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ABSTRACT 

The development of glass substrates for use as an alternative to printed circuit boards (PCBs) 

attracts significant industrial attention, because of the potential for low cost but high 

performance interconnects and optical connection. Electroless plating is currently used to 

deposit conductive tracks on glass substrates and the quality of copper / glass adhesion is a 

key functional issue.  Without adequate adhesive strength the copper plating will prematurely 

fail. Existing studies have covered the relationship between surface roughness and adhesion 

performance, but few of them have considered the detail of surface topography in any depth. 

This research is specifically considering the mechanical contribution of the glass surface 

texture to the copper / glass adhesive bond, and attempting to isolate new ISO 25178 areal 

surface texture parameters that can describe these surfaces.  

 

Excimer laser machining has been developed and used to create a range of micro pattern 

structured surfaces on CMG glass substrates. Excimer mask dimensions and laser operation 

parameters have been varied and optimized according to surface topography and adhesion 

performance of the samples. Non-contact surface measurement equipment (Zygo NewView 

5000 coherence scanning interferometry) has been utilized to measure and parameterize (ISO 

25178) the surface texture of the glass substrates before electroless copper metallization.  

Copper adhesion quality has been tested using quantitative scratch testing techniques, 

providing an identification of the critical load of failure for different plated substrates. This 

research is establishing the statistical quality of correlation between the critical load values 

and the associated areal parameters.  

 

In this thesis, the optimal laser processing parameter settings for CMG glass substrate 

machining and the topographic images of structured surfaces for achieving strong copper / 

glass plating adhesion are identified. The experimental relationships between critical load and 

areal surface parameters, as well as the discussions of a theoretical approach are presented. It 

is more significant to consider Sq, Sdq, Sdr, Sxp, Vv, Vmc and Vvc to describe glass substrate 

surface topography and the recommended data value ranges for each parameter have been 

identified to predict copper / plating adhesion performance.  
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Chapter 1 Introduction  
 

1.1 Introduction  

This thesis considers the role that surface topography may have on influencing the adhesive 

bond strength of electroless copper plating on glass substrates. Chapter 1 identifies the need 

for good quality copper bonding on glass substrates, and sets out the aims and objectives of 

the research reported in this thesis. The chapter then provides an overview of three 

dimensional surface texture parameters development, and an analysis of existing research that 

has considered the role of surface texture in adhesion. The chapter introduces issues of 

surface wettability, before finishing with a brief summary on the proposed experimental 

methodology used throughout the work. 

1.2 Research background  

High performance electronic packaging requires that circuit boards and substrate materials 

ideally have a combination of optimized properties, including low mass, high thermal 

stability, high thermal conductivity, low coefficient of thermal expansion (CTE), high glass 

transition temperature (Tg), high mechanical strength, low dielectric constant, low moisture 

absorption, good chemical resistance and low cost [1].  

 

The drive towards increasing densities of components and integrated circuit inputs / outputs 

(i/o’s) in electronics is pushing the capabilities of conventional printed circuit board (PCB) 

manufacture to its limits. While sub-100 µm metal features can be produced, the dimensional 

instability of organic material based boards (such as polyimide materials) in response to 

changes in temperature or humidity means such features cannot be reliably aligned. Inorganic 

materials (such as alumina substrates) have drawbacks including high cost and poor CTE 

which induces shear stresses causing failure. Fibre reinforced composite series 4 (FR4) is the 

most currently used composite material because of its good mechanical and physical 

properties. However, thermal mismatch and dimensional instability restrict its application 

especially at higher temperature and frequencies [2].  
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Glass is attractive as an alternative substrate material for use in electronic packaging because 

it is relatively low cost, environmentally friendly and highly thermally stable with CTE 

values similar to that of silicon. It is also transparent which could simplify assembly and 

inspection of components with area array or hidden interconnects, and facilitate 

developments in optoelectronic circuitry. These appealing advantages attract researchers and 

the concept of using glass for high density interconnect has been explored by several groups. 

Previous work using glass for high density interconnect has examined the generation of laser 

micro-machined channels [3], the development of laser machined microvias [4-6], and the 

formulation of effective interface chemistry to allow better electroless copper plating [4, 7].  

 

Electroless plating has been applied to deposit conductive tracks on the insulating glass 

substrate surface, which is important for the manufacture of electronic components, because 

many devices are becoming miniaturised and more complex but must still cost less. However, 

it is difficult for metallization on the smooth glass surface due to physical, chemical and 

mechanical mismatch between the metal coating and glass substrate. Therefore improving the 

plated layer adhesion is one of the most important considerations for development of the 

technology, as without adequate adhesion the coating tends to peel off and not perform the 

task for which it is intended. 

 

Increasing the roughness of glass surface by surface treatments such as plasma roughening, 

mechanical abrasion, chemical modification, bead blasting and excimer laser machining can 

improve plating adhesion. One of the most significant issues is the quality of bonding of 

copper plating (circuit layup) to the glass substrate, with adhesive bond strength being a 

function of electrochemical and surface topography components. Whilst significant work has 

previously examined the electrochemical components of glass / copper adhesion, little 

attention has been paid to the role that surface topography may play.  This is partly due to the 

inadequacy of two dimensional surface texture parameters for describing three-dimensional 

effects, but also due to the difficulty of generating and controlling the glass surface 

topography. 

 

A key hypothesis in this work has been to consider the potential of characterizing glass 

surface texture using non-contact areal surface topography measurement, coupled with the 

new areal surface texture parameters in the ISO 25178 suite of standards specifically ISO / 

FDIS 25178: 2 [8]. The areal parameters in principle capture much more of the complexity of 
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surfaces than traditional profile parameters such as Ra. It is anticipated that these areal 

parameters should provide much better understanding of surface morphology, allowing 

greater comprehension of the mechanical adhesion characteristics of glass substrates for 

copper bonding.  

 

Furthermore, the overall aims of this research were to: 

 

• Correlate quantified adhesion strength measurements using scratch testing techniques 

with areal parameters.  

 

• Identify eligible parameters that can characterize adhesive bonding performance and 

therefore reduce the design / testing cycle of glass surface preparation / acceptance for 

film deposition.  

 

• Refine and optimise the surface texture preparation for improving mechanical copper 

plating adhesion on glass, thus potentially improving electronic functionality and life 

cycle. 

 

1.3 Research objectives and novelty 

Plating adhesion is a relatively new and developing field of application of three dimensional 

(3D) analysis where surface topography is of importance. This project concentrates on 

applying areal surface texture parameters for functional characterisation of surfaces with 

respect to adhesion. It should then be possible to proactively design surface features that 

enhance adhesion quality. 

  

The objectives and perceived novelty of this work presented here is identified as follows: 

 

1. Glass as the study material is a promising substitute material for use in the PCB 

manufacturing industry. Different methods for roughening the glass surface are to be 

investigated and compared for improving copper plating adhesion on glass substrate. 

 

2. Investigate manufacturing processes for producing (controlled) random surfaces on 



 
 

4 
 

glass substrates. Potential methods of texturing include bead blasting, micro-sand 

blasting, plasma treatment and chemical etching. 

 

3. A variety of novel and bespoke micrometric scale features at different depths are to be 

investigated on glass by laser machining. The laser is a potentially effective tool for 

the generation of micro pattern array structures on glass, using a dragging process. 

Optimal surface topography for strong adhesive bonding of electroless copper plating 

is to be identified. This section of work is expected to have novelty. 

 
4. Apply and / or develop contact / non-contact metrology techniques to routinely 

measure surface topography on glass substrates and generate areal surface texture 

parameters for different surface textures. This section of work will recognize and use 

existing intellectual knowledge. 

 
5. Assimilate and develop copper plating chemistry for the metallization of textured 

glass surfaces. Plating parameters such as operation temperature, chemical 

concentration and dipping time in solution is to be optimised for consistency and 

thickness of coating. This section of work will recognize existing intellectual 

knowledge, but, is expected to have novelty with respect to the glass used. 

 
6. Apply a quantifiable testing technique for assessing copper / glass adhesive bond 

strength (critical load). This section of work will be completed in collaboration with 

the UK National Physical Laboratory. 

 
7. Investigation of the application of a range of ISO 25178 areal surface texture 

parameters for correlation with copper plating adhesion. Produce statistics that 

demonstrate the quality of correlation between critical load values (adhesive bond 

strength) and a range of ISO 25178 areal parameters, and provide understanding for 

the trends and observed behaviour. This section of work is expected to have novelty. 

 

8. Identify key ISO 25178 areal parameters that provide routinely robust characterisation 

of glass textured surface suitability for copper bonding and predicting adhesion 

quality with the potential for use in an industrial manufacturing environment. This 

section of work is expected to have novelty. 
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1.4 Progress in areal surface topography characterisation 

1.4.1 Advantages of areal surface texture parameters 

In recent years the significance of surface topographic features has been emphasized by 

researchers and industrialists in many fields. As shown in Figure 1.1, surface texture 

measurement and control assists both designers and engineers [9]. Surface metrology has two 

roles in industry: one to help control manufacture, including controlling processing and 

machine tools, and the other is to help optimize the function of manufactured objects. These 

two roles can have a profound impact on quality. Controlling the manufacture helps 

repeatability and hence quality of conformance. Functional optimization helps the designer 

and thereby assists in the quality of design. Surface texture parameters quantify surface 

texture and so play an important role in product design and manufacture. 

 

 
 

Figure 1.1 Roles of surface metrology [9] 

 

Two dimensional (2D) profile surface roughness parameters such as Ra and Rq are the most 

commonly used in most industrial applications [10]. The analyses traditionally performed, 

computed on profile data, are very poor from a statistical point of view because the values 

obtained are very sensitive to the sampled region and direction of profile. The surfaces 

produced and measured in this study are randomly rough or micro pattern structured, which 

are three dimensional and anisotropic in nature. However, only when the surface is isotropic 

and homogeneous, can a single 2D profile be representative of the surface [11].  
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Since 2D profiles do not provide sufficient topographic information in the direction 

perpendicular to that profile, the functional information that can be provided by 2D 

parameters is not comprehensive. In comparison, a 3D approach to surface analysis can 

provide more information to assess surface topography, which is not available from the 

conventional analysis by 2D techniques and largely overcomes these limitations of 2D 

surface analysis.  

 

Additionally 3D surface texture parameters can assess areal properties of roughness which 

may relate better to the manufacturing route and the surface functionality (hence the 

description-areal parameters). The amplitude and spatial characteristics of areal surface 

topography dominates the functional performance in applications like wear, friction, 

lubrication, fatigue, sealing, jointing, reflectance, painting and so on. Further, the 

performance and reliability of engineering components such as bearings, gears, and engine 

bores can potentially be increased by selecting and controlling the appropriate 3D 

topographic characteristics. Different industries use different surface texture parameters for 

their specific applications. The possibility of using specific areal parameters to describe 

textural properties is another advantage. 

 

Areal surface topography greatly influences not only the mechanical and physical properties 

of contacting parts, but also the optical and coating properties of some non-contacting 

components.  Areal techniques are expected to gain increasingly widespread use not only in 

the areas where mainly areal surface texture parameters could produce meaningful results, 

such as biology and chemistry,  but also in the areas where traditional profile measurements 

have been conventionally applied, such as optical and mechanical engineering.  

 

Notwithstanding areal surface topography may play an important role in determining the 

satisfactory performance of the workpiece in many industrial fields, few researchers and 

industrialists use areal techniques to describe surface texture for specific application. For 

example, there is a lot of experience with profile parameters to characterize lubricating 

surfaces, but very little with areal parameters. Functional characterisation is seen as the most 

important aspect of data processing from an industrial view point, so it is timely to study the 

application of areal parameters for particular technological applications.  
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1.4.2 Historical development of the areal approach 

The first steps in 3D surface topography probably date back to the 1970's when Grieve et al. 

developed simple operating systems to record parallel profiles and produce contour maps [12]. 

The advent of the new generation of PC computers, which arrived in the late 1980's, made 

areal analysis more practicable and accelerated the development.  

 

During the 1990s, the European Community supported important programmes in the field of 

surface characterisation, specifically the Development of Methods for the Characterisation of 

Roughness in Three Dimensions under the leadership of Birmingham University (UK) [8]. In 

1993, a proposal was made for an areal surface texture numerical parameter set called the 

“Birmingham 14 parameters”, since a large part of the work had been undertaken at 

Birmingham University. This parameter set, though widely accepted, was considered to be 

somewhat theoretical with insufficient practical evidence for its applicability. Other areal 

surface texture parameters were later suggested by a variety of workers and institutions. 

 

From 1998 to 2001, the AUTOSURF project led by Rover / Brunel University (UK) and the 

SURFSTAND project led by Huddersfield University (UK) were two important programmes. 

These two projects reported to ISO / TC 213 in 2002. The AUTOSURF project proposed that 

further parameters were added to the Birmingham 14 parameters [8]. 

 

In 2003, the “Green book” was published [13] containing the detailed results from the 

SURFSTAND project. Following this feat, areal parameter study has been pursued by many 

researchers and in recent years progress has been rapid, thanks to the development of 

microcomputer capability in hardware and software and advanced measurement and analysis 

techniques. This has allowed collection of texture data over areas instead of only along lines. 

Furthermore, the basic work for standardization of the measurement and analysis methods 

has been carried out, due to pressure from industrial companies interested in surface 

topography. In the currently published version of the proposed ISO standard (ISO 25178:2), 

the parameter list has grown to encompass over 30 parameters. Other published elements of 

ISO 25178 also deal with areal texture measurement instruments and calibration. 

 

It is recognized that 3D surface topography of engineered surfaces is complex and cannot be 

described completely by a single or a few parameters. Each parameter can only describe one 



 
 

8 
 

aspect of the topography. Thus in ISO 25178:2, two classes of surface texture parameters 

“Field” and “Feature” parameters are identified. Field parameters apply statistics to the 

continuous surface from each portion of the scale-limited surface and include a number of 

parameters which cover amplitude, spatial, hybrid (combining amplitude and spatial) and 

some functional aspects. Some of these parameters are naturally extended from their 2D 

counterparts; others are uniquely defined for 3D surface topography features such as texture 

type (isotropy or anisotropy), texture direction, material volume, void volume, pits or troughs 

which are invisible from 2D profiles. Feature parameters apply statistics from a sub-set of 

pre-defined topographic features. Feature parameters are defined using a toolbox of pattern 

recognition techniques that can be used to characterize specified features on a scale-limited 

surface.   

1.4.3 Review of areal surface texture parameters application 

The recent advancements achieved in 3D analysis of surface texture have raised great interest 

amongst researchers and industrial users for the possibilities of the new techniques, in spite of 

parameter complexity. The theoretical and applied research literature on the analysis and 

applications of areal surface topography is spread across a diverse range of subjects over the 

last twenty years, including; manufacturing, materials, tribology, chemistry and biology. 

Examples of industrial applications of areal surface analysis related to the functional features 

are illustrated in Table 1.1 [14-39].  

 

Table 1.1 Example publications concerning the general application  

of areal surface parameters 

Researchers Year Application area Parameters used Ref. 
Stout and Sullivan  1991 Sheet surfaces through 

rolling 
Sa Sq Ssk Sku 14 

Wennerberg et al. 1995 Engineering and 
biomaterial surfaces 

Sa Sq Sz Ssk Sku Sk Spk Svk Sr1 
Sr2 

15 

Dong and Stout 1995 Surface wear Sq Sz Ssk Sku Sal Str Sds S∆q 
Ssc Sdr Svi Sbi 

16 

Blunt and Ebdon 1996 Grinding wheel 
topography 

Sds Sq Sz Ssk Sku Str Sal Std 
S∆q Ssc Sdr Sbi Sci Svi 

17 

Xie et al.  1999 Cold-rolled steel sheet Sq Sds  18 
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Table 1.1 (continued) 

Researchers Year Application area Parameters used Ref. 
Jiang, Blunt and Stout  1999 Bio-engineering Sq Sz Ssk Sku Sds Str Sal Std 

S∆q Ssc Sdr Sbi Sci Svi  19 

Ramasawmy and 
Blunt 

2001 
2005 

Electrochemical polishing 
surfaces and white layer 
thickness in EDM 

Sq Sz Sds Sm Sc Sv Sa  
S5z 20, 21 

Butler et al. 2002 Grinding wheels Sds Ssc Sq 22 
Al-Nawas et al. 2003 Dental implants Sa Sdr  23 
Suh et al. 
 

2003 Wear conditions of discs 
and steel pins 

Sa Sq Sz Ssk Sku Sds Str Std S∆q 
Ssc Sdr Sbi Sci Svi  24 

Benard et al.  2005 Adhesion of composites Sa 25 
Kundrak  et al. 2006 Hard turned bore holes Sa Sq Sz Ssk Sku Sds Str Std Sal 

S∆q Ssc Sdr Sbi Sci Svi  26 

Krzyzak and Pawlus. 2006 Piston skirts surface wear Sq Ssk Str S ∆q St±3σ Sku, Sds, 
SSc  27 

Senin et al.  2006 Segmentation through 
clustering 

Sa Sq Sz Ssk Sku Sds Str Std S∆q 
Ssc Sdr Sbi Sci Svi  28 

Sul et al.  2007 Titanium implants in bone Sa Sdr Sds  29 
Le Guéhennec et al. 2007 Titanium dental implants 

for rapid osseointegration 
Sa 30 

Ávila et al.  2008 The crater wear in coated 
hard metal tools 

Sa Sq Sk Svk Spk Ssk Sku  31 

Michalski  2008 The cylindrical gear tooth 
flanks 

SPa SPq Spt SPsc SPku Sp∆a 
SPmr SPsk 32 

Waikar and Guo  
 

2008 Turned and ground 
surfaces 

Sa Sq Sp Sv St Sz Ssk Sku Sds Str 
Sal Std S∆q Ssc Sdr STp Smmr 
Smvr  

33 

Nguyen and Butler  
 

2008 Grinding wheel 
topography 

Sds Ssc Sq Sal 
34 

Aris  and Cheng 2008 Precision machined 
engineering surfaces 

Sz  Sq Ssk Sku Ssc SΔ, Ssc Sal 
Sdr 35 

Scardino et al. 2009 Antifouling technology Sa Ssk Str  36 
Czifra and Horváth 2011 Sliding friction of steel-

ferodo material pair 
Sq Sku S∆q 37 

Wang et al. 2011 Biomedical titanium 
surface texture 

Sds Ssc Spd Spc Svd Svc S10z 
S5p S5v 38 

Tian et al. 2011 Cartilage surfaces for 
osteoarthritis diagnosis 

Sa Sq Ssk Sku Sz Str Sdr Smc 
Sxp Sk Vmp Vmc Vvv Vvc Spc 
S10z S5p S5v Sda Sha 

39 

 

 

This table reviews the general range of application for three dimensional surface analyses, 

with special reference to industrial applications. It is noticed that some older parameters 
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summarized in this table are no longer specified in the new ISO / FDIS 25178:2 suite. The 

emergence of commercial 3D measurement systems such as Coherent Scanning 

Interferometry have emphasised the importance of 3D surface topography in science and 

engineering applications, and an advent of measurement and characterisation of surface 

topography in three dimensions. From the literature survey and publications identified in 

Table 1.1, the main development and application fields of areal surface texture parameters are 

listed as follows: 

 

1.4.3.1 Manufacturing 
 

One of the first examples of using areal parameters to characterize surface topography is 

Stout and Sullivan [14]. They firstly used 3D analysis techniques to characterize sheet 

surfaces formed through rolling.  Afterwards a primary set of areal surface texture parameters 

were selected to qualify various types of engineered surfaces processed by turning, grinding, 

finishing, hobbing and chiselling, plain milling and end milling. Although traditional 2D 

(profile) measurements have been conventionally applied and dominated in manufacturing 

engineering, it was demonstrated that the use of individual profile or areal parameters was 

insufficient to characterize a surface topography. The 3D surface topography maps revealed 

the anisotropic and repeatable nature of a turned surface which was in contrast with the 

random and anisotropic nature of a ground surface.  

 

1.4.3.2 Materials 
 

Scardino et al. [36] provided Sa, Ssk and Str as quantified key surface parameters to guide the 

development of new materials with surface properties that confer fouling resistance and 

release. There were some case studies about characterisation of grinding wheel topography 

using areal surface texture parameters Sds, Ssc and Sq. A detailed knowledge of the nature of 

the topography of the grinding wheel would provide further insight into the surface 

interaction of the grinding wheel as well as enabling improved control of the grinding process 

in general. Nguyen and Butler [34] tried to correlate grinding wheel topography with its 

performance through the employment of areal surface characterisation parameters.  
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1.4.3.3 Tribology and lubrication 
 

Dong and Stout [16] introduced a new method for qualitative and quantitative 

characterisation of surface wear. It was found that different parameters had different 

sensitivities to different types of surface wear. Some parameters have monotonic changes as 

surfaces wear, whilst others have non-monotonic changes as the surface topography is 

restructured. Moreover, functional parameters can be used to detect surface topography 

change from one functional zone to another. 

 

There is a lot of experience with 2D surface texture parameters to characterize lubricating 

surfaces, but very little with areal parameters. Suh et al. [24] conducted controlled 

tribological scuffing experiments on typical engineering surfaces under starved lubrication 

conditions to simulate the contact conditions in an automotive air conditioning compressor. 

The functional roughness parameters were found to capture most accurately certain 

prominent characteristics in the worn topography of the disc surfaces and could be used to 

correlate the topographical changes to the meaningful physical changes occurring during 

progressive wear leading to scuffing. Although some functional parameters can characterize 

bearing property and fluid retention capability, other parameters such us Sq, Ssk, Str Sku and 

Sds were also found useful and recommended for worn surface description.  

 

1.4.3.4 Biology 
 

Surface topography is of significant importance for the bio-engineering field in areas such as 

joint prosthesis surfaces, replacement heart valve seal quality, contact lens quality and 

osseointegration of titanium implants. Jiang et al. [19] gave a comprehensive study of the 

surface topography using areal parameters. They presented an applicable tool for better 

understanding and characterizing of the three dimensional surface topography of orthopaedic 

joint prostheses. All the main areal parameters were employed for quantitative evaluation of 

roughness features. The functional properties, such as bearing area, material volume and void 

volume which are significantly affected by large peaks, pits and scratches were studied and 

the location of isolated peaks, pits and scratches in the different scales was also clearly 

characterized.  
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1.4.3.5 Chemistry 
 

Ramasawmy and Blunt [20, 21] used the 14 primary areal surface parameters as a basis in 

order to assess the effect of different electrolytes in an electrochemical polishing process 

(ECP) on the surface topography of electro discharge machining (EDM) surfaces. The 

surface parameters which showed a greater sensitivity to the process parameters had been 

investigated individually. It was observed that areal surface texture parameters Sq, Sm, Sc and 

Sv (namely material volume of the surface Sm and core void volume of the surface Sc, now 

non-standard parameters) were more sensitive to the main EDM process variables. Moreover, 

a linear relationship between current and Sq, and a parabolic or quadratic relationship 

between pulse duration and Sq were also found.  

 

1.4.3.6 Adhesion 
 

From 2005 to 2009, Bénard et al. [25] published a series of papers using the areal surface 

texture parameter Sa to characterize the average roughness of adhesion of composite surfaces, 

showing the correlation between the surface characteristics of composite materials and 

adhesion performances of corresponding surface assemblies. However, only Sa was selected 

among the whole areal surface texture parameters list family, and apparently one parameter is 

inadequate to characterize the complex adhesive performance, but also difficult to understand 

the influence of areal parameter upon the whole surface properties towards adhesion. 

 

1.5 Development of the characterisation of surface texture for 

adhesion 

1.5.1 Theories of adhesion 

Several theories attempt to describe the phenomena of adhesion. However, no single theory 

explains adhesion in a general, comprehensive way. Some theories are more applicable for 

certain substrates and applications; other theories are more appropriate for different 

circumstances. The most common theories of adhesion are based on: 
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1.5.1.1 Adsorption theory 
 

The mechanical strength of any solid material originates from the various forces of attraction 

between the ultimate particles which may include ionic and covalent bonds, hydrogen bonds, 

dipole interactions and secondary or van der Waals’ forces. Which of these forces are 

significant in any particular material depends upon the chemistry involved. These interactions 

have been mainly considered from the point of view of the cohesion which they provide 

within a single material. The only requirement is that the two materials being joined are in 

sufficiently close and intimate contact [40-45]. 

 

1.5.1.2 Diffusion theory 
 

The fundamental concept of the diffusion theory is that adhesion arises through the inter-

diffusion of molecules from one material to another across the interface. As a result of 

diffusive bonding, there is no longer a true interface, but rather an interphase in which the 

properties of the two materials change gradually into each other. There are some examples in 

which this concept has been put to use. Hildebrand and Scott [46] developed the theory of 

simple solution. Lyengar and Erickson [47] carried out a series of simple experiments in 

which a range of adhesives were used to make peel specimens between sheets of 

Polyethylene terephthalate (PET). The diffusion theory is primarily applicable when both the 

adhesive and adherend are polymeric, having compatible long-chain molecules capable of 

movement. This theory is not useful in considering adhesion between smooth and rigid 

materials where the molecules are essentially fixed and not mobile [40-45]. 

 

1.5.1.3 Electrostatic interactions theory 
 

The electrostatic theory proposes that adhesion takes place due to electrostatic effects 

between the adhesive and the adherend. This theory gains support from the fact that electrical 

discharges have been noticed when an adhesive is peeled from a substrate.  Electrostatics can 

play a role in bond-making and can control the strength of an adhesive bond, but only when 

substantial differences in electronegativity exist between the materials brought into contact. It 

is believed that for conventional adhesive bonds, the electrostatic contribution to the total 

work of adhesion is quite small in comparison to van der Waals’ forces [40-45]. 
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1.5.1.4 Mechanical interlocking theory 
 

The idea that adhesion depends on the mechanical interlocking of the adhesive with surface 

roughness is frequently advanced and is believed on a wide scale. According to this theory, 

adhesion occurs by the penetration of adhesives into pores, cavities, and other surface 

irregularities on the surface of the substrate. As shown in Figure 1.2. If the adhesive can 

displace the air in the pockets on the surface, the two materials are in intimate contact along a 

complex path. If a wedge is driven into the edge of this bond, we can see no abrupt plane of 

stress transfer. Rather, for the crack to propagate across the bond, the lines of force have to 

take detours. Some of the detours go into the adhesive. In most cases, the adhesive can 

deform more than the adherend. If either the adhesive (or the adherend) plastically deforms 

during the debonding, energy is consumed and the strength of the adhesive bond appears to 

be higher.  

 
Figure 1.2 Complex interface between two adhering materials [43] 

 

It is concluded that an adhesive penetrating into the surface roughness of an adherend can 

bond them and the adhesive bond strength results from the mechanical locking of the 

adhesive and the adherends. In Figure 1.2, arrows indicate a segment of the surface. In this 

segment, the adhesive has completely filled a pore on the surface. At this pore, the exit of the 

adhesive is partially blocked by part of the adherend. This place in the interphase will exhibit 

the so-called “lock and key” effect. A key, when turned into the tumblers of a lock, cannot be 

removed from the lock because of the physical impediment provided by the tumblers. In the 

same way, a solid adhesive in a pore cannot move past the “overhang” of the pore without 

”Lock and Key” site 

Crack path 
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plastically deforming. Plastic deformation acts as an energy absorbing mechanism and the 

strength of the adhesive bond appears to increase. 

 

Another reason surface roughness improves adhesion is purely a matter of physical area of 

contact. From Figure 1.2, it can be seen that the surface area is increased substantially. If the 

interfacial interactions are the basis for adhesion, then the sum of those interactions will scale 

as the area of contact. If the actual area of contact is increased by a large amount, the total 

energy of surface interaction increases by an amount proportional to the surface area [40-45]. 

 

1.5.1.5 Chemical bonding theory 
 

In certain applications the formation of covalent, ionic or hydrogen bonds occurs across the 

interface. Chemical bonding requires that there be mutually reactive chemical groups tightly 

bound on the substrate and in the adhesive. These strong and durable bonds are generally the 

result of the close contact or adsorption of the adhesive on the surface followed by a chemical 

reaction. Perhaps the most widely employed example of the chemical bonding theory is with 

adhesion promoters or coupling agents. These multifunctional chemicals provide a 

“molecular bridge” between the substrate and the adhesive [40-45]. 

 

1.5.1.6 Weak boundary layers theory 
 

If a region of low cohesive strength exists at the interface between a substrate and a hardened 

adhesive, failure will occur at a low stress level. The region is termed a ‘weak boundary 

layer’. Polyethylene and metal oxides are examples of two materials that may inherently 

contain weak boundary layers. Some contaminants such as rust and oils or greases can form 

weak boundary layers [40-45]. 

 

Unfortunately, there is no unifying theory relating actual adhesion phenomena. The study 

reported in this thesis is about generating various surface roughness topography on glass 

substrates to improve copper / glass adhesion strength, therefore chemical and diffusion 

related theories are not considered. Based on the review of applicability of these adhesion 

theories, mechanical interlocking and adsorption may be of most relevance to explain this 

performance. 
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1.5.2 Characterisation of surface texture for adhesion 

The complex relationship between roughness and adhesion has interested scientists and 

engineers for more than 50 years. Examples of research output are identified in Table 1.2, 

where authors identify that varying degrees and types of roughness appear to have beneficial 

effect on adhesion [48-62].  

 

Table 1.2 Development of characterisation of surface texture for adhesion 

People Year Material Methods Parameter 
used Ref. 

Takadoum and  
Bennani 1997 TiN deposited on steel 

substrate Scratch test Ra 48 

Hallab et al. 2001 Metallic and polymeric 
biomaterial Shear test Ra 49 

Shahid et al. 2002 Cleavage joint strength Tensile destructive 
test Ra 50 

Chong et al. 2003 
Plated platinum to 
poly(ethylene 
terephthalate) films 

Tape test Rq 51 

Garbacz et al. 2005 Concrete Pull-off test Ra 52 

Bénard et al. 2006 Gass/epoxy and 
carbon/epoxy composites Shear test Sa 53 

Minaki et al. 2005 
2007 

Plating of martensitic  
stainless steel Scratch test Ra 

54 

55 

Menezes et al. 2006 Ground EN8 steel flats Scratch test Ra 56 

Jiang et al. 2007 
Silica glass / 
polyarylacetylene resin 
composites 

Shear test Ra 
 

57 

Zappone et al. 2007 Polymer Peel test Rq 58 

Novak et al. 2008 Poly(imide-siloxane) (PIS) 
block copolymers 

Peel test and 
shear test 

Surface 
energy E 

59 

Indolfi et al. 2009 Coating onto 316L steel 
stent Pull-off test Ra 

Rq 
60 

Ayrilmis and 
Winandy 2009 

Adhesive bonding strength 
between MDF surface and 
veneer sheet 

Delamination test Ra 61 

Audry et al. 2009 
adhesion force of a 
sapphire particle onto 
alumina substrates 

AFM  with the 
colloidal probe 
technique 

Rq 62 
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Although the impact of surface topography on adhesion has attracted researchers’ attention as 

a potential tool for quantifying issues of adhesion bonding, only a few surface texture 

parameters have been used for surface texture characterisation. Furthermore only 2D surface 

texture parameters have been used by the majority of researchers even though they can give 

only a limited visualization of manufactured surfaces. 

 

Benard et al. [53] first used the areal surface roughness parameter Sa to characterize the 

roughness of adhesion between glass / epoxy and carbon / epoxy composites. The aim was to 

show the correlation between the surface characteristics of composite materials and adhesion 

performances of corresponding surface assemblies. The interest of surface treatment to 

increase surface roughness was discussed in terms of wettability. However, Sa in this paper 

was only used as a tool to compare general roughness. Apparently one areal parameter is not 

only inadequate to characterize the complex surface texture but it is also difficult to 

understand the influence of areal parameter upon the whole surface properties towards 

adhesive performance. 

 

Minaki et al. investigated the relationships between adhesive strength, surface texture and 

wettability for plating martensitic stainless steel for adhesion using only the 2D surface 

texture parameter Ra. They concluded that wettability was improved and adhesive strength 

increased when surface roughness Ra increased [54, 55]. In this report, contact angle was 

measured on the surface of the workpiece after blasting in order to examine the adhesion 

between composite materials and the workpiece, and it evaluated that blasting conditions had 

an effect on the wettability of the work surface. These papers demonstrate that the effect of 

surface roughness on plating had already attracted people’s attention in recent years. 

However, surface topography lacked adequate description because most typically only the 2D 

parameter Ra was adopted for characterisation.  

1.6 Theoretical and Experimental Study of Wetting Phenomena  

The study of adhesion should be considered in parallel with the study of wettability and 

contact angle phenomena. It has been recognized for some time that there is a relationship 

between the contact angles which liquids make with surfaces and the strength of adhesive 

bonds to the surfaces. The wettability of the adherend is of significant importance in getting a 

strong and durable bond as it allows more intimate molecular contact at the interface. The 
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relationship between wettability and surface energy relates to adhesion strength, consequently  

good adhesion typically occurs with high wettability. 

1.6.1 Development of Theories of Wetting Phenomena 

In 1805, Young proposed the famous Young’s Equation (Figure 1.3 and Equation 1-1) [63]. 

However, it applies only to one dimensional spreading and the substrate must be smooth, flat, 

homogenous, inert, insoluble, non-reactive, non-porous and non-deformable. Wetting in 

reality turns out to be much more complex, because the non-ideality of substrates means that 

they are usually rough and chemically heterogeneous.  

                                     

 

 

 

 

 

Figure 1.3 Schematic showing the condition for Young’s equation 
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Where θ is the Young’s contact angle, γ are the interfacial tensions: solid – vapour tension 

(γsv), solid – liquid tension (γsl) and liquid – vapour tension (γlv). 

 

Further work by Wenzel resulted in Wenzel’s equation (Equation 1-2) for rough surfaces as 

shown in Figure 1.4 [64]. 

 
 

Figure 1.4 Schematic showing the condition for Wenzel’s equation 
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                                                       )(cos slsvlv r γγθγ −=                                                      1-2 

 

Where r is the ratio of the actual area of a rough surface to the geometric projected area, this 

factor is always larger than unity. 

 

In the case of a flat, chemically heterogeneous surface, the wetting is typically described by 

applying the Cassie equation as shown in Figure 1.5 [65]. For a two-component system with 

an ideally flat surface, the wetting is described by Equation 1-3. 

                                

 
 

Figure 1.5 Schematic showing the condition for Cassie’s equation 

 

                         1cos180cos)1(cos'cos −+=°−+= ffff θθθ                                        1-3 

 

Where θ´ is the apparent contact angle that the droplet sits on a composite surface of air and 

solid. f  is the solid surface fraction of the area of the top of the asperities with respect to the 

projected area. 

 

Despite the fact that theoretical contact angle values derived from either the Cassie or the 

Wenzel equation are often in good agreement with experimentally determined contact angles, 

this is not always the case. Further models considering thermodynamic and geometrical 

aspects have been established to give a better explanation of wetting phenomenon, for 

example, Johnson and Dettre [66], De Coninck et al. [67], Zhou and Hosson [68] and Chen et 

al. [69]. These models indicate the effect of the factors of wetting on rough surfaces.  

 

θ 
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Swain and Lipowsky proposed a generalized Young’s equation for the contact angle which is 

valid for a substrate both chemically and geometrically inhomogeneous and under the 

influence of gravity [70]. Palasantzas and De Hosson established a model to associate the 

apparent contact angle with the surface roughness, but not including the system of liquids and 

solid substrates [71]. Zhang et al. established the Z-Y-H model to rebuild the relationship of 

surface roughness, material characteristic and contact angle [72]. Then Nosonovsky proposed 

a modified Wenzel’s and Cassie’s equation for non-uniform roughness and heterogenous 

surfaces [73]. 

 

Fox and Zisman obtained an estimate of the surface free energy of a solid by the linear 

relationship (Equation 1-4) between the contact angle and the critical surface tension of 

wetting [74].  

                                                  )(1cos clvb γγθ −+=                                                         1-4 

Where γc is defined as the critical surface tension of wetting for the solid and b is a constant. 

 

Further steps have been made to extend the early work identified above including Good and 

Girifalco [75], Fowkes [76], Kaelble and Uy [77] together with Owens and Wendt [78]. 

 

Fowkes suggested that the surface tension of a solid or liquid (γ) could be described as the 

sum of components which arise from different intermolecular force, dispersion (γd), polar (γp) 

and hydrogen bonding (γh), as described in Equation 1-5. 

 

                                                      
hpd γγγγ ++=                                                               1-5 

 

Fowkes further proposed that the interfacial tension for dispersion force interactions along the 

interfacial free energy could be expressed as: 

 

                                                                     
2

1
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l
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Where γs is the surface tension of solid, γl is the surface tension of liquid, γs
d is the surface 

dispersion force of solid and γl
d is the surface dispersion force of liquid. 
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Kaelble and Uy together with Owens and Wendt suggested that all polar interactions 

including hydrogen bonding interactions could be considered as one term (Equation 1-7). 
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Where γs
p is the surface polar force of solid and γl

p is the surface polar force of liquid. 

