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Abstract 

 
The research presented in this thesis focuses on the development of wireless, real time 

performance monitoring technology within the resistance training domain. The 

functionality of current performance monitoring technology and differences in 

monitoring ability is investigated through comparative force platform, video and 

accelerometer testing and analysis. Determining the complexity of resistance training 

exercises and whether performance variable profiles such as acceleration, velocity and 

power can be used to characterise lifts is also investigated. A structured user-centred 

design process suitable for the sporting domain is proposed and followed throughout the 

research to consider the collection, analysis and communication of performance data. 

Identifying the user requirements and developing both hardware and software to meet 

the requirements also forms a major part of the research. The results indicate that as the 

exercise complexity increases, the requirement for sophisticated technology increases. 

A simple tri-axial accelerometer can be used to monitor simple linear exercises at the 

recreational level. Gyroscope technology is required to monitor complex exercises in 

which rotation of the bar occurs. Force platform technology is required at the elite level 

to monitor the distribution of force and resultant balance throughout a lift (bilateral 

difference). An integrated system consisting of an Inertial Measurement Unit (both 

accelerometer and gyroscope technology) and a double plate force platform is required 

to accurately monitor performance in the resistance training domain at the elite level. 
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Chapter 1 

1.0 Research overview 

 

TARGET OBJECTIVE: 

Outline the main objectives of this research and overall research structure. 

TARGET RESEARCH QUESTIONS: 

 What issues must be considered when introducing new technology to the sports 

domain? 

 What does this research focus on? 

 What are the objectives of the research? 

 How is new knowledge acquired and documented? 

1.1 Introduction 

Interest in sports research and development has dramatically increased in recent years. 

Technology in sport is becoming a primary focus in both sports and sporting events 

where athletes, spectators and coaches demand accurate results. Such technology is 

being used to target both health and fitness benefits of physical activity. Whether health 

or fitness benefits are targeted, training specificity is dependent upon the user and their 

goals, the selection of training inputs and adaptation of the principles of training 

required to meet individual needs. Similarly, the technology developed to enhance 

Figure...  
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performance analysis must consider the user needs and elements that support sports 

performance understanding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The areas that impact sports performance understanding are illustrated in Figure 1.1. 

Research and development projects, specific sport testing sessions and communication 

of the testing results to the coaches and supporting staff is required to increase 

performance understanding (Reiser et al 1996). The specificity of the sports testing 

session and communication effectiveness both depend upon sufficient research and 

technology development. Sports testing sessions are reliant upon research and 

development to provide the technology for collecting multiple performance parameters, 

the value of data collection and analysis is limited if it is not communicated to the user.  

Performance understanding is inhibited when the capability set of the technology and 

communication of data do not meet the requirements of the user (Bailey 2005). A 

system may be rejected if it does not perform the desired user tasks or the system 

functionality is too complex. A common problem experienced when introducing 

technology is that the user understands the current system but the developer does not, 

whilst the developer understands the new technology and the user does not. Therefore, 

understanding the user and product capability is fundamental to the design process.  The 

gap between the developer and user knowledge can be reduced through user-centred 

Figure 1.1 The cyclic dependency between research, testing, 
communication and performance understanding in the sports domain 
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design (Breen 1998). The knowledge required to bridge the gap between the developer 

and user through user-centred design is presented in Figure 1.2. Identifying and 

implementing methods to promote user-centred design forms a major part of this 

research. 

 

1.1 Research focus 

The research conducted in this thesis aims to develop a user-centred structured design 

process applicable to the sports domain that considers the collection, analysis and 

communication of data to increase performance understanding. The main research 

question is as follows: 

How should hardware and software design and development be implemented in the 

sports domain to facilitate performance understanding and accommodate changing user 

requirements? 

To develop and apply a structured design process, a sports domain requiring technology 

development to improve performance understanding was selected. The resistance 

training domain was selected due to the lack of monitoring technology currently 

available in the gym environment. Current monitoring methods in the gym environment 

Figure 1.2 The knowledge required to bridge the gap between the developer and user to promote user-centred 
design 
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are dominated by cardiovascular machines which provide real time feedback, the 

inclusion of electronic user interfaces to provide feedback is becoming a necessity at the 

recreational and elite level (Smith 2007). Therefore, the resistance training domain 

requires performance monitoring technology development from a hardware and 

software perspective to ensure data is collected, analysed and communicated.  

Consequently, the focus of this thesis covers several areas to ensure that the research 

and development life cycle illustrated in Figure 1.1 is achieved. The design 

methodology needs to accommodate capturing requirements, product functionality, the 

hardware and software design of a system and the application of the methodology to 

other domains. The increase in the flexibility of the design methodology as each of the 

elements is targeted is illustrated in Figure 1.3. In order to target each element the 

research focus covers the following areas:  

  The development of a user centred design process methodology for the sporting 

domain. 

 The application of the methodology to design a user-centred, elite based, 

performance monitoring system for the resistance training domain. 

 Application of the methodology to software design and another sporting domain 

to investigate the flexibility of the methods. 

Figure 1.3 Representation of the overall research focus: To develop a user centred and flexible design 
methodology that accommodates the collection, analysis and communication of data across domains. 
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1.2 Research objectives 

The research objectives have been defined to target the elements identified in Figures 

1.2 and 1.3 to ensure user-centred design and flexibility is promoted.  How to structure 

the research to promote user-centred design is discussed in Chapter 2, this methodology 

is followed throughout the remainder of the research. An understanding of the current 

practice and research in the resistance training domain to identify research gaps is 

achieved by conducting a thorough literature review in Chapter 3. Capturing user 

requirements is investigated in Chapter 4, whilst gaining an understanding of the 

product capability and functionality is targeted in Chapters 5-7. Embodiment design is 

also documented in Chapter 7 whilst consideration of data presentation and flexibility of 

the design methodology through software development is addressed in Chapter 8. 

Finally, the resultant design evaluation is discussed in Chapter 9. The objectives 

according to each Chapter are listed in Table 1.1.  

Table 1.1 Summary of the research objectives targeted in each Chapter 

Chapter Objectives 

2  Design a flexible systems modelling approach that supports user-centred design to 
be applied to the resistance training domain. 

3  Gain an understanding of exercise physiology to understand the effects of 
resistance training. 

 Identify training inputs and outputs to determine which are most relevent to the 
resistance training domain.  

 Identify the current monitoring techniques used within the resistance training 
domain and investigate the benefits and limitations of each. 

 Identify the current gaps in research and technology development in the resistance 
training domain.   

4  Collect both qualitative and quantitative data to define user requirements from an 
elite and recreational perspective. 

 Re-iterate user requirements to consider user type and level of experience 

5  Conduct testing to identify the components of simple and complex exercises using 
video, force platform and accelerometer technology. 

6  Analyse the execution of a simple linear exercise to determine accelerometer and 
force platform relative and absolute validity when compared to video analysis. 

7  Determine which methods of jump height calculation are most suitable for 
accelerometer application. 

 Investigate the ability to monitor jump performance to determine readiness to 
perform using a waist mounted accelerometer.  

 Design a monitoring system that can monitor both simple and complex exercises in 
the gym environment. 

8  Investigate the flexibility of the design methodology by considering the 
commmunication of the data to the user through software design. 

9  Evaluate the research methodology and performance monitoring system design 
according to the original objectives and research questions. 
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1.3 Acquiring new knowledge 

Acquiring new knowledge was targeted by answering the core questions identified in 

Figure 1.4 to develop and follow a methodology that facilitates the design of an elite 

system capable of monitoring a range of exercises. The corresponding Chapter(s) 

targeting each question are also identified in Figure 1.4. At the end of each Chapter a 

summary of the new knowledge is provided to demonstrate the need for each stage of 

research. A further breakdown of the each Chapter is presented in Figures 1.4-1.6 to 

illustrate the overall research structure. 

 

Figure 1.4 Key questions that need to be answered to acquire new knowledge and target the research objectives 
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Figure 1.5 Research structure (Chapters 1-6) 
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Figure 1.6 Research structure (Chapters 7-9) 
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Chapter 2 

2.0 User-centred design 

TARGET OBJECTIVE: 

Design and implement a structured and combined systems modelling approach that 

supports user-centred design to be applied to the resistance training domain. 

TARGET RESEARCH QUESTIONS: 

 Which enterprise modelling techniques promote user-centred design? 

 Which system process models promote user-centred design? 

 How should the modelling techniques be combined to provide a user-centred 

research and design methodology?  

 

2.1 Introduction  

The aim of this Chapter is to investigate how different design process models and 

modelling techniques either promote or restrict user-centred design and whether 

different techniques can be combined to optimise user-centred design in the sporting 

domain. Many user modelling approaches fail due to the reliance upon one specific 

technique. There is evidence to suggest that substantial leverage can be gained by 

integrating modelling (Knudson and Morrison 1997, Luttgens and Hamilton 1997). 
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Relying upon one enterprise modelling technique alone does not consider a range of 

users and is less likely to achieve all three objectives: to collect, analyse and 

communicate performance monitoring data.  The specificity of a system is dependent 

upon identification of user requirements in a particular domain and targeting these by 

adapting the foundation system components. As explained in Chapter 1, the aim of this 

research is to consider the collection, analysis and communication of performance data. 

Hence, how performance data is communicated to the user is crucial to performance 

understanding. Bridging the gap between the user and developer is reliant upon 

successful user-centred design (Luttgens and Hamilton 1997). The research and 

literature relating to user-centred design and the development of a user-centred design 

methodology is discussed in this Chapter.  

 

2.2 What is user-centred design? 

A visual interpretation of user-centred design is illustrated in Figure 2.1 (Noyes and 

Baber 1999). The need to consider all the outer domains before the interface can be 

developed is illustrated by the order of the rings and their distance from the user. The 

interface can involve both physical and logical systems. The modelling techniques 

suitable for both hardware and software development to increase the flexibility of the 

combined modelling approach are considered in this Chapter. 

 

 

 

 

 

 

 

 

 

 

 Figure 2.1 Visual representation of user-centred design (Noyes and 
Baber 1999) 
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The main purpose of user-centred design is to study human-technology interactions and 

ensure the system supports the user, minimises error and promotes productivity (Noyes 

and Baber 1999). Designing for the user, the interface and system can have a number of 

interpretations i.e either designing for the capabilities of the users (in terms of human 

physical and cognitive capabilities) or design of the work they are likely to perform 

(Norman and Draper 1986). The first interpretation lends itself to the traditional domain 

of ergonomics, whilst the second forms the term “user-centred design”.  

 

An interface does not simply refer to the point of contact between a human and 

computer system (even a door can be considered to have an interface), therefore the 

concept of a system is determined by the application (Carroll 1985). For example, the 

physical and operational aspects of a mechanical system are different to those of a 

database that stores numerous data inputs. It is suggested that in the simplest form, a 

system comprises many components whilst a physical or logical interface provides the 

link between the user and the system capability set (Noyes and Baber 1999).Whether 

the interface is a physical or logical application, the developer must still ensure that the 

user is considered at every stage of design in all design domains. It is suggested that 

doing so can reduce error in user-system interaction from five to one percent (Le Peuple 

and Scane 2003). 

 

Standards regarding product usability and Human-Computer Interaction (HCI) are 

primarily concerned with; (i) the use of the product (effectiveness, efficiency and 

satisfaction), (ii) the user interface and interaction, (iii) the process used to develop the 

product and (iv)  the capability of an organisation to apply user centred design (Bevan 

1999). Several standards exist to accommodate the requirements for human- centred 

design from a hardware and software perspective. The ISO 9241-210:2010 standard 

provides recommendations for human-centred design principles and is intended to be 

used by those managing design processes for hardware and software components of 

interactive systems. In order to consider the collection, analysis and communication of 

performance data within the sports domain, both software and hardware development is 

required. Therefore, using this standard to identify the similarities and differences 

between hardware and software design requirements will facilitate the design of a user 

centred methodology that accommodates both perspectives.   
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The ISO 9241-143:2012 standard provides recommendations for the design and 

evaluation of ‘forms’ in which the user inputs data using dialogue boxes to update and 

store system information. The designer must therefore consider the options available to 

the user and whether they accommodate the tasks and information required to operate 

the system. This standard is therefore more applicable to the software system design. 

The main design considerations derived from the identified standard are indicated 

below: 

 

2.2.1 Persona Centred Design 

To promote user centred design, a ‘persona’ of the user’s need may be created. This 

fictional character possesses the characteristics of the user based upon observed typical 

behaviour, questionnaire responses and interviews. The personas created reflect the 

primary stakeholders of the user group. A secondary persona is often created, this 

persona does not reflect the requirements of the primary stakeholder group and is not 

the main design focus but allows the designer to considers potential human-machine  

interactions that may not be represented by the typical stakeholder. This allows misuse 

of the system to be predicted and accounted for even when the main user group is 

satisfied. Persona centred design is useful for creating a shared understanding of the 

user group and provides a context for the design.  

 

However, personas are generalised and may be based upon characteristics that are 

stereotypical rather than factual. Designers should be aware that representing users with 

pre-determined personas could result in misconception of the actual user requirements. 

The focus of this research is to accommodate changing user requirements from a 

hardware and software perspective within the sporting domain, as the persona centred 

design characteristics are fixed, changing user requirements would not be 

accommodated should this method be used. However, observation of the user within the 

environment of interest provides invaluable information that may not be articulated by 

the user. Therefore, it is suggested that observational techniques to understand the 

typical stakeholders plays an important role in defining user requirements and facilitates 

user centred design.  
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2.2.2 User-centred design in the sports domain 

The development of technology to monitor performance understanding in the sports 

domain has led to an increased reliance upon supporting technology to derive 

‘meaningful’ results. The need to collect, store and analyse data is no longer considered 

exclusively for the elite and the demand for user friendly interfaces for non-expert users 

has increased. Despite the increased need for such user analysis and design, research in 

the sports domain is limited. Previous work conducted by Kranz et al 2007 outlines the 

challenges within the sports domain in which end users without a technical background 

may not be able to communicate requirements, whilst the novelty of the proposed new 

system may not be understood. New and adapted processes are therefore needed to elicit 

requirements and engineer systems (Kranz et al 2007).  

 

2.2.3 Classification of user-centred design 

User-centred design focuses on understanding the user, the user interaction with the 

environment and tasks rather than the presentation and behaviour for specific interaction 

techniques (Bowman 2004). Designing a system that requires both hardware and 

software functionality and user interaction must therefore target the engineering and 

cognitive traditions associated with Human-Computer Interaction (HCI) (Traetteberg 

2002). The engineering perspective focuses on formal methods within software 

engineering and implementation technology, the cognitive perspective is based upon 

human behaviour and resultant task analysis. In order to consider hardware and software 

design in this research, user analysis through observational methods and task analysis 

and formal software modelling approaches must be investigated to identify the most 

user centred methods.  

 

Numerous modelling techniques exist, whether the end product is a service, business 

enterprise, physical or logical system. Systems engineering process models and 

enterprise modelling techniques aim to capture and target user requirements (Bowman 

2004). As the collection, analysis and communication of data is considered in this 

research, it is suggested that one technique alone is not suitable. Combining the most 

user-centred, flexible, iterative and systematic elements from each is investigated to 

target the sporting domain. An overview of this approach is illustrated in Figure 2.2, the 

techniques have been grouped according to systems engineering process models and 
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enterprise modelling techniques. A brief review of systems engineering process models 

and enterprise modelling techniques is given to identify the elements of each that 

support an overall user-centred design process. The overall aim is to select an 

appropriate process model, identify the most suitable modelling concepts to support the 

model and combine the techniques that support user-centred design from an engineering 

perspective.  
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Figure 2.2 The elements to be extracted from systems engineering process models and enterprise modelling techniques to form a combined modelling approach 
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2.3 Systems engineering process models 

There is no commonly accepted definition for systems engineering, however, the 

different views share some commonalities that form the fundamental objectives, these 

are outlined below (Landeur 1995, Galitz 2007): 

 

1. A top down approach that views the system as a whole so that understanding 

how all the components fit together is considered. 

2. A life cycle that considers each design stage. 

3. A thorough approach to initial definition of user and system requirements  

4. An interdisciplinary team approach, within which all design objectives are 

addressed.  

How these objectives are achieved depends upon the type of design process model 

applied, whilst the preference for one of the process models is believed to be subjective 

(Galitz 2007). In order to determine the user-centred, iterative, flexible and systematic 

elements of each, a brief review of common process models is given in sections 2.3.1-

2.3.4. 

2.3.1 Waterfall process model 

The waterfall method presented in Figure 2.3 was primarily designed for software 

development, initially only comprising of five to seven steps, the model was further 

developed into an eight step process. The overall technique suggests that the next step 

should not be executed until the preceding step has been achieved and perfected.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 The waterfall process model adapted from Blanchard and Fabrycky 

(1997) 
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2.3.2 Spiral process model 

This method is a “risk driven” approach, although it is considered to be an adaptation of 

the waterfall model, it incorporates the use of prototypes and re-evaluation (Blanchard 

and Fabrycky 1997). The model is designed to implement an iterative approach, within 

which the system and user requirements are revisited, prototypes produced and design 

requirements adjusted accordingly. This cyclical and iterative approach is presented in 

Figure 2.4, each turn of the spiral passes through the following stages (NASA 1994): 

 Determine the objectives, alternatives, and constraints on the new iteration.  

 Evaluate alternatives and identify and resolve risk issues.  

 Develop and verify the product for this iteration.  

 Plan the next iteration 

 

  

 

 

 

 

 

 

 

 

 

 

 

2.3.3 “Vee” process model 

This method was produced to target the “technical aspect of the project cycle”, the 

overall goal is to start with the user needs and finish with a user validated system 

(Nguyen 2006, Blanchard and Fabrycky 1997). It is suggested that this is achieved by 

decomposition of the system with an emphasis on requirements driven design and 

testing. All design elements must be traceable to one or more system requirement and 

Figure 2.4 The spiral process model (Boehm 2008) 
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every requirement must be addressed by at least one design element (Forsberg et al 

2005). The decomposition and integration process forms the “vee” shape of the model 

illustrated in Figure 2.5.  

 

 

 

 

 

 

 

 

 

2.3.4 System engineering process model summary 

Each process model has key advantages and disadvantages. However, as the aim is to 

promote user-centred design, the ability to accommodate changing user requirements is 

of most importance. The classical waterfall method, although simplistic, is not flexible 

or tolerant of changing user requirements, once they have been identified there is 

limited room for revisiting the previous step to alter the design. In contrast, the spiral 

model focuses on re-iteration throughout the design process allowing the requirements 

to be revisited. However, the developer needs to ensure that the whole system is 

considered in the early design stages so that problems do not occur due to unforeseen 

subsystems of the design. The “vee” model incorporates user input throughout the 

design process. It is of paramount importance that no design requirements are formed 

without a corresponding user requirement. Furthermore, the success of the system is 

evaluated through user validation. Testing is required throughout to allow for changes to 

the design, whilst decomposition of the overall system ensures that all subsystems are 

known before implementation occurs. An overview of the key process model 

advantages and disadvantages is presented in Table 2.1.   

Figure 2.5  The “vee” process model 
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Table 2.1 The advantages and disadvantages of systems engineering process models 

PROCESS MODEL ADVANTAGES DISADVANTAGES 

 

WATERFALL 

 

1. Enforces the idea that time spent early on making sure 

requirements and design are correct saves you much time 

and effort later. 

2. Emphasis on documentation (such as requirements 

documents and design documents). 

3. Simple and disciplined approach. 

1. Users may not know exactly what requirements 

they need before reviewing a working prototype. 

2. Developers may not be fully aware of the 

capability set of the technology before testing 

has begun. 

3. Requirements are subject to change. 

4. Difficulties at the implementation stage cannot 

always be predicted. 

5. General lack of flexibility means that it can result 

is both time and money being wasted. 

 

SPIRAL 

1. Iterative approach accommodates change in requirements. 

2. Flexible. 

3. Some functionality of the product can be delivered quickly to 

the user. 

4. Management of risk and uncertainty. 

5. Encourages user input in the early design stages. 

1. Prototyping multiple times may be time 

consuming and costly. 

2. Complex process, good communication required 

between developers.  

3. Does not view system as a whole from the early 

stages, may cause problems in the latter stages. 

 

VEE 

 

1. Verification and validation are done simultaneously. 

2. Enforces a strict process flow. 

3. Errors are addressed in the stage they occur. 

4. The user requirements are considered at each stage. 

5. Encourages user input in the early design stages and judges 

success through user validation. 

1. Great resources needed to provide a review at 

each stage. 

2. Complex process, good communication required 

between developers.  
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The “vee” process model and spiral process model would both provide a structure that 

would promote user-centred design, however, it is suggested that as this research is 

focused on the collection, storage and communication of data,  the “vee” model is most 

suitable as it considers decomposition of the overall system. Therefore, this method 

would prevent overlooking subsystem elements. Despite this, the spiral process focus 

upon re-iteration of design and prototypes is an element that could be combined with 

the “vee” model to further improve the flexibility of the process model. The “vee” 

model and spiral model re-iteration characteristics therefore form the basis of the 

proposed combined modelling approach. However, how this model is followed depends 

upon the modelling techniques used to fulfil the process goals. A review of the most 

common enterprise modelling techniques is given in the nest section to determine which 

are most suited to a re-iterative “vee” process model.  

2.4 Enterprise modelling 

Enterprise modelling is an established technique which has been applied across a 

diverse range of business scenarios, in generic and specific applications, to aid the 

requirements definition, design, implementation and test of a system (Paterno and 

Alfieri 2001). A complete enterprise model is comprised of a set of purposeful and 

complementary models which describe the various aspects of an enterprise according to 

specific modelling constructs and semantics (Aguiar 1995). Within enterprise 

modelling, different paradigms and modelling constructs have been developed to 

represent the structure, processes, resources, information, goals and constraints of a 

business (Vernadat 1996, Gruninger 1996). A method of classification was proposed by 

Aguilar-Saven (2004) in the form of a simple selection framework presented in Figure 

2.6.  Four categories have been used to describe the purposes of business process 

models within a modelling framework (Fox and Gruninger 1998):  

(i) Descriptive models for learning about a system,  

(ii) Descriptive and analytical models for decision support, process development and 

design,  

(iii) Enactable or analytical models for decision support during process execution and 

control,  

(iv) Enactment models for support in information technology.  
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Of the four purposes, descriptions to promote learning and decision support for product 

development are extremely important in the early design stages. As research progresses, 

the need to use modelling techniques to provide decision support for product execution 

increases. The techniques are further divided into those that are passive and active. The 

ability to make changes to a system without remodelling the entire system is known as 

an “active approach”, whilst those that require information to be reconstructed are 

referred to as “passive” (Smith 2007). The ability of each modelling technique to 

achieve the four purposes is demonstrated by the size of the oval and how far it spans 

across each purpose. CIMOSA, GRAI/GIM, Workflow and UML modelling provide the 

most flexibility as they span across at least three purposes. However, as stated by 

previous research, despite continual efforts, the creation of a generic modelling 

framework that captures information at all stages of the system/enterprise life cycle has 

not yet been achieved (Smith 2007). A brief review of the most commonly used 

techniques is presented in the following section to identify the most user-centred, 

flexible, iterative and systematic elements of each.  

2.4.1 IDEF 

The Integration DEFinition for function modelling (IDEF) suite of modelling 

techniques was primarily used as a modelling and analysis method for business process 

engineering but is now commonly used for both systems and software engineering 

Figure 2.6 Enterprise model selection framework (Aguilar-Saven 2004) 
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(Smith 2007). The basis of the technique was formed from a structured methodology 

known as the Structured Analysis Design Technique (SADT) and has since expanded 

into multiple tools (e.g IDEF0, IDEF3, IDEF1X). The overall concept requires the 

modelling of decisions, actions and activities using block diagrams with supporting text 

to define the relationships between each (Dewitte and Porteau 1997).  

2.4.2 GRAI 

The Graphs with Results and Activities Interrelated (GRAI) methodology was 

originally designed to model automated production systems (Dougmeingts 1989). Four 

basic views are used to categorise the system:  

1. Physical view 

2. Functional view 

3. Decision view 

4. Information view 

In contrast to the IDEF0 method which only considers the functional and physical view, 

GRAI incorporates decisional aspects and can therefore support changing user input 

(Chen 1997). However, it is also suggested that this method duplicates information that 

can be extracted using other techniques, the consideration of different modelling 

“views” is also shared by the CIMOSA technique.  

2.4.3 Computer Integrated Manufacturing Open System Architecture (CIMOSA)  

Computer Integrated Manufacturing Open System Architecture (CIMOSA) is 

an enterprise modelling framework, which aims to support the enterprise integration of 

machines, computers and people (Massacci et al 2007, Aguiar 1995). The framework is 

based on the system life cycle concept, and offers a modelling language, methodology 

and technology to support these goals. The reference architecture is focused on by 

developers to provide a “blueprint” for the subsequent design of the system should it be 

applied to other domains, promoting the flexibility of the framework method. CIMOSA 

aims to integrate enterprise operations by means of efficient information exchange 

within the enterprise using four perspectives (Massacci et al 2007).  

 

1. The function view: describes the functional structure required to satisfy the 

objectives of an enterprise and related control structures. 

2. The information view: describes the information required by each function. 

http://en.wikipedia.org/wiki/Enterprise_modeling
http://en.wikipedia.org/wiki/System_life_cycle
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3. The resource view: describes the resources and their relations to functional and 

control structures. 

4. The organization view: describes the responsibilities assigned to individuals for 

functional and control structures.  

 

Previous work details the progressive development of a system from the generic to 

particular level in reference to the CIMOSA reference architecture (Vernadat 1996, 

Gruninger and Fox 1996, Smith 2007). The reference architecture presented in Figure 

2.7, provides a structure that forces the developer to work methodically from the generic 

to particular level, targeting all the modelling views. The formal application of 

CIMOSA requires dividing the system or enterprise in domains that are required to 

achieve a certain goal, each domain is constructed by domain processes to be 

communicated by events and results. Each event “triggers” a set of business processes 

and enterprise activities which combine to cause an end result (Vernadat 1996).  

