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ABSTRACT

Increase in speeds of modern railway trains is usually accompanied by higher
levels of generated ground vibrations. In the author’s earlier paper [V.V.
Krylov, Applied Acoustics, 44, 149-164 (1995)], it has been shown that
especially large increase in vibration level may occur if train speeds v exceed
the velocity of Rayleigh surface waves in the ground cp., i.e., v > c. Such a
situation might arise, for example, with French TGV trains for which speeds
over 515 km/h have been achieved. The present paper investigates the effect of
geological layered structure of the ground on ground vibrations generated by
high-speed trains. It is shown that, since Rayleigh wave velocities in layered
ground are dispersive and normally increase at lower frequencies associated
with deeper penetration of surface wave energy into the ground, the trans-
Rayleigh condition v > c, may not hold at very low frequencies. This will cause
a noticeable reduction in low-frequency components of generated ground
vibration spectra. Theoretical results are illustrated by numerically calculated
frequency spectra of ground vibrations generated by single axle loads
travelling at different speeds and by TGV or Eurostar high-speed trains.

1. INTRODUCTION
According to a number of practical observations, an increase in speeds of
modern trains is usually accompanied by increased levels of generated ground
vibrations and associated structure-borne noise, including those at low and very
low frequencies. We remind the reader that railway-generated ground
vibrations are significant even for conventional passenger and heavy-freight
trains travelling both above- and underground (Remington et al., 1987,
Newland & Hunt, 1991; Dawn, 1983; Volberg, 1983; Melke, 1988; Jones, 1994;
Krylov & Ferguson, 1994; Krylov, 1994). Recent theoretical investigations of
ground vibrations from high-speed trains carried out by the present author
(Krylov, 1994, 1995, 1996) contributed to understanding the reasons why an
increase in train speeds is generally accompanied by higher levels of generated
ground vibrations. In addition to this, it has been predicted that an especially
large increase in vibration level (more than 70 dB, as compared to conventional
trains) should take place if train speeds v exceed the velocity of Rayleigh
surface waves in the ground cg, (such trains are called “trans-Rayleigh trains” in
this paper). The condition v > cg, which is similar to that of supersonic jets, can
be met e.g., by French TGV trains or Eurostar trains travelling along tracks
placed on relatively soft grounds.

In the present paper, we examine the effects of layered ground structure on

Journal of Low Frequency Noise, 257
Vibration and Active Control
Vol. 16 No. 4 1997



SPECTRA OF LOW FREQUENCY GROUND VIBRATIONS

ground vibrations generated by high-speed trains. The main aim of this
investigation is to achieve a preliminary understanding of how layered structure
may affect generated ground vibration spectra, in particular their low-frequency
components.

In the following sections we describe the outline of the theory of generating
ground vibrations by high speed trains and analyse the effects of layered ground
structure on generated vibrations. Finally, we discuss the results of the
numerical calculations of ground vibration frequency spectra generated by
single axle loads travelling at different speeds and by complete TGV or
Eurostar high-speed trains.

2. OUTLINE OF THE THEORY

2.1 Main Generation Mechanism

Among the mechanisms of generating ground vibrations by railway trains one
can mention the wheel-axle pressure onto the track, the effects of joints in
unwelded rails, the unevenness of wheels or rails, and the dynamically induced
forces of carriage- and wheel-axle bending vibrations excited mainly by
unevenness of wheels and rails. The most common generation mechanism is
pressure of wheel axles onto the track. For very high quality tracks and wheels,
this mechanism is probably a major contributor to the low-frequency vibration
spectra (up to 50 Hz). In this paper we take into account contribution of the
wheel-axle pressure mechanism only, assuming that rails and wheels are ideally
even and no carriage or wheel-axle vibrations are excited.