 

1.6.2 Development of Experimental Approaches to Wetting Phenomena 

Tamai and Aratani [79] verified Wenzel’s relation experimentally and concluded that the 

contact angle should be decided in terms of surface energy of the solid, the liquid, and the 

rough solid-liquid interface. An experimental study by Oliver et al. was made of the influence 

of surface roughness on the equilibrium spreading of liquids on solids [80]. 

 

Garoff et al. used X-ray reflectivity to show that the roughness of the underlying solid affects 

the roughness of the liquid-vapour interface of the thin film [81]. Whilst Wolansky and 

Marmur proposed a modification to Young’s equation for rough surfaces by including the 

effects of line tension that is directly proportional to the geodesic curvature of the underlying 

surface and the directional derivative of the line tension [82]. 

 

Progress has recently been made towards resolving engineering surface problems of the 

superhydrophobic properties because of their potential application in antifogging and self-

cleaning. Miller et al. [83], Shibuichi et al. [84], Onda et al. [85], Bico et al. [86], Lau et al. 

[87], Jopp et al. [88], Fan et al. [89], Meiron et al. [90] and Abdelsalam et al. [91] have 

fabricated patterned / rough surfaces by means of photolithography, templation, plasma 

etching, plasma deposition, chemical deposition, colloidal assembly, sol-gel chemistry, phase 

separation, or crystal growth to study the applicability of the Wenzel and Cassie theories. 

Conflicting results have been obtained depending on the system studied. 

 

The results of a series of experiments made by Extrand [92], Gao and McCarthy [93] and 

Bhushan et al. [94] for uniform and non-uniform rough and chemically heterogeneous 

surfaces are in agreement with the theoretical contact angle from the generalized Wenzel-

Cassie Equation. 
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Marmur proposed the Gibbs energy curve for a real surface with multiple local minima. In a 

situation where the roughness features are comparable to the size of the drop, a drop can have 

multiple contact angle values along the contact line, and the Wenzel equation does not always 

predict the correct apparent contact angle [95]. Butt proposed a method to calculate the 

capillary pressure on rough surfaces. He calculated the height distribution function of a rough 

surface based on the data generated from X-ray photoelectron spectroscopy (XPS) or atomic 

force microscopy (AFM) scans and in turn multiplied this function with the area and Laplace 

pressure term to obtain the capillary pressure [96]. 

 

A vast literature has evolved as research attempts to understand and characterize the 

wettability of solid surfaces. Contact angle measurements are used extensively in surface 

characterisation and this method often can be used as a non-destructive tool to analyze 

roughness and estimate the interfacial energy and wettability of substrate. However, the 

relationship between the structure and chemistry of a surface and its wettability by a fluid of 

interest can be very complex, and much effort is still directed towards understanding the 

wetting process. Although wetting of solid substrates by liquids is a fundamental 

phenomenon related to coating application, the wettability and contact angle measurement 

were not explored further in the study reported in this thesis since advanced metrology 

techniques for surface topography measurement were developed afterwards. 

 

1.7 Basic experimental methodology 

1.7.1 Experimental methodology 

The basic methodology and techniques to be used in this study to correlate surface 

topography with adhesion performance are illustrated in Figure 1.6.  
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Figure 1.6 Experimental methodology and techniques 

 

Stout and Blunt [97] developed the idea of surface classifications. Structured surfaces refer to 

surfaces with a deterministic pattern of usually high aspect ratio geometric features designed 

to give a specific function. Random surfaces refer to surfaces produced by random and 

psuedo-random processes often with the specific intention of removing systematic features. 

In the study reported in this thesis, the performance of structured surfaces is to be compared 

against random surfaces acting as an experimental control. Bead blasting was eventually 

chosen to generate the random surfaces on glass and excimer laser machining was eventually 

employed to create different structured surfaces. Contact / non-contact surface measurement 

equipment such as a Coherent Scanning Interferometer was utilized to characterize the 

machined surfaces via the new ISO 25178 areal surface texture parameters prior to coating.  

 

Electroless copper plating with a study of the control of plating variables was employed to 

deposit conductive tracks on the insulating substrate. Following electroless copper 

metallization, scratch testing (identification of critical load of failure) was used to give a 
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quantitative assessment of adhesion strength. Indications of correlations were then sought 

between individual areal parameters and the adhesion strengths. More samples were created 

and more adhesion testing carried out to allow statistical hypothesis testing of the candidate 

correlations. 

1.7.2 Materials 

Glass comes in a variety of specifications. However, two types of glass were used for 

experimentation. Firstly, glass microscope slides (Fisher Scientific Ltd, product number 

FB58620) were chosen as robust substrates for mechanical / chemical processing. Secondly, 

commercially available CMG glass supplied by Qioptiq Ltd was chosen as a substrate 

material due to its attractive thermal expansion coefficient and susceptibility to machining by 

ultraviolet (UV) laser radiation. The glass sheets were supplied as square samples with 

dimensions 40 mm × 40 mm with thicknesses of 100 μm and 500 μm. CMG glass is a 

borosilicate type glass with a nominal cerium dioxide content and highly absorbing to light 

with a wavelength shorter than approximately 320 nm [98]. Its physical properties are listed 

as shown in Table 1.3. 

 

Table 1.3 Physical properties of CMG glass [98] 

 
Density 

(g/cm3) 

Thermal 

Expansion 

Coefficient 

CTE (10-6/K) 

Young’s 

Modulus 

(GPa) 

Poisson’s 

Ratio 

Refractive 

Index (nd) 

CMG 

glass 
2.554 ± 0.010 5.6 ± 0.4 78.7 ± 1.0 0.175 ±  0.10 1.516 ± 0.003 

 

The data demonstrates that CMG glass has the potential to meet the requirements of high 

reliablility and functionality for electronic packaging: 

 

• Low thermal expansion coefficient that is similar to silicon (3×10-6/K). A CTE 

mismatch can lead to stresses in two adjacent materials. 

• High dimensional stability and high glass transition temperature. 

• Transparency allows for better visual references for machining and multiple layer 

alignment for interconnects. 
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• Thermal stability that is suitable for higher melting point lead free solders. 

• Low cost and environmentally benign. 

 
Previous studies [6, 7] had used an alternative glass variant (CMZ) from Qioptiq Ltd (for 

similar reasons of electronic compatibility) but this glass variant had been discontinued at the 

point that this research started. CMG glass has similar physical properties compared to CMZ 

glass. 

1.8 Summary 

In this chapter, the background and the objectives of this research have been introduced. The 

characteristics and the feasibility of the use of areal parameters in a variety of applications 

and the development of the characterisation of surface texture for adhesion have been 

reviewed. The theories of adhesion and the relationship between wettablility and adhesion 

were also discussed in this chapter. 

 

These application examples of areal parameters demonstrate a breadth of surface texture 

parameter identification. In a series of applications, three-dimensional surface roughness 

analysis has been found to be a powerful and versatile concept, compared to two-dimensional 

profilometry used in connection with visual inspection. However, it is noted that some of the 

reports do not link understanding of the influence of each parameter to the surface properties 

or functionality, or necessarily provide explanations for the original choices of parameter. 

First, most workers have typically only considered surface topography in a superficial 

manner and made no real use of the areal surface texture parameters, because few of them 

presented a comprehensive study of areal surface texture parameters, and most of the research 

literature lacks full understanding of the influence of each parameter upon the surface 

properties and explanations of the reason why they chose that parameter. Second, few 

researchers used areal surface texture parameters for describing surfaces for adhesive bond 

quality. So adhesion is a promising application for using areal surface texture parameters.  

 

Although 2D surface parameters may potentially be restrictive and misleading, very few 

adhesion researchers have considered areal surface texture parameters to characterize surface 

roughness over the last twenty years. Even though an example of the use of the Sa parameter 

can be cited in the context of adhesion [53], little attempt has been made to consider the 
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breadth of parameters (and consequently surface description) available especially for 

publications concerning bespoke texturing of glass for electroless copper plating. 

 

The lack of a significant body of knowledge concerning the use of areal parameters for 

adhesion, and specifically electroless copper coating of glass, is both a hindrance (i.e. a lack 

of published research direction) but also an opportunity for this current research to 

demonstrate unique and novel findings.  

 

The rest of the thesis structure is identified as follows: 

 

• Chapter 2 briefly discusses surface topography measurement and introduces the ISO / 

FDIS 25178:2 areal parameters.    

 

• Chapter 3 details methods of producing textured surfaces on glass, both random and 

structured in nature.  

 

• Chapter 4 identifies the electroless chemistry required to deposit copper onto the 

CMG glass substrates, and the variables involved.  

 

• Chapter 5 introduces the quantitative scratch testing required to assess critical failure 

loads (adhesive bond strength) of copper coated glass - data required for correlation 

with areal parameters. 

 

• Chapter 6 examines the statistical relationship between the areal parameterization of 

textured glass and critical load measurement of the copper coatings.  

 

• Chapter 7 identifies the key conclusions from the research and discusses issues of 

further work. 
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Chapter 2 Surface topography measurement and 

areal surface texture parameters 

2.1 Introduction 

Surface topography measurement and characterisation are important elements and 

functionality indicators in the context of this study. Chapter 2 highlights contact and non- 

contact options for topography measurement before introducing the coherence scanning 

interferometer as a key measurement tool. Areal parameters are described in detail with 

reference to ISO / FDIS 25178:2, before consideration is given to the sensitivity of 

parameters to filter selection for structured glass and random glass samples.  

2.2 Areal surface topography measurement equipment 

2.2.1 Introduction to surface topography measurement equipment 

The development of areal surface topography measurement owes much to the recent 

technological improvements of the instruments used which allows collection of texture data 

over areas instead of only along profile lines. There has been significant development of 

digital data processing techniques along with the dramatic increase of computing power and 

speed. Moreover, new and reliable measurement techniques have been introduced offering 

interesting prospects. These advantages meet the growing needs of industry to potentially 

achieve better control of production and of the functional properties of surfaces.  

The nature of contact mechanical measurement 
Areal surface topography measurements are undertaken by either contact or non-contact 

measurement instruments. The most common contact type of equipment is stylus-based 

surface texture instrumentation. The basic principle of non-contact range measurement 

systems is to project an optical source onto an object and process the reflected signal to 

determine its vertical range [99]. Table 2.1 summarizes the comparison between optical and 

stylus methods. 
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Table 2.1 Summary of optical and stylus methods [9] 

Stylus  Optical 

Possible damage No damage 

Measures geometry Measures optical path 

Tip dimension and angle independent Spot resolution and angle dependent 

Stylus can break Probe cannot be broken 

Insensitive to tilt of workpiece Limited tilt only allowed 

Relatively slow speed Can be very fast scan 

Removes unwanted debris and coolant Measures everything good and bad 

Can be used to measure physical parameters as 

well as geometry 
Only optical path 

Roughness calibration accepted at all scales Difficult to calibrate by standards 

Temporal and spatial influence / dynamic effects Spatial influence / geometric effects 

Existing ISO standards for 2D 

(e.g. ISO 4287 / 4288) 

ISO standards published for 3D 

(ISO 25178) 

ISO standard in development  

(ISO 25178) 

 

 

Although stylus-based surface texture equipment has been a reliable and traceable method, 

the main drawback is the physical size of the stylus that prevents it from penetrating sharp 

surface valleys, and convolution effects occur where sharp steps on a specimen surface tend 

to be smoothed. Another problem is that the stylus can damage or scratch the surface 

(depending on material hardness) and therefore the stylus technique may potentially be a 

destructive test. Non-contact measurement is of significant interest because it avoids 

deformation of the products and mechanical errors in the contact measurement. However, it is 

recognized that optical techniques contain optical sources of error. Optical methods are more 

suitable for generating areal surface texture parameters due to fast scan speeds and small 

resolution [100, 101]. Advanced measurements of areal surface topography in this study were 

carried out using a Zygo NewView 5000 coherence scanning interferometer (CSI). The 

NewView system uses scanning white light interferometry to image and measure the micro 

structure and topography of surfaces in three dimensions without contacting the surface.  
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2.2.2 Measuring principles of coherence scanning interferometer 

 
Generally, the coherent scanning interferometry technique utilizes the superposition property 

of the light waves. The amplitudes of two light waves with the same frequency will add up or 

cancel depending on whether these two waves are in phase or out of phase by 180º which 

results in a set of dark and light bands known as interference fringes that indicate the surface 

structure of the part being tested. Quantitative measurement of specimen surface height is 

carried out by detecting the phase of a number of interference patterns produced by the two 

reflecting wavefronts from the reference surface and the specimen surface and implementing 

appropriate algorithms. This characterizes how well a wave can interfere with itself at a 

different time by measuring interference patterns each associated with a different axial 

position of the reference or specimen surface [102, 103]. 

 

The detector measures the intensity of the light as the interferometric objective is actuated in 

the vertical direction and detects the maximum interference. Each pixel of the image sensor 

measures the intensity of the light and the fringe envelope obtained can be used to calculate 

the position of the surface. When the objective lens is moved downwards, there is a change of 

intensity due to interference that will be observed for each pixel when the distance from the 

test surface to the beam splitter is the same as the distance from the reference plane to the 

beam splitter and the highest points on the surface will cause interference first. Figure 2.1 

demonstrates how to build up an interferogram on a surface. A series of interferograms are 

generated as the objective is scanned perpendicular to the illuminated surface, while 

recording the detector data. The data acquired in this way consists of an array of 

interferograms, representing the variation in intensity as a function of scan position. The 

interferograms stored in the computer are individually processed and generate a complete 

three dimensional image constructed from the height data and corresponding image plane 

coordinates [102, 103].  

 
The behaviour of the two plane wavefronts and their interaction can be mathematically 

described [103]. The amplitude of a plane wave at a position (x, y, z) and time, t, may be 

expressed as: 

 

                                                         E(x, y, z, t) = αcos(ωt − kz)                                            2-1 
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where α is the amplitude of the wave, ω = 2πυ is the circular frequency (υ being the 

frequency of the light) and k = 2π / λ is the wave number (λ being the wavelength of the light). 

 

 
Figure 2.1 Mechanism of interferogram development on a surface [102] 

2.2.3 Zygo NewView 5000 CSI 

The Zygo NewView 5000 is a commercial coherence scanning interferometer from Zygo 

corporation (now superseded by the 6000 / 7000 models) and this instrument can be broken 

down into two basic subsystems: the microscope and the computer. The microscope measures 

the sample surface topography and generates the raw data needed for analysis and includes: 

the microscope itself, objectives, stage, video monitor, electronics, and a vibration isolation 

system. Automated systems also include a motorized stage and related electronics. The 

computer controls the measurement process, performs calculations, and displays 

measurement results on a color monitor. The instrument includes optics for imaging an object 

surface and a reference surface with both images brought together onto a solid-state imaging 

array, resulting in an interference intensity pattern that is read electronically into the 

computer.  

 

The optical system is shown in Figure 2.2. A beam from a white light source is passed 

through an interferometric objective (typically a Mirau objective for 10 × → 100 × objectives, 

Michelson objective for 1.0 × → 5 × objectives) and is split into a reference beam and a test 

beam. The reference beam reflects from an internal reference surface in the objective and the 

test beam reflects from the object surface. These two illumination components are combined 

Top down 

Scan direction 



 
 

31 
 

to create interference.  Both beams are directed onto a solid-state camera and the intensities 

are converted into images for three dimensional measurements by the Zygo Corp. MetroPro 

software.  The test part is scanned by vertically moving the objective with a piezoelectric 

transducer (PZT). As the objective scans, a video system captures intensities at each camera 

pixel. Lateral measurements, in the plane of the surface, are performed by calculating the 

pixel size from the field of view of the objective in use. The Scan Length control determines 

the actual length of the scan. The longer the scan, the more time required for acquiring data.  

 

The Zygo NewView 5000 CSI used in this study has a manual image zoom with a range from 

0.4 × to 2.0 × and objective lens from 2.5 × to 50 ×. The camera model has an image array 

size of 640 × 480 pixels. Depths up to 100 micrometers and resolution of 0.1 nanometre are 

imaged independent of objective magnification. The MetroPro capability for profile and areal 

parameterisation is very limited, so surface roughness measurement has been processed and 

analysed using the TalyMap Platinum v5.1 (DigitalSurf Mountains) surface texture 

processing software that is compliant to ISO / FDIS 25178:2. It provides graphic images and 

high resolution numerical analyses to characterize the surface structure of test parts. 

 
 

 
 

Figure 2.2 Schematic diagram of Zygo optical system [104] 

Digital Image Sensor 

Piezo Drive System 

Object to be measured 

Interferometric Objective 
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2.3 Areal surface texture parameters 

Areal surface topography of engineered surfaces is complex and cannot be described 

completely by a single or a few parameters. Each parameter can only describe one aspect of 

the topography. Published primary parameter sets include a number of parameters which 

cover amplitude, spatial, hybrid (combining amplitude and spatial), feature and some 

functional aspects. Some of these parameters are naturally extended from their profile 

counterparts (ISO 4287 [10]). Others are uniquely defined for areal surface topography 

features such as texture type (isotropy or anisotropy), texture direction, material volume, void 

volume, pits or troughs, which are typically not quantified with profile parameters. However, 

any parameter set cannot include all quantification which can describe surface topography 

completely. Only some major topographic properties related to geometry, statistics and 

function can be and are necessary to be described [8, 105-111]. 

 

In the latest draft of ISO / FDIS 25178:2, the parameter list has grown to encompass over 30 

parameters and a primary parameter set was defined in order to have a comprehensive 

characterisation of areal surface topography. In this section, some areal surface texture 

parameters that are based on sound mathematical and / or statistical principles are selected to 

characterize surface topography for copper plating adhesion and introduced along with their 

definitions taken from ISO / FDIS 25178:2 [8, 111]. Parameters such as Sv, Sp, S10z were not 

chosen in this study because they are not representative of the whole surface information. 

2.3.1 Height parameters 

Height parameters defined in this category give information regarding the areal height 

deviation of the surface topography, and are naturally an extension of their profile 

counterparts.  However, they cannot be directly compared due to different mathematical 

techniques. All the areal surface texture parameters use areal filters whereas profile surface 

texture parameters use profile filters. The definitions of height parameters which were chosen 

in this study are listed in Table 2.2. 
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Table 2.2 Height parameters (with A being the definition area, z(x,y) height of the scale 

limited surface at position x,y) [8, 111] 

Parameter Units Definition Mathematical formula 

Sq µm 
Root mean square height of 

the scale limited surface ∫∫=
A

dxdyyxz
A

Sq ),(1 2  

Ssk unitless 
Skewness of the scale limited 

surface 
]),(1[1 3

3 dxdyyxz
ASq

Ssk
A
∫∫=  

Sku unitless 
Kurtosis of the scale limited 

surface 
]),(1[1 4

4 dxdyyxz
ASq

Sku
A
∫∫=  

Sa µm Arithmetical mean height ∫=
A

dxdyyxz
A

Sa ),(1
 

 

 

Sq is a widely used parameter which measures the dispersion of the distribution of the heights 

and indicates surface roughness in a well-known statistical form. Sa is arithmetic mean of the 

absolute of the height within a definition area. Similar to the profile parameter Rq and Ra, 

these two parameters are sensitive to the size of the sampling area. 

 

Ssk is the quotient of the mean cube value of the ordinate values and the cube of Sq within a 

definition area. Skewness is a measurement of the symmetry of the surface deviations about 

the mean reference plane. It can effectively be used to describe certain aspects of the shape of 

a topographic height distribution. For a surface with a symmetric height distribution, such as 

a Gaussian surface, the skewness is zero. For an asymmetric distribution of topography 

heights, the skewness may be negative if the distribution has a longer tail in the downward 

direction of the mean plane or positive if the distribution has a longer tail in the upward 

direction of the mean plane. From a surface function point of view, this parameter can give 

some indication of the existence of spiky features. However, this parameter cannot 

distinguish if the profile spikes are evenly distributed above or below the mean plane and is 

strongly influenced by isolated peaks or isolated valleys.  

 

Sku is the quotient of the mean quartic value of the ordinate values and the fourth power of Sq 

within a definition area. Sku is usually presented in conjunction with the skewness to measure 

the peakedness or sharpness of the surface height distribution. This parameter can not only 
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characterize the spread of the height distribution but also provides a measure of the sharpness 

of the area. A spiky surface will have a high kurtosis value while a bumpy surface will have a 

low kurtosis value. A kurtosis of a Gaussian surface characterized by normally distributed 

heights about the mean plane has a value of 3. A centrally distributed topography height 

distribution has a kurtosis value of larger than 3 where as the kurtosis of a well spread height 

distribution is less than 3. Some literature has reported that this parameter is useful in 

predicting component performance with respect to wear and lubrication retention. [16, 24] 

However Sku cannot differentiate between a peak and a valley. With the combination of the 

skewness and kurtosis it may be possible to identify deep valleys and flat tops in surfaces. 

2.3.2 Spatial parameters 

Spatial parameters refer to the spacing of certain topographic features. They are primarily 

dependent on the information in the scanning and tracing directions. Generally speaking, the 

spatial properties are difficult to describe by parameters, owing to their general wavelength 

randomness combined with multi-wavelength variations of surfaces. It is impossible to define 

parameters to cover all aspects of the spatial property, and not all aspects can be effectively 

characterized by existing techniques.  

 

In order to characterize the spatial property of surfaces effectively, it is first necessary to 

define the autocorrelation function (ACF) as the correlation between a surface and the same 

surface translated by (tx, ty), given by 

 

                                 
∫∫

∫∫ −−
=

A

A

dxdyyxzyxz

dxdytyytxxzyxz
tytxACF

),(),(

),(),(
),(                                          2-2 

 

With A being the definition area, tx, ty refer to the ACF at the position (x, y). 

 

The ACF describes the general dependence of the values of the data at one position on the 

values at another position. It is recognized that the ACF is a very useful tool for processing 

random signals. It provides basic information about the spatial relation and dependence of the 

data. The ACF decays rapidly along the cross lay direction, which suggests less correlation of 

the data in the corresponding direction. However the ACF decays slowly along the surface 
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lay direction, which suggests high correlation of the data in the corresponding direction. 

Obviously, this property of the ACF offers a good way to distinguish isotropy and anisotropy 

of surfaces. The periodicity of irregularities and the texture are very important aspects of the 

surface characterisation. The definitions of spatial parameters which were chosen in this 

study are listed in Table 2.3. 

 

Table 2.3 Spatial parameters [8, 111] 

Parameter Units Definition Mathematical formula 

Sal µm Auto-correlation length 22min tytxSal +=  

Str unitless Texture aspect ratio 
22

22

max

min

tytx

tytx
Str

+

+
=  

 

 

Sal is a parameter in length dimension used to describe the autocorrelation character of the 

ACF. It is defined as the shortest horizontal distance that has the fastest decay to a threshold s, 

with 0 ≤ s < 1.  In other words, this parameter is the shortest autocorrelation length during 

which the ACF decays to s in any possible direction. The defalt value of s is 0.2. A large 

value of Sal denotes that the surface is dominated by low spatial frequency (or long 

wavelength) components, while a small value for Sal denotes the opposite situation. 

 

Str can be defined as the ratio of the fastest to slowest decay to correlation length s (0 ≤ s < 1) 

of the surface ACF. By convention the value of s is 0.2. This parameter is used to identify 

texture pattern, isotropy or anisotropy. In principle, Str has a value between 0 and 1. Larger 

values, Str > 0.5, indicates uniform texture in all directions, whereas smaller values, Str < 0.3, 

indicates stronger anisotropy. 

2.3.3 Hybrid parameters 

A hybrid property is a combination of amplitude and spacing surface characteristics. Any 

changes that occur in either amplitude or spacing may have an effect on the hybrid property 

of the surface. Hybrid parameters have great sensitivity to scale and their values are 

dependent on the resolution of the data. The definitions of hybrid parameters which were 

chosen in this study are listed in Table 2.4. 
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Table 2.4 Hybrid parameters (with Lx and Ly being the lengths of the definition area)[8, 111] 

Parameter Units Definition Mathematical formula 

Sdq radians 

Root mean 

square gradient 

of the scale 

limited surface 

∫ ∫ ∂
∂

+
∂

∂
=

Lx Ly
dydx

y
yxz

x
yxz

A
Sdq

0 0

22 )),(()),((1  

Sdr unitless 

Developed 

interfacial area 

ratio of the 

scale limited 

surface 

)1])),(()),((1[([1 22 dxdy
y

yxz
x

yxz
A

Sdr
A∫∫ −

∂
∂

+
∂

∂
+=

 

 

 

Sdq is the root-mean-square slope of a surface within the sampling area. This parameter is 

sensitive to the sampling interval. Sdq, from the theoretical point of view, is independent of 

the amplitude of roughness and describes the shape of the elements of microtopography.  A 

higher value may signify a peaky surface whereas a low value may signify a smoother 

surface. 

 

Sdr is the ratio of the increment of the interfacial area of the scale limited surface over the 

sampling area. A large value of Sdr indicates the significance of either the amplitude, or the 

spacing, or both. For rough surfaces manufactured by turning, shaping and boring, the values 

of the developed interfacial area ratio are usually larger than 1 %. For surfaces with high 

slope, the values of the developed interfacial area ratio may be larger than 10 %. However, 

for fine surfaces manufactured by honing, plateau honing and grinding, the values of the 

developed interfacial area ratio are usually smaller than 1 %. Functionally this parameter can 

reflect the transition of a tribological process in which a surface is from its origin to worn, 

and in adhesion applications, this parameter characterizes the real contact area between 

adherend and adhesive. This parameter is also sensitive to the sampling interval. 
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2.3.4 Functional and related parameters 

The definitions of functional parameters are concentrated on some important and frequently 

applied aspects. In engineering applications, many surfaces are manufactured to have some 

specific functional properties such as bearing, sealing and lubricant retention capabilities. 

Depending on the functional requirements, these surfaces may be designed to possess specific 

topographic features that are beneficial to the intended applications. The above mentioned 

parameters give general descriptions of surface topography. However, it is sometimes more 

efficient and effective to use specifically defined functional parameters to describe the 

particular characteristics of a surface that are important for a specific functional application. 

The definitions of functional parameters are concentrated on some important and frequently 

applied aspects. So the parameters presented here are useful for characterizing surface 

bearing, fluid retention and relevant properties. 

 

For functional parameters related with volume, the areal material ratio function of the scale 

limited surface is important, and is the function representing the areal material ratio of the 

scale limited surface as a function of height shown in Figure 2.3.  

 

 
 

 

Figure 2.3 Areal material ratio [8] 

 

This parameter is usually expressed as a percentage. Sdc (mr) and Smr (c) are directly derived 

from areal material ratio. Sdc (mr), inverse areal material ratio of the scale limited surface, is 

Material ratio (%) 
0% 

c 

Smr(c) 100% 
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the height c at which a given areal material ratio mr is satisfied. Smr (c), areal material ratio 

of the scale limited surface, is the ratio of the area of the material at a specified height c to the 

evaluation area. The definitions of functions and related parameters which were chosen in 

this study are listed in Table 2.5. 

 

Table 2.5 Functions and related parameters [8, 111] 

Parameter Units Definition Mathematical formula 

Vm µm3/µm2 Material volume dqmrSdcqSdcKmrVm
mr

)()(
%100

)(
0

−= ∫  

Vmp µm3/µm2 

Peak material 

volume of the scale 

limited surface 

Vmp = Vm (p) 

The default value of p is 10%. 

Vmc µm3/µm2 

Core material 

volume of the scale 

limited surface 

Vmc = Vm (q) –Vm (p) 

The default value of p is 10% and q is 80%. 

Vv µm3/µm2 Void volume dqqSdcmrSdcKmrVv
mr

)]()([
%100

)(
%100

−= ∫  

Vvc µm3/µm2 

Core void volume 

of the scale limited 

surface 

Vvc = Vv (p) –Vv (q) 

The default value of p is 10% and q is 80%. 

Vvv µm3/µm2 

Dale void volume of 

the scale limited 

surface 

Vvv = Vv (p) 

The default value of p is 80%. 

Sxp µm Peak extreme height 
Sxp = Smr (p%) – Smr (q%) 

The default value of p is 2.5% and q is 50%. 

 

 

Sxp is the parameter related to the surface bearing property. This parameter is a measure of 

the difference in heights on the surface from the areal material ratio value between p % and 

q %. Sxp (p %, q %) indicates the depth of the remaining material to the lowest regions of the 

texture after it is worn or modified. Thus Sxp (p %, q %) may be used to determine the depth 

of material available after q % of the surface has either been removed or deformed to a 

plateau-like structure [112].  
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Vm (mr) is the volume of the material per unit area at a given material ratio calculated from 

the areal material ratio curve. Vv (mr) refers to the volume of the voids per unit area at a 

given material ratio calculated from the areal material ratio curve. Figure 2.4 shows the 

definition of volume parameters in the material ratio function. 

 

Vmp is the material volume at p. A larger Peak material volume Vmp indicates a good bearing 

property. In a tribological process that a surface is from unworn to worn, this index increases 

correspondingly. Generally, this index is larger than zero. 

 

Vmc is the difference in material volume between p and q material ratio. Vvv is the dale 

volume at p material ratio. A larger Vvv value indicates a good fluid retention capability in 

the valley zone. In a tribological process that a surface is from unworn to worn, this index 

usually keeps relatively stable. 

 

Vvc is the difference in void volume between p and q material ratio. Good fluid retention 

occurs with larger value. A larger Vvc value indicates good fluid retention. In a tribological 

process that a surface is from unworn to worn, this index decreases correspondingly.  

 

 
 
 
 

Figure 2.4 Volume parameters [8] 
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2.3.5 Feature parameters 

Feature parameters are not specifically defined by an equation but instead have a toolbox of 

pattern recognition techniques that can be used to characterize specified features on a scale 

limited surface. The feature characterisation process is in five stages:  

i. Selection of the type of texture feature 

ii. Segmentation 

iii. Determining significant features 

iv. Selection of feature attributes 

v. Quantification of feature attribute statistics 

Based on the above five steps, the named feature parameters are listed in Table 2.6. Wolf 

pruning is an areal filter mechanism. Dale refers to regions around a pit such that all maximal 

downward paths end at the pit, hill refers to regions around a peak such that all maximal 

upward paths end at the peak, FC indicates that this is a feature characterisation, H indicates 

Hill, P indicates Peak and D indicates Dale. 

 

Table 2.6 Feature parameters [8, 111] 

Parameter Units Definition Description 

Spd 1/µm2 
Density of 

peaks 

Spd = FC; H; Wolfprune: X%; All; Count; Density 

If not otherwise specified the default value of X% is 

5%.  

Spc 1/µm 

Arithmetic 

mean peak 

curvature 

Spc = FC; P; Wolfprune: X%; All; Curvature; Mean 

If not otherwise specified the default value of X% is 

5%. 

Sda µm2 
Closed dale 

area 

Sda(c) = FC; D; Wolfprune: X%; Open: c; Area; 

Mean 

If not otherwise specified the default value of X% is 

5% and significant feature is closed. 

Sha µm2 
Closed hill 

area 

Sha(c) = FC; H; Wolfprune: X%; Open: c; Area; 

Mean 

If not otherwise specified the default value of X% is 

5% and significant feature is closed. 
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Spd and Spc reflect the basic geometric information of the micro-features. Spd is the number 

of peaks in a unit sampling area. This parameter has a significant functional sense in 

tribology and is greatly influenced by the sampling interval of the measurements. Spc is 

defined as an average of the principal curvatures of the peaks within the sampling area. This 

parameter can be calculated only after the summits have been found, and it is sensitive to the 

sampling interval as well. Sda (c) is the average area of dales connected to the edge at height 

c. Sha (c) is the average area of hills connected to the edge at height c. 

2.4 Surface topography measurement 

Different surface topography measurement operation parameters (reference plane, sampling 

area and filter) can lead to different characterisation results. Before measurement, these 

variables need to be specified and be consistently applied. 

2.4.1 Reference plane 

To provide a quantitative evaluation of the surface roughness, a reference or datum level is 

needed at first. The least squares mean plane derives from the least squares mean line which 

is adopted in current standards. It is defined as a plane such that the sum of the squares of the 

deviations from this plane is a minimum. Explicit mathematical algorithms are available to 

calculate it [102, 113], but the process is computationally intensive and ideally suited to 

computer processing.  

2.4.2 Sampling area 

The sampling area refers to the area portion used for defining the parameters characterising 

the scale limited surface. In this study, typically a 10 × objective lens and 1 × optical zoom 

were used to provide a lateral field of view of approximately 700 μm × 500 μm, which is 

predominately used as the sampling area in this research. 

2.4.3 Filter 

Filtration is important for surface metrology and it is the means by which the surface features 

of interest, such as roughness, waviness and form error, can be extracted from the measured 

data for further analysis. By applying different filtering, unwanted measurement noise or 

functionally irrelevant small or large scale features can be excluded from the final data set. 



 
 

42 
 

Filtering is used to isolate specific spatial frequency bands relevant to different component 

information of the surface by decomposing a signal occurring in the spatial frequency or scale 

domain. Areal measurement filter definitions currently being developed in ISO standards are 

based on digital Gaussian cut-off filters characterized by being phase correct and robust to 

single features such as scratches [102, 114].   

 

A Gaussian filter is a good general purpose filter and it is the current standardized approach 

for the separation of the roughness and waviness components from a primary surface [115]. 

Both roughness and waviness surfaces can be acquired on a profile basis from a single 

filtering procedure with minimal phase distortion. Take the micro grid structured surface 

sample for example, which is machined by the excimer laser mentioned in Chapter 3, the 

effect of filtration to the 2D profile A-A´ is shown in Figure 2.5. 

 

The L-filter is used to remove large scale lateral components from the primary surface. The 

S-filter is used to remove small scale lateral components from the surface resulting in the 

primary surface. Both roughness and waviness surfaces can be acquired from a single 

filtering procedure as shown in Figure 2.5. An 8 µm filter is used as the L-filter in Figure 2.5 

(c) to separate roughness components by only allowing wavelengths below 8 µm to be 

assessed, with wavelengths above this value being removed. 8 µm is also used as an S-filter 

in Figure 2.5 (d) to determine the waviness of the residual surface. Filtration is necessary to 

isolate the interested roughness or waviness components from the unfiltered surface.  
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Figure 2.5 Effect of filter applied to the profile (A-A´) measurement  

(a) Surface map (b) Raw profile (no filter) (c) Micro-roughness profile (8 µm L-filter) (d) 

Waviness profile (8 µm S-filter) 

 

 

(a) 

(b) 

(c) 

(d) 

A´ 

A 
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Since the filter is essential to the data results generation, the relationship between filter 

selection and areal surface texture parameters were investigated.  The effects of filter applied 

to both structured surface (excimer laser) and random roughness surface (bead blasting) glass 

samples were processed and compared.  Note that full details of these manufacturing methods 

are provided in Chapter 3. Figure 2.6 shows the surface topography of these two samples. 

 

 
 

Figure 2.6 Surface topography of CMG glass samples 

(a) Structured surface (b) Random surface 

 
The data were processed using different filter setting applications and the diagram of the 

relationship between filter selection and area surface texture parameters were drawn 

individually.  Details of the specific filter and parameters selection are listed in Table 2.7. 

 
Table 2.7 Filter and areal parameters selection  

Filter selection 
(µm) Areal parameters selection 

20, 40, 60, 
80 ,100, 120, 

150, 250 

Height 
parameters 

Spatial and 
hybrid 

parameters 

Functional 
parameters 

Named feature 
parameters 

Sq, Ssk, Sku, Sa Sal, Str, Sdq, 
Sdr 

Sxp, Vm, Vv, Vmp, 
Vmc, Vvc, Vvv 

Spd, Spc, Sda, 
Sha 

 

(a) (b) 
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Figure 2.7 The relationship between filter selection and height parameters 

 (a) Structured surface (b) Random surface 

 
Figure 2.7 shows the relationship between different filter selection and height parameters. 

The graphs show that: 1) Sku is sensitive to the filter selection for the structured glass surface. 

