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Abstract. An alphabet reduction is a 1-uniform morphism that maps
a word to an image that contains a smaller number of different letters.
In the present paper we investigate the effect of alphabet reductions on
morphically primitive words, i. e., words that are not a fixed point of
a nontrivial morphism. Our first main result answers a question on the
existence of unambiguous alphabet reductions for such words, and our
second main result establishes whether alphabet reductions can be given
that preserve morphic primitivity. In addition to this, we study Billaud’s
Conjecture – which features a different type of alphabet reduction, but
is otherwise closely related to the main subject of our paper – and prove
its correctness for a special case.
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1 Introduction

In this paper, we study some fundamental combinatorial questions for a special
type of morphisms which we call an alphabet reduction. Such morphisms are
characterised by the fact that they map a word over some alphabet ∆1 to a word
over an alphabet ∆2 that is a proper subset of ∆1, and they are 1-uniform, i. e.,
they map every letter in ∆1 to a word of length 1. Among all these morphisms,
we are particularly interested in those that are the identity for every letter in ∆2

and, in order to obtain unrestricted results, we assume ∆1 to be a set of natural
numbers, i. e., we consider morphisms φ : ∆∗1 → ∆∗2, where ∆2 ⊂ ∆1 ⊆ N. For
example, the morphism φ : {1, 2, 3, 4}∗ → {1, 2, 3}∗ with φ(1) = 1, φ(2) = 2,
φ(3) = 3 and φ(4) = 3, is of the type we wish to investigate.

Due to reasons to be further explained below, we apply such morphisms
to morphically primitive words over N, i. e., words α for which there are no
word β with |β| < |α| and morphisms φ, ψ : N∗ → N∗ satisfying φ(α) = β
and ψ(β) = α. Morphically primitive words have not only been studied by
Reidenbach and Schneider [8], but they are also equivalent to those words α
that are not a fixed point of a nontrivial morphism, which means that there is
no morphism φ : N∗ → N∗ such that φ(α) = α and for a letter x in α, φ(x) 6= x.

? Corresponding author.



Since a word is a fixed point if and only if it is not morphically primitive (see
[8] for additional explanations), we use these concepts interchangeably.

Our first question on alphabet reductions is concerned with their ambiguity.
A morphism φ : N∗ → N∗ is called ambiguous with respect to a word α if there
exists another morphism ψ mapping α to φ(α); if such a ψ does not exist, then
φ is unambiguous. For example, the morphism φ0 : {1, 2, 3}∗ → {1, 2}∗ – given
by φ0(1) := 1, φ0(2) := 2, φ0(3) := 2 – is ambiguous with respect to the word
α0 := 1 ·2 ·3 ·3 ·2 ·1 (where we separate the letters in a word by a dot), since the
morphism ψ0 – defined by ψ0(1) := 1, ψ0(2) := ε (i. e., ψ0 maps 2 to the empty
word), ψ0(3) := 2 · 2 – satisfies ψ0(α0) = φ0(α0) and, for a letter x occurring in
α, ψ0(x) 6= φ0(x):

φ0(α0) =

φ0(1)︷ ︸︸ ︷
1

φ0(2)︷ ︸︸ ︷
2

φ0(3)︷ ︸︸ ︷
2

φ0(3)︷ ︸︸ ︷
2

φ0(2)︷ ︸︸ ︷
2

φ0(1)︷ ︸︸ ︷
1 = ψ0(α0) .︸ ︷︷ ︸

ψ0(1)

︸ ︷︷ ︸
ψ0(3)

︸ ︷︷ ︸
ψ0(3)

︸ ︷︷ ︸
ψ0(1)

It can be verified with moderate effort that, e. g., the morphism φ1 : {1, 2, 3}∗ →
{1, 2}∗ – given by φ1(1) := 1, φ1(2) := 1 · 2, φ1(3) := 2 – is unambiguous with
respect to α0.