We assume that a train has N carriages and moves at speed v on a perfect
welded track with sleeper periodicity d (Figure 1,a). The wheel-axle pressure
generation mechanism being considered results in downward deflections of the
track beneath each wheel axle (Figure 1,b). These deflections produce a wave-
like motion along the track moving at speed v and resulting in distribution of
the axle load over the sleepers involved in the deflection distance (Krylov &
Ferguson, 1994; Krylov, 1994, 1995). Thus, each sleeper acts as a vertical force
applied to the ground during the time necessary for a deflection curve to pass
through the sleeper. It is these forces that result in generating ground vibrations
by passing trains in the framework of the wheel-axle pressure mechanism.

An important aspect of analysing the above discussed wheel-axle pressure
mechanism is calculation of the track deflection curve as a function of the
elastic properties of track and soil and of the magnitude of the axle load. Since
the track deflection distance is greater than the distance between sleepers, one
can treat a track (i.e. two parallel rails with periodically fastened sleepers) as an
Euler — Bernoulli elastic beam of uniform mass m,, lying on an elastic or visco-
elastic half space z > 0. For simplicity we assume that the uniform mass m, of
the beam is formed entirely by the track (i.e., by rails and sleepers only),
although in practice an adhered layer of ballast may form an additional mass.

Firstly we recall a quasi-static approach to the solution of this problem. The
classical solution starts with the static beam equation that models the response
of an elastic half space as a reaction of an elastic (Winkler) foundation which is
proportional to the beam deflection magnitude w. If E and I are Young’s
modulus and the cross-sectional momentum of the beam, « is the
proportionality coefficient of the elastic foundation, x is the distance along the
beam and T is a vertical point force applied to the beam at x=0, then the static
equation has the form (Timoshenko, 1942)

EI 34w/ox#+ ow = T8 (x), )
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where 8 (x) is the Dirac’s delta-function. The solution of (1) may be written as

w" = (T/8EIB3) exp(-B|x|) [cos(Bx) + sin(Blx])],

)

where B = (a/4EI)'. Index “st” in eqn (2) and in the expression to follow
indicates values obtained in the quasi-static approximation. According to eqn
(2), one can take x ™ = 7/p as the effective quasi-static track deflection distance.
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Figure 1.
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Geometrical parameters of track and train — (a); wheel-axle

pressure mechanism — (b); superposition of ground vibrations
generated by different sleepers at the point of observation {x, y}-

©
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The constant a in (1) and (2) depends on the stiffness of the ballast layer, of
the ground and of the rubber pads inserted between rail and sleepers and under
sleepers. In further consideration we assume that a well-compacted ballast layer
is always present and is largely responsible for the proportionality coefficient o
of the equivalent Winkler foundation corresponding to the combined system
ballast/ground. The results of static track deflection tests show (Brockley, 1992)
that, e.g., for British Rail tacks lying on a well-compacted ballasted roadbed,
the coefficient o is determined mainly by the ballast layer. Typically o = 52.6
MN/m? and EI = 4.85 MNm? (cited value of a also includes contribution of
rubber pads characterised by distributed over a sleeper spacing coefficient of
proportionality o = 357 MN/m?). This results in B = 1.28 m"'. For a typical
distance between sleepers, d = 0.7 m, about seven sleepers are involved in the
deflection distance x * = 7/ associated with each axle (see Figure 1,b).

After the track deflection curve having been determined, each sleeper may
be considered as a vertical concentrated force applied to the ground surface
z=0, with time dependence determined by the passage of the deflection curve
through the sleeper. For a sleeper resting on Winkler foundation and located at
x = 0 the general expression for this force, which is valid for both quasi-static
and dynamic regimes, may be written in the form

P) = T[2W(OV)/W o (/) *), ©)

where w__ ' is the maximal value of w(vt) in quasi-static approximation. To
derive (3), one should take into account that P(t) is proportional to the track
deflection w(vt) and to the sleeper width Ad: P(t) = aw(vt)Ad, where « is a
constant of Winkler foundation. To exclude o and Ad from this expression, one
should integrate the quasi-static equation (1) over x. The integration, which
takes into account that contact takes place only between sleepers and the
ground, results in the formula aw MS‘AdNeffSt = T which, combined with the
previous one, gives the following expression for P(t):
P(t) = T[w(vt)w,_ .. 5 Ng*].