2) Sq and Sa show the same trend in the sensitivity to the filter selection, which is to be 

expected from the definition. 3) Ssk is seen to be insensitive to the filter selection for the 

structured surface but sensitive for the random surface. 4) There is a threshold for parameters 

Sq, Sa and Sku in the structured surface. For example, the spacing of this micro pattern is 50 

µm and when the filter is bigger than 80 µm, there is no obvious change for the values of 

these parameters, which gives a basis for later filter selections in Chapter 7. 
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Figure 2.8 The relationship between filter selection and spatial / hybrid parameters  

(a) Structured surface (b) Random surface 
 

Figure 2.8 shows the relationship between different filter selection, spatial and hybrid 

parameters. The graphs suggest that: 1) Str and Sdq are insensitive to the filter selection for 

both the structured glass surface and the random surface. 2) Sal and Sdr are insensitive to the 

filter selection for the structured surface when the filter value is above 80 µm. 3) Sal is 

sensitive to the filter selection for the random surface. The definitions of these parameters 

may provide the explanation. These spatial and hybrid parameters characterize surface feature 

components and texture pattern. For a specific structured surface, Str, Sdq, Sal and Sdr are 

insensitive when the filter value is above the feature spacing dimension. 
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Figure 2.9 The relationship between filter selection and functional parameters  

(a) Structured surface (b) Random surface 
 

Figure 2.9 presents the relationship between different filter selection and functional 

parameters. The graphs show that: 1) Vm, Vmp and Vvv are insensitive to the filter selection 

whereas Vv, Vmc, Vvc and Sxp are sensitive to the filter selection for both the structured glass 

surface and the random surface. 2) Vv, Vmc and Vvc show the same trends to the filter 

selection. 3) Again there is a filter threshold of 80 µm for Vv, Vmc, Vvc and Sxp for the 

structured glass surface. The possible reason is that functional parameters are used for 

characterizing surface bearing and fluid retention properties, which may correlate with the 

feature component size of the surface. 

 

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

Fu
nc

tio
na

l p
ar

am
et

er
s 

Filter (µm) 

Vm

Vv

Vmp

Vmc

Vvc

Vvv

Sxp

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

Fu
nc

tio
na

l p
ar

am
et

er
s 

Filter (µm) 

Vm
Vv
Vmp
Vmc
Vvc
Vvv
Sxp

(µm3/µm2) 
(µm3/µm2) 
(µm3/µm2) 
(µm3/µm2) 
(µm3/µm2) 
(µm3/µm2) 

(µm) 

(µm3/µm2) 
(µm3/µm2) 
(µm3/µm2) 

(µm3/µm2) 
(µm3/µm2) 
(µm3/µm2) 

(µm) 



 
 

48 
 

  

 
 

Figure 2.10 The relationship between filter selection and feature parameters  

(a) and (c) Structured surface, (b) and (d) Random surface 

 
Figure 2.10 presents the relationship between different filter selection and named feature 

parameters. The graphs show that 1) Spc is sensitive to the filter selection for both the 

structured glass surface and the random surface. 2) Spd, Sda and Sha are relatively insensitive 

to the filter selection for both the structured glass surface and the random surface.  

 

Areal parameters show different sensitivities to filter selection as identified above. For the 

structured surface with a 50 µm pitch spacing, there is a threshold for the areal parameters 

which present sensitivity to filter selection. In this case, there is no obvious change for the 

values of these areal parameters when the filter value is above 80 µm. For the random 

surfaces, there is no threshold for the areal parameters values. As a result, the value of the 

filter is 250 µm which is typically more than ten times the scale of the coarsest structure of 

surface [111]. The summary of sensitivities of areal parameters to filter selection for 

structured surface and random surface is shown in Table 2.8. 
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Table 2.8 Sensitivities of areal parameters to filter selection (large sensitivity √√, medium 

sensitivity √, no sensitivity ×) 

Areal 

parameters 

Structured 

surface 

sensitivity 

Random 

surface 

sensitivity 

Potential filter 

value for 50 µm 

pitch spacing 

Potential filter value 

for 

random surface 

Sa √ √ 80 µm 250 µm 

Ssk × √ - 250 µm 

Sku √√ √√ 80 µm 250 µm 

Sa √ √ 80 µm 250 µm 

Sal √√ √√ 80 µm 250 µm 

Str × × - - 

Sdq × × - - 

Sdr √√ √ 80 µm 250 µm 

Vm × × - - 

Vv √√ √√ 80 µm 250 µm 

Vmp × × - - 

Vmc √√ √√ 80 µm 250 µm 

Vvc √√ √√ 80 µm 250 µm 

Vvv × × - - 

Sxp √√ √√ 80 µm 250 µm 

Spd × × - - 

Spc √√ √√ 80 µm 250 µm 

Sda × × - - 

Sha × × - - 

 

2.4.4 Vacuum coating attempt 

Sometimes it is difficult to access the measurement of a glass sample surface due to the 

transparency of the substrate. In such situations, coated sample replication can be made for 

measurement in order to get better signal feedback. In this study, a small number of glass 

samples were vacuum coated (copper and aluminium evaporation) before measurement. A 

Moorfields / Edwards E 306 Vacuum Coater was used for vacuum coating. Figure 2.11 and 

Figure 2.12 show the difference of CSI performance before and after vacuum coating of 
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CMG glass samples with line profiles taken through A-A´ and B-B´ respectively. However, it 

should be noted that Figure 2.11 is an extreme example of missing data for a non-coated 

sample. For most glass samples, better quality datasets are generated. 

 

 
Figure 2.11 CMG glass with structured surface before vacuum coating 

(a) Surface map (b) Profile A-A´ 
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(b) 
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Figure 2.12 CMG glass with structured surface  after vacuum coating 

(a) Surface map (b) Profile B-B´ 

 

The CSI measurement result shows vacuum coating can sigificantly improve signal feedback 

quality from the surface. However, the pretreatment method of vacuum coating was not 

adopted in this study for two reasons. Firstly, it is difficult to produce two identical samples, 

especially for random surface samples because the manufacturing process is not repeatable. 

Sample pretreatments need to be consistent before measurements in order to make the results 

comparable. Secondly, even though this coating is only approximately a hundred nanometres 

thick, it modifies and smooths the real surface. As a result, a compromise needs to be 

considered which is dependent on measurement  tolerance. 

2.4.5 Areal surface texture parameters generation 

Surface roughness measurement was processed and analysed using the TalyMap Platinum 

software as identified in Section 2.2.3. Areal parameters including field and feature 

parameters were generated according to ISO / FDIS 25178:2.  

 

Sample levelling also affects the measurement outcome. Levelling of the sample with respect 

to the Zygo can be experimentally determined by minimizing the number of fringes patterns 

(a) 

(b) 

B´ 
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visible on the computer screen during Zygo measurement, a process known as nulling. 

Further, levelling by the least squares mean method before data processing was further 

applied in Talymap. 

 

Holes in the datasets (a function of CSI optics and surface signal [103]) result in the software 

not processing certain areal parameters including spatial and hybrid parameters. Height, 

functional and feature parameters can be generated no matter if there are data holes. Data 

filling may be used (with caution) when there is non-measurement of area. When the areal 

parameters failed to be generated, filling in of the non-measurement data points was 

undertaken by software interpolation, by replacing the non-measurement points with a 

smooth shape calculated from the neighbouring data. This process is illustrated and discussed 

by other authors [103]. In this study, there are two steps for areal parameters generation. 

Height, functional and feature parameters are firstly generated, then spatial and hybrid 

parameters are processed after data filling procedure. 

2.5 Summary 

In this chapter, areal surface topography measurement methods have been compared and the 

Zygo NewView 5000 coherent scanning interferometry (CSI) system was introduced for 

generating surface topography maps of glass substrates. A series of areal parameters taken 

from ISO / FDIS 25178:2 have been presented for characterizing the glass surface texture. 

The relationship between filter selection and areal parameters has also been discussed in this 

chapter. As a result of this initial work, the following key CSI variables were chosen for 

consistent measurement of glass samples: 

• 10 × objective 

• 1 × zoom multiplier 

• 640 × 480 camera pixel resolution 

• 700 μm × 500 μm sampling area 

• Nulling of CSI fringe patterns before data acquisition  

• Sample levelling prior to data generation 

• Gaussian filter in TalyMap 

• Filter specification based on surface structure feature (more details in Chapter 6)  
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Chapter 3 Producing textured surfaces on glass 

3.1 Introduction 

Modifying the surface of glass is a key issue in this research and a variety of methods are 

available to be explored. Chapter 3 explores plasma etching, chemical etching, mechanical 

abrasion, particle abrasion and laser machining, with the aim of identifying process that allow 

controlled surface modification. 

3.2 Glass surface treatment background 

Proper surface pretreatment is one of the decisive factors for achieving a high-quality 

adhesive joint [116]. Packham discussed the fundamental principles which are relevant to an 

understanding of the influence that interfacial roughness may have on adhesion [117]. 

Increasing roughness on glass surfaces is essential to improving copper / glass coating 

adhesion performance and surface topography correlates areal parameters with plating 

adhesion strength.  

 

Different methods including; plasma treatment, chemical etching and mechanical abrasion 

were attempted in order to produce random surfaces on CMG glass substrates. It became 

clear that these methods are incapable of generating structured surfaces on glass, so excimer 

laser machining has been developed and used to create a range of micro pattern structured 

surfaces on CMG glass substrates. However, the background challenge is to identify an 

economic and feasible manufacturing method to achieve textured surface on glass for strong 

copper plating adhesion. 

 

Previous researchers have reported that microcolumnar array (MCA) structures could 

enhance the adhesive bonding strength for metals and alloys. Starikov et al. fabricated MCA-

structured surfaces by laser ablation on high-temperature stainless steels (Hastelloy 276™, 

alloy 321) and refractory metals (tungsten, tantalum, molybdenum, titanium) [118]. Baburaj 

et al. described modification of titanium surfaces by generating MCA structures and thereby 

increasing the adhesive bond strength between titanium plates [119]. The application of MCA 

for the bonding of silicon nitride and alloy steels for adhesive bonding was published by 

Zhang et al. [120]. They showed that the adhesive bond strength could be doubled by the 
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generation of MCA structures on ceramic and steel surfaces. Few researchers have reported 

creating MCA structures on glass surfaces and none have reported issues of improving 

adhesion performance, which is one part of the novelty of this study. 

 

Before producing textured surfaces on glass, a virgin CMG glass sample was imaged using 

the Zygo CSI system, as shown in Figure 3.1. The result indicates that this virgin CMG glass 

is flat to a value of Pt = 33.6 nm. The Sq value is 7.27 nm. The topographic information of 

virgin glass provides a reference for comparison with the roughened surfaces produced by 

various manufacturing methods. 

 

 

 
Figure 3.1 Virgin CMG glass (a) Surface map (b) Profile A-A´ 
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A´ 
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3.3 Producing randomly rough surfaces on glass 

3.3.1 Plasma treatment 

Plasma etching involves a high-speed stream of glow discharge (plasma) of an appropriate 

gas mixture being accelerated in pulses at a sample. During the process, the plasma generates 

volatile etch products at room temperature from the chemical reactions between the elements 

of the material etched and the reactive species generated by the plasma. Eventually the atoms 

of the accelerated element embed themselves at or just below the surface of the target, thus 

modifying the physical properties of the target. Plasma surface treatment can improve 

wettability of the target material by raising its surface energy and improve adhesive 

characteristics by creating bonding sites [121].  

The basic mechanisms of plasma etching are [122]:  

• Sputtering in which ions mechanically eject substrate material at low pressure. 

• Chemical gasification, where thermalized neutral radicals react with substrate 

material and form volatile products. 

• Ion-enhanced energetic mechanisms in which there is little or no intrinsic surface 

reaction with neutral radicals, until energetic ions enhance the reactivity of a 

substrate or product layer allowing chemical reactions to gasify the material. 

• Ion-enhanced inhibitor, or protected sidewall anisotropy where inhibitor species form 

a sidewall film which excludes the neutral etchant. 

An existing gas composition for borosilicate glass reported in the literature [123-125] using 

Carbon Tetrafluoride (CF4) gas and Oxygen (O2) gas was chosen in the etching process. The 

base pressure of the system (Plasma Lab 80 equipment) was set to 5 mTorr and etch rate was 

31 nm / min. Radio frequency forward power was set to 100 W. The plasma treatment was 

performed at a chamber pressure of 60 mTorr for 2 hours. Figure 3.2 shows a surface 

topographic map of the plasma treated CMG glass sample.   
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Figure 3.2 Plasma treatment CMG glass (a) Surface map (b) Profile A-A´ 

Comparing the result of the plasma treated sample with the virgin CMG glass, the surface 

roughness was increased to a limited extent by this recipe with the Sq value increasing to 11.7 

nm. Although some researchers have reported the use of plasma etching to treat glass in order 

to increase surface roughness [123-125], the process is a relatively high-cost technique that 

can etch glass but is also time consuming. In addition, it is a time consuming process finding 

the most suitable recipe for new substrates. 

3.3.2 Chemical etching 

Hydrofluoric acid (HF) etching is a well known industrial process, but is hazardous due to its 

high corrosive nature and toxicity. This chemical must be handled with extreme care with 

protective equipment because hydrogen fluoride gas may immediately and permanently 

damage the lungs, the corneas of the eyes, and water solutions can cause tissue death if 

contacted [126]. The mechanism of glass etching by HF acid is the reaction between the 

fluoride anions and the silicon oxide which is the main ingredient in glass, to form silicon 

fluoride. In this study, CMG samples were dipped into 6 % HF solution for periods of 60 

seconds, 90 seconds and 300 seconds at room temperature, and then rinsed and dried 

(a) 

(b) 

A´ 
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thoroughly. The surface topography of the samples after chemical etching was investigated. 

Typical images are shown in Figure 3.3 to Figure 3.5. 

 

 

 
Figure 3.3 CMG glass sample dipped into 6 % HF solution for 60 s  

(a) Surface map, (b) Profile A-A´ 
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Figure 3.4 CMG glass sample dipped into 6 % HF solution for 90 s  

(a) Surface map, (b) Profile A-A´, (c) Profile B-B´ 
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Figure 3.5 CMG glass sample dipped into 6 % HF solution for 300 s  

(a) Surface map, (b) Profile A-A´ 

 

From the images it can be seen that the etched surface morphology changed dramatically with 

increasing dipping time with respect to the virgin glass in Figure 3.1. When the glass sample 

was etched for 60 seconds, there was no obvious change to the surface topography. With the 

dip time increased to 90 seconds, the etched area extended from independent shallow pits to a 

continuous deep valley. Once the etching time was increased to 300 seconds, there were 

visible rugged bumps and tracks on the glass surface. 

 

The results identified that the HF acid did not etch the CMG glass samples uniformly. In 

some samples etching starts from a corner whereas in others there is an etched band in the 

middle. Even for the same sample, the etching effect was different from area to area. The 

possible reason for this is the variations in material surface properties. As shown in Figure 

3.4 (b) and Figure 3.4 (c), two line profiles A-A´ and B-B´ were generated from the same 90 

seconds dip time CMG glass sample, however, the profiles exhibited different etched surface 
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A´ 
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roughness characteristics. Line A-A´ showed surface roughness value of Pt = 453 nm, 

whereas line B-B´ showed significantly less variation (Pt = 105 nm). This is also a 

demonstration that profile based surface texture analysis cannot comprehensively represent 

the surface topography when the surface is anisotropic and inhomogeneous; therefore areal 

parameters are required to give more comprehensive and reliable surface information. Figure 

3.6 shows the relationship between etching time for the glass samples and Sq value. 

 

 
Figure 3.6 Relationship between sample etch time and Sq value 

 

The plot demonstrated that the Sq value increases with dip time in the HF acid solution. In 

other words the surface roughness increases with etching time. In addition, it should be 

noticed that the Sq value is strongly dependent on the sampling area due to the 

inhomogeneous nature of the etching effect. In this case, the sampling area was randomly 

selected. 

 

In conclusion, 6 % hydrofluoric acid etching is not a suitable pre-treatment method for CMG 

glass in the context of the research, because it does not give good control of surface 

topography, there is a high biological process risk factor, and the acid etching method has 

low repeatability and high process uncertainty. 
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3.3.3 Mechanical abrasion 

Some mechanical abrasion methods such as grinding paper, scratching and grit-blasting were 

also investigated to assess the capability of rough surface generation on CMG glass. They 

present alternatives compared to the use of ecologically unfriendly chemicals. 

3.3.3.1 Grinding paper scratching 
 

P1200 grinding paper with an average particle diameter of 15.3 µm [127] was chosen to 

abrade the glass surface with an example shown in Figure 3.7. 

 

 
Figure 3.7 CMG glass scratched using P1200 grinding paper  

(a) Surface map, (b) Profile A-A´ 

 

Abrasive scratch lines can be seen crossing the CMG glass sample. From the profile A-A´, it 

was noticed that scratch depth was random, ranging from 100 nm to 500 nm. The 

controllability of this method is small and the process uncertainty is significant. 
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3.3.3.2 Sand blasting 
 

Sand blasted glass is widely used in interior design applications in both residential and 

commercial settings for providing privacy or for decoration purposes. This technique uses 

sand sprayed at high velocities over the surface of the glass to give a translucent surface. The 

depth and degree of the translucency of the sand blasted treatment varies with the force and 

type of sand used. By varying the sand size, pressure, angle of application to the glass and 

duration, various patterns can be impacted onto the surface layer of glass. Figure 3.8 shows 

surface topography maps of a sand blasted glass sample. 

 
 

 
 

Figure 3.8 Sand blasted CMG glass sample  

(a) Surface map, (b) Profile A-A´, (c) Profile B-B´ 
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Two profiles (A-A´ and B-B´) were taken from the sampling area. From the results, it can be 

seen that there were large scale sinusoidal shaped wave-forms, as well as random 

microroughness, generated on the sand blasted glass surface. The profiles suggest the form 

feature diameter size varied from 100 µm (profile B-B´) to 200 µm (profile A-A´). Sq value 

was 3.51 µm, which indicates that sand blasting can significantly increase the surface 

roughness. Sand blasting is a feasible technique for producing random surface topography on 

glass, however, there is no experimental capability in Loughborough University. The 

measured sample was supplied by the Rutherford Appleton Laboratory (RAL), but the cost 

basis of the commercial process was beyond the scope of this project. 

 

It should be noticed here that the line profiles in Figure 3.8 illustrate the issue of data voids in 

the surface map. These voids are a function of the local surface slope of the texture versus the 

numerical aperture of the CSI instrument [103]. This source of error is common in many 

surface texture measurements using optical instruments. Line profiles generated later in this 

thesis may also exhibit data voids as identified in section 2.4.5. 

 

3.3.3.3 Bead blasting 
 

Bead blasting is the process of removing surface materials by applying fine glass beads at a 

high pressure. In this study, GUYSON Formula F1400 equipment was used and Honite 14 

(nominal size range of glass bead is 75 µm - 150 µm) was used to create random roughness 

on CMG glass surfaces. This was due to the availability of the existing experimental 

equipment. Guyson Honite is a premium quality soda-lime glass bead manufactured 

specifically for impact blast finishing applications. It is a chemically inert, iron-free product, 

available in a range of bead sizes and can be used for a wide variety of cleaning, finishing 

and peening operations [128].  

 

Bead blasting is a low-cost and simple way to produce the random surface on glass. Surface 

roughness level can also be controlled by changing the diameter of the bead and blasting 

duration time. CMG glass samples were treated using Honite 14 glass bead for different 

blasting duration times of 1 second, 2 seconds and 3 seconds. Measurement results are shown 

in Figure 3.9 to Figure 3.11. 
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Figure 3.9 Bead blasted CMG glass sample (1 second treatment) 

 (a) Surface map, (b) Profile A-A´ 

 

 
Figure 3.10 Bead blasted CMG glass sample (2 seconds treatment) 

 (a) Surface map, (b) Profile A-A´ 
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Figure 3.11 Bead blasted CMG glass sample (3 seconds treatment)  

(a) Surface map, (b) Profile A-A´, (c) Profile B-B´ 

 

Comparing the results with the sand blasted samples, it is noticed that similar topography is 

exhibited. Large sinusoidal shape wave forms are apparent on the glass surface. The etched 

depth (amplitude of the wave in Figure 3.11 (b) and (c)) varied from 1 µm to 20 µm 

according to the blasting time duration. When the sample was exposed to glass bead fluid for 

1 second, the typical feature diameter was only 30 µm, increasing to 100 µm when the 

blasting time was extended to 2 seconds. When this time reached 3 seconds, the feature 

diameter varied from 200 µm to 300 µm. Two line profiles (A-A´ and B-B´) were generated 

from the bead blasted glass sample with 3 seconds treatment as shown in Figure 3.11 (b) and 

Figure 3.11 (c).  
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Surface roughness increased with blasting time duration as well. When the blasting time 

durations were 1 second, 2 seconds and 3 seconds, the Sq values were 1.02 µm, 4.38 µm and 

6.71 µm respectively. Comparing with the former methods, the results indicate that bead 

blasting treatment can significantly increase surface roughness within seconds. However, the 

controllability of roughness is very limited with this method.  

3.4 Producing structured surfaces on glass  

Excimer lasers are used in micromachining applications to remove material from substrates 

through the ablation mechanism. Zhang and Yung investigated the feasibility of the 248 nm 

excimer laser in the laser structuring of fine circuit lines on printed circuit boards [129]. 

These lasers are capable of making microstructures with feature size on the order of 1 µm - 

100 µm and are applicable for glass-based materials [130]. The selection of a laser is closely 

associated to the absorption characteristics of the workpiece. CMG glass is highly absorbent 

to light with a wavelength (λ) shorter than approximately 320 nm, and it is noticed that for 

most glasses, laser radiation in the wavelength range from λ = 193 nm to λ = 308 nm is 

absorbed by more than 80 % [131]. As a result, a Krypton Fluoride (KrF) excimer laser 

(model EMG 203, Lambda Physik) operating at 248 nm was employed to machine structured 

surfaces on CMG glass. 

3.4.1 Excimer laser characteristics 

3.4.1.1 Excimer laser principles 
 

“Excimer” is short for “excited dimer” and “dimer” refers to a diatomic molecule that 

contains two atoms of the same element. The term “excimer laser” refers to a class of rare gas 

halide molecules that emit pulses of light whose wavelengths are in the UV spectral region. 

In the early 1970s, it was found that inert gases (He, Ne, Ar, Kr, Xe) can form temporarily-

bound molecules with halogens (Cl, F, Br, I) in an excited state. The rare gas halides are very 

unstable due to the chemical reactivity of atoms determined by the configuration of their 

outermost electrons, therefore they give up their excess energies by emission to the ground 

state, resulting in strongly-repulsive molecules in the ground state. Hence a population 

inversion is formed. Excited rare gas halide molecules are formed by the strong mutual 

attraction of positive and negative ions of rare gas and halogen atoms.  
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Figure 3.12 shows the binding energy diagram for the rare gas halide molecule KrF. The laser 

transition occurs from the B-stage (excited state) to the X-stage (ground state) by emitting the 

photon and the excited atomic levels of the rare gases are responsible for the formation of the 

B-state. During the B => X emission, the rare gas halide molecule KrF with a wavelength λ 

of 248 nm is used to produce laser action. 

 

 
 

Figure 3.12 Binding energy versus internuclear separation for KrF [132] 
 

Figure 3.13 shows the layout of an excimer laser machining system. The laser beam passes 

through a beam delivery system that folds the beam in the vertical direction and the 

horizontal direction. The beam delivery system mainly consists of several optical components 

for beam expansion, shaping, scanning and image projection. After this it is projected onto 

the mask plane where it can be passed through different size and shaped mask apertures 

which can tailor the shape and size of the beam at the work piece [6]. Finally, the beam 

passes through a projection lens which produces an approximate 1:10 reduced image of the 

mask on the work piece which is mounted on a computer numerically controlled (CNC) X-Y 

table. The attenuator (range of setting from 0.2-0.95) sits next to the beam shutter to help 

reduce the laser beam energy either by absorption or by reflection of part of the beam.  
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Figure 3.13 Layout of an excimer laser system [132] 
 

3.4.1.2 The interaction of excimer laser radiation with glass 
 

Excimer lasers can be more effectively used for machining micro structures on glass because 

of their high machining precision quality. Compared with Nd:YAG (λ = 1.06 µm) and CO2 (λ 

= 10.6 µm) lasers, an excimer laser has a shorter wavelength which allows the laser beams to 

be focused to smaller spots and obtain higher energy intensities and a smaller heat-affected 

zone at the workpiece [132]. In comparison, longer wavelength lasers require more photon 

absorption to heat the workpiece hot enough to break apart chemical bonding during 

machining. Such high temperatures cause many heat problems such as combustion, melting, 

and boiling of the surrounding materials. 

 

Since the ultimate resolution of an optical system is restricted by diffraction effects, which is 

proportional to the wavelength of the radiation involved, the excimer laser, normally with 

relatively short wavelengths (in UV range) and pulse time (20 ns), allows the high intensity 

energy to be absorbed in a very thin surface layer for the effective removal of material from a 

target area. The short wavelengths and short pulse duration allow the excimer laser to be 
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suitable for high resolution and high absorption in machining, which are important in making 

microscale structures with glass-based materials. 

 

The mechanism to directly remove material from substrates is usually called laser ablation, 

by either photothermal or photochemical mechanisms, or by a combination of these two [133]. 

The photochemical mechanism is often referred to as a non-thermal process because the 

material removal is caused by direct chemical bond decomposition as energy is absorbed, 

whereas in the photothermal process, the absorbed laser energy is converted to lattice 

vibrational energy (thermal) causing melting and vaporization of the material [134].  

 

Glass can be removed without generating a large amount of heat during ablation, which can 

damage or shatter the surrounding material, an issue which is especially important for brittle 

materials. The ablation mechanism of different glasses depends strongly on the composition 

of the glass. CMG glass is a borosilicate type glass which is highly absorbing to light with a 

wavelength shorter than approximately 320 nm. For a KrF excimer laser, photons with a 

wavelength of 248 nm have an energy of approximately 5 eV which is sufficient to break 

chemical bonds and causes a sudden pressure increase within the absorption region and ejects 

material in an explosive manner [135]. Since excimer laser pulse durations are short, the 

interaction with the material occurs very rapidly, and the opportunity for thermal damage to 

the surrounding material is minimized. 

 

3.4.1.3 Excimer laser parameters 
 

In this research, the KrF laser operating parameters could be preset and controlled by the 

CNC system and included: 

 

• Energy density (workpiece fluence) – typically measured in J/cm2. This parameter 

represents the energy input delivered into the workpiece per unit surface area. 

 

• Attenuator position – as a function of energy density, from 0 to 1.0, where 1.0 is 100 % 

transmission. 

 

• Pulse duration – in this work, the duration of each pulse was fixed at 20 ns.  
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• Pulse repetition rate – typically in the range of 5 Hz to 25 Hz. 

 

• Focus position – determined by the lens system used in the optics. 

 

• Beam length along groove length – refers to the length of the beam in the direction of 

travel and so it is dependent on the shape of the mask. 

 

• Shots per area – the number of shots any exposed area receives during machining. 

The shots per area influences the speed at which the stages move for a given laser 

repetition rate.  

 
• Feedrate – refers to the speed of work stage movement. 

 

Feedrate (mm / minute) is determined by the size of the mask, the laser repetition rate and the 

shots per area. The relationship is expressed by the mathematical equation as follows [136]: 

                                                         

𝐹𝑒𝑒𝑑𝑟𝑎𝑡𝑒 =  
60𝐿𝑅
𝑁

 

 

Where L (mm) is the laser beam length in the direction of the beam’s movement; 

R (Hz) is the laser pulse repetition rate; 

N is the laser shots per area. 

 

Before machining, the focus position must be adjusted according to the sample thickness at 

different elevation positions in order to guarantee laser machining quality. A focusing 

programme is shown in Appendix 2. During ablation, the work stage can move in both X and 

Y directions and rotate in the Z axis. The work stage is kept perpendicular to the laser beam 

during operation.  

 

In order to systematically study the excimer laser, a series of experiments were designed and 

performed to find out the effect of each parameter and optimize the process to achieve the 

best adhesion. The effect of various excimer laser operating parameters such as 

3-1 
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geometric shapes of the mask, energy density (fluence), and repetition rate were investigated 

separately.  

3.4.2 Mask study 

3.4.2.1 Single machined spot study 
 

The systematic study started with a single machined spot using three different shapes of mask 

apertures; circular, square and equilateral triangular as shown in Figure 3.14 (all 1 mm 

masks). The masks were fixed on a mask holder and placed in the centre of the laser beam to 

obtain the optimal laser output quality. When the laser beam passes through a mask form, the 

mask pattern is projected onto a static workpiece and so the mask shape is ablated into the 

sample.  

 

 
 

Figure 3.14 Photographs of masks 

(a) Circular mask, (b) Square mask, (c) Equilateral triangular mask 

 

The dimensions of the circular, square and equilateral triangular masks were; 1 mm diameter, 

1 mm square and 1 mm side length respectively. Figures 3.15 to 3.17 show surface 

topography measurement results from the Zygo CSI system for each of the three mask shapes. 

All the machined spots were prepared using laser settings of energy density 2.0 J/cm2 (output 

energy 220 mJ and attenuator position of 0.8), repetition rate 10 Hz and shots per area 50 

(circular mask, shown in Figure 3.15), 50 (square mask, shown in Figure 3.16), and 200 

(triangular mask, shown in Figure 3.17). It is noticeable that there are data holes on the wall 

sides of the profiles because the CSI system does not measure steep walls very well [103]. 

 

(a) (b) (c) 
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Figure 3.15 Machined feature with circular mask (a) Surface map, (b) Profile A-A´ 

 

 

 
Figure 3.16 Machined feature with square mask (a) Surface map, (b) Profile A-A´ 

(a) 

(a) 

(b) 

(b) 

A´ 

A´ 

A 

A 
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Figure 3.17 Machined feature with equilateral triangular mask  

(a) Surface map, (b) Profile A-A´ 

 

From the three figures, it can be seen that: 

 

1) The geometry of the masks is reproduced by their projection onto the surface of the 

workpiece and determines the feature of the machined area. The beam projected onto the 

sample is reduced proportionally due to the 1:10 reduction ratio of the projection lens. For 

example, the diameter of the circular mask is 1 mm +/- 0.2 mm, while the diameter of the 

machined feature is 0.1 mm +/- 0.02 mm. 

 

2) Masks restrict the beam energy intensity projected onto the surface of the workpiece. 

When the larger size of mask was used, more beam energy of the excimer laser could be 

passed through and delivered to the surface of the sample. 

 

 As a result, structured surface feature design depends on sensible mask dimension choice. 

 

(a) 

(b) 

A´ 

A 
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3.4.2.2 Single machined groove study 
 

Structures such as grooves can be produced when the mask is kept fixed in the mask holder 

and the workpiece is moved while the laser is firing, a process typically known as dragging. 

In a further experiment, single grooves were machined with the circular, square and 

equilateral triangular masks. CMG glass work pieces mounted on the work stage were 

dragged to form a single groove contour 10 mm along one direction. The dimensions of the 

circular, square and triangular masks were 1 mm, 1 mm and 5 mm respectively. All the 

machined grooves were machined using laser settings of energy density 2.0 J/cm2 (output 

energy 220 mJ and attenuator position of 0.8) and 50 shots per area. Figures 3.18 to 3.20 

show surface topography measurement results from the Zygo CSI system for each of the 

three mask shapes. 

 

 
Figure 3.18 Machined groove with circular mask (a) Surface map, (b) Profile A-A´ 

 

(b) 

(a) 

A´ 

A 
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Figure 3.19 Machined groove with square mask (a) Surface map, (b) Profile A-A´ 

 

 
Figure 3.20 Machined groove with triangular mask (a) Surface map, (b) Profile A-A´ 

(a) 

(b) 

(a) 

(b) 

A´ 

A´ 

A 

A 
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From the three figures, it can be seen that: 

 

1) Material ablation is a function of integrated beam energy on the surface. Both the 

circular and square masks can produce similar depth groove ablation. However, when 

comparing with circular masks, there are much sharper (from an approximate 45° 

slope to a right angle) edges produced at the bottom of the machined groove using 

square masks (comparing Figure 3.18 (b) and Figure 3.19 (b)). This is because more 

material ablation occurs along the groove edge using the square mask compared to 

using the circular mask along the workpiece movement direction as shown in Figure 

3.21. 

 

 

 

 
 

 

 
Figure 3.21 Material ablation during workpiece movement using circular and square masks 

 

2) Triangular masks can produce a ramp structure on the surface by the dragging process. 

As shown in Figure 3.22, during the movement of the workpiece, the track 

overlapping part along the bottom edge of the mask is much bigger than the top point. 

This means more surface material ablation occurs along the bottom of the mask than 

the top. This demonstrates the potential to form complex topographies such as 

pyramidal surface structures on glass. 

 

 

 

Workpiece movement direction 

Workpiece movement direction 



 
 

77 
 

 

 

 

 
 

 

Figure 3.22 Material ablation during workpiece movement using a triangular mask 

 

3) Grooves are the fundamental element of complex microstructure. These machined 

grooves provide the possibility of further producing various structured surfaces on 

glass by the dragging process, with parallel, perpendicular or angled grooves. 

3.4.3 Laser system operation parameters study 

3.4.3.1 Machining parameters matrix study 
 

To determine the effects of energy density and shots per area, matrices with varying settings 

of attenuator position and number of shots at each machining position were machined into 

CMG glass samples. The movement of the samples and laser operation were controlled 

according to a G-Gode programme which is listed in Appendix 3. Different matrices using 

circular, square and triangular masks were achieved by conducting experiments over the total 

range of energy from 190 mJ to 250 mJ in increments of 10 mJ. In each matrix the number of 

pulses varied between 25 and 200 shots increasing in intervals of 25 shots, and the attenuator 

position varied from 0.2 to 0.9 with an interval of 0.1. The etch depth of each machined 

feature was investigated using the Zygo CSI system. Figure 3.23 illustrates an example of one 

of the matrices using a 1 mm diameter circular mask with pulse energy of 220 mJ and a 

repetition rate of 10 Hz. 

 

 

 

 

Workpiece movement direction 
   Less energy integration 
(limited material removed) 

   Greater energy integration 
(maximum material removed) 
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Figure 3.23 Schematic showing the area machining matrix of number of shots and attenuator 

position (  Etch depth < 2 µm,  Etch depth 2 µm - 5 µm,  Etch depth 5 µm - 10 µm, 

 Etch depth > 10 µm)  

 

These matrices helped to illustrate the effect of energy density with specific laser operation 

setting versus the etch depth and the threshold ablation fluence of the CMG glass. By 

changing the laser shots per area and attenuator position, the excimer laser can ablate 

different depths according to the application. In the experiments, it was found that there was 

no obvious ablation effect on the surface of the samples when the excimer laser pulse energy 

was at 220 mJ and the attenuator position was on 0.2, 0.3. Therefore the ablation threshold 

for the CMG glass is the energy density at 220 mJ and attenuator position 0.4. This energy 

density value is approximately 1.4 J/cm2 which was obtained by measuring using a 

COHERENT® Laser Power / Energy Meter.  

 

Both the output pulse energy and attenuator position setting determine the energy density of 

the excimer laser, and therefore contribute to the etched depth and surface roughness of the 

machined dots. In order to investigate the effects of output pulse energy and attenuator 
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position to machined feature characteristics, a circular mask with 1 mm diameter, shots per 

area of 25, and repetition rate of 10 Hz was used. In this section, it was the bottom of the 

machined feature that was measured. The etch depth and surface roughness of each machined 

feature were measured using the Zygo CSI system, and Sq was used to characterize the 

surface roughness. The results are shown in Figure 3.24 to Figure 3.29. 

 

 
Figure 3.24 Relationship between pulse energy and etch depth on CMG glass matrix 

(attenuator position 0.9) 

 

As shown in Figure 3.24, the etched depths of glass samples and the laser pulse energy 

exhibit an almost linear relationship. The more output pulse energy, the deeper the depth 

machined on the glass surface. The trend of the line indicates the threshold of pulse energy 

for laser etching is 140 mJ (when etch depth is zero as shown by the circle in Figure 3.24). As 

a result, the minimum pulse energy setting is 140 mJ for CMG glass ablation. 
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Figure 3.25 Relationship between pulse energy and Sq on CMG glass matrix 

(attenuator position 0.9) 

 

Figure 3.25 shows that increasing pulse energy can decrease the surface roughness Sq value. 

The higher pulse energy results in a smoother surface. Figure 3.24 and Figure 3.25 indicate 

that the ablation depth and machined surface microroughness level depend on the total energy 

supplied to the workpiece surface. The possible reason is due to the intrinsic properties of the 

excimer laser beam and the CMG glass. An excimer laser beam is pulsed and typically 

inhomogeneous across the beam profile, and this unstable output laser energy results in 

inhomogeneous machining surface topography. When output pulse energy was increased, 

more energy was delivered onto the workpiece for removing the material, consequently 

decreasing surface roughness.  
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Figure 3.26 Relationship between attenuator position and etched depth on CMG glass matrix 

 

Figure 3.26 shows the relationship between etched depth and attenuator position at 220 mJ 

with a 1 mm square mask. As mentioned in Figure 3.21, there is no obvious ablation effect 

for 25 shots per area with attenuator positions at 0.2, 0.3 and 0.4, so the data drawn in Figure 

3.25 starts from attenuator positions at 0.5 to 0.9. The result suggests the ablation depth 

increases with attenuator position from 0.5 to 0.9, and the machining quality improves at the 

same time as shown in Figure 3.27. When the attenuator position is 0.5, the machined surface 

is rough and not uniform. However, an attenuator position of 0.9 provides better machining 

quality resulting in a smaller Sq value.   