The research on the ambiguity of morphisms was initiated by Freydenberger,
Reidenbach and Schneider [3], and previous papers on this subject mainly focus
on the question of whether unambiguous morphisms exist for a given word (see
Schneider [10], Reidenbach and Schneider [9], Freydenberger, Nevisi and Reiden-
bach [2] and Nevisi and Reidenbach [7]). In [7] we have investigated this problem
for 1-uniform morphisms, providing some first insights into it. In the first tech-
nical part of present paper we wish to continue this research, thus studying the
following question:

Problem 1. Is it possible, for every morphically primitive word, to give an un-
ambiguous alphabet reduction?

Note that this problem is restricted to morphically primitive patterns and alpha-
bet reductions (instead of 1-uniform morphisms that may map a word α to an
image that contains as many different letters as α), since it can be easily under-
stood that every nonerasing morphism is ambiguous with respect to a word that
is a fixed point of a nontrivial morphism, and that an unambiguous 1-uniform
morphism with an arbitrary large target alphabet exists for a word α if and only
if α is not a fixed point of a nontrivial morphism (see [3] for details).

The set of those words that have an unambiguous morphism has so far been
characterised for general nonerasing morphisms (see [3] and, in a more restricted
setting, [2]), and these characterisations show that the existence of such unam-
biguous morphisms is largely independent from the size of the target alphabet
∆2 of the morphisms, In contrast to this, Schneider [10] shows that the set of
words that have an unambiguous erasing morphism is different for every size of
the target alphabet ∆2, which implies that a characterisation of these sets needs
to incorporate the size of ∆2 and suggests that such a characterisation might be
very difficult.
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In [7] we have provided some results indicating that an equivalent phe-
nomenon might hold with regard to Problem 1. Our first main result in the
present paper shows that this indeed is true.

The second question we wish to study is more directly concerned with mor-
phically primitive words. Since these words are equivalent to those that are not
a fixed point of any nontrivial morphism, and since the latter words are known
to have a number of important properties (see Reidenbach and Schneider [8]),
they have been studied in a number of papers. Although these studies have pro-
vided, e.g., a characterisation (see Head [4]) and even a polynomial-time decision
procedure (see Holub [5]), many fundamental properties and the actual fabric
of morphically primitive words are not fully understood. This is epitomised by
the fact that Billaud’s Conjecture (see [1]), to be discussed in Section 4, is still
largely unresolved.

In the present paper we shall investigate whether, for a given morphically
primitive word α, there is an alphabet reduction φ such that φ(α) is again
morphically primitive:

Problem 2. Is it possible, for every morphically primitive word, to give an al-
phabet reduction that preserves morphic primitivity?

For example, let α := 1 · 2 · 3 · 4 · 1 · 3 · 2 · 4; if φ : {1, 2, 3, 4}∗ → {1, 2, 4}∗ is a
morphism with φ(1) := 1, φ(2) := 2, φ(3) := 2 and φ(4) := 4, then φ(α) is not
morphically primitive (i. e., it is morphically imprimitive). On the other hand,
ψ(α), where ψ : {1, 2, 3, 4}∗ → {1, 3, 4}∗ is a morphism given by ψ(1) := 1,
ψ(2) := 1, ψ(3) := 3 and ψ(4) := 4, is morphically primitive.

Problem 2 appears to be very similar to Billaud’s Conjecture, but the latter
features a different type of morphism (which, intuitively, still can be seen as
an alphabet reduction). In Section 4, we solve Problem 2, and we prove the
correctness of Billaud’s Conjecture for a special case not studied in the literature
so far.

Note that, due to space constraints, some proofs and some related examples
are omitted from this paper.

2 Definitions

An alphabet A is a nonempty set of symbols and we call these symbols letters. A
word (over A) is a finite sequence of letters taken from A. We denote the empty
word by ε. The notation A∗ refers to the set of all (empty and non-empty) words
over A, and A+ := A∗ \{ε}. For the concatenation of two words α1, α2, we write
α1 · α2 or simply α1α2. The word that results from n-fold concatenation of a
word α is denoted by αn. The notation |x| stands for the size of a set x or the
length of a word x. With regard to an arbitrary word α, symb(α) denotes the set
of all letters occurring in α. We call a word β ∈ A∗ a factor of a word α ∈ A∗ if,
for some γ1, γ2 ∈ A∗, α = γ1βγ2; moreover, if β is a factor of α then we say that
α contains β and denote this by β v α. If β 6= α, then we say that β is a proper
factor of α and denote this by β @ α. If γ1 = ε, then β is a prefix of α, and
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if γ2 = ε, then β is a suffix of α. For any words α, β ∈ A∗, |α|β stands for the
number of (possibly overlapping) occurrences of β in α. The symbol [. . .] is used
to omit some canonically defined parts of a given word, e. g., α = 1 · 2 · [. . .] · 5
stands for α = 1 · 2 · 3 · 4 · 5.

