

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288384325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Regular and Context-Free Pattern Languages
Over Small Alphabets

Daniel Reidenbach and Markus L. Schmid ?

Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

{D.Reidenbach,M.Schmid}@lboro.ac.uk

Abstract. Pattern languages are generalisations of the copy language,
which is a standard textbook example of a context-sensitive and non-
context-free language. In this work, we investigate a counter-intuitive
phenomenon: with respect to alphabets of size 2 and 3, pattern languages
can be regular or context-free in an unexpected way. For this regularity
and context-freeness of pattern languages, we give several sufficient and
necessary conditions and improve known results.

Keywords: Pattern Languages, Regular Languages, Context-Free Lan-
guages

1 Introduction

Within the scope of this paper, a pattern is a finite sequence of terminal sym-
bols and variables, taken from two disjoint alphabets Σ and X. We say that
such a pattern α generates a word w if w can be obtained from α by substi-
tuting arbitrary words of terminal symbols for all variables in α, where, for any
variable, the substitution word must be identical for all of its occurrences in
α. More formally, a substitution is therefore a terminal-preserving morphism,
i. e., a morphism σ : (Σ ∪ X)∗ → Σ∗ that satisfies σ(a) = a for every a ∈ Σ.
The pattern language L(α) is then simply the set of all words that can be ob-
tained from α by arbitrary substitutions. For example, the language generated
by α1 := x1x1abax2 (where Σ := {a, b} and X ⊃ {x1, x2}) is the set of all words
over {a, b} that have any square as a prefix, an arbitrary suffix and the factor
aba in between. Hence, e. g., w1 := abbabbabaaa and w2 := bbaba are included
in L(α1), whereas w3 := abbababb and w4 := bbbabaaa are not.

Pattern languages were introduced by Angluin [1] in 1980 in order to for-
malise the process of computing commonalities of words in some given set. Her
original definition disallows the substitution of the empty word for the variables,
and therefore these languages are also referred to as nonerasing pattern lan-
guages (or NE-pattern languages for short). This notion of pattern languages
was soon afterwards complemented by Shinohara [16], who included the empty
word as an admissible substitution word, leading to the definition of extended or

? Corresponding author.

2 Daniel Reidenbach, Markus L. Schmid

erasing pattern languages (or E-pattern languages for short). Thus, in the above
example, w2 is contained in the E-pattern language, but not in the NE-pattern
language of α1. As revealed by numerous studies, the small difference between
the definitions of NE- and E-pattern languages entails substantial differences be-
tween some of the properties of the resulting (classes of) formal languages (see,
e. g., Mateescu and Salomaa [11] for a survey).

Pattern languages have not only been intensively studied within the scope of
inductive inference (see, e. g., Lange and Wiehagen [9], Rossmanith and Zeug-
mann [15], Reidenbach [14] and, for a survey, Ng and Shinohara [12]), but their
properties are closely connected to a variety of fundamental problems in com-
puter science and discrete mathematics, such as for (un-)avoidable patterns (cf.
Jiang et al. [8]), word equations (cf. Mateescu and Salomaa [10]), the ambi-
guity of morphisms (cf. Freydenberger et al. [5]), equality sets (cf. Harju and
Karhumäki [6]) and extended regular expressions (cf. Câmpeanu et al. [3]).
Therefore, quite a number of basic questions for pattern languages are still open
or have been resolved just recently (see, e. g., Freydenberger and Reidenbach [4]).

If a pattern contains each of its variables once, then this pattern can be
interpreted as a regular expression, and therefore its language is regular. In
contrast to this, if a pattern has at least one variable with multiple occurrences,
then its languages is a variant of the well known copy language {xx | x ∈ Σ∗},
which for |Σ| ≥ 2 is a standard textbook example of a context-sensitive and non-
context-free language. Nevertheless, there are some well-known example patterns
of the latter type that generate regular languages. For instance, the NE-pattern
language of α2 := x1x2x2x3 is regular for |Σ| = 2, since squares are unavoidable
for binary alphabets, which means that the language is co-finite. Surprisingly,
for terminal alphabets of size 2 and 3, there are even certain E- and NE-pattern
languages that are context-free but not regular. This recent insight is due to
Jain et al. [7] and solves a longstanding open problem.

It is the purpose of our paper to further investigate this counter-intuitive
existence of languages that appear to be variants of the copy language, but are
nevertheless regular or context-free. Thus, we wish to establish criteria where the
seemingly high complexity of a pattern does not translate into a high complexity
of its language. Since, as demonstrated by Jain et al., this phenomenon does
not occur for E-pattern languages if the pattern does not contain any terminal
symbols or if the size of the terminal alphabet is at least 4, our investigations
focus on patterns with terminal symbols and on small alphabets of sizes 2 or 3.