Here N_* is the effective number of sleepers equalising the applied quasi-static
axle load T :

NS 12
A T wimd)
Z N st st =T’
m=—Nef[‘"/2 of  Wmax “4)

where m denotes a number of a current sleeper. Numerical solution of eqn (4)
shows that for B within the range of interest (from 0.2m™ to 1.3 m™!) the value
of N_¢* may be approximated by a simple analytical formula N ¢* = w/2Bd =
x_%/2d. Using this formula in the expression for P(t) results in eqn (3). For high-
speed passenger trains it may happen that train speeds v become of the same
order as the minimal phase velocity c . of dispersive bending waves
propagating in the system track/ballast. In this case one can expect that dynamic
effects may play a noticeable role in determining the track deflection curve. To
calculate dynamic forces applied from sleepers to the ground one can continue
to use the model of Winkler foundation, as is usually being done for quasi-static
loads (see above). Strictly speaking, such a replacement is valid only for slowly
moving loads compared to the velocities of elastic waves in the ground.
Although some authors use it for calculating rail deflections for much higher
load speeds (e.g., Fryba, 1973; Belzer, 1988), one should be aware that validity
of the corresponding results for real ground is at best qualitative.
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dynamic equation of a beam on an elastic foundation (see, e.g., Belzer, 1988):
El 34w/ox?+ mpd*w/ol + ow = T8 (x-vt) )

The solution of (5), which generalises the static solution (2), has the form
(Belzer, 1988)

w(x-vt) = (T/8E]B36)exp(-[36lx—vt[)[cos(Bn(x-vt) + (d/m)sin(Bn|x-vt|)] . (6)

Here 8 = (1 -v%c? ,)V?and m = 1 + v¥/c? . )2 the term ¢, = (4aEl/m %)/
represents the minimal phase velocity of bending waves propagating in a
system track/ground. For EI = 4.85 MNm?, a = 52.6 MN/m? and m,, = 300 kg/m
C.in = 326 m/s (1174 km/h). Note that, for typical parameters of track and
ballast, the above-mentioned value of c_. is essentially larger than even the
highest train speed (v = 515 km/h). However, for soft marshy soils or for
specially designed vibro-isolated tracks the value of ¢, may be much lower.

To calculate the forces applied from sleepers to the ground one should
substitute eqn (6) into eqn (3) which is valid for both quasi-static and dynamic
regimes. Since the factor & = (1 — v¥/c? . )12 is present in the denominator of
the expression following from eqns (6) and (3), these forces increase as the train
speed approaches the minimal track wave velocity (note that in our earlier paper
(Krylov, 1996) the factor 8 has been mistakenly written in the nominator that
caused an opposite result).
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Figure 2. Vertical load forces applied from each sleeper to the ground as

functions of vt for axle loads T = 100 kN moving along the track
at speeds 0, 69, 138, 300 and 320 m/s (curves P1, P2, P3, P4 and
P5 respectively); critical track wave velocity c_. is 326 m/s,
distance between sleepers d is 0.7 m
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The load forces P applied from each sleeper to the ground and calculated
according to eqns (6) and (3) for v < c_. are shown in Figure 2 as functions of
vt for the axle load T = 100 kN and for the values of train speed v equal to 0,
69, 138, 300 and 320 m/s (curves P1-P5 respectively). One can see that the
curves corresponding to the first three values of train speed (i.e., up to 500
km/h) are almost indistinguishable. Only for speeds approaching the minimal
(critical) track wave velocity ¢_. = 326 m/s a significant increase occurs.