 

This method allows for structured decomposition of all the processes within the system 

enterprise from multiple modelling views and levels. The CIMOSA framework forces 

the developer to progress from a generic to particular design approach by collecting 

detailed information through decomposition. However, although the reference 

Figure 2.7 The CIMOSA reference architecture promoting design from the generic to particular level  
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architecture does provide a “blueprint”, determining how to achieve this transition from 

generic to particular design approach is not fully defined and requires other modelling 

strategies such as the Structured Systems and Analysis Design Method (SSADM).  

2.4.3 Structured Systems Analysis and Design Method (SSADM) 

Systems analysis is considered to be a “fact-finding” stage which focuses on producing 

models and diagrams of the current system (Bowman 2004). It is another form of 

enterprise modelling that promotes descriptive learning and decision support during the 

process development. SSADM focuses on the feasibility, analysis and design stages of 

the design process (illustrated in Figure 2.8). Data flow modelling is utilised to form 

context diagrams and document flow diagrams which establish the internal and external 

entities within the domain.  These models can be developed into data flow models of the 

proposed system, allowing the developer to predict the impact of the new system.  

Using SSADM breaks down complex systems into smaller 

manageable blocks using “top down functional 

decomposition”, the method requires effective use of 

diagrams to map the system.  The scope of SSADM is 

clearly defined, the objective is to understand the physical 

aspects of the system, how tasks are currently completed and 

how this can be improved from a logical point of view 

(Bowman 2004). Utilising this modelling technique can 

result in an abundance of data that may be difficult to 

interpret. This is overcome by identification and 

categorisation of the separate domains within the system, a 

process known as domain classification. This method is 

shared by the CIMOSA methodology and SSADM aids this 

process by encouraging the developer to identify the domain 

processes and business processes within each domain.  

 

2.4.4 Domain Classification 

Domain analysis supports system reuse by capturing domain expertise and can also 

support communication, training, tool development and system specification and design 

(Kang 1990). It is achieved by examining the functions that need to exist separately 

Figure 2.8 The systems development 
life cycle using SSADM [Bowman 

2004) 
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within a system and the relationship between each. The structured process enables the 

developer to target the requirements defined previously at the partial level in the 

CIMOSA cube whilst incorporating the entity relationships needed to improve the 

communication links at the particular level. Research has suggested that domain 

classification should occur before systems analysis is conducted (Prieto-Diaz 1987), 

however, it could be argued that appreciation of the communication channels within the 

system cannot be understood until the data flow types and directions have been 

identified (Mullane 2010).  

2.4.5 Business process analysis 

Investigating the tasks likely to be executed within the classified domains requires 

further analysis at a lower level. Using the domain process breakdown as a starting 

point, business process analysis can be employed to further analyse the processes that 

will be conducted in each domain and the functionality needed to support this. The 

decomposition of the domain process via the business processes leads to identifying the 

enterprise activities. Business processes organise and link enterprise activities based on 

their sequence of execution, reflecting the behaviour of the enterprise (Ortiz 1999). 

Modelling the domain process within the categorised domains further decomposes the 

generic structure into specific “use-case” scenarios ensuring the developer progresses to 

the particular level of the CIMOSA reference architecture.  

A business process is a set of logically related business activities that combine to deliver 

something of value to the customer (Cousins and Stewart 1992). The method involves 

decomposing the processes within the environment and identifying the internal or 

external entities required to carry out such processes. Using functional decomposition, 

operational aspects of the new system are gained from the user perspective. This allows 

the developer to design a software structure that accommodates the order of execution 

and the outputs desired by the user. Business process analysis was conducted in the 

weightlifting domain to decompose functionally the processes required to operate the 

proposed system (Kosanke 1995).   

2.4.6 Evaluation of current enterprise modelling techniques 

Although the framework proposed by Aguilar-Saven (2004) provides a guide for 

selection, it is suggested that considering only the four purposes and two approaches 

(passive and active) does not fully communicate the functionality of each method. The 
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framework does not demonstrate the reliance of the more applicable techniques upon 

the less flexible methods. For example, as previously discussed, the CIMOSA 

framework would not be effective if decomposition at a lower level was not conducted, 

i.e without the inclusion of SSADM and data flow modelling techniques, domain 

processes, business processes and enterprise activities would not be identified, 

preventing the transition from the generic to particular design level. Consequently, 

SSADM is a construct of the CIMOSA framework, supporting further the view that 

enterprise modelling techniques are less effective if used in isolation and are likely to be 

more “user-centred” should a combined approach be taken (Peuple and Scane 2003). As 

a result, it can be concluded that the most effective design approach would utilise the 

CIMOSA reference architecture and incorporate the SSADM approach to enable 

decomposition of the system.  

 

2.4.7 Combining process models and enterprise modelling techniques 

Using the enterprise modelling techniques in isolation is not effective (Noyes 1999) 

since a process model to which the modelling techniques can be applied needs to be 

identified. As a result, it is suggested that elements of the “vee” process model are 

combined with the CIMOSA reference architecture and SSADM modelling techniques. 

The overall combination of methods is presented in Figure 2.9. The importance of 

testing at each stage, decomposition and integration of subsystems, incorporating user 

input in the initial stages and evaluating the system through user validation are all 

concepts that are extracted from the “vee” process model. Working from a broad design 

perspective and encouraging the developer to collect user and system information to 

narrow the design, is supported using the CIMOSA reference architecture which 

progresses from a generic to particular design level. The decomposition process is 

achieved using SSADM techniques, through identification of domain processes, 

business processes and data flow modelling. The ability to accommodate changing user 

requirements is highly dependent on the iterative nature of the design process. As 

discussed previously this is a key element of the spiral process model. The importance 

of iterative design and how it can be applied to the combined methodology is discussed 

in the following section. 
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Figure 2.9 Combining elements from systems engineering process models and enterprise modelling techniques 
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2.4.8 Iterative design 

The value of iterative design has been confirmed by several studies (Tan et al 2001, 

Bailey and Wolfson 2005 and LeDoux et al 2005). Each of these studies found that 

system modifications based upon the results of one test led to performance 

improvements on a follow-up test.  The results indicated the following: 

 

 A 28% faster average task completion time (Tan et al 2001). 

 A 37% reduction in usability problems (Tan et al 2001). 

 Nine of ten task scenarios took less time (Bailey and Wolfson 2005). 

 User satisfaction score increased from 63 to 73 (Bailey and Wolfson 2005).  

 The average time to complete task scenarios was reduced from 68 to 51 seconds- 

25% improvement (LeDoux et al 2005). 

 The overall user satisfaction score improved from 49 to 82- 67% improvement 

(LeDoux et al 2005). 

 

The results from such studies highlight the importance of user requirement analysis, not 

just at the beginning of the design life cycle but throughout as an iterative approach.  

Developers need to understand the relationship between the user and product as the type 

of interface that provides the link between the technology and user, ultimately 

determines the usability of the product. In order to avoid this problem, a structured 

design process methodology needs to be followed which allows user input and re-

iteration of requirements throughout from the hardware and software perspective. A 

methodology is referred to as a strategy for overcoming problems or barriers, it may 

consist of tools, techniques, conventions and documents to identify the necessary tasks, 

therefore a methodology is required to ensure the design process is thorough and 

considers all the elements that impact the system. Considering user types, requirements 

and varied interactions in relation to the current and proposed system from a hardware 

and software perspective is not an easy task (Bowman 2004).  

Re-iteration of design, user requirements and the generation of prototypes to be 

evaluated are elements of the spiral systems engineering process model. The application 

of these elements to the proposed combined methodology is illustrated in Figure 2.10. 

Whether the developer is starting from the generic or particular level, it is suggested that 



CHAPTER 2: User-centred design 

29 
 

the “vee” model is still applied across the requirement, design and implementation stage 

so that sufficient testing and user validation is achieved.  The “re-iteration arrows” 

propose that if the system/product does not satisfy the client, the developer should 

revisit the user requirements and redefine all system and user requirements, to allow any 

changes to be identified.  Although CIMOSA and SSADM constructs can be applied to 

both physical and logical systems, how data is presented to the user is not fully 

investigated using these constructs alone. Communication of the data is fundamental in 

supporting performance analysis, how the user accesses and interacts with software 

relates to another area of user centred design known as “user interface design”.   

2.5 User Interface Design 

User interface design encompasses a variety of processes. The term interface is often 

used in reference to computerised technology, however, mechanical technology also has 

an interface with which users must interact (Galitz 2007). Therefore, the term “user 

interface design” needs to be considered from many perspectives. The variety of terms 

and the relationships between them are illustrated in Figure 2.11, whilst each element is 

discussed in further detail in Table 2.2. 

 

Figure 2.10 Applying the element of re-iteration to the combined modelling approach 



CHAPTER 2: User-centred design 

30 
 

 

 

 

 

 

 

 

 

Table 2.2 A review of user interface design terminology 

Term Explanation 

User Interface The term is used generally in reference to both physical and logical design 

(hardware and software). It involves linking multiple forms of equipment and 

creating a logical integration between them. When referring to the user 

interface of a mechanical system, the term HMI is more commonly used.  

Human Machine 

Interface (HMI) 

Also known as Human Machine Interaction or Man-Machine Interface (MMI) 

where the human and the machine meet. It is the area of the human and the 

area of the machine that interact during a given task (Karat 1993, Bennett 

1979). 

Human-Computer 

Interaction (HCI)   

The study of interaction between users and computers, still considered as 

HMI or MMI. HCI differs from HMI as the focus is on users working 

specifically with computers, rather than other mechanical devices  

Graphical User 

Interface 

A type of user interface that allows users to interact with programs other 

than typing, such as portable media players or gaming devices; household 

appliances. A GUI offers graphical icons, and visual indicators, as opposed to 

text-based interfaces, typed command labels or text navigation to fully 

represent the information and actions available to a user. The actions are 

usually performed through direct manipulation of the graphical elements
. 

GUI uses a combination of technologies and devices to provide a platform 

the user can interact with, for the tasks of gathering and producing 

information (Davis 2008).  

Figure 2.11 Overview of the terminology within user centred design and 
relationship between each 
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2.5.1 The Human-Machine Interface 

The increased reliance upon computerised technology and electronic devices means that 

user interfaces are now an integral part of design in communicating data to the user.  As 

technology has advanced, the terminology has broadened to accommodate the different 

elements that relate to the user interface. As demonstrated in Figure 2.11, the Human 

Machine Interface is a term used to refer to both computer and mechanical design, this 

is often confused with Human-Machine Interaction, which investigates how the user 

interacts with a system and aims to predict the navigation through software.  

Consideration of the Human-Machine Interface and Human-Machine Interaction needs 

to be investigated as they are two separate elements (Shackel 1991). The design of the 

interface relates to how data is presented to the user, whilst the interaction considers the 

navigation through the logical design and relationship with other physical components.   

A majority of exercise system Human-Machine Interfaces provide information and 

guidance to the user during the configuration and exercise session (Smith 2007). 

Example Human-Machine Interfaces found in the gym environment are presented in 

Figure 2.12. Such functionality requires a combination of buttons and icons to enable 

Figure 2.12 Example Human-Machine Interfaces commonly found in a gym environment 
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the user to use the system “intuitively” without overloading the user with text. These 

systems commonly rely upon Graphical User Interfaces to increase usability of the 

system.  

2.5.2 The Graphical User Interface 

Designing within the sports domain to support performance analysis requires thorough 

analysis of the user types and likely interaction with the system. This ultimately 

determines the complexity and necessity of supporting software. With the nature of the 

resistance training research presented in this thesis being to support performance 

analysis, providing the functionality to view and analyse data is crucial. Space to 

communicate with the user in the gym environment is limited. Effective use of icons is 

a useful tool for maximising the space available, therefore is suggested that the 

development of a Graphical User Interface (GUI) is suitable for this research.  The 

Graphical User Interface as identified in Table 2.2 is a type of user interface that allows 

for more interaction with a computer than typing alone. The current exercise systems 

presented in Figure 2.12 indicate that there is an increased reliance upon Human-

Machine Interfaces (HMI’s) to configure and review performance data during and post 

exercise, there is a general reliance upon Light Emitting Diodes (LED’s) or Liquid 

Crystal Displays (LCD’s). Rowing machines, cycles, elliptical trainers and treadmills 

are commonly found to utilise such inexpensive technology. With such a broad range of 

users in the gym environment, with different goals, levels of ability and motivation, the 

interface needs to be versatile in order to accommodate such a wide and varied user 

population. With the increase in advanced monitoring technology, the need to develop 

advanced interfaces has become a major requirement within sports monitoring.  

GUI’s are often composed of a collection of elements referred to as objects, these can 

be seen, heard, touched, or otherwise perceived. Objects are always visible to the user 

and are used to perform tasks and are interacted with as entities independent of all other 

objects.  The user performs actions on the objects to achieve certain tasks which may 

include accessing and modifying objects by pointing, selecting or manipulating (Galitz 

2007). However, developers need to consider the specific requirements of the interface 

to determine whether a GUI is appropriate.  

How the data is displayed affects the user experience and can result in the rejection of 

the technology should the process become too complex. It is expected that the user will 
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be required to “learn” the system to some degree, however, reducing the complexity of 

tasks and considering their navigation through the system, may reduce the learning 

time.  The usability of the system needs to be considered, for example, should the 

terminology throughout the system be inconsistent, usability is reduced. Designing an 

“intuitive” interface is dependent upon the usability, therefore, promoting usability is 

crucial in determining the success and acceptance of a system. The concept of usability 

and varied views on promoting usability are discussed in the following section.  

2.5.3 The concept of usability 

The most commonly held view is that usability is a quality attribute that assesses how 

easy a user interface is to use. The term usability also refers to methods for improving 

ease-of-use throughout the entire design process (Bennett 1979). A more formal 

definition has been proposed simply defining usability as the capability to be used by 

humans easily and effectively (Shackel 1991). Although not all usability research is 

conclusive due to the variety of proposed concepts and subjective assessment of 

usability, some statistics do exist. Usability engineering has demonstrated reductions in 

the product-development cycle by over 33-50% (Bosert 1991) whilst, systems design 

with usability engineering has typically reduced the time needed for training by 

approximately 25% (Landauer 1995). Furthermore, 80% of all software development 

costs occur after the product has been released (Shackel 1991). Previous research also 

investigated the effect of improved screen clarity by making the appearance less “busy”, 

results showed that the users were approximately 20% more productive  (Galitz 2007). 

These statistics demonstrate the impact a detailed, well researched design process can 

have. Other research has focused on identifying the elements that construct a “usable” 

system, however, the subjective nature of the area inhibits the clarification of necessary 

components. To tackle this ambiguity, an analysis of research relating to common GUI 

user defined problems, their causes and the current views upon avoiding these problems 

is discussed in the following section. 

2.5.4 Promoting usability in GUI design 

One study found users spend almost 40% of their computer time overcoming problems 

such as tackling difficult installations, viruses, and connectivity troubleshooting 

(Ceaparu et al 2004). Common problems experienced by users have been reported by 

IBM specialists, the top ten results are shown below (Galitz 2007). 
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PROBLEMS CAUSES 

 Ambiguous menus and icons and unclear 
step sequences. 
 

 Lack of early analysis and 
understanding of the user needs. 
 

 More steps to manage the interface than to 
perform tasks. 
 

 A focus on using design features or 
components that provide ‘novelty’ 
value. 

 Highlighting and selection limits. 

 Inadequate feedback and confirmation. 

 Input and direct manipulation limits. 

 No usability testing. 

 Little or no creation of design 
element prototypes. 

 Lack of system anticipation and intelligence. 

 Languages that permit only single-direction 
movement through a system the user 
cannot retrace their steps. 

 No common design team vision of 
user interface design goals. 

 Poor communication between 
members of the development team. 

Table 2.3 A review of common problems and likely mistakes that occur during GUI design (Galitz 2007). 

  

Such studies have identified the need to establish what constitutes a “usable” system. 

Previous research has outlined five components to promote usability as identified in 

Figure 2.13 (Shackel 1991, Schneidermann et al 2004). Of these elements, consistency 

was identified as the most important due to the potential application to many aspects of 

design (Schneidermann et al 2004). Good user interface design involves creating a set 

of consistent expectations and then meeting those expectations, however, finding the 

balance between consistency and flexibility is a difficult task. Flexibility is key to 

accommodating a large user population whilst consistency is crucial to improving the 

user experience and enhancing the overall usability of the interface. One user does not 

represent all and prediction of user behaviour is a difficult task. The more flexible a 

system is, the more likely a user’s needs will be accommodated. However, differing 

views regarding which elements should be consistent whilst still targeting a variety of 

user types means that a reduction in consistency is sometimes unavoidable.  This is 

supported by research in which it is suggested that as the level of customisation 

increases, the level of usability decreases (Smith 2007). Therefore, developers must 

identify which processes within the system can be “shared” or likely to be completed by 

all or most users and differentiating these from processes that are more specific to 

particular users (customised aspects).   
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A summary of this research is given in Table 2.4. The components identified by 

numerous researchers share the same goals but have used different terminology. For 

example, the component of consistency (Schneidermann 2004) relates to the need to 

improve the learning process (Galitz 2007), whilst the efficiency of the design relates to 

the intuitive nature of the interface. Although, the techniques identified promote 

effective design, each system has individual requirements; therefore the challenge is 

adapting the techniques to each application. Usability of the system can be further 

improved by considering the navigational path and user interaction, whether there is a 

distinction between users will determine the number of inputs, whether there is logical 

progression and overall consistency. Investigating Human-Machine Interaction is 

discussed in the following section.  

 

 

 

 

 

 

 

Figure 2.13 Five components to increase usability (Shackel 1991, Schneidermann 2004).  
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Common mistakes Subsequent design flaws Avoiding common mistakes 

 Lack of early analysis 
and understanding of 
the user’s needs. 

 A focus on using design 
features or components 
that provide “novelty” 
value. 

 Little or no creation of 
design element 
prototypes. 

 No usability testing. 

 No common design 
team vision of user 
interface design goals. 

 Poor communication 
between members of 
the development team. 
 
 

 Ambiguous menus and icons. 

 Languages that permit only 
single-direction movement 
through a system- the user 
cannot retrace their steps. 

 Input and direct manipulation 
limits. 

 Highlighting and selection 
limits. 

 Unclear step sequences. 

 More steps to manage the 
interface than to perform 
tasks. 

 Complex linkage between 
and within applications. 

 Inadequate feedback and 
confirmation. 

 Lack of system anticipation 
and intelligence. 

 Inadequate error messages, 
help, tutorials, and 
documentation 

 Promote consistency 

 Promote flexibility 

 Reduce of user 
inputs 

 Provide Information 
feedback 

 Accommodation of 
all potential users 

 Effective design 

 Efficient design 

 Engaging design 

 Error tolerant 

 Easy to learn 

 Memorable design 

 Promote user 
satisfaction 

Table 2.4 A summary of common GUI design mistakes and methods to avoid them (Galitz 2007). 

 

2.6 Human-Machine Interaction 

The interface design and user interaction are dependent upon one another, modelling 

this interaction can help identify the navigation of the software.  HMI modelling 

employs a “storyboarding” technique which aims to view the system in relation to three 

levels of granularity (Breen 1998, Lin 1999, Lank et al 2000, Mellor 2006, Crnkovic 

2003).  

1. End User HMI’s comprise of one or more HMI Tasks, 

2. HMI Tasks support HMI functionality, 

3. HMI widgets provide the functionality to interact with the end user. 

Using the domain classifications as the foundation of the basic GUI structure and 

business process analysis to distinguish the order of tasks, the developer can use a 

method of HMI tasks and widget storyboarding to investigate the navigation of the 

system and how the user will interact with the interface. This is an important design 

process as it refers back to the user requirements and causes the developer to focus on 
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reducing the number of HMI tasks the user needs to complete before accomplishing 

their need.  

Consequently, the less tasks a user needs to complete before their need is met, the more 

usable and desirable the system is. Consideration of the different user types is 

fundamental to this process, as mapping the navigational path specific to the user 

increases the usability of the system. This further supports the need for a combined 

approach as CIMOSA or SSADM techniques do not distinguish between different 

navigational paths. Storyboarding improves communication between developers and 

users, the reliance on visual information and ability to decompose a particular task step 

by step reduces likely misinterpretation between the user and developer. Furthermore, it 

provides a method of testing how a user would intuitively navigate through a system in 

order to complete a task. These tasks are determined by the identified user requirements. 

Hence this process is heavily dependent on user input and definition of user 

requirements. In a similar way to the “vee” model, each user widget must originate from 

a user requirement otherwise the interface becomes “cluttered” with unnecessary icons 

and functions. Decomposition of interface use into HMI tasks encourages the developer 

to decompose the system, making this method applicable to the proposed combined 

methodology.  

2.7 Proposed combined modelling approach  

The combined methodology incorporates the “vee” model, CIMOSA and SSADM 

elements that encourage the developer to view the system as a whole, identify user 

requirements according to user type and level, decompose the overall system into 

subsystems and consider the relationship and data flow between each. Throughout this 

process a transition is made from a generic (broad) to particular design (narrow) which 

can accommodate numerous iterations of the system. The flexibility of the methodology 

is reinforced by the application to both hardware and software design. How 

performance data is collected, stored and communicated are the three main elements to 

this research, therefore considering the software usability is a key component of the 

methodology. Consequently, the final proposed methodology incorporates the use of 

HMI storyboarding should the developer require supporting technology.  
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Overall, the methods employed follow a proposed step by step framework using a 

combined approach of modelling techniques that enables reiteration of the user needs 

throughout the hardware or software design process. Effective translation of end user 

business needs into system requirements is necessary for the success of any system. In 

the absence of customer oriented requirements, any system is likely to be rejected by the 

end user. Recent research also outlines the importance of user type and level or 

experience, as an increasing number of software users are non expert (Smith 2007), 

placing new demands on the software. Furthermore, the “typical” user of a system does 

not exist, the requirements of an individual user usually change with experience 

(Mackey 2009).  

 

STEP AIM MODEL/MODELLING 
TECHNIQUE 

REASON 

1 Define objectives SSADM  Encourages developer to view system 
as a whole 

2 Define user requirements 
 

“vee” process model 
Spiral process model 

 User input is obtained in the early 
stages 

3 Feasibility testing SSADM 
“vee” process model 

System capability set is identified in 
the early stages. The testing is broken 
down into subsystems.  

4 Systems analysis CIMOSA 
SSADM 
“vee” process model 

Current user interaction and system 
behaviour is investigated 

5 Domain classification CIMOSA 
SSADM 
“vee” process model 

Subsystems within the system are 
identified using the previous step and 
categorisation- aiding decomposition.  

6 Business process analysis CIMOSA 
SSADM 
“vee” process model 

Each subsystem is further 
decomposed  in relation to user 
requirements 

7 Consolidation of the 
subsystems and design 
generation 

“vee” process model Integration of the system begins 
again, testing and user validation is 
used to evaluate success.  

8 HMI task analysis 
(software) 

HMI storyboarding 
“vee” process model 
SSADM 

User requirements regarding user 
interaction and tasks to be performed 
are identified. Decomposition of the 
system. 

9 Consolidation of HMI 
tasks 
(software) 

HMI storyboarding 
“vee” process model 

Integration of the system presents the 
system as a whole, testing and user 
validation is used to evaluate success. 

Table 2.5 A list of the different techniques that form the proposed combined methodology 

Generic assumptions about skilled domain users being the primary users limits the 

intuitive nature and usability of these systems, instead knowledge about the problem 

domain, communication processes and the communication agent needs to be acquired 

and this can only be done by considering different user types and their likely interaction 

with the system (Dix et al 1991). Consequently, this combined approach forces the 
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developer to revisit both the user type and user needs at the particular and partial level.  

A summary of the methodology is listed below in Table 2.5, whilst the application of 

the steps to increase the methodology flexibility in relation research focus first 

identified in Chapter 1 is illustrated in Figure 2.14. 

Figure 2.14 Application of the methodology steps to the original research focus to increase flexibility of the 
design process. 
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Figure 2.15 Proposed user-centred design process that allows re-iteration of the user needs 
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2.9 Brief Chapter summary 

TARGET OBJECTIVE: 

Design and implement a combined and flexible systems modelling approach that 

supports user-centred design to be applied to the resistance training domain. 

TARGET RESEARCH QUESTIONS: 

Which modelling techniques promote user-centred design? 

One of the most commonly used enterprise modelling techniques is CIMOSA due to the 

modelling flexibility. CIMOSA enurorages decompositon of requirements through 

domain classification and business process analysis. Systems analysis modelling is used 

to decompose systems and to gain an understanding of the data flow within a system. 

Although a less researched form of modelling, HMI task analysis and storyboarding 

enables user interaction with the system to be considered. With the growing reliance 

upon interfaces to communicate data, how the user interacts with the system is a 

fundamental aspect of user centred design. These modelling techniques consider user 

centred design from a hardware and software perspective.  

Which system process models promote user-centred design? 

The “vee” model promotes decomposition of the requirements before integration can 

occur ensuring that every design requirement is derived from a user requirement. 

Therefore the whole process is centred around the user. The element of requirement re-

iteration is supported by the spiral process model allowing the design to migrate with 

user requirements which are subject to change. This flexibility also accomodates 

protype generation, supporting testing required to understand the capability of the 

product.  

How should the modelling techniques and system process models be combined to 

provide a user-centred research and design methodology?  