Note that, due to space constraints, all proofs are omitted from this paper.

2 Definitions and Known Results

Let N := {1, 2, 3, . . .} and let N0 := N ∪ {0}. For an arbitrary alphabet A, a
string (over A) is a finite sequence of symbols from A, and ε stands for the
empty string. The notation A+ denotes the set of all nonempty strings over A,
and A∗ := A+∪{ε}. For the concatenation of two strings w1, w2 we write w1 ·w2

or simply w1w2. We say that a string v ∈ A∗ is a factor of a string w ∈ A∗ if

Regular and Context-Free Pattern Languages 3

there are u1, u2 ∈ A∗ such that w = u1 · v · u2. If u1 or u2 is the empty string,
then v is a prefix (or a suffix, respectively) of w. The notation |K| stands for the
size of a set K or the length of a string K.

If we wish to refer to the symbol at a certain position j, 1 ≤ j ≤ n, in a
string w = a1 · a2 · · · · · an, ai ∈ A, 1 ≤ i ≤ n, then we use w[j] := aj and if the
length of a string is unknown, then we denote its last symbol by w[−] := w[|w|].
Furthermore, for each j, j′, 1 ≤ j < j′ ≤ |w|, let w[j, j′] := aj ·aj+1 · · · · ·aj′ and
w[j,−] := w[j, |w|].

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗; h is said to be nonerasing if and only
if, for every a ∈ A, h(a) 6= ε. Let Σ be a finite alphabet of so-called terminal
symbols and X a countably infinite set of variables with Σ∩X = ∅. We normally
assume X := {x1, x2, x3, . . .}. A pattern is a nonempty string over Σ ∪ X, a
terminal-free pattern is a nonempty string over X and a word is a string over
Σ. For any pattern α, we refer to the set of variables in α as var(α) and for
any x ∈ var(α), |α|x denotes the number of occurrences of x in α. A morphism
h : (Σ ∪X)

∗ → Σ∗ is called a substitution if h(a) = a for every a ∈ Σ.

Definition 1. Let α ∈ (Σ ∪ X)∗ be a pattern. The E-pattern language of α
is defined by LE,Σ(α) := {h(α) | h : (Σ ∪X)

∗ → Σ∗ is a substitution}. The
NE-pattern language of α is defined by LNE,Σ(α) := {h(α) | h : (Σ ∪X)

∗ →
Σ∗ is a nonerasing substitution}.

We denote the class of regular languages, context-free languages, E-pattern
languages over Σ and NE-pattern languages over Σ by REG, CF, E-PATΣ and
NE-PATΣ , respectively. We use regular expressions as they are commonly de-
fined (see, e. g., Yu [18]) and for any regular expression r, L(r) denotes the
language described by r.

We recapitulate regular and block-regular patterns as defined by Shino-
hara [17] and Jain et al. [7]. A pattern α is a regular pattern if, for every
x ∈ var(α), |α|x = 1. Every factor of variables of α that is delimited by terminal
symbols is called a variable block. More precisely, for every i, j, 1 ≤ i ≤ j ≤ |α|,
α[i, j] is a variable block if and only if α[k] ∈ X, i ≤ k ≤ j, α[i− 1] ∈ Σ or i = 1
and α[j+1] ∈ Σ or j = |α|. A pattern α is block-regular if in every variable block
of α there occurs at least one variable x with |α|x = 1. Let Z ∈ {E,NE}. The
class of Z-pattern languages defined by regular patterns and block-regular pat-
terns are denoted by Z-PATΣ,reg and Z-PATΣ,b-reg, respectively. To avoid any
confusion, we explicitly mention that the term regular pattern always refers to
a pattern with the syntactical property of being a regular pattern and a regular
E- or NE-pattern language is a pattern language that is regular, but that is not
necessarily given by a regular pattern.

In order to prove some of the technical claims in this paper, the following
two versions of the pumping lemma for regular languages as stated in Yu [18]
can be used.

4 Daniel Reidenbach, Markus L. Schmid

Lemma 1. Let L ⊆ Σ∗ be a regular language. Then there is a constant n,
depending on L, such that for every w ∈ L with |w| ≥ n there exist x, y, z ∈ Σ∗
such that w = xyz and

1. |xy| ≤ n,
2. |y| ≥ 1,
3. xykz ∈ L for every k ∈ N0.

Lemma 2. Let L ⊆ Σ∗ be a regular language. Then there is a constant n,
depending on L, such that for all u, v, w ∈ Σ∗, if |w| ≥ n, then there exist
x, y, z ∈ Σ∗, y 6= ε, such that w = xyz and, for every k ∈ N0, uxykzv ∈ L if
and only if uwv ∈ L.