A morphism is a mapping that is compatible with concatenation, i. e., for any
alphabets A,B, φ : A∗ → B∗ is a morphism if it satisfies φ(α ·β) = φ(α) ·φ(β) for
all words α, β ∈ A∗. We call B the target alphabet of φ. A morphism φ : A∗ → B∗
is called nonerasing provided that, for every i ∈ A, φ(i) 6= ε. If φ is nonerasing,
then we often indicate this by writing φ : A+ → B+. A morphism φ is 1-uniform
if, for every i ∈ A, |φ(i)| = 1.

3 Unambiguous Alphabet Reductions

In the present section, we investigate Problem 1. Our main result in this section
strengthens our results in [7] regarding the existence of unambiguous alphabet
reductions φ : N∗ → ∆∗, ∆ ⊂ N, for a fixed target alphabet (i. e., the size of ∆
does not depend on the number of letters in the preimage). The overall goal of
most of the papers on unambiguous morphisms is to characterise the set of words
that have an unambiguous morphism, and this goal has so far been accomplished
for general nonerasing morphisms in two different settings (see Section 1). These
results benefit from the fact that, regarding such types of morphisms, the size of
∆ does not have a major impact on the sets of words to be characterised. Before
we explain whether the same phenomenon is true for 1-uniform morphisms, we
give a definition of a morphism that is not only vital for the proof of Theorem 4
below, but also for our considerations in Section 4.

Definition 3. Let α ∈ N∗. For any i, j ∈ N with i 6= j and, for every x ∈ N, let
the morphism φi,j : symb(α)∗ → symb(α)∗ be given by

φi,j(x) :=

{
i, if x = j ,

x, if x 6= j

and let αi,j := φi,j(α).

Using the above concepts of φi,j and αi,j , we can now prove that, unfortunately,
it is impossible to give a characteristic condition on those words that have an
unambiguous alphabet reduction if this condition does not incorporate the size
of the target alphabet ∆ of the alphabet reduction:

Theorem 4. For every k ∈ N and for every alphabet ∆ ⊂ N with |∆| ≤ k, there
exist an αk ∈ N+ and an alphabet ∆′ ⊂ N with k < |∆′| < |symb(αk)| such that

– there is no 1-uniform morphism ψ : N∗ → ∆∗ that is unambiguous with
respect to αk and

– there is a 1-uniform morphism ψ : N∗ → ∆′∗ that is unambiguous with
respect to αk.
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Proof. In order to support the understanding of the elements of the proof, Ex-
ample 5 can be consulted.

Let
α1 := 1 · 22 · 32 · 1 · 22 · 32 · 22 ,

and, for every k ≥ 2,

αk := xk · (xk + 1)2 · (xk + 2)2 · [. . .] · (xk + k)2 · αk−1 ·
xk · (xk + 1)2 · (xk + 2)2 · [. . .] · (xk + k)2 · αk−1 · (xk + 1)2 ,

where xk = max(symb(αk−1))+1, and all superscripts refer to the concatenation.
We now show that every 1-uniform morphism ψ : N∗ → ∆∗ is ambiguous

with respect to αk. For the sake of a convenient reasoning, we define x0 = 2 and
x1 := 1. The ambiguity of all such ψ almost directly results from the following
fact:

Claim 1. Let k ∈ N, let ∆ be an alphabet, and let ψ : N∗ → ∆∗ be a morphism. If
there exist distinct letters y, z ∈ {x0+1, x1+1, . . . , xk+1} satisfying ψ(y) = ψ(z),
then ψ is ambiguous with respect to αk.