 

 
Figure 3.27 Relationship between attenuator position and Sq on CMG glass matrix 
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The function of the attenuator is to help reduce the output laser beam energy. Increasing the 

attenuator position allows more energy to pass through and project onto the samples. From 

the earlier pulse energy investigation, it is demonstrated that increasing output laser energy 

can increase etched depth and decrease surface roughness. The reason is the same as 

discussed earlier. Figure 3.26 and Figure 3.27 show the same trend with pulse energy as 

expected. A high attenuator position setting can increase the etched depth of the glass 

samples and improve machining homogeneity. 

 

It was noticed that the square mask and the triangular mask presented the same trend as the 

circular mask, however, only the results of circular mask have been show here as an example. 

Although the results indicate the thresholds of pulse energy and attenuator position are 140 

mJ and 0.5 respectively, pulse energy was set to 220 mJ (and sometimes larger) and the 

attenuator position was 0.8 or higher when machining structured glass surfaces later in the 

thesis in order to effectively utilize the energy of the excimer laser. 

 

Energy density, shots per area and pulse repetition rate are the routinely used parameters in 

most literature. Thus these basic laser operation parameters were investigated systematically 

before the production of structured surfaces. 

 

3.4.3.2 Changing energy density 
 

Etch rate is a frequently used term in laser machining related literature. A mathematical 

correlation between the ablation depth and pulse number can be expressed as follows [135]:  

 

                                                             ∆d = d/N                                                                     3-2              

   

Where d is the ablation depth (µm), N is the number of pulses or shots per area, and ∆d is the 

ablation depth (µm) per pulse (or the ablation rate) which can be determined experimentally.  

 

Section 3.4.3.1 demonstrates both output pulse energy and attenuator position contribute to 

energy density. In order to scale the relationship between ablation rate and energy density for 

CMG glass, energy densities of machined dots in a matrix (Figure 3.23) with varying output 

energy density were measured using the COHERENT® Laser Power / Energy Meter. The 
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ablation depth increases linearly with the pulse number. The results of energy density 

influence are shown in Figure 3.28 and Figure 3.29. 

  
Figure 3.28 Relationship between energy density and etch rate on CMG glass 

 

Figure 3.28 suggests the etch depth increased almost linearly with the energy density.  The 

trend of the line also indicates the threshold of energy density for etching is 1.4 J/cm2 (when 

etch rate is zero as shown by the circle in Figure 3.28). This is the minimum energy density 

for CMG glass ablation. Figure 3.29 shows the relationship between energy density and 

machined surface roughness which was characterized by Sq. 

 

 
Figure 3.29 Relationship between energy density and Sq on CMG glass 
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As shown in Figure 3.28 and Figure 3.29, the graphs suggest the larger the energy density, 

the larger the etch rate and smoother the machined surface. These trends agree with the 

results of pulse energy and attenuator position experimentation. The possible reason is as 

discussed previously. From the measurements of the ablation rate, the controllability of the 

laser surface treatment can be optimized via the processing parameters; output pulse energy 

and attenator position. 

 

3.4.3.3 Changing shots per area 
 
In order to study the effect of shots per area on machined surfaces, machined dots in a matrix 

(Figure 3.23) with varying shots per area, a fixed attenuator position of 0.9 and pulse energy  

of 220 mJ were measured. The measurement results are shown in Figure 3.30 and Figure 3.31. 

 

 
Figure 3.30 Relationship between shots per area and etched depth on CMG glass 

 
From Figure 3.30, we can see the influence of the shots per area on the etched depth. Etch 

depth increases with increasing shots per area. This is consistent with the expectation of trend 

of pulse energy. With the increase in shots per area, more laser total energy is supplied to the 

material surface and causes greater material removal. Using this diagram, we can predict the 

structure depth. Figure 3.31 shows the effect of shots per area to surface machining quality 

which was characterized by Sq. 
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Figure 3.31 Relationship between shots per area and Sq on CMG glass 

 
These measurement results suggest the more shots per area, the more uniform the machined 

surface. Shots per area provide another approach to improve machining quality. However, a 

decreasing shots per area can shorten the machining process significantly. A sensible choice 

of the number of shots per area is important when considering the compromise between 

machining quality and manufacturing processing time. 

 

3.4.3.4 Changing repetition rate 
 

In order to study the effect of repetition rate on the depths of laser structuring, experiments 

were carried out in which the repetition rate was changed and other parameters were fixed  

(energy density 2.2 J/cm2, shots per area 25). G-code programme was used as listed in 

Appendix 4. The measurement results are shown in Figure 3.32 and Figure 3.33. 
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Figure 3.32 Relationship between repetition rate and etched depth on CMG glass 

 

Figure 3.32 shows that repetition rate has very little effect on the etched depth because there 

is no change to the total energy delivered to the workpiece surface with varying repetition 

rate. However, repetition rate determines laser pulse frequency, which is related to machining 

speed. A higher repetition rate can accelerate the machining process and improve ablating 

efficiency. Figure 3.33 shows the relationship between repetition rate and machined surface 

roughness which was characterized by Sq. 

 

 
 

Figure 3.33 Relationship between repetition rate and Sq on CMG glass 
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The results indicate lower pulse repetition rate leads to rougher machined surface quality, 

while the higher pulse repetition rate results in a smoother surface. The possible reason 

maybe at low pulse repetition rates, the debris or recast material from laser ablation has 

sufficient time to cool down and accumulate into larger debris, resulting in a rougher surface. 

Conversely, at high pulse repetition rates, the debris can be bombarded by the subsequent 

laser pulses and scattered into much finer components, resulting in smoother surface 

topography [133]. 

 

These preliminary results suggest the etch depth depends on laser energy density and shots 

per area, and machining homogeneity can be improved by increasing the energy density, 

shots per area and laser pulse repetition rate. These conclusions help to maximise the use of 

the laser energy and minimize the machining time; thereby helping to machine surface 

structures more effectively. 

3.4.4 Focus position 

From the previous study, it was found that laser operating parameters such as energy density, 

shots per area and repetition rate determine the machining quality. As well as these 

parameters, the defocusing effects of the excimer laser can also create random surfaces on 

CMG glass. Defocusing means there is a deviation to the focusing plane which yields the best 

ablation effect [129]. Since the most uniform energy density is produced at the optimal focal 

plane, an inhomogeneous beam at a defocused position can be used for rougher surface 

machining. In addition, more laser energy is needed for ablation of substrates located at 

nonoptimal focal positions. A schematic of laser defocusing ablation position is shown in 

Figure 3.34. 

 

Excimer laser systems can have the focal position adjusted with respect to the work stage in 

two ways; vertical translation of optical elements, and / or vertical translation of the sample 

work stage. 
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Figure 3.34 Schematic of laser defocusing ablation 

 

Surface topography images of the examples machined by laser defocusing ablation are shown 

in Figure 3.35 and detailed laser operating parameters are shown in Table 3.1. 

 

Table 3.1 Processing parameters details for structures shown in Figure 3.35 

Sample 

number 

Focusing 

position 

Energy density 

(J/cm2) 

Shots per 

area (n) 

Repetition rate 

(Hz) 

Sq 

(µm) 

(a) ∆f = 0 mm 1.5 5 10 1.44 

(b) ∆f = 2 mm 2.2 5 10 2.63 

(c) ∆f = 2 mm 2.2 5 10 3.04 

(d) ∆f = 2 mm 2.2 5 10 3.91 

 

 

Table 3.1 shows that for excimer laser machining surface roughness is minimized when 

working at the focal plane (smallest Sq value as shown in (a)). However, the machined 

surface roughness increases when the laser works at a defocused plane. Even with the same 

excimer laser processing parameters as shown in (b), (c) and (d), the machined surface 

roughness (characterized by Sq) were different. 

Laser beam 

Mask 

Imaging lens 

Focal plane 

Work stage 

Potential 
adjustment 

Potential 
adjustment 
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Figure 3.35 Random surfaces produced on CMG glass by defocusing effect 

 

Figure 3.35 shows that random surfaces can be produced on CMG glass by the defocusing 

effect. Comparing with Figure 3.35 (a), it can be seen that there were more ablation pits on 

the ablated surfaces of Figure 3.35 (b), (c) and (d) when the focal plane deviated by 2 mm 

down from its optimal position. The areal parameter Sq also indicated that surface roughness 

increased from 1.44 µm (Figure 3.35 (a)) to 3.91 µm (Figure 3.35 (d)).  

 

The results demonstrate that the excimer laser can also produce a random roughness surface 

on glass, however, it is a relatively high-cost and time-consuming technique. As a result, the 

excimer laser was not adopted in this study for generating solely random surfaces on CMG 

glass and the data was not used for plotting correlations in Chapter 6. 

3.4.5 Machining direction study 

In this element of the work, the excimer laser was used to generate micro pattern array 

structures on glass by using a mask projection and dragging process [137-139]. The challenge 

of this study was to produce and identify the optimal surface topography highly correlated 

(a) (b) 

(c) (d) 
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with adhesion plating on glass. Two direction machining and three direction machining were 

attempted to achieve structured surfaces on CMG glass. 

 

3.4.5.1 Two direction machining 
 

In two direction machining, the complex microstructure was produced in two steps. Firstly, 

the work piece was mounted on the work stage and moved at a constant velocity (determined 

by Equation 3-1) controlled by the computer to form a groove contour along one direction, 

then repeating the process to form another groove overlapping the previous groove partially 

in the same direction and so on. Secondly, grooves were machined across in the direction 

orthogonal to the initially machined grooves by running the same programme after rotating 

the sample by 90° to create a periodic structure as shown in Figure 3.36.  

 

 
 

Figure 3.36 Direction of dragging process using a circular mask 

 

A micro-pattern structure was generated on a glass surface using the dragging process as 

described above. The surface topography consists of both the large scale grid structure 

component and the micro-roughness component. The large scale structure is determined by 

the mask geometrical dimension projection and pitch spacing between the adjacent grooves. 

From the previous investigation in section 3.4.3, the micro-roughness component is affected 

by laser operation parameter setting such as energy density, shots per area and repetition rate.  
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Machining complex micro-pattern structures started with circular masks. Detailed processing 

parameters of machined examples are shown in Table 3.2 and surface topography images are 

shown accordingly in Figure 3.37. 

 

Table 3.2 Processing parameters details for structures shown in Figure 3.37 

Sample 
number 

Mask diameter 
(mm) 

Energy 
density 
(J/cm2) 

Repetition 
rate (Hz) 

Shots per 
area (n) 

Feature pitch 
spacing 

(µm) 
(a) 7 2.4 20 15 350 
(b) 5 2.4 10 5 200 
(c) 5 2.4 10 5 200 
(d) 2 2.2 10 5 100 

 

 

  
 

Figure 3.37 Micro pattern structures machined using circular masks 

 

Figure 3.37 presents four typical grid-based microstructures generated on the CMG glass 

surfaces using circular masks. It can be seen that these four micro patterns exhibit different 

structures, different micro-roughness characteristics and different etched depths. Combining 

Figure 3.37 with Table 3.2, it can be seen that large scale structure spacing, as shown in 

Figure 3.37 (c), can be controlled by the laser input parameters. Deeper etched depth, as 

(a) (b) 

(c) (d) 
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shown in Figure 3.37 (a), is determined by larger energy density and more shots per area. 

Comparing with Figure 3.37 (a), (b) and (c), Figure 3.37 (d) exhibits more micro-roughness 

components. This is because less energy density, fewer shots per area and smaller repetition 

rate contributed to increase the surface micro-roughness. 

 

In this process, features of the micro pattern structures are determined by mask geometrical 

dimensions and pitch spacing between adjacent grooves. As discussed earlier, the depth of 

the machined feature and micro-roughness component can be controlled wherever possible 

by changing the excimer laser operation parameters. Grid-based microstructures may 

potentially help to trap copper plating on the glass surface and therefore improve copper / 

glass adhesion performance.  

 

Similar grid-based micro pattern structures can also be produced using square masks. 

Detailed processing parameters of machined examples are shown in Table 3.3 and surface 

topography images are shown accordingly in Figure 3.38. 

 

Table 3.3 Processing parameters details for structures shown in Figure 3.38 

Sample 
number 

Square 
dimension (mm) 

Energy 
density 
(J/cm2) 

Repetition 
rate (Hz) 

Shots per 
area (n) 

Feature pitch 
spacing 

(µm) 
(a) 4 2.2 10 5 40 
(b) 8 2.2 20 5 400 
(c) 1 2.2 10 10 50 
(d) 1 2.4 10 10 80 
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Figure 3.38 Micro pattern structures machined using square masks 

 

Figure 3.38 shows that similar grid-based microstructues can be produced by applying square 

masks. Compared with circular mask processing, there are three distinct levels of depths on 

the surface, and sharp edges instead of pits amid the micro patterns. Such structure may 

potentially help to trap copper plating and therefore improve copper / glass adhesion 

performance.  

 

Combining Figure 3.38 with Table 3.3, micro pattern features are also determined by either 

the mask geometrical dimensions or pitch spacing between grooves, and the depth of the 

machined feature. The micro-roughness component can be controlled by the laser operation 

parameter settings such as energy density, shots per area and repetition rate. It is noticed that 

the fine structure as shown in Figure 3.38 (c) can be produced by applying a small mask 

dimension and small pitch spacing. Fine substrate structures present higher critical loads in 

scratch testing results and perform better in adhesive strength, all of which will be discussed 

in Chapter 6.  

 

(a) (b) 

(d) (c) 
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From the groove study, micro ramp structures can be generated on CMG glass using 

triangular masks. In this study, three different shapes of triangular masks were attempted to 

produce pyramid micro structured surfaces. Mask dimensions are shown in Figure 3.39.  

 

 
Figure 3.39 Schematic triangular masks 

 

Firstly, equilateral triangular masks with different side lengths were used for machining. One 

equilateral triangular mask had side lengths of 7 mm (as shown in Figure 3.39 (a)) and the 

other was 2 mm. Detailed operating parameters are shown in Table 3.4 and surface 

topography images are shown accordingly in Figure 3.40. 

 

Table 3.4 Processing parameters details for structures shown in Figure 3.40 

Sample 
number 

Side length 
(mm) 

Energy density 
(J/cm2) 

Repetition 
rate (Hz) 

Shots per 
area (n) 

Feature pitch 
spacing 

(µm) 
(a) 7 2.4 20 5 250 
(b) 7 2.2 10 10 160 
(c) 2 2.2 20 5 200 
(d) 7 2.2 20 5 100 

(a) (b) (c) 



 
 

95 
 

      

  
 

Figure 3.40 Micro pattern structures machined using equilateral triangular masks 

 

Figure 3.40 presents typical micro-ramp and pyramid-based microstructures created on the 

CMG glass surfaces using equilateral triangular masks. Combining Figure 3.40 with Table 

3.4, it can be noticed that: 1) The etched depth of machined features can be controlled by 

excimer laser processing parameters. 2)  Micro-features can be affected by mask geometrical 

dimensions (i.e. triangle size). 3) Micro-feature dimensions are also related to pitch spacing 

between adjacent grooves. 4) Notwithstanding, Figure 3.40 (c) and Figure 3.40 (d) were 

machined with the same mask dimension and the same laser processing parameters, the 

surface structures are different. The reason is that the mask initial orientation on the mask 

holder were different, resulting in material ablation directions being different as shown in 

Figure 3.41. In conclusion, the features of the micro pattern structures are determined by 

mask geometrical dimension, pitch spacing between adjacent grooves and the mask initial 

place position. 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 3.41 Microstructure characteristics determined by mask orientation 

 

These micro ramp structures may be altered by using different triangular mask shapes, so 

other triangular masks were applied to generate structured surfaces on CMG glass to confirm 

this hypothesis. Micro ramp pattern structures were generated as shown in Figure 3.42. This 

micro structure was generated by using an isosceles right-angled triangular mask with a long 

length of 7 mm as shown in Figure 3.39 (b), energy density of 2.2 J/cm2, shots per area 5, 

repetition rate 20 Hz and pitch spacing of  200 µm. 

 

  
Figure 3.42 Micro pattern structure machined using an isosceles right-angled triangular mask 

 

Workpiece movement direction 

Workpiece movement direction 
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Another micro structured surface was created as shown in Figure 3.43.  This micro structure 

was generated by using isosceles obtuse-angled triangular mask with a long length of 7 mm 

as shown in Figure 3.39 (c), energy density of 2.2 J/cm2, shots per area 5, repetition rate 20 

Hz and pitch spacing of  200 µm. 

 

  
Figure 3.43 Micro pattern structure machined  

using an isosceles obtuse-angled triangular mask  

 
From the images shown in Figure 3.42 and Figure 3.43, it can be seen that both isosceles 

obtuse-angled triangular mask and isosceles right-angled triangular mask can produce micro 

ramp structures on the glass surface. It is noticed that micro feature dimensions are 

determined by pitch spacing during the machining process. In these examples, pitch spacings 

were both set to 200 µm. As a result, micro feature dimensions produced were 200 µm × 200 

µm. However, the micro ramp produced by the isosceles obtuse-angled triangular mask is 

much deeper when using the same laser processing parameters setting. 

 

Micro ramp structures can be produced by triangular masks on CMG glass. Unlike using 

circular and square masks, the dimensions of the micro pattern structures are not only 

determined by the mask geometrical dimensions and pitch spacing between adjacent grooves, 

but also determined by mask orientation. In addition, etched depth of micro features is 

controlled either by the laser processing parameters or by the shape of the triangular mask. 

Micro ramp structures may potentially help to increase contact area between the glass 

substrate and copper coating, and therefore improve copper / glass adhesion performance.  
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3.4.5.2 Three direction machining 
 

Three direction machining dragging process was divided into three steps. Firstly, the 

workpiece was mounted on the work stage and moved at a constant velocity (determined by 

Equation 3-1) controlled by the computer to form the first group of grooves along one 

direction with a certain pitch spacing (between 30 µm and 700 µm). Secondly, the dragging 

operation was then repeated after rotating the sample by 60° to produce the second group of 

grooves by running the same programme. Thirdly, the same structure was machined after 

rotating the sample by 60° again, this process being shown in Figure 3.44.  

 

 
Figure 3.44 Direction of dragging process 

 

An example of three direction 60º machining is shown in Figure 3.45. The equilateral 

triangular mask identified in Figure 3.39 (a) was chosen to tailor the laser beam, and laser 

parameter settings for machining were; energy density 2.2 J/cm2, shots per area 5, repetition 

rate 5 Hz and pitch spacing of  200 µm.  

 
Figure 3.45 Micro pattern structure machined using three direction 60º machining 

60° 

60° 

1 

2 3 
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Figure 3.45 shows that complex micro ramp structures can be generated on the glass surface 

using three direction 60º machining. Micro feature dimensions are determined by pitch 

spacing as well. Compared with two direction machining, there are some channels on the 

micro ramps.  

 

An additional three direction machining method was also attempted. Firstly, work table 

mounted CMG glass samples were moved at a constant velocity (determined by Equation 3-1) 

to form a grooved contour along one direction. Then the process was sequentially repeated to 

create a series of parallel grooves. Secondly, the stage mounted glass sample was rotated by 

90º to allow further material ablation. Thirdly, the work table was rotated by 90º again 

repeating the same parallel groove structue. The samples were machined three times in the 

orthogonal direction. The dragging process is shown in Figure 3.46. 

 
Figure 3.46 Direction of dragging process 

 

The same equilateral triangular mask which was identified in Figure 3.39 (a) and the same 

laser parameter settings; energy density 2.2 J/cm2, shots per area 5, repetition rate 5 Hz and 

pitch spacing of  200 µm, were used for the machining. An example of using three direction 

90º machining is shown in Figure 3.47. 
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Figure 3.47 Micro pattern structure machined using three direction 90º machining 

 

Figure 3.47 shows that micro blocks and surounding upward and downward ridges were 

produced on the surface. The dimensions of the micro blocks is approximately 200 µm square, 

which is the pitch spacing in the laser processing parameter setting. A triangular mask can not 

only produce micro ramp structures but can also produce micro block structures. This 

demonstrates that machining direction affects the final machined structure. The structured 

surfaces shown in Figure 3.46 and Figure 3.47 were machined at the same laser processing 

setting but with different machining directions.  

 

In the experiment, the lines / spaces of the micro feature produced is affected by apertures on 

the mask and pitch spacing. Etched depth is determined by laser processing parameters. In 

order to keep high efficiency, increasing energy density instead of increasing number of shots 

per area to increase depth of space was adopted. 

3.5 Summary 

Plasma treatment, chemical etching and mechanical abrasion have been experimentally 

investigated for the surface modification of glass to generate random surfaces. All have 

limitations and advantages which are summarised in Table 3.5. It is also noticed that these 

surface treatment methods provide different surface roughness characteristics. The specific 

roughened method depends on the application and etched roughness characteristics demands. 

Bead blasting was eventually chosen to generate random surface texture on glass due to its 

low cost, simplicity and short manufacturing times. 
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Table 3.5 Comparison of random surface treatment methods (LU-Loughborough University) 

Process Advantages Disadvantages 

Plasma etching Available at LU 

High cost 

Time consuming 

Complexity 

HF acid etching 

Timesaving 

Low cost 

Simplicity 

Available at LU 

Hazardous process 

Limited control 

Grinding paper scratching 

Low cost 

Simplicity  

Available at LU 

Limited control 

Micro Sand blasting Simplicity 

High cost 

Limited control 

Not available at LU 

Bead blasting 

Low cost 

Simplicity 

Timesaving 

Available at LU 

Limited control 

 
 

Excimer laser machining was employed to create different structured surfaces on glass 

because of its remarkable machining quality and accuracy. In this study, the excimer laser has 

been investigated systematically. Variables relating the effect of excimer laser machining to 

the laser settings during the machining process, were studied as listed in Table 3.6. A series 

of experimental results indicated that laser energy density, and shots per area significantly 

affect the etched depth of machined surfaces. However, repetition rate seems not to 

contribute much to this. Higher laser energy density, more shots per area and higher 

repetition rate can improve uniformity of the surface significantly. This chapter also 

demonstrates the feasibility of using the excimer laser to generate a variety of micro 

structured surface topography on CMG glass by changing mask dimensions, laser operating 

parameters (energy density, shots per area and repetition rate), and mask overlapping patterns.  
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Table 3.6 Excimer laser machining variables and effect 

Variables Effect 

Mask 

Mask dimension Determine the size of machined features 

Triangular Generate the grid-based structure 

Circular Generate the grid-based structure 

Square Generate the pyramid-based structure 

Laser parameter 

setting 

Pulse energy Determine energy density 

Attenuator position Determine energy density 

Shots per area 
Determine the ectched depth and surface 

roughness of the machined features 

Repetition rate Determine the speed of machining process 

Focusing position Determine the micro-roughness 
characteristics of machined features 

Laser operation 

process 

Pitch spacing Determine the characteristic of  machined 

features Machined direction 

 

In summary, the following laser parameter settings were identified and used for the majority 

of glass samples reported in Chapter 6 of this thesis: 

• Energy density – 2.2 J/cm2 or 2.4 J/cm2. 

• Laser output pulse energy – 220 mJ or 250 mJ. 

• Attenuator position – 0.8 or 0.9. 

• Pulse duration – 20 ns. 

• Pulse repetition rate – 10 Hz. 

• Shots per area – 5 to 20. 

• Pitch spacing – 30 µm to 200 µm. 

• Focus position deviation – ∆f = 0 mm. 
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Chapter 4 Electroless copper plating  

4.1 Introduction 

Copper with low electrical resistivity, high thermal conductivity, good mechanical properties 

and high electromigration resistance was chosen to be deposited on the glass to act as 

interconnect metallization. Electroless plating was chosen because the glass substrate is non-

conductive and therefore not suitable for traditional electroplating techniques. Chapter 4 

investigates the electroless plating, specifically considering key variables (temperature, time, 

chemical steps) in order to optimize the process. 

4.2 Chemistry and mechanisms 

There are two methods of electrodepositing metallic surfaces onto printed circuit boards 

(electroless plating and electroplating), and it is important to carry out the correct procedures 

for preparing the substrate surfaces for accepting metallic deposition. Compared with 

electroplating, electroless plating uses chemical reactions to reduce (deposit) metal ions. So it 

is not required that the substrate is electrically conductive. But the underlying chemistry and 

manufacturing operations are more complicated. Electroless plating has its own advantages 

over electroplating: 1) Uniform deposits are produced on plated components. 2) Electroless 

deposits are usually less porous than their electrolytic counterparts. 3) Coatings produced by 

electroless plating often have unique chemical or physical properties [140]. All of these are 

beneficial for adhesion.  

 

Electroless metallization of glass for electronic packaging has already been studied at 

Loughborough University [7]. This previous work has investigated the feasibility of 

electroless copper plating on glass surfaces and explored the method of metallization of the 

smooth glass surface to improve adhesion, using Circuposit Electroless Cu 4750 [141].  In the 

study reported in this thesis, the improved electroless copper formula Circuposit™ 3350-1 

(for low build applications using Cuposit Y-1 and Cuposit Z-1) was chosen due to its 

increased process speed and improved copper coating quality. The Circuposit™ 3350-1 

electroless copper chemicals are provided by Rohm and Haas Electronic Materials Europe 

Ltd, developed for printed wiring board applications [142]. 
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The basic electroless copper plating bath contains an oxidizing agent (also the copper source 

supply), reducing agent, a complexing agent and an alkaline medium. In the electroless 

copper plating process, the electrons required for the reduction of the metallic cations (Cu2+) 

are supplied by the reducing agent and not by an external electrical source [143]. Complexing 

agents control the amount of free metal ions.  In an electroless copper deposition process with 

formaldehyde (HCHO) as the reducing agent, only an alkaline electrolyte can be used [144]. 

An alkaline solution helps copper deposition and the value of the pH also affects the rate of 

deposition because the OH group is a reactant in the oxidation of HCHO. 

Ethylenediaminetetraacetic acid (EDTA) is the complexing agent and sodium hydroxide 

(NaOH) gives the pH control [145, 146]. The composition of the electroless copper bath is 

shown in Table 4.1. 

 

Table 4.1 Composition of Circuposit™ 3350-1 electroless copper bath [142] 

Component Concentration (g/L) 

Copper 2.0 

EDTA 30 

Sodium Hydroxide 7.5 

HCHO 3.0 

 

Electroless copper plating is a thermodynamically favorable and kinetically inhibited process. 

The two electrochemical reactions, anodic oxidation of a reducing agent and cathodic 

reduction of metal ions, occur simultaneously with a multistep catalytic redox mechanism 

[147, 148]. The redox potentials for the oxidation half reaction of formaldehyde at different 

pH condition and for the reduction half reaction of copper complex ions in solution are 

shown in Table 4.2.  

 

Table 4.2 Redox potential for anodic and cathodic reactions [146] 

Reaction Redox potential E (V) pH 

HCHO + 3OH-→HCOO- + 2H2O + 2e- 0.190 9 

HCHO + H2O→HCOOH + 2H+ + 2e- 0.056 6 

2HCHO + 4OH-→2HCOO- + H2 + 2H2O + 2e- 0.320 12 

[CuEDTA]2-+ 2e- → Cu + EDTA4- -0.216 - 
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The redox potential for the oxidation half reaction becomes larger when the pH of the 

electroless deposition solution is increased. A thermodynamically favourable reaction occurs 

when the sum of the standard redox potentials of anodic and cathodic reactions is positive 

and the change in the free energy is negative since  

                                                             ∆G0 = -nFE0                                                                                           4-1 

Where ΔG0 = change in Gibbs free energy at standard state conditions, n = number of 

electrons per mole product, F = Faraday constant and E0 = electrode potential of the reaction 

at standard state conditions.  

This is also the reason why in an electroless copper deposition process with formaldehyde as 

the reducing agent, only an alkaline electrolyte can be used. The electroless Cu deposition is 

a thermodynamically favourable reaction because the sum of the redox potentials 0.320 + (- 

0.216) > 0 and Gibbs free energy ∆G0  <  0 [146, 148]. 

While electroless Cu deposition is a thermodynamically favorable process, spontaneous 

solution decomposition does not occur since the electroless Cu plating process is kinetically 

inhibited. The difference between redox potentials of the reducing agent and copper is not 

very large in order to obtain thin copper films without spontaneous copper deposition in the 

solution. The addition of ligands to the deposition solution can reduce the difference between 

redox potentials of the reducing agent and metal because of the decrease in the metal redox 

potential due to complex formation. The activation energy for this reaction is estimated to be 

about 0.63 eV and therefore it has a low probability of occurring near room temperature [149, 

150]. 

 

In this study, a magnetic stirring hot plate (IKA RET Basic) with heat control accuracy of ± 1 

K was utilized to provide good temperature control of the process. Exclusive beakers for each 

chemical solution and disposable pipettes were used to prevent contamination. Deionised 

water was chosen to mix chemical solutions and rinsing samples. Typically six CMG glass 

samples were bound together (shown in Figure 4.1) as a group to be immersed in the Cu bath 

at elevated temperature to ensure the concentration of the electroless copper solution was the 

same to each sample. After plating the samples and removing them from solution, the Cu 

bath was replaced by a fresh one for the next glass batch. 
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  Figure 4.1 CMG glass samples in the Cu bath  

 

Electroless deposition is a process in which metal ions are chemically reduced at catalytic 

surface substrates. Typical electroless copper plating procedures include substrate cleaning, 

catalyst dipping and copper bath dipping. The chemicals used for each step and their 

respective manufacturer are listed in Table 4.3. 

 

Table 4.3 Chemicals and suppliers 

Chemical Supplier Application 

Decon 90 Fisher scientific Substrate cleaning 

Methanol (laboratory reagent grade) Fisher scientific 
Silanisation 

pretreatment 

(3-aminopropyl) trimethoxysilane 

(APTS) 
Sigma-Aldrich 

Silanisation 

pretreatment 

Circuposit™ 3344 

Rohm and Haas Electronic 

Materials Europe Ltd 

company 

Catalyzation 

Circuposit™ 3350-1 (with Y-1 and 

Z-1) 

Rohm and Haas Electronic 

Materials Europe Ltd 

company 

Electroless copper 

plating 
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In this study, the catalyst and copper bath solutions were prepared according to 

manufacturer’s recommendations [142]. 

4.3 Electroless copper plating procedures 

It was desirable to optimize the chemistry of the electroless copper plating on the glass 

substrate. This was achieved by considering and investigating a number of variables: 

• Substrate cleaning with Decon 90 

• APTS pretreatment 

• Catalyst temperature 

• Copper bath temperature 

• Copper bath dipping time 

The following subsections detail these investigations. 

4.3.1 Substrate cleaning  

Cleaning is the first step of plating and Decon 90 solution was chosen as the detergent to 

remove contaminants on the glass surfaces. Previous research had developed a cleaning step 

that dipped samples into dilute Decon 90 solution (2.67 % concentration) at room 

temperature for 8 hours [7]. This was time-consuming, so an improved cleaning method was 

developed. The new cleaning method used non-dilute Decon 90 solution at 60 ºC for 5 

minutes as supplied by the manufacturer. After the hot dip samples were rinsed with 

deionised water to remove any detergent residue. This improved cleaning method 

dramatically reduced the time for this step. 

 

These two glass cleaning methods have been compared with quantified data generated via 

contact angle measurement. Contact angle measurement is a method for surface analysis 

related to surface energy and tension. This method is measured by a contact angle goniometer 

using an optical subsystem to capture the profile of a pure liquid on a solid substrate. The 

angle formed between the liquid / solid interface and the liquid / vapour interface is the 

contact angle. With this method, the relationship between the wettability (ability of a fluid to 

cover a surface) properties and chemistry of a surface could be demonstrated and the surface 

free energy determined by measuring contact angles as a function of surface tension of a 

series of liquids [151-153].  The theories of contact angle measurement are based on Young’s 
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Equation [63], Fox and Zisman Plot [74], Fowkes Equation [76] and Owens-Wendt’s 

Equation [78] as identified in Chapter 1. The contact angle measurement results are 

summarized in Table 4.4, which are the average values of five measurements for each 

substrate.  

 

Table 4.4 Contact angle measurement results 

Cleaning method 
Contact angle (°) 

Water 
Standard deviation 

Uncleaned glass sample [7] 42.5 3.1 

Previous cleaning method with diluted 

Decon 90 at room temperature for 8 hours 
19.6 3.8 

Improved cleaning method with non-dilute 

Decon 90 at 60 ºC for 5 minutes 
10.8 3.6 

 

 

The results show the contact angle of the improved cleaning method using non-dilute Decon 

90 at 60 ºC for 5 minutes is much smaller than the previous cleaning method (diluted Decon 

90 at room temperature for 8 hours). That means the wettability of improved cleaning method 

is much better than the previous cleaning method. Consequently, the surface is identified as 

being cleaner. 

 

In order to confirm the effect wettability contributes to electroless copper plating, two bead 

blasting treated glass samples (Fisher Scientific glass slide) under different cleaning 

conditions were compared as shown in Figure 4.2. They were both processed with APTS 

pretreatment solution at room temperature for 1 hour, Circuposit™ 3344 catalyst solution for 

5 minutes at 40 ºC, and electroless copper bath for 10 minutes at 46 ºC. Note that a 

description of APTS is provided in the next section.  
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Figure 4.2 Electroless copper plating on glass with different cleaning methods (a) non-dilute 

Decon 90 at 60 ºC for 5 minutes, (b) 2.67 %  Decon 90 at room temperature for 8 hours 

 

It should be noted that the area of interest is only the bead blasted area on each glass slide 

when judging the efficiency and coverage of copper plating. From the Figure 4.2, it can be 

seen that the improved cleaning method not only shortens the time of the cleaning step but 

also enhances the wettability of the surface, hence resulting in more copper deposition. As a 

result, the improved cleaning methods (using non-dilute Decon 90 at 60 ºC for 5 minutes) 

were adopted for all samples instead of the previously referenced cleaning method. 

4.3.2 Pretreatment study 

It is difficult for glass metallization especially on smooth surfaces due to the incompatibility 

of physical, chemical and mechanical properties between the highly stiff, brittle glass 

substrate and the metallic coating [150]. Pretreatment is necessary before catalyst dipping for 

electroless copper deposition on glass due to the difficulty of metallization of the glass 

surface. Some pretreatment methods such as mechanical abrasion, plasma treatment, 

chemical etching and silanisation can be used for physical or chemical modification of the 

glass substrate surface to improve the attachment of palladium catalyst particles [150, 154].   

 

In previous studies, (3-aminopropyl) trimethoxysilane (APTS) [NH2 - (CH2)3 - Si(OCH3)3] 

was chosen to form a self-assembled monolayer (SAM) to change the chemical functionality 

(a) 

(b) 



 
 

110 
 

of the surface [155, 156]. The glass samples were immersed in a 5×10-3 mol/L solution of 

APTS with a mixture of methanol (95 %) and water (5 %), at room temperature for 1 hour. 

As shown in Figure 4.3, the SAM consists of a head group (-Si(OCH3)3) which couples to the 

glass surface to pack together thereby exposing the tail group (e.g. NH2) at the surface so that 

it may couple well with the catalyst particles providing a base for deposited copper [154].  

 

 
Figure 4.3 Self-assembled monolayer on a glass substrate 

 

The influence of pretreatment methods comes from either physical morphology or chemical 

bonding state modification as shown in Figure 4.4. Previous researchers claimed the role of 

the APTS self-assembled monolayer was essential to enable electroless plating of the smooth 

glass because it could improve the adsorption of the palladium based catalyst on the glass 

surface [7]. In this study, textured surface production (by excimer laser machining or bead 

blasting) has been used as one of the pretreatment methods for physical surface modification 

that roughens the glass surface to improve catalyst attachment for copper coating deposition.  

 

 
Figure 4.4 Electroless copper plating on glass using different pretreatments 

(a) Surface roughening pretreatment, (b) APTS chemical pretreatment 

CMG glass 
 substrate 

CMG glass 
 substrate 

Etching by excimer laser 
or bead blasting 

Self-assembled  
Monolayer deposit 

APTS 

Catalyzation and 
Electroless copper plating 

Cu Cu 

Surface 
roughening 

Catalyzation and 
Electroless copper plating 

(a) (b) 
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In order to investigate the effect of surface roughening pretreatment on electroless copper 

plating, a bead blasted glass sample was plated without APTS pretreatment. This sample used 

the improved cleaning method, dipped in Circuposit 3344™ catalyst solution for 5 minutes at 

40 ºC and electroless copper bath for 10 minutes at 46 ºC. The result is shown in Figure 4.5. 

 

 
 

Figure 4.5 Electroless copper plating on roughened CMG glass without APTS pretreatment 

 

Figure 4.5 suggests that the electroless copper chemical is strong enough to bond well to 

roughened glass surfaces without APTS pretreatment. In the context of this research APTS 

pretreatment was identified as not being an essential step for electroless copper plating on a 

roughened glass substrate. Hence APTS dipping was not used for excimer laser machining 

and bead blasting treatment samples in the later coating / scratch testing experimentation. 

Therefore, the results of all samples are comparable relative to each other. 