For the sake of convenience, we shall refer to Lemmas 1 and 2 by Pump-
ing Lemma 1 and Pumping Lemma 2, respectively. We also need the following
generalisation of Ogden’s Lemma:

Lemma 3 (Bader and Moura [2]). Let L ⊆ Σ∗ be a context-free language.
Then there is a constant n, such that for every z ∈ L, if d positions in z are
“distinguished” and e positions are “excluded”, with d > n(e+1), then there exist
u, v, w, x, y ∈ Σ∗ such that z = uvwxy and

1. vx contains at least one distinguished position and no excluded positions,
2. if r is the number of distinguished positions in vwx and s is the number of

excluded positions in vwx, then r ≤ n(s+1),
3. uviwxiy ∈ L for every i ∈ N0.

Known Characterisations

It can be easily shown that every E- or NE-pattern language over a unary al-
phabet is a regular language (cf. Reidenbach [13] for further details). Hence, the
classes of regular and context-free pattern languages over a unary alphabet are
trivially characterised. In Jain et al. [7] it has been shown that for any alphabet
of cardinality at least 4, the regular and context-free E-pattern languages are
characterised by the class of regular patterns.

Theorem 1 (Jain et al. [7]). Let Σ be an alphabet with |Σ| ≥ 4. Then
(E-PATΣ ∩REG) = (E-PATΣ ∩CF) = E-PATΣ,reg.

Unfortunately, the above mentioned cases are the only complete characteri-
sations of regular or context-free pattern languages that are known to date. In
particular, characterisations of the regular and context-free E-pattern languages
with respect to alphabets with cardinality 2 and 3, and characterisations of the
regular and context-free NE-pattern languages with respect to alphabets with
cardinality at least 2 are still missing. In the following, we shall briefly summarise
the known results in this regard and the reader is referred to Jain et al. [7] and
Reidenbach [13] for further details.

Regular and Context-Free Pattern Languages 5

Jain et al. [7] show that there exist regular E-pattern languages with respect
to alphabet sizes 2 and 3 that cannot be described by regular patterns. More-
over, there exist non-regular context-free E-pattern languages with respect to
alphabet sizes 2 and 3. Regarding NE-pattern languages, it is shown that, for
every alphabet Σ with cardinality at least 2, the class (NE-PATΣ ∩REG) is not
characterised by regular patterns and with respect to alphabet sizes 2 and 3 it
is not characterised by block-regular patterns either. Furthermore, for alphabet
sizes 2 and 3, there exist non-regular context-free NE-pattern languages and for
alphabets with cardinality of at least 4 this question is still open.

3 Regularity and Context-Freeness of Pattern Languages:
Sufficient Conditions and Necessary Conditions

Since their introduction by Shinohara [17], it has been known that, for both the E
and NE case and for any terminal alphabet, regular patterns can only describe
regular languages. This is an immediate consequence of the fact that regular
patterns do not use the essential mechanism of patterns, i. e., repeating variables
in order to define sets of words that contain repeated occurrences of variable
factors. In Jain et al. [7], the concept of regular patterns is extended to block-
regular patterns, defined in Section 2. By definition, every regular pattern is a
block-regular pattern. Furthermore, in the E case, every block-regular pattern
α is equivalent to the regular pattern obtained from α by substituting every
variable block by a single occurrence of a variable.

Proposition 1. Let Σ be some terminal alphabet and let α ∈ (Σ ∪ X)∗ be
a pattern. If α is regular, then LNE,Σ(α) ∈ REG. If α is block-regular, then
LE,Σ(α) ∈ REG.

As mentioned in Section 2, for alphabets of size at least 4, both the class of
regular patterns and the class of block-regular patterns characterise the set of
regular and context-free E-pattern languages. However, in the NE case as well as
in the E case with respect to alphabets of size 2 or 3, Jain et al. [7] demonstrate
that block-regular patterns do not characterise the set of regular or context-free
pattern languages.

Obviously, the regularity of languages given by regular patterns or block-
regular patterns follows from the fact that there are variables that occur only
once in the pattern. Hence, it is the next logical step to ask whether or not the
existence of variables with only one occurrence is also necessary for the regularity
or the context-freeness of a pattern language. Jain et al. [7] answer that question
with respect to terminal-free patterns.

Theorem 2 (Jain et al. [7]). Let Σ be a terminal alphabet with |Σ| ≥ 2
and let α be a terminal-free pattern with |α|x ≥ 2, for every x ∈ var(α). Then
LE,Σ(α) /∈ CF and LNE,Σ(α) /∈ REG.