The iterative, flexible and systematic elements of the modelling techniques and process 

models were combined to promote user centred design. Defining user requirements in 

the early stages using the “vee” model approach ensures user input is integrated and all 

design requirements originate from user requirements. Combining the overall CIMOSA 
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reference architecture ensures that the developer considers the system from a broad 

perspective and collects the relevant information to narrow the design process at the 

particular level. Selecting SSADM techniques that relate to the CIMOSA architecture 

and “vee” model ensures that decomposition and consideration of all the subsystems is 

achieved. The inclusion of SSADM techniques supports the combination of CIMOSA 

and “vee” model functionality. User-centred design is further incorporated through the 

consideration of HMI storyboarding to ensure the software design can be fully 

decomposed and integrated using a visual technique. In relation to the original objective 

highlighted at the beginning of the Chapter it is suggested that by identifying the 

elements that are shared amongst different modelling techniques and disregarding the 

elements that inhibit user centred design, combining methods can promote user-centred 

design for both logical and physical systems. A summary of the new knowledge 

acquired as a result of the chapter research in relation to the core questions identified in 

Chapter 1 is presented in Figure 2.16.  
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Figure 2.16 The identification of new knowledge acquired as a result of the Chapter: The structured “vee” model methodology 
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Chapter 3   

3.0 Literature review 
 

TARGET OBJECTIVES: 

 Gain an understanding of exercise physiology to understand the effects of 

resistance training. 

 Identify training inputs and outputs and determine which are most relevent to 

the resistance training domain.  

 Identify the current monitoring techniques used within the resistance training 

domain and investigate the benefits and limitations of each. 

 Identify the current gaps in research and technology development in the 

resistance training domain.   

3.1 Introduction 

In order to apply the methodology designed in Chapter 2
 
there is a need to establish the 

requirements and needs within the resistance training domain. An understanding of the 

current practice was required to further promote user-centred design. Therefore, a 

literature review of research and current practice within the resistance training domain 

is documented in this Chapter.  The numerous target objectives demonstrate the need to 

investigate several areas of the resistance training domain. These areas are identified in 

Figure 3.1 in which the performance monitoring cycle within the resistance training 

Figure...  
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domain is presented. The supporting software and graphical user interface communicate 

performance data to the user, these elements were discussed in Chapter 2. The 

performance data communicates the effects of the resistance training and influences the 

training inputs. The training outputs are monitored by a range of technologies which are 

then communicated by the GUI to begin the cycle again. The effects of resistance 

training, the relationship between with the training inputs and outputs and how the 

training outputs are monitored is investigated in this Chapter. The separation of the 

literature review into four sub-categories is illustrated in Figure 3.1.  

 

1. General exercise physiology is investigated to provide an understanding of the 

relationship between human movement and muscular contraction.  

2. The types of training inputs required to design a training program are 

investigated to identify those of highest relevance to the resistance training 

domain.  

3. The types of training outputs often monitored in the resistance training domain 

are identified to determine which received most research focus.  

4. The technology currently used to monitor the training outputs is investigated to 

determine whether there is a need to improve resistance training research and 

development of performance monitoring technology.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The performance monitoring cycle within the resistance training domain 
and identification of the literature review sub categories  
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3.2 Section 1: Resistance training overview 

TARGET RESEARCH QUESTION: 

What are the benefits of free weight resistance training and what types of adaptation 

occur as a result of resistance training? 

Health and fitness are often mistaken to mean the same thing, however distinction 

between the two is crucial when designing both technology and training programs to 

target the user types and requirements. Health is a state of complete mental, physical 

and social well being, whilst fitness is the ability to meet the demands of a physical task  

(BrianMac 2010). The health related aspect is an area of major concern for the 

government. Results from 2006-2007 indicate that poor diet-related ill health cost the 

NHS in the UK £5.8 billion, the cost of physical inactivity was £0.9 billion, whilst 

obesity cost £5.1 billion (Scarborough et al 2011). Public health guidelines focus on the 

promotion of physical activity and aerobic exercise (Winett 2001).  However, research 

has shown that resistance training can promote health gains (Feigenbaum 1999), whilst 

having an effect on balance and muscle mass that can prevent and reduce the effects of 

osteoporosis (Layne 1999). Both scientific and medical communities recognise that 

muscular strength is a fundamental physical trait necessary for health, functional ability 

and an enhanced quality of life (American College of Sports Medicine (ACSM 2002).  

Resistance training is also heavily used within the sporting domain to improve muscular 

fitness and resultant sporting performance. Research has shown that effective resistance 

training can have a positive effect on numerous fitness variables such as muscular 

strength, power, hypertrophy (muscle size increase), local muscular endurance, speed, 

balance, coordination, jumping ability and flexibility (Rutherford and Jones 1986, 

Adams and O’Shea 1992 and Delecluse et al 1995). Such findings have encouraged 

health organisations to promote the use of resistance training in overall fitness programs 

and sports specific training (Winett 2001). 
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Resistance training is known as strength or weight training. Due to the numerous health 

and fitness benefits, it has become one of the most popular forms of exercise (Fleck and 

Kraemer 2004). There are a number of terms often used in the same context as 

resistance training each describing an exercise that requires the muscles to overcome an 

opposing force (Fleck and Kraemer 2004). Resistance training is used as a general term 

to describe training with different modes using both free weights and machines. This 

training may be applied to different domains such as rehabilitation and injury 

prevention, general fitness, recreational activity and bodybuilding (Fleck and Kraemer 

2004). The general terms used to refer to resistance training are identified in Figure 3.2. 

 

Resistance training can involve the use of resistance machines, pulleys or free weights. 

Machines have been regarded as safer to use and easier to learn (Foran 1985) as they 

can aid stabilisation of the joint and prevent misalignment during the execution of the 

exercise. However, free weights develop inter and intra-muscular coordination that 

increases the ability to replicate a specific task or skill (ACSM 2002). Furthermore, a 

study conducted by McCaw et al (1994) demonstrated that deltoid muscle activity was 

significantly greater in a free weight bench press than in a machine bench press due to 

the difference in stabilisation required. It is therefore suggested by the ACSM that 

novice and intermediate training should include both machine and free weight exercises, 

whilst advanced training should focus upon free weight exercise (ACSM 2002). 

Figure 3.2 The difference terms associated with resistance training 
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Machines constrict range of motion and simplify the movement, with the result that less 

feedback is required to execute a particular exercise.  Alternatively, free weight training 

requires more body control and increased feedback is required to execute exercises 

efficiently without causing injury. Free weight training varies in complexity, 

movements that only require the movement of one joint (isolated exercises) are easier to 

learn and execute than multi-joint actions (compound exercises). Consequently, an 

Olympic lift (compound exercise) which requires extensive whole body movement is 

more difficult to learn than an isolated exercise such as the bicep curl. Therefore, the 

type and extent of feedback required also depends upon the type of exercise. Many 

types and variations of free training exercises exist. An overview of common lifts and 

exercises are identified in Figure 3.3. This is not an exhaustive list but has been 

categorised according to elite coaching input, interview and questionnaire data 

investigating the perception of exercise execution complexity discussed in Chapter 4. 

The exercises are categorised as either advanced, intermediate or novice based upon the 

level of experience and coaching input required to learn and execute each one. 

Regardless of the complexity of the exercise, the ability to provide feedback in the free 

weight training environment during a session is currently heavily reliant upon 

qualitative input. Qualitative analysis applies the basic principles of mechanics to 

Figure 3.3 Classification of common free weight training exercises according to the complexity 
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performance skills and therefore bases scientific principles on subjective observation 

(Lees 2002).  

Qualitative analysis is defined as “systematic observation and introspective judgement 

of the quality of human movement for the purpose of providing the most appropriate 

intervention to improve performance” (Knudson and Morrison 1997). At the advanced 

level, qualitative feedback is readily available, however, once an individual is highly 

skilled, the need to combine quantitative analysis increases. At the advanced level 

where coaching is essential, quantitative feedback may be gained through post session 

analysis. This feedback will differ greatly from the type of feedback required at the 

novice level where simple exercises are being executed. At the novice level, the current 

ability to gain performance feedback is limited. A training partner may provide the only 

form of quantitative input. The knowledge required to structure training and adapt 

training inputs (i.e sets, repetitions (reps) and load) is not necessarily abundant at the 

novice level. In order to understand the effects of resistance training and resultant 

training inputs and outputs, an understanding of body movement, muscle physiology 

and training principles is required. A basic review of human movement and muscle 

physiology is given in the following section. 

3.2.1 Human movement 

Various terms exist to describe human movement in relation to the three mutually 

perpendicular intersecting planes. It is within these planes that all joint movements 

occur (Bartlett 2007). The three planes are known as the sagittal, frontal and horizontal 

planes, collectively referred to as the cardinal planes. Movements about a joint are 

predominantly rotational, taking place perpendicular to the plane in which they occur, 

this is known as the axis of rotation (Bartlett 2007).  The three axes are defined by the 

intersection of the three planes, the terms being the sagittal, frontal and vertical axes. 

Describing a gross movement is often achieved by referring to the dominant plane. 

However, the individual joints may be working within several different planes, referred 

to as multi-planar motion (McGinnis 1999). Multi-planar movement is easier to achieve 

using free weights as opposed to resistance machines, which supports further the ACSM 

encouragement of free weight use. A review of dominant motions within each plane, 

axes and example movements is outlined in Table 3.1. (McGinnis 1999 and Bartlett 

2007). Understanding the different types of motion and the planes in which they occur 
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allows training programs to be designed that target specific muscles whilst replicating a 

desired movement. How muscles achieve movement is discussed in the following 

section. 

Table 3.1  Relationship between the planes and axes and example movement 

 

3.2.2 Muscular contraction 

The ability of the neuromuscular system to generate force is necessary for all types of 

movement. This force can only be generated through contraction of the muscle (ACSM 

2002). This contraction can be voluntary or involuntary, depending on the type of 

muscle tissue and resultant role. There are three different types of muscle tissue. 

Skeletal muscle: Responsible for movement  

Cardiac muscle: Responsible for pumping blood around the body 

Smooth muscle: Responsible for sustained contractions in the blood vessels  

Skeletal muscle causes human movement and therefore enables resistance training to 

occur. To understand how muscular contraction occurs, the physiology of skeletal 

muscle illustrated in Figure 3.4. Each muscle body consists of multiple muscle bundles 

which contain muscle fibres. These muscle fibres can fall into one of three categories 

displayed in Figure 3.4. 

Plane Description Axis Description Motion Example 

Sagittal A vertical line extending from 
the posterior to anterior, 
dividing the left and right sides 
of the body. Also known as the 
anteroposterior plane. 

Frontal  Passes horizontally from 
left to right, formed by the 
intersection of the frontal 
and horizontal planes. 

Flexion/ 
Extension 

Walking, 
running, 
overhead 
press. 

Frontal A vertical plane that extends 
from left to right, dividing the 
body into anterior and 
posterior halves. Also known 
as the coronal plane 

Sagittal Passes horizontally from 
posterior to anterior, 
formed at the intersection 
between the sagittal and 
horizontal planes.  

Abduction/ 
Adduction, 
Side flexion, 
Inversion/ 
Eversion. 

Star jump, 
lateral arm 
raise. 

Horizontal This plane divides the body 
into top (superior) and bottom 
(inferior) halves. Also known as 
the transverse plane.  

Vertical Passes vertically from 
superior to inferior, 
formed by the 
intersection of the sagittal 
and frontal planes.  

Int/ext 
rotation, 
Horizontal 
flexion/ 
extension. 

Throwing, golf 
swing. 
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Within the muscle fibres are a large number 

of myofibrils, each constructed of linear 

sarcomeres. The sarcomeres contain two 

contractile proteins; actin and myosin 

(Jones and Round 1990), according to the 

most popular and accepted theory. It is 

these proteins that are fundamental to 

muscular contraction. This theory is known 

as the “sliding filament theory” (Billeter 

and Hoppeler 1992) and is based on a 

chemical process referred to as a “cross 

bridge cycle”. Muscle fibres contract 

through shortening of the myofibrils which 

occurs as myosin uncouples from the actin, 

reattaches, creates movement and then 

detaches. This cross bridge cycle is 

dependent on chemical and neurological 

signals which stimulate the process (Clark 

and Lucett 2011).  

Table 3.2 Muscle fibre type classification 

 

Fibre type Characteristics Sport 

Slow Oxidative (SO)  Smallest in diameter 

Least powerful 

Dark colour due to high concentration of myoglobin 

Fatigue resistant 

Long distance 

running 

Fast Oxidative-

Glycolytic (FOG) 

Intermediate in diameter 

Contain high amounts of myoglobin and many 

capillaries 

Dark in appearance 

Higher contraction speed than SO fibres 

Team sports 

Fast Glycolytic  (FG) Largest in diameter 

Contain highest concentration of myoglobin 

Most powerful contractions 

White in colour due to low myoglobin concentration 

Respond well to hypertrophy training (increased 

muscle size) 

Sprinting, 

weightlifting 

Figure 3.4 Muscle anatomy 
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The contraction of a skeletal muscle can fall into one of three categories; Isotonic, 

Isokinetic and Isometric (Clark and Lucett 2011). Isotonic and Isokinetic contractions 

can be further divided into concentric and eccentric contractions. Individual or multiple 

contractions can occur that may cause movement of one or multiple joints. Single joint 

movement is referred to as an isolated exercise, whilst multi-joint movement is referred 

to as a compound exercise. The ability of a muscle to contract eccentrically and 

concentrically allows muscles to work in pairs. Therefore, as one muscle shortens, the 

other lengthens, allowing movement at the joint to occur. As a result, a muscle can also 

be described as working agonistically or antagonistically depending on which muscle is 

causing the movement. An overview of contraction categorisation is presented in Figure 

3.5. The agonistic relationship is represented by flexion and extension of the elbow 

which requires the biceps and triceps to work as a pair.  

3.2.2.1 Rate of force development (RFD) and rate of power development (RPD) 

The rate of force development (RFD) has been defined as the rate of rise of contractile 

force at the beginning of a muscle action (Aagaard et al., 2002). It has been suggested 

that the rate of force development is dependent on both a short and long component of 

the stretch shortening cycle (SSC) (Schmidtbleicher 1992). The short component is 

characterised by small angular displacement of the ankle, knee and hip joints, occurring 

within 100-250 milliseconds of lower body muscle activation. The long component 

occurs more than 250 milliseconds after muscle activation, involving larger angular 

displacement of the lower body (Schmidtbleicher 1992). Research conducted by Jenson, 

Flanagan and Ebben (2008) indicated that the rate of force development value is 

influenced by the inclusion or exclusion of the long component (>250 milliseconds). 

Therefore the speed of the measured exercise must be considered to determine whether 

the muscle activation and contraction will fully occur within the first 250 milliseconds 

of muscle activation.    

 

RFD is calculated by dividing the peak force by the time to peak force, therefore, the 

higher the peak force and the lower the time to peak force the higher the rate force 

development. Rate of force development is crucial to power training due to the force- 

velocity relationship. The goal of power training is to increase the rate of force 

development and velocity of muscle contraction. The rate of power development (RPD) 
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is calculated by dividing the peak power by the time to peak power. Increasing the peak 

power, reducing the time to peak power or achieving both, produces a higher RPD 

value. Explosive resistance training increases the slope of the early portion of the force 

time curve (maximum rate of force development). Although heavy resistance training 

increases maximum strength, the highest point of the force time curve, this type of 

training does not improve power significantly as maximal power is produced at 

intermediate velocities of movement, that is, at approximately 30% of maximum 

shortening velocity (Newton and Kraemer 1994) and (Schmidtbleicher 1985). 

Therefore, when devising training programs to increase power, the relationship between 

force and velocity must be considered to ensure that training velocity is not inhibited by 

the training load.  

The force a muscle can generate depends upon both the length and shortening velocity 

of the muscle. The length-tension relationship refers to the strength of an isometric 

contraction and the length of the muscle at which the contraction occurs. Greatest force 

is generated when muscles operate closest to their resting length, when stretched or 

shortened beyond this, maximum force generation decreases (Gordon, Huxley and 

Julian 1966). The decrease in force is initially small, declining rapidly as the length 

deviates further from the resting length. The speed at which a muscle changes length 

also affects force generation. Force declines in a hyperbolic fashion relative to the 

isometric force as the shortening velocity increases, eventually reaching zero at some 

maximum velocity. This is referred to as the force-velocity relationship. This 

relationship significantly affects the rate at which muscles can perform mechanical 

work (power). As power is a product of force and velocity, the muscle generates no 

power at either isometric force (due to zero velocity) or maximal velocity (due to zero 

force). The optimal shortening velocity for power generation is approximately one-third 

of maximum shortening velocity (Brooks, Fahey and White 1996).  

Rate of force and power development are both influenced by intra and inter-muscular 

coordination, therefore the ability to exert force and resultant power is affected by 

neural factors (Young 1991) and (Schmidbleicher 1985). Intra-muscular coordination is 

dependent on the extent of motor unit activation and is determined by muscle 

recruitment, the firing rate of the motor units, the synchronicity of the firing pattern and 

the stretch reflex. Inter-muscular coordination refers to the coordination between 
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muscles and muscle groups and is influenced by activation of synergists and the co-

contraction of antagonists. Inter-muscular coordination is required to develop a skill, 

training loads and velocity must be specific to the type of activity. Rate of force and 

power development is therefore specific to the activity, can be influenced by the level of 

skill required and may be used as an indicator of skill level and experience (Young 

1993). Within the sporting domain, RFD and RPD are often calculated with 

standardised tests such as a counter movement jump (CMJ) or vertical jump. This 

allows coaches to evaluate and compare the potential of athlete’s regardless of the skill 

level. A performance monitoring system that accommodates standardised testing of 

RFD and RPD would provide useful information at an elite and recreational level.   

3.2.3  Human movement and muscular contraction summary 

 Resistance training can achieve both health and fitness gains and is widely used 

within a competitive lifting, sports training and health related environment. 

 Understanding the plane (sagittal, frontal and horizontal) and corresponding axis 

(sagittal, frontal and vertical) is crucial in determining the characteristics of an 

activity to be replicated in a resistance training environment. 

 Contraction occurs through concentric and eccentric movement that cause 

muscles to work in pairs to perform an isolated or compound exercise. 

 Free weight exercise develops inter and intra-muscular coordination which 

increases the ability to replicate a specific task or skill (ACSM 2002). Different 

muscle fibres exhibit individual characteristics, how these characteristics can be 

altered is discussed in the following section. 

 Intra and inter muscular coordination can be evaluated using standardised tests 

such as a counter movement jump or vertical jump and the calculation of the rate 

of force and power development (RFD and RPD). 

 The ability to generate force decreases as deviation from the resting muscle 

length increases (length-tension relationship).  

 Power is a product of force and velocity, as the load is increased (force) the 

velocity decreases, therefore, the hyperbolic nature of the force-velocity curve 

must be considered when devising training programs to target power production.    
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3.3 The effects of resistance training 

Resistance training can cause numerous adaptations both long and short term, all of 

which lead to an increased ability to generate force. The ability to produce more force 

may be the result of increased muscle cross sectional area (Alway 1999, McCall 1996 

and Staron 1994), changes in the fibre composition (Kawakami 1993), enhanced neural 

function (Leong 1999 and Sale 1992), increased levels of metabolites (Rooney 1994 and 

Sforzo 1996), or a combination of these adaptations. These adaptations can influence 

the number and size of muscle fibres, the fibre type characteristics, heart rate, hormonal 

balance, the Central Nervous System response, body composition and fatigue resistance.  

Figure 3.5 The different types of muscular contraction 
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3.3.1 Hypertrophy adaptation 

Research has shown resistance training induces muscular hypertrophy (Jackson 1990,  

McCall 1996 and Staron 1994) which is caused by an accumulation of proteins and can 

occur after just one session of vigorous training and increase the size of the muscle 

(Phillips 1997 and Phillips 2000). Short term increase in muscular size is referred to as 

“transient hypertrophy” and is caused by fluid accumulation of blood plasma. Long 

term resistance training can result in chronic hypertrophy, where increase in cross 

sectional area of the muscle can range from 20-45% (Staron et al 1991) and requires 

more than 16 workouts to produce significant effects (Staron et al 1994).  

The ability of hypertrophy to increase force production is reliant upon the length-

tension relationship. The length-tension relationship relates to the characteristics of 

individual sarcomeres, it is stipulated that the force produced in a sarcomere is directly 

related to the length of the muscle fibre at that instant (Smith 2007). Sarcomeres are 

arranged in parallel to the muscle, an increase in muscle size therefore increases the 

number of sarcomeres across the body of the muscle. Sarcomeres that lay in series do 

not affect one another collectively and will only exert the same amount of force as one 

sarcomere. Therefore, the overall force production of a muscle is proportional to its 

cross sectional area, the length of muscle does not influence force production (Jones and 

Round 1990). Consequently, functional hypertrophy can increase the number of 

sarcomeres available to increase force production and overall muscular strength. 

 

However, not all hypertrophy enhances force production, hypertrophy can either be 

functional or non-functional as illustrated in Figure 3.6. Non-functional hypertrophy 

causes an increase in the non-contractile elements of a muscle fibre, predominantly 

occurring as a result of bodybuilding training (Thibaudeau 2007). This type of 

hypertrophy can lead to an increase in body weight, whilst excessive muscle 

hypertrophy can constrict the vascular system, which may decrease the ability to 

transport oxygen and nutrients to the muscle.  
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3.3.2 Strength adaptation 

Strength is the ability to produce force, this can be isometric or dynamic (Siff 1988 and 

Stone et al 2002). Force is a vector and therefore requires magnitude and direction, the 

force production is determined by the time period of muscle activation, the type of 

contraction, the rate of muscle activation and degree of muscle activation. Strength is 

often expressed by Newton’s 2
nd

 Law where the acceleration of a mass depends on the 

ability to generate force, which in turn results in velocity. Consequently, weightlifting 

performance is highly dependent upon velocity and therefore reliant upon force 

production.   

It is suggested that long-term changes in strength are attributed to hypertrophy of the 

muscle fibres or muscle group (Sale 1988). Variation in strength gains can range from 

7% to 45% (Kraemer 1994) and elicit velocity specific characteristics, i.e increase in 

strength is specific to the training speed (Behm and Sale 1993). For example, slow 

speed training will result in greater gains at slow movement speeds, whilst high speed 

training will result in gains during fast movements.  The importance of training speed is 

further enhanced by the force–velocity relationship. The force velocity relationship has 

been well researched and is commonly referred to as the “Hill curve” relationship (Hill 

1983). This relationship demonstrates a decrease in force as the velocity of muscle 

shortening increases to a point at which no force can be exerted. There is an optimal 

Figure 3.6  The difference between functional and non functional hypertrophy and ability to increase the 
number of sarcomeres in parallel. 
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level at which the lengthening velocity produces maximum force, this is often equal to 

or greater than the cross bridge cycle rate (Smith 2007).  

3.3.3 Power adaptation 

Power production is defined as the product of force and velocity or work rate (Siff 

1988, Stone et al 2002 and Stone and Bryant 1987). Hence the measurement of strength 

and power are closely related (Rahmani et al 2001). The ability to produce force at 

speed is believed to be one the most important factors in most sports, particularly 

weightlifting (Stone et al 2006). The power-velocity relationship contrasts with the 

force-velocity relationship since as velocity increases, power output increases 

(Vandewalle 1987). However, increasing velocity is still restricted by the force-velocity 

relationship (Rahmani 2001), therefore increasing the muscular ability to generate force 

and designing training programs that alter training velocity can benefit the ability to 

increase power output.  

3.3.4 Fibre type adaptation 

Fibre type classification also affects the extent of hypertrophy related adaptation. 

Knowing an individual’s ratio of muscle fibres can improve the specificity of the 

training program. For example, individuals who are slow-twitch dominant will benefit 

from higher volumes of training, whilst fast-twitch dominant athletes will progress further 

on a lower volume, higher intensity and acceleration training program (Thibaudeau 2007).  

Muscle fibres are categorised as either (Scott, Stevens and Binder-McLeod 2001):  

(1) Type I : slow twitch fibres which are recruited for aerobic activity, have a high 

resistance to fatigue but produce little power. 

(2) Type IIa : Moderate-fast twitch fibres with medium fatigue resistance, recruited 

for long term anaerobic activity. 

(3) Type IIx : Fast twitch fibres with medium to low fatigue resistance, recruited for 

short term anaerobic activity. 

(4) Type IIb : Very fast twitch fibres with low fatigue resistance, recruited for short 

term anaerobic, high power activity.   

 

Type I fibres (slow twitch) are red in colour due to the presence of myoglobin (oxygen 

binding protein) whilst Type II fibres (fast twitch) are white in colour due to the absence 
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of myoglobin (Scott 2001). It is stipulated that fast twitch fibres exhibit greater potential 

to increase in size (Hather et al 1991). Overall, hypertrophy related muscle fibre 

adaptations are caused by subcellular changes within the muscle which include an 

increase in: (i) number and size of thicker actin and myosin protein filaments, (ii) the 

number of myofibrils that contain the actin and myosin filaments and (iii) the volume of 

sarcoplasm (the fluid in the muscle cell). Finally, hypertrophy occurs in the surrounding 

connective tissue of the muscle fibres (Wilmore & Costill 1994) and can result in 

functional and non-functional hypertrophy. Whether a person is Type I, IIa or IIb 

dominant is genetically determined, however, training adaptations can alter the 

characteristics of the muscle fibres (Nieman 2003). It is the capability to alter the 

characteristics of muscle fibres that provides one of the main advantages of resistance 

training.  

3.3.5 Central Nervous System adaptation 

Voluntary muscle contraction is primarily controlled by the nervous system. When a 

weak signal is sent to a particular muscle, the smaller motor units are stimulated first. 

As the signal increases, larger motor units can be recruited, these larger motor units can 

have up to 50 times the contractile strength than the smaller units. The strength of the 

signal also depends on the action potential sent from the Central Nervous System 

(CNS). The efficacy of the nervous system influences force production by modulating 

motor unit activation, synchronization and rate of contraction. Regular training can 

improve the CNS signal patterns and increase the recruitment of muscle fibres as motor 

control becomes more autonomous.  Consequently, both CNS adaptation and functional 

hypertrophy is required to improve the capability to produce force and resultant 

muscular strength. It is suggested that short term changes in strength are more 

associated with neural adaptations (Moritani & deVries 1979).  

