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Abstract 

 
A comparison of the performance of two fault detection and diagnosis methods applied 

to a cooling coil subsystem in an air-handling unit installed in a real building is 

presented.  Both methods employ a first principles based reference model of the target 

system.  One scheme carries out diagnosis using expert rules and the other recursively 

re-estimates selected parameters of the system model that correspond to particular 

faults.  The procedures and information required to configure the schemes for 

condition monitoring are discussed.  The results of testing the methods on an HVAC 

cooling coil subsystem in a commercial office building in the UK over an entire 

cooling season are reported.   Both methods were able to both detect and diagnose 

faults; however, the expert rule method appears to be more robust.  Issues associated 

with the configuration and implementation of both methods are discussed in terms of 

performance and cost.  

 
 
1. Introduction 
 
The increasing complexity of building control and management systems heightens 

the need for the development of tools to assist in the monitoring of these systems. 

The application of these tools is expected to lead to improved comfort, energy 

performance and reduced maintenance costs[1]. The realisation of such tools is 

made possible by the increasing computational capacity of contemporary 

computer-based building management systems (BMS).  
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Currently, BMSs are able to detect abrupt changes in the condition of heating, 

ventilating and air conditioning (HVAC) systems, usually through the violation of 

simple thresholds applied to measurements or control set points. They do not, 

however, offer significant fault isolation and diagnostic information and are unable 

to detect gradual degradations in system performance, which can result in poor 

system operation and unnecessarily high energy consumption. Fault Detection and 

Diagnosis (FDD) techniques attempt to identify faulty system performance, 

alerting building operators and offering diagnostic information. 

 

FDD has been the subject of research in the process industry for some years and 

has more recently been expanded into the area of HVAC equipment. In the past 

eight years, the International Energy Agency (IEA) Annex 25 has investigated real 

time simulation of HVAC systems for building optimisation, fault detection and 

diagnosis[2]. Most of the FDD methods developed were evaluated using simulations 

of building plant and controls systems. A recently completed IEA Annex (Annex 

34) addressed the issues surrounding the practical application and demonstration of 

FDD tools in HVAC plant installed in real buildings. This research formed part of 

the U.K. contribution to Annex 34[16]. 

This paper describes the implementation of two methods for the automatic 

detection and diagnosis of degradation faults in HVAC cooling coil subsystems.  

Both methods use a first principles model of the system to detect and diagnose 

changes in the system condition.  The first method uses a reference model to 
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determine change in the performance of the system and uses expert rules to 

determine the possible cause.  The second method recursively re-estimates the 

parameters of the model that correspond to possible faults; a significant change in 

the value of a particular parameter indicates the presence of the corresponding 

fault.  The paper then describes the application of these FDD techniques to a 

cooling coil in an air-handling unit (AHU) in a real building and reports their 

performance.  

 

2. Model-based Approaches to FDD  
 
In model-based FDD, a quantitative model is used to represent the correctly 

operating system process and is termed a ‘reference model’.  Measured data from 

the real system are used as inputs to the model and the model predictions are 

compared to the measured output from the system, as illustrated in Figure 1.  The 

difference between the prediction and the observed value is termed the ‘residual’.  

A significant residual, i.e. greater than a threshold value that is determined by the 

uncertainty in the model predictions and the measurements, is termed an 

innovation and is evidence that the system is not operating as expected.  

 
 

Figure 1: A model-based fault detection scheme. 

 

Generally, reference models can be split in to two categories [3]. Black box models 

are empirical models that embody no prior knowledge of the system (apart from 

that which is implicit in the choice of the inputs and outputs).  Physical models are 

largely based on a first principles analysis of the system, which may include 
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established empirical relationships (e.g. to predict heat transfer coefficients).   

Black box models do not require any prior knowledge of the process.  They are, 

however, poor at extrapolation and so must be configured using training data 

generated by the target system (or possibly a simulation of that system) that cover 

the whole region of operation. The main advantage of black box models is that 

they can be chosen to be linear in the parameters, making the process of estimating 

the parameters of the model both less demanding computationally and more robust.  