We can note that Proposition 1 and Theorem 2 characterise the regular and
context-free E-pattern languages given by terminal-free patterns with respect to

6 Daniel Reidenbach, Markus L. Schmid

alphabets of size at least 2. More precisely, for every alphabet Σ with |Σ| ≥ 2
and for every terminal-free pattern α, if α is block-regular, then LE,Σ(α) is
regular (and, thus, also context-free) and if α is not block-regular, then every
variable of α occurs at least twice, which implies that LE,Σ(α) is neither regular
nor context-free.

However, for the NE case, we cannot hope for such a simple characterisation.
This is due to the close relationship between the regularity of NE-pattern lan-
guages and the combinatorial phenomenon of unavoidable patterns, as already
mentioned in Section 1.

In the following, we concentrate on E-pattern languages over alphabets of size
2 and 3 (since for all other alphabet sizes complete characterisations are known)
that are given by patterns that are not terminal-free (since, as described above,
the characterisation of regular and context-free E-pattern languages given by
terminal-free patterns has been settled). Nevertheless, some of our results also
hold for the NE case and we shall always explicitly mention if this is the case.

The next two results present a sufficient condition for the non-regularity
and a sufficient condition for the non-context-freeness of pattern languages over
small alphabets. More precisely, we generalise Theorem 2 to patterns that are
not necessarily terminal-free. The first result states that for a pattern α (that
may contain terminal symbols), if every variable in α occurs at least twice, then
both the E- and NE-pattern language of α, with respect to alphabets of size at
least two, is not regular.

Theorem 3. Let Σ be a terminal alphabet with |Σ| ≥ 2, let α ∈ (Σ ∪X)∗, and
let Z ∈ {E,NE}. If, for every x ∈ var(α), |α|x ≥ 2, then LZ,Σ(α) /∈ REG.

For alphabets of size at least 3 we can strengthen Theorem 3, i. e., if every
variable in a pattern α occurs at least twice, then the E- and NE-pattern language
of α is not context-free.

Theorem 4. Let Σ be a terminal alphabet with |Σ| ≥ 3, let α ∈ (Σ ∪X)+, and
let Z ∈ {E,NE}. If, for every x ∈ var(α), |α|x ≥ 2, then LZ,Σ(α) /∈ CF.

At this point, we recall that patterns, provided that they contain repeated
variables, describe languages that are generalisations of the copy language, which
strongly suggests that these languages are context-sensitive, but not context-
free or regular. However, as stated in Section 1, for small alphabets this is not
necessarily the case and the above results provide a strong indication of where to
find this phenomenon of regular and context-free copy languages. More precisely,
by Theorems 3 and 4, the existence of variables with only one occurrence is
crucial. Furthermore, since, in the terminal-free case, regular and context-free E-
pattern languages are characterised in a compact and simple manner, we should
also focus on patterns containing terminal symbols.

Consequently, we concentrate on the question of how the occurrences of ter-
minal symbols in conjunction with non-repeated variables can cause E-pattern
languages to become regular. To this end, we shall now consider some simply
structured examples of such patterns for which we can formally prove whether

Regular and Context-Free Pattern Languages 7

or not they describe a regular language with respect to terminal alphabets
Σ2 := {a, b} and Σ≥3, where {a, b, c} ⊆ Σ≥3. Most parts of the following
propositions require individual proofs, some of which, in contrast to the sim-
plicity of the example patterns, are surprisingly involved. If, for some pattern
α and Z ∈ {E,NE}, LZ,Σ2

(α) /∈ REG, then LZ,Σ≥3
(α) /∈ REG. This follows di-

rectly from the fact that regular languages are closed under intersection. Hence,
in the following examples, we consider LZ,Σ≥3

(α) only if LZ,Σ2(α) is regular.
Firstly, we consider the pattern x1 · d · x2x2 · d′ · x3, which, for all choices of

d, d′ ∈ {a, b}, describes a regular E-pattern language with respect to Σ2, but a
non-regular E-pattern language with respect to Σ≥3.

Proposition 2.

LE,Σ2
(x1 a x2 x2 a x3) ∈ REG ,

LE,Σ≥3
(x1 a x2 x2 a x3) /∈ REG ,

LE,Σ2(x1 a x2 x2 b x3) ∈ REG ,

LE,Σ≥3
(x1 a x2 x2 b x3) /∈ REG .

Next, we insert another occurrence of a terminal symbol in between the
two occurrences of x2, i. e., we consider β := x1 · d · x2 · d′ · x2 · d′′ · x3, where
d, d′, d′′ ∈ {a, b}. Here, we find that LZ,Σ(β) ∈ REG if and only if Z = E,
Σ = Σ2 and d = d′′, d 6= d′ 6= d′′.