4.3.3 Catalyst study 

Catalyzation is essential to the electroless copper plating because copper deposition only 

occurs on an active surface. The Gibbs free energy diagram in Figure 4.6 shows that a 

catalyst can reduce the potential barrier for electroless copper deposition. The standard redox 

electrode potential relates to the Gibbs free energy (∆G), and the potential barrier (Ea) which 

exists between the reactants and the products prevents spontaneous solution decomposition. 

The potential barrier can be reduced from Ea to a lower activation energy E* by the 

formation of reactive intermediate species on the catalytic surface [157].  
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Figure 4.6 Gibbs free energy diagram [157] 

 

The catalyst enables the reducing agent to react on the surface and perform as an electron 

carrier which transfers the electrons from the reducing agent to the metal ions. The different 

catalyzation methods have been compared and reviewed in the literature [143]. In this study, 

Circuposit™ catalyst 3344 was used. This is a colloidal palladium-tin catalyst which ensures 

reliable coverage and adhesion of electroless copper. The Pd2+ species is chemically reduced 

to the Pd0 state by the Sn2+ species, according to the following redox reaction [143, 158] 

 

                                                Sn2+ + Pd2+ → Sn4+ + Pd0                                                         4-2 

 

Under the catalytic action of palladium, metal cations are deposited into a metal layer by 

capturing electrons furnished by a reducing agent. Tin not only acts as the reducing agent for 

the Pd ions, it is also claimed to stabilize the small Pd nuclei (on the order of some 

nanometres in size) once they form, via strong specific Sn4+ adsorption [7].  

 

In order to find out the effect of the catalyst operating temperature and moreover identify the 

optimal operating temperature, a series of experiments at different catalyst temperatures were 

carried out. The photograph images of copper metallization results are shown in Figure 4.7. 

All the microscope slide glass samples were bead blasting treated and used the improved 

cleaning method, dipping in Circuposit 3344™ catalyst solution for 5 minutes and electroless 

copper bath for 10 minutes at 46 ºC. However, catalyst operating temperatures varied; 30 ºC, 

∆G 

E* 

Ea 

Products Reactants 

E
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33 ºC, 36 ºC, 40 ºC, 43 ºC to 46 ºC. After immersion in the Pd activation solution, the 

samples were rinsed with deionised water. 

 

 
 

Figure 4.7 Electroless copper plating on glass at different catalyst temperatures 

(a) 30 ºC, (b) 33 ºC, (c) 36 ºC, (d) 40 ºC, (e) 43 ºC, (f) 46 ºC 

 

This study suggested that the catalyst operating temperature can affect plating quality. When 

the catalyst solution temperature is 36 ºC, the catalyst is more active and more copper is 

deposited on the surface of glass. This temperature is within the operating temperature range 

from 30 - 40 ºC on the chemical data sheet [142]. As a result, 36 ºC was the optimum 

operation temperature for catalyst chosen in this study. 

 

It should also be identified that besides the solution temperature, the concentration of the 

catalyst is also a key parameter for copper deposition. The recommended concentration range 

of Circuposit™ catalyst 3344 is 1.5 % - 3 % by volume, and increasing catalyst concentration 

can dramatically improve the copper plating process. Firstly, a visible grey layer was formed 

on the surface of glass samples after removal from the catalyst solution. Secondly, plenty of 

bubbles were generated on the surface when the samples were dipped in the Cu bath. The 

bubbles formed in the chemical reaction were hydrogen which is discussed in the next section.  

4.3.4 Copper bath study 

Circuposit™ 3350-1 was chosen as the electroless copper solution in this study because of its 

increased process speed and improved copper coating quality. Electroless deposition is a 

(a) (b) (c) (d) (e) (f) 
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process in which metal ions are chemically reduced at catalytic surface substrates. The 

reducing agent supplies electrons to this surface and the metal ions receive these electrons to 

be reduced to a zero oxidation state. Circuposit 3350-1 electroless copper bath is based upon 

EDTA as the chelate. Copper deposition in a HCHO based plating bath with EDTA as the 

complexing agent is generally expressed as the chemical reaction shown below [159]: 

 

Anodic oxidation reaction  

 

                        2HCHO + 4OH- → 2HCOO- + 2H2O + H2 + 2e-                                                                  4-3 

 

Cathodic reduction reaction  

 

                        Cu(EDTA)2- + 2e- → Cu + EDTA4-                                                                4-4 

 

Overall chemical reaction  

 

               Cu(EDTA)2- + 2HCHO + 4OH- → Cu + H2 + 2H2O + 2HCOO- + EDTA4-          4-5 

 

Previous work has investigated electroless Cu deposition properties in relation to the 

chemical concentrations in the deposition solutions as well as on the deposition solution 

operating conditions including pH value and temperature [148]. The results of the study are 

summarized in Table 4.5. The electroless Cu deposition temperature has the strongest effect 

on deposition rate and resistivity of electroless Cu films. The high deposition rate of low 

resistivity electroless copper coating can only be achieved in a certain range of deposition 

temperatures. 
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Table 4.5 Electroless Cu deposition rate and resistivity  

versus deposition solution parameters [148] 

Solution parameters Effect on deposition rate Effect on resistivity 

CuSO4·5H2O concentration 

increases 
Increases Increases 

HCHO concentration 

increases 
Increases Increases 

EDTA concentration 

increases 
Independent Independent 

pH (11.8-12.2) Increases Decreases 

pH (12.2-12.8) Independent Independent 

pH (>12.8) Unstable solution Unstable solution 

Temperature Increases Decreases 

 

In this study, chemical concentrations and pH value of the electroless copper solution were 

all fixed and used the recommended values as shown in Table 4.1. However, the copper bath 

operation temperature and dipping time needed to be optimized in the process. 

 

4.3.4.1 Copper bath temperature effect study 
 
In order to investigate the optimal operational temperature for the electroless copper bath, a 

series of samples at different copper bath temperatures were carried out. Images of copper 

metallization results are show in Figure 4.8. All the microscope slide glass samples were bead 

blasted and used the improved cleaning method, dipped in Circuposit™ 3344 catalyst 

solution at 40 ºC  for 5 minutes and electroless Cu bath for 10 minutes. However, Cu bath 

operating temperatures of 40 ºC, 42 ºC, 44 ºC, 46 ºC, 48 ºC and 50 ºC were investigated.  
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Figure 4.8 Electroless copper plating on glass at different Cu bath temperatures 

 (a) 40 ºC, (b) 42 ºC, (c) 44 ºC, (d) 46 ºC, (e) 48 ºC, (f) 50 ºC 

 

Comparing the results in Figure 4.8, it can be seen that there is little copper deposit on glass 

when the temperature is 40 ºC. When the temperature of the bath solution is raised, more 

copper is deposited onto the blasted area on the glass surfaces. There is maximum deposition 

at 46 ºC but when the temperature is over 46 ºC, copper deposition reduces gradually. As a 

result, 46 ºC was the optimal copper bath solution temperature identified for this study and 

subsequent experimentation.   

 

4.3.4.2 Dipping time effect study 
 
In order to investigate the relationship between coating thickness and dipping time in 

electroless copper solution, a series of experiments for glass samples at different dipping 

times in the copper bath were carried out. Images of copper metallization results are shown in 

Figure 4.9. All the glass samples were bead blasted and used the improved cleaning method, 

dipped in Circuposit 3344 catalyst solution at 40 ºC  for 5 minutes and electroless copper bath 

at 46 ºC. However, different dipping times of 5, 10, 15, 20 and 25 minutes were applied. 

 

(a) (b) (c) (d) (e) (f) 
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Figure 4.9 Electroless copper plating of CMG glass at different dipping time in Cu bath 

 (a) 5 min, (b) 10min, (c) 15 min, (d) 20 min, (e) 25 min 

 

These results in Figure 4.9 demonstrated that copper deposition on the surface of glass 

increased with dipping time in the electroless copper bath. Calibration graphs of the 

relationship between coating thickness and dipping time in electroless copper solution were 

made not only for glass but also for other substrate materials such as mild steel coins and FR4 

circuit board samples, for comparative reasons.  

 

This experimentation started with mild steel because it was straightforward to obtain a 

relatively flat surface (Sq = 15.4 nm). Mild steel coin samples were prepared through 

grinding and polishing to achieve a smooth surface. Each coin was half masked with tape 

before dipping into the electroless copper solution for metallization. After plating, a step was 

generated after peeling off the tape. This step height is the coating thickness after dipping for 

a designed time as shown in Figure 4.10. 

 

(a) (b) (c) (d) (e) 
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Figure 4.10 Copper coating step on steel coin sample 

 

A Taylor Hobson CLI 2000 with a contact stylus (tip angle 90° and tip radius 2 µm) was 

utilized to measure and analyse the surface step height. The data was generated by the 

average of five measurement results of the height of the step which was calculated 

automatically by the software, when the stylus tip drew a line across the step. The graph of 

coating thickness versus dip time for the mild steel coins is shown in Figure 4.11, with 

standard deviation error bars. 

  

  
Figure 4.11 Coating thickness versus dipping time  

in the Cu bath for mild steel coin substrates 
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From Figure 4.11, it can be seen that there was a linear relationship between coating 

thickness and dipping time when the plating time was less than 20 minutes. However, coating 

thickness appeared to decrease with longer dipping times. 

 

In order to further confirm this hypothesis, another substrate material (circuit board FR4) was 

chosen to make calibration graphs because it is a common substrate material for electronic 

packaging manufacture. The samples were also half taped to create a step between the copper 

coated surface and original uncoated surface. Then the contact stylus was utilized to measure 

the step heights. The data was generated by the average of five measurement results of the 

height of the step which was calculated by the software automatically, when the stylus tip 

drew a line across the step. The relationship graph for the circuit board sample is shown in 

Figure 4.12, with standard deviation error bars. 

 

 
Figure 4.12 Coating thickness versus dipping time 

 in the Cu bath for circuit board substrate samples 

 

From Figure 4.12, it can be seen there was an approximate linear relationship between 

coating thickness and dipping time for the circuit board samples. In this case, coating 

thickness increased up to and including 25 minutes because coating thickness had not reached 

the 2.5 µm limit. Comparing these two substrate materials (steel and FR4), aggradation rates 

were different and deposit rate on the metal surface was much greater than that of the 
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polymer. Copper thickness deposited onto mild steel coin surfaces could reach 2.5 µm in 20 

minutes whereas for a circuit board sample, copper only deposited about 1.2 µm in 25 

minutes.   

 

The following work concentrated on making the calibration graph for glass. It is more 

challenging for two reasons. Firstly, it is difficult to deposit copper on smooth glass surfaces 

so the samples needed to be roughened before electroless copper plating. This work was 

carried out by bead blasting to produce random surfaces on glass. Secondly, how to measure 

coating thickness on roughened glass is the other issue, because the tape does not work well 

when the surface is not flat, because the Cu solution leaches under the tape. In this case, one 

section of Cu coated samples (about a half length) were dipped into 25 % nitric acid (HNO3) 

solution for 2 minutes to remove the Cu sectional coating. As a result a step between the 

copper coated surface and original surface was formed. This step was then measured using 

the stylus technique. The data was generated by the average of five measurement results of 

the height of the step which was calculated by the software automatically, when the stylus tip 

drew a line across the step. Deposition efficacy and thickness of coating are illustrated as 

shown in Figure 4.13, showing increasing plating coverage and thickness as a function of 

time, with standard deviation error bars. 

 

 
Figure 4.13 Coating thickness versus dipping time in Cu bath for glass substrate samples 

 

 

From Figure 4.13, it can be seen that copper thickness increased with dipping time. However, 

copper thickness increased slowly when the dipping time was less than 10 minutes. Then the 
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aggradation process was much quicker after 10 minutes. There is an approximate linear 

relationship between coating thickness and dipping time from 15 minutes to 25 minutes. 

From the result, 15 minutes dipping time is identified as the optimal dipping time for the 

future plating on CMG glass. The coating thickness is approximately 1 µm which can cover 

the underneath roughened surfaces on glass for later scratch testing.  

4.3.5 Process optimization 

The basic procedure for electroless copper plating on roughened CMG glass in this research 

is illustrated in Figure 4.14 and can be summarized as: 

 

• Glass roughened by either excimer laser or bead blasting pretreatment 

• Substrate cleaning with non-dilute Decon 90 and followed by deionised water rinse. 

• Catalyst solution to activate the glass surface and followed by deionised water rinse. 

• Final dip of the treated glass substrates in electroless copper bath followed by final 

deionised water wash and dry.  

 

 

                

           

 
 

 

Figure 4.14 Schematic procedure of electroless copper plating for smooth CMG glass 

 

It was noticed that final rinse and dry were essential to the electroless copper plating process 

to remove any residual chemicals and prevent coating oxidation. An example of a coated 

sample without thorough rinsing and drying is shown in Figure 4.15. Oxidation changes the 

color of the copper coating. 

 

Rinse Rinse Rinse 

Dry 

Roughened 
 CMG glass 
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Figure 4.15 Oxidation of the copper coating on CMG glass  

 

4.3.6 Plating on machined CMG glass 

Figure 4.16 shows the images of CMG glass samples removed from the Cu bath. It can be 

seen that the large pieces of copper film which were originally attached to the smooth glass 

surface came off easily, especially after washing with deionised water, but with copper firmly 

adhered on the machined substrate regions. The reason was discussed in Section 4.3.2. 
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Figure 4.16 CMG glass samples being removal from the Cu bath 

 

Examples of copper plating on roughened glass patches are shown in Figure 4.17. Based on 

the knowledge and experimental scheme identified, CMG glass with micropattern structured 

surfaces and random surfaces were plated with copper after the surface topography 

measurement.  

 

Figure 4.17 shows that copper preferentially deposits on the roughened areas rather than the 

smooth surfaces. The copper coating which is deposited on the surface of samples is uniform 

in colour. Detailed processing parameters of the machined examples shown in Figure 4.17 are 

listed in Table 4.6. 
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Figure 4.17 Electroless copper plating on CMG glass  

 

Table 4.6 Processing parameter details for plated CMG glass samples shown in Figure 4.17 

Sample 
number 

Surface 
pretreatment 

method 
Processing parameters 

Structured 
surfaces 

Excimer laser 

Mask 
diameter 

(mm) 

Energy 
density 
(J/cm2) 

Repetition 
rate (Hz) 

Shots 
per 
area 
(n) 

 

(a) 7 2.4 20 15  
(b) 5 2.4 10 5  
(c) 2 2.4 10 10  

Random 
surfaces Bead blasting Exposure time (s) Nominal size range of glass 

bead (µm) 
(d) 2 75-150 

10mm
 

10mm
 

(b) (a) 

(c) (d) 
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4.4 Summary 

The whole electroless copper plating process was studied systematically. All the major steps 

including cleaning, pretreatment, catalyst and electroless bath were investigated individually. 

From the results, the optimal experimental conditions were identified and all the variables 

were attempted. Final plating experimental procedure was established and is identified in 

Table 4.7.   

 

Table 4.7 Experimental procedure for electroless copper plating on CMG glass 

Step Process Solution Time Temperature 

 1 Cleaning Decon 90 (non-dilute) 5 minutes 60 ºC 

2 rinse Deionised water 3-5 minutes room temperature 

5 catalyst Circuposit 3344 5 minutes 36 ºC 

6 rinse Deionised water 3-5 minutes room temperature 

7 
Electroless 

copper 
Circuposit 3350-1 15 minutes 46 ºC 

8 
Rinse and 

dry 
Deionised water 10 minutes room temperature 
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Chapter 5 Scratch testing on plated glass 

5.1 Introduction  

The quality of copper plating on glass requires quantitative testing to measure bond strength. 

This data can then be used to correlate against areal parameters. Chapter 5 examines the 

various methods for testing plating bond strength and concentrates specifically on scratch 

testing. Issues concerning testing set-up and variables are discussed, as well as the 

relationship between the interaction of the instrument and the surfaces. 

5.2 Adhesion test method 

5.2.1 Test methods review for coating adhesion  

Testing for adhesive bonding is useful in checking the adhesion performance and in 

determining the adequacy of copper coating strength. The most commonly used measurement 

methods for coating adhesion are listed in Table 5.1 [160, 161]: 

 

Table 5.1 Summary of the most commonly used test methods for coating adhesion 

Test methods Advantages Disadvantages 

Peel  test 

 

1) Simple and reliable test 

2) Ease of sample preparation 

 

1) For coatings on substantially flat 

surfaces 

2) Does not provide quantitative 

values of adhesion 

3) Applicable only to tough flexible 

coating 

Pressure-sensitive 

Tape test 

1) Simple and cheap test 

2) Ease of sample preparation 

1) Results tend to be qualitative only  

2) The adhesive strength of the tape 

must be greater than that of the 

coating. 
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Table 5.1 Continued 
Test methods Advantages Disadvantages 

Pull test 

 

1) Applicable to a wide variety 

of coating and substrates 

2) Simple and cheap test 

1) Difficult data analysis, especially 

for quantitative measurements 

2) Rapid uncontrollable failure mode 

3) Wide scatter in data 

Indentation 

debonding test 

 

1) Applicable to a wide variety 

of coating /substrate systems 

2) Provide a quantitative rate  

3) Quick and simple test  

4) Ease of sample preparation 

1) Rate the sample adhesion by 

fracture and delamination pattern 

around the indent 

2) Difficult quantitative analysis  

Scratch testing 

1) Provide quantitative values 

2) Quick and simple test 

3) Ease of sample preparation  

1) Care is needed when defining the 

damage type 

2) Mechanically complex 

 

Based on Table 5.1, scratch testing is the most effective quantitative assessment of adhesion 

strength between the copper coating and CMG glass substrates. This method can provide 

quantitative values for evaluating adhesion performance, furthermore, the simplicity of the 

test and ease of sample preparation also make scratch testing the most effective method for 

adhesion evaluation.  

5.2.2 Failure mechanisms related to adhesion 

Scratch testing was introduced in the 1950’s as a qualitative test of adhesion [162]. Existing 

researchers have demonstrated correlation of coating adhesion measurement by scratch 

testing with adhesive bond strength, through a number of proposed failure models [163].  

 

Some progress has been made for the scratch adhesion test regarding the relationship between 

work of adhesion and the critical load for coating detachment. Benjamin and Weaver  [164] 

performed the first analysis of the mechanics of the scratch testing in 1960 using the theories 

developed for fully plastic indentation, giving a simple relationship between the shearing 

force at the coating / substrate interface and the Vickers hardness of the substrate. This model 

was later modified by Weaver, but was insufficient to describe the behaviour of most 

practical coatings [165]. Later Laugier [166, 167] suggested that the adhesion behaviour 

could be modelled in terms of the strain energy released during removal of the coating using 
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a Griffith energy balance approach. The coating ahead of the indenter can reduce its stored 

elastic energy by detachment from the substrate at the critical load. However, this model was 

insufficient to describe the stresses for materials where some plasticity occurred. Burnett and 

Rickerby identified three contributions (an indentation term, an internal stress term and a 

frictional term) to the stresses responsible for coating detachment [168], whilst Bull et al. 

more recently suggested that scratch adhesion testing, could be represented as the sum of 

these three contributions [169-171]. This illustrates the importance of some plastic 

deformation at the crack tip during the coating removal process. Chen et al. have proposed a 

further model for assessing the adhesion of very thin (<100 nm) coatings on glass [172]. 

 

Although a range of possible failure modes were proposed, none of them could reflect the 

reality of failure occurring when a stylus tip crosses a coated surface, due to the complexity 

of the scratch testing. In some cases more than one failure model can occur and not all of 

them are dependent on adhesion. Other failure modes may occur which depend on plastic 

deformation and fracture within the coating, rather than any adhesive failure at the coating / 

substrate interface. As a result, failure models were not explored and employed in this study 

and only critical load was regarded as representative of coating adhesion. 

5.2.3 Scratch testing  

In scratch testing, a diamond stylus is drawn across the coated surface by a constant or 

increasing load against the sample until failure occurs. The increasing load applied to the 

stylus is either stepwise or linearly increased. Scratches can be single or multi pass. Coating 

failure is defined at the point where surface defects are visually identified, at a load which is 

often termed the critical load, Lc, however the failure point identification can be very 

subjective [161]. Figure 5.1 shows a representation of the scratch testing method.  
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Figure 5.1 Schematic showing the scratch testing 

The scratch testing is relatively quick (typically a few minutes for a single scratch) and 

simple to undertake, however considerable care is needed when defining the failure type that 

is used to determine the critical load values. There is a well-defined delamination mode 

present under the scratch as shown in Figure 5.2. Damage patterns on the surface can be 

correlated with acoustic emission and friction forces to derive the critical loads at which 

various failure mechanisms occur [161]. 

 

 

 
 

Figure 5.2 Diagram illustrating the different types of damage that may be observed in a 

scratch test [161] 

 

Scratch testing is usually only regarded as a semiquantitative method because there are a 

number of intrinsic and extrinsic factors which are known to influence the derived value of 

Minor cracks 

Spalling within the coating 

Detachment of coating 

Coating penetration 
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critical load, and this makes comparison between laboratories with various types of machine 

quite difficult. Table 5.2 lists the intrinsic and extrinsic factors in scratch testing. 

 

Table 5.2 Intrinsic and extrinsic factors in scratch testing [173] 

Intrinsic  factors 

Loading rate 
Scratching speed 

Indenter tip radius 
Indenter wear 

Machine stiffness/design 

Extrinsic factors 

Substrate properties (hardness, elastic 
modulus) 

Coating properties (thickness, hardness, 
modulus, residual stress) 

Friction coefficient 
Surface roughness 

 
 

The intrinsic parameters associated with the scratch testing are directly related to the 

instrumentation and can therefore be chosen by the operator. The critical load has also been 

found to be a sensitive function of coating and substrate property. Table 5.3 illustrates general 

observations concerning scratch testing as a function of coating / substrate hardness. 

 

Table 5.3   Qualitative summary of failure modes in the scratch testing as a function of 

coating / substrate hardness [160] 

          Substrate hardness 

Coating hardness 
Soft Medium Hard 

Soft 
Plastic deformation 

extrusion 

Coating thinning 

scrape off 

Coating thinning 

scrape off 

Medium 
Plastic deformation 

extrusion 
Delamination 

Delamination 

fracture 

Hard 
Plastic deformation 

extrusion 

Delamination 

fracture 

Delamination 

fracture 
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In this study, the hardness of copper coating falls into the medium category and the hardness 

of CMG glass substrate falls into the hard category, so the failure modes are delamination and 

fracture. 

5.3 Experimental setup 

This research has used the ST 3001 scratch testing system at the UK NPL with increasing 

ramp loading (calibrated by a certified reference load cell). A Rockwell C diamond stylus 

was used with a 200 µm tip radius and a cone apex angle of 120° as shown in Figure 5.3. The 

high hardness and superior durability of the diamond ensures uniform tip geometry during the 

entire experiment. In addition, the diamond tip could readily penetrate the film surface and 

create a clear track from which the adhesion properties of the film could be assessed.  

 

Figure 5.3 Geometry of the ST3001 diamond stylus tip 

The critical load data is used to quantify the adhesive properties of the copper coating and 

glass substrate combination by the ramp loading scratch test. Ramp loading was increased 

from a minimum load of 1 N to a maximum load, incrementing in a number of steps. A series 

of preliminary experiments were completed prior to operation parameter setting. When the 

loading force was in the range of 16 N to 25 N, cracks running from the scratch edges in the 

CMG glass substrate were observed as shown in Figure 5.4, causing substrate failure. 

 

(120°) 

(200µm) 
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Figure 5.4 Image of substrate failure due to large loading force 

 

It should be noticed that the glass samples were not annealed after laser machining which is 

known to cause sporadic microcracking [6]. The maximum loading which caused the glass 

substrate failure varied because the residual stresses developed within the glass sample during 

the machining process were different.  As a result, the maximum loading was set to 15 N in 

this study because it would be high enough to cause coating failure but also not damage the 

samples. Thirty 0.5 load steps (1 N → 15 N) were chosen for the ramp loading profile.  

 

The scratch length is another parameter for the user to select for scratch testing. Figure 5.5 

shows the comparison of different scratch lengths of 5 mm and 8 mm for scratching the 

specimen surface (ramp loading from 1 N to 15 N with 30 steps). The deviation of critical 

load measured from 5 mm scratch length and 8 mm scratch length was typically less than 

10 %. However, short scratch lengths meant the coated surface area being tested could be 

smaller; therefore the time of preparation for glass samples using laser machining processes 

could be shorter (and cheaper). As a result, 5 mm scratch lengths were used throughout this 

study. The final parameter settings for scratch testing in this study are shown in Table 5.4. 

 

Substrate 
cracks 

1mm
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Figure 5.5 Comparison of different scratch lengths 

Table 5.4 Scratch testing parameters 

Load type Ramp loading 

Initial load 1.0 N 

Final load 15.0 N 

Loading rate 15.0 N / minute 

Load steps 0.5 N 

Scratch speed 5 mm / minute 

Scratch length 5 mm 

 

A common feature of existing scratch testing analysis is the description of the coating 

removal process in terms of an interfacial shear force, and coating failure is considered to 

occur when a critical load is reached. 

Scratch tracks created by the ramp loading scratch testing were measured either by an optical 

microscope or SEM. Via the scratch testing result, knowledge of the sample stress state 

leading to delamination failure is available through direct measurement of the distance from 

the loading start point to coating penetration and by theoretical calculation. 

In this case, the value of the critical load Lc (N) can be calculated by the following 

mathematical equation: 

1mm

 
 

5 mm 
Scratches 

8 mm 
Scratches Failure 

points 
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Lc = FStart load + (FEnd load - FStart load) × LDelamination length  / LScratch length                               5-1 

In this study, FStart load = 1.0 N,  

    FEnd load = 15.0 N, 

    LScratch length = 5.0 mm, 

So Lc = 1.0 + (15.0 – 1.0) × LDelamination length / 5.0 = 1 + 2.8 × LDelamination length 

As an alternative to observational measurement and calculation, the critcal load of failure 

could also be aquired by reading from the loading graph. Frictional force and applied load 

can be generated by computer automatically during the process. Graphs were drawn based on 

experimental data, giving a direct route to reading the critical load of coating delamination.  

5.4 Coating characterization 

The normal force was gradually increased during the scratch testing to generate a ramp 

loading condition. Moreover, the frictional force and normal force during the scratch testing 

were also obtained. Eight scratches were drawn on each of the manufactured and tested glass 

specimens (samples listed in Chapter 6 Table 6.2 and Table 6.5). Scratches were visualized 

after testing using an optical coordinate measuring machine (OGP FLASH 200 CMM), and a 

scanning electron microscope (CAO147 SEM), providing pictures for subsequent image 

processing.  

5.4.1 Optical CMM observation 

The optical coordinate measuring machine (OGP FLASH 200) is a reliable method for the 

detection of surface damage. This technique allows the user to visually differentiate between 

cohesive failure within the coating and adhesive failure at the interface of the coating / 

substrate system. Failure points along the scratch are typically distinguished by backlighting 

penetrating through the copper layer and are easier to recognize using white light techniques 

compared to SEM images.  Recognition of different failure modes may change depending on 

eventual copper / glass use and manufacturer. Failure was initially identified as the point of 

first observable failure (any mode as defined in Figure 5.2). 
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Although the copper film deposited on smooth glass surfaces was very prone to peel off 

during the electroless copper plating process, there were still a few coatings attached to the 

smooth area in some cases. The stylus tip was drawn across these films to test the adhesive 

strength using the test parameters identified in Table 5.4. Figure 5.6 illustrates scratch testing 

results on the copper coating deposited on the smooth CMG glass surface.  

 

Figure 5.6 Optical CMM images for scratch testing on smooth CMG glass surfaces 

The results suggested the coating penetration and delamination failure occurred almost at the 

beginning of the scratch track, indicating that the critical load for copper coating on a smooth 

glass substrate was less than 1.0 N and the adhesive bond could be disrupted with a small 

mechanical external force. 

 

Scratch testing was carried out for assessing roughened CMG glass surfaces under the same 

experimental operation parameters. Figure 5.7 and 5.8 illustrate the optical CMM images for 

scratches of copper coating on roughened CMG glass surfaces treated by bead blasting and 

excimer laser respectively. Table 5.5 and Table 5.6 listed specific machining operation 

parameters. 

Table 5.5 Machining operation parameter details for each sample in Figure 5.7 

Sample number Exposure time (s) Nominal size range of glass 
bead (µm) 

(a) 1 

75-150 (b) 2 
(c) 3 
(d) 3 

1mm 1mm 
1mm

 
 

1mm

 
 

Scratch starts 

Scratch starts 
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Figure 5.7 Optical CMM images for scratch testing on bead blasted treated CMG glass 

Figure 5.7 suggests that coating adhesion did not fail at the beginning of scratch testing and 

the critical load of coating adhesion could be improved to a few Newtons. From the images, it 

can also be seen that coating delamination failure occurred on every sample. There were even 

large pieces of copper film flaking off the glass substrate in Figure 5.7 (a). The possible 

reason is that this sample was exposed to the bead blasting fluid for only 1 second and there 

were still virgin glass surface areas which could reduce the adhesive bonding between 

coating and substrate. The samples illustrated in Figure 5.7 (b), (c) and (d) show randomly 

rough glass substrate surface topography with inconsistent adhesion strength (illustrated for 

one track on each sample with a white arrow). The delamination onset position differs from 

scratch to scratch. Even along one scratch, sometimes the failure started early, and then the 

delamination halted even with the increasing loading force. 

 

 

 

1mm 1mm 

1mm 1mm 

(b) 

(d) (c) 

(a) 

1mm

 
 

1mm

 
 

1mm

 
 

1mm

 
 

Delamination Delamination 

Delamination 
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Table 5.6 Machining operation parameter details for each sample in Figure 5.8 

(S- square mask) 

Sample number Energy density 
(J/cm2) Shots per area (n) Mask size / shape 

(µm) 

(a) 

2.2 

10 S1 

(b) 10 S4 

(c) 5 S1 

(d) 5 S1 

 

 

 

Figure 5.8 Optical CMM images for scratch testing on excimer laser machined CMG glass 

The results in Figure 5.8 indicated that excimer laser roughened CMG glass surface could 

improve the adhesion between the copper coating and the glass substrate. The scratches show 

failure consistency due to the structured substrate surfaces. In Figure 5.8 (a), there are not any 

1mm 1mm 

1mm 1mm 

(a) (b) 

(c) (d) 

Delamination 

Delamination Delamination 
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obvious coating delamination failures shown during the loading range. That means the copper 

adhesion is better than the maximum load applied during scratch testing. The critical loads 

were different since the underneath substrate structured surfaces were different. The samples 

illustrated in Figure 5.8 (b), (c) and (d) present different delamination onset positions. 

5.4.2 Scanning Electron Microscope analysis 

A scanning electron microscope (SEM) with large magnification and deep depth of field 

could provide detailed observation of copper coating failure on CMG glass, such as spalling 

which is difficult to identify with an optical instrument. Figure 5.9 illustrates typical failure 

elements found during coating delamination; cracking, spalling, coating detachment and 

coating penetration / delamination. This sample was generated by excimer laser machining 

using a triangular mask with a long length of 7 mm, energy density of 2.2 J/cm2, 5 shots per 

area and repetition rate of 20 Hz. 
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Figure 5.9 SEM images for scratches of copper coating on CMG glass (a) Overall scratches 

(b) Spalling position (c) Delamination position 

(a) 

Scratches 

(b) 

Spalling 

(c) 

Delamination 
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5.4.3 Graphical representation 

Frictional force recording enables the force fluctuations along the scratch to be studied and 

correlated to the failures observed under the microscope. Acoustic emission and frictional 

force measurements provide traceable signals which can be used to compare results from 

different samples and may avoid some of the subjectivity of measurements made by eye. 

 

Frictional responses to failures are very specific to the coating-substrate system. Typically, a 

failure in the coating results in a change (a step, or a change in slope) in the Frictional Force – 

Load graph. Damage patterns on the surface are correlated with acoustic emission and 

friction forces from the ST 3001 test system, to derive the critical loads at which various 

failure mechanisms occur. Figure 5.10 shows the graph of a typical normal load variation 

with respect to frictional force. Graphical representation of the experimental data provides an 

alternative direct method of identifying the critical load of coating delamination. The failure 

point on the graph as shown in Figure 5.10 identifies the probable point of copper coating 

failure.   

 

  
Figure 5.10 Graph of a typical normal load variation with respect to frictional force 

 
 
Figure 5.10 demonstrates that the critical load can be estimated when an abrupt change is 

observed in the form of the Frictional Force – Load graph, in the example the load value 

being 4.62 N.  
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However, not every graphical scratch testing result provides definitive changes and requires 

subjective visual analysis to identify the points of failure as shown in Figure 5.11, although 

graphical data may lead to an indeterminate result with respect to critical load.  Furthermore, 

the graphical analysis does not necessarily allow for the identification of the different failure 

models. 

 

 
Figure 5.11 Graph is indeterminate for the identification of the failure point 

 

5.5 Results discussion 

5.5.1 Repeatability analysis 

In order to analyze the repeatability of the experiments in this study, four groups of excimer 

laser machined glass samples were made with the same laser energy density, shots per area 

and pitch for each group. The glass samples were electroless copper coated using the 

procedure identified in Table 4.7. Table 5.7 shows the comparison results of the critical load 

of delamination positions for each group of samples. 
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Table 5.7 Repeatability of excimer laser machined samples (S-square mask) 

Sample 
number 

Mask side 
length 
(mm) 

Energy 
density 
(J/cm2) 

Shots per 
area (n) 

Pitch spacing 
( µm) 

Critical load of 
delamination(N) 

1-1 S1 2.2 5 40 13.9 
1-2 13.0 
2-1 S1 2.2 5 50 13.3 
2-2 13.4 
3-1 S1 2.2 5 60 12.6 
3-2 14.8 
4-1 S1 2.2 15 50 15 
4-2 15 

 
 
From the table, it can be seen that the repeatability of excimer laser machined samples is 

approximately 10 % variation or less. The possible reason is due to the high machining 

precision and high quality of excimer laser machining which makes the process repeatable. 

 

To investigate the repeatability of bead blasted samples, four CMG glass samples were 

exposed to the bead blasting fluid for one second, and then the critical loads of the 

delamination positions were tested as shown in Table 5.8. 

 

Table 5.8 Repeatability of bead blasting treated samples 

Sample number Exposure time (second) Critical load of 
delamination(N) 

5-1 

1 

2.8 
5-2 7.6 
5-3 4.6 
5-4 3.5 

 
 

Table 5.8 suggests that the variation of critical load for the bead blasting treated samples is 

significant. Possible reasons are as follows. Firstly, the repeatability of the bead blasting 

technique is not very good. There are a number of variables for this technique, such as the 

fluctuation of the size of the bead, the difficulties of controlling the fluid pressure and the 

human error of controlling exposure time. Secondly, the surface topography is randomly 

distributed, and therefore the scratch testing experiment is stochastic and less traceable. 

Consequently, the repeatability of bead blasting treated glass samples is not as good as 
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excimer laser machining samples, or in other words the repeatability of the samples with 

random surfaces is not as good as structured surfaces. 

5.5.2 Effect of depth 

From the excimer laser study in Chapter 3, shots per area is regarded as being representative 

of the machining depth when the laser energy density is fixed. In order to study the effect of 

machining depth to adhesive strength of copper plating, five groups of the glass samples were 

machined using 1 mm × 1 mm square mask with the same laser energy density and pitch, but 

with different shots per area. Critical load was measured as the load at the onset position of 

copper coating failure. Table 5.9 presents the machining operation parameter details for each 

sample and the graph of relationship of critical load variation with respect to shots per area is 

shown in Figure 5.12, with standard deviation error bars. 

 

Table 5.9 Machining operation parameter details for each sample 

Group number Energy density 
(J/cm2) Shots per area (n) 

Laser machining 
variable (pitch) 

(µm) 

1 

2.2 

5 
30 10 

15 

2 
5 

40 10 
15 

3 
5 

50 10 
15 

4 
5 

60 10 
15 

5 
5 

70 10 
15 
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Figure 5.12 Graph of critical load variation with respect to shots per area 
 

 

The graph does not show a strong relationship between critical load and shots per area, 

suggesting that there is not a strong relationship between copper plating adhesion and 

machining depth. However, in general the adhesive strength of shallow machining depth 

tends to be stronger than the deeper features. The possible reason may be related with stylus / 

discontinuity impact which will be discussed later in Section 6.4.2, and the deeper machining 

depth structures have relatively sharper edges which are more prone to random copper bond 

failure. 