One advantage of physical models is that the prior knowledge that they embody 

improves their ability to extrapolate to regions of the operating space for which no 

training data are available.  They also require fewer parameters for a given degree 

of model accuracy.  A further feature of physical models is that they may be 

designed so that the parameters represent physically meaningful quantities, 

allowing abnormal values of particular parameters to be associated with the 

presence of particular faults.  

 

Fault diagnosis requires knowledge of how the system behaves when faults are 

present. The two approaches investigated in the work reported here are: 

• analysis of how the innovations vary with operating point; 

• estimation of the parameters of an on-line model that has been extended to 

treat particular faults. 

 The first approach has been implemented using a rule-based classifier, in which 

the rules are obtained from experts[3].   The current system condition is compared 

to a model of correct operation in which the parameters are fixed at the values 

estimated during model calibration.  Any innovations are evidence that the system 
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operation has changed; a diagnosis is generated using expert rules that describe the 

variation of the residual with operating point expected for different faults.  The 

second approach has been implemented by extending the system model to 

represent both faulty and correct operation using physical principles and 

engineering knowledge.  The current values of model parameters that correspond 

to particular faults are estimated from the measured performance of the system 

using the recursive parameter estimation (RPE) method[4,17].  A significant change 

in the value of a particular fault parameter provides an indication of the presence of 

the corresponding fault. The estimated values for the parameters relating to the 

faulty behaviour are then used for fault diagnosis[4, 5].  In each case, first-principles 

steady-state models of the system are used to represent the performance of the 

system. The predictions of the models are only valid when the system is in steady-

state and so a steady-state detector is employed to filter out unwanted transient 

data[4,17]. 

 
2.1. First Principles Subsystem Models 
 
The basis of the models used here is described by Buswell et al.[17].  Certain criteria 

have become evident in the course of developing models for on-line use; the 

models should: 

• be designed to operate within the limitations imposed by the monitoring 

capabilities of the HVAC control system;  

• require no more input data (sensor measurements and control signals) than 

are available from a typical HVAC control system (minimising 

implementation cost); 
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• be able to reproduce the correct operation of the system to the accuracy 

required to detect the desired degree of fault, though there is little point in 

exceeding the accuracy of the sensors used. 

The cooling coil subsystem model whose use is described below consists of 

separate models of the actuator, the supply air temperature sensor, the three port 

control valve and the cooling coil.  The actuator model treats both hysteresis and 

any mismatch between the travel of the actuator and the valve.  Leakage in the 

control valve is modelled by assuming there is an additional flow path through the 

control valve whose resistance is independent of the stem position.  The installed 

characteristic is modelled by correcting the inherent characteristic of the valve for 

valve authority. The cooling coil operation is modelled using the NTU-

effectiveness method, with wet coil operation modelled using the SHR method[4, 8]. 

The under-capacity fault is modelled by scaling the resistance of the coil to heat 

transfer, thus reducing  the effectiveness.  The coil outlet air temperature sensor 

fault is modelled as an offset that is constant over the range of operation. The 

models and the fault parameters are described in more detail by Salisbury[4] and 

Buswell and Wright [17]. 

 
2.2. Diagnosis using Expert Rules  
 
Figure 2 illustrates the principles of the rule-based fault diagnosis scheme.  The 

operating range is divided into a number of different regions such that each of the 

faults of interest produces a unique combination of effects in the different regions.  