Let now ψ : N∗ → ∆∗ be any 1-uniform morphism. As stated by the Theorem, ∆
consists of at most k letters. On the other hand, the set {x0+1, x1+1, . . . , xk+1}
consists of k+ 1 distinct letters. Hence, ψ must map at least two of these letters
to the same image. According to Claim 1, this means that ψ is ambiguous with
respect to αk.

We now give the proof of the second statement of Theorem 4. Hence we need
to find an alphabet ∆′ with k < |∆′| < |symb(αk)| and a 1-uniform morphism
ψk : N∗ → ∆′∗ that is unambiguous with respect to αk.

Our reasoning is based on the following observation:

Claim 2. For any k ≥ 1, αk is not a fixed point of a nontrivial morphism.

We now consider the morphism ψk : N∗ → N∗ that is given by ψk := φxk,xk+1

(see Definition 3), i. e., ψk(xk + 1) := xk, and ψk is the identity otherwise.
Consequently ψk(αk) = x3

k β1 x
3
k β2 x

2
k with β1, β2 ∈ (N \ {xk})+. We note that

ψk maps the word αk to a word over an alphabet ∆′ satisfying k < |∆′| =
|symb(αk)| − 1 < |symb(αk)|, and we shall demonstrate that ψk is unambiguous
with respect to αk.

We begin with an observation that imposes some restrictions on any mor-
phism ψ that maps αk to the same image as ψk:

Claim 3. Let ψ be a morphism that satisfies ψ(αk) = ψk(αk). Then ψ(xk) =
xk = ψ(xk + 1).

We now assume to the contrary that there exists a morphism ψ : N∗ → ∆′∗

satisfying ψ(αk) = ψk(αk) and, for an x ∈ symb(αk), ψ(x) 6= ψk(x). From
Claim 3, we know that x /∈ {xk, xk + 1}. If k = 1, then we immediately obtain
a contradiction, since

– α1 contains just three different letters,

5



– xk and xk + 1 satisfy ψ(xk) = ψk(xk) and ψ(xk + 1) = ψk(xk + 1), and
– if there is an x with ψ(x) 6= ψk(x), then obviously there must also be an x′

with x′ 6= x and ψ(x′) 6= ψk(x′).

For k ≥ 2, we define a morphism φ : N∗ → N∗ by

φ(x) :=

{
ψ(x) , x ∈ symb(αk) \ {xk, xk + 1} ,
x else.

Due to Claim 3 and due to ψ(αk) = ψk(αk), we can conclude that

φ((xk + 2)2 · [. . .] · (xk + k)2 · αk−1) = (xk + 2)2 · [. . .] · (xk + k)2 · αk−1 . (1)

Because of ψ(x) 6= ψk(x) for an x ∈ symb(αk) \ {xk, xk + 1}, and since ψk for
all these letters is the identity, we know that φ is nontrivial. Furthermore, (1)
implies that φ(αk) = αk. Consequently, if ψk is ambiguous with respect to αk,
then αk is a fixed point of a nontrivial morphism, and this contradicts Claim 2.
Therefore, the second statement of Theorem 4 is correct. ut

The following example shows the structure of αk in the above theorem:

Example 5. The words αk, 2 ≤ k, look as follows:

α2 := 4 · 52 · 62 ·

α1︷ ︸︸ ︷
1 · 22 · 32 · 1 · 22 · 32 · 22 ·

4 · 52 · 62 ·

α1︷ ︸︸ ︷
1 · 22 · 32 · 1 · 22 · 32 · 22 ·52 ,

α3 := 7 · 82 · 92 · 102 ·

prefix of α2︷ ︸︸ ︷
4 · 52 · 62 · 1 · 22 · 32 · 1 · 22 · 32 · 22 ·

suffix of α2︷ ︸︸ ︷
4 · 52 · 62 · 1 · 22 · 32 · 1 · 22 · 32 · 22 · 52 ·

7 · 82 · 92 · 102 ·

prefix of α2︷ ︸︸ ︷
4 · 52 · 62 · 1 · 22 · 32 · 1 · 22 · 32 · 22 ·

suffix of α2︷ ︸︸ ︷
4 · 52 · 62 · 1 · 22 · 32 · 1 · 22 · 32 · 22 · 52 ·82 ,

and so on. The symbols x0, x1, x2, x3, and x4 stand for the letters 2, 1, 4, 7,
and 11, respectively. ♦