Proposition 3. For every Z ∈ {E,NE},

LZ,Σ2
(x1 a x2 a x2 a x3) /∈ REG ,

LZ,Σ2
(x1 a x2 a x2 b x3) /∈ REG ,

LE,Σ2
(x1 a x2 b x2 a x3) ∈ REG ,

LNE,Σ2
(x1 a x2 b x2 a x3) /∈ REG ,

LZ,Σ≥3
(x1 a x2 b x2 a x3) /∈ REG .

The next type of pattern that we investigate is similar to the first one, but it
contains two factors of the form xx instead of only one, i. e., β′ := x1 · d · x2x2 ·
d′ · x3x3 · d′′ · x4, where d, d′, d′′ ∈ {a, b}. Surprisingly, LE,Σ2

(β′) is not regular
if d = d′ = d′′, but regular in all other cases. However, if we consider the NE
case or alphabet Σ≥3, then β′ describes a non-regular language with respect to
all choices of d, d′, d′′ ∈ {a, b}.
Proposition 4. For every Z ∈ {E,NE},

LZ,Σ2(x1 a x2 x2 a x3 x3 a x4) /∈ REG ,

LE,Σ2(x1 a x2 x2 b x3 x3 a x4) ∈ REG ,

LNE,Σ2(x1 a x2 x2 b x3 x3 a x4) /∈ REG ,

LE,Σ≥3
(x1 a x2 x2 b x3 x3 a x4) /∈ REG ,

LE,Σ2
(x1 a x2 x2 a x3 x3 b x4) ∈ REG ,

LNE,Σ2
(x1 a x2 x2 a x3 x3 b x4) /∈ REG ,

LE,Σ≥3
(x1 a x2 x2 a x3 x3 b x4) /∈ REG .

8 Daniel Reidenbach, Markus L. Schmid

We call two patterns α, β ∈ (Σ2∪X)∗ almost identical if and only if |α| = |β|
and, for every i, 1 ≤ i ≤ |α|, α[i] 6= β[i] implies α[i], β[i] ∈ Σ2. The above
examples show that even for almost identical patterns α and β, we can have
the situation that α describes a regular and β a non-regular language. Even if α
and β are almost identical and further satisfy |α|a = |β|a and |α|b = |β|b, then
it is still possible that α describes a regular and β a non-regular language (cf.
Proposition 3 above). This implies that the regular E-pattern languages over an
alphabet with size 2 require a characterisation that caters for the exact order of
terminal symbols in the patterns.

The examples considered in Propositions 2 and 4 mainly consist of factors of
the form d ·xx ·d′, d, d′ ∈ Σ2, where x does not have any other occurrence in the
pattern. Hence, it might be worthwhile to investigate the question of whether
or not patterns can also describe regular languages if we allow them to contain
factors of the form d · xk · d′, where k ≥ 3 and there is no other occurrence of x
in the pattern. In the next result, we state that if a pattern α contains a factor
d · xk · d′ with d = d′, k ≥ 3 and |α|x = k, then, for every Z ∈ {E,NE}, its
Z-pattern language with respect to any alphabet of size at least 2 is not regular
and, furthermore, for alphabets of size at least 3, we can show that this also
holds for d 6= d′.

Theorem 5. Let Σ and Σ′ be terminal alphabets with {a, b} ⊆ Σ and {a, b, c} ⊆
Σ′. Let α := α1 · a · zl · a · α2, let β := β1 · a · zl · c · β2, where z ∈ X,
α1, α2 ∈ ((Σ ∪ X) \ {z})∗, β1, β2 ∈ ((Σ′ ∪ X) \ {z})∗ and l ≥ 3. Then, for
every Z ∈ {E,NE}, LZ,Σ(α) /∈ REG and LZ,Σ′(β) /∈ REG.

In the examples of Propositions 2, 3 and 4 as well as in the above theorem,
we did not consider the situation that two occurrences of the same variable are
separated by a terminal symbol. In the next result, we state that, in certain
cases, this situation implies non-regularity of pattern languages.

Proposition 5. Let Σ and Σ′ be terminal alphabets with |Σ| ≥ 2 and |Σ′| ≥ 3
and let Z ∈ {E,NE}. Furthermore, let α1 ∈ (Σ ∪ X)∗ and α2 ∈ (Σ′ ∪ X)∗ be
patterns.

1. If there exists a γ ∈ (Σ ∪X)∗ with | var(γ)| ≥ 1 such that, for some d ∈ Σ,
– α1 = γ · d · δ and var(γ) ⊆ var(δ),
– α1 = γ · d · δ and var(δ) ⊆ var(γ) or
– α1 = β · d · γ · d · δ and var(γ) ⊆ (var(β) ∪ var(δ)),

then LZ,Σ(α1) /∈ REG.
2. If in α2 there exists a non-empty variable block, all the variables of which

also occur outside this block, then LZ,Σ′(α2) /∈ REG.