The choice of the positions of the boundaries between these regions is part of the 

process of defining the expert rules and is based on engineering judgement, once 

the characteristics of the subsystem have been established from the calibration 
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tests.  An accumulator ‘bin’ is set up for each region of the operating range and the 

value of the residual for each steady-state sample is accumulated in the ‘bin’ that 

corresponds to the region that includes the current operating point. The current bin 

value, Bn, is an exponentially-weighted moving average of the prediction errors in 

the corresponding part of the operating range: 

pnn BB )1( λλε −+=                                   (1) 

where λ is the weighting, or forgetting, factor εn is the prediction error for the 

current sample and Bp is the bin value at the previous sample.  The bin value is 

only updated if the operating point is in the region corresponding to the bin in 

question and the system is deemed to be in steady-state.  At each steady-state 

sample, the magnitude of the accumulated residuals in each bin is compared to an 

‘error significance threshold’, α.  The innovation at the current sample, in, is then 

calculated as: 

in  = Bn - α       for Bn> α 

   = Bn + α       for Bn< -α                                                           

   = 0       for |Bn| < α                               (2) 

The significance threshold reflects both modelling and measurement errors and is 

determined from the goodness of fit of the model to the calibration data.  In the 

general case, it may vary over the operating range.  

 
Expert rules are used to analyse the innovation values at each sample. The rule 

base consists of a set of crisp ‘IF-THEN’ rules that relate the innovations to the set 

of possible faults, e.g., 
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IF the High Duty innovation is significant and negative AND the Medium Duty 

innovation is insignificant AND the Low Duty innovation is insignificant THEN the 

coil is fouled 

Table 1 lists the signs of the innovations in different operating regions expected for 

different faults in a cooling coil.  

 
Table 1: Variation of innovation with operating point for different faults. 

 
 

Figure 2: The expert rule fault diagnosis scheme. 
 
 

Figure 3: The recursive parameter estimation scheme. 
 
 
2.3. Diagnosis using Recursive Parameter Estimation  
 
The recursive parameter estimation method is illustrated in Figure 3.  The steady-

state prediction errors are used by the parameter estimator to re-estimate the values 

of the fault parameters recursively[4,17].  A change in the value of a parameter from 

the value estimated when calibrating the model indicates a change in the condition 

of the system.  For instance, the three-port valve model includes a parameter that 

represents the leakage of the valve; assuming that the model structure allows a 

good representation of valve leakage, then an increase in the leakage parameter 

indicates directly that the leakage has increased.  As with the expert rule approach, 

the effectiveness of the parameter estimation method is dependent on the system 

covering enough of the operating range to differentiate between the faults of 

interest.  For example, if the system has not been operating in the low duty region, 

then there can be no prediction errors resulting from valve leakage and the valve 

leakage parameter should not change.  The parameter estimation method estimates 
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confidence intervals (at the 99.9% level) for the parameter values, estcφ , where φ  is 

the fault parameter.  These limits give an indication of how well the model fits the 

data.  Under normal operating conditions, the parameter estimates vary to a small 

degree due to inevitable imperfections in the model system and errors in 

measurement.  The magnitude of the parameter variation under normal operation 

implicitly describes the uncertainty in the model representation of the process 

characteristics.  This uncertainty should be accounted for to prevent false alarms.  

A second measure of uncertainty, calcφ , is therefore introduced to minimise the 

false alarm rate. calcφ  is determined for each parameter by observing the parameter 

variation in a set of normal operating data, preferably covering the expected range 

of operation. In the current implementation, the value of calcφ  is set equal to the 

maximum variation observed in the corresponding parameter. The threshold for a 

significant change in the value of a parameter is therefore given by: 

( ) ( )22 estcal ccC φφφ += ,                  (3) 

A significant change in the parameter value is deemed to have occurred when the 

following rule is satisfied; 

IF ( | φest - φcal | > Cφ )  THEN  change is significant                                              (4) 

where calφ  is the value of the parameter after the model calibration process. If the 

value of one fault parameter becomes significantly different to that established 

during calibration, then the corresponding fault is considered to have been 

diagnosed.  If more than one parameter value changes significantly then the 
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condition is diagnosed as ‘other’.  A lack of significant changes in the parameter 

values indicates correct operation.  