Let 1-UNAMBk be the set of all words that have an unambiguous 1-uniform
morphism ψ : N∗ → ∆∗k with |∆k| = k. Using this concept, we now describe the
above mentioned consequence of Theorem 4 that needs to be accounted for when
studying a characterisation of those words that have an unambiguous 1-uniform
morphism:

Corollary 6. For every k ∈ N there exists a k′ ∈ N with k′ > k such that
1-UNAMBk ⊂ 1-UNAMBk′ .
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Hence, similarly to Schneider’s [10] insight into the existence of unambiguous
erasing morphisms, any characteristic condition on those words that have un-
ambiguous 1-uniform morphisms needs to distinguish between infinitely many
different sizes of the target alphabet ∆k. In this regard, the condition must
therefore be more complex than the said main results by Freydenberger et al. [3,
2].

Still, Theorem 4 is somewhat weaker than the result by Schneider [10], who
shows that for any k ∈ N, the set of words that have an unambiguous erasing
morphism with a target alphabet of size k is a proper subset of those words
that have an unambiguous erasing morphism with a target alphabet of size
k + 1. If Theorem 4 is meant to be strengthened (hence stating 1-UNAMBk ⊂
1-UNAMBk+1), then a number of possibly complex technical challenges arise.
For example, the morphic images of the letters xk + 1, xk + 2, . . . , xk + k must
be carefully chosen in order to avoid squares, and this choice, in turn, might
facilitate more complex types of unambiguity.

As mentioned before, Theorem 4 and Corollary 6 suggest that, for fixed target
alphabets, Problem 1 might be extremely hard. In contrast to this, for variable
target alphabets (i. e., the size of the target alphabet depends on the number
of letters in the given word), [7] conjectures that the problem has a nice and
compact solution:

Conjecture 7 (Nevisi and Reidenbach [7]). Let α be a word with |symb(α)| ≥ 4.
There exist i, j ∈ symb(α), i 6= j, such that φi,j (see Definition 3) is unambiguous
with respect to α if and only if α is morphically primitive.

While we are unable to prove or refute this conjecture, we can point out that
it shows some connections to Problem 2. These shall be discussed in the next
section.

4 Alphabet Reductions Preserving Morphic Primitivity

We now turn our attention to Problem 2, i. e., we study whether there exists
an alphabet reduction that maps a morphically primitive word to a morphically
primitive word.

We start with a general observation, that links the research on ambiguity
morphism to the question of whether a morphic image is morphically primitive:

Proposition 8. Let α ∈ N+. If φ : N∗ → N∗ is unambiguous with respect to α
then φ(α) is morphically primitive.

In general, the converse of the above proposition does not hold true. For example,
let α := 1 · 2 · 3 · 4 · 4 · 3 · 1 · 2. Thus, φ1,2(α) = 1 · 1 · 3 · 4 · 4 · 3 · 1 · 1 which is
morphically primitive. However, φ1,2 is ambiguous with respect to α, because we
can define a morphism ϕ satisfying ϕ(α) = φ1,2(α) by ϕ(1) := φ1,2(1) · φ1,2(1),
ϕ(2) := ε, ϕ(3) := φi,j(3) and ϕ(4) := φi,j(4).

If Conjecture 7 is correct, then Problem 2 can be answered in the affirmative.
This is a direct consequence of the following application of Proposition 8:
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Corollary 9. Let α ∈ N+ and assume that there exist i, j ∈ symb(α), i 6=
j, such that φi,j is unambiguous with respect to α. Then, αi,j is morphically
primitive.

Hence, if Conjecture 7 is correct, then it is stronger than Proposition 8.
The above approach does not only facilitate a direct application of our results

in [7] on the existence of unambiguous 1-uniform morphisms to Problem 2, but
it also has the advantage of providing a chance of a constructive method that
might reveal which letters to map to the same image in an alphabet reduction
that preserves morphic primitivity. However, since we are unable to prove Con-
jecture 7, we now present in Theorem 12 below a non-constructive answer to
Problem 2. This is based on two lemmata, the first of which is a basic insight
into fixed points of nontrivial morphisms:

Lemma 10. Let α be a fixed point of a nontrivial morphism. Then there exists
a nontrivial morphism φ : symb(α)∗ → symb(α)∗ such that φ(α) = α and, for
every x ∈ symb(α), if φ(x) 6= ε, then x v φ(x).