Motor unit recruitment is central to the early gains in strength (2 to 8 weeks). The 

recruitment of additional motor units which are able to produce a synchronised response 

(Wilmore & Costill, 1994), the increased activation of synergistic muscles, and the 

inhibition of neural protective mechanisms (Kraemer 1994), all contribute to improved 

muscular ability to generate force. The CNS response also dictates the speed of 

contraction which influences the power output.  



CHAPTER 3: Literature review 
 

60 

 

3.3.6 Fatigue resistance adaptation 

Fatigue resistance is defined as “a reversible decrease in contractile strength that occurs 

after long lasting or repeated muscle activity” (Edman 1992). Muscular fatigue is 

caused by a build up of waste products when sufficient oxygen is not available. A build 

of lactic acid affects the cross bridge process within the muscle in three ways (Edman 

1992): 

1. By decreasing the number of interacting cross bridges, 

2. Reducing the force output of the cross bridges, 

3. Reducing the cross bridge cycle rate. 

The adaptation of fibre type classification can influence the fatigue resistance. During 

prolonged resistance training periods, Type IIb fibres can develop Type IIa 

characteristics, making them less prone to fatigue (Staron et al 1994). Alternatively, 

extended endurance exercise can result in the adaptation of Type II fibres to Type I 

(Billeter and Hoppeler 1992).  A list of other additional adaptations that can occur as a 

result of resistance training is presented in Table 3.3. 

Adaptation Research 

Heartrate Reduction in heartrate (Stone et al 1991) 
Reduction from 0% to 11% dependent on the training intensity.   

Blood pressure Dynamic resistance training with moderate resistance and high reps are 
associated with a reduction in blood pressure (Harris and Holly 1987). No 
change in blood pressure observed (Blumenthal et al 1991). More research 
required, views are varied.  

Heart size Increase in left ventricular wall thickness (Stone at el 1991),effect upon 
cardiac output and stroke volume is not understood.  

Blood composition Favourable changes in blood lipids and lipoproteins (Kokkinos and Hurley 
1990). However, it is identified that more research is required due to the 
likely day to day fluctuation.  

Glucose metabolism Improvements in glucose metabolism with strength training, independent 
of alterations in aerobic capacity or percent body fat, have been shown 
(Hurley et al 1988), (Smutok  et al 1993). 

Body composition Body composition is affected and controlled by resistance training 
programs using the larger muscle groups and greater total volume (Stone 
et al 1991). Energy expenditure following the higher total volume 
workouts appears to be elevated, compared to other forms of exercise, 
this further contributes to weight loss objectives. 
Table 3.3 Other adaptations to resistance training 
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3.3.7 Training adaptation summary 

 There are many benefits to resistance training both health and performance 

oriented, all of which stem from the ability to produce force.  

 Increased force production is reliant upon functional hypertrophy, the cross 

sectional area of the muscle is increased and muscle fibre growth is 

accommodated.  

 Increased muscular strength and force production also impacts the ability to 

generate power 

 Adaptation of muscle fibre type and pulmonary system can increase fatigue 

resistance.  

 Physiological and neural adaptation of the muscle can be achieved by resistance 

training, the type of adaptation is dependent on the type of training undertaken, 

which is ultimately by the identified training goals.  

 The four main training goals that can be achieved through resistance training; 

endurance, hypertrophy, strength and power.  

 Targeting different forms of adaptation (endurance, hypertrophy, strength and 

power) is dependent upon controlling training inputs and acute variables.  
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3.4 Section 2: Training inputs 

TARGET RESEARCH QUESTIONS: 

 What are training inputs? 

 How can training inputs be manipulated 

to train for endurance, hypertrophy, 

strength and power? 

 How are training inputs monitored? 

Designing a training program is reliant upon manipulation of training inputs and 

observation of the training outputs. Each input can be altered to train for either 

endurance, hypertrophy, strength or power. Effective training programs therefore 

require regular performance analysis of the training outputs in order to identify whether 

the desired adaptation is being targeted. According to the ACSM (2002), in order to 

achieve progression and target endurance, strength, hypertrophy or power, 7 training 

inputs can be adjusted (identified in Figure 3.7). These inputs influence which training 

outputs are most affected and whether the effect is positive or negative. The training 

outputs include kinetic and kinematic variables of the bar and body. An overview of 

training inputs and outputs is presented in Figure 3.7.  

Figure 3.7 An overview of training inputs and outputs  
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Effective training program design is reliant on targeting individual needs by controlling 

the training inputs. The most influential variables are adapted using the “FITT 

principle” (ACSM 2010). The components of the FITT principle are also identified in 

Figure 3.8. This principle refers to the variables of frequency, intensity, time and type of 

activity (FITT) which form the basic structure of well planned training programs.  The 

application of these principles to resistance training is detailed further in Table 3.4.  

Table 3.4 The FITT principle applied to resistance training 

 

The ability to alter these inputs effectively and target specific goals requires application 

of the strength-endurance continuum (Nieman 2003). The strength-endurance 

continuum is used as the basis for most training programmes, it provides basic guidance 

on the resistance, repetitions, energy systems and fibre type to determine whether the 

output is strength or endurance based. However, these are broad guidelines and do not 

distinguish between the four training zones of endurance, hypertrophy, strength and 

power. Consequently, the strength-endurance continuum has been further developed to 

determine optimum training conditions that target the four training zones.  

This revised continuum specifies the intensity through manipulation of load using the 

repetitions (one weight training or calisthenic movement (reps)), sets (a certain number 

of weight training or calisthenic repetitions), percentage of a one repetition max ((1RM) 

a percentage of the maximum number of repetitions that one can lift at a certain weight) 

and rest time (time period between sets) (Nieman 2003). The relationship between the 

volume of work (sets and reps), rest time and load is presented in Figure 3.8 (ACSM 

2010).  

 

 

Principle Explanation 

Frequency The number of resistance training sessions per week and relates to the volume of 
work done.  

Intensity Determined by the number of sets and reps, volume of work and rest periods. 
Time The rest to work ratio 
Type The chosen training system, muscle action and exercise order 
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The main training inputs are listed in the bullet points below. How each can be adjusted 

to target endurance, strength, hypertrophy or power is discussed in further detail in 

Sections 3.4.1-3.4.3. 

 Frequency 

 Volume 

 Load 

 Rest to work ratio 

 Muscle action 

 Exercise order 

 Rep velocity (slow (0.15 +/- 0.03 m.s), moderate (0.32 +/- 0.07 m.s) and high 

(0.52 +/- 0.12 m.s).  

3.4.1 Training for endurance 

Research has shown that muscular endurance can be improved by resistance training 

(Anderson and Kearney 1982, Huczel and Clarke 1992, Marcine et al 1991, Marx et al 

2001 and McGee et al 1992). It is believed that moderate to low resistance with high 

repetitions (15-20+) is the most effective form of endurance training (Housh et al 1992). 

However, moderate to heavy loading coupled with short rest periods can also increase 

high intensity muscular endurance (Anderson and Kearney 1982 and McGee et al 

1992). Rest intervals significantly affect endurance training. Research has shown that 

high volume- short rest periods can increase fatigue resistance (Kraemer et al 1987).  

Training is most effective with large muscle groups with both isolated and compound 

exercises recommended for varied user levels (ACSM 2002). The exercise order is less 

Figure 3.8 The acute variables required to target the four training systems; endurance, hypertrophy, strength 
and power 
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important when training for hypertrophy, strength or power as fatigue is a necessary 

component of endurance training (ACSM 2002). Studies have also shown than 

increased training velocity improves muscular endurance more than slow speed training 

(ACSM 2002). It is recommended by the ACSM that slow velocities should be used for 

10-15 repetitions, whilst moderate to high velocity is more suitable for higher 

repetitions (15-20+). Studies have also indicated that a frequency of 2-3 sessions per 

week is effective for both novice and intermediate men and women (Hickson et al 1994 

and Staron et al 1994).  

3.4.2 Training for Hypertrophy 

Moderate to heavy loads have been found to stimulate hypertrophy, whilst programs are 

typically high in volume (Kraemer 1992). It is recommended that training with loads 

between 70-85%1RM, repetitions between 6-12, sets between 3-6 and rest periods 

between 60-120 seconds are most effective. Both isolated and compound movements 

are appropriate for hypertrophy training. The recommended order in which the exercises 

should be performed (exercise order) is such that large muscle groups (e.g the 

quadriceps, hamstrings) are exercised first, whilst multi-joint exercises should be 

performed before single joint exercises. Finally, repetition velocity is a less documented 

variable regarding hypertrophy, however, it has been suggested that slow to moderate 

velocities should be used by novice and intermediate individuals, whilst advanced 

individuals may require higher velocities (ACSM 2010).  

3.4.3 Training for power and strength 

Dynamic muscular strength improvements are greatest when eccentric actions are 

included in the reputation movement (Dudley et al 1991). Some advanced programs 

utilise isometric training to increase muscular strength (Keogh et al 1999). Training 

with loads between 1-6 RM is most conducive to gains in maximal dynamic strength. It 

is recommended that to increase strength both free weights and machines should be 

used at the novice and intermediate level, advanced performers should focus on free 

weight training alone.   Rest periods between 2-3 minutes are required, whilst training at 

a range of velocities is recommended for advanced training. Within strength training, it 

is recommended that the order in which the exercises are performed should match that 

of hypertrophy training (large muscle groups are exercised first, whilst multi-joint 



CHAPTER 3: Literature review 
 

66 

 

exercises should be performed before single joint exercises). Power training utilises 

very similar principles to strength training, but focus is upon maximising repetition 

velocity, higher loads may be used but rest periods remain the same as those for 

strength training. An overview of the recommended guidelines to train for endurance, 

hypertrophy, strength or power is presented in Table 3.5. It is clear from the overview 

that there are many inputs to monitor to ensure the training program meets the goal of 

the individual. Changing the sets, reps, load and rest time can have a significant effect 

on the training effect and resultant adaptation. Monitoring these inputs and 

understanding their effect is therefore an important part of training program success. 
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Table 3.5 Overview of the acute variables to training for endurance, hypertrophy, strength and power (ACSM 2010 and Discovery Learning 2010). 

                 

Training Frequency Volume Load Rest to work ratio Type Exercise order Rep velocity 

Endurance 2-3 sessions per 
week 

Sets: 2-3 
Reps: 12+ 

Light to 
moderate  
<70% 1RM 

1-2mins for high reps 
(15-20), 1 min for 
moderate reps (10-15) 

Large muscle 
groups, combine 
isolated and 
compound exercises 

Not important as 
fatigue is 
necessary 

Moderate reps= 
slow velocity 
High reps: high 
velocity 
 

Hypertrophy 2-3 sessions per 
week (depends on 
number of 
muscles trained 
per session). 

Set: 3-6 
Reps: 6-12 

70-85% 1RM 60-120 seconds Both isolated and 
compound 

Compound 
before isolated 
and multi joint 
before single 
joint. 

Novice and 
intermediate= 
slow, 
advanced= high 
 

Strength Novice = 2-3 
Advanced= 4-5 
days per week 
 
 

Sets: 3-5 
Reps: 1-5 

85-100% 1RM 180-300 seconds Both isolated and 
compound 

Compound 
before isolated 
and multi joint 
before single 
joint. 

Novice and 
intermediate= 
slow, 
advanced= range 
from slow to high 

Power Novice = 2-3 
Advanced= 4-5 
days per week 
 

Set: 3-6 
Reps: 1-3 

90-100% 1RM 180-300 seconds Predominantly multi 
joint compound 
exercise for novice, 
intermediate and 
advanced.  

Compound 
before isolated 
and multi joint 
before single 
joint. 

Novice and 
intermediate= 
medium, 
advanced= high 
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3.4.5 Current methods to monitor training inputs 

Free weight training in the gym environment mainly relies upon manual notation of 

sets, repetitions, load and rest time. Most individuals from novice to advanced levels 

who adhere to a structured program follow a session that is manually noted in a 

notebook or on paper. This program may have been obtained using online or other 

media sources, some may be following a program designed by a personal trainer, whilst 

more advanced individuals may have programs designed by their coach. Despite the 

training inputs being a fundamental part of training success, individuals often attend the 

gym without any structured program. They may either follow a structure they learned 

previously or do not follow any structure at all. In both cases, progressive overload is 

difficult to achieve (ACSM 2002).  

 

The current gym environment is dominated by cardiovascular machines that enable the 

user to input relevant training inputs via an interactive interface (Rosandich 2000 and 

Chang 2007). The user is able to personalise their workout by selecting specific training 

programs, inputting their weight and selecting the data that they would like to see 

during their workout. Some devices also allow the user to insert a USB memory stick to 

save their workout profile and resultant performance data (Life Fitness© 2012). Not 

only does this reduce the set up time, it further personalises the user experience.  

Overall, regardless of individual experience and desire to follow a structured program, 

in the resistance training domain, all quantitative training inputs are currently 

documented manually which result in any number of the problems listed in Table 3.6.  

Variable Problem 

Load  Reliant on manual notation, subject to human error. 

 Recalling what loads were used in previous sessions is difficult, especially 
when multiple exercises require various 1RM values (Chang 2007). 

Volume  Reliant on manual notation, subject to human error. 

 A novice may use unsuitable volume and load that may cause or injury or 
prevent adaption. 

 There is no definitive record for coaches to identify whether a session was 
completed without direct observation. 

Rest  Monitoring the time accurately is dependent on a training partner/coach, or 
having a timer that can be set to work and rest periods. 

Progression  Keeping records and viewing progression or lack of progression over an 
extended period of time is difficult. 

 Reliant upon manual notation. 

Rep 
velocity 

 Has to be gauged by the individual or coach, quantitative data cannot be 
obtained without post analysis.  

 Not accessible to recreational users. 
Table 3.6 The current limitations when monitoring training inputs in the resistance training domain. 
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3.4.6 Summary of training inputs 

The relationship between the training systems, acute variables, specificity of the 

program and overall influence of periodisation is illustrated in Figure 3.9.  Overall the 

key points regarding resistance training inputs are as follows: 

 Resistance training is dependent upon the ability to generate force. 

 Free weights exercises have been shown to provide more training benefits than 

machine based exercises.  

 The extent and type of adaptation is dependent on the muscle actions, intensity, 

volume, exercise selection, exercise order, rest periods and frequency (Tan 

1999).  

 The FITT principle involves manipulation of the load, sets, reps and rest time to 

target four training systems: endurance, hypertrophy, strength and power.  

 Progressive overload is required to improve performance (ACSM 2002). 

 The structure of the overall program is based upon the principle of periodisation. 

 Effectiveness of the training inputs is quantified by analysis of the training 

outputs. 

 Monitoring training inputs is heavily reliant upon manual notation at the 

advanced, intermediate and novice level.  

 The ability to monitor training inputs in the free weight domain is limited.  

 

 

 

 

 

 

 

 

 

 

Figure 3.9 The relationship between the training inputs to create an 
effective training program  
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3.5 Section 3: Training outputs 

TARGET RESEARCH QUESTIONS: 

 What are the training outputs monitored within the resistance training domain? 

 Which training outputs have received most research focus? 

The success of a training program is determined by the training outputs and whether 

they match the set training goals of the individual. The training outputs associated with 

resistance training performance are identified in Figure 3.10. Monitoring performance 

from a novice to advanced level requires analysis of both bar and body motion to ensure 

that technique is considered (Stone et al 1998, Schilling et al 2002 and Winchester et al 

2009). Some exercises may cause the body to move with the bar (such as the squat), 

however, other exercises, require the individual to move the bar independently of the 

body, resulting in kinetic and kinematic data relating to both the bar and body (such as 

the snatch). Therefore, a number of research programmes focusing on the kinematics of 

the bar and corresponding bar position are being undertaken to characterise successful 

lifts (Winchester 2009 et al, Bartoneitz et al 1996 and Campos et al 2006).  

Figure 3.10 Training outputs 



CHAPTER 3: Literature review 
 

71 

 

Determining the characteristics of motion and forces causing motion is concerned with 

kinetics and kinematics. Kinetic information is paramount for the analysis and guidance 

of athletic sports (Gao et al 2008) and is concerned with what causes a body to move 

(Zatsiorsky 2002). Kinematics is a branch of dynamics that deals with aspects of motion 

apart from considerations of mass and force, this may involve position, velocity, linear 

and rotational acceleration (Bartlett 2007). Increased demand across sporting domains 

for detailed analysis of technique and it’s effect on performance, has led to research 

focusing on human movement and methods of functional analysis (Knutzen 1998). 

However, some kinetic and kinematic data is more important to some sports than others. 

Understanding which have the most effect within the resistance training domain is 

discussed in the following section. Evaluation of current research within the resistance 

training domain has been conducted to determine which variables have been researched 

heavily using a variety of technologies. The variables that have received most research 

focus include the bar trajectory, force, acceleration, velocity, power and fatigue.   

3.5.1 Bar trajectory 

Of the kinematic variables studied by coaches and sports scientists, bar path has been 

highly documented. It is suggested that it is a significant measure of technique (Barry 

1993) whilst patterns of bar movement can identify the most efficient path (Hiskia 

1997, Schilling 2002, Stone 1998 and Winchester 2005), particularly at high 

performance levels where complex lifts are performed in training and require detailed 

analysis. It has been suggested that there is a relationship between establishment of 

certain bar path kinematics and the level of success (Sewell 1988). At the advanced 

level, four important elements have been identified as important factors in determining 

the success of weightlifting performance (Winchester 2009): 

 

1) Initial rearward movement of the bar during the first pull. 

2) A catch position no more than 20cm behind the most forward bar position. 

3) Amount of looping (i.e deviation of the bar trajectory from the midline of the 

body) which should be less than the net rearward horizontal displacement.  

4) Relationship between weight lifted and velocity in which the time interval from 

the start of the lift to peak velocity increases as weight increases, whilst peak 

velocity decreases (Garhammer 2001). 
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The relationship between optimal bar path kinematics and power and force production 

is an area of growing research. Previous kinetic analysis has highlighted the need for 

maximal force production during the second pull of a power snatch (Souza 2002). 

Whilst, improvements in both power and force production were documented for the 

power clean following bar kinematic correction (Winchester 2005), there is an 

established link between bar kinematics and kinetic variables such as the Ground 

Reaction Force (GRF) and resultant power output (Stone 1998). According to Baumann 

(1988), the extent of the horizontal movement determines the correction (i.e the 

additional force and power required to bring the bar back towards the midline of the 

body) required to complete the lift.  

3.5.2 Force 

As the ability of the neuromuscular system to generate force is necessary for all types of 

movement (ACSM 2002), the ability to generate force is the main performance 

characteristic of resistance training. Exerting force is associated with muscular strength 

as the ability to lift a heavy load is perceived as being “strong”.  Force is the product of 

mass and acceleration and understanding the relationship between all three variables is 

important as it maximises the capacity to produce force in a session, prevents selection 

of redundant exercises and ensures that rate of progression is safe (Thibideau 2007).  

 

The rate of force development (RFD) is also a key characteristic of performance, it is 

defined as the rate of rise of contractile force at the beginning of a muscle action and is 

related to the acceleration capability of the performer (Aagaard et al, 2002). This is due 

to the tendency for critical aspects in strength and power sports to occur in very short 

time frames (< 250milliseconds (Schmidtbleicher 1992)). Consequently, if an athlete 

can produce greater force within this time period, higher velocities and accelerations 

can be achieved. Previous research suggests that stronger athletes also have a higher 

RFD (Haff et al 1997).  

3.5.3 Acceleration and velocity 

Focus upon the acceleration experienced during resistance training is less documented. 

Although acceleration is often calculated to obtain other results such as velocity and 

power, few studies have focused on the observation of acceleration alone (Sato 2009). 
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Velocity has been more documented as a fundamental characteristic of successful lifting 

performance. The velocity of muscular contraction used to perform dynamic muscle 

actions affects neural, hypertrophic and metabolic responses to exercise (ACSM 2002) 

and (Housh et al 1992).  It is recommended by the ACSM that untrained individuals 

should train at slow and moderate velocities, intermediate individuals should train at 

moderate velocities, whilst for advanced training, a continuum of velocities should be 

used to maximise strength gains. As velocity is a component of power, increasing 

velocity can increase power output, however, a balance between force and velocity is 

required due to the force-velocity relationship (Rahmani et al 2001). 

3.5.4 Power  

Power (P) is described as work done per unit of time, or more commonly in relation to 

sport, a product of force (F) and velocity (V) (P = F x V). More power is produced 

when the same amount of work is done in a shorter period of time (ACSM 2002). As 

both high force and velocities are required, untrained individuals cannot begin training 

at this level without the risk of injury. Power is also influenced by rate of force 

development (RFD), strength at high and low velocities, stretch shortening performance 

and coordination of the movement (Schmidtbleicher 1992, Young 1998 and ACSM 

2002). The rate of power development (RPD) has also been a focus of research, in 

which the peak power and time to peak power are used to calculate the rate of power 

development (Koshida 2008).  Power output has been frequently used as an indicator of 

successful performance through the use of force platforms and positional transducers. 

Strength and conditioning specialists often measure power output to evaluate an 

athlete’s strength at speed (Newton and Dugan 2002). Although many studies have 

measured power output during a squat jump (Baker 2001, Baker 1999, Chui et al 2003, 

Dugan et al 2004, McBride et al 1999, McBride et al 2002, Newton et al 2009 and 

Wilson et al 1993), few have focused upon free weight training alone (Haff et al 1997, 

Haff 2003, Kawamori and Haff 2004, Moore et al 2003 and Winchester 2005). 

3.5.5 Fatigue 

Fatigue can be described as an exercise induced reduction in the maximal force capacity 

of muscle (Hunter 2004). Research has documented decreases in force and velocity 

(Westerblad 1998) and power (Halson 2002) as level of fatigue increases (10-20% 
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reduction of maximum force and power). An individual may therefore, exhibit 

numerous signs of fatigue, e.g a reduction in force which may impact RFD, velocity, 

power or RPD. As such, the ability to monitor these parameters is of great interest, 

particularly at the competitive levels where improved performance is desired. From a 

health perspective, the ability to monitor these parameters would highlight the need to 

strengthen weaker muscles and improve motor control. It is believed that motor control 

and concentration can be affected by fatigue (Halson 2002) which could lead to 

reduction in reaction time, balance, coordination and the ability to stabilize the working 

muscles. 

 

An overview of the most relevant research studies conducted in the resistance training 

domain is presented in Table 3.7. The first author, performance variable(s) and exercise 

of interest are listed to identify which variables are most commonly researched. A total 

score is also calculated based upon the number of studies investigating each variable. 

The studies are listed in chronological order so that any trends in the research directions 

can be identified. The results indicate that the most commonly researched variable is 

peak force. Both peak velocity and peak power are the second most reported variables, 

whilst bar trajectory is the third most common. Although the information presented in 

Table 3.7 is not an exhaustive list, it is clear that the ability to monitor peak force, peak 

velocity and peak power is of great interest to both sports scientists and coaches alike. 

Numerous forms of technology have been used to collect the identified kinetic and 

kinematic data including video, force platforms, linear positional transducers (LPT’s) 

and sensor technology. How training outputs are monitored using this technology and 

the limitations of each, are discussed in the following section. 
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Table 3.7 Summary of research within the resistance training domain to identify the most influential performance variable, 

First author PF AF RFD PV AV PP AP RPD A BT Exercise 

Bartonletz (1996)           Snatch 

Gourgoulis (2000)           Snatch 

Rahmani (2001)           Squat 

Souza (2002)           Power Clean 

Haff (2003)           Clean pull 

Sleivert (2004)           Squat Jump 

Manne (2006)           Bench press 

Hori (2006)           Squat Jump 

Chang (2007)           Varied 

Bruenger (2007)           Power Snatch 

Jenson (2008)           Squat Jump 

Nejadien (2008)           Snatch 

Rambaud (2008)           Bench Press 

Koshida (2008)           Bench press 

Winchester (2009)           Power Snatch 

Patterson (2009)           Squat Jump 

Sato (2009a and b)           Snatch & Clean 

Frost (2010)           Bench press 

Hanson (2010)           Squat Jump 

Dayne (2011)           Squat Jump 

Lake (2011)           Squat 

Crewther (2011)           Squat Jump 

TOTAL 13 1 2 9 1 9 4 2 5 8  
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3.6 Section 4: Current monitoring technology 

TARGET RESEARCH QUESTIONS: 

 What forms of technology are currently used to monitor performance in the 

resistance training domain? 

 What are the limitations and resultant gaps in current research methods and 

technology development?  

Many tools have been developed to assist resistance performance analysis, including 

video analysis, electromyography, force platform analysis, simple timed measures, 

questionnaire tools, validated functional tests and human expert observation (Mathie et 

al 2004). An evaluation of the technologies that has been applied to the resistance 

training domain, the derived performance variables and methods of calculation is 

documented in this section. Research that has been conducted using each form of 

technology and the limitations of each is also discussed.  

3.6.1 Video 

Video technology is a commonly used tool that provides feedback through post session 

analysis of the video stream. The portability, ease of interpretation, low cost and 

accessibility of video technology ensures that it is the preferred tool of coaches and 

athletes (Leibermann 2002). More advanced systems have integrated supporting 

software that provides qualitative and quantitative data on body and bar movement 

through post analysis. Commercial analysis systems include: SportsCode (Sportstec©  

2008), SiliconCoach Pro (Silicon Coach© 2010) and Quintic Biomechanics 9.03v17 

(Quintic Consultancy Ltd© 1996).  Some systems also provide a form of comparative 

feedback allowing an athlete’s performance to be compared to an ideal template 

(Leibermann et al 2002). Although the aim is to provide “user friendly” technology a 
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major problem with a comparative system is how well a template can represent a large 

population range. This argument is supported by Knudson and Morrison (1997) who 

state that an individual’s optimal performance is unlikely to be the same as that of 

another.  