 
 
3. The Test Building, Plant and Control System 
 
The fault detection and diagnosis methods were tested on a cooling coil in a 

constant air volume HVAC system in a UK commercial office.  The coil is in one 

of twelve air-handling units located in a single plant room.  As shown in Figure 4, 

the air handling units do not have individual mixing boxes; instead, return air from 

the space is mixed with outside air in a common mixing chamber formed by the 

plant room itself.  The AHU monitored in this work stands vertically and is 

approximately 4m high by 0.8m square. Air entering the unit passes through a 

filter, the cooling coil, the heating coil and the supply fan. The cooling coil is 

inclined at approximately 45° to the vertical.  

 
 

Figure 4: Section through the test AHU. 
 
 
3.1. Faults to be Identified 
 
Three faults were selected for detection and diagnosis in this study[2, 4, 9]: 

• leakage through the control port of the three port control valve for the 

cooling coil; 

• fouling of the cooling coil (or reduction in capacity); 

• fixed offset in the coil outlet air temperature measurement. 

This selection of faults provides a good test of diagnostic methods since each fault 

will affect performance of the coil in a different part of the operating range and 
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should therefore have the potential to be identified uniquely[10].  The nature of any 

faults that may have occurred in the test period was not known in advance.  

Artificial faults were not introduced into the system; the approach adopted in this 

investigation was to monitor the system and wait for any naturally occurring 

changes in the behaviour of the system.  

 
 
4. Implementation of the FDD Scheme 
 
The following procedure, evolved during the field-testing, was used to implement 

the FDD methods: 

• establish the target system and faults to be monitored; 

• check that the necessary measurements exist to support the FDD method; 

• establish the FDD regime, i.e. on-line or batch processing, and the 

frequency of data sampling; 

• establish the mode and format of data collection (remote access, text file, 

DDE); 

• establish communications requirements (how the FDD tool accesses the 

data); 

• define the model calibration tests required and the means by which these 

tests may be performed; 

• gather the required configuration data from design information and/or site 

inspection; 

• test the installation to ensure continuity in data handling and correct 

operation of the FDD tool; 

• carry out the calibration testing; 
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• if the plant operation is acceptable, calibrate the system models and initiate 

condition monitoring. 

 
4.1. Sensors Used 
 
Table 2 shows the measurements that were used by the FDD procedures.   The 

sensors are commercial grade temperature sensors commonly used for HVAC 

control applications. 

 

Table 2: Measurements used by both condition monitoring schemes. 
 
 
The air temperature leaving the coil predicted by the model is compared with the 

measured value in order to generate the value of the prediction error.  The air inlet 

temperature and the control signal are inputs to a first-principles model of the coil 

and control valve, as described above.  The chilled water temperature, chilled 

water supply pressure and air-flow rate are assumed to be constant and are 

established from site inspection or design information. During the calibration 

testing, the coil was inspected at full duty and found to be virtually dry. In the 

absence of the necessary humidity measurements, it was assumed that any latent 

duty was insignificant. 

 
4.2. Model Calibration and Training Data 
 
The HVAC subsystem models developed for this application are generic and are 

configured for use with a specific system by identifying the model parameters from 

measured system input/output and design data. For the semi-empirical model used 

here, geometric and configuration parameters, such as the number of parallel coil 
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circuits; the number and internal diameter of the coil tubes; and the coil face area 

are required to calculate the respective fluid velocities across/through the coil. 

These were found by inspection or from the manufacturer’s design data. Empirical 

parameters, such as actuator hysteresis and valve curvature, are estimated from 

performance measurements.  Non-linear optimisation[11] is used to fit the model to 

the training data. Further details of this process and the models used can be found 

in [5, 7, 11].  

 

Steady-state calibration data were collected from the cooling subsystem using a 

systematic testing procedure: 

1. Set to open loop control. 

2. Divide the control signal range into discrete intervals. 

3. Starting at one end of the range, measurements are recorded once the 

system is in steady state.  The control signal is then stepped through each 

interval, pausing after each step until steady-state is attained. 

4. The same sequence is repeated in reverse, although limitations on test time 

may necessitate a reduced number of test points.  At least one point in the 

mid-range is required in order to check for hysteresis. 