We conclude this section by referring to the examples presented in Proposi-
tions 2, 3 and 4, which, as described above, suggest that complete characterisa-
tions of the regular E-pattern languages over small alphabets might be extremely
complex. In the next section, we wish to find out about the fundamental mech-
anisms of the above example patterns that are responsible for the regularity of

Regular and Context-Free Pattern Languages 9

their pattern languages. Intuitively speaking, some of the above example patterns
describe regular languages, because they contain a factor that is less complex
than it seems to be, e. g., for the pattern β := x1 · a · x2x2 · a · x3x3 · b · x4 it can
be shown that the factor a · x2x2 · a · x3x3 · b could be replaced by a · x(bb)∗ · a · b
(where x(bb)∗ is a special variable that can only be substituted by a unary string
over b of even length) without changing its E-pattern language with respect to
Σ2. This directly implies that LE,Σ2(β) = L(Σ∗2 · a(bb)∗ab · Σ∗2), which shows
that LE,Σ2

(β) ∈ REG. In the next section, we generalise this observation.

4 Regularity of E-Pattern Languages: A Sufficient
Condition Taking Terminal Symbols into Account

In this section we investigate the phenomenon that a whole factor in a pattern
can be substituted by a less complex one, without changing the corresponding
pattern language. This technique can be used in order to show that a complicated
pattern is equivalent to one that can be easily seen to describe a regular language.

For the sake of a better presentation of our results, we slightly redefine the
concept of patterns. A pattern with regular expressions is a pattern that may
contain regular expressions. Such a regular expressions is then interpreted as
a variable with only one occurrence that can only be substituted by words de-
scribed by the corresponding regular expression. For example LE,Σ2(x1b

∗x1a
∗) =

{h(x1x2x1x3) | h is a substitution with h(x2) ∈ L(b∗), h(x3) ∈ L(a∗)}. Obvi-
ously, patterns with regular expressions exceed the expressive power of classical
patterns. However, we shall use this concept exclusively in the case where a clas-
sical pattern is equivalent to a pattern with regular expressions. For example,
the pattern x1 · a · x2x3x3x2 · a · x4 is equivalent to the pattern x1 · a(bb)∗a · x2
(see Lemma 6).

Next, we present a lemma that states that in special cases whole factors of a
pattern can be removed without changing the corresponding pattern language.

Lemma 4. Let α := β ·y ·β′ ·a·γ ·b·δ′ ·z ·δ, where β, δ ∈ (Σ2∪X)∗, β′, γ, δ′ ∈ X∗,
y, z ∈ X and |α|y = |α|z = 1. Then LE,Σ2

(α) ⊆ LE,Σ2
(β · y · ab · z · δ). If,

furthermore, var(β′·γ·δ′)∩var(β·δ) = ∅, then also LE,Σ2
(β·y·ab·z·δ) ⊆ LE,Σ2

(α).

The fact that LE,Σ2
(x1 ·a ·x2x2 ·b ·x3) ∈ REG, which has already been stated

in Proposition 2, is a simple application of Lemma 4, which implies LE,Σ2
(x1 ·a ·

x2x2 ·b ·x3) = LE,Σ2(x1 ·ab ·x3). It is straightforward to construct more complex
applications of Lemma 4 and it is also possible to apply it in an iterative way.
For example, by applying Lemma 4 twice, we can show that

LE,Σ2
(x1x2x3 · a · x2x4 · b · x3x4x5x6 · b · x6x7 · a · x7x8 · b · x9 · a · x10) =

LE,Σ2
(x1 · ab · x5x6 · b · x6x7 · a · x7x8 · b · x9 · a · x10) =

LE,Σ2
(x1 · ab · x5 · ba · x8 · b · x9 · a · x10) ∈ REG .

In the previous lemma, it is required that the factor γ is delimited by different
terminal symbols and, in the following, we shall see that an extension of the

10 Daniel Reidenbach, Markus L. Schmid

statement of Lemma 4 for the case that γ is delimited by the same terminal
symbols, is much more difficult to prove.

Roughly speaking, Lemma 4 holds due to the following reasons. Let α :=
y · β′ · a · γ · b · δ′ · z be a pattern that satisfies the conditions of Lemma 4, then,
for any substitution h (with respect to Σ2), h(α) necessarily contains the factor
ab. Conversely, since y and z are variables with only one occurrence and there
are no terminals in β′ · γ · δ′, α can be mapped to every word that contains the
factor ab. On the other hand, for α′ := y · β′ · a · γ · a · δ′ · z, h(α′) does not
necessarily contain the factor aa and it is not obvious if the factor β′ · a · γ · a · δ′
collapses to some simpler structure, as it is the case for α. In fact, Theorem 5
states that if β′ = δ′ = ε and γ = x3, then LE,Σ2(α′) /∈ REG.