Using Lemma 10, we can now prove the following technical observation on the
pattern αi,j as introduced in Definition 3, which is required in the proof of
Theorem 12:

Lemma 11. Let α be a word that is not a fixed point of a nontrivial morphism.
For any i, j ∈ symb(α), i 6= j, if αi,j is a fixed point of a nontrivial morphism
φ : symb(α)∗ → symb(α)∗, then φ(i) = ε.

We now provide a comprehensive and affirmative answer to Problem 2 for all
alphabets that have at least six distinct letters. As mentioned above, our cor-
responding proof is non-constructive, which means that it does not provide any
direct insights into the character of alphabet reductions that preserve morphic
primitivity. On the other hand, the applicability of our technique to Billaud’s
Conjecture (see below) can therefore easily be examined, and the fact that it is
not applicable allows some conclusions to be drawn on the complexity of that
Conjecture.

Theorem 12. Let α be a word with |symb(α)| > 5. If α is morphically primitive,
then there exist i, j ∈ symb(α), i 6= j, such that αi,j is morphically primitive.

Proof. Assume to the contrary that, for every i, j ∈ symb(α), αi,j is morphically
imprimitive, or in other words, αi,j is a fixed point of a nontrivial morphism.
Therefore, due to Lemma 10, for every i, j, there exists a nontrivial morphism
ψ〈i,j〉 : symb(α)∗ → symb(α)∗ satisfying ψ〈i,j〉(αi,j) = αi,j and, for every x ∈
symb(αi,j), if ψ〈i,j〉(x) 6= ε, then x v ψ〈i,j〉(x). On the other hand, it results from
Lemma 11 that ψ〈i,j〉(i) = ε. Consequently, for every occurrence of i in αi,j , there
exists a letter x ∈ symb(αi,j)\{i} with i v ψ〈i,j〉(x) and x v ψ〈i,j〉(x). We assume
that there existm different letters x in αi,j and we denote them by x1, x2, [...], xm.
Since α is not a fixed point of a nontrivial morphism, for every k, 1 ≤ k ≤ m,
|αi,j |xk

≥ 2. As a result, for every k, 1 ≤ k ≤ m, |ψ〈i,j〉(αi,j)|ψ〈i,j〉(xk) ≥ 2.

Claim. There exists an xk, 1 ≤ k ≤ m, with at least two occurrences of ψ〈i,j〉(xk)
in ψ〈i,j〉(αi,j) such that
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– one of them contains an occurrence of i as nth letter, 1 ≤ n ≤ |ψ〈i,j〉(xk)|,
which is at the same position in αi,j as an occurrence of i in α, and

– the other one contains an occurrence of i as nth letter, which is at the same
position in αi,j as an occurrence of j in α.

We illustrate the Claim in the following diagram, where β is a prefix of ψ〈i,j〉(xk)
with length (n− 1).

ψ〈i,j〉(αi,j) = αi,j =

α =

...

...

...

...

xk

xk

xk

xk

i

i

i

j

︸ ︷︷ ︸
ψ〈i,j〉(xk)

︸ ︷︷ ︸
ψ〈i,j〉(xk)

β︷ ︸︸ ︷ β︷ ︸︸ ︷

Proof(Claim). We denote those occurrences of i in αi,j that are at the same
positions as j in α with ij . We assume to the contrary that there does not exist
any xk, 1 ≤ k ≤ m, with at least two occurrences of ψ〈i,j〉(xk) in ψ〈i,j〉(αi,j)
satisfying the following conditions:

– one of them contains an occurrence of i as nth letter, 1 ≤ n ≤ |ψ〈i,j〉(xk)|,
and

– the other one contains an occurrence of ij as nth letter.