 
4.3. Thresholds and Operational Parameters 
 
The FDD methods used in the work reported here use steady state models and so it is 
necessary to determine when the system being monitored is close to steady-state.    The 
system is deemed to be in steady state, and the model predictions valid, when the following 
conditions are satisfied: 
 

κτ <
Δ

− −

t
yy kk 1                   (5a) 
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κτ <
Δ

− −

t
yy kk 1ˆˆ

                  (5b) 

 

where ky  is the current value of the system output, filtered to reduce noise, 1−ky  is 

the (filtered) value of the system output at the previous sample, kŷ and 1ˆ −ky are the 

corresponding values of the model prediction and tΔ is the sampling interval.  In 

this case, the system output is the coil outlet temperature.  The value of the 

threshold, κ , was 0.25 K and the value of the time constant, τ , was 300 seconds. 

The operational parameter that controls the sensitivity of the recursive 

parameter estimation method is the forgetting constant, γ, which is 

discussed by Fortescue et al.[13] and Salsbury[4].  The value of γ needs to be 

selected so that the forgetting rate is such that information from the whole 

operating range is retained. The value of γ depends on the excitation rate of 

the input variables relative to the data sampling rate.  A value of 70=γ  was 

found to produce a stable response that was sensitive enough to identify 

faults within a day, which was the period of time for which the faults were 

introduced in the tests.  In real systems, degradation faults are likely to 

develop over a period of months rather than hours, so rather larger, more 

conservative, values of  γ could be used.  Further work is required to 

establish more a formal process for determining suitable values of γ . 

 

There are a number of operational parameters associated with the rule-based 

diagnosis scheme.  The operating range is divided into three equally sized 
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regions, so the boundaries between the bins are at control signal values of 

0.33 and 0.67. The value of the error significance threshold, α, was set to 

0.75K.  The forgetting factor for the innovation values stored in the bins 

was 0.994.  

 
 
5. Model Calibration 
 
The model calibration data were obtained by stepping the control signal to the 

actuator, as shown in the bottom graph of Figure 5.  After stepping in 10% 

increments from fully closed to fully open, the valve was stepped back to two 

partly closed positions in order to test for hysteresis.  Figure 5 compares the 

calibration test data and the model predictions after fitting the model parameters to 

the data. The continuous lines represent the measured data and the ‘dots’ represent 

the predictions of the reference model when the measured data are deemed to be in 

steady-state.  The model predictions are within 0.75K of the measured data across 

the range of cooling coil operation, with the largest errors occurring at a control 

signal value of ~0.4.  The valve does not begin to open until the control signal 

exceeds 0.3, which indicates a significant mismatch between the range of 

movement of the valve stem and the control signal.  In fact, inspection of the 

control strategy seemed to suggest that this feature was implemented deliberately 

in order to generate a control ‘dead-band’ between heating and cooling operation.  

The heating coil control valve in the same AHU exhibited similar characteristics. 

 
Figure 5: Model calibration tests. 
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Figure 6 shows plots the normalised approach, β , of the measured data and the 

model predictions calculated by, 

aiwi

aiao

TT
TT

−

−
=β ,                                 

(6) 
 

where aoT  is the measured or predicted air outlet temperature, aiT and wiT are the 

air and water inlet temperatures respectively. The poor valve rangeability can been 

seen. The spread of the model prediction in the ccU direction is due to the non-zero 

value of hysteresis in the model.  

 
Figure 7 shows the prediction errors generated from all the normal operation data 

used during the test period.  It may be noted that: the prediction errors are generally 

less than 0.75K except in the region 47.033.0 << ccU .  The large prediction 

errors appear to be due to the valve opening at different values of control signal. A 

possible reason is a variable offset between the ranges of motion of the valve and 

the actuator, exacerbated by a combination of poor rangability, resulting in rapid 

opening, combined with significant hysteresis.  The true cause, however, could not 

be determined and since the latter effect cannot be predicted from the available 

measurements, the data in the range 47.033.0 << ccU  have been excluded from 

further consideration. The rejected data are plotted lightly in Figure 6. 