2.2 GREEN’S FUNCTION FORMALISM

The Green’s function for the problem under consideration describes ground
vibrations generated by individual sleepers which can be regarded as point
sources in the low-frequency band. We recall that for homogeneous elastic half
space the corresponding Green’s function can be derived using the results from
the well-known axisymmetric problem for the excitation of an elastic half space
by a vertical point force applied to the surface (see, e.g., Ewing et al., 1957;
Graff, 1975). The solution of this problem, which should satisfy the dynamic
equations of elasticity for a homogeneous medium subject to the stress-free
boundary conditions on the surface, gives the corresponding components of the
dynamic Green’s tensor (or, for simplicity, the Green’s function) G,; for an
elastic half space. For the problem under consideration, only Rayleigh surface
wave contribution (the Rayleigh part of the Green’s function) is considered,
since Rayleigh waves transfer most of the vibration energy to remote locations.
For these waves the spectral density of the vertical vibration velocity at the
surface of homogeneous half space (z=0) may be written in the form (see below
Krylov & Ferguson, 1994)

v,(p,0) = P(0)G.(p,0) = P(0)D(w)(INp) exp(ikpp - Ykep),  (7)
where
D(w) = (v/2)"(-iw)gky" k] exp(-i3n/4) uF'(kp) . (8)

Here p = [(x-x')? + (y-y')? ]/2 is the distance between the source (with current
coordinates x’, y") and the point of observation (with coordinates x, y), w = 27 F
is a circular frequency, k; = w/cy is the wavenumber of a Rayleigh surface
wave, cp is the Rayleigh wave velocity, k; = w/c; and k, = w/c, are the
wavenumbers of longitudinal and shear bulk elastic waves, where
¢, = [(A=2p)/p ]2 and c, = (w/p )"/ are longitudinal and shear wave velocities,
A and p are the elastic Lame’ constants, p_ is mass density of the ground, and
q = (kg% - kH)'2. The factor F'(ky) is a derivative of the so-called Rayleigh
determinant

F(k) = (2k2 _ k’2)2 _ 4k2(k2 _ k’2)l/2(k2 - kIZ)l/Z (9)

1 ©
taken at k = kg, and P(w) = (2—) f P(t) exp(imt)dt is a Fourier transform of
P(b). B =

Taking the Fourier transforms of (6) and (3) at x = 0, one can easily obtain the
corresponding formula for P(w):
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P(@) = (TBA/n’8){[B8v +(Brv+w) J/[(Bov)’ + (Bnv + w)’] +
[B3v+(Bny - 0)/[BS)’ + (Brv - ©)°]}. (10)

To describe the spectrum for successive passage of two axle loads separated
by the distance a (the case of a bogie), P, (w), one should use the following
relationship between P, (w) and P(w) (Krylov & Ferguson, 1994):

Py(®) = 2P(w)cos(wa/2v) . 11

In writing (7) we have accounted for attenuation in soil by replacing 1/cy in
the exponential of the Green’s function by the complex value 1/c; + ivy/cg,
where y = 0.001 — 0.1 is a constant describing the “strength” of dissipation of
Rayleigh waves in soil.

Eqn (7) implies a linear frequency dependence of soil attenuation, in
agreement with the experimental data (White, 1965; Gutovski & Dym, 1976).

Now we consider the influence of layered geological structure of the ground
on generating ground vibrations. To do so in a rigorous way, we had to use the
Green’s function for a layered elastic half space, instead of that for a
homogeneous half space. As a rule, such a function, that would contain
information about the total complex elastic field generated in a layered half
space considered (including different modes of surface waves and modes
radiating energy into the bulk (leaky waves)), cannot be obtained analytically.
However, for description of railway-generated ground vibrations, the problem
can be simplified by considering an approximate solution which takes into
account the effects of layered structure on the amplitude and phase velocity of
only the lowest order surface mode which goes over to a Rayleigh wave at
higher frequencies (the propagating modes of higher order and leaky modes are
generated less effectively by surface forces associated with sleepers).

We recall that in layered media surface waves become dispersive, i.e., their
phase velocities ¢, depend of frequency: ¢, = cp(w). For shear modulus of the
ground p. normally having larger values at larger depths, there may be several
surface modes characterised by different phase velocities and cut-off
frequencies. As a rule, these velocities increase at lower frequencies associated
with deeper penetration of surface wave energy into the ground (see, e.g.,
Biryukov et al., 1995; Jones & Petyt, 1993). For simplicity, we will assume in
further consideration that the Poisson ratio o of the layered ground and the mass
density p_ are constant.