Let Xj be a set of those letters q ∈ symb(αi,j) \ {i} satisfying |ψ〈i,j〉(q)| ≥ 2 and
ij @ ψ〈i,j〉(q). Due to the above conditions, there does not exist any q′ ∈ Xj with
at least two occurrences of ψ〈i,j〉(q

′) in ψ〈i,j〉(αi,j) such that one of them contains
an occurrence of i at the same position as an occurrence of ij in the other one.
Therefore, we can define a nontrivial morphism φ : symb(α)∗ → symb(α)∗ over
α by, for every y ∈ symb(α),

φ(y) :=


ε, y = j,

ϕ〈i,j〉(ψ〈i,j〉(y)), y ∈ Xj ,

ψ〈i,j〉(y), else,

where ϕ〈i,j〉 : N∗ → N∗ is a morphism with, for every y′ ∈ symb(αi,j),

ϕ〈i,j〉(y
′) =

{
j, y′ = ij ,

y′, else.

Due to ψ〈i,j〉(i) = ε, because of the definition of ϕ〈i,j〉, and since there does not
exist any xk, 1 ≤ k ≤ m, satisfying the above mentioned conditions, it can be
verified that φ(α) = α, which contradicts the fact that α is not a fixed point of
a nontrivial morphism. Therefore, the Claim holds true. q.e.d.(Claim)
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Henceforth, we denote those occurrences of i in ψ〈i,j〉(xk) satisfying the condi-
tions of the Claim by i′. Consequently, according to the Claim, there exists an
xk, 1 ≤ k ≤ m, with i′ v ψ〈i,j〉(xk). Furthermore, if we wish to refer to the
relation between xk on the one hand and the letters i, j on the other hand as
described by the Claim, we say that xk is responsible for the pair 〈i, j〉.

We now study the following question: Is xk responsible for any pair of letters
of α except 〈i, j〉 (we do not distinguish between the pairs 〈i, j〉 and 〈j, i〉, in
other words, 〈i, j〉 and 〈j, i〉 are the same pairs)? If the answer is yes, for how
many pairs can this happen?

In order to answer this question, we consider the following cases:

1. The letter i′ occurs to the right of xk in ψ〈i,j〉(xk). So, we can assume that
α = ...·α1 ·xk ·α2 ·i·α3 ·...·α4 ·xk ·α5 ·j ·α6 ·..., where, for every k′, 1 ≤ k′ ≤ 6,
αk′ ∈ symb(α)∗, and ψ〈i,j〉(xk) := β1 ·xk ·β2 · i′ ·β3, β1, β2, β3 ∈ symb(αi,j)

∗.

ψ〈i,j〉(αi,j) = αi,j =

αi,j =

α =

...

...

...

...

...

...

β1

α1

xk

xk

xk

β1

α4

xk

xk

xk

β2

α2

i′

i

i

β3

α3

β2

α5

i′

i

j

β3

α6

︸ ︷︷ ︸
ψ〈i,j〉(xk)

︸ ︷︷ ︸
ψ〈i,j〉(xk)

We now examine the mentioned question for the pair 〈l, r〉, l, r ∈ symb(α)
and 〈l, r〉 6= 〈i, j〉, by assuming that αl,r is a fixed point of a nontrivial
morphism ψ〈l,r〉. According to our discussion for 〈i, j〉, if xk is responsible
for 〈l, r〉, we need to have l′ (defined analogously to i′) in ψ〈l,r〉(xk).
We assume that l′ occurs to the right of xk in ψ〈l,r〉(xk). Therefore, one of
the following cases needs to be satisfied:
– l′ occurs to the right of i′. As a result, due to 〈l, r〉 6= 〈i, j〉, in one

occurrence of ψ〈l,r〉(xk) in ψ〈l,r〉(αl,r), we have an occurrence of i, and
in the other occurrence of ψ〈l,r〉(xk) at the same position as i, we have
j, which is a contradiction.

– l′ occurs in β2. Then, because of 〈l, r〉 6= 〈i, j〉, there exists an occurrence
of ψ〈i,j〉(xk) in ψ〈i,j〉(αi,j) such that its β2 factor is different from the
factor β2 of the other occurrences of ψ〈i,j〉(xk) in ψ〈i,j〉(αi,j), which is
again a contradiction.

– l′ occurs at the same position as i′. However, this contradicts the fact
that 〈l, r〉 6= 〈i, j〉.