 
5.1. System and Data Characteristics  
 
The test period lasted approximately six months, from 10th June, the date of the 

model calibration testing, until 31st December.  The cooling coil covered its whole 

range of operation during this period. The measured inputs were sampled at one 
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minute intervals.  For ~30% of these samples, the plant is either shut down or there 

are start up transients. Inspection of the data revealed that the system operation 

characteristics between start up and 18:00 hours (normal working hours) and those 

between 18:00 hours and shut-down were different.  The difference appeared when 

0.0=ccU  and, with reference to Figure 6, gave an approach of approximately 

zero, slightly higher than shown.  The reason for this could not be confirmed, but it 

occurred persistently throughout the test period. Weekend days were affected in a 

similar way.  Because the step test was carried out from 18:00 hours onwards, the 

normal working day and weekend data was rejected as part of the steady-state 

filtering procedure.  This left ~20% of the data, of which ~11% were in steady 

state, and hence suitable for FDD.  

 

Figure 6: The airside approach characteristics for all the test data. 
 
 

 
Figure 7: Prediction error for the ‘normal operation’ test data. 

 

For the purposes of the rule-based diagnosis method, the operating range was 

divided into three bands to represent low medium and high operation. These bands 

corresponded to control signal ranges of 33.00.0 → , 67.034.0 →  and 

0.168.0 → .  Figure 8 shows the cumulative total number of steady-state points of 

each of these ranges over the test period.  The trends in information availability in 

each of the bands of operation can be observed for the whole test period. The 

implications for condition based monitoring are: 

• the coil is active from June to the beginning of October; 
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• only from mid June to mid July does the operation of the system span the 

full range of operating conditions and hence provide the richest 

information for diagnosis of all of the faults considered; 

• leakage faults could be detected in June and from September onwards; 

• capacity faults could only be detected from July to August, possibly into 

September/October depending on the severity; 

• faults that occur over the whole range of operation can probably always be 

detected. 

The ability to diagnose a fault unambiguously depends on the similarity of its 

symptoms to the symptoms of the other faults being considered.  This similarity 

tends to increase as the range of operating conditions is reduced. In the case 

reported here, the least ambiguous diagnosis can be expected to occur over the 

June-July period.  If more system information is required to increase confidence in 

the diagnosis at any given time, the plant will require artificial excitation to 

generate the missing data. 

 
5.2. System Faults During the Test Period 
 
Figure 9 shows the prediction errors for all the steady-state test data over the test 

period.  The two dark regions indicate the days where the prediction errors were 

generated when there was a fault in the system.  

The first fault on day 60 occurred naturally and indicates under-capacity in the 

cooling coil subsystem.  Examination of the corresponding data for the other air-

handling units in the building showed that all the air-handling units were affected 

in a similar way, which suggests that there was actually a fault in the chiller or the 

chilled water circulation system.  The chilled water temperature and flow rate were 
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not measured variables and so, in terms of the FDD methods, these chilled water 

problems would be seen as under-capacity in relation to the cooling coil subsystem 

model.  The similar prediction errors magnitudes on days ~25 and ~68 did not 

generate alarms because the fault manifested itself for a shorter duration than on 

day 60 and so did not exceed the threshold value after being smoothed by a low 

pass filter.  The second ‘fault’ occurred on day 175.  In fact this was one day’s data 

where the normal working hours data (before 18:00 hours) were used.  Because of 

the unresolved discrepancy between the evening and daily operation 

characteristics, discussed earlier, the data appear to indicate a leakage fault.  This 

day was added to the test data set in order to test the FDD methods on leakage 

detection. 

 
 

Figure 8: The cumulative number of steady-state data for the test period. 
 
 

Figure 9: Prediction errors for the test period. 
 