5.5.3 Effect of pitch 

In order to study the influence of machining pitch to adhesive strength of copper plating, 

three groups of glass samples were machined using a 1 mm × 1 mm square mask with the 

same laser energy density and shots per area, however, with different overlapping pitch under 

the dragging process. Critical load was measured as the load at the onset position of copper 

coating failure. Table 5.10 lists the machining operation parameter details for each sample 

and the graph of relationship of critical load variation with respect to pitch is shown in Figure 

5.13, with standard deviation error bars. 
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Table 5.10 Machining operation parameter details for each sample 

Group number Energy density 
(J/cm2) Shots per area (n) 

Laser machining 
variable (pitch) 

(µm) 

1 

2.2 

5 

30 
40 
50 
60 
70 

2 10 

30 
40 
50 
60 
70 

3 15 

30 
40 
50 
60 
70 

 
 
 

 
Figure 5.13 Graph of critical load variation with respect to pitches 

 
 

Again, the graph does not show an obvious relationship between critical load and overlapping 

pitches and there is no strong effect of pitch to adhesive bonding strength. Taking the first 

group of samples for example, the pitch of 60 µm was the strongest compared to other pitches. 
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However, some trends can be seen when relating the critical load with surface topography as 

shown in Figure 5.14, which show group 1 glass surfaces (Table 5.10). 

 

 
Figure 5.14 Excimer laser machined samples with different laser machining variable (pitch)  

(a) 30 µm (b) 40 µm (c) 50 µm (d) 60 µm (e) 70 µm 

 
Figure 5.14 shows samples (b) and (d) have the most well defined structures compared with 

samples (a), (c) and (e). Moreover, sample (a) with pitch spacing of 30 µm was rougher than 

other samples, and it is also noticed from Figure 5.12 that the critical load of sample (a) was 

the lowest. The results are consistent with the expectation that the adhesion characteristics of 

substrates with structured surfaces are better than the samples with random surfaces. This 

(a) (b) 

(c) (d) 

(e) 
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assumption can also be further confirmed by Figure 5.15 which presents a well defined micro 

pattern arrayed structure that had the largest critical load shown in Figure 5.13. 

 

 
Figure 5.15 Excimer laser machined sample with 10 shots per area and 40 µm pitch 

 

5.5.3 Effect of exposure time 

In order to study the relationship between exposure time to the bead fluid and the adhesive 

strength of copper plating, glass samples were treated with different exposure times. Critical 

load was measured as the load at the onset position of copper coating delamination and the 

result was the average values of each group. Table 5.11 shows the machining operation 

parameter details for each sample and the graph of relationship of critical load variation with 

respect to exposure time is shown in Figure 5.16. 

 
Table 5.11 Machining operation parameter details for each sample 

Sample group Exposure time (s) Nominal size range of glass 
bead (µm) 

1 1 
75-150 2 2 

3 3 
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Figure 5.16 Graph of critical load variation with exposure time 
 

The graph illustrates that the critical load of bead blasting treated samples decreases with 

extended exposure time. The possible reason maybe that increasing exposure time makes the 

surfaces rougher and sharper which are prone to random copper bond failure at sharp 

discontinuities. This issue is discussed later in Section 6.4.2. 

5.6 Summary 

Scratch testing was chosen as a quantified technique to evaluate the adhesive properties of the 

copper / glass system, and the critical load was used to quantify the adhesive properties of the 

copper coating on the glass substrate. The instrument parameters used for all testing in 

Chapter 6 are identified in Table 5.4. The testing of copper plating bond strength is however 

susceptible to a number of interfering factors that should be controlled as much as possible: 

 

Firstly, the scratch testing is actually regarded as a semiquantitative method because there are 

a number of intrinsic and extrinsic factors which are known to influence the derived value of 

critical load (as shown in Table 5.1), and this makes the results difficult to compare with 

other scratch testing machines. It is therefore important to only use one machine, with 

consistent processing parameters. 

 

Secondly, copper coating quality (such as variation of thickness) affects the scratch testing 

result because the coating failure usually occurs easily on weak and thin coated area. For 
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example, preferential failure occurs at sharp discontinuities of the glass surface, which may 

not be representative of the bulk adhesion (as shown in Figure 5.9).  

 

Thirdly, identification of spalling and delamination is subjective and prone to human error, so 

extra care must be taken for recognition of coating failure. 

 

Scratch testing results showed that structured surfaces may be more ideal for adhesive 

bonding. There are some possible reasons for this. Firstly, micro pattern array structures 

increase surface contact area between the adherend and adhesive copper. Secondly, micro 

pattern array structures enhance mechanical locking of adhesive (copper) between 

microcolumns. The influence of surface topography on plating adhesion will be discussed in 

Chapter 6.  
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Chapter 6 Correlation of areal parameters with 

critical load 

6.1 Introduction 

Chapter 6 brings all the elements of the research together; glass machining, metrology, areal 

parameterization, electroless copper plating, scratch testing, and critical load analysis. This 

allows a systematic investigation of the effectiveness of different CMG glass substrates, and 

the strength of correlation between the areal parameters and the bond strength – expressed as 

the critical load. This chapter concludes by identifying the key areal parameters. 

 

Over 100 CMG glass samples were produced in four batches, and the samples for plotting 

correlation graphs come from Batch 3 and Batch 4; 

 

• Batch 1 – Basic understanding and demonstrating of the experimental methodology 

(including laser machining, electroless copper plating, and scratch testing on glass); 

no intention to correlate with areal parameters. 

 

• Batch 2 – Exploring the relationships between adhesion strength and glass structures 

with different machining variables (mask shapes, ablation depths and feature 

dimensions) no intention to correlate with areal parameters; Batch 3 and Batch 4 will 

focus on square mask and small feature dimension structure machining due to the 

high critical loads based on the scratch testing results. 

 

• Batch 3 – Samples prepared and tested with consistent electroless copper plating and 

scratch testing process; acquiring the initial correlations between areal parameters and 

adhesive strength. 

 

• Batch 4 – Concentrating on the samples with shallow depth and ultra fine structures 

for exploring optimal surface topography for strong copper / glass plating adhesion 

and reinforcing the correlations between areal parameters and adhesive strength 

initially acquired from batch 3. 
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6.2 Filter selection and three failure criteria proposal 

6.2.1 Filter selection 

 
As identified in Chapter 2, a Zygo NewView 5000 CSI system was used to measure the 

surface topography of each machined glass sample, with consistent lens (10 x) and 

magnification settings (1 x) and field of view (700 µm x 500 µm). Surface topography and 

areal parameters were generated and analysed using Talymap (DigitalSurf Mountains v5.1) 

surface texture processing software that is compliant to ISO / FDIS 25178:2. The sampling 

area (700 µm x 500 µm) was selected to guarantee that there were a number of dominant 

micro topographical features presented on the evaluation area which conforms with ISO / 

DIS 25178.  

 

Evaluation of the laser machined surfaces identified three scenarios that exist which required 

clarification and quantification: 

 

• The potential correlation between the micro-roughness component of the glass 

surface and the critical load. 

 

• The potential correlation between the structural component of the glass surface 

and the critical load. 

 

• The potential correlation between the micro-roughness and structural components 

of the glass surface, and the critical load. 

 

Micro-roughness on the glass surface is an inherent function of the inhomogeneous nature of 

the excimer laser wavefront spatial characteristics (Chapter 2), and has been evaluated in its 

own right with glass samples featuring micro-roughness, but no structure. Relatively large 

scale structure without micro-roughness is the skeleton of the laser machined structured 

surface which is initially designed to be machined. 

 

The areal filter techniques and the effect of filtration were introduced in Chapter 2. Section 

2.4.3 elaborated how to realize the separation of micro-roughness and structure through the 
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filter selection. In order to individually study the contributions of micro-roughness and large 

scale structures to the plating adhesion, a 25 µm L-filter was employed to extract the micro- 

roughness component and acquire an S-L surface. Filtering of the data initially considered a 

consistent and fixed nesting index value (typically 80 μm) to evaluate the total contribution of 

the micro-roughness and structural components. However, the feature spacing for each 

sample is different, and therefore the use of standard filter parameters for all glass samples 

was found not to allow appropriate differentiation of structural components for large pitch 

micro feature samples, leading to subsequently limited correlation with critical load.  

 

Based on the investigation of the effect of filter selection to areal parameters value (Section 

2.4.3), a compromise selection of the nesting indices for S-filter was determined based on the 

specific pitches of samples to remove all the unwanted large scale noisy components and 

keep both micro-roughness components and structural components. In this study, the micro 

features of interest had scales ranging from 30 µm to 200 µm, and Table 6.1 illustrates the 

details of filter values in this study. By keeping the same filtering conditions for the same 

micro-feature scale glass samples, it enabled consistent surface topography comparison, 

avoiding the issues and complexities associated with filtering. 

 

Figure 6.1 shows a machined structured surface separated into micro-roughness component 

and structural component by filtration technique application to focus on specific component 

prior to analysis. 
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Table 6.1 Filter selections in this study 

Pitch (µm) 

Filter selections (µm) 

L-Filter S-Filter 

25 80 100 120 150 250 

30 √ √     

40 √ √     

50 √ √     

60 √ √     

70 √  √    

80 √   √   

100 √    √  

160 √     √ 

200 √     √ 

Random roughness √     √ 

 

 

 
 

 

 

                  
Figure 6.1 Filter applied to help focus on specific component prior to analysis 

Filter applied Filter applied 

(Micro-roughness + structural) components 

Micro-roughness components Structural components  
(S-L surface) 
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6.2.2 Three failure criteria proposal  

Sometimes coating failure (as a function of scratch testing) commenced at micro pattern 

edges because of stress concentrations and edge effects caused by stylus tip penetration. 

Alignment of the scratch testing stylus with the sample was a manual process and therefore 

difficult to guarantee alignment with the preferential direction of the structured surface.  

Figure 6.2 shows slight misalignment of the scratch track causing a prolonged impact on a 

structure edge along each track (half way along each track – seen as a black line across the 

scratch). Once the stylus leaves the feature edge and continues along the structure surface, 

plating failure is no longer observed, until the stylus load reaches the critical value at the end 

of each scratch. Failure at this point is again indicated by much wider long dark elements on 

the scratch. Figure 6.3 shows a surface topography image of the edge structure. 

 

 
Figure 6.2 Premature plating failure as a function of stylus / discontinuity impact 

 

1mm 
1mm

 
 

Edge failure 

Proper delamination 
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Figure 6.3 View of edge structure on glass substrate 

There is no typical delamination model for this sample with the angle between the scratch 

track and micro groove edges, as shown in Figure 6.2. It can be seen that when the stylus tip 

hits the profile edges, the top surface edge is prone to penetration. When the stylus tip leaves 

the profile edge, the coating shows strong adhesion because the copper is firmly adhered. 

However, the delamination occurs again when the stylus tip goes over the next edge. Figure 

6.4 helps to illustrate this issue. 

 

 

 

 
 
 

Figure 6.4 Schematic showing micro pattern edge effect failures 

F 
F 

Scratch direction 

Stylus tip 

Stress concentration and edge effect 
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Furthermore, process consideration of data sets confirmed the requirement to investigate a 

number of potential failure modes for data processing investigation. Figure 6.5 presents the 

preliminary graph of correlation of areal parameter Sq values (S-L surface) and critical load. 

In this graph, critical loads were identified as the load applied to the position of the very first 

failure spot observed. Some data processing processes were attempted to seek the correlation 

such as classifying data by machining mask dimensions as shown in Figure 6.5, but still 

results in a random distribution. No clear trends were observed from other areal parameters 

either. This is because the failure mode analysis is prone to premature and / or random copper 

bond failure. This is typified by a scratch testing stylus impacting on a structural 

discontinuity, causing a localized stress concentration resulting in localized failure that is not 

indicative of bulk bond strength as illustrated in Figure 6.2.  

 

 
Figure 6.5 Sq as a function of initial failure critical load 

 

Consequently, data analysis has considered three failure criteria as being more representative 

of bulk copper adhesion and potential user application scenarios. In this study, three failure 

criteria can be assessed as follows and are illustrated in Figure 6.6. 

 

• Criterion 1 - Simple - The point where the very first failure occurs on the plated 

glass surface. This position is quite unpredictable due to the variables identified 

in this experiment (as illustrated in Figure 6.2 and Figure 6.6). 
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• Criterion 2 - Consecutive - The point where more than three consecutive 

observable individual failures are identified, by counting the number of failure 

points that occur within a predefined length of 0.5 mm (typically a higher critical 

load obtained compared to the first definition). 

 

• Criterion 3 - Continuous - The point where continuous delamination occurs for a 

minimum length of 0.2 mm (typically the highest critical load compared to the 

first two definitions). 

 

 
 

 

 
 
 
 
 

Figure 6.6 Schematic of three failure criteria 
 

Comparisons between different samples are only valid if the mechanism of failure (failure 

criterion) is the same. The correlations of areal parameter (including field and feature 

parameters) according to ISO 25178:2 and critical load under three different failure criteria 

for samples (from Batch 3) were generated.  

 

In this study, Failure criterion 3 was used because it represented catastrophic failure of the 

copper, when assessing the adhesive bond strength from scratch testing of electroless coated 

glass substrates. Failure Criteria 1 and 2 were susceptible to spurious, non-representative 

plating failure as a function of edge effect stress concentrations in the case of Criterion 1, and 

localized random defects in the case of Criterion 2. Failure Criterion 3 was regarded as the 

most rigorous and consistent test for copper plating failure. 

6.3 Statistical correlation analysis 

Correlation coefficients give a numerical summary of the degree of association between two 

variables. Two correlation coefficients, the Pearson product-moment correlation coefficient 

Failure Criterion 1 Failure Criterion 2 

5 mm 

Failure Criterion 3 

Consecutive individual failures 
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and Spearman’s rank correlation coefficient, have been employed to quantify the strength of 

relationship between the areal parameter values and the associated critical loads [174, 175].  

 

6.3.1 Pearson product-moment correlation coefficient  

 

For n data pairs (Xi, Yi), Pearson’s correlation coefficient is given by  
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Where X and Y are the means of the X and Y values. 

  

The Pearson product moment correlation coefficient provides a measure of the strength of 

linear dependence between two variables, giving a value between +1.0 and -1.0 inclusive. If r 

= 1.0, there is a perfect positive correlation and the data lie on a straight line with a positive 

slope. If r = -1.0, there is a perfect negative correlation and the line has a negative slope. If r 

is close to zero, a plot will show scattered data points. Because Pearson’s r is based on the 

idea of linearity, it can be quite misleading in the presence of curvature. 

 

6.3.2 Spearman's rank correlation coefficient  

 

The Spearman correlation coefficient is defined as the Pearson correlation coefficient 

between the ranked variables, and tied values are assigned a rank equal to the average of their 

positions in the ascending order of the values. In applications where ties are known to be 

absent, a simpler formula is given by 
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http://en.wikipedia.org/wiki/Ranking


 
 

159 
 

Where di  is the difference in the ranks given to the two variable values for each item of data 

and n is the number of characteristics ranked. 

 

Spearman's rank correlation coefficient provides a non-parametric measure of statistical 

dependence between two variables, varying from +1.0 to -1.0. If there are no repeated data 

values, a perfect Spearman correlation of +1 or -1 occurs when each of the variables is a 

perfect monotone function of the other [176]. 

6.4 Areal surface texture parameter analysis 

The critical load determined by the scratch testing is widely regarded as being representative 

of coating adhesion, and this value strongly depends on the direction in which the scratch is 

taken. For the CMG glass samples with micro grid pattern structures or random surfaces, the 

directions of scratches were parallel (as shown in Figure 6.7 (a) and (b)), whereas for the 

samples with micro ramp pattern structures (as shown in Figure 6.7 (c)), the directions of 

scratches were vertical, perpendicular and diagonal. The critical load values were the average 

values of the results generated from all the scratches. 

 

 

 
Figure 6.7 Scratch direction relative to the substrate structure 

(a) micro grid pattern structure (b) random surface (c) micro ramp pattern structure 

(a) (b) 

(c) 

Scratches Scratches 

Scratches 
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Reference surfaces without any bespoke patterns were machined by excimer laser and an 

example is shown in Figure 6.8. Scratch testing results indicate that the critical load of the 

reference surfaces falls into the range of 1.0 N – 2.0 N depending on the machining 

processing parameters, which are much smaller than those of the micro pattern surfaces. This 

result further confirms that structured surfaces on substrates can increase adhesive bonding 

strength of copper / glass system. 

 

 

Figure 6.8 Topographic image of reference surface machined by excimer laser (energy 

density 2.2 J/cm2, repetition rate 10Hz, 10 shots per area) 

In this study, CMG glass samples with various structured surfaces and random surfaces were 

produced for identifying the optimal surface topography which presents strong copper plating 

adhesion performance. Detailed processing parameters for each sample by excimer laser are 

listed in Table 6.2.  
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Table 6.2 Processing parameters details of structured surface samples for plotting 

(S-square mask, T-triangular mask, C-circular mask) 

Sample 
number 

Side length 
(mm) 

Energy density 
(J/cm2) 

Repetition 
rate (Hz) 

Shots per 
area (n) 

Pitch spacing 
(µm) 

1 S1 2.2 10 5 40 
2 S1 2.2 10 5 50 
3 S1 2.2 10 5 60 
4 S1 2.2 10 5 70 
5 S4 2.2 10 5 200 
6 S4 2.2 10 5 200 
7 T2 2.2 10 10 100 
8 T7 2.2 10 5 200 
9 S4 2.2 10 5 80 
10 C9 2.2 10 5 100 
11 S1 2.2 10 20 50 
12 S1 2.2 10 20 50 
13 T2 2.2 10 10 160 
14 S1 2.4 10 10 80 
15 S1 2.2 10 5 30 
16 S1 2.2 10 5 40 
17 S1 2.2 10 5 50 
18 S1 2.2 10 5 50 
19 S1 2.2 10 5 60 
20 S1 2.2 10 5 70 
21 S1 2.2 10 10 30 
22 S1 2.2 10 10 40 
23 S1 2.2 10 10 70 
24 S1 2.2 10 15 30 
25 S1 2.2 10 15 40 
26 S1 2.2 10 15 70 

 

It has been possible to categorize each areal parameter in terms of the strength of correlation 

with the critical load values under three failure criteria, being mindful of the definition and 

relevance of each parameter. Table 6.3 shows correlation values for the main areal 

parameters with the copper / glass critical load values from scratch testing and the values that 

demonstrate the strongest behavioural relationships with the copper / glass critical load values 

have been highlighted (*). These correlation coefficients have been calculated from the 

graphs presented in Figure 6.9 to Figure 6.65. 

 

From the table it can be seen that in most analysis cases, the quality of correlation has 

increased as the failure criterion has been changed from simple (Failure Criterion 1 (C1)), to 

consecutive (Failure Criterion 2 (C2)), to continuous (Failure Criterion 3 (C3)). Most 
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strongest behavioural relationships show in Failure Criterion 3 and in the total work of 

(micro-roughness + structure) components. These results also confirm the conclusion that 

Failure Criterion 3 is the most rigorous and consistent test for copper plating failure and 

therefore adhesive bond strength, and the hypothesis of both micro-roughness and large scale 

structure contribute to plating adhesion performance. 

 

From the experimental results, individual graphs for the specific areal parameters that have 

demonstrated the strongest behavioural relationships with the copper / glass critical load 

values from the scratch testing results (Table 6.3) have been plotted and discussed. In the 

graphs, data points are labelled by sample number, as shown in Table 6.2 for tracing and 

comparison purpose.  All data reflects a Failure Criterion 3 analysis.  

 

Graphs are plotted showing: 

• Areal parameters versus critical load for the micro-roughness component of structured 

glass surfaces 

• Areal parameters versus critical load for the micro-roughness and structural 

components of structured glass surfaces 

• Areal parameters versus critical load for the micro-roughness and structural 

components of structured glass surfaces and random glass surfaces 
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Table 6.3 Areal parameters and associated correlation coefficient values                              

(C1 - Failure Criterion 1, C2 - Failure Criterion 2, C3 - Failure Criterion 3) 

A
re

al
 

pa
ra

m
et

er
s 

Fi
gu

re
 N

o.
 

Fa
ilu

re
 

C
rit

er
io

n 

Spearman Coefficient Value (r) Pearson Coefficient value (ρ) 

Micro-

roughness 
Structure 

Micro-

roughness+ 

Structure 

Micro-

roughness 
Structure 

Micro-

roughness+ 

Structure 

Sq 
6.9, 

6.10 

C 1 -0.38 -0.25 -0.32 -4.0 -0.26 -0.34 

C 2 -0.45 -0.30 -0.38 -0.47 -0.31 -0.39 

C 3 -0.72* -0.58 -0.71* -0.75* -0.60 -0.74* 

Ssk 6.13 

C 1 -0.11 -0.31 -0.19 -0.12 -0.32 -0.20 

C 2 -0.11 -0.27 -0.18 -0.11 -0.28 -0.18 

C 3 -0.21 -0.19 -0.15 -0.22 -0.10 -0.15 

Sku 6.15 

C 1 0.23 0.13 0.18 0.24 0.14 0.18 

C 2 0.28 0.16 0.21 0.29 0.16 0.22 

C 3 0.50 0.38 0.41 0.53 0.40 0.43 

Sa 
6.17, 

6.18 

C 1 -0.40 -0.26 -0.33 -0.42 -0.27 -0.34 

C 2 -0.44 -0.30 -0.36 -0.46 -0.31 -0.37 

C 3 -0.74* -0.60 -0.71* -0.77* -0.62 -0.74* 

Sal 6.20 

C 1 0.27 -0.24 -0.03 0.28 -0.25 -0.04 

C 2 0.34 -0.36 -0.11 0.35 -0.38 -0.11 

C 3 0.20 -0.69* -0.02 0.21 -0.72* -0.02 

Str 6.23 

C 1 -0.22 -0.36 -0.28 -0.23 -0.38 -0.29 

C 2 -0.32 -0.48 -0.38 -0.33 -0.50 -0.39 

C 3 -0.20 -0.40 -0.27 -0.20 -0.41 -0.28 

Sdq 

6.25 

6.26

6.27 

C 1 -0.31 -0.13 -0.31 -0.32 -0.13 -0.32 

C 2 -0.38 -0.16 -0.37 -0.40 -0.17 -0.38 

C 3 -0.65* -0.59 -0.66* -0.68* -0.62 -0.69* 

Sdr 

6.29 

6.30 

6.31 

C 1 -0.29 -0.14 -0.29 -0.30 -0.14 -0.30 

C 2 -0.35 -0.17 -0.33 -0.36 -0.17 -0.35 

C 3 -0.62* -0.59 -0.61* -0.65* -0.61 -0.64* 

Sxp  
C 1 -0.32 -0.15 -0.23 -0.34 -0.15 -0.24 

C 2 -0.44 -0.23 -0.34 -0.46 -0.24 -0.36 
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Table 6.3 continued 

Sxp 6.33 M 3 -0.63* -0.54 -0.59 -0.66* -0.57 -0.61 

Vm 6.35 

C 1 -0.36 -0.22 -0.34 -0.37 -0.23 -0.36 

C 2 -0.47 -0.27 -0.46 -0.49 -0.28 -0.48 

C 3 -0.61* -0.10 -0.27 -0.63* -0.11 -0.28 

Vmp 6.37 

C 1 -0.36 -0.22 -0.31 -0.37 -0.22 -0.33 

C 2 -0.47 -0.27 -0.44 -0.49 -0.28 -0.46 

C 3 -0.60* -0.12 -0.26 -0.62* -0.13 -0.27 

Vmc 6.39 

C 1 -0.45 -0.25 -0.36 -0.47 -0.26 -0.38 

C 2 -0.44 -0.28 -0.36 -0.46 -0.30 -0.38 

C 3 -0.74* -0.62 -0.70* -0.77* -0.65 -0.73* 

Vv 
 

6.42 
 

C 1 -0.39 -0.25 -0.32 -0.40 -0.26 -0.34 
C 2 -0.43 -0.28 -0.34 -0.44 -0.30 -0.36 

C 3 -0.72* -0.51 -0.66* -0.74* -0.53 -0.68* 

Vvc 
6.44 

6.45 

C 1 -0.40 -0.26 -0.33 -0.42 -0.27 -0.34 

C 2 -0.42 -0.29 -0.33 -0.44 -0.30 -0.34 

C 3 -0.70* -0.50 -0.61* -0.73* -0.52 -0.63* 

Vvv 6.47 

C 1 -0.16 -0.004 -0.007 -0.17 -0.004 -0.007 

C 2 -0.29 -0.13 -0.16 -0.31 -0.13 -0.16 

C 3 -0.51 -0.44 -0.38 -0.53 -0.46 -0.40 

Spd 
6.49 

6.50 

C 1 -0.49 -0.32 -0.48 -0.51 -0.33 -0.50 

C 2 -0.50 -0.25 -0.48 -0.52 -0.26 -0.49 

C 3 -0.63* -0.38 -0.66* -0.66* -0.40 -0.69* 

Spc 6.52 

C 1 -0.22 -0.38 -0.23 -0.22 -0.39 -0.24 

C 2 -0.29 -0.38 -0.29 -0.30 -0.39 -0.30 

C 3 -0.55 -0.60* -0.50 -0.57 -0.62* -0.52 

Sda 6.54 

C 1 0.35 0.10 0.15 0.36 0.10 0.16 

C 2 0.38 -0.03 0.11 0.39 -0.03 0.12 

C 3 0.37 -0.05 0.27 0.39 -0.05 0.28 

 

Sha 
6.56 

C 1 0.41 0.14 0.25 0.42 0.15 0.26 

C 2 0.39 0.07 0.22 0.41 0.08 0.23 

C 3 0.45 0.24 0.40 0.47 0.25 0.42 
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6.4.1 Height parameters (Sq, Ssk, Sku, Sa) 

Height parameters give information regarding the areal height deviation of the surface 

topography (see Section 2.3.1). Table 6.3 shows that micro-roughness components for height 

parameters present high associated correlation with critical load, and for the areal height 

dispersion (Sq and Sa), both micro-roughness and (micro-roughness + structural) components 

show a strong correlation. 

 

 
Figure 6.9 Sq versus critical load (micro-roughness component) for structured glass 
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Figure 6.10 Sq versus critical load (micro-roughness + structural components) for structured 

glass 

 

Figure 6.9 and Figure 6.10 indicate there are general marked decreasing trends with critical 

load increase, for both micro-roughness component and micro-roughness together with 

structural components. Sq is the root mean square height of the scale limited surface, and has 

direct analogies to the non-areal R and W two dimensional line profile derived parameters.  

As one of the height parameters, the Sq value depends on height deviation of the surface and 

is one of the most widely used parameters which indicates surface roughness in a well-known 

statistical form. 

 

The reason that surface micro-roughness aids in adhesive bonding, is the mechanical 

interlocking effects. In Figure 6.11, arrows indicate micro-roughness on a segment of the 

structured surface. In this segment, the copper has completely filled pores on the surface. At 

this position, the exit of the copper is partially blocked by part of the glass substrate from 

scratch testing. This place in the interface will exhibit the so-called mechanical interlocking 

effect. The copper in a pore cannot move past the “overhang” of the pore without plastically 

deforming such as spalling because of the physical impediment. Plastic deformation acts as 

an energy absorbing mechanism and the strength of the adhesive bond appears to increase, 

therefore the critical load from scratch testing is higher. However, if the micro-roughness is 
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too large, as shown as the failure start point in Figure 6.11, it will also cause the random 

failure. 

 

 
Figure 6.11 Schematic showing roughness affects copper plating adhesion by mechanical 

interlocking effect 

 

Generally speaking, micro-roughness together with structural components can also be 

regarded as the surface roughness, and the correlation can also be explained by mechanical 

interlocking of the copper adhesive with glass substrate surface roughness. Roughness 

provides copper plating and glass substrate with intimate contact along a tortuous path. If a 

force is driven into the edge of this bond, there is no abrupt plane of stress transfer. Rather, 

for the crack to propagate across the bond, the lines of force have to take detours. Some of the 

detours go into the copper coating. If the copper coating plastically deforms during the 

debonding, energy is consumed and the strength of the adhesive bond appears to be higher.  
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Figure 6.12 Sq versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

Figure 6.12 shows two distinct clusters for the correlation between Sq and critical load for 

structured surfaces and random surfaces. There is no obvious trend for random surfaces. The 

possible reason is that the failure criteria for structured surfaces and random surfaces are 

different. For structured surfaces, mechanical interlocking effect and sharp edges effect 

interact, and mechanical interlocking effect aids in adhesive bonding. However, for random 

surfaces, there are more random sharp edges distributed across the surface and therefore 

stochastic failure dominates the failure modes. Compared with structured surfaces, random 

surfaces show much lower critical load which confirms that structured surfaces can improve 

plating adhesion. 
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Figure 6.13 Ssk versus critical load (micro-roughness component) for structured glass 

 

In Figure 6.13, most Ssk values are negative, which shows laser machined structured surfaces 

have an asymmetric distribution of topography heights, and the height of the surface is 

mainly above the mean plane with the surface tending towards having a flatter top and some 

deep valleys below the mean surface plane. This result shows an agreement with the excimer 

laser machining process which is based on groove generation. 

 

Ssk is the measurement of asymmetry of surface deviations about the mean reference plane. 

Although there is no significant correlation for Ssk with critical load, this parameter can 

effectively be used to describe certain aspects of the shape of a topographic height 

distribution. From a surface function point of view, this parameter can give some indication 

of the existence of valley dominated surfaces.  
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Figure 6.14 Ssk versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

Figure 6.14 shows that the absolute values of Ssk for random surfaces have a larger spread 

than the structured surfaces equivalents, which indicates the distribution has a longer tail in 

both the upward and downward direction of the mean plane. The depth and the peaks of the 

surface are quite random and unpredictable due to the nature of random surfaces. 

 
Figure 6.15 Sku versus critical load (micro-roughness component) for structured glass 
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Figure 6.15 suggests that there is no significant correlation for Sku with respect to critical 

load. Sku characterizes the spread of the height distribution and provides a measure of the 

sharpness of the area. A spiky surface will have a high kurtosis value while a bumpy surface 

will have a low kurtosis value. A kurtosis of a Gaussian surface characterized by normally 

distributed heights about the mean plane has a typical value of 3. A centrally distributed 

topography height distribution has a kurtosis value of larger than 3, whereas the kurtosis of a 

well spread height distribution is less than 3.  

  

 
Figure 6.16 Sku versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

Figure 6.16 shows the values of Sku for random surfaces are much larger than the structured 

surfaces, which indicates a centrally distributed topography height distribution of the mean 

plane. This is because of the nature of random surfaces. 

 

Although Ssk and Sku do not show strong correlation between critical load for copper plating 

adhesion, with the combination of these two parameters it may be possible to identify deep 

valleys and flat tops in surfaces. 
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Figure 6.17 Sa versus critical load (micro-roughness component) for structured glass 

 

 
Figure 6.18 Sa versus critical load (micro-roughness + structural components) for structured 

glass 

 

Sa, mean roughness, is the arithmetic mean of the departure of the surface from the mean line 

in the roughness profile. Therefore, the larger the value of Sa, the greater the roughness 

profile of the surface roughness. The parameters Sa and Sq are highly correlated and show the 
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same trends as illustrated in Figure 6.17 and Figure 6.18 (compared to Figure 6.9 and Figure 

6.10). The idea that plating adhesion depends on the mechanical interlocking of the copper 

adhesive with glass substrate surface roughness is shown in Figure 6.11.  

 

Figure 6.19 also suggests the same trend as Sq shown in Figure 6.12. This is because these 

two parameters Sa and Sq are highly correlated. Possible reasons and explanations are given 

earlier. 

 

 
Figure 6.19 Sa versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

Sa and Sq both measure the dispersion of the heights from a reference surface, so it is 

appropriate to adopt only one of these parameters, Sq, for the future plating adhesion 

prediction and discussion.  
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6.4.2 Spatial parameters (Sal, Str) 

From Table 6.3, it can be seen that the spatial parameters (Sal and Str) present the strongest 

correlation with critical load for the structural component of the glass surfaces. The reason is 

that these two parameters are used to characterize the spacing of topographic features and 

identify the texture patterns. 

 

 
Figure 6.20 Sal versus critical load (structural component) for structured surfaces 

 

The fastest decay autocorrelation length Sal is a parameter in length dimension used to 

describe the autocorrelation character of the areal autocorrelation function (see Section 2.3.2). 

A large value of Sal denotes that the surface is dominated by low spatial frequency (or long 

wavelength) components, while a small value of the Sal denotes the opposite situation. In the 

experiments, the frequency component refers to the feature size of the structure including 

pitch spacing and overlapping part which are determined by the excimer laser processing 

parameter settings. 

 

Figure 6.20 indicates the presence of higher critical loads go with smaller Sal value which is 

dominated by higher frequency components in the structural component. This trend also 

confirms the previous conclusion: substrate glass with fine structured surfaces which is 

machined by smaller mask dimensions can improve copper plating adhesion. The possible 
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reason is that large scale micro features are susceptible to spurious, non-representative plating 

failure as a function of sharp edge effect stress concentrations and thin coating thickness in 

scratch testing as shown in Figure 6.21.  

 

 

                           
 

 

Figure 6.21 Schematic showing the stylus tip crossing the surface of different sizes of 

substrate structure feature (a) Large features (b) Small features 

 

 
Figure 6.22 Sal versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

Figure 6.22 also illustrates two distinct clusters for the correlation between Sal and critical 

load. Comparing with structured surfaces, there is no extreme large Sal value shown for 

random surfaces. This could be explained by the nature of random surfaces. Unlike the large 

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

C
ri

tic
al

 lo
ad

 (N
) 

Sal 

Structured surfaces

Random surfaces

F F (a) (b) 

Pitch spacing 

Overlapping part 



 
 

176 
 

scale structures designed by excimer laser processing, random surfaces are dominated by 

short wavelength structural components.  

 

 
Figure 6.23 Str versus critical load (structural component) for structured surfaces 

 

When plotting the Str value against the critical load, it is found that the Str does not yield a 

significant trend as shown in Figure 6.23. The mathematical definition of Str determines the 

gap of data distribution between 0.3 and 0.5 (see Chapter 2, Table 2.3). The texture aspect 

ratio of surface Str is a parameter used to identify the topographic texture pattern, uniformity 

of the texture aspect in all directions. Larger values, Str > 0.5, indicate isotropy in different 

directions, whereas smaller values, Str < 0.3, indicate stronger anisotropy (see Section 2.3.2).  

 

Micro-grid based structured surfaces are highly micro-isotropic which have Str values of 

larger than 0.5. The micro-isotropy is a natural outcome of structured surfaces through the 

excimer laser machining process. However, some micro ramp structured surfaces or pyramid-

based structured surfaces are anisotropic, so some Str values fall into the range smaller than 

0.3. 
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Figure 6.24 Str versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

Figure 6.24 shows all Str values for random surfaces are larger than 0.5 which indicates 

isotropy in different directions. This observation demonstrates and reveals the nature of 

random surfaces. 

 

Spatial parameters refer to the spacing of certain topographic features. It is noticed that 

spatial parameters, both Sal and Str, show the highest associated correlation coefficient 

values for structural component, which suggests spatial parameters are useful to identify the 

large scale structure.  

6.4.3 Hybrid parameters (Sdq, Sdr) 

The hybrid parameters are parameters based on both amplitude and spatial information (see 

Section 2.3.3). Any changes that occur in either amplitude or spacing may have an effect on 

the hybrid property of the surface. So from Table 6.3, it can be seen that all the components 

for hybrid parameters present high associated correlation with critical load. 
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Figure 6.25 Sdq versus critical load (micro-roughness component) for structured surfaces 

 

 
Figure 6.26 Sdq versus critical load (structural component) for structured surfaces 
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Figure 6.27 Sdq versus critical load (micro-roughness + structural components) for structured 

surfaces  

 

Figure 6.25 to Figure 6.27 illustrate there are decreasing trends with critical loads increasing 

for micro-roughness component, structural component, and micro-roughness together with 

structural components. Sdq is the root mean square value of the surface slope with the 

sampling area, and generated on the basis of amplitude and spatial information about the 

surface. The difference of Sdq means that not only the size of peaks and valleys is higher in 

case of a rough surface, but they are steeper as well.  

 

In addition, Figure 6.25 to Figure 6.27 all indicate that scratch testing failures occur earlier 

with relatively large Sdq.  A higher Sdq value may signify a peaky surface with many sharp 

edges and this trend shows the same expectation in this study, i.e. sharp edges are susceptible 

to premature and / or random copper bond failure. This is typified by a scratch testing stylus 

impacting on a structural discontinuity, resulting in localized failure as illustrated in Figure 

6.2. 
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Figure 6.28 Sdq versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

Figure 6.28 shows two distinct clusters for the correlation between Sdq and critical load. This 

parameter can be affected by changes that occur in either amplitude or spacing of the surface. 

This could also be explained by the fact that the failure modes for structured surfaces and 

random surfaces are different. For structured surfaces, the mechanical interlocking effect and 

sharp edges affect interaction, and the mechanical interlocking effect aids in adhesive 

bonding. However, for random surfaces, there are more randomly sharp edges distributed 

across the surface and therefore stochastic failure dominates the failure modes.  
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Figure 6.29 Sdr versus critical load (micro-roughness component) for structured surfaces 

 

 
Figure 6.30 Sdr versus critical load (structural component) for structured surfaces 
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Figure 6.31 Sdr versus critical load (micro-roughness + structural components) for structured 

surfaces  

 

Clear trends can be observed in Sdr with respect to critical loads from scratch testing for 

micro-roughness component, structural component, and micro-roughness plus structural 

components as shown in Figure 6.29 to 6.31. Sdr is the ratio of the increment of the 

interfacial area of a surface over the sampling area. A large value of Sdr indicates the 

significance of either the amplitude, or the spacing, or both.  