Video analysis is considered one of the most accessible forms of performance analysis; 

it is therefore often used alongside other monitoring methods to provide “gold standard” 

measurements. The ability to relate quantitative data to technique is heavily reliant on 

knowledge of the corresponding movement. Therefore, although video analysis is time 

consuming, it is a reliable method that can be used to validate other performance 

monitoring systems. An example of a digitised bench press trajectory using video 

analysis is presented in Figure 3.11.  

Most research publications detail the calculation 

of performance variables using video 

displacement data, requiring double 

differentiation of displacement data to determine 

acceleration coupled with the system mass to 

calculate a measure of force output (see Figure 

3.12), (Falvo 2005, Newton and Dugan 2002, 

Baker 2001,  Cormie et al 2007, Baker et al 2001, 

Bourque and Sleivert 3003, Izquierdo 

1999,2001,2002, Alemany et al 2005, Cronin and 

Henderson 2004, Rahmani et al 2001, Thomas et 

al 1996 and Weiss et al 2004, 2005).  The direct 

acquisition of displacement data to derive other 

kinetic and kinematic variables can also provide a 

visual method of synchronisation with other 

monitoring devices, ensuring that video analysis 

is rarely used in isolation in research. 

 

Figure 3.11 An example of the digitisation 
process. 



CHAPTER 3: Literature review 
 

78 

 

3.6.2  Force Platforms 

Force platforms have a wide range of applications in the health, engineering and sports 

domains (Leibermann 2002). A force platform is most commonly designed as a 

rectangular metal plate, with piezoelectric or strain gauge transducers attached at each 

corner to give an electrical output that is proportional to the force on the plate. The 

piezo-electric or strain gauge transducers measure the force exerted against it by the 

subject or object. According to Newton’s third law of motion (every action has an equal 

and opposite reaction) this also measures the force exerted by the platform against the 

subject or object. The force exerted by the platform against the body is often referred to 

as the “Ground Reaction Force” (GRF) (Linthorne 2001).  

 

Force platforms are commonly used to investigate the kinematics and dynamics of 

human motion. Supporting software is often used to derive acceleration, velocity and 

displacement data from the force-time curve through post session analysis.  The 

acceleration-time curve is obtained by dividing the force-time curve by the subject’s 

body mass, the velocity-time curve can then be obtained by numerically integrating 

acceleration-time curve using the trapezoid rule. Although more complex integration 

Figure 3.12 The calculation of kinematic data using video displacement data 
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methods can be used, such as Simpson’s rule, research suggests that accuracy is not 

significantly improved (Kibele 1998). The trapezoid rule is therefore a sufficient 

method for deriving kinematic data using force platform technology. Direct kinetic 

analysis using a force platform is also used to calculate power from the GRF. This relies 

upon determining the impulse-momentum relationship to determine velocity and 

resultant power. Typically this method has been applied to vertical jumps rather than 

loading and resultant power output (Haff et al 1997, Dugan et al 2004, McBride et al 

1999, Delecluse et al 2005, French et al 2004, Iossifidou et al 2005, and Sands et al 

2005). Power can be derived from the derived variables using one of two methods: 

 

1. Power =                  

2. Work done = Force x Displacement  Power = 
         

    
 

 

The first method relies upon the GRF data 

and derived velocity-time data following 

integration of the acceleration-time data. 

The second method utilises the original 

GRF data and requires double integration 

of the acceleration-time data to calculate 

the displacement. The first method involves 

less data manipulation which reduces the 

risk of human error and integration error 

accumulation. The calculation process to 

derive acceleration, velocity and power 

from the GRF data is presented in Figure 

3.13. The calculation of power has been 

separated into the double and single 

integration methods. The double integration 

method requires three extra steps and 

therefore may not be the most efficient 

method of power calculation. 

 

 

Figure 3.13 The calculation of kinematic data from force 
platform Ground Reaction Force (GRF) data. 
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Numerical integration of force-time curves also allows jump height data to be derived 

during post session analysis. The ability to integrate the force-time data to derive take 

off velocity and time in flight has resulted in multiple jump height calculation methods. 

Time in the Air (TIA) is a commonly used method in which the vertical displacement of 

the centre of mass (COM) is calculated using an equation of uniform acceleration 

(Beynnon and Johnson 1996). A jump is defined as “a vertical displacement achieved 

by a COM from take off to the vertex of the flight trajectory” (Moir 2008). This requires 

consideration of the time of flight only. However, using this method, it is assumed that 

the position of the COM is the same at the beginning before take-off and upon landing 

which may or may not be the case, leading to subsequent questioning of the validity of 

TIA calculation (Bosco et al 1983).  Another method involves calculating the vertical 

velocity of the COM at take off by integrating the force trace and using an equation of 

uniform acceleration to determine the jump height (Moir 2008). This avoids the 

assumption that the COM is the same at takeoff and landing but does not account for the 

change in vertical displacement that will occur due to joint extension. It is suggested 

that the COM vertical displacement can be readily calculated using video based systems 

(Hatze et al 1998). Double integration of the vertical force data can be used to estimate 

the COM displacement achieved during a lift (Beynnon and Johnson 1996). Therefore 

the third method involves consideration of the take off velocity and COM position at 

take off (Aragon-Vargas 2000). The three calculations are illustrated in Figure 3.14.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 The three common calculation methods to calculate jump height, 1. Using time in the 
air, 2. Using take off velocity and 3. Using centre of mass displacement and take off velocity. 
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Jump analysis is a performance monitoring method well utilised across the sporting 

domain (Tidow 1990 and Young 1995). Readiness to perform is commonly investigated 

using a squat jump or vertical jump, the jump height reached is used as an indicator of 

the readiness to perform (Thibadeau 2007). The ability to monitor both dynamic jump 

and human motion using a force platform would provide an abundance of data to 

characterise performance in a gym environment. Force platforms may be classified 

according to whether they are single-pedestal (load cells), multi-pedestal and by the 

transducer type (strain gauge, piezoelectric sensors, capacitance gauge or piezo-

resistive) (Griffiths 2006). Load cells are most suited to the monitoring of forces applied 

over a small area, for applications such as gait analysis in which forces migrate across 

the plate, multi-pedestal platforms are required. As the number of load cells increases, 

the cost of the force platform also increases due to increased accuracy. The computation 

of the ground reaction force (GRF) is represented by three vectors, force, centre of 

pressure and a free moment. The force is calculated using the x, y and z vector, 

however, the force platform cost can be reduced if only the horizontal component (z) is 

of interest as less load cells are required. Performance analysis involving movement 

across the plate both horizontally and vertically (such as gait analysis) would not be 

well represented using horizontal force alone. Therefore, the type of application and 

level of accuracy required influences the cost of a force platform.  

The direct acquisition of kinetic data using a force platform is not always a cost 

effective solution (typical force platforms cost between £15-30k) and is often limited to 

lab based environments (Cronin 2004) and (Walsh 2006). In addition, a skilled user is 

required to post process and analyse the data, whilst real time feedback is not currently 

possible. Therefore, force platform use within a gym environment may be more suited 

to an elite gym environment rather than recreational. Consequently research focus has 

shifted towards the application and development of kinematic systems such as linear 

positional transducers and accelerometers to monitor resistance training performance 

(Crewther et al 2011).  

3.6.3 Linear Positional Transducers (LPT’s)  

An LPT consists of a tethered cord which is attached to the end of the weight training 

bar to extract time-displacement data which can be used to calculate velocities and 

accelerations (Crewther 2011). Literature documents the calculation of performance 

http://en.wikipedia.org/wiki/Strain_gauge
http://en.wikipedia.org/wiki/Piezoelectric_sensor
http://en.wikipedia.org/wiki/Capacitance
http://en.wikipedia.org/wiki/Piezoresistive
http://en.wikipedia.org/wiki/Piezoresistive
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variables through either displacement data using a single LPT requiring double 

differentiation of displacement data to determine acceleration coupled with the system 

mass to calculate force output (Falvo 2005, Newton and Dugan 2002, Baker 2001,  

Cormie et al 2007, Baker et al 2001, Bourque and Sleivert 3003, Izquierdo 

1999,2001,2002, Alemany et al 2005, Cronin and Henderson 2004, Rahmani et al 2001, 

Thomas et al 1996 and Weiss et al 2004, 2005). These kinematic data can be used to 

estimate force and power when the mass of the load and subject are factored in (Cronin 

2007b) and (Drinkwater 2007). Relative validity (correlation) statistics have been 

reported as r=0.86-1.00 using a single linear transducer (Crewther 2011). However, 

absolute validity (i.e agreement between the calculated mean values) has shown 

significant difference.  Research has shown differences in power values using a single 

LPT (average jump squat power derived using single LPT analysis (3379.56 ± 505.8W) 

in comparison to force platform analysis (6260.95 ± 1181.90 W), (Cormie 2007a), 

(Cormie 2007b) and (Hori 2007). It is suggested that this may be due to differences in 

COM movement recorded by the force platform and bar movement. The use of a single 

LPT is also considered to be of limited validity for collection of displacement-time data 

in some free-weight exercises due to their inability to ascertain both horizontal and 

vertical displacement (Hori 2007). In such cases it has been recommended that two 

transducers be used in a triangular formation with the bar with the single apex at the 

bottom (Cormie et al 2007). However, rotation of the bar would still produce inaccurate 

results.  

3.6.4 Accelerometers 

The development of smaller, portable sensors has led to the possibility of increased 

testing environment flexibility.  Motion sensors currently in use include pedometers and 

accelerometers. These devices may be used for purposes of surveillance, clinical, 

research and program evaluation (Tudor-Locke and Myers 2001). The use of 

accelerometers in athletic performance monitoring has been validated by numerous 

studies covering a range of disciplines including: ambulatory measurements (Bussmann 

et al 1998, 2001); physical activity (Bao and Intille 2004, Lee et al 2003 and Ravi et al 

2005); gait analysis (Levine et al 2005); orientation and movement (Luinge 2002, 

Roetenberg 2006, Luinge and Veltink 2005, Luinge et al 2007, Lynch et al 2005 and 
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Roetenberg et al 2007); and to improve athlete performance (Anderson et al 2002 and 

Callaway et al 2009). 

 

To provide a basic overview of how an accelerometer can be used to detect and 

characterise movement within a gym environment, the operation of an accelerometer is 

explained using the analogy of a ball placed inside a box. The box walls represent the 

axes of a tri-axial accelerometer with each axis assigned to a pair of walls. If the box 

was in a place with no gravitational field, the ball would float in the middle as 

illustrated in Figure 3.15(A). If the box was pushed to the left with an acceleration of 1g 

(9.81m/s
2
) the ball would hit the –x wall and an output of -1g would register on the x 

axis (Figure 3.15(B)). The accelerometer detects a force that is directed in the opposite 

direction of the acceleration vector referred to as the inertial force.  

 

Figure 3.15 Box and ball analogy to demonstrate how a tri-axial accelerometer detects acceleration indirectly 
through forces applied to the device. 
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The analogy of an accelerometer in Figure 3.15 measures acceleration indirectly by 

monitoring a force that is applied to the system walls that is not necessarily a physical 

acceleration. For example, if the box is placed in a gravitational field, the ball would fall 

onto the –z wall, applying a force of -1g to the bottom wall as presented in Figure 

3.15(C).  Therefore an output of -1g would be read on the z axis even when the box is 

stationary. Tri-axial accelerometers are used to detect inertial forces on three axes. If the 

sensor (in Figure 3.15(D)) was rotated 45 degrees, the ball would touch the -Z and -X 

walls. Therefore a component of gravity and/or acceleration would be present in both 

axes. Whilst this analogy is useful for understanding how the accelerometer interacts 

with outside forces, it is more practical to fix the coordinate system to the accelerometer 

axes as illustrated in Figure 3.16. The R vector is the resultant inertial force measured 

by the accelerometer with Rx, Ry and Rz respectively denoting the projections of the R 

vector on the X, Y and Z axes. To calculate the value of the resultant inertial force 

produced by individual accelerations experienced by each axis, the Pythagorean 

Theorem is used:  

 

R
2
 = Rx

2 
+ Ry

2 
+ Rz

2
    (Eq. 3.1) 

 

Manipulation of this theorem enables the vector to be calculated using the x, y and z 

acceleration output. The following equation is therefore required to calculate the 

magnitude of the R vector: 

 

R = SQRT (Rx
2 
+ Ry

2 
+ Rz

2
)   (Eq. 3.2) 

 

The box-ball analogy demonstrates how 

the orientation of the accelerometer 

heavily influences the output. To prevent 

misinterpretation of the accelerometer 

output the type of movement 

corresponding to each axis must be 

identified. Perfect alignment with the 

global reference frame corresponds to 
Figure 3.16 Fixing the accelerometer axes to the coordinate 
system and calculation of the R vector using Pythagorean 

Theorem. 
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when two axes are parallel to the floor and 

one perpendicular to the floor. The axis 

perpendicular to the floor experiences a 

component of gravity and therefore 

experiences an acceleration of 1g. 

Subsequent motion analysis requires 

correction for the gravitational 

contribution. The remaining two axes do 

not experience a component of gravity and 

therefore when stationary output 0g. The 

calculation process to derive acceleration, 

velocity and power from the acceleration 

data is presented in Figure 3.17. Sensors 

comprising three axis accelerometers 

alone attached to bars and athletes 

measure the linear acceleration of the 

system in the inertial reference frame 

(sometimes referred to as the “body 

reference frame” and not the global 

reference frame) (Woodman 2007). 

Directions can only be measured relative 

to the moving system (the accelerometers 

are fixed to the system and rotate with the system, but are not aware of their own 

orientation). Calculating the initial orientation and being able to continually monitor the 

orientation of the device throughout a movement requires move advanced technology 

(i.e three axis gyroscopes) that enables the accelerometer axes in the body frame to be 

translated into the global reference frame.  

3.6.5 Wireless Inertial Measurement Units (WIMUs) 

An inertial measurement unit (IMU) is an electronic device that measures acceleration, 

velocity, orientation and gravitational forces, using a combination of accelerometers and 

gyroscopes (Titterton 2004). An IMU that transmits wirelessly to an analysis 

visualisation and storage system is referred to a Wireless Inertial Measurement Unit 

Figure 3.17 The calculation of kinematic data from raw 
accelerometer data. 
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(WIMU). A gyroscope is a device for measuring or maintaining orientation, based on 

the principles of conservation of angular momentum (King 1998). A gyroscope is a 

spinning wheel or disk with the ability to take any orientation providing a more direct 

measure of rotation in a compact space (Benbasat 2000). Although this orientation does 

not remain fixed, it changes in response to an external torque. An IMU works by 

detecting the current rate of acceleration using one or more accelerometers, and detects 

changes in rotation using one or more gyroscopes. Such technologies would allow the 

rotation experienced (i.e changes in angular velocity around three orthogonal axes α, β, 

φ in which angular displacement is achieved via integration of the angular velocities) 

during an exercise to be monitored and accounted for, increasing the accuracy of the 

resultant kinematic data. However, the combination of technology and need to monitor 

the angle change is reliant upon the ability to calculate the initial angle and filtering of 

both gyroscope and accelerometer data. Therefore the amount of processing required to 

derive accurate results is increased.  

3.6.5.1 Importance of the initial angle 

Errors in orientation cause incorrect 

projections of acceleration signals onto the 

global axis (Woodman 2007). Gyroscopes 

only measure the angular velocity from the 

initial position and failing to determine the 

initial orientation means that it is not 

possible to determine the position of the 

device with respect to the global axes. When 

an IMU is stationary and perfectly aligned 

with the global frame the X, Y and Z 

accelerometers should read 0G, 0G and 1G respectively.  The axes for acceleration and 

directions of positive rotation for the IMU are illustrated in Figure 3.18. As the device 

deviates from this orientation in the body frame, the axes need to be transformed to the 

global frame.  

 

 

Z 

Y X 

α 

β 

ϕ   

Figure 3.18 The axes of acceleration and directions of 
positive rotation. 
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3.6.5.2 The transformation matrix 

A transformation matrix is required to return the 

accelerations in the body frame to accelerations in 

the global co-ordinate system to enable 

compensation for the component of gravity to be 

applied to the data. Secondly, determination of the 

3D acceleration vectors (magnitude plus angles) is 

vital for accurate post session analysis and 

performance tracking.  

There are three common methods for transforming the accelerations: (1) Euler angles, 

(2) Direction Cosine Matrix and (3) Quaternions (Titterton and Weston 2004).  To 

construct the 3D transformation matrix, two dimensional rotation is first considered 

around each of the respective axes. An example of the positive rotation about the x axis 

is presented in Figure 3.19. Resolving around three axes results in the following 

equations: 

     

                   

                    
 

Where x , y  & z  are the local components of acceleration and X, Y & Z are global 

components of acceleration. These equations can then be represented in the matrix form 

presented below: 

                                    [
 
 
 
]  [

   
          
         

]  [
  

  

  
] 

The same technique can be applied to rotations around the Y & Z axes, giving the 

following equations: 

                                    [
 
 
 
]  [

         
   

          
]  [

  

  

  
] 

                                   [
 
 
 
]  [

          
         
   

]  [
  

  

  
] 

Figure 3.19 An example of the positive 
rotation about the x axis to 
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The highlighted 3x3 matrices are the transformation matrices [X], [Y] and [Z] 

respectively. The 3D transformation matrix is then calculated by multiplying these three 

matrices. Since the matrices are non-symmetrical, the order of multiplication is 

important. There are 6 possible combinations (XYZ, XZY, YXZ, YZX, ZXY, and 

ZYX). The equation below represents the 3D transformation matrix [XYZ], cosine is 

denoted by C and sine by S.  

[   ]   [

           
                            
                           

] 

For small angle measurement, some assumptions can be made to decrease processing 

time (Titterton 2004). 

 Cos(θ) ≈ 1 

 Sin(θ) ≈ 0 

 A function multiplied by another function (e.g. Sin(θ)* Cos(θ)) ≈ 0 

A summary of the transformation matrix is presented in Table 3.8 (Gordon et al 2011), 

whilst the combination of the gyroscope and accelerometer signal through double 

integration to derive velocity and position is presented in Figure 3.20 (Woodstock 

2007).  

[   ]   [

    
    
    

] 

 

Table 3.8 Summary of a 2D and 3D transformation matrix required to transform the WIMU to correspond with 
the global frame. 

Axis of Rotation Equations Transformation Matrix 
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3.6.6 Commercial products currently available in the resistance training domain 

The three main products currently available on the market to monitor performance in 

the resistance training domain are listed below. 

 

1. Tendo Weightlifting Analyser  (Tendo Sports Machines© 2005), 

2. Myotest Pro (Perform Better© 2010), 

3. MuscleLab Power (Ergotest Innovation© 2010).  

 

The Tendo Weightlifting Analyser (Tendo Sports Machines, 2005) is based on the 

attachment of a wired weightlifting bar or athlete’s body and uses a velocity sensor unit 

and a microcomputer to provide real time data of peak power, peak velocity, average 

power and average velocity. The velocity sensor consists of an optical sensor with light 

source with slotted disk for displacement and time measurement and a DC motor for 

movement orientation (Tendo Sports Machines, 2005). This restricts its capability to 

only measuring linear movements accurately and thus exercises requiring movement 

away from the midline of the body will generate less accurate results.  The manufacturer 

states the error associated with the system is less than 3% suggesting this is sufficient 

precision for training equipment. However, only a linear exercise using a cable pulley 

system (a lat pull down machine that is not free weight based) was investigated and the 

effect of rotation was not considered (Tendo Sports Machines, 2005). The system is 

attached to the barbell by means of a special Kevlar cable with a Velcro strap at the end.  

The data obtained can be displayed in real time or transferred to the supplied computer 

software for post analysis. 

Figure 3.20 Inertial Navigation System (INS) algorithm designed to combine gyroscope and 
accelerometer data (Woodman 2007). 
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MuscleLab Power (Ergotest Innovation© 2010) is based on the same concept as the 

Tendo Weightlifting Analyser, however it provides a more in depth analysis by 

estimating a one-repetition maximum lift (1-RM) at lighter loads. In contrast to the 

Tendo unit, MuscleLab power does not have any integrated display to transfer data for 

real time analysis.   

The Myotest Pro (Perform Better© 2004) uses a tri-axial accelerometer. The 

acceleration data is integrated to calculate velocity force and power output. The 

manufacturer of Myotest Pro claims that it can accurately estimate 1RM at lighter loads. 

However most of the athletes will be interested in calculating 1 RM at high loads, whilst 

the system only monitors seven different pre-programmed exercises. Pre-programmed 

exercises can lead to an inaccurate indication of performance. The product assumes the 

movement profile to follow pre-programmed paths and neglects the variations due to 

the actual body movement, leading to an inaccurate power output. A recent study 

conducted by Houel (2011) investigated the validity of the Myotest Pro in comparison 

to a force platform in calculating take off velocity and time to peak velocity. The results 

indicated an error of 0.8 m/s
2
 and 0.03 s respectively. The authors concluded that the 

Myotest Pro could only be used to estimate velocity of the COM and cannot be used to 

estimate other kinetic variables.  

 

Although this product utilises accelerometer technology, the accuracy of the system is 

compromised as it does not account for any rotational errors that will be present in any 

but the simplest training profiles. Consequently, the orientation of the bar cannot be 

determined when the device is accelerating. A product validation study also conducted 

using the Myotest Pro, similarly failed to address the issue of rotation (Jidovsteff 2008). 

Therefore it is clear that the application of combined accelerometer and gyroscope data 

to produce a Wireless Inertial Measurement Unit (WIMU) is not a well researched area 

within the resistance training domain. A review of the technology commercially 

available is presented in Table 3.9. The results indicate that although real time analysis 

is available, the accuracy of the performance data output is compromised by neglecting 

the effect of  bar rotation and independent movement of the bar from the body during 

non-linear exercises.   
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Table 3.9 Comparison of performance monitoring products within the resistance training domain. 

3.6.7 Current monitoring technology summary 

A summary of current technology within the resistance training domain is presented in 

Table 3.10. Accelerometers and WIMU’s are not yet well utilised in the resistance 

training domain. Most studies have focused on the validation of such technology 

through comparative analysis combining video, force platform and LPT technology 

(Cormie 2007, Hori 2006, Chui 2004, Cronin and Henderson 2004 and Rahmani 2001). 

Recent studies focus on the relative and absolute validity of kinetic and kinematic data 

derived from video, force platforms, LPT and sensor technology. Whether using one 

form of technology in isolation or combining technology influences the derived kinetic 

and kinematic data is an area of increasing interest (Cormie 2007).  

 

 

Criteria Tendo Weightlifting Analyser 
(Tendo Sports Machines, 

2010) 

MuscleLab Power 
(Ergotest Innovations, 

2010) 

Myotest Pro 
(Perform Better, 2010) 

Power    

Velocity    

Force X X  

Distance    

Profile X X  

Accelerometer X X  

Velocity sensor   x 
Real time 
display 

 X  

Bar rotation X x x 

Analysis 
Software 

   

Internet based 
comparison 

X X  

No. of 
components 

2 2 1 

Battery     

Bar    

Wrist X X x 

Back  X  

Resistance 
machines 

   

RRP  £996 
 (Tendo Sports Machines, 

2010) 

£990 
 (Ergotest Innovations, 

2010) 

£927  
(Myotest 2010) 

Market Focus Recreational  and elite Elite Sports professionals 
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Table 3.10 Summary of video, force platform, linear positional transducer, accelerometer and WIMU technology. 

Technology Technology summary 

Video technology 
 

 Real time feedback is not available. 

 Restricted to the elite level. 

 Unsuitable for a gym environment. 

 Video may not provide the athlete with sufficient understanding of 
the changes in movement. 

 Digitisation is time consuming.  

 Human error during digitisation process. 

 Increased cost of high speed cameras for rapid movement analysis.  

 A skilled user is required for the analysis.  

 Disruptive to training. 

 It is suggested that all these methods are disruptive to training time 
due to the set up, analysis procedure and post session analysis. 

 Reducing the training session disruption is a major area for 
development. (Bruenger 2007). 

 Visual evaluation of a lift is difficult for explosive movements where a 
poor angle, obscured body position due to the plates and considering 
all phases of the movement can restrict the amount of feedback that 
can be given. (Bruenger 2007).  

 Rapid movement of the bar can be difficult to follow (Bruenger 2007).  

 Required to characterise movements in relation to other kinetic and 
kinematic variables- aids signal processing for other methods of 
analysis.  

Force platform 
technology 
 

 

 Real time feedback is not available. 

 Heavy post processing is required. 

 Expensive to implement when vertical and horizontal movement is 
analysed. 

 Trajectory of the barbell cannot be determined. 

 Skilled user required to perform post analysis. 

 Difficult to implement multiple force platforms in a gym environment. 

 Integration error increases as more kinematic variables are calculated. 

 Best indicator of force generated by whole body.  

LPT  technology 
 

 Real time feedback is not available. 

 Analysis is limited to either peak values or requires subsequent 
software analysis through post processing. 

 More suited to a gym environment than video or forceplate 
technology. 

 Accuracy is reliant upon only one LPT disregarding horizontal 
displacement which disregards one of the main aspects of 
weightlifting- the trajectory of the barbell.  

 Restricted to linear movements. 

 Skilled user required to perform post analysis. 

 Multiple use of the technology is limited in a gym environment. 

 Multiple transducers can be used to monitor vertical and horizontal 
movement, increasing post analysis.  

Accelerometer and 
WIMU technology 

 

 There is a distinct lack of research in this area. 

 Uncertainty regarding accuracy. 

 Uncertainty regarding the application to a variety of lifts. 

 Lack of research using inertial measurement unit.  

 Optimum location is unknown. 

 Lifts that experience rotation can alter the accuracy of results. 
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3.7 Current integrated monitoring research 

Whether direct kinetic or kinematic methods are used, the data are often combined and 

compared to improve performance understanding. Earlier research was focused on the 

use of video technology to monitor training outputs, however, recent methods have 

combined kinetic and kinematic methods to either gain more data or to compare the 

accuracy of the technologies. The calculation of performance variables can vary 

according to the type of technology used and resultant calculation methodology as 

discussed in the following sections.  