Taking the above mentioned into account and starting from the Green’s
function for a homogeneous half space G,,(p,w) (see eqns (7), (8)), we will
construct its modification G*__(p,w), describing approximately the effects of
layered medium on generation and propagation of a lowest order surface
Rayleigh mode:

v,(p.0) = P(©)G",.(p,0) = P(w)D"(0)(1Np) exp(ike'p - vkg'p), (12)

Diw) = (v/2)"(-i)q" (k") k) exp(-i3R/ M @)F (e ). (13)
Here k- = w/cp(w) is the wavenumber of a lowest order Rayleigh mode

propagating with frequency-dependent velocity cp(w); terms k™ = w/c"(w) and
kL = w/cMw) are “effective” wavenumbers of longitudinal and shear bulk
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elastic waves at given frequency w. These wavenumbers are inversely
proportional to the averaged over the “effective” depth of Rayleigh wave
penetration into the ground (close to Rayleigh wavelength) longitudinal ¢,"(w)
and shear c(w) wave velocities. In the model under consideration, these
velocities and the corresponding “effective” shear modulus pl(w) are expressed
in terms of frequency-dependent Rayleigh wave velocity cp(w) using the well
known relations:

cp(@)/cH(w) = (0.87 + 1.126)/(1+c) (14)
el @)t ) = [(1-20)/2(1 - 0)]"” (15)
' (®) = polc, (@] (16)

The term qU is defined as g~ = [(k;1)? - (k)?]'2, and the factor F, '(kg") is
determined according to the following relationship (Biryukov et al., 1995):

Fi () = No)ke® | (17)

where N(o) is a dimensionless function of the Poisson ratio o (e.g., for o =
0.25, the function N(o) takes the value -2.3).

The particular dependence of Rayleigh wave velocity on frequency, cp(w), is
determined by the particular profile of layered ground. Determination of this
velocity is a complex boundary-value problem which, generally speaking,
requires numerical calculation. In our approach we will consider published
values of the functions cy(w) using, where possible, their simple analytical
approximations.

One can expect that the most significant effect of layered structure on
generating ground vibrations by high-speed trains will be due to the wave phase
variations caused by frequency-dependent Rayleigh wave velocities. In
particular, the increase in Rayleigh wave velocities at low frequencies might
violate the trans-Rayleigh condition responsible for generation of very
intensive ground vibrations v > ¢, thus causing a reduction in the low-
frequency components of generated ground vibration spectra.

To calculate ground vibrations generated by a train one needs superposition
of waves generated by each sleeper activated by wheel axles of all carriages,
with the time and space differences between sources (sleepers) being taken into
account (see Figure 1,c).

Using the Green’s function this may be written in the form (Krylov &
Ferguson, 1994)

v,(x,p,0) = TT P(x'y',0)G" .(p,0)dx'dy’, (18)

—60 ~00

where P(x', y’, w,) describes the space distribution of all load forces acting
along the track in the frequency domain. This distribution can be found by
taking a Fourier transform of the time and space dependent load forces P(t, x/,
y' = 0) applied from the track to the ground. Note that the function P(t, x', y' =
0) does not depend on layered structure of the ground and remains the same as
for a homogeneous half space.
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at speed v along the track, this function has the form:

Pt x, y'=0) = D P-x'/v)d(x-md)s(y), (19)

m=-—0a0

where delta-function 8(x'-md) takes the periodic distribution of sleepers into
account. The Fourier transform of (19) is being written as follows

P(x'y\o) = P(o)exp(iox’/v) Z S(x'-md)d(y’). (20)
Substitution of eqn (20) into (18) and taking eqns (3) and (6) into account
results in the following formula for the vertical vibration velocity of Rayleigh
waves generated at z = 0, x =0, y=y, by a single axle load moving along the
track at speed v:

vi(x=0, y=yo, ®) = P@)D"(®) 3 exp[i(w/v)md + (i-)(@/cp(®@)pu/\| pu.
(21)

where p_ = [y ? + (md)?]"? . Formula (21) shows that a single axle load moving
at conventional speeds (v << cp(w)) generates a quasi-discrete spectrum with
frequency peaks close to fps, where f =v/d is the so-called main passage
frequency, and s = 1,2,3... Deviation from perfect discreteness results from the
i(w/cR(w))p,, term in eqn (21) which takes into account phase differences of
waves propagated from each sleeper to the point of observation.