However, by imposing a further restriction with respect to the factor γ, we
can extend Lemma 4 to the case where γ is delimited by the same terminal
symbol. In order to prove this result, the next lemma is crucial, which states that
for any terminal-free pattern that is delimited by two occurrences of symbols a

and that has an even number of occurrences for every variable, if we apply any
substitution to this pattern, we will necessarily obtain a word that contains a
unary factor over b of even length that is delimited by two occurrences of a.

Lemma 5. Let α ∈ X∗ such that, for every x ∈ var(α), |α|x is even. Then
every w ∈ LE,Σ2

(a · α · a) contains a factor ab2na, n ∈ N0.

By applying Lemma 5, we can show that if a pattern α := β ·y·β′ ·a·γ ·a·δ′ ·z ·δ
satisfies the conditions of Lemma 4, all variables in γ have an even number of
occurrences and there is at least one variable in γ that occurs only twice, then
the factor y · β′ · a · γ · a · δ′ · z can be substituted by a regular expression.

Lemma 6. Let α := β · y · β′ · a · γ · a · δ′ · z · δ, where β, δ ∈ (Σ2 ∪ X)∗,
β′, γ, δ′ ∈ X∗, y, z ∈ X, |α|y = |α|z = 1 and, for every x ∈ var(γ), |γ|x is
even. Then LE,Σ2

(α) ⊆ LE,Σ2
(β · y · a(bb)∗a · z · δ). If, furthermore, var(β′ ·

γ · δ′) ∩ var(β · δ) = ∅ and there exists a z′ ∈ var(γ) with |α|z′ = 2, then also
LE,Σ2

(β · y · a(bb)∗a · z · δ) ⊆ LE,Σ2
(α).

Obviously, Lemmas 4 and 6 can also be applied in any order in the iterative
way pointed out above with respect to Lemma 4. We shall illustrate this now in
a more general way. Let α be an arbitrary pattern such that

α := β · y1 · β′1 · a · γ1 · a · δ′1 · z1 · π · y2 · β′2 · b · γ2 · a · δ′2 · z2 · δ ,

with β, π, δ ∈ (Σ2 ∪X)∗, β′1, β
′
2, γ1, γ2, δ

′
1, δ
′
2 ∈ X∗ and y1, y2, z1, z2 ∈ X. If the

factors y1 ·β′1 ·a · γ1 ·a · δ′1 · z1 and y2 ·β′2 ·b · γ2 ·a · δ′2 · z2 satisfy the conditions of
Lemma 6 and Lemma 4, respectively, then we can conclude that α is equivalent
to α′ := β · y1 · a(bb)∗a · z1 · π · y2 · ba · z2 · δ. This particularly means that the
rather strong conditions

1. var(β′1 · γ1 · δ′1) ∩ var(β · π · β′2 · γ2 · δ′2 · δ) = ∅,
2. var(β′2 · γ2 · δ′2) ∩ var(β · β′1 · γ1 · δ′1 · π · δ) = ∅

Regular and Context-Free Pattern Languages 11

must be satisfied. However, we can state that LE,Σ2(α) = LE,Σ2(α′) still holds
if instead of conditions 1 and 2 from above the weaker condition var(β′1 · γ1 · δ′1 ·
β′2 · γ2 · δ′2) ∩ var(β · π · δ) = ∅ is satisfied. This claim can be easily proved by
applying the same argumentations as in the proofs of Lemmas 4 and 6, and we
can extend this result to arbitrarily many factors of the form yi ·β′i ·c1 ·γi ·c2 ·δ′i ·zi,
c1, c2 ∈ Σ2. Next, by the following definition, we formalise this observation in
terms of a relation on patterns with regular expressions.

Definition 2. For any two patterns with regular expressions α and α′, we write
α B α′ if and only if the following conditions are satisfied.

– α contains factors αi ∈ (Σ2 ∪X)∗, 1 ≤ i ≤ k, where, for every i, 1 ≤ i ≤ k,
αi := yi · β′i · di · γi · d′i · δ′i · zi, with β′i, γi, δ

′
i ∈ X+, yi, zi ∈ X, |α|yi = |α|zi =

1, di, d
′
i ∈ Σ2 and, if di = d′i, then, for every x ∈ var(γi), |γi|x is even

and there exists an x′ ∈ var(γi) with |α|x′ = 2. Furthermore, the factors
α1, α2, . . . , αk can overlap by at most one symbol and the variables in the
factors α1, α2, . . . , αk occur exclusively in these factors.

– α′ is obtained from α by substituting every αi, 1 ≤ i ≤ k, by yi · did′i · zi, if
di 6= d′i and by yi · di(d′′i d′′i)∗d′i · zi, d′′i ∈ Σ2, d′′i 6= di, if di = d′i.