3.7.1 Comparing force platform and LPT technology 

Currently, there are four main methods used in the resistance training domain to 

determine power output (Dugan et al 2004). These four methods have since been 

investigated in relation to weight lifting specific exercises to determine the overall 

applicability and specificity of the feedback gained (Hori et al 2006a). An overview of 

each method is presented in Table 3.11. Each method is discussed briefly in relation to 

the squat jump to identify which provides the most accurate result. The Ground 

Reaction Force (GRF) of a squat jump was measured using a force platform and these 

data combined with bar displacement data collected using a positional transducer 

(Dugan et al 2004). Power output was calculated using one of the four outlined 

methods, two that utilise inverse dynamics to calculate kinetic data from kinematic data, 

one that utilises forward dynamics to calculate kinematic data from kinetic data and a 

one final method that combines force platform and transducer data to obtain kinetic and 

kinematic data (Hori et al 2006a).  

Methods for measuring power output 

 Method 1  Method 2 Method 3 Method 4 
Equipment Position transducer  Position transducer Force platform Force platform 

and Position 
transducer 

Method Barbell + Lifter mass Barbell  Barbell + Lifter’s 
mass 

Barbell + Lifter’s 
mass 

Velocity  Barbell displacement 
and known sampling 
rate 

Barbell 
displacement and 
known sampling 
rate 

Acceleration from 
force, velocity from 
acceleration if 
initial velocity is 0.  

Barbell 
displacement 
and known 
sampling rate 

Acceleration Velocity and known 
sampling rate 

Velocity and known 
sampling rate 

Force / Mass N/A 

Force  Mass x Acceleration Mass x Acceleration Force platform Force platform 
Power Force x Velocity Force x Velocity Force x Velocity Force x Velocity 

Table 3.11 Methods for measuring power output during a lift (Hori et al 2006a) 
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3.7.1.1 Method 1:  

This method uses a single LPT and assumes that the displacement of the centre of 

gravity (COG) of the calculated mass (the barbell and lifter) is the same as the barbell 

alone (Dugan et al 2004). Assuming that that COG for both the lifter and barbell is the 

same will yield inaccurate results particularly for exercises where the relative motion of 

the bar and body differ significantly. For example, the trajectory and resultant 

movement of the bar during a power snatch or power clean does not match that of the 

body.  

3.7.1.2 Method 2: 

This method utilises the same calculations and technology as method 1, however, the 

lifter mass is not included. Although this overcomes the inaccuracy in assuming the 

lifter and barbell COG can be represented as one, the resultant power output value is be 

significantly lower than values obtained from methods 1,3 and 4. It is only the power 

being applied to the barbell that is being considered, power output of the leg and trunk 

extensors being applied to the ground is disregarded (Dugan et al 2004). Nonetheless, 

this method can be applied to a variety of weightlifting exercises in which the barbell 

COG and lifter COG do not match. It is suggested however, that this method be applied 

to upper body isolated movement, therefore power is not being generated in the lower 

body. 

3.7.1.3 Method 3: 

This method determines the GRF at regular time intervals using a force platform, whilst 

applying the forward dynamics approach through integration of force-time data (Dugan 

et al 2004). This approach requires the initial velocity at the start of data collection to be 

zero (Hori et al 2006a). Consequently, this method may have to be restricted to 

exercises which do not start from the floor as the overall mass of the system will change 

as the bar is lifted. Only movements that are started from the knee or mid thigh and 

above may be suitable and this limits the exercise applicability vastly in weightlifting, 

as many of the key training exercises from standing involve execution from the floor. 

Furthermore, the integration process magnifies any slight errors within the force 

calculation resulting in erroneous velocity and power results (Wood 1982). 
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3.7.1.4 Method 4: 

Similarly to method 3, force is calculated directly from a force platform in method 4.  

However, velocity is calculated from barbell displacement using a single LPT. Again, 

since the lifter and barbell mass are included, this results in the same issues as method 

1, in which the COG of the barbell is thought to represent that of the lifter. 

Displacement is measured directly providing an improved approximation of barbell 

velocity, however, this method is limited to exercises in which the barbell moves with 

the lifter’s body.  

Combining kinetic (force platform) and kinematic (LPT) data is a natural progression to 

investigate further the measurement of power. Research has been conducted to compare 

single LPT and force platform technology and a new method utilising two single LPT’s 

(Cormie et al 2007). The results indicate that methods relying upon kinematic data 

alone (displacement) either over estimated the power output (as seen with one LPT 

(6496 W ± 1135 W) or two LPT’s (6404 W ± 1168 W) or underestimated power output 

(when one LPT was combined with the constant mass (3379 W ± 505 W)) in 

comparison to the power derived from a combined kinetic and kinematic system (2 

LPT’s and force platform (6332 W ± 1085 W)). When using one LPT and calculating 

the force as a constant, acceleration of the system mass is not considered and resultant 

power output is significantly lower (Cormie et al 2007, Baker 2001, Coelho et al 2003a, 

Coelho et al 2003b and Jennings et al 2005).  

Alternatively, kinetic methods utilising only a force platform have shown an under 

estimation of velocity and power output, particularly where the bar is required to move 

independently of the body (Rahmani et al 2001) (GRF was 23% lower than the 

displacement method). It is suggested that the reliance upon a single LPT to obtain 

kinetic information increases ambiguity (Cormie 2007). The reliance upon the inverse 

dynamics approach requires a great deal of data manipulation and as with kinematic 

methods, double differentiation of position to determine acceleration increases noise 

and inaccuracy (Wood 1982).  

3.7.2 Comparing accelerometer, force platform and LPT technology 

Recent research has focused on the use of accelerometers to provide the same kinematic 

data as a transducer or video technology through the use of forward dynamic 
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calculations. It is suggested that an accelerometer may be a reliable and versatile way to 

assess power (Thompson and Bemben 1999). Studies that compare the performance 

variables derived from an accelerometer attached to the bar to other kinetic and 

kinematic methods are less common. In contrast to video, force platform and LPT 

technology, only six studies investigating the application of accelerometers to free 

weight training have been conducted (Sato 2009, Thompson and Bemben 1998, Manne 

2006, Chang 2007, Heoul 2011 and Crewther 2011). A recent study conducted by 

Crewther  (2011) compared accelerometer output to single LPT and force platform data 

to determine the relative validity (defined as the correlation between both datasets). 

Relative validity values between 0.85-0.99 have been documented. However, 

comparison of LPT and accelerometer application has shown higher accelerometer-

force platform correlation (0.85-0.99) than LPT-force platform correlation (0.59-0.87), 

(Crewther 2011). This suggests that linear movement of the bar is more accurately 

monitored using accelerometer technology than LPT technology.  

 

Other studies focusing on the use of acceleration sensor technology within the 

resistance training environment have been documented by Sato et al (2009), Manne et al 

(2006) and Chang et al (2007). Sato et al (2009) investigated the acceleration 

experienced during a clean and snatch using a tri-axis accelerometer mounted on a 

barbell to investigate the effect of peak acceleration values on force production, whilst 

Manne (2006) investigated the acceleration during a bench press using a wrist mounted 

three-axis accelerometer to determine energy expenditure.  This area was investigated 

further by Chang et al (2007) who examined the use of sensors located on both the wrist 

and hip, two sensors were used to aid the identification of different lifts. This study 

examined nine different exercises to target the arms, upper body and lower body. An 

overview of each is presented in Table 3.12. The aim of this study was to determine 

whether the number of reps and type of exercise could be determined from the 

acceleration signal. The error in number of repetitions identification was between 5-

15%, this was based on the repetition count only as the study did not investigate the 

calculation of other kinematic variables from the acceleration data. Furthermore, the 

results in Table 3.12 indicate that in Changs et als (2007) study does not investigate 

whole body movements that cause multi-planar movement. Therefore, the path tracked 

by the load is predominantly linear, whilst each exercise has a relatively short 
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movement path to restrict rotation. Chang et al (2007) also suggests that rotation does 

not affect the results which can only be true for linear movements. However, whole 

body, multi-planar movements such as the clean or snatch cause higher rotations of the 

bar and ignoring rotation will cause significant error when analysing the data. Despite 

investigating the clean and snatch, Sato et al (2009) does not discuss the effect of 

rotation upon the acceleration.  Therefore the validity of the results is questionable. 

 

Table 3.12 An overview of the exercises investigated by Chang et al (2007) using an accelerometer 

            

Despite the limitations, the application of accelerometers to the resistance training 

domain could facilitate the development of real time feedback during a session. In 

contrast to video, force platform and LPT technology, few studies applying 

accelerometers to free weight training have been conducted, the limitations could 

therefore stem from the lack of research within the domain. The potential to improve 

monitoring of training inputs through automatic recognition of the number of repetitions 

completed, whilst providing training output data during a session could provide 

significant benefits to current resistance training monitoring. The major advantages of 

an accelerometer based solution include the low cost, ease of use with minimal training 

session disruption and scalability.  

As identified by numerous researchers, the need for kinetic and kinematic data is 

essential to understanding performance (Cormie 2007, Houel 2011 and Hori 2006), 

therefore, considering the forces generated and the kinematics of the body and barbell 

would provide the greatest knowledge of performance. Research that combines the use 

of accelerometers and force platforms has not been well investigated to derive kinetic 

and kinematic data. Using a single LPT does not account for the horizontal 

displacement or rotation of the bar, using 2 LPT’s monitors the horizontal and vertical 

Exercise Muscle 
movement 

Muscle group Path of 
load 

Plane 

Bicep curl Isolated Biceps Arc  Sagittal 
Tricep curl Isolated Triceps Arc Sagittal 
Bench press Compound Chest Linear Sagittal 
Fly Isolated Chest Arc Transverse 
Bent over row Compound Upper back Linear Sagittal 
Lateral raise Isolated Shoulders Arc Frontal 
Shoulder press Compound Shoulders Linear Frontal 
Standing calf raise Isolated Calves Linear Frontal 
Deadlift Compound Legs, lower back Linear Frontal 
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movement of the bar but does not account for rotation. Monitoring barbell acceleration 

as an indicator of performance has only been investigated by four studies (Sato et al 

2009). Failing to account for bar rotation or multi-planar independent movement of the 

bar limits the range of exercises that can be monitored to linear exercises.  Combining 

force platform data to monitor body movement and accelerometer and gyroscope 

technologies to monitor bar movement (accounting for rotation) is an area that requires 

further research.  

Evaluation of previous and recent research has identified the most commonly 

investigated performance variables, exercises and method of analysis. A summary of the 

research conducted in the resistance training domain and corresponding limitations is 

listed in Table 3.13. The results suggest that there is a clear need in the resistance 

training domain for the development of an integrated system with a user friendly 

interface that stores the training inputs and outputs to improve how individuals monitor 

performance. Most research has focused on the squat jump, clean, pull and snatch. 

Although these exercises are key to a weightlifter, investigation into supporting 

exercises completed in training would be beneficial in monitoring training techniques to 

target a wider range of users. Therefore, development of a real time application utilising 

accelerometer, gyroscope and force platform technologies would support performance 

analysis in the resistance training domain.  
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Table 3.13 Summary of research conducted in the resistance training domain and corresponding limitations 

 

 

 

Method Authors  Research limitations 

Single 
transducer 

Alemany, 2005, Baker 2001, Baker 
and Nance 1999, Hori 2006, 
Bourque and Sleivert, Cronin and 
Henderson 2004, Esliger and Sleivert 
2003, Falvo 2005, Izquierdo 1999, 
2001, 2002, Rahmani 2001, Siegal 
2002, Thomas 1996, Weiss 2004, 
2005 and Cormie 2007. 

Inaccurate representation of barbell 
trajectory (as horizontal displacement is 
not considered), inaccuracies during 
double differentiation.  

2 transducers Cormie 2007. Inaccurate representation of barbell 
trajectory (as horizontal displacement is 
not considered), inaccuracies during 
double differentiation. 

Forceplate Hori 2006, Dugan 2004, French 
2004, Haff 1997, Iossifidou 2005, 
McBride 1999, 2002, Sands 2005, 
Souza 2002, Kawamori 2005 and 
Cormie 2007. 

Relies upon impulse momentum 
relationship. Method has to be applied to 
upper body movements- exercises cannot 
begin from the floor as initial velocity will 
not be zero. Expensive technology.  

Forceplate and 
a single LPT 

Hori 2006, Chui 2004, Cronin and 
Henderson 2004, Hori 2005, 
Rahmani 2001, Cormie 2007. 

Barbell COG is assumed to be the same as 
the lifter COG. Velocity is determined 
from transducer displacement- horizontal 
displacement is not considered. Limited 
to exercises such as squat jump- in which 
COG of barbell and lifter is approximately 
the same.  

Forceplate and 
a 2 LPT’s 

Khamoul 2009, Cormie 2007. Same as the above case with a single 
transducer- Cormie 2007 compared 
against use of a single transducers 
reported no significant difference 
between the a single and two 
transducers.  

Video and 
motion analysis 
software 

Hori 2006, Gourgoulis 2000, 
Garhammer 1980 and Souza 2002, 
Salaami 2008. 

Time consuming digitisation- limited to 
lab environment. Not immediate 
feedback.  

3D Modelling Nejadian 2008 Every athlete is individual, hard to apply 
to environment other than a lab 

Accelerometers Sato 2009, Thompson and Bemben 
1998. Manne 2006, Chang 2007, 
Houel 2011.  

Not enough research to determine 
accuracy, forwards dynamics may cause 
error in the calculations, area requiring 
further research due to the low cost and 
portability of such equipment. Sato only 
observed the high pull to eliminate 
rotation of the exercise which causes 
error in the data- this is not a realistic 
indication of many other exercises that 
clearly involve rotation of the bar.  
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3.8 Brief Chapter summary 

TARGET OBJECTIVES: 

 Gain an understanding of exercise physiology to understand the effects of 

resistance training. 

 Identify training inputs and outputs and determine which are most relevent to 

the resistance training domain.  

 Identify the current monitoring techniques used within the resistance training 

domain and investigate the benefits and limitations of each.. 

 Identify the current gaps in research and technology development in the 

resistance training domain.   

The target objectives were achieved by separating this Chapter into subcategories. The 

first three objectives were targeted in three correspondong subcategories whilst the final 

objective was achieved via critical analysis. Each section is summarised according to 

the subcategory research questions, the resultant research gaps are outlined at the end of 

the Chapter, whilst a summary of the new knowledge as a result of the Chapter content 

is also provided.  

3.8.1 Section 1: Resistance training overview 

TARGET RESEARCH QUESTION: 

What are the benefits of free weight resistance training and what types of adaptation 

occur as a result of resistance training? 

There are many benefits to resistance training both health and performance oriented, all 

of which stem from the ability to produce force. Increased force production is reliant 

upon functional hypertrophy, the cross sectional area of the muscle is increased and 

muscle fibre growth is accommodated. Increased muscular strength and force 

production also impacts the ability to generate power, whilst the adaptation of muscle 

fibre type and pulmonary system can increase fatigue resistance. Physiological and 

neural adaptation of the muscle can be achieved by resistance training, the type of 

adaptation is dependent on the type of training undertaken, which is ultimately by the 

identified training goals. A summary of the key adaptations is presented in Figure 3.21. 

This overview identifies the four main training goals that can be achieved through 

Figure...  
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resistance training; endurance, hypertrophy, strength and power. Targeting different 

forms of adaptation (endurance, hypertrophy, strength and power) is dependent upon 

controlling training inputs and acute variables that determine the training specificity and 

progression.  

3.8.2 Section 2: Training inputs 

TARGET RESEARCH QUESTIONS: 

How can training inputs be manipulated to train for endurance, hypertrophy, strength 

and power  and how are training inputs monitored? 

The extent and type of adaptation is dependent on the muscle actions, intensity, volume, 

exercise selection, exercise order, rest periods and frequency (Tan 1999). The FITT 

principle involves manipulation of the load, sets, reps and rest time to target four 

training systems: endurance, hypertrophy, strength and power. Manipulation of the 

acute variables to target each zone is presented in Figure 3.22.  Progressive overload is 

required to improve performance and the structure of an overall program is based upon 

the principle of periodisation. Effectiveness of the training inputs is quantified by 

analysis of the training outputs. Monitoring training inputs is heavily reliant upon 

manual notation at the advanced, intermediate and novice level.  

Figure 3.21 A summary of resistance training adaptations that impact endurance, hypertrophy, strength and 
power 
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3.8.3  Section 3: Training outputs 

TARGET RESEARCH QUESTIONS: 

Which training outputs are monitored within the resistance training domain and which 

training outputs have received most research focus? 

A summary of the most commonly researched training outputs, exercise and method of 

analysis is presented in Figure 3.23. The results indicate that most research has focused 

on the the generation of peak force using force platform technology monitoring linear 

movement (squat jump). Technologies that can be implemented in a gym environment 

(LPT’s and accelerometers) are not as well researched (ranked third from a possible 

four). There is a need for research investigate combining technologies to increase the 

accuracy and range of performance data that can be obtained (considering both linear 

and multi-planar movement in which the bar and body move independently).   

 

 

 

 

 

 

 

Figure 3.23 Identification of the most commonly researched performance variable and exercise. 

Figure 3.22 Review of acute variables to target endurance, hypertrophy, strength and power training. 
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3.8.4  Section 4: Current monitoring technology 

TARGET RESEARCH QUESTIONS: 

What forms of technology are currently used to monitor performance in the resistance 

training domain? 

Video and force platform technology are most commonly used in a lab based 

environment for elite analysis. Commercial products available for both elite and 

recreational use more LPT and accelerometer technology. However, such systems do 

not accurately monitor a range of exercises due to neglecting the effect of rotation and 

non-linear trajectory paths. Combined gyroscope and accelerometer technology 

providing real time time, wireless feedback (WIMU) is required to account for 

rotational analysis but would not monitor body movement moving independently of the 

bar.  

What are the limitations and resultant gaps in current research methods and technology 

development?  

A summary of the current gaps in monitoring technology design are identified in Figure 

3.24. These gaps outline the main technology inadequacies within the resistance training 

domain and overall need to improve performance monitoring systems. The limitations 

of previous studies and resultant gaps in research are identified in Figure 3.24. These 

gaps outline the type of research required to derive new knowledge. The limitation, 

research gap and corresponding Chapter targeting the research gap is presented in 

Figure 3.25. Conducting a thorough review of research in the resistance training domain 

and providing an overview of the resistance training fundamentals has highlighted 

numerous areas for improvement. The gaps in technology design identify the overall 

need to investigate real time analysis through a combination of kinetic and kinematic 

methods. There is a need for an integrated system to collect, analyse and communicate 

resistance training performance variables to a variety of users at an elite and recreational 

level. Therefore, the aim of this research is to investigate the development of a 

monitoring system that provides real time feedback in a free weight training 

environment primarily targeting elite analysis to ensure that a range of exercises are 

considered. A summary of the new knowledge gained as a result of the Chapter content 

is presented in Figure 3.26. 
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Figure 3.24 Identification of the technology related limitations and corresponding gaps in technology 
development within the resistance training domain. 
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Figure 3.25 Identification of the current gaps in research conducted in the resistance training domain, the resultant gaps in research and corresponding Chapters that target each 
research gap. 
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Figure 3.26 Core question findings; Lack of  accelerometer and WIMU development to enable wireless communication, real time monitoring, and lack of corresponding research regarding the 
application of wireless, real time monitoring that accounts for bar rotation and the identification of new knowledge acquired as a result of the Chapter. 
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Chapter 4 

4.0 Capturing user requirements 
 

TARGET OBJECTIVES: 

 Collect both qualitative and quantitative data to define user requirements from 

an elite and recreational perspective. 

 Re-iterate user requirements to consider user type and level of experience. 

TARGET RESEARCH QUESTIONS: 

 Which requirements elicitation methods should be combined to promote re-

iteration of the user requirements? 

 Which exercises are considered to be the most complex and which variables are 

considered to be most important for monitoring performance? 

 How does user experience and gender affect the user requirements?  

 How does re-iteration of the requirements elicitation methods affect the derived 

user requirements and what are the resultant user requirements?  
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4.1 Introduction 

The aim of this Chapter is to investigate the different techniques available for capturing 

user requirements and apply the most suitable methods to this research. Once the most 

appropriate techniques have been identified the objective is to collect data related to 

user’s training behaviour, current monitoring techniques implemented in the gym 

environment, how users respond to the introduction of technology and whether opinions 

and behaviour differ according to user type and level. Identifying the performance 

variables of highest importance is a main focus of this research as this influences the 

type of technology that can be utilised and how data is presented to the user. The 

collection of user requirements is separated into two categories: (i) determining what 

data should be collected and (ii) how the data are presented to the user, considering both 

software and hardware development.  

4.2 Requirements elicitation methods 

Close involvement with users is the only way to define sufficient initial requirements 

(Monk et al 1993). Supporting research states that the design approach carrying the 

highest risk is the development of a product without user involvement (Weisberg and 

Lanzetta 1991). Statistical analysis has shown the benefit of user analysis: 

 

 80% of maintenance is due to unmet or unforeseen user requirements; only 20% 

is due to bugs or reliability problems (Pressman 1992). 

 More than 30% of software development projects are cancelled before 

completion, primarily because of inadequate user design input (Standish Group 

1995). 

 The top two reasons projects fail is lack of user involvement and lack of 

requirements (Standish Group 1995). 

Consequently, a major aspect of the proposed combined modelling approach is to 

achieve a detailed understanding of user requirements. There are several methods often 

utilised to obtain user requirements, however, it is not a simple process, since these 

requirements are likely to change during the development process (Goguen 1993). 

Defining requirements is a well researched area and is commonly referred to as 

requirements elicitation (Christel and King 1992). In requirements engineering, 
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requirements elicitation is the practice of obtaining the requirements of a system from 

users, customers and other stakeholders (Somerville and Sawyer 1997). According to 

Zhang (2007), different stakeholders have distinct ways to store, recognize and express 

their knowledge about the problem domain. Several methods exist to capture 

requirements depending on the environment and system application. Each has an 

advantage over the other in terms of either simplicity, complexity and/or maturity (Jiang 

et al, 2007). The division of these methods according to the means of communication 

are identified in Figure 4.1 (Zhang 2007). However, it is suggested further by Zhang 

(2007) that a single method is unlikely to accommodate all stakeholders within a 

project.  

Selection of the appropriate method(s) is dependent upon identifying what type of 

knowledge is required and how that knowledge is acquired from the users.  Knowledge 

that is easily obtained from others is referred to as ‘explicit’ knowledge, whilst ‘tacit’ 

knowledge is harder to express and collect. According to Parsaye (1988) there are three 

major approaches to capture tacit knowledge from groups and individuals: 

 Interviewing experts.  

 Learning by being told.  

 Learning by observation. 

Obtaining both tacit and explicit knowledge therefore requires a combination of 

requirements elicitation techniques. A review of the four main categories is given in the 

next section.  

4.2.1 Conversational methods 

Conversational methods are widely used due to the natural manner in which they can be 

applied providing a means of verbal communication between stakeholders and analysts.  

The flexibility of this method allows opinions, feelings and goals of different 

individuals to be uncovered. The verbally expressive demands, needs and constraints 

are often referred to as non-tacit requirements (Maiden and Rugg 1996). However, such 

methods are dependent upon the attitude and behavior of the analyst. An objective view 

is required whilst extracting the most useful data is very labour intensive (Christel and 
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King 1992, Gogeun and Linde 1993). Such techniques involve interview, focus groups, 

workshops and questionnaires.  

4.2.2 Observational methods 

Observational methods allow the basic elements of a routine to be identified whilst 

highlighting the needs and likely solutions to a particular design problem (Zhang 2007).  

These methods are particularly useful when users lack experience, are less aware of the 

domain demands and find requirements hard to verbalise (Zhang 2007). In contrast to 

conversational methods, observational methods allow tacit requirements to be collected. 

However, these methods are also time consuming and require the analyst to be 

responsive to the environment, attention to detail is needed and a structured approach is 

key to ensure that data is not redundant. Such techniques include social analysis, 

ethnographic study and protocol analysis (Nuseiben and Easterbrook 2000).  

4.2.3 Analytical methods 

Analytical methods are used to extract knowledge that is not directly expressed by the 

user, instead requirements are deduced from other information. Analytical methods can 

sometimes narrow the vision of the product and replication of requirements is common 

(Zhang 2007). It is also suggested that analytical methods are not vital to requirements 

elicitation, as the requirements are not captured directly from end users and customers 

however, they are considered an effective complementary tool. Common analytical 

techniques include; requirement reuse, documentation studies, laddering and repertory 

grid (Somerville and Sawyer 1997, Christel and King 1992, Goguen and Linde 1993 

and Jiang et al 2007). 

4.2.4 Synthetic methods 

Synthetic methods systematically combine conversation, observation, and analysis into 

single methods. Users communicate in different ways to reach a common understanding 

of the desired product, this is often referred to as a collaborative method (Hickey et al 

1999).  These methods include contextual inquiry, prototyping and joint application 

development (JAD) and are not restricted to the user requirements stage.  
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4.3 Combining requirements elicitation methods 

The relationship between knowledge acquisition, requirements elicitation and the 

different methods used to collect data is presented in Figure 4.2. The requirements 

elicitation model indicates that to acquire a range of knowledge, a combination of 

requirements elicitation techniques are required. In order to maximise knowledge 

acquisition, both observational and conversational techniques were selected as the most 

appropriate forms of user analysis as conducting both captures explicit, tacit, process 

and concept knowledge. The selected methods are circled in Figure 4.2. 

Questionnaire distribution was selected as the most suitable conversational method due 

to the ability to access a wider user population, whilst protocol analysis was selected as 

the most suitable observational method. Protocol analysis accommodates task analysis 

which specifies the range of alternative procedures that people use based on their prior 

knowledge facts and procedures (Ericsson 2002). This allows the behaviour of users in 

their gym environment to be analysed based upon their knowledge alone.  