 

Functionally in adhesion applications, Sdr characterizes the real contact area between 

adherend and adhesive. If interfacial interactions are the basis for adhesion, the sum of those 

interactions will scale as the area of contact. If the actual area of contact is increased by a 

large amount, the total energy of surface interaction increases by an amount proportional to 

the surface area. However, for rough surfaces such as very steep surfaces, the values of the 

developed interfacial area ratio are usually larger and the critical loads are smaller which 

means failure occurs earlier.  Once again, this trend could be explained by the situation that 

sharp edges are susceptible to premature and / or random copper bond failure. 
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Figure 6.32 Sdr versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

From Figure 6.32 it can be seen that the Sdr values for random surfaces are much smaller. 

This is because in copper plating adhesion, Sdr characterizes the real contact area between 

copper coating and glass substrate. Structured surfaces should enlarge the interfacial area of 

the surface and therefore enhance plating adhesion strength which is signified by critical load 

from scratch testing. 

6.4.4 Functional parameters (Sxp, Vm, Vmp, Vmc, Vv, Vvc, Vvv) 

Areal parameters presented in this section are associated with the material ratio of the scale 

limited surface, which refers to the ratio of the area of the material at a specified height to the 

evaluation area. The height of the material ratio curve is termed the total roughness, and the 

width is the percent of material at different profile amplitudes. The slope of this curve can be 

useful in determining how fast a surface will wear (see Section 2.3.4). 

 

From Table 6.3, it can be seen that high associated correlation coefficient values for 

functional parameters are present in the relationship between micro-roughness component 

and the critical load. The reason is that material ratio curve and the functional parameters 
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derived from it are correlated with some functional properties of surfaces, such as bearing, 

wear, running in and fluid retention. Surface micro-roughness dominates in these fields. 

 

 
Figure 6.33 Sxp versus critical load (micro-roughness component) for structured surfaces 

 

Peak extreme height parameter Sxp refers to the difference in height between 2.5 % and 50 % 

of the material ratio. Sxp is important in bearing applications and this parameter indicates the 

depth from the surface material (2.5 %) to the remaining material area (50 %) by wear or 

modification. Figure 6.33 presents a generally decreasing distribution trend and failure 

occurred earlier with larger Sxp values. Large scale structures such as deep valleys may result 

in large Sxp value and show weaker plating adhesion. Reasons for this are similar to those 

discussed earlier.  

 

From Figure 6.34 it can be seen that there are two distinct clusters for the correlation between 

Sxp and critical load, and the Sxp value for random surfaces are significantly smaller. This 

could also be explained by the nature of random surfaces. It is easier for random surfaces to 

be worn because there are more sharp peaks on the surface. 
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Figure 6.34 Sxp versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

 
Figure 6.35 Vm versus critical load (micro-roughness component) for structured surfaces 

 

Vm (mr), the material volume, is the volume of material per unit area at a given material ratio 

calculated from the areal material ratio curve. For example, Vm (mr) = A µm3/µm2 would 

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

C
ri

tic
al

 lo
ad

 (N
) 

Sxp (µm) 

Structured surfaces

Random surfaces

1 
2 

3 

4 

5 

7 

8 
9 

10 

11 

12 

6 14 

15 
13 

17 

18 

19 
20 

21 

22 23 
24 

25 

26 

0

2

4

6

8

10

12

14

16

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

C
ri

tic
al

 lo
ad

 (N
) 

Vm (µm3/µm2) 

r = -0.61 
ρ = -0.63 



 
 

186 
 

indicate that a layer A µm thick of material over the measured cross section would account 

for all the material from the highest peak to the mr % point on the material ratio curve [112]. 

Figure 6.35 indicates that critical load slowly increases when the Vm parameter decreases. 

That is because extreme peaks may contribute to the Vm value and surfaces with extreme 

peaks are also prone to localized random failure caused by the sharp edge effect as mentioned 

before. For excimer laser machined samples, the peaks can be formed as a function of deep 

depth machining. 

 

However, there is no significant difference for Vm between structured surfaces and random 

surfaces as shown in Figure 6.36. 

 

 
Figure 6.36 Vm versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 
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Figure 6.37 Vmp versus critical load (micro-roughness component) for structured surfaces 

 

Vmp, the peak material volume, is the volume of material comprising the surface from the 

height corresponding to a material ratio level, “p”, to the highest peak. The default value of p 

is 10 % but may be changed as needed. A larger peak material volume Vmp indicates a good 

bearing property. This parameter is useful to understand how much material may be worn 

away for a given depth of the bearing curve. 

 

Figure 6.37 suggests higher critical load occurs with smaller Vmp value. This is because a 

larger Vmp value is usually due to large peaks on the surface. For plating adhesion evaluated 

by scratch testing, surfaces with large peaks are prone to local random failure modes and 

show poor plating adhesion, and vice versa.  

 

However, there is no significant difference for Vmp between structured surfaces and random 

surfaces as shown in Figure 6.38. 
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Figure 6.38 Vmp versus critical load (micro-roughness + structural components) for 

structured surfaces and random surfaces 

 

 
Figure 6.39 Vmc versus critical load (micro-roughness component) for structured surfaces 
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is 10 % and the default value for q is 80 % but may be changed as needed. This parameter 

shows how much material is available for load support once the top levels of surfaces are 

worn away [112].  

Figure 6.39 suggests higher critical load occurs with smaller Vmc value. This parameter is 

generated based on the material ratio curve which is termed the total roughness, and Vmc 

indicates a measure of the material forming the surface between various heights which 

strongly depends on the amplitude of surface roughness. Hence Vmc shows a similar trend 

compared to the micro-roughness characterization Sq. Another explanation is the schematic 

shown in Figure 6.40. Surfaces with extreme valleys result in large Vmc values. These 

extreme valleys from local micro-roughness could be regarded as being equivalent to the 

large scale structured surface edge. From the previous discussion, it is suggested that this 

could result in failure due to the sharp edge effect. 

  
 
 

Figure 6.40 Relationship between surface roughness and material ratio curve 

 

Figure 6.41 shows there are two distinct clusters for the correlation between the Vmc 

parameter and critical load for structured surfaces and random surfaces, with Vmc values of 
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Figure 6.41 Vmc versus critical load (micro-roughness + structural components) for 

structured surfaces and random surfaces 

 

 
Figure 6.42 Vv versus critical load (micro-roughness component) for structured surfaces 

 

Vv (mr), the void volume, is the volume of the voids per unit area at a given material ratio 
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bounded by the surface texture from a plane at a height corresponding, to a chosen “mr” 

value to the lowest valley. For example, a Vv (mr) = A µm3/µm2 in that a A µm thick film 

over the measurement area would provide the same volume of fluid as needed to fill the 

measured surface from a height corresponding to mr % to the lowest valley. A new surface 

may be specified by Vv (0 %) which would indicate the total initial void volume provided by 

the texture [112].  

Figure 6.42 shows a clear trend between Vv (mr) parameter and critical load. Good plating 

adhesion occurs with smaller Vv (mr) value. It should be noticed that this trend is present for 

this particular case, i.e. copper plating adhesion strength which is characterized by critical 

load from delamination failure mode. Surfaces with sharp edges and fluctuated roughness 

amplitude may cause local random failure which would lower plating adhesion strength. 

Figure 6.43 shows there are two distinct clusters for the correlation between Vmc parameter 

and critical load for structured surfaces and random surfaces with Vv (mr) values of the 

random surfaces being much smaller. 

 

 
Figure 6.43 Vv versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

C
ri

tic
al

 lo
ad

 (N
) 

Vv (µm3/µm2) 

Structured surfaces

Random surfaces



 
 

192 
 

 
Figure 6.44 Vvc versus critical load (micro-roughness component) for structured surfaces 

 

 
Figure 6.45 Vvc versus critical load (micro-roughness component + structural component) for 

structured surfaces 
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space bounded by the texture at heights related to the 10 % to 80 % range of the material ratio. 

The default value for p is 10 % and the default value for q is 80 %. Vvc (p, q) may provide 

information about the resulting void volume for fluid entrapment or leakage. A larger Vvc 

value indicates good fluid retention.  

Vvc may be useful to establish how much core space is available once a surface has been run-

in, resulting in decreased peak heights. From Figure 6.44 and Figure 6.45, it can be seen that 

there is a clear trend between the Vvc parameter and the critical load. Good plating adhesion 

occurs with smaller Vvc value. Reasons for this are similar to those discussed. 

 

Figure 6.46 indicates there are two distinct clusters for the correlation between Vvc parameter 

and critical load for structured and random surfaces. Compared with structured surfaces, Vvc 

values for the random surfaces are much smaller, with no clear trends or correlation. 

 

 
Figure 6.46 Vvc versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 
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Figure 6.47 Vvv versus critical load (micro-roughness component) for structured surfaces 

 

Vvv (p), the dale void volume, is the volume of space bounded by the surface texture from a 

plane at a height corresponding to a material ratio level p to the lowest valley. The default 

value for p is 80 % but may be changed as needed. A larger Vvv indicates a good fluid 

retention capability in the valley zone [112]. This parameter may be useful in indicating the 

potential remaining volume after significant wear of a surface has resulted. 

 

Figure 6.47 indicates there is a clear trend between Vvv parameter and critical load. Good 

plating adhesion occurs with smaller Vvv values. The possible reason is discussed earlier. 

 

Figure 6.48 shows there are two distinct clusters for the correlation between Vvv parameter 

and critical load for structured surfaces and random surfaces, with Vvv values for the random 

surfaces being much smaller. Again there are no clear trends or correlation with the random 

surface data. 
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Figure 6.48 Vvv versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

Vm (mr), Vmp (p) and Vmc (p, q) all indicate a measure of the material forming the surface at 

the various heights down from the highest peak of surface, or between various heights as 

defined for Vmc (p, q). Vv (mr), Vvv (p) and Vvc (p, q) all indicate a measure of the void 

volume provided by the surface between various heights as established by the chosen 

material ratio values. Thus these void volume parameters indicate how much fluid would fill 

the surface (normalized to the measurement area) between the chosen material ratio values.  

It should be noted that these functional parameters were originally designed for bearing 

applications. In this study, all the trends observed are present for this particular case, i.e. 

copper plating adhesion strength is characterized by critical load from scratch testing. Critical 

load is derived from the delamination failure mode caused by a stylus tip tracing across the 

surface. Surfaces with sharp edges and fluctuating roughness amplitude may cause local 

random failure, and therefore would lower the measured plating adhesion strength. Because 

the height of the material ratio curve is termed the total roughness, it is not surprising these 

functional parameters show the same trend as the microroughness amplitude characterization 
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6.4.5 Feature parameters (Spd, Spc, Sda, Sha) 

Feature parameters directly consider and quantify the influence of surface features (hills, 

dales saddle points, ridge lines and course lines), as a function of surface segmentation and 

filtration (see Section 2.3.5). In this study, feature parameters were directly generated by the 

TalyMap Platinum v5.1 (DigitalSurf Mountains) surface processing software. Four selected 

feature parameters Spd, Spc, Sda and Sha were used for examing the quality of the correlation 

with respect to critical load.  

 

 
Figure 6.49 Spd versus critical load (micro-roughness component) for structured surfaces 
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Figure 6.50 Spd versus critical load (micro-roughness + structural components) for structured 

surfaces 

 

Spd, density of peaks, is the number of peaks in a unit sampling area. Physically, the Spd 

parameter is assumed to provide a good estimate of the average number of asperities per unit 

area. A higher value of Spd signifies that there are more summits on the same area. 

 

Figure 6.49 and Figure 6.50 illustrate both micro-roughness component, and micro-roughness 

plus structural components, show approximately the same trend. Critical load increases 

slightly when the Spd value increases. This may be because the higher the number of 

asperities, the larger the real area of contact, therefore resulting in stronger adhesion. A larger 

summit density may cause increased interference of asperities or increased area of contact 

and, therefore, increase of the mechanical interlocking effect. However, when the peak 

density further increases, the critical load decreases. The possible reason is that a large 

density of peaks value indicates spiky surfaces that will lower the critical load due to the local 

random failure caused by the sharp edge effect. 
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surfaces, Spd values of random surfaces are much smaller, and show no clear trends or 

correlation. 

 

  
Figure 6.51 Spd versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

 
Figure 6.52 Spc versus critical load (structural component) for structured surfaces 
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Spc is defined as an average of the principal curvatures of the peaks within the sampling area. 

The curvatures of the peaks can be positive or negative which depend on the slope direction, 

so absolute values may be more useful to compare among different samples. The absolute 

values of Spc plotted against critical load is shown in Figure 6.52. A particularly strong 

relationship is shown for the structural component. It can be seen that there is a clear 

decreasing trend for Spc value with respect to critical load. Good plating adhesion occurs 

with smaller Spc value. This can be explained because Spc also characterizes the roughness 

of the surface. Large Spc values caused by spiky surfaces may be particularly prone to 

random failure as discussed before. 

 

Figure 6.53 shows two distinct clusters for the correlation between Spc and critical load for 

structured surfaces and random surfaces. Random surfaces have much lower critical loads, 

but very similar Spc values. 

 

  
Figure 6.53 Spc versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 
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Figure 6.54 Sda versus critical load (micro-roughness component) for structured surfaces 

 

Sda (c), closed dale area, is the average area of dales connected to the edge at height c. When 

plotting the Sda value against the critical load, there is no significant trend as shown in Figure 

6.54. From Figure 6.55, it is can be seen that Sda values are much higher for random surfaces 

compared with the structured surface.  
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Figure 6.55 Sda versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

 
Figure 6.56 Sha versus critical load (micro-roughness component) for structured surfaces 
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Figure 6.57 Sha versus critical load (micro-roughness + structural components) for structured 

surfaces and random surfaces 

 

Sha(c), closed hill area, is the average area of hills connected to the edge at height c. When 

plotting the Sha value against the critical load, there is no clear trend as shown in Figure 6.56. 

Figure 6.57 suggests that Sha values are much higher for random surfaces compared with 

structured surfaces. The reason is also due to the nature of random surfaces. 

6.5 Plating adhesion prediction 

This study has systematically investigated the characterization of adhesion between copper 

coating and glass substrate via areal surface texture parameters. A number of parameters have 

been identified as showing a strong correlation with critical load, and are regarded as having 

the potential for appropriately describing the glass surfaces in the context of bonding, on the 

basis of the correlations results within the data sets, but also with reference to their 

descriptions and mathematical functions as identified in ISO / FDIS 25178:2. 

 

However, the areal surface topography of engineered surfaces is complex and cannot be 

described completely by a single or a few parameters. However some parameters have similar 

or overlapping meanings. For example: Sa and Sq both measure the dispersion of the heights 

from a reference surface and are highly correlated with each other, so it is appropriate to 

adopt one of these parameters, Sq, for the present study. The second issue is that some 
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parameters are correlated. For example: many parameters and indices are associated with the 

material ratio curve.  

 

The key parameters identified which show the strongest correlations and may functionally be 

most relevant with respect to their formal descriptions cover; height, hybrid, functional and 

feature aspects of the surface, and are shown in Table 6.4. It should be noticed that: 

 

• The recommended parameter range values are only valid for structured surfaces. The 

failure criteria for structured surfaces and random surfaces are different. Only 

structured surface samples show strong correlation with plating adhesion in this study. 

 

• Appropriate filter techniques should be applied for the data processing, the nesting 

indices of the S filter and L filter need to be selected based on the micro-pattern 

features. 

 

• When using the recommended values, for height and hybrid parameters, an L filter is 

applied whereas for functional parameters an S filter is selected. 

 

This set of selected areal parameters is considered to be most likely to allow a comprehensive 

characterization of the relationship between areal surface topography and adhesion. The 

reasons are identified as follows:  

 

• These parameters describe some important topographic features.  

 

• These parameters measure different aspects of the topography.  

 

• These parameters are based on sound mathematical and / or statistical principles.  
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Table 6.4 Areal parameters and recommended values for predicting copper plating adhesion 

 Parameters 
Spearman 
Coefficient 
Value (r) 

Pearson 
Coefficient 
value (ρ) 

Recommended 

value of parameters 

Confirmed 

by graph 

Height 

parameter 
Sq -0.71 -0.74 1 µm – 2.5 µm Figure 6.58 

Hybrid 

parameters 

Sdq -0.66 -0.69 0.5 – 1 Figure 6.59 

Sdr -0.61 -0.64 10 % – 50 % Figure 6.60 

Functional 

parameters 

( for micro-

roughness) 

Sxp -0.63 -0.61 0.5 µm – 5 µm Figure 6.61 

Vv -0.72 -0.74 
0.5 µm3/µm2 –  

2 µm3/µm2 
Figure 6.62 

Vmc -0.74 -0.77 
0.4 µm3/µm2 –  

1.5 µm3/µm2 
Figure 6.63 

Vvc -0.70 -0.73 
0.5 µm3/µm2 –  

1.5 µm3/µm2 
Figure 6.64 

 

For the parameters identified in Table 6.4, there are strong trends being shown between 

critical load and the respective areal parameter. Furthermore, it is recognized that these 

conclusions can be reinforced by the graphical and numerical comparisons with data points 

from glass samples, without any delamination during the scratch testing within the load 

between 1.0 N and 15.0 N. It should be noted that the maximum load applied by the scratch 

testing equipment was 15.0 N, this being determined by failure of the glass substrate at 

greater loads.  If no copper plating failure was observed during a scratch test, then the default 

critical load value was regarded as 15.0 N, however, this unfailed data was excluded from the 

data processing shown in the previous graphs. Consequently, it is possible that some of the 

copper / glass samples may have higher bond strengths than 15.0 N, but it has not been 

possible to quantify this unless thicker CMG glass substrates are subsequently used to 

investigate this issue.   

 

Data points on glass samples that showed no failure (default 15.0 N critical load – without 

delamination) have been added to and are highlighted in Figures 6.58 to 6.64. These graphs 

also have estimated ideal parameter value zones (dashed vertical lines). It is suggested that 

parameter values within these zones represent surface values appropriate for good quality 
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copper bonding on laser machined CMG glass. These parameters form the basis for 

predictive design of ideal surfaces for electroless copper plating. 

 

 
Figure 6.58 Correlation of Sq with critical load further reinforced by samples without any 

delamination during the scratch testing 
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Figure 6.59 Correlation of Sdq with critical load further reinforced by samples without any 

delamination during the scratch testing 

 
Figure 6.60 Correlation of Sdr with critical load further reinforced by samples without any 

delamination during the scratch testing 
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Figure 6.61 Correlation of Sxp with critical load further reinforced by samples without any 

delamination during the scratch testing 

 
Figure 6.62 Correlation of Vv with critical load further reinforced by samples without any 

delamination during the scratch testing 
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Figure 6.63 Correlation of Vmc with critical load further reinforced by samples without any 

delamination during the scratch testing 

 
Figure 6.64 Correlation of Vvc with critical load further reinforced by samples without any 

delamination during the scratch testing 
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Detailed processing parameters for CMG glass samples without any delamination during the 

scratch testing are listed in Table 6.5. Examples of the topographic images of optimal 

structured surfaces for adhesion are shown in Figure 6.66. 

     

Table 6.5 Processing parameters details of structured surface samples without delamination 

(S- square mask, C-circular mask) 

Sample 
number 

Side length 
(mm) 

Energy density 
(J/cm2) 

Repetition 
rate (Hz) 

Shots 
per area 

(n) 

Laser variable 

(pitch) (µm) 

27 S4 2.2 10 5 100 
28 C2 2.2 10 20 100 
29 S1 2.2 10 20 50 
30 S1 2.2 10 10 80 
31 S1 2.2 10 10 50 
32 S1 2.2 10 10 60 
33 S1 2.2 10 15 40 
34 S1 2.2 10 15 50 
35 S1 2.2 10 15 60 

 

 
Figure 6.66 Structured surfaces without delamination  

(a) Sample Number 28 (b) Sample Number 29 (c) Sample Number 32 (d) Sample Number 33 

(a) (b) 

(c) (d) 
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Table 6.5 and Figure 6.66 suggest the optimal laser processing parameters setting for CMG 

glass substrate machining and the topographic images of structured surfaces for achieving 

strong copper / glass plating adhesion. It can be concluded that: 

 

• Fine micro-grid based structured surfaces are ideal for strong copper / glass plating 

adhesion on CMG glass substrates. 

• Square masks and circular masks are suitable for generating micro-grid based 

structures on CMG glass substrates. 

• Small geometric dimension masks used in laser processing are preferred (<100 µm). 

 

It should be noted that there is no data for areal parameters between zero and the dashed 

vertical lines as shown in Figures 6.58 to 6.64. This is due to the limitation of the 

experimental capability for laser machining and surface roughness generation, as defined by 

the laser mask sizes. However, section 5.4.1 showed the critical load of copper coating on 

smooth glass substrate was below 1 N. It is therefore anticipated that there should be an 

increasing trend between zero parameter value and the dashed vertical lines, with the highest 

critical load values expected to fall in the range as predicted. This will require the 

development of finer scale masks for the laser and additional research effort. 

6.6 Summary 

In this chapter, three coating failure criteria were proposed to meet different requirements for 

industry. Based on three coating failure criteria, graphs concerning the relationships between 

areal surface texture parameters and critical load for different failure criteria were drawn and 

some clear trends could be identified. 

In order to distinguish between the contribution of plating adhesion from large scale surface 

structure, and from surface micro-roughness of the glass samples, different and specific filters 

were chosen for each sample. As a result, graphs of the relationships between surface micro-

roughness and critical load, structure and critical load, (micro-roughness +structure) and 

critical load were investigated respectively. 

Two statistical methods (Pearson product-moment correlation coefficient and Spearman's 

rank correlation coefficient) were employed to analyze the linear and statistical dependence 
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between the two variables (surface areal parameters and critical load). These coefficients 

allow clear definition of the strength of correlation between the areal parameters and the 

critical load values and allow the user to rank order the parameters as shown in Table 6.6. 

 

Table 6.6 Rank ordered areal parameters 

Areal 

parameters 
Spearman 

Coefficient Value (r) 
Pearson Coefficient 

value (ρ) Recommended value 

Vmc -0.74 -0.77 0.4 µm3/µm2 – 1.5 µm3/µm2 
Vv -0.72 -0.74 0.5 µm3/µm2 – 2 µm3/µm2 
Sq -0.71 -0.74 1 µm – 2.5 µm 
Vvc -0.70 -0.73 0.5 µm3/µm2 – 1.5 µm3/µm2 
Sdq -0.66 -0.69 0.5 – 1 
Sxp -0.63 -0.61 0.5 µm – 5 µm 
Sdr -0.61 -0.64 10 % –  50 % 

 

 

Examples of optimal surface topography for strong copper / glass plating adhesion have been 

presented and a key list of areal parameters which are highly correlated with adhesion 

performance identified and used for adhesion prediction of copper / glass system. 
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Chapter 7 Conclusions and future work 
 

7.1 Introduction 

The research presented in this thesis has been very challenging, because in order to achieve 

the primary aims, expertise and motivation has had to be gained in two key underpinning 

technologies: 

 

• Excimer laser based machining 

 

• Electroless copper plating 

 

Both of these disciplines could form research projects in their own right, and the Future Work 

identified in Section 7.3 offers further laser and chemistry issues that require more effort. 

7.2 Conclusions  

The primary stated aims of this research (Chapter 1) have been to; 

 

• Improve the adhesive bond quality of electroless copper plating on glass substrates 

 

• Evaluate ISO / FDIS 25178:2 areal parameters to assess suitability for describing the 

potential of surfaces for good quality copper bonding. 

 
 

Objectives and perceived novelty of this work were also identified in Chapter 1 (Section 1.3). 

Table 7.1 identifies how well these objectives have been met and the resultant novelty value 

of each element of the work. 
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Table 7.1 Objectives completion and resultant novelty  

Objectives Outcome Chapter Novelty 

1,2,3 

A range of surface modification methods 

have been identified and evaluated. Bead 

blasting was selected for generating random 

surfaces. Excimer laser processing was 

selected for structured surface generation 

and key operational variables investigated. 

3 

Laser machining of 

glass has high 

novelty in this 

context. 

4 

Metrology techniques were investigated. A 

Zygo NewView 5000 CSI instrument was 

chosen as the most appropriate metrology 

tool and used routinely. TalyMap Platinum 

(DigitalSurf Mountains) was used to 

generate areal parameters. 

2 
No novelty in this 

context. 

5 

Electroless copper plating techniques were 

investigated and optimized for the CMG 

glass. 

4 

Medium level of 

novelty with respect 

to application on 

CMG glass. 

6 

Investigated methods for quantifying copper 

/ glass bond strength. Identified scratch 

testing as the most appropriate method. 

Evaluated scratch testing parameters and 

critical load identification. 

5 

Medium / high level 

of novelty with 

respect to application 

on copper coated 

structured glass 

7 

A large range of glass samples have been 

produced, measured, plated and evaluated 

for bond strength. Detailed analysis has 

been completed identifying correlation 

trends between ISO / FDIS 25178:2 

parameters and critical load values. Key 

failure criteria have been identified. 

6 

Very high level of 

novelty in terms of 

the use of the areal 

parameters. 
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Table 7.1 continued 

8 

Key areal parameters have been identified 

through the use of Pearson / Spearman 

correlation statistics and graphical 

techniques. Key surface structures have been 

identified that significantly improve copper 

plating adhesion on CMG glass substrates. 

6 

Very high novelty 

in terms of ideal 

glass surfaces for 

improved copper 

plating adhesion. 

 

 

As a function of the literature survey, it can be identified that very few existing formalized 

studies on excimer laser machining for glass surface texture generation have been reported. 

No investigation has been found on linking areal surface texture parameters with plating 

adhesion. This further reinforces the unique and novel findings of this research.  

 

The research has identified the role that surface topography has on influencing the 

mechanical bond strength of electroless copper plating on glass substrates. This is achieved 

via controlled excimer laser machining of glass, areal parameterization of the surfaces, 

electroless copper plating, critical failure criterion identification using scratch testing, and 

finally correlation / statistical analysis of critical load to areal parameter.  The process can be 

visualized as shown in Figure 7.1. 
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Key conclusions based on this research are presented as follows: 

 

• This work has clearly demonstrated the feasibility of using an excimer laser to 

generate a variety of controlled micro structured surface topography on CMG glass, 

by changing mask dimensions, laser operating parameters (fluence, shots per area and 

repetition rate), and mask overlapping patterns.  

 

• Grid pattern microstructures can be generated on the CMG surfaces using circular and 

square masks. Micro ramp and pyramid pattern structures can be produced using 

triangular masks. However, even under the same mask and laser parameter settings, 

micro pattern structure may still be different, as determined by the machining process 

such as overlapping pitch between parallel grooves. 

 
• Excimer laser investigation suggests that the ablation or etch depth depends on laser 

fluence and shots per area, and machining homogeneity can be improved by 

increasing the energy density, shots per area and laser pulse repetition rate. These 

conclusions help to use this technique to maximise the use of the laser energy and 

minimize the machining time, and the controllability of the laser surface treatment can 

be optimized via the processing parameters. It is also recognized that the excimer 

laser is an ideal research tool, but not necessarily an ideal production tool. 

 

• Various techniques (plasma treatment, excimer laser machining, chemical etching and 

mechanical methods) have been used in the surface treatment of glass to generate 

random surfaces. Bead blasting has been identified as a relatively feasible technique 

for producing random surfaces due to its competitive low cost and experimental 

capability. Various surface roughness levels can be approximately controlled by 

different exposure times. 

 
• Excimer laser machining and bead blasting treatment are both regarded as 

pretreatment methods to roughen the glass surface. This is a physical surface 

modification to improve catalyst attachment for copper coating deposition, compared 

to a smooth surface. Over 100 glass samples were machined and prepared. 
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• Copper has been deposited onto machined CMG glass surfaces to form the basis of 

interconnection tracks by electroless copper plating. Optimal copper plating 

parameters such as substrate cleaning, pretreatment, catalyst and electroless bath 

variables were identified and the variables were minimized to acquire consistent and 

uniform copper metallization prior to scratch testing.  

 
• Scratch testing techniques have been implemented to quantify adhesive bond strength 

of the copper plating, leading to the identification of critical loads.  

 
• Areal data sets have been produced using Zygo NewView 5000 CSI technique, with 

ISO / FDIS 25178:2 areal parameters being identified and produced for different glass 

structures. 

 

• Three failure criteria have been identified as being more representative of bulk copper 

adhesion and potential user application scenarios and have been assessed. Each areal 

parameter has been categorized in terms of the strength of correlation with the critical 

load values under the three failure criteria. Failure Criterion 3 analysis (the point 

where continuous delamination occurs over a minimum length of 0.2 mm), provided 

clear trends with the data sets. 

 
• Two correlation coefficients (Spearman and Pearson correlation ranking coefficients) 

have been employed to quantify the strength of relationship between the areal 

parameter values and the associated critical loads. The strongest behavioural 

relationships show in Failure Criterion 3 which indicate Failure Criterion 3 is the most 

rigorous and consistent test for copper plating failure and therefore adhesive bond 

strength. 

 

• Experimental relationships between critical load and areal surface parameters, as well 

as the discussions of a theoretical approach, have been analyzed in detail. A rank 

ordered list of key areal parameters has been identified (with recommended parameter 

ranges). Vmc, Vv, Sq, Vvc, Sdq, Sxp and Sdr that clearly demonstrate potential for 

predicting surface capability for improved plating characteristics.  
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• Key surface structures have been identified from the work that have been shown to 

significantly improve copper plating adhesion. It has been shown that structures 

produced using square mask excimer techniques tend to perform best. 

 
• All results are relevant to the use of CMG glass, as a substrate, and may not be 

relevant to other substrates unless verification work is completed. 

7.3 Future work 

This research has already successfully demonstrated the correlation between areal parameters 

and copper / glass plating adhesion, however further study still needs to be invested in 

various aspects of the work.  The future priorities can be summarized as follows: 

 

• Modelling techniques need to be developed to simulate the excimer laser processing 

of glass with different mask designs. This will allow faster development of mask 

shape, to further refine bespoke texture features on the glass surface. 

 

• The mechanism of the interaction of excimer laser radiation with glass needs to be 

further investigated in order to optimize material removal and surface finish. 

 

• Copper coating thickness measurements and scratch adhesion models need to be 

further investigated and implemented (where relevant). 

 

• There is a significant recognition that the current excimer laser is an ideal research 

tool, but may not be appropriate for production values. Further work needs to consider 

how to improve the speed of manufacture using laser based techniques, or, other 

techniques. 

 

• The extent of micro-cracking (as a function of laser ablation) needs to be investigated, 

and annealing process introduced to reduce stress concentration sites. This may allow 

higher scratch testing loads to be applied. 
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• Alternative scratch testing stylus and load profiles need to be investigated to assess 

the difference of the testing system on the derived critical load values. It is anticipated 

that changing the size of the indenter tip will modify the critical load values. 

 
• Design modelling capability needs to be generated, to allow predictive design of 

surfaces using areal parameters. If areal parameters can be used in a virtual 

environment, then design cycle times for surfaces may be reduced. 

 
• Electroless plated glass needs to have thicker plating. This can partly be achieved 

using electroless techniques. However, electroplating on top of electroless plating 

needs to be investigated, in order to produce copper thickness suitable for viable 

circuits. 

 
• For electronics manufacture, the application of the structured surfaces at the size of 

features required (e.g. the length and the width of tracks) will need to be controlled 

and adjusted according to the specific industrial requirement. Electronic circuits need 

to be designed and machined using the techniques described in this thesis. This will 

allow the investigation of the suitability of the manufacturing methods. 

 
• Electroless copper plated samples need to be subjected to environmental conditioning 

and thermal cycling to assess quality of bond strength as a function of in-service 

conditions. 

 
• The ideas and concepts developed in this work need to be exploited for alternative 

substrate materials (ceramics for instance) and other electroless plated materials 

(nickel for instance). 

 

 

 

 

 

 

 

 

 



 
 

220 
 

REFERENCE 

1. Lau, J.H. and Lee, R.S.W., Microvias: low cost, high density interconnects. London: 

McGraw-Hill, 2000. 

2. Electronic Materials Handbook, vol. 1: Packaging. ASM International Handbook 

Committee, Materials Park, OH, 1998. 

3. Schroder, H., Amdt-Staufenbiel, N., Cygon, M. and Scheel, W., Planar glass 

waveguides for high performance Electrical-Optical-Circuit Boards (EOCB) The glass 

layer concept. Proceedings of 53rd Electronic Components and Technology Conference, 

New Orleans, May 2003, pp. 1053-1059. 

4. Hutt, D.A., Williams, K., Conway, P.P., Khoshnaw, F.M., Cui, X. and Bhatt, D., 

Challenges in the manufacture of glass substrates for electrical and optical interconnect. 

Circuit World, 2007, Vol. 33 (1), pp. 22-30. 

5. Bhatt, D., Williams, K., Hutt, D.A., and Conway, P.P., Process optimisation and 

characterization of excimer laser drilling of microvias in glass. 9th Electronics 

Packaging Technology Conference, 2007, pp. 196-201. 

6. Bhatt, D., Excimer laser machining of glass for high density substrate manufacture. 

PhD thesis, Loughborough University, June 2009. 

7. Cui, X.Y., Electroless metallization of glass for electrical interconnect applications. 

PhD thesis, Loughborough University, 2009. 

8. ISO / FDIS 25178-2, Geometrical product specifications (GPS) - Surface texture: Areal 

- Part 2: Terms, definitions and surface texture parameters, 2010. 

9. Whitehouse, D., Surface and their measurement. Hermes Penton Ltd, London, 2002. 

10. ISO 4287, Geometrical product specifications (GPS) - Surface texture: Profile method - 

Terms, definitions and surface texture parameters, 1998. 

11. ISO 4288, Geometrical product specifications (GPS) - Surface texture: Profile method - 

Terms, Rules and procedures for the assessment of surface texture, 1998. 

12. Grieve, D.J., Kaliszer, H. and Rowe, G.W., A “Normal Wear” Process Examined by 

Measurements of Surface Topography. CIRP Annals, 1970, vol. 16 (4), pp. 585-592. 

13. Blunt, L, Jiang X, Advanced techniques for assessment surface topography -

Development of a basis for the 3D Surface Texture Standards. SURFSTAND Kogan 

Page Science, www.kogenpagescience.com, ISBN 1903996112, 2003. 



 
 

221 
 

14. Stout, K.J. and Sullivan P.J., The use of 3D topographic analysis to determine the 

micro-geometric transfer characteristics of textured sheet surfaces through rolling. 

CIRP Annals (Switzerland), 1992, vol. 41 (1), pp. 621-624. 

15. Wennerberg, A., Ohlssont, R., Rosknt, B.G. and Andersson, B., Characterizing three-

dimensional topography of engineering and biomaterial surfaces by confocal laser 

scanning and stylus techniques. Medical Engineering Physics, 1996, vol. 18 (70), pp. 

548-556. 

16. Dong, W.P. and Stout, K., An integrated approach to the characterisation of surface 

wear І: Qualitative characterisation. Wear, 1995, vol. 181-183, pp. 700-716. 

17. Blunt, L. and Ebdon, S., The application of three-dimensional surface measurement 

technique to characterising grinding wheel topography. International Journal of 

Machine Tools and Manufacture,, 1996, vol. 36 (11), pp. 1207-1226. 

18. Xie, H.C., Chen, D.R. and Kong, X.M., An analysis of the three-dimensional surface 

topography of textured cold-rolled steel sheets. Tribology International, 1999, vol. 32, 

pp. 83-87. 

19. Jiang, X.Q. Blunt, L. and Stout, K.J., Three-dimensional surface characterisation for 

orthopaedic joint prostheses.  Journal of Engineering in Medicine, 1999, vol. 213 (H1), 

pp. 49-68. 

20. Ramasawmy, H. and Blunt, L., 3D surface topography assessment of the effect of 

different electrolytes during electrochemical polishing of EDM surfaces. International 

Journal of Machine Tools and Manufacture, 2002, vol. 42, pp. 567-574. 

21. Ramasawmy, H., Blunt, L. and Rajurkar, K.P. Investigation of the relationship between 

the white layer thickness and 3D surface texture parameters in the die sinking EDM 

process. Precision Engineering, 2005, vol. 29, pp. 479-490. 

22. Butler, D.L., Blunt, L.A., See, B.K., Webster J.A. and Stout, K.J. The characterisation 

of grinding wheels using 3D surface measurement techniques. Journal of Materials 

Processing Technology, 2002, vol. 127, pp. 234-237. 