By generalising Lemmas 4 and 6, we can prove that α B α′ implies that α
and α′ describe the same E-pattern language with respect to alphabet Σ2.

Theorem 6. Let α and α′ be patterns with regular expressions. If α B α′, then
LE,Σ2

(α) = LE,Σ2
(α′).

We conclude this section by discussing a more complex example that illus-
trates how Definition 2 and Theorem 6 constitute a sufficient condition for the
regularity of the E-pattern language of a pattern with respect to Σ2. Let α be
the following pattern.

x1ax2x
2
3bx4x3x5x6︸ ︷︷ ︸

α1:=y1·β′1·a·γ1·b·δ′1·z1

x27 x8x9x5x3ax4x5x4x9x10bx11︸ ︷︷ ︸
α2:=y2·β′2·a·γ2·b·δ′2·z2

ax12bx13ax14x15bx
2
15x

2
16bx17︸ ︷︷ ︸

α3:=y3·β′3·a·γ3·b·δ′3·z3

.

By Definition 2, α B β holds, where β is obtained from α by substituting
the above defined factors α1, α2 and α3 by factors x1 · ab · x6, x8 · ab · x11 and
x14 · b(aa)∗b · x17, respectively, i. e.,

β := x1abx6x7x7x8abx11ax12bx13ax14b(aa)∗bx17 .

Furthermore, by Theorem 6, we can conclude that LE,Σ2
(α) = LE,Σ2

(β). How-
ever, we can also apply the same argumentation to different factors of α, as
pointed out below:

x1ax2x
2
3bx4x3x5x6x

2
7x8x9x5x3ax4x5x4x9x10︸ ︷︷ ︸

α1:=y1·β′1·a·γ1·b·δ′1·z1

bx11ax12bx13ax14x15bx
2
15x

2
16bx17︸ ︷︷ ︸

α2:=y2·β′2·a·γ2·b·δ′2·z2

.

Now, again by Definition 2, α B β′ is satisfied, where

β′ := x1ax2bax10bx11ax12bx13ax14b(aa)∗bx17 .

Since every variable of β′ has only one occurrence, it can be easily seen that
LE,Σ2(β′) ∈ REG and, by Theorem 6, LE,Σ2(α) ∈ REG follows.

12 Daniel Reidenbach, Markus L. Schmid

References

1. D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46–62, 1980.

2. C. Bader and A. Moura. A generalization of Ogden’s Lemma. Journal of the
Association for Computing Machinery, 29:404–407, 1982.

3. C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical regular expres-
sions. International Journal of Foundations of Computer Science, 14:1007–1018,
2003.

4. D.D. Freydenberger and D. Reidenbach. Bad news on decision problems for pat-
terns. Information and Computation, 208:83–96, 2010.

5. D.D. Freydenberger, D. Reidenbach, and J.C. Schneider. Unambiguous morphic
images of strings. International Journal of Foundations of Computer Science,
17:601–628, 2006.

6. T. Harju and J. Karhumäki. Morphisms. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 7, pages 439–510. Springer, 1997.

7. S. Jain, Y. S. Ong, and F. Stephan. Regular patterns, regular languages and
context-free languages. Information Processing Letters, 110:1114–1119, 2010.

8. T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with
and without erasing. International Journal of Computer Mathematics, 50:147–163,
1994.

9. S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern lan-
guages. New Generation Computing, 8:361–370, 1991.

10. A. Mateescu and A. Salomaa. Finite degrees of ambiguity in pattern languages.
RAIRO Informatique théoretique et Applications, 28:233–253, 1994.

11. A. Mateescu and A. Salomaa. Patterns. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, pages 230–242. Springer, 1997.

12. Y.K. Ng and T. Shinohara. Developments from enquiries into the learnability of the
pattern languages from positive data. Theoretical Computer Science, 397:150–165,
2008.

13. D. Reidenbach. The Ambiguity of Morphisms in Free Monoids and its Impact on
Algorithmic Properties of Pattern Languages. PhD thesis, Fachbereich Informatik,
Technische Universität Kaiserslautern, 2006. Logos Verlag, Berlin.

14. D. Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,
397:166–193, 2008.

15. P. Rossmanith and T. Zeugmann. Stochastic finite learning of the pattern lan-
guages. Machine Learning, 44:67–91, 2001.

16. T. Shinohara. Polynomial time inference of extended regular pattern languages.
In Proc. RIMS Symposia, Kyoto, volume 147 of LNCS, pages 115–127, 1982.

17. T. Shinohara. Polynomial time inference of pattern languages and its application.
In Proc. 7th IBM MFCS, pages 191–209, 1982.

18. S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 1, chapter 2, pages 41–110. Springer, 1997.

