest derivative of the displacement field in the weak form
(Zienkiewicz & Taylor 2000, Akin 2005). The element investigated here uses a poly-
nomial displacement complete to the degree k = 1 and in the weak form the highest
derivative order is of first order in the spatial dimensions (m = 1). Thus, a rate of
convergence p = k + 1 −m = 1 is expected. As can be observed from figures 5(c)
and 5(d) the convergence obtained in the numerical simulation compares very well
with the theoretical value.

Finally, having compared the numerical results obtained for the two test meshes,
it is evident that the orders of convergence are not affected by the element distor-
tions.
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5. Numerical examples

In § 2, the equation of motion of a microstructured membrane has been derived
by means of non-local continuum mechanics models and in § 4 the discretisation
of the equation in the spatial and temporal domain is presented. Based on the
formulations obtained above, to examine the microstructure effects on the dynamic
response of a membrane simply supported on the edges, the results obtained from
classical and higher-order elasticity (Padé continuum) are discussed in this section.

The geometry and the boundary conditions of the squared microstructured
membrane are given on the left of figure 6. The length and the width of the panel is
2L = 2 m, the material density is ρ = 1 kg

m2 . The parameter ℓ is the microstructural
characteristic length. The restoring force in the vibrating membrane arises from the
tension T at which it is stretched and the in-plane tension T = 16 N

m is chosen for
the current analysis.
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Figure 6. Geometry and boundary conditions of the membrane problem and top-right
quarter of the membrane and boundary conditions.

Because the dynamical response of a structure is mainly dependent on the dy-
namic load applied and on the dynamic characteristic of the structure itself, the
analysis of natural frequencies is an important topic. The modal properties of a
membrane can be obtained solving the standard matrix eigenproblem[

−ω2M +K
]
d = 0 (5.1)

where ω is the finite element predicted natural frequency of the system and d is
the corresponding natural mode of the system.

Since analytical solutions are available just for the classical continuum model
and a mesh refinement allows to obtain more accurate results, a convergence analysis
has been carried out in order to assess how many Q4 elements should be used in
the numerical calculations. The frequencies based on classic elasticity and higher-
order models are given in figure 7. The results associated with ℓ = 0 correspond to
those of the classical elasticity theory where the microstructural effect is ignored. It
can be seen that the difference of the frequencies for different values of ℓ becomes
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Figure 7. Comparison of natural frequencies computed using classical and higher-order
continuum models.

evident at higher vibrational modes, although this difference is negligible at lower
vibrational mode numbers. Further, the frequency decreases when the characteristic
internal length ℓ increases. Hence, the frequencies are always overestimated by the
classical continuum model.

The second numerical application deals with the transient response of the mi-
crostructured membrane subjected at its center to an impact excitation. The dy-
namic load has been modelled as an initial non-zero velocity v(t0) = 1 m

s at the
impact point. Due to the biaxial symmetry of the problem, we use a uniform mesh
of Q4 elements to discretize only the top-right quadrant of the domain. The axes
of symmetry x = 0 and y = 0 become a portion of the boundary Γ of the com-
putational domain and the kinematic considerations reported in figure 6 allow us
to justify the assumption of homogeneous boundary conditions introduced in § 4.
The Newmark scheme is used for the time integration of the equations using the
recommendations on time step size proposed by Bennett and Askes, 2009.

Figures 8(a) and 8(b) show the wave fronts at times t = 0.10, 0.20 and 0.25s for
classical elasticity, obtained taking ℓ = 0, and the Padé model for microstructural
length ℓ = 0.01, respectively. As previously predicted in § 3 by means of the disper-
sion analysis, the elastic waves obtained using the local elasticity theory propagate
faster than the case of the enhanced continua. The wave fronts for both models are
governed by the components with higher wavelengths (small k) because they travel
faster than the shorter ones. In fact, the velocity of the long waves is not influenced
by the direction of propagation and the fronts have quite a circular shape. The
directional properties of the microstructured membrane expected for the enhanced
continuum model can be observed from figure 8(b) focusing the attention on the
short waves that propagate slower and whose velocities vary with the direction of
propagation. The directional property of the Padé model can be better observed in
figures 9(a) and 9(b) where elastic waves propagating from the excitation point to
the boundary for different characteristic lengths and along two specific directions
are plotted at time t = 0.20 s.
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(a)

(b)

Figure 8. Fronts of propagating elastic waves in microstructured membrane: (a) classical
continuum model; (b) enhanced Padé continuum model.

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
x 10

−5

x

u

ℓ=0.005
ℓ=0.01

(a)

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
x 10

−5

x

u

ℓ=0.005
ℓ=0.01

(b)

Figure 9. Propagating waves for enhanced continuum model (Padé model) and two
microstructural lengths ℓ : (a) direction θ = 0; (b) direction θ = π

4
.

6. Conclusions

This contribution addresses the problem of wave dispersion in composite mem-
branes that possess a microscopic structure. Among other observed phenomena
that are influenced by the microstructural characteristics, the dispersion of waves
propagating in composites is of great interest in the mechanics of materials because
it plays a crucial role for instance in stopping the formation of shock waves into
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systems. As an alternative to the direct analysis of the discrete material that at
microscopic level has been assumed here as a periodic elastic lattice, a continuum
model approximating the actual material behaviour has been employed. With the
aim to take into account in the dynamics the dispersion of the wave born out of
heterogeneity of the material, a higher-order theory has been successfully resorted
to, overcoming the limits of classical elasticity in the high-frequency regime.

In the first part of this study, continuum models linked with the underlying ma-
terial have been introduced taking into account the discreteness of the microstruc-
ture. From the application of different continualisation approaches, it has been
shown that the higher-order theories improve the continuum description by includ-
ing the microstructural effects. Specifically, enhanced continuum theories based on
the use of Padé approximants introduce higher-order inertia and stiffness terms in
classical models and improve the continuum description by including the length
parameter characterizing the heterogeneity. The analysis of closed-form dispersion
relations demonstrated that the enhanced continuum models deliver physically con-
sistent results also in the limit of short waves and do not generate numerical insta-
bility.

Further, the field equations have been discretized in space by means of simple
four noded finite elements. In the implementation the C 1-continuity is completely
avoided. In fact, the weak form of the governing equations involves first-order and
second-order mixed derivatives of the unknown field, thus C 0 continuous shape func-
tions are sufficient. Importantly, the higher-order terms do not lead to an increase
in system size. The evaluation of the convergence rate confirms the appropriateness
of the adopted finite element discretisation.

Finally, the analysis of a microstructured membrane has been conducted. The
vibration frequencies have been estimated solving the standard matrix eigenprob-
lem for the classical and enhanced continuum models. It has been found that the
frequencies are always overestimated by the classical continuum model. In order
to illustrate the dispersion of the elastic waves, the response of the membrane to
impulsive point load has been simulated. Numerical results are in agreement with
the analytical dispersion analysis presented in this paper.
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