Consequently, xk can be responsible for 〈l, r〉 iff l′ occurs to the left of xk
in ψ〈l,r〉(xk). By investigating the responsibility of xk for any other pair
of letters 〈q, z〉, q, z ∈ symb(α), 〈q, z〉 6= 〈i, j〉 and 〈q, z〉 6= 〈l, r〉, we can
conclude with the same reasoning as above that q′ cannot occur to the right
of xk in ψ〈q,z〉(xk). Also, by assuming that l′ occurs to the left of xk in
ψ〈l,r〉(xk), an analogous reasoning as above leads to the fact that q′ cannot
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occur to the left of xk in ψ〈q,z〉(xk). Consequently, xk cannot be responsible
for any other pairs 〈q, z〉, q, z ∈ symb(α), 〈q, z〉 6= 〈i, j〉 and 〈q, z〉 6= 〈l, r〉.

2. The letter i′ occurs to the left of xk in ψ〈i,j〉(xk). An analogous reasoning
to that in the previous case implies that, firstly, xk can be responsible for
another pair of letters 〈l, r〉, 〈l, r〉 6= 〈i, j〉, iff l′ occurs to the right of xk in
ψ〈l,r〉(xk). Secondly, xk is not responsible for any other pairs 〈q, z〉, q, z ∈
symb(α), 〈q, z〉 6= 〈i, j〉 and 〈q, z〉 6= 〈l, r〉.

Consequently, due to the above cases, we can conclude that every letter
x ∈ α can at most be responsible for two pairs of letters. On the other hand,
if |symb(α)| = n, the number of pairs of letters of α is

(
n
2

)
. Referring to the

assumption of the theorem, n > 5. Therefore,(
n

2

)
> 2 ∗ n.

This implies that there is a word αi,j , i, j ∈ symb(α) such that there does not
exist any letter x ∈ symb(αi,j) \ {i} that is responsible for the pair 〈i, j〉, which
is a contradiction to the Claim. Thus, there exist letters i, j ∈ symb(α) such
that αi,j is morphically primitive. ut

Since morphically primitive words are equivalent to those words that are not
a fixed point of a nontrivial morphism, Theorem 12 shows that the structural
property of a word α that eliminates the existence of a nontrivial morphism ψ
satisfying ψ(α) = α is strong enough to also eliminate the existence of a non-
trivial morphism ψ′ satisfying ψ′(φi,j(α)) = φi,j(α) for an appropriate choice of
the alphabet reduction φi,j (see Definition 3). However, if we consider a different
notion of an alphabet reduction, namely a morphism δi : N∗ → N∗ defined by
δi(i) := ε and δi(x) := x for x ∈ N \ {i}, then Theorem 12 and its proof are not
sufficient to establish a result that is equivalent to Theorem 12. Hence, we have
to study Billaud’s Conjecture separately:

Conjecture 13 (Billaud [1]). Let α be a word with |symb(α)| ≥ 3. If α is not a
fixed point of a nontrivial morphism, then there exists an i ∈ symb(α) such that
δi(α) is not a fixed point of a nontrivial morphism.

Levé and Richomme [6] provide a confirmation of the contraposition of Con-
jecture 13 for a special case, but, apart from that, little is known about this
problem. The final result of our paper shall demonstrate that Conjecture 13 is
correct if words are considered that contain each of their letters exactly twice:

Theorem 14. Let α be a word with |symb(α)| ≥ 3 that is not a fixed point of
a nontrivial morphism. If, for every x ∈ symb(α), |α|x = 2, then there exists an
i ∈ symb(α) such that δi(α) is not a fixed point of a nontrivial morphism.

We expect that even a moderate extension of Theorem 14 would require a sub-
stantially more involved reasoning. We therefore conclude that the actual nature
of morphically primitive words, despite our almost comprehensive result in The-
orem 12 and the strong insights that are due to Head [4] and Holub [5], is not

11



really understood. This view is further substantiated by the fact that another
property of morphically primitive words, namely their frequency, is largely un-
resolved as well (see Reidenbach and Schneider [8]).

Acknowledgments. The authors wish to thank the anonymous referees for
their helpful remarks and suggestions.
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