23. Al-Nawas, B. and Götz, H., Three-dimensional topographic and metrologic evaluation 

of dental implants by Confocal Laser Scanning Microscopy. Clinical Implant Dentistry 

and Related Research, 2003, vol. 5 (3), pp. 176-183. 

24. Suh, A.Y., Polycarpou, A.A. and Conry, T.F., Detailed surface roughness 

characterisation of engineering surfaces undergoing tribological testing leading to 

scuffing. Wear, 2003, vol. 255, pp. 556-568.  



 
 

222 
 

25. Bénard, Q., Fois, M. and Grisel, M. Influence of fibre reinforcement and peel ply 

surface treatment towards adhesion of composite surface. International Journal of 

Adhesion and Adhesives, 2005, vol. 24, pp. 404-409. 

26. Kundrak, J., Osanna, P.H., Afjehi-Sada, A. and Bana, V., Surface quality of hard turned 

bore holes, Metrology for a Sustainable Development, XVIII IMEKO WORLD 

CONGRESS, Rio de Janeiro, Brazil, September 2006. 

27. Krzyzak, Z. and Pawlus, P., 'Zero-wear' of piston skirt surface topography. Wear, 2006, 

vol. 260, pp. 554-561. 

28. Senin, N., Ziliotti, M. and Groppetti, R., Three-dimensional surface topography 

segmentation through clustering. Wear, 2007, vol. 262, pp. 395-410. 

29. Sul, Y.T., Kang, B.S., Johansson, C., Um, H.S., Park C.J. and Albrektsson, T., The 

roles of surface chemistry and topography in the strength and rate of oseointegration of 

titanium implants in bone. Journal of Biomedical Materials Research, 2009, Part A, vol. 

89 (4), pp. 942-950. 

30. Le Guéhennec, L., Soueidan, A., Layrolle, P. and Amouriq, Y., Surface treatments of 

titanium dental implants for rapid osseointegration. Dental materials. 2007, vol. 23, pp. 

844-854.  

31. Ávila, R.F., Godoy, C., Abrão A.M. and Lima, M.M. Topographic analysis of the crater 

wear on TiN, Ti(C, N) and (Ti, Al)N coated carbide tools. Wear, 2008, vol. 265, pp. 49-

56. 

32. Michalski, J., Surface topography of the cylindrical gear tooth flanks after machining. 

International Journal of Advanced Manufacturing Technology, 2009, vol. 43, pp. 513-

516. 

33. Waikar, R.A. and Guo, Y.B., A comprehensive characterisation of 3D surface 

topography induced by hard turning versus grinding. Journal of Materials Processing 

Technology, 2008, vol. 197, pp. 189-199. 

34. Nguyen, A.T. and Butler, D., Correlation of grinding wheel topography and grinding 

performance: A study from a viewpoint of three-dimensional surface characterisation. 

Journal of Materials Processing Technology, 2008, vol. 208 (1-3), pp. 14-23. 

35. Aris, N.F.M. and Cheng, K., Characterisation of the surface functionality on precision 

machined engineering surfaces. International Journal of Advanced Manufacturing 

Technology, 2008, vol. 38, pp. 402-409. 



 
 

223 
 

36. Scardino, A.J., Hudleston, D., Peng, Z., Paul, N.A. and De Nys, R., Biomimetic 

characterisation of key surface parameters for the development of fouling resistant 

materials. Biofouling, 2009, vol. 25 (1), pp. 83-93. 

37. Czifra. Ά and Horváth, S., Complex microtopography analysis in sliding friction of 

steel-ferodo material pair. Meccanica, 2011, vol.46, pp. 609-616. 

38. Wang, J., Jiang, X.J. Gurdak, E., Scott, P, Leach, R, Tomlins, P. and Blunt, L, 

Numerical characterisation of biomedical titanium surface texture using novel feature 

parameters, Wear, 2011, vol. 271, pp. 1059-1065. 

39. Tian, Y., Wang, J., Peng, Z. and Jiang, X., Numerical analysis of cartilage surfaces for 

osteoarthritis diagnosis using field and feature parameters. Wear, 2011, vol. 271, pp.  

2370-2378. 

40. Comyn, J. Adhesion science.  Cambridge: Royal Society of Chemistry, 1997. 

41. Lee, L.H., Fundamentals of adhesion. New York; London: Plenum Press, 1991. 

42. Ebnesaijad, S, Adhesive technology handbook, 2nd edition. William Andrew Inc, New 

York, 2008. 

43. Alphonsus, P., Adhesion and adhesive technology: an introduction. Hanser Gardner, 

2002. 

44. Petrie, E.M., Handbook of adhesives and sealants. McGraw-Hill, 2007. 

45. Packham, D.E., Handbook of adhesion. Longman Scientific & Technical, 1992. 

46. Hiderbrand, J. and Scott, R., The solubility of non-electrolytes, 3rd edition, Reinhold, 

New York, 1950. 

47. Iyengar, Y. and Erickson, D.E., Role of adhesiv-substrate compatibility in adhesion.  

Journal of Applied Polymer Science, 1967, vol. 11, pp. 2311.  

48. Takadoum, J. and Bennani, H., Influence of substrate roughness and coating thickness 

on adhesion, friction and wear of TiN films. Surface and Coatings Technology, 1997, 

vol. 96, pp. 272-282. 

49. Hallab, N.J., Bundy, K.J., Connor, K.O, Moses, R.L. and Jacobs, J.J., Evaluation of 

metallic and polymeric biomaterial surface energy and surface roughness characteristics 

for directed cell adhesion. Tissue Engineering, 2001, vol. 7 (1), pp. 55-71. 

50. Shahid, M. and Hashim, S.A., Effect of surface roughness on the strength of cleavage 

joints. International Journal of Adhesion and Adhesives, 2002, vol. 22, pp. 235-244. 

51. Chong, E.K., Stevens, M.G. and Nissen, K.E., Effect of surface roughness on the 

adhesion of electrolessly plated platinum to poly (ethylene terephthalate) films. The 

Journal of Adhesion, 2003, vol. 79, pp. 667-681. 



 
 

224 
 

52. Garbacz, A. Courard L. and Kostana. K. Characterisation of concrete surface roughness 

and its relation to adhesion in repair systems. Materials Characterisation, 2006, vol. 56, 

pp. 281-289. 

53. Bénard, Q., Fois, M., and Grisel, M., Surface treatment of carbon/epoxy and glass/ 

epoxy composites with an excimer laser beam. International Journal of Adhesion and 

Adhesives, 2006, vol. 26, pp. 543-549. 

54. Minaki, K., Kitajima, K., Minaki, K., Izawa. M., and Tosha, K., Improvement of 

surface texture of stainless steel by utilizing dry blasting – 2nd report: Effect of blasting 

conditions on wettability. Key Engineering Materials, 2005, vol. 291-292, pp. 265-270. 

55. Minaki, K., Kitajima, K., Minaki, K., Izawa. M., and Tosha, K., Improvement of 

surface texture of stainless steel by utilizing dry blasting – 3rd report: Effect of blasting 

surface texture on adhesion of plating. Key Engineering Materials, 2007, vol. 329, pp. 

353-358. 

56. Menezes, P.L. Kishore and Kailas, S.V., Studies on friction and transfer layer: role of 

surface texture. Tribology Letters, 2006, vol. 24 (3), pp. 265-273. 

57. Jiang, Z.X., Huang, Y.D., Liu, L. and Long, J., Effects of roughness on interfacial 

performances of silica glass and non-polar polyarylacetylene resin composites. Applied 

Surface Science, 2007, vol. 253, pp. 9357-9364. 

58. Zappone, B., Rosenberg, K.J. and Israelachvili, J., Role of nanometre roughness on the 

adhesion and friction of a rough polymer surface and a molecularly smooth mica 

surface. Tribology Letters, 2007, vol. 26 (3), pp. 191-201. 

59. Novák, I., Sysel, P., Zemek, J., Špírková, M., Velić, D., Aranyosiová, M., Florián, Š., 

Pollák, V., Kleinová, A., Lednickỳ, F. and Janigová, I., Surface and adhesion properties 

of poly (imide-siloxane) block copolymers. European Polymer Journal, 2009, vol. 45, 

pp. 57-69. 

60. Indolfi, L., Causa F. and Netti, P.A., Coating process and early stage adhesion 

evaluation of poly (2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel 

surface for stent applications. Journal of Material Science: Materials in Medicine, 2009, 

vol.20, pp. 1541-1551. 

61. Ayrilmis, N. and Winandy, J.E. Effects of post heat-treatment on surface characteristics 

and adhesive bonding performance of medium density fibreboard. Materials and 

Manufacturing Processes, 2009, vol. 24, pp. 594-599. 



 
 

225 
 

62. Audry, M.C., Ramos, S and Charlaix, E., Adhesion between highly rough alumina 

surfaces: An atomic force microscope study. Journal of Colloid and Interface Science, 

2009, Vol. 331, pp. 371-378. 

63. Young, T., An essay on the cohesion of fluids, Philosophical Transactions of the  

Royal Society of London, 1805, vol. 95, pp. 65. 

64. Wenzel, R.N., Resistence of solid surfaces to wetting by water. Industrial and 

Engineering Chemistry, 1936, vol. 28, pp. 988-994. 

65. Cassie, A.B.D. and Baxter, S., Wettability of porous surfaces. Transactions of the 

Faraday  Society, 1944, vol. 40, pp. 546. 

66. Johnson Jr. R.E. and Dettre, R.H., Contact Angle, Wettability, and Adhesion. American 

Chemical Society, Washington, DC, Advances in Chemistry Series, 1964, vol. 43. pp. 

112-135. 

67. De Coninck, J., Dunlop, F. and Rivasseau, V. On the microscopic validity of the Wulff 

construction and of the generalized Young equation. Communications in Mathematical 

Physics, 1989, vol. 121, pp. 401. 

68. Zhou, X.B. and Hosson, J.Th.M.De, Influence of surface roughness on the wetting 

angle. Journal of Materials Research, 1995, vol. 10 (8), pp. 1984-1992. 

69. Chen, Y., He., B., Lee, J., and Patankar, N.A., Anisotropy in the wetting of rough 

surfaces. Journal of Colloid and Interface Science, 2005, vol. 281, pp. 458-464. 

70. Swain, P. and Lipowsky, R., Contact angles on heterogeneous surfaces: a new look at 

Cassie’s and Wenzel’s Laws. Langmuir, 1998, vol. 14, pp. 6772-6780. 

71. Palasantzas, G. and De Hosson, J.Th.M., Wetting on rough surfaces. Acta Materialia, 

2001, vol. 49, pp. 3533-3538. 

72. Zhang, X.P., Yu, S.R., He, Z.M. and Miao, Y.X., Wetting of rough surfaces. Surface 

review and letters, 2004, vol. 11(1), pp. 7-13. 

73. Nosonovsky, M., On the range of applicability of the Wenzel and Cassie equations. 

Langmuir, 2007, vol. 23, pp. 9919-9920. 

74. Fox, H.W. and Zisman, W.A., The spreading of liquids on low-energy surfaces. 

Journal of Colloid and Interface Science, 1950, vol. 5, pp. 514. 

75. Good, R.J. and Girifalco, L.A., A theory for the estimation of surface and interfacial 

energies. III. Estimation of surface and interfacial energies of solids from contact angle 

data. The Journal of Physical Chemistry, 1960, vol. 64, pp. 561. 

76. Fowkes, F.M., Contact angle, wettability and adhesion. Advances in Chemistry Series, 

No. 43, American Chemical Society, Washington DC, 1964. 



 
 

226 
 

77. Kaelble, D.H. and Uy, K.C., A reinterpretation of organic 

liquid-polytetrafluorethylene surface interactions, Journal of Adhesion, 1970, vol. 2, pp. 

50. 

78. Owens, D.K. and Wendt, R.C., Estimation of surface free energy of polymers. Journal 

of Applied Polymer Science, 1969, vol. 13, pp. 1741-1747. 

79. Tamai, Y. and Aratani, K., Experimental study of the relation between contact angle 

and surface roughness. The Journal of Physical Chemistry, 1972, vol. 76, pp. 3267. 

80. Oliver J.F., Huh, C and Mason, S.G., Resistance to Spreading of Liquids by Sharp 

Edges. Journal of Colloid and Interface Science, 1977, vol. 59, pp. 568. 

81. Garoff, S., Sirota, E.B., Sinha, S.K. and Stanley, H.B., The effects of substrate 

roughness on ultrathin water films. The Journal of Chemical Physics, 1989, vol. 90, pp. 

7505-7515. 

82. Wolansky, G. and Marmur, A., The actual contact angle on a heterogeneous rough 

surface in three dimensions. Langmuir, 1998, vol. 14, pp. 5292-5297. 

83. Miller, J.D., Veeramasuneni.S., Drelich. J., Yalamanchili, M.R. and Yamauchi, G., 

Effect of roughness as determined by Atomic Force Microscopy on the wetting 

properties of PTFE thin film. Polymer Engineering and Science, 1996, vol. 36 (14), pp. 

1849-1855. 

84. Shibuichi, S., Onda, T., Satoh, N. and Tsujii, K., Super water-repellent surfaces 

resulting from fractal structure. The Journal of Physical Chemistry, 1996, vol. 100, pp. 

19512-19517. 

85. Onda, T., Shibuichi, S., Satoh, N. and Tsujii, K., Super-Water-Repellent fractal 

surfaces. American Chemical Society, 1996, vol. 12 (9), pp.  2125-2127.  

86. Bico, J., Thiele, U. and Quéré, D., Wetting of textured surfaces. Colloids and Surfaces 

A: Physicochemical and Engineering Aspects, 2002, vol. 206, pp. 41-46.  

87. Lau, K.K.S, Bico, J., Teo, K.B.K, Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., 

McKinley, G.H, Gleason, K.K, Superhydrophobic carbon nanotube forests. Nano 

Letters, 2003, vol. 3 (12), pp. 1701-1705. 

88. Jopp, J., Grüll, H. and Yerushalmi-Rozen, R., Wetting behavior of water droplets on 

hydrophobic microtextures of comparable size. Langmuir, 2004, vol. 20, pp. 10015-

10019. 

89. Fan, J.G., Tang, X.J. and Zhao, Y.P. Water contact angles of vertically aligned Si 

nanorod arrays. Nanotechnology, 2004, vol.15, pp. 501-504. 

90. Meiron, T.S., Marmur A and Saguy, S.I., Contact angle measurement on rough surfaces. 



 
 

227 
 

Journal of Colloid and Interface Science, 2004, vol. 274, pp. 637-644.  

91. Abdelsalam, M.E., Bartlett, P.N., Keif, T. and Baumberg, J., Wetting of regularly 

structured gold surfaces, Langmuir, 2005, vol. 21, pp. 1753-1757.  

92. Extrand, C.W., Contact Angle hysteresis on surfaces with chemically heterogeneous 

islands. Langmuir, 2003, vol. 19, pp. 3793-3796. 

93. Gao, L. and McCarthy, T.J., How Wenzel and Cassie Were Wrong. Langmuir, 2007, 

vol. 23, pp. 3762-3765. 

94. Bhushan, B., Nosonovsky, M. and Jung, Y.C., Towards optimization of patterned 

superhydrophobic surfaces. Journal of the Royal Society Interface. 2007, vol, 4, pp. 643. 

95. Marmur, A., Soft contact: Measurement and interpretation of contact angles. Soft 

Matter, 2006, vol. 2, pp. 12-17. 

96. Butt, H., Capillary forces: influence of roughness and heterogeneity. Langmuir, 2008, 

vol.24, pp. 4715-4721. 

97. Stout, K.J. and Blunt, L., A contribution to the debate on surface classifications-random, 

systematic, unstructured, structured and engineered. International Journal of Machine 

Tools and Manufacture, 2001, vol. 41, pp. 2039-2044. 

98. Product specification for manufacture and quality assurance of uncoated CMG solar 

cell coverglasses, Thales Space Technology, PS 602 (issue 2), 1995. 

99. Leach, R.K., Optical measurement of surface topography. Springer-Verlag, Berlin, 

2011. 

100. Whitehouse, D.J., Review article: surface metrology, Measurement Science and 

Technology, 1997, vol. 8, pp. 955-972.  

101. Whitehouse, D.J., Comparison between stylus and optical methods for measuring 

surfaces, Annals of the CIRP, 1988, vol. 37 (2), pp. 649-653. 

102. Leach, R., Brown, L., Jiang, X. and Blunt, R., Guide to the Measurement of Smooth 

Surface Topography using Coherence Scanning Interferometry, Measurement Good 

Practice Guide No. 108, National Physical Laboratory, 2008. 

103. Petzing, J., Coupland, J. and Leach, R., Guide for the measurement of rough surface 

topography using Coherence Scanning Interferometry, Measurement Good Practice 

Guide No.116, National Physical Laboratory, 2010. 

104. NewView 5000 Operating Manual OMP-0423H, Zygo Corporation. 

105. Dong, W.P., Sullivan, P.J. and Stout, K.J., Comprehensive study of parameters for 

characterizing three-dimensional surface topography I: some inherent properties of 

parameter variation, Wear, 1992, vol. 159, pp. 161-171. 



 
 

228 
 

106. Dong, W.P., Sullivan, P.J. and Stout, K.J., Comprehensive study of parameters for 

characterizing three-dimensional surface topography II: Statistical properties of 

parameter variation, Wear, 1993, vol. 167, pp. 9-21. 

107. Dong, W.P., Sullivan, P.J. and Stout, K.J., Comprehensive study of parameters for 

characterising three-dimensional surface topography III: Parameters for characterising 

amplitude and some functional properties, Wear, 1994, vol. 178, pp. 29-43. 

108. Dong, W.P., Sullivan, P.J. and Stout, K.J., Comprehensive study of parameters for 

characterising three-dimensional surface topography IV: Parameters for characterising 

spatial and hybrid properties, Wear, 1994, vol. 178, pp. 45-60. 

109. Jiang, X., Scott, P.J., Whitehouse, D.J. and Blunt, L., Paradigm shifts in surface 

metrology. Part I. Historical philosophy, Proceedings of the Royal Society, 2007, vol. 

463, pp. 2049-2070. 

110. Jiang, X., Scott, P.J., Whitehouse, D.J. and Blunt, L., Paradigm shifts in surface 

metrology. Part II. Historical philosophy, Proceedings of the Royal Society, 2007, vol. 

463, pp. 2071-2099. 

111. ISO / FDIS 25178-3, Geometrical product specifications (GPS) - Surface texture: Areal 

- Part 3: Specification operators, 2010. 

112.  http://www.michmet.com/index.html. Access date: January 2012. 

113. Smith, G.T., Industrial metrology surfaces and roundness. Springer, London, 2002, pp. 

13-15. 

114. Stout, K.J. and Blunt, L., Three-dimensional surface topography. Penton Press, London, 

2000, pp. 97-142. 

115. ISO/FDIS 16610:21, Geometrical product specifications (GPS) - Filtration - Part 21: 

Linear profile filters: Gaussian filters, 2008. 

116. Balden A., Review: adhesively bonded joints and repairs in metallic alloy, polymers 

and composite materials: adhesives, adhesion theories and surface pretreatment. The 

Journal of Materials Science, 2004, vol. 39 (1). pp. 1-49. 

117. Packham, D.E., Surface energy, surface topography and adhesion. International 

Journal of Adhesion and Adhesives, 2003, vol. 23, pp. 437-448. 

118. Starikov, D., Boney, C., Pillai, R., Bensaoula, A., Shafeev, G.A. and Simakin, A.V., 

Spectral and surface analysis of heated micro-column arrays fabricated by laser-assisted 

surface modification, Infrared Physics and Technology, 2004, vol. 45, pp. 159-167.  

http://www.michmet.com/index.html


 
 

229 
 

119. Baburaj, E.G., Starikov, D., Evans, J., Shafeev, G.A. and Bensaoula, A., Enhancement 

of adhesive joint strength by laser surface modification, International Journal of 

Adhesion and Adhesives, 2007, vol. 27, pp. 268-276. 

120. Zhang X.M., Yue T.M. and Man H.C., Enhancement of ceramic-to-metal adhesive 

bonding by excimer laser surface treatment, Materials Letters, 1997, vol. 30, pp. 327-

332. 

121. http://www.oxford-instruments.com/products/etching-deposition-growth/processes-

techniques/plasma-etch/Pages/plasma-etch.aspx. Access date: January 2012. 

122. Manos, D.M. and Flamm, D.L., Plasma etching, an introduction. Academic Press Inc, 

Boston, 1989. 

123. Choi, S.W., Choi, W.B., Lee, Y.H. Ju, B.K., Sung, M.Y. and Kim, B.H., The analysis 

of oxygen plasma pretreatment for improving anodic bonding, Journal of The 

Electrochemical Society, 2002, vol. 149 (1), pp. G8-G11. 

124. Williams, K.R. and Muller, R.S., Etch rates for micromachining processing, Journal of 

Microelectromechanical System, December 1996, vol. 5 (4), pp.256-268. 

125. Williams, K.R., Gupta, K. and Wasilik, M., Etch rates for micromachining processing-

Part II, Journal of Microelectromechanical System, December 2003, vol. 12 (6), 

pp.761-777. 

126. http://en.wikipedia.org/wiki/Hydrofluoric_acid. Access date: January 2012. 

127. http://www.metallographic.com/. Access date: January 2012. 

128. Blast media data sheet, GUYSON HONITE, Guyson International Limited, United 

Kingdom. 

129. Zhang, B. and Yung, K.C., Feasibility of the 248 nm Excimer laser in the laser 

structuring of fine circuit lines on printed circuit board, The International Journal of 

Advanced Manufacturing Technology, 2007, vol. 33, pp. 1149-1158. 

130. Chen, Y.T., Ma, K.J., Zhou J.G. and Tseng, A.A., Excimer laser ablation of glass-based 

arrayed microstructures for biomedical, mechanical, and optical applications, Journal 

of Laser Applications, February 2005, vol. 17 (1), pp. 38-46. 

131. Tönshoff, H.K., Overmeyer, L. and Ostendorf, A., General machining concept for 

producing micro-optics with high-power UV lasers. Proceedings of SPIE, 1997, vol. 

2992, pp. 86-95. 

132. Crafer, R.C. and Oakley, P.J., Laser Processing in Manufacturing. Chapman and Hall, 

London, 1993. 

http://www.oxford-instruments.com/products/etching-deposition-growth/processes-techniques/plasma-etch/Pages/plasma-etch.aspx
http://www.oxford-instruments.com/products/etching-deposition-growth/processes-techniques/plasma-etch/Pages/plasma-etch.aspx
http://en.wikipedia.org/wiki/Hydrofluoric_acid
http://www.metallographic.com/


 
 

230 
 

133. Chen, Y.T., Ma, K.J., Tseng, A.A., Chen, P.H., Projection ablation of glass-based 

single and arrayed microstructures using excimer laser, Optics and Laser Technology, 

2005, vol. 37, pp. 271-280. 

134. Harvey, E.C., Rumsby, P.T., Gower, M.C. and Remnant, J.L., Microstructuring by 

Excimer Laser. Micromachining and Microfabrication Technology, 1995, vol 2639, pp. 

266-277. 

135. Tseng, A.A., Recent developments in micromachining of fused silica and quartz using 

excimer lasers.  Physica Status Solidi, 2007, vol. 204 (3), pp. 709-729. 

136. KrF Excimer laser (mode EMG 203) Operating Manual, Lambda Physik. 

137. Wang, S.Y., A computer simulation for mask-shape effect in the fabrication of an 

aspheric micro lens array by using a dragging process with excimer laser. Journal of 

Micromechanics and Microengineering, 2005, vol. 15, pp. 1310-1316. 

138. Harvey, E.C. and Rumsby, P.T., Fabrication techniques and their application to produce 

novel micromachined structures and devices using excimer laser mask projection. 

Micromachining and microfabrication process technology III.  1997, vol. 3223, pp. 26. 

139. Rizvi, N.H. Production of novel 3D microstructures using excimer laser mask 

projection techniques SPIE Conference on Design. Test and Microfabrication of MEMS 

and MOEMS, 1999, vol. 3680, pp. 546-552. 

140. Durney, L.J. Electroplating engineering handbook. Wokingham: New York, 1984. 

141. Circuposit Electroless Copper 4750 data sheet, Shipley Europe Limited, United 

Kingdom. 

142. CIRCUPOSIT™ 3344 and 3350-1 data sheets, Rohm and Haas Electronic Materials. 

143. Charbonnier, M., Goepfert, Y., Romand, M. and Leonard, D., Electroless plating of 

glass and silicon substrates through surface pretreatments involving plasma-

polymerization and grafting process. The Journal of Adhesion, 2004, vol. 80, pp. 1103-

1130.  

144. Van Den Meerakker, J.E.A.M., On the mechanism of electroless plating. 1I. One 

mechanism for different reductants. Journal of Applied Electrochemistry, 1981, vol. 11, 

pp. 395-400. 

145. Tseng, W.T., Lo, C.H. and Lee, S.C., Electroless deposition of Cu thin films with 

CuCl2-HNO3 based chemistry I. Chemical formulation and reaction mechanisms. 

Journal of the Electrochemical Society, 2001, vol. 148 (5), pp. C327-C332. 

146. Yosi, S.D., Dubin, V. and Angyal, M., Electroless copper deposition for ULSI, Thin 

Solid Films, 1995, vol. 262, pp. 93-103. 



 
 

231 
 

147. Feldman, B.J. and Melroy, O.R., The mechanism of electroless Cu deposition: 

extraction of the oxidative and reductive electrochemical half-cell currents from a 

complete bath. The Journal of The Electrochemical Society, 1989, vol. 136 (3), pp. 640-

643. 

148. Shacham-Diamand,Y. and Dubin, V., Copper electroless deposition technology for 

ultra-large-scaleintegration (ULSI) metallization. Microelectronic Engineering, 1997, 

vol. 33, pp. 47-58. 

149. Mishra, K.G. and Paramguru, R.K., Kinetics and mechanism of electroless deposition 

of copper, The Journal of The Electrochemical Society, 1996, vol. 143 (2), pp. 510-516. 

150. Charbonnier, M. and Romand, M., Tin-free electroless metallization of glass substrates 

using different PACVD surface treatment processes. Surface and Coatings Technology, 

2002, vol. 162, pp. 19-30. 

151. Meiron, T.S., Marmur, A. and Saguy, I.S., Contact angle measurement on rough 

surfaces, Journal of Colloid and Interface Science, 2004, vol. 274, pp. 637-644. 

152. Chau, T.T., A review of techniques for measurement of contact angles and their 

applicability on mineral surfaces. Minerals Engineering, 2009, vol. 22, pp. 213-219. 

153. Kim, W.S., Yun, H., Lee, J.J. and Jung, H.T., Evaluation of mechanical interlock effect 

on adhesion strength of polymer-metal interfaces using micro-patterned surface 

topography. International Journal of Adhesion and Adhesives, 2010, vol. 30, pp. 408-

417. 

154. Zhu, P., Masuda, Y. and Koumoto, K. Seedless micropatterning of copper by 

electroless deposition on self-assembled monolayers.  Journal of Materials Chemistry, 

2004, vol. 1 4, pp.  976-981.  

155. Cui, X., Hutt, D.A. and Conway, P.P., An Investigation of Electroless Copper Films 

Deposited on Glass. Proceedings of 2nd IEEE Electronics System-Integration 

Technology Conference, London, September 2008, pp. 105-110. 

156. Cui, X., Bhatt, D, Khoshnaw, F.M, Hutt, D.A. and Conway, P.P., Glass as a Substrate 

for High Density Electrical Interconnect. Proceedings of the 10th International IEEE 

Electronics Packaging Technology Conference, Singapore, December 2008, pp. 12-17. 

157. Dubin, V.M. and Shacham-Diamand,Y., Selective and Blanket Electroless Copper 

Deposition for Ultralarge Scale Integration, The Journal of The Electrochemical Society, 

1997, vol. 144 (3), pp. 898-908. 



 
 

232 
 

158. Shukla, S., Seal. S., Akesson, J., Oder, R., Carter, R. and Rahman, Z., Study of 

mechanism of electroless copper coating of fly-ash cenosphere particles. Applied 

Surface Science, 2001, vol. 181, pp. 35-50. 

159. Matsuoka, M., Murai, J. and Iwakura, C., Kinetics of Electroless Copper Plating and 

Mechanical Properties of Deposits. The Journal of The Electrochemical Society, 1992, 

vol. 139 (9), pp. 2466-2470.  

160. Lacombe, R., Adhesion measurement methods. CRC Press, Taylor & Francis Group, 

2006. 

161. Maxwell, A.S., Review of test methods for coating adhesion, NPL REPORT MATC (A) 

49, September 2001. 

162. Heavens, O.S., Some features influencing the adhesion of films produced by vacuum 

evaporation. Journal of Physical Radium, 1950, vol. 11, pp. 355. 

163. Bull, S.J. and Berasetegui, E.G. An overview of the potential of quantitative coating 

adhesion measurement by scratch testing.  Tribology International 2006, vol. 39, pp. 

99-114. 

164. Benjamin, P. and Weaver, C., Measurement of Adhesion of Thin Films. Proceedings of 

the Royal Society of London. Series A, Mathematical and Physical Sciences. 1960, vol. 

254, pp. 163-176. 

165. Weaver, C. and Parkinson, D.T. Diffusion in Cold-Aluminum. The Philosophical 

Magazine, 1970, vol. 22, pp. 377. 

166. Laugier, M.T., An energy approach to the adhesion of coatings using the scratch test. 

Thin Solid Films, 1984, vol. 117, pp. 243-249. 

167. Laugier, M.T., Adhesion of TiC and TiN coatings prepared by chemical vapour 

deposition on WC-Co-based cemented carbides. Journal of Materials Science, 1986, 

vol. 21, pp. 2269-2272. 

168. Burnett, P.J. and Rickerby, D.S., The relationship between hardness and scratch 

adhesion. Thin Solid Films, 1987, vol. 154, pp. 403. 

169. Bull, S.J., Rickerby, D.S., Matthews, A., Lcyland, D.S., Pace A.R. and Valli, J., The 

use of scratch adhesion testing for the determination of interfacial adhesion-The 

importance of frictional drag. Surface and Coatings Technology, 1988, vol. 36, pp. 503. 

170. Bull, S.J. and Rickerby, D.S., Evaluation of coatings, British Ceramic Transactions and 

Journal, 1989, vol. 88, pp. 177. 

171. Bull, S.J., and Rickerby, D.S., The sliding wear of titanium nitride coatings. Surface 

and Coatings Technology, 1990, vol.42, pp. 149. 



 
 

233 
 

172. Chen, J.J., Lin, Z.H. Bull, S.J., Phillips, C.L. and Bristowe, P.D., Experimental and 

modelling techniques for assessing the adhesion of very thin coatings on glass, Journal 

of Physics D: Applied Physics, 2009, vol. 42, pp. 11. 

173. Chalker, P.R., Bull, S.J. and Rickerby, D.S., A review of the methods for the evaluation 

of coating-substrate adhesion, Materials Science and Engineering, 1991, vol. 140, pp. 

583-592. 

174. Hand, D.J., A hand book of small data sets. Chapman and Hall, London, 1994. 

175. Moore, D. S., The basic practice of statistics. W.H. Freeman, New York, 2004. 

176. Hollander, M. and Wolfe, D. A. Nonparametric statistical methods. Wiley, New York, 

1999. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

234 
 

APPENDIX 

1. GUYSON Formula F1400 equipment for bead blasting 
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2. Focussing programme 
 
V1=75.2940; Mask z position 
V2=66.4230; Mask u position 
V3=103.3360; Start Workpiece X Position 
V4=160.7510; Start Workpiece Y Positio 
V5=5; Laser repetition rate 
V6=0.1; Elevator height step 
V7=3.5; Stage start height (goes up) 
V8=6; No. of different focus position 
V9=20; No. of shots at each mask 
V10=1; Amount to move Y between marks 
 
BO1; Select board 1 
EN x y z u; Enable x y z and u 
Home z f 100; Home mask x axis  
Dwell 5000; Dwell 5 s 
Home x y u f200; Home stage x and y axis and mask y axis 
BO 2; Select board 2 
EN x y z; Enable attenuator rotation and elevator axis 
Home u f10; Home attenuator 
Home y z f200; Home attenuator and elevator 
Enable y 
U=0.8 f10 
 
BO1; Select board 1 
G90 X=V3 Y=V4 Z=V1 U=V2 F1000 Move to start position 
BO2; Select board 2 
G91 z=V7 F10; Move to focus start position 
BO1; reselect Board 1 
Mo; Wait for F9 key to be pressed 
WA ON; Wait for stage motion to finish 
BO1 
PSOP.1.0. 50.(10000/V5)-50; Defines Repetition rate 
Loop V8; Loop through each mark 
BO1 
PSOF.2.V9; Fire shots 
PW 3000 
G91 G1 X=V10 F100; Move to next mark position 
WA ON 
PW 3000 
BO2; Select board 2 
G91 G1 z=V6 F50; Move to next elevator position 
PW3000 
NEXT 
PSOF, O; Disable laser output 
BO1; Select board 1 
G91 X-80 Y-80 F3000; Move to front 
EXIT; Exit programme 
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3. Groove generating programme 
 
BO1; Select board 1 
EN x y z u; Enable x y z and u 
Home z f 100; Home mask x axis  
Dwell 5000; Dwell 5 s 
Home x y u f200; Home stage x and y axis and mask y axis 
BO 2; Select board 2 
EN x y z; Enable attenuator rotation and elevator axis 
Home u f10; Home attenuator 
Home y z f200; Home attenuator and elevator 
Enable y 
 
V1=75.2940; Mask z position 
V2=66.4230; Mask u position 
V3=103.3360; Start Workpiece X Position 
V4=160.7510; Start Workpiece Y Positio 
V5=5; Laser repetition rate 
V7=4.0; Focus position 
V8=0.1; Beam length along groove length 
V9=10; Shots per are 
V10=10; Groove length 
V11=1; No. of passes of groove 
V12=100; No. of grooves 
V13=0.08; Periods of grooves 
 
V6=60*V5*V8/V9; Feedrate calculation 
 
Bo2; Select board 2 
G91 G1 Z=V7 F40; Move beam focus position 
G91 G1 u=0.9 F10; Set attenuator 
 
Bo1; Select board 1 
G91 G1 X=V3 Y=V4 F1500; Move WP to beam 
G90 G1 Z=V1 U=V2 F1500; Move to mask position 
 
Loop V12; No of grooves loop 
Loop V11; Passes loop 
BO1 
PSOP,1.0.50.(10000/V5)-50; Define trigger pulse 
PSOP,1; Define fire on Y motion 
G91 G1 Y=V10 F=V6; Move WP along groove 
PSOF,0; Disable laser 
G90 G1 Y=V4 F500; Return to start of groove 
Next 
G91 G1 X=V13 F100; Move to next groove 
Next 
G90 G1 Y=10 F1500; Move sample away from optics 
EXIT 
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4. Matrix programme 
 
V1= 99.4400; Start workpiece X position 
V2=139.2580; Start workpiece Y position 
V3=4; Focus position 
V4=71.5170; Mask position in Z axis 
V5=62.8640; Mask position in U axis 
V6=0.2; Initial attenuator position 
V7=7; Number of different attenuator positions 
V8=0.1; Value to increase attenuator opening by 
V9=25; Starting number of shots 
V10=200; End number of shots 
V11=25; Shot number step 
V12=[(V10-V9)/V11]+1; Number of different shot 
V13=0.5; Amount to move in X and Y between sites 
V14=5; Laser rep rate 
 
BO1; Select board 1 
EN x y z u; Enable x y z and u 
Home z f 100; Home mask x axis  
Dwell 5000; Dwell 5 s 
Home x y u f200; Home stage x and y axis and mask y axis 
BO 2; Select board 2 
EN x y z; Enable attenuator rotation and elevator axis 
Home u f10; Home attenuator 
Home y z f200; Home attenuator and elevator 
WA ON; Wait for motion to complete 
 
BO 1 
G91 X=V1 Y=V2 Z=V4 U=V5 F1500; Move stage to initial position 
BO2 
G91 U=V6 Z=V3F30; Move attenuator and stage elevation to initial position 
WA ON 
 
BO1 
PSOP.1.0.50. (10000/V14)-50; Defines rep rate 
Dwell 11000 
V15=V9; Reset counter for laser shots 
Loop V7; Loop through attenuator  position 

Loop V12; Loop through number of pulses 
BO1 
PSOF.2.V9; Fire shots 
DW 11000 
G91 G1 Y=V13 F1000; Move to near Y position 
WA ON 
DW 11000 
V15=V15+V11 
NEXT 

 
BO1 
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G90 G1 Y=V2 F1000; Return to first Y position 
G91 G1 X=V13 F1000; Move to next X position 
WA ON 
 
BO2 
G91 G1 U=V8 F30; Increase attenuator opening 
WA ON; Wait for motion to complete 
Next 
PSOF.O; Disable laser output 
EXIT 
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5. Excimer laser equipment – Model EMG 203, Lambda Physik 
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