To take account of all axles and carriages one should use a more complicated
load function:

o N-1
P x\y'=0)=" 3" 3" A[P(t-(x+nL)/) + P(t- (x'+ M +nL)/v) J5(x"-md)5(y"),
m=—c0 n=0

(22)

where N is the number of carriages, M is the distance between the centres of
bogies in each carriage and L is the total carriage length. Dimensionless
quantity A is an amplitude weight-factor to account for different carriage
masses. For simplicity we assume all carriage masses to be equal (A = 1).

Taking the Fourier transform of (22), substituting it into (18) and making
simple transformations, we obtain the following expression for the frequency
spectra of vertical vibrations at z=0, x = 0 and y = y, generated by a moving
train:

o0

N-1
vz (x=0, y=yp ©) = P@)D" (@) 3 3 [exp(-yop./cr(@)/\[ pnJ[1+ exp(iMo/v)}

m=-on n=0

exp(i(w/v)(md + nl) + i(w/cy(w)p,,)
(23)

The summation over m in (21) and (23) considers an infinite number of
sleepers. However, the contribution of remote sleepers is small because of soil
attenuation and cylindrical spreading of Rayleigh waves, and a few hundred
sleepers are adequate for practical calculations.

The general expressions (21) and (23) derived above are applicable to trains
moving at arbitrary speeds. However, for the specific case of “trans-Rayleigh
trains”, i.e., trains travelling at speeds higher than Rayleigh wave velocity in the
ground, a separate analytical treatment can be done to elucidate the special
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The general expressions (21) and (23) derived above are applicable to trains
moving at arbitrary speeds. However, for the specific case of “trans-Rayleigh
trains”, i.e., trains travelling at speeds higher than Rayleigh wave velocity in the
ground, a separate analytical treatment can be done to elucidate the special
features of the problem (Krylov, 1995). Not repeating the details of this
treatment, which are the same as in the case of homogeneous ground, we
conclude that maximum radiation of ground vibrations takes place if the train
speed v and Rayleigh wave velocity cp(w) satisfy the following relation

cos® = cp(w)/v, (24)

where O is the observation angle. Since the observation angle ® must be real
(cos® = 1), the train speed v should be larger than Rayleigh wave velocity
cg(w). In this case ground vibrations are generated as quasi-plane Rayleigh
surface waves symmetrically propagating at angles ® with respect to the track,
and with amplitudes much larger than for “sub-Rayleigh trains”.

3. NUMERICAL CALCULATIONS AND DISCUSSION

Calculations of ground vibrations generated by high-speed trains have been
carried out according to eqns (21) or (23) for different values of train speed,
different parameters characterising Rayleigh wave dispersion in layered
ground, and for different geometrical and physical parameters of both track and
train. Summation over m in eqns (21) and (23) was carried out from m =-150
to m = 150, the corresponding length of track being greater than the total train
length NL and the attenuation distance of Rayleigh waves at the frequency band
considered. The frequency-dependent Rayleigh wave velocity for layered
media was approximated by the function

cp(®w) = (c; - c; Jexp(-sw/2m) + c, (25)

where ¢, and c, are values of c(w) for w = 0 and w = x respectively, parameter
s describes the “strengths™ of dispersion (it depends on the characteristic layer
thickness and on the difference between elastic moduli in the depth and on the
surface of the ground). The Poisson’s ratio of soil was set at 0.25, and the mass
density p_ was 2000 kg/m?.