Figure 4.1 The categorisation of different requirement elicitation methods  
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Although the research outlined in this Chapter was focused on questionnaire data and 

protocol analysis, the design of the questionnaire covered several other techniques. The 

concept of card sorting was used to investigate user interaction (discussed in detail in 

Chapter 9). Synthetic methods were also used through the testing of prototypes 

documented in Chapters 5-7. An overview of the selected elicitation methods and 

accommodation of the re-iteration process proposed by the design methodology is 

presented in Figure 4.3. The collection and analysis of user data using these methods is 

documented in the remainder of this Chapter. 

 

  

Figure 4.2 The relationship between the requirement elicitation methods and type of knowledge acquisition and 

identification of the most suitable methods required to ascertain explicit, tacit, concept and process knowledge.  
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4.4 Method 1: Pilot survey 

The aim of the pilot survey was to ensure the questionnaire design was optimised. Using 

the design methodology principle of re-iteration and prototyping, the survey was 

distributed to a small sample population so flaws within the design could be identified. 

The basic structure of the pilot questionnaire is presented in Figure 4.4. Firstly, the 

experience of the user was required to determine the credibility of the data. For 

example, a recreational user with very limited gym experience may skew the data. By 

considering the user level of experience, the results can be separated into categories- the 

recreational, competitive, elite and experienced user. This allowed the user requirements 

to be considered according to the user type, a key aspect of user-centred design. The 

questionnaire was distributed to forty users of differing gym experience. The results are 

discussed in the next section. 

Figure 4.3 Identification of the selected requirement elicitation methods to elicit concept, process, explicit and 

tacit knowledge and application of the design methodology to promote user requirement elicitation.  
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4.4.1 Question 1-2:  Defining user level of experience 

An example of the pilot survey is presented in Appendix B. Initial questions focused on 

identifying the user gender and level of experience, the level was selected by the user as  

recreational, competitive, elite or experienced (coach or sports scientist). Unequal 

gender representation is indicated in Figure 4.5 (pie chart A), it is clear that a majority 

of the user feedback is male dominated. As such, comparing male and female data may 

identify inaccurate trends. The user level ratios illustrated in Figure 4.5 (pie chart B) 

indicate that a majority of the users rated themselves to be at a competitive level, this is 

likely as many of the questionnaires were distributed to sports teams. The pilot 

questionnaire revealed that a better female and male representation was required and 

determination of user experience needed to be modified to reduce the subjectivity of the 

classification. Furthermore, a user may play a sport at a competitive or elite level yet 

never attend the gym, therefore, rather than separating the results according to each user 

level, data could only be separated into recreational and experienced users. Recreational 

referring to those who do not coach whereas experienced being those who do coach.  

 

Figure 4.4 Identification of pilot survey objectives 
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4.4.2 Questions 3-4: Current gym behaviour 

Question 3 required the user to select which exercises they performed in the gym from a 

specified list. The objective was to identify the most popular exercises and method of 

execution, i.e barbell, dumbbell or resistance machine. The results are presented in 

Figure 4.6, whilst the main conclusions are listed below: 

 The exercises dominated by barbell use are the more technical lifts associated 

with Olympic lifting and Power lifting. Exercises such as the clean and snatch 

are perceived as “experienced” lifts due to the technical aspects and complexity 

of the movement so it is not surprising that fewer people perform these in the 

gym. 

 The most popular exercises are those that are easier to perform and can be 

introduced at a beginner level. The bicep curl (an isolated exercise) proved to be 

the most popular exercise performed using free weights.  

 The most popular compound barbell exercise is the bench press, followed 

closely by the squat. These exercises are performed by a broader population of 

varied levels due to the reduced comparative complexity to that of a clean or 

snatch. 

 Whole body exercises are not achievable using resistance machines which are 

predominantly used for lower body exercises.  

Figure 4.5 Identified flaws in pilot questionnaire; unequal gender representation and user 

level of experience.   
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 The use of free weights is more popular than resistance machines, therefore it is 

suggested that research focus is shifted towards free weight training to determine 

the complexity and popularity of exercises within this domain.  

 

 

 

Figure 4.6 Popularity of barbell (BB), dumbbell (DB) and resistance machine (RM) based exercises performed in a 

gym environment 
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4.4.3 Question 5: Most popular performance variables  

To identify the most important performance indicators, users were required to rank the 

variables illustrated in Figure 4.7. The variables presented to the users were selected 

based upon the output of the literature review presented in Chapter 3 and consideration 

of current gym equipment that provides performance feedback. The results are listed in 

Table 4.2. Parameters were ranked (from 1-7), 7 indicating the highest ranking. For 

example, the parameter ranked first received a score of 7, the ranking score from each 

user level was then added to create a total score. The total score formed the final 

ranking position by including the different views within each sub category of the total 

sample population.  

 

The overall sample population results indicated that the top variables of interest are 

peak and average power. This view is shared by both the experienced and recreational 

users. Peak and average force was ranked highly for both user types, 2
nd

 for the 

recreational and 3
rd

 for the experienced users. It is suggested that the recreational users 

are less aware of the term “rate of power development” and cannot appreciate its use as 

is reflected by the recreational ranking of RPD and RFD as the 5
th

 and 6
th

 most 

important variables. Surprisingly, peak and average velocity and work to rest ratio were 

Figure 4.7 Performance variables to be ranked in order of importance by the survey participants  
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low ranked parameters which suggests that data required to calculate power and force 

and how training programs are reliant upon effective manipulation of work to rest ratio 

to achieve the training goal is unknown to a majority of users.  Calorie expenditure 

feedback is rated higher for the recreational users (3
rd

) than the experienced users (5
th

) 

this may be due to the familiarity with cardiovascular gym equipment which is the most 

common type of technology found in a gym capable of performance feedback. 

Cardiovascular equipment typically provides time, distance and calorie expenditure 

information and may influence user perception regarding what is currently available in 

the gym environment (Rosandich 2000).  

Parameter Recreational 
Score 

Experienced 
score 

Total score Ranking 

Peak  and average power 7 7 14 1 

Peak and average force 6 5 11 2 

Peak and average velocity 4 1 5 6 

Work to rest ratio 1 2 3 7 

RPD 3 6 9 3 

RFD 2 4 6 5 

Calories burned 5 3 8 4 

Table 4.1 Pilot survey ranking of the performance variables according to recreational and experienced gym users 

 

4.4.4 Questions 6-10: Views on introducing new technology  

The results from questions relating to the introduction of new wireless monitoring 

technology are presented in Figure 4.8. Overall the bar was identified as the preferred 

product location (pie chart A). However, a range of only 11% exists between bar, wrist 

and waist preference implying that opinion is relatively evenly spread.  The next 

question investigated the reasoning behind location choice, whether this was due to 

comfort, appearance or data accuracy. The results presented Figure 4.8 indicate that the 

main influence is comfort (87%) (pie chart B). More significantly, the results indicate 

that the experienced users have a higher appreciation for the value of data collection 

with an equal 50% reasoning for both comfort and accuracy of data (pie chart C).  This 

implies that coaches are more appreciative of the balance between data credibility and 

comfort.  Preference of when to view the data identified that viewing performance data 

“after the set” and “during and after the set” both received a high percentage of user 



CHAPTER 4: Capturing user requirements 

119 

 

selection in comparison to “after the workout” or “during the set” alone (pie chart D). 

Finally, the majority of users preferred data to be delivered via both graphical and 

numerical displays (pie chart E).  

 

The final section of the questionnaire aimed to investigate the response of users to data 

presentation by presenting several example interfaces as per the examples shown in 

Figure 4.9. The aim was to determine whether users preferred to view a graphical 

display in real time, with a smaller view of a figure selected from the parameter list or a 

screen that only displayed numerical data in much larger font. Each interface required 

the user to select between reps and sets.  The interface results suggest that users prefer 

graphical displays and to view all figures simultaneously in large font rather than cycle 

between values.  

4.4.5 Pilot survey result summary 

The pilot survey identified the following: 

 The most popular compound barbell exercise is the bench press, followed 

closely by the squat. These exercises are able to be performed by a broader level 

of users due to the reduced comparative complexity to that of a clean or snatch. 

 The most important variable according to all users is the average and maximum 

power, whilst the least important parameter is work to rest ratio.  

 Most preferred product location is on the bar, but the range between wrist, bar 

and waist preference is only 11%. 

 Users prefer to receive feedback after each set. 

 Users would like functionality to choose between both graphical and numerical 

display. 

Figure 4.8 Pilot survey results regarding product location, when to view data and how to view data. 
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 Users prefer to see all figures at once in large font rather than cycle between 

them. 

 User level was classified according to the user individual subjective perception 

causing inaccurate distinction between each level.  

 Fatigue has a major influence on performance but has not been addressed in the 

pilot survey. 

 Whether there is a relationship between free weight exercise complexity and 

frequency of use needs to be investigated. 

 An increase in sample population and more questions relating to user gym 

experience to determine whether user level affects gym behaviour and user 

opinion is required.  

 The pilot survey enabled the identification of areas for improvement to be 

targeted in the second re-iteration of the questionnaire.  
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Figure 4.9 Example interfaces presented in the pilot survey and corresponding user preference results that suggest users prefer both graphical and numerical display rather than graphical or 

numerical display in isolation 

D 
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4.5 Method 2: Questionnaire  

 

 

 

 

 

 

 

 

 

 

 

The main questionnaire was developed through a re-iterative process designed to 

optimise the quality of the feedback obtained. A web based questionnaire was chosen to 

increase user access and question variation. A review of the revised objectives with the 

additional component of user interaction is presented in Figure 4.10. Due to the ability 

to create more interactive questions, performance feedback software was simulated to 

investigate user interaction with technology.  The user was required to identify how 

they would achieve a particular task such as “create a new profile”, by selecting from a 

predefined list the order and number of actions they would complete to achieve this 

task. The aim of the new component was to gain feedback on user interaction and 

software navigation i.e targeting Human-Machine Interaction (HMI) and supplementing 

feedback on data presentation. Furthermore, to improve understanding of current gym 

behaviour, exercise popularity was adapted to focus upon complexity and frequency of 

free weight use. User opinion regarding onset of fatigue was also investigated as this 

was neglected in the written questionnaire.  

Figure 4.10 Identification a re-iterated web based questionnaire 
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Statistical analysis was conducted using the significance level as the criterion for 

rejecting the null hypothesis. The significance level can be used for numerous statistical 

parametric and non-parametric tests to determine the significance of the results. The 

difference between the results of the experiment and the null hypothesis is first 

determined. Assuming the null hypothesis is true, the probability of a difference is 

computed and this probability is compared to the significance level. If the probability is 

less than or equal to the significance level, then the null hypothesis is rejected and the 

outcome is said to be statistically significant. Most commonly the 0.05 level (5% level) 

or the 0.01 level (1% level) is used to determine whether the null hypothesis is rejected. 

The lower the significance level, the more the data must diverge from the null 

hypothesis to be significant (Brase 2011). Correlation coefficients were calculated to 

determine relationships between ranked variables and user level of experience. As the 

data was not continuous and ranking methods were used, the non-parametric equivalent 

of the Pearson’s correlation coefficient was applied (Spearman’s correlation coefficient) 

(De Levie 2004). 

Closed questions were predominantly used rather than open ended questions. A closed 

question can be answered with a single word or phrase, whilst open ended questions 

require longer answers. Closed questions were most suitable for ranking variables and 

obtaining facts. Given the nature of the web based questionnaire, closed questions also 

reduced the risk of the respondents skipping questions or rushing the answers. Although 

open ended questions force the respondent to reflect and give them more flexibility in 

their response, the aim was to collect focused and factual data (Oppenheim 2000). The 

questionnaire allowed factual data to be collected, however, using this method alone 

increases the risk of missing vital data regarding user behaviour. Identifying user 

requirements cannot rely upon questionnaire data alone, observational techniques would 

provide additional data that cannot be predicted. 

4.5.1. Questions 1-4: Defining user experience level 

To ensure the normal distribution of data a sample size >30 is required. The larger the 

sample size, the higher the probability the data will be normally distributed and a better 

representation of the population will be achieved (De Levie 2004).  Therefore, the 

sample user population was increased from 40 to 110 users providing a better 

representation of the overall population. Using a web based method allowed the data to 
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be analysed in a more structured manner. A method of cross filtering facilitated by the 

web based software, allowed certain rules to be applied using “and/or” logic to filter 

user feedback. This method enabled the effect of both user level and gender to be 

investigated. In contrast to the written questionnaire, user level was determined using 

numerous questions rather than subjective user opinion alone. This was achieved by 

considering frequency of gym use, whether a structured program was followed and 

finally what level they considered themselves to be at. This reduced the subjectivity of 

perceived user level. Combining the answers to each of these questions allowed the data 

to be filtered using the following and/or logic:  

NOVICE: Recreational AND do not follow a structured program OR never visit the 

gym.  

INTERMEDIATE: Recreational OR competitive, follow a structured program AND 

visit the gym at least twice a week 

EXPERIENCED: Coach OR elite, follow a structured program AND visit the gym at 

least twice a week.  

The results are presented in Figure 4.11. Gender representation is more equal than the 

written questionnaire allowing differences in user opinion based on gender to be 

investigated (Figure 4.11, pie chart A). More than half the sample population do not 

follow a structured training program (Figure 4.11, pie chart B) whilst, 75% of these 

users visit the gym at least twice a week. This alone highlights a need to encourage a 

structured approach to training. Finally, the user distinction indicated that a majority of 

the population were recreational users (Figure 4,11, pie chart C). To determine whether 

user level also affected current behaviour in the gym environment, the same questions 

relating to the most important variables, product location and method of viewing data 

were asked.  
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4.5.2 Questions 5: Exercise complexity and frequency of use 

Exercise popularity was investigated using the written questionnaire, the results 

indicated that free weight use was most popular. In order to investigate fully free weight 

use, Olympic and Powerlifting exercises were analysed. There is a wide variety of 

compound barbell exercises, these variations and developmental lifts stem from the 

Olympic and Powerlifts. The exercises selected to be evaluated by users and the 

reliance upon the ability to perform the developmental lift are presented in Figure 4.12. 

Coaches often use variations and developmental techniques which provide the building 

blocks for complete Olympic lift execution, therefore, each of these exercises were 

presented to the user to determine if they could distinguish between complexity and 

whether this influenced the frequency of use.  

Each subject was required to rate each exercise on a scale from 1-10 according to 

complexity (1 corresponding to extremely easy and 10 being very difficult) and 

frequency of use (1 being never and 10 being every session). The average complexity 

value and frequency value was calculated for each exercise, results are presented in 

Figure 4.13. The negative relationship indicates that frequency of use decreases as 

complexity of the exercise increases.  

The average complexity and frequency of use score for each exercise and consideration 

of the relationship between developmental, variations, Olympic and Power lifts is 

represented by the diagram presented in Figure 4.14. This diagram utilises the graphical 

results in Figure 4.13. The arrows are used to indicate which lifts are reliant upon the 

Figure 4.11 Questionnaire results regarding gender balance (A), whether users follow structured programs (B) 

and user experience level (C). 
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ability to perform another lift. The origin of the arrow denotes a lift that is required to 

achieve the connected exercise, ultimately highlighting the dependency between lifts. 

The Power lifts are considered to be easier than the Olympic lifts, the arrows highlight 

the reliance of the Olympic lifts upon the ability to perform the simpler lifts. To identify 

the most popular exercises, a “reliance” value was determined based on how many other 

lifts relied upon the ability to perform that particular exercise. This was determined by 

the number of arrows originating from each lift and inserting to another.  The results are 

presented in Figure 4.14. The results indicate that most exercises rely upon the ability to 

perform a squat, whilst the deadlift also plays an important role in executing the more 

complex lifts.   
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Figure 4.13 Relationship between exercise complexity and frequency of use using the ranking of the exercises 

listed in Figure 4.10.  

Figure 4.12 List of exercises free weight exercises chosen to be ranked in terms of complexity and frequency of 

use. 
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Exercise Bench 
press 

Military 
press 

Squat Front 
squat 

High 
pull 

Deadlift Squat 
jump 

Overhead 
squat 

Single 
leg squat 

Power 
clean 

Clean Hang 
clean 

Power 
snatch 

Hang 
snatch 

Clean 
and jerk 

Snatch 

Reliance  

value 

0 2 7 5 3 4 1 1 0 1 1 2 1 1 0 0 

Figure 4.14 Calculation of a reliance value using the number of arrows entering and leaving each exercise to determine the relationship; the higher the number of arrows leaving 

the exercise the higher the reliance value.  
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4.5.3 Question 6: Fatigue indicators 

To identify how users currently gauge onset of fatigue, the same ranking method as the 

performance variable question was proposed. The categories presented to the users are 

identified in Figure 4.15, once again, these were selected based upon relevant literature 

reviewed in Chapter 3. The results are listed in Table 4.2. The correlation coefficients 

were calculated to determine the level of agreement between gender, user level and 

ranking of fatigue indicators. The results are presented in Table 4.3.  

 

Current fatigue 

indicator 

Female 

score 

Male 

Score 

Novice 

score 

Intermediate 

score 

Experienced 

score 

Total 

score 

Overall 

Rank 

Reduced force 6 6 6 6 6 30 1 

Reduced speed 5 5 5 5 5 25 2 

Reduced awareness 

of movement 

3 4 3 3 4 17 4 

Reduced stability 4 3 4 4 3 18 3 

Reduced grip 1 2 1 2 2 8 5 

Reduced 

concentration 

2 1 2 1 1 7 6 

Table 4.2 Ranking of fatigue indicators according to gender, experience level and total population 

Figure 4.15 Selection of fatigue indicators using the knowledge acquired in Chapter 3. 
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Overall, there is high correlation between all the user groups with all groups exhibiting 

a significant level of correlation at the 0.05 and 0.01 level (Baumgartner and Chung 

2001). The novice and female values are less correlated with other user groups (female 

and novice are significantly correlated at the 0.01 level) it can be assumed that most 

novice users are female. Highest correlation is found between the experienced and male 

results, with least correlation between experienced and female or novice results. This 

supports further the hypothesis that a higher majority of novices are female and more 

experienced gym users are male. It is agreed by all users that reduction in force 

production is rated as the most common fatigue indicator, whilst reduced speed is the 

second most important. Detecting reduction in speed and force may be required before a 

session rather simply during, as it may provide information regarding a user’s 

“readiness to perform”. According to Thibadeau (2007) this would be a very useful tool 

and a fundamental aspect of performance analysis. Therefore, providing quantitative 

feedback that may indicate fatigue during a session and between different sessions 

whilst quantifying a user’s readiness to perform will form one of the main user 

requirements.    

Table 4.3 Spearman’s correlation coefficient values indicating high agreement between the female and novice 

and male and experienced users using the ranking of fatigue indicators. 
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4.5.4 Question 7: Performance variables 

Users were required to select from the same seven parameters in the written 

questionnaire. Each parameter was then given a score according to the rank, the higher 

the rank the higher the score (1-7). The order of the parameters was determined by 

considering the cumulative number of users to select the rank number. The gradient of 

the each line depicted in Figure 4.16 was used to identify the point at which most users 

were in agreement, the steeper the line, the higher the user agreement. This overcomes 

instances where two parameters or more exhibit the same ranking number, the gradient 

of the line highlights where users have shown more agreement.  For example, 3 

parameters have been ranked 5
th 

in the novice plot by the same number of users. The 

RFD line gradient from 4
th

 to 5
th

 is steeper than that of velocity and work to rest ratio, 

indicating that more users agree upon that ranking position being suited to RFD.   

Both intermediate and experienced users agree that “average and maximum power” are 

the most important performance variables, whilst novices feel it is still of high 

importance, resulting in 2
nd

 place. Both the novice and experienced results show a 

clearer distinction between each rank, the steeper gradients of each line indicate higher 

agreement between users, alternatively the intermediate results exhibit less steep 

gradients and higher correlation. This would imply that intermediate users exhibit less 

agreement, the lower cumulative percentage values indicate that opinion at each rank 

was broadly spread.  

Rankings from 2
nd

 to 5
th

 indicate a less conclusive and agreement between users due to 

the lower percentage of population. Such low results imply that other parameters also 

shared a similar proportion of the vote. Each of the cross filtered group results are 

valuable, therefore, the ranking results have been combined to discover the overall 

rankings. A summary of the ranked results according to each cross filtered group and 

resultant correlation coefficients are listed in Tables 4.4 and 4.5.  
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Figure 4.16 Ranking of performance variables considering the agreement between users indicated by the steepness 

of the line rather than using cumulative value alone.  
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Little correlation and difference in user type opinion is indicated by the results shown in 

Table 4.5. A significant level of correlation is only apparent between the male and 

intermediate results. This implies that gender and user level do influence which 

parameters are considered to be most important. Once again, work to rest ratio is 

considered a parameter of little importance regardless of user type. As mentioned 

previously, this is surprising as work to rest ratio is one of the training acute variables.  

As mentioned in Chapter 3, the manipulation of the acute variables (i.e sets, reps, load 

and intensity) control whether the goal of training is endurance, hypertrophy, strength or 

power. Intensity is controlled by the work to rest ratio, therefore, it should be considered 

a fundamental part of a training program but may only be known to more experienced 

Parameter Female 

score 

Male 

score 

Novice 

score 

Intermediate 

Score 

Experienced 

score 

Total 

score 

Overall 

Rank 

Ave and max power 6 7 6 7 7 33 1 

Ave and max velocity 3 5 2 4 5 19 3 

Ave and max force 4 6 5 5 4 24 2 

RPD 2 3 4 6 3 18 4 

RFD 1 4 3 3 2 13 7 

Calories 7 1 7 1 1 17 5 

Work to rest ratio 5 2 1 2 6 16 6 

Table 4.4 Ranking of performance variables according to gender, experience level  and total population 

Table 4.5 Spearman’s correlation coefficient values indicating highest agreement between the male and 

intermediate users using the ranking of performance variables.  
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users. This is reflected in Table 4.6 in which the experienced users rank this parameter 

to be the second most important variable. As such, it is suggested that although the 

overall ranking score places the work to ratio in penultimate position, it should be of a 

higher rank to reflect the more experienced views. Such differences in opinion will not 

be reflected should the original data be used, as the sample population is dominated by 

recreational and competitive response. Therefore combining the cross filtered ranking 

scores to determine the ranking of each parameter provides a more accurate 

representation of the data. The effect of cross filtering and ranking the data according to 

gender and user experience in comparison to the original results is demonstrated in 

Figure 4.17. 

 

Figure 4.17 Ranking of performance variable using the cross filtering method to apply more weighting to the 

experienced and elite views.  
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4.5.5 Question 8-10: Views on introducing new technology 

The same questions targeted by the pilot survey to investigate the introduction of new 

technology were revisited using the web based method. The results for preferred 

product location, when to view results and viewing preference are presented in Figure 

4.18. The results exhibit agreement with the pilot survey trends. The preferred product 

location was the bar (Figure 4.18, pie chart A) and the functionality to view both 

graphical and numerical feedback both during and after each set was most preferred 

(Figure 4.18, pie chart B and C). The final component regarding user interaction 

provided an abundance of data that related to Human-Machine Interaction, as result this 

data is discussed separately in Chapter 8 which investigates software development.  

 

4.5.6 Questionnaire results summary  

The combination of pilot survey and web based results are listed in Table 4.6 and Figure 

4.19. The overall results reflect agreement regarding the most important parameters but 

also lack of agreement regarding what is least important. Throughout the analysis, 

power, force and velocity have remained highly rated parameters, whilst, calorie 

expenditure, RFD and work to rest ratio have been inconsistently placed. The ranking 

method aimed to reduce the impact of less experienced users and counteract 

inconsistency by separating the results according to user type. However, users may not 

behave as they perceive themselves to, therefore, the final stage in defining the user 

requirements aimed to use an observational method in a gym environment to investigate 

whether users follow structured programs that effectively use the acute variables to 

target endurance, hypertrophy, strength or power and which exercises are most 

Figure 4.18 Questionnaire results regarding product location (A), when to view data (B) and how to view 

data (C). 
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commonly performed. Conducting this research in addition to the previous data 

collection investigated whether users perform in the same way that they think they do, 

reducing the influence of users who may say what the analyst wants to hear, whilst also 

distinguishing between RFD, calories and work to rest ratio.  

4.6 Method 3: Protocol analysis (verbal and non verbal) 

PARAMETER PILOT QUESTIONNAIRE Total score Overall rank 

Ave and max power 7 7 14 1 

Ave and max velocity 6 5 11 2 

Ave and max force 2 6 8 3 

RPD 1 4 5 4 

RFD 5 1 6 5 

Calories 3 3 6 5 

Work to rest ratio 4 2 6 5 

Table 4.6 Ranking of performance variables according to the pilot survey, questionnaire and resultant overall 

ranking.  

Figure 4.19 Combined pilot survey and questionnaire ranking of performance variables.  
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The main objective of this case study was to determine whether users apply the 

appropriate structure to their program to achieve their specified training goal using an 

observational requirements elicitation method known as protocol analysis. As stated 

previously, protocol analysis accommodates task analysis which specifies the range of 

alternative procedures that people use based on their prior knowledge facts and 

procedures (Ericsson 2002). A total of 26 subjects of differing user levels were 

observed in the gym environment. Subjects were asked to conduct their session as 

normal, whilst narrating their activity when possible.  The subjects were not informed of 

the study objective so that they would not alter their behaviour to suit the analyst. Each 

subject was asked to identify their training goal at the start of their session from the 

following four categories: 

1. Muscular endurance 

2. Muscle gain (hypertrophy) 

3. Muscular strength 

4. Power 

Figure 4.20 Identification of protocol analysis objectives 
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Targeting each training goal is dependent on manipulation of the principles of training: 

Frequency, Intensity, Time and Type. Intensity is controlled by the number of sets reps, 

load and work to rest ratio. The relationship between the training goals and acute 

variables was first addressed in Chapter 3. For reference, the strength-endurance 

continuum is presented in Figure 4.21. The load, sets, reps and rest time were recorded 

for each subject throughout the session, this was then compared to the sets, reps, load 

and rest time that should be applied based upon their specified training goal. The results 

are presented in the following section. 