5.3. Performance of the Bin Method 
 
Figures 9 and 10 illustrate the performance of the Bin Method rule-based diagnosis 

scheme. For clarity, only the “end of day values” are plotted. The contents of each 

bin are shown in Figure 10 (solid line) compared to the significance threshold 

(dotted line) and zero (dashed line). The bottom plot indicates the age of the data. 

The younger the data, the higher the potential reliability of the diagnosis. After day 

120, the operating point is never in the part of the range corresponding to the 

middle and high bins and so the quality of the diagnosis becomes a function of how 
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representative the old information is with regard to the current condition of the 

system.  

 

Figure 10 shows the transgression of the significance threshold by the prediction 

errors generated by the two faults at day 60, in the high bin and at day 175 in the 

low bin.  Figure 11 displays the output of the expert rules analysis of the bin 

values.  Lack of evidence of a fault in any of the four categories indicates normal 

operation.  If the prediction errors exceed the significance threshold but the bin 

values do not correspond to any one of the three fault signatures, leakage, under-

capacity or sensor offset, then the fault is classified as ‘other’.  Using this scheme, 

both faults are diagnosed as expected.  Although the under-capacity fault (day 60) 

only lasted for one day (Figure 9), the diagnosis indicates a longer period.  This is 

because there were no suitable data samples during the following days, and so the 

high bin innovation remained constant until normal operating data in the high duty 

range were available on day 65. 

 
 
5.4. Performance of the Recursive Parameter Estimation Method 
 
 
Figures 11 and 12 illustrate the performance of the parameter estimation diagnosis 

method.  As for Figures 9 and 10, the “end of day” values only are plotted for 

clarity.  The current values of the fault parameter estimates are shown in Figure 12 

(dot-dashed line).  These values are bounded by the confidence limits described by 

Equation 3 (solid lines).  The initial parameter estimates (dashed line) are the 

reference against which the confidence intervals on the current parameter estimates 

can be compared, determining normal or faulty operation.  So long as the 
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confidence limits associated with the current parameter estimates span the initial 

parameter estimates, the system is deemed to be operating normally.  If the 

parameter estimate changes so that the confidence interval no longer includes the 

initial estimate, an alarm for the corresponding fault is generated. If an alarm 

would be generated for more than one fault, each of the specific fault indicators is 

set to show ‘no fault’ and the ‘other’ classification is indicated.   

 
 

Figure 10: End of day bin values for the test period. 
 

 
 

Figure 11: Fault evidence output for the bin method scheme. 
 

 

Figure 13 demonstrates that the under-capacity fault (day 60) is correctly 

identified, and the tool continues to indicate the presence of the fault for the same 

reasons as for the bin method.  The ‘leakage fault’ (day 175) is not diagnosed as 

expected; the expert rules applied to the parameter estimates generate an ‘other’ 

diagnosis.  The size of the prediction error generated for the leakage day is so large 

and abrupt that is causes the parameter estimator to become unstable. This is 

demonstrated by the erratic estimates for all three parameters on day 175, in 

particular the UA scaling factor.  This highlights one of the limitations of this 

approach: It is designed to track slow changes in system characteristics and not 

abrupt changes.  The magnitude of the prediction error generated by the under-

capacity fault on day 60 increased gradually over a few hours and so could be 

handled by the scheme.  However, the correction of the parameters after the fault, 

around day 70, caused a false alarm.  One solution is to decrease the sensitivity of 
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the parameter estimator; however, in this case, this would have resulted in the 

under-capacity fault not being detected.  The trade-off between sensitivity and 

robustness is more critical when dealing with quickly developing or intermittent 

faults.   

 

Another issue is the coupling between the parameter estimates.  This is 

demonstrated in Figure 12 when the all the parameter change at once (day 60 and 

175 in particular).  The UA scaling factor only has an influence on the output of 

the model when there is heat transfer taking place.  When the control signal, Ucc, is 

zero and the leakage parameter, l, is zero, the UA scaling factor has no influence.  