Figure 3 shows surface graphs of the ground vibration spectra (in linear
units, relative to the reference level of 10" m/s) generated by a single axle load
T = 100 kN moving at speeds ranging from 10 m/s to 320 m/s for homogeneous
(a) and layered (b) ground. the results are given for the frequency band 0 — 50
Hz and for the value of ground attenuation y = 0.05. Units of calculation were
Av = 10 m/s and AF = 1 Hz. Values of the parameter s in eqn (25) corresponding
to homogeneous and layered ground were 10 and 0.1 respectively. Other
parameters were: § = 1.28 m', y, = 30 m.

One can see that with the increase of train speed the ground vibration level
generally grows. For relatively low train speeds, the peaks corresponding to the
train passage frequencies are almost invisible because of the huge increase of
vibration level in the trans Rayleigh range (v = cp(w)). This increase goes even
further for train speeds approaching the minimal track wave velocity (¢, =
326 m/s in this example). Comparison of Figures 3,a and 3,b shows that effect
of layered structure results in decrease of generated vibrations at low
frequencies.

Figure 4 illustrates the ground vibration spectra (in dB, relative to the
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reference level of 10 m/s) generated by complete French TGV trains or
Eurostar trains travelling on homogeneous ground for both sub-Rayleigh and
trans-Rayleigh train speeds (respectively v = 50 km/h — curve Vz1 and v = 500
km/h -curve Vz2), and for layered ground at the same train speeds (curves Vz3
and Vz4 respectively). Train consists of N=5 equal carriages with the
parameters L = 18.9 m and M = 15.9 m (see Figure 1,a). Since the bogies of
TGV and Eurostar trains have a wheel spacing of 3 m and are placed between
carriage ends, i.e., they are shared between two neighbouring carriages, to use
the eqn (23) one should consider each carriage as having one-axle bogies (a =
0) separated by the distance M = 15.9 m. Other parameters of track and ground
used in calculations are the same as in Figure 3.
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Figure 3.  Spectra of ground vibration velocity (in linear units, relative to the
reference level of 10 m/s) for a single axle load moving along
the track at speeds from 10 m/s to 320 m/s on the surface of a
homogeneous (a) and layered (b) half-space. The results are
shown in the form of surface graphs for the frequency band 0 — 50
Hz. Mesh: Dv = 10 m/s and DF = 1 Hz
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Figure 4. Ground vibration spectra (in dB, relative to the reference level of

10" m/s) generated by complete TGV or Eurostar trains travelling
on homogeneous ground for both sub-Rayleigh and trans-
Rayleigh train speeds (respectively: v = 50 km/h — curve Vz1 and
v = 500 km/h — curve Vz2) and on layered ground for the same
speeds (curves Vz3 and Vz4 respectively)

One can see that for homogeneous ground (curves Vzl and Vz2) the
averaged ground vibration level from a train moving at trans-Rayleigh speed
500 km/h (138.8 m/s) is approximately 70 dB higher than from travelling at
speed 50 km/h (13.8 m/s). Effect of layered ground, however, results in
decrease of ground vibration level from a trans-Rayleigh train at low
frequencies (curve Vz4). Note, that for trains travelling at low speed effect of
layered structure is small (curves Vz1 and Vz3 are almost indistinguishable).

4. CONCLUSIONS
Increase in speeds of railway trains is generally accompanied by increased
levels of generated ground vibrations. Especially large increase in ground
vibration amplitudes occurs for trans-Rayleigh trains, i.e., for trains travelling
at speeds larger than Rayleigh wave velocity in the ground. Calculations
performed for French TGV trains or Eurostar trains show that the average
increase of about 70 dB takes place as compared with conventional trains.
Effect of layered geological structure of the ground results in reshaping of
ground vibration spectra generated by trans-Rayleigh trains. Since Rayleigh
wave velocities in layered ground are dispersive and normally increase at lower
frequencies associated with deeper penetration of surface wave energy into the
ground, the trans-Rayleigh condition v > c; may not hold at very low
frequencies. This will cause a noticeable reduction in low frequency
components of generated ground vibration spectra.
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