If however, the parameter estimator changes the value of the leakage parameter 

such that l > 0, the model predicts that there is chilled water flowing through the 

coil even when Ucc = 0 and, hence, that the UA scaling factor has an influence on 

the model output.  As a result, the estimator can reduce the prediction error by 

changing the estimated value of the UA scaling parameter even if Ucc = 0.0.  This 

can lead to unexpected behaviour by the estimator in which the model prediction 

error is minimised through the compensatory behaviour of the parameters.  This 

contributes to the parameters not returning to their original values when normal 

operation resumes after the leakage fault.   

 
Figure 12: End of day parameter estimates for the test period. 

 
 

Figure 13: Fault evidence output from the RPE scheme. 
 

 
5.5. Cost of Implementation 
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It was found in this investigation that the majority of the cost associated with 

condition monitoring is in the engineering time required for configuration.  The 

implementation of the software was carried out by the authors and others 

associated with the project.  A subjective estimate of the effort that each of the 

various tasks requires is listed in Table 3.  These are estimates of the effort that 

would be required for the authors to implement the same FDD methods on a 

similar subsystem in one of the other air handling units in the test building.  It is 

expected that the effort required would decrease as the methods and their 

application mature.  

 
Table 3: Estimated time required to implement the FDD software. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The times listed in Table 3 assume complete familiarity with the target 

system. The time required to install and configure the diagnostic procedures 

for the first time in an unfamiliar building is considerably longer because of 

the need for:  

• understanding unexpected process control strategies; 

• familiarisation with the plant, control system and associated data; 

• assessing the communications capacity of the building management 

system; 

• establishing how the plant can be made to perform the calibration tests; 

• arranging access to the building plant, and agreeing suitable times for 

testing; 

• fault finding on failed network communications; 

• establishing how the control system handles data logging faults. 
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6. Conclusions 
 
Two methods for the condition based monitoring of HVAC systems have been 

implemented in this work. Both methods employ identical first principle models of 

the sub-system. In the first method, detection is based on the transgression of a 

significance threshold by the filtered prediction errors.  Diagnosis is based on a 

crisp rule set that describes the relationship between the prediction errors in three 

intervals of the operating range and three fault conditions.  The second method 

used the prediction errors to recursively re-estimate the values of three model 

parameters that represent the three possible faults.  A fault is detected when the 

confidence limits associated with the current parameter estimate no longer include 

the initial parameter estimate.  The diagnosis comes directly from the parameter 

values. Rules are employed only to identify ambiguous diagnoses.  Both methods 

were applied to data gathered from a cooling coil sub-system installed in a real 

building. The test period lasted for six months and hence, the operating conditions 

covered the entire coil duty.  

 

Both methods are suitable for on-line application.  Faults can be detected and some 

level of diagnosis is possible using both approaches using both approaches. The 

Bin method scheme is simpler algorithmically and in its implementation.  The RPE 

method performs detection and diagnosis simultaneously but is inherently more 

sensitive to unmeasured disturbances.  More robust fault detection could be 

obtained by also running a model with fixed parameters that represent correct 

operation.  Both methods are unable to diagnose the physical cause of the fault, 
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given the constraints of the available measurements and the simplicity of the 

approaches.  Both approaches do, however, offer significant fault isolation and 

fault symptom information useful to the maintenance engineer. 
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Figure 1: A model-based fault detection scheme. 
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Figure 2: The expert rule fault diagnosis scheme. 
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Figure 3: The recursive parameter estimation scheme. 
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Figure 4: Section through the test AHU. 



 32 

 
 

Figure 5: Model calibration tests. 
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Figure 6: The airside approach characteristics for all the test data. 
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Figure 7: Prediction error for the ‘normal operation’ test data. 
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Figure 8: The cumulative number of steady-state data for the test period. 
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Figure 9: Prediction errors for the test period. 
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Figure 10: End of day bin values for the test period. 
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Figure 11: Fault evidence output for the bin method scheme. 
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Figure 12: End of day parameter estimates for the test period. 
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Figure 13: Fault evidence output from the RPE scheme. 
 

 