4.6.1. Protocol analysis results 

The percentage of users training for either, endurance, hypertrophy, strength or power is 

presented in Table 4.7. A majority of users train to increase muscle size (hypertrophy), 

followed by strength, power and finally endurance. To determine whether users 

followed a program that correctly adapted the acute variables to the specified training 

goal, load, rest time, sets and reps completed were compared to the specified guidelines 

for that particular training goal. According to Table 4.7, 41% of ineffective training 

results from inappropriate application of rest time, with the highest amount of 

ineffective training occurring in the hypertrophy zone.  The number of users who failed 

to adhere to their specified training zone and whether this was due to inappropriate load, 

rest time, sets or reps is also presented in Table 4.7.  

 

 

 

Figure 4.21 The acute variables required to target the four training systems; endurance, hypertrophy, strength and 

power 
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TRAINING  GOAL MOST COMMON MISUSE OF ACUTE VARIABLES 

 

 

 

 

Number of users 

 Inappropriate 
load 

Inappropriate rest 
time 

Inappropriate 
sets 

Inappropriate  
reps 

Endurance 2 2 2 1 

Hypertrophy 2 5 1 2 

Strength 1 2 1 0 

Power 1 0 0 0 

Total 6 9 4 3 

Table 4.7 Identification of the most common training goals and most common misuse of acute variables using 

protocol analysis. 

A comparison of the user sets, reps, load and rest time against the specified guidelines 

for each training zone is presented in Figures 4.22-4.24. The appropriate training zones 

for each training zone are highlighted by the shaded zones, instances where users have 

not trained within the zone are denoted by a red circle. Power and endurance results are 

combined in Figure 4.24 due to the lower number of subjects training in these zones. 

The results reflect a decrease in inappropriate use of the acute variables as training 

moves towards the strength-power end of the strength-endurance continuum. The 

inappropriate use of rest time is reflected in the pilot study and web based questionnaire, 

where rest to work ratio was consistently ranked at a low level and only considered 

important by the more experienced users.  
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Figure 4.22 Protocol analysis results which identify the numbers of users who do not use the appropriate acute variables to train within the hypertrophy training zone.  
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Figure 4.23 Protocol analysis results which identify the numbers of users who do not use the appropriate acute variables to train within the strength training zone. 
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Figure 4.24 Protocol analysis results which identify the numbers of users who do not use the appropriate acute variables to train within the endurance or power training zone. 
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Whether users consistently under or over estimate required rest time is presented Figure 

4.25. The red zone highlights users training for power gain, none of these users under or 

over estimated the required work to rest ratio and were therefore training effectively. 

These results support the assumption that the importance of monitoring rest time is 

appreciated by more experienced users. The average over or under estimation of rest 

time is also identified in Figure 4.25. Users training for strength gains underestimated 

the rest time by an average of 10 seconds, whilst those training for hypertrophy and 

endurance overestimated the rest time by an average of 15 and 22.6 seconds 

respectively. Therefore, it can be assumed from these results, combined with the written 

and web based results, that rest to work ratio is a parameter that is not effectively used 

by less experienced gym users.  

 

 

 

 

Figure 4.25 Identification of the number of gym users outside the appropriate rest time zone according using protocol 

analysis.  
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Protocol analysis in the gym environment successfully investigated issues originally 

highlighted by the conversational techniques. Users are able to identify what their 

training goal is, yet over half the sample population (57%) misused one or more of the 

acute variables to target the training zone, with a majority of misuse accountable to 

inaccurate rest time. Therefore, it is suggested that in order to support performance 

monitoring in a gym environment, there is a need to provide work to rest time feedback.  

Furthermore, this analysis also indicates how users also under or over estimate the sets, 

reps and load, how this can be controlled and monitored is another area to be considered 

in the system design.  

Overall, it is clear that the most inappropriate use of the acute variables occurred in the 

hypertrophy training zone, this may be due to the higher percentage of sample 

population who selected this training. However, ‘training for muscle gain’ is a common 

goal for many gym users, whilst training for power may be considered a goal for more 

experienced users. Training for power requires an appreciation for the both the force 

and velocity applied to the load, the user requires more technical awareness, therefore it 

is likely that the more experienced users training for power realise the importance of 

adhering to a strict work to rest ratio in order for the training goal to be achieved. 

Although the acute variables do not provide kinetic or kinematic data relating to the 

exercise execution, they influence whether a user is training effectively according to 

their target goals and therefore should be considered an important form of feedback.    

4.7 Resultant user requirements 

Using the requirements derived from the re-iterative requirements elicitation process 

and the competitor overview presented in Chapter 2, a house of quality was produced to 

determine the relationship between the user requirements and product capability (Bosert 

1991). A house of quality is a diagram that stems from Quality Function Deployment 

(QFD) which uses a correlation matrix to investigate how products should be designed 

to reflect customer requirements (Hauser 1993).  The proposed methodology suggests 

that each design requirement should be derived from a user requirement, therefore, the 

HOQ provides a structure against which the designed system can be evaluated later in 

the project.  
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Figure 4.26 House of Quality designed to establish the relationship between the customer and functional requirements in relation to 

other commercial performance monitoring products.  
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4.8 Chapter summary 

TARGET OBJECTIVES: 

 Collect both qualitative and quantitative data to define user requirements from 

an elite and recreational perspective. 

 Re-iterate user requirements to consider user type and level of experience. 

TARGET RESEARCH QUESTIONS: 

Which requirements elicitation methods should be combined to promote re-iteration of 

the user requirements? 

Combining conversational and observational requirements elicitation methods allowed 

concept, process, tacit and explicit knowledge to be captured. The use of a pilot survey, 

questionnaire and protocol analysis enabled re-iteration of the requirements elicitation 

methods.  

 

Which exercises are considered to be the most complex? 

Conversational and observational analysis methods facilitated the ranking of exercises 

according to both frequency of use and complexity of execution. The results indicated 

that the higher the complexity ranking, the lower the frequency ranking. The results 

presented in Figure 4.27 indicated that the more complex exercises required knowledge 

and ability to perform exercises with a lower complexity ranking. The Olympic lifts are 

considered the most complex exercises and are therefore performed less frequently in 

the gym environment. The power lifts are more frequently performed in a gym 

environment and are considered less complex.  
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How does user experience and gender affect the derived user requirements?  

There was high correlation between user groups regarding fatigue indicators, with 

reduced force and speed being identified as most important. Experienced users ranked 

work to rest ratio as highly important parameters whilst the other user groups felt it was 

of low importance. Experienced users also had a higher appreciation for the need to 

consider accuracy of the data as oppose to the aesthetics and comfort.  Difference in 

user level was also identified following protocol analysis. Those training for power 

adhered to the training zones more than any other user group. The Pearson’s correlation 

coefficient results presented in Section 4.5.4 also indicated that correlation between the 

novice, intermediate and experienced users does not exist. Therefore, it can be 

concluded that performance variable importance is affected by user type. Performance 

variable importance according to male and female opinion differed significantly. 

Calorie expenditure was rated as the most important variable for females and the least 

important for males. Novice and female data was significantly correlated, suggesting 

that a majority of novice users were female, this reduces the credibility of their answers 

as according to the filtering method, they consider themselves to be recreational users, 

do not follow a structured program or never visit the gym.  

 

Figure 4.27 Classification of free weight exercises into beginner, intermediate and advanced categories 

based upon the exercise complexity and frequency of use results derived from the requirements 

elicitation process.  
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How does re-iteration of the requirements elicitation methods affect the derived user 

requirements and what are the resultant user requirements?  

Both conversational and observational requirements elicitation methods have been used 

to collect both qualitative and quantitative data. Determining the user experience level 

allowed the data to be analysed from an elite and recreational perspective using the pilot 

survey. This was improved further using the web based method which allowed user 

level to be determined through and/or logic allowing the data to be analysed from a 

novice, intermediate and experienced level of user. The cross filtering method and 

subsequent ranking of parameters facilitated identification of differences in gender and 

user level. A comparison of performance variable ranking using the pilot survey and 

web based data and the variable ranking achieved using the cross filtering method is 

presented in Figure 4.28.  

 

Considering the views of different user groups within the sample population has an 

impact on the perceived importance of performance variables, with 6 of the 7 

parameters receiving a change in rank. The change in position is highlighted by a “+ or 

–” in relation to the original and final ranking. Cross filtering and ranking caused a shift 

in the ranking order of performance variables when compared to the original data, 

suggesting that user type does have an effect on results. Protocol analysis also identified 

the ineffective use of work to rest ratio to implement structured training programs whilst 

57% of the sample population misused one or more of the acute variables, either load, 

work to rest ratio, sets and reps. The finalised user requirements and summary of the 

knowledge acquired as a result of the chapter research are presented in Figures 4.29 and 

4.30 respectively. 
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Figure 4.28 Finalised end user requirements derived from multiple requirements elicitation methods.  

Figure 4.29 The change in performance variable ranking due to the re-iteration of requirements by 

combining requirements elicitation methods. 
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Figure 4.30 The identification of new knowledge acquired and core question findings; exercise complexity ranges from simple exercises (bench press and squat) 

to complex exercises (Olympic lifts). 
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Chapter 5 

5.0 Identifying the key components of simple and complex 

exercises  

 

TARGET OBJECTIVE: 

Conduct testing to identify the components of simple and complex exercises using video, 

force platform and accelerometer technology. 

TARGET RESEARCH QUESTIONS: 

 Do different exercises exhibit unique acceleration profiles? 

 What are the key components of a simple and complex exercise? 

 Do the components differ according to complexity? 

 Do the components differ according to video, force platform and accelerometer 

analysis? 

 Does complexity of the exercise influence the level of monitoring technology 

sophistication?  

Figure...  
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5.1 Introduction 

The aim of this Chapter is to investigate whether weight training acceleration profiles 

differ from those investigated using video and force platform technologies. Whether 

acceleration profiles exhibit unique key components according to the type of exercise is 

also investigated. The overall aim is to determine whether the need for more 

sophisticated technology increases with exercise complexity. The results from Chapter 4 

(a continuum plotting frequency against exercise complexity, as illustrated in Figure 

5.1), are used to identify whether an exercise is considered simple or complex. 

Exercises are chosen from each end of the spectrum, ranging from simple and 

frequently used, to complex and rarely used in a gym environment.  The four exercises 

chosen for analysis are circled in Figure 5.1 covering a range of exercises from the 

beginner to advanced level.  The four exercises are listed below: 

 Bench press 

 Squat 

 Power clean 

 Power snatch 

Figure 5.1 Classification of free weight exercises into beginner, intermediate and advanced categories based 
upon the exercise complexity and frequency of use results derived from the requirements elicitation process. 
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5.2 Method 

Ethical approval was required to conduct the testing discussed in this Chapter. One elite 

weightlifter performed all four exercises to ensure that correct technique was used.  The 

studies for each exercise were conducted seperately across four sessions. A camera 

sampling at 50Hz, a Kistler force platform sampling at 1000Hz and an accelerometer 

sampling at 50Hz developed at Loughborough University were used to monitor the 

squat, power clean and power snatch.  Only video and accelerometer data were 

collected for the bench press due to the nature of the exercise. Three sets of five reps 

were completed for each exercise with 2 minutes rest between each. The calculations 

identified in Chapter 3 (Figures 3.11, 3.12 and 3.16) were used to derive the 

acceleration from the video and force platform data to compare with the accelerometer 

data. Force platform analysis focused on the vertical Ground Reaction Force (GRF), the 

GRF being divided by the system mass to derive acceleration. The acceleration 

experienced by the system mass (whole body movement + bar) was measured using the 

force platform, video analysis required double differentiation of displacement data of 

the bar alone to derive acceleration, whilst the accelerometer was placed on the bar to 

monitor bar acceleration. Therefore, it was expected that differences would exist 

between the force platform, video and acceleormeter data. Whether the complexity of 

the exercise affected the magnitude of the difference between each analysis method was 

the main focus of each study.  

The box-ball analogy discussed in Chapter 3 

(section 3.6.4) demonstrated how the orientation 

of the accelerometer heavily influences the 

output. Therefore, to prevent misinterpretation 

of the accelerometer output, the type of 

movement corresponding to each axis was 

identified. In the examples discussed, the z axis 

was aligned to detect movement of the bar in the 

vertical plane (up and down), the y axis forward 

and back movement in the sagittal plane and the 

x axis detected movement along the bar. The 

orientation of the accelerometer in relation to 

the bar is illustrated in Figure 5.2.  

Figure 5.2 Orientation of the accelerometer 
axes on the bar example calculation of the 

resultant acceleration vector.  
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5.2.1 Video filtering 

Filtering was required to smooth the video and accelerometer data. Differentiation of 

video displacement data led to velocity data that exhibited a large amount of noise. A 

Fast Fourier Transform (FFT) was hence used to determine a cut off frequency (De 

Levie 2004). A cut off frequency of 10Hz was used to filter the video velocity and 

acceleration data. An example of the filtering effect on a set of squats is illustrated in 

Figure 5.3. 

 

5.2.2 Accelerometer filtering 

An example of the acceleration values derived from the accelerometer and converted to 

the global frame to obtain values relative to gravity (between +1 and -1g) is presented in 

Figure 5.4. These values lay slightly outside of +1 and -1 g as the accelerometer was not 

accurately aligned with the global frame. As explained in Chapter 3, this is due to the 

initial orientation of the accelerometer and cannot be compensated for when the bar is 

accelerating (i.e in motion) unless gyroscope data is available. 

The converted accelerometer acceleration values presented in Figure 5.4 imply that the 

accelerometer was not perfectly aligned with the global frame. Consequently, a 

component of gravity was present in both the x and y axis as they do not fluctuate about 

zero, whilst the z axis fluctuates about -1.2g rather than 1g. This suggests that the 

accelerometer had misaligned to a point where the z axis was in the opposite direction, 

(illustrated in Figure 5.5). However, due to the linear nature of the exercise it was 

Figure 5.3 The effect of a Butterworth filter on video velocity data 
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assumed that once in position, the accelerometer would have remained in the same 

alignment throughout the exercise and therefore rotation would not have influenced the 

data.  

 

As explained in Chapter 3, to gain meaningful data, the resultant force vector must be 

calculated from the x, y and z components (illustrated in Figure 5.5). The R vector is the 

force vector that the accelerometer is measuring, whether this is due to the gravitational 

field or inertial force. The R vector is calculated using the Pythagorean Theorem. An 

example of the R vector calculation and example squat signal is presented in Figure 5.6. 

Each exercise required filtering of the accelerometer and video data, the duration of 

each rep was selected using video analysis, this allowed the corresponding force 

platform and accelerometer data to be analysed. The data analysis methodology was 

applied to each exercise. The results are presented in the following sections.  

 

Figure 5.4 Converted node acceleration values exhibiting a slight change in initial orientation and 
resultant gravity component in the x, y and z axis 

 

Figure 5.6 Misalignment of the x, y and z axis and 
calculation of the R vector 

 

Figure 5.5 Bar node R vector signal  

 

(g) 
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5.2.3 Statistical analysis  

To determine whether the bench, squat, power clean and power snatch acceleration 

profiles derived from the force platform, video and accelerometer were significantly 

different was investigated using Pearson’s correlation coefficient. As outlined in 

Chapter 4 Section 4.5, the significance level can be used for numerous statistical 

parametric and non-parametric tests to determine the significance of the results. If the 

probability is less than or equal to the significance level, then the null hypothesis is 

rejected and the outcome is said to be statistically significant. Most commonly the 0.05 

level (5% level) or the 0.01 level (1% level) is used to determine whether the null 

hypothesis is rejected. The lower the significance level, the more the data must diverge 

from the null hypothesis to be significant (Brase 2011).  

5.3 Analysis of simple exercises 

5.3.1 The bench press 

The bench press is an upper body, predominantly linear exercise. An overview of bench 

press execution is presented in Table 5.1 (ExRx 2011). The bench press was selected 

due to the linear and simple nature of the exercise and as highlighted in Chapter 4 it is 

one of the most simple and frequently performed exercises in a gym environment. The 

teaching points describing how the bench press is executed and how the movement is 

achieved are listed in Table 5.1. These teaching points indicate that there is an eccentric 

phase as the bar is lowered to the chest followed by a concentric phase as the bar is 

raised. Work is done as the bar is raised against gravity.  

Teaching points Joint movement (Dynamic) Muscles used 

Preparation 
 
Lie on bench and grasp stirrups 
attached to low cable pulley on each 
side. Position stirrups out to each side 
of chest with bent arm under each 
wrist. 
Execution 
 
Push stirrups up over each shoulder 
until arms are straight and parallel to 
one another. Return stirrups to original 
position, until slight stretch is felt in 
shoulders our chest. Repeat.  
 

Elbow flexion 
 
 

Brachialis  
Biceps brachii  
Brachioradialis  

Elbow extension 
 

 Triceps brachii  
Anconeus  

Shoulder transverse flexion 
 
 

Pectoralis major  
Deltoid (anterior)  
Coracobrachialis  
Biceps brachii (short head) 

Shoulder transverse 
extension 

Deltoid (posterior)  
Latissimus dorsi  
Infraspinatus  
Teres minor  

Table 5.1 Teaching points, joint movement and muscles used during the bench press (ExRx 2011) 

http://www.exrx.net/Muscles/Brachioradialis.html
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The accelerometer was placed on the bar in the same orientation as that shown in Figure 

5.2 with the z axis aligned to the vertical plane. Three reps of a bench press were 

completed by an elite subject. Video and accelerometer data were collected in a gym 

environment and force platform data were not collected due to the nature of the lift. An 

example of the bar trajectory formed by manual digitisation of the bench press is 

presented in Figure 5.2(a). The bar trajectory follows a diagonal path comprising of a 

component in the z and y axes. Acceleration was detected on the accelerometer z and y 

axes. The accelerometer data were converted to the global frame and the vector 

calculated. The video data were used to identify the start and end of each rep, the 

resultant identification of each rep in the accelerometer trace is presented in Figure 

5.7(b). The signature of each rep is distinctive, a negative peak occurs as the bar is 

lowered to the chest (i), two positive peaks as the bar is accelerated vertically during the 

concentric phase (ii) and (iii), followed by a negative peak as the bar decelerates rapidly 

and returns to the starting position (iv).  The repetitive nature of each rep, starting and 

ending about zero illustrates that rotation of the accelerometer or bar did not occur. The 

features of each rep are distinctive, detection of the positive peak (iii) may provide a 

simple and robust method for automatically detecting the number of reps completed. 

 

A comparison of the derived video and accelerometer acceleration is presented in 

Figure 5.8 (b) and (c) respectively. The results indicate that there are three distinct 

phases evident in both the video and accelerometer profiles. The corresponding 

movements are highlighted in Figure 5.8 (a), characterised as: 

Figure 5.7 Bar trajectory path during the bench press, predominant axes of movement and accelerometer 
output for three reps of the bench press.  
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1. Negative peak: An initial negative phase as the subject contracts eccentrically 

and the elbows flex prior to the positive (concentric) phase of the movement. 

2. Positive peak(s): The positive phase results in a change in acceleration direction 

until a positive peak is reached.  

3. Rapid deceleration: The final large negative peak occurs as the bar decelerates 

rapidly from a peak value to a stationary position with the arms extended. This 

occurs after the exercise has been completed.   

The video trace exhibits a less smooth trace, probably due to the low digitisation 

frequency and the double differentiation of these data to derive the acceleration. 

Frequency that is too low causes a loss of accuracy that can affect the profile and peak 

values. Higher digitisation frequency is required for an accurate comparison. Although 

the absolute values of the peaks and troughs in Figures 5.8 (b) and (c) (phases 1-3) 

differ, it is clear that a distinctive, repeatable acceleration profile is produced for each 

rep of the bench press.  

Figure 5.8 Comparison of the acceleration trace derived from video and accelerometer data for the bench 
press and identification of the key phases in each trace.   
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5.3.2 The squat 

In contrast to the bench press, the squat is a whole body exercise, however, the 

movement is predominantly linear and the bar does not move independently of the 

body.  Research has shown that squatting with the mass on the shoulders is one of the 

most widely used training exercises for the development of strength in the lower leg 

extensor muscles (Rahmani et al 2001, ExRx 2011) or for general fitness and 

rehabilitation exercises (Mclaughlin et al 1977).  An overview of the squat is presented 

in Table 5.2 (ExRx 2011), the teaching points indicate that in a similar way to the bench 

press, an eccentric phase is required to lower the bar whilst a concentric phase is 

required to raise the bar as work is done against gravity. Three reps of a squat were 

completed by an elite subject, video, force platform and accelerometer data were 

collected in a lab based environment. An example of the bar trajectory formed 

following video digitisation of the squat is presented in Figure 5.9(a). The bar trajectory 

is very similar to the bench press as it does not follow a directly vertical path and 

components of both the z and y axes are once again present due to the diagonal path.  

 

Teaching points Joint movement (Dynamic) Muscles used 

Preparation 

From rack with barbell upper chest 
height, position barbell on back of 
shoulders and grasp bar to sides. 
Dismount bar from rack. 

Execution 

Bend knees forward while allowing 
hips to bend back behind, keeping 
back straight and knees pointed 
same direction as feet. Descend until 
knees and hips are fully bent. Extend 
knees and hips until legs are straight. 
Return and repeat. 

 

Hip extension Gluteus maximus 
Semitendinosus 
Semimembranosus  
Biceps femoris (long head)  
Adductor magnus (ischial fibres)  

Hip Flexion Iliopsoas  
Tensor fasciae latae  
Rectus femoris  
Sartorius  
Adductor longus  
Adductor brevis  
Pectineus  

Knee extension Quadriceps femoris  

Ankle plantar flexion Gastrocnemius  
Soleus  
Plantaris  
Tibialis posterior  
Flexor hallucis posterior  
Flexor digitorium longus  

Table 5.2 Teaching points, joint movement and muscles used during the squat (ExRx 2011) 

http://www.exrx.net/Muscles/Hamstrings.html
http://www.exrx.net/Muscles/Hamstrings.html
http://www.exrx.net/Muscles/Iliopsoas.html
http://www.exrx.net/Muscles/Pectineus.html
http://www.exrx.net/Muscles/Gastrocnemius.html
http://www.exrx.net/Muscles/Soleus.html
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The video data were used to identify the start and end of each rep (presented in Figure 

5.9 (b)) which details the resultant acceleration trace. Similarly to the bench press, the 

acceleration trace illustrates that a repetitive signal is produced for each rep, whilst the 

acceleration values start and end about zero, implying that rotation of the bar did not 

occur. The squat acceleration profile is less smooth than the bench press but there is 

more fluctuation between each rep. This may be due to the increased possibility of 

vibration and tilting of the bar as the squat is a whole body movement rather than upper 

body alone.  The positive peaks presented in Figure 5.9 (b) correspond to the number of 

reps completed, therefore, as indicated by the bench press data, the positive peaks may 

provide a method for automatically detecting the number of reps completed. 

 

The Ground Reaction Force data collected using the force platform indicate that the 

squat produces a repetitive signal similar to the profile derived from the accelerometer. 

The GRF data also indicates that the subject stays in contact with the ground throughout 

the movement. A comparison of the force platform data (b), video derived acceleration 

(c) and resultant acceleration from the accelerometer (d) for one rep is presented in 

Figures 5.10. The results indicate that all three profiles are highly correlated as each 

exhibits three distinct phases. The movements corresponding to these phases are also 

identified in Figure 5.10 (a) and indicate that the key components are similar to those 

present in the bench press. A negative peak is caused during onset of the eccentric phase 

Figure 5.9 Bar trajectory path during the squat, predominant axes of movement and accelerometer output 
for three reps of the squat. 
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Figure 5.10 ((b1), (c1), and (d1)), a positive peak is reached following the concentric 

phase Figure 5.10 ((b2), (c2), (d2)) and a final large negative peak is produced as rapid 

deceleration occurs at the end of the squat Figure 5.10 ((b3), (c3), (d3)).   

 

5.3.3 Key components of simple exercises 

Analysis of simple exercises indicates that the acceleration trace is not unique to each 

exercise but more to the type of exercise and whether the exercises share the same key 

components. Although the squat requires whole body movement rather than upper body 

alone, it is clear that both exercises have a linear eccentric and concentric component, 

whilst both produce a diagonal yet linear trajectory that requires movement in the z and 

y axes. The correlation between the bench press and squat profiles derived from the 

Figure 5.10 Comparison of the acceleration trace derived from force platform, video and accelerometer 
data for a squat and identification of the key phases in each trace.   
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video, force platform and accelerometer was calculated using Pearson’s correlation 

coefficient (Table 5.3). The correlation between each system for each exercise was also 

calculated using the same method (Table 5.4). The closer the value is to 1, the higher 

the correlation existing between the corresponding exercises or monitoring systems.   

Table 5.3 Correlation between the squat and bench press profiles  
  

 

The results listed in Table 5.3 indicate that high correlation exists between the bench 

press and squat profiles (correlation range = 0.812
**

- 0.899
**

). Therefore, the bench 

press and squat profiles do not differ significantly. The results listed in Table 5.4 

indicate that there is high correlation between each system (correlation range = 0.813
**

- 

0.966
**

). Therefore, the bench press and squat acceleration profiles derived from the 

video do not differ significantly from the force platform and accelerometer profiles. 

Although the magnitude of the peak values may differ (see Figure 5.11(a) and (b)), the 

high correlation values listed in Table 5.3 indicate that the results derived from a simple 

tri-axis accelerometer correlate highly with the video and force platform data. The 

acceleration profiles therefore exhibit the following key components: 

- A linear eccentric phase 

- A linear concentric phase 

- Constant contact with the ground 

- No bar rotation 

Compared profiles Pearson’s correlation 
coefficient 

Significant difference 

Video bench press v Video squat 0.899** No 

Acc bench press v Acc squat 0.812**   No 

Compared profiles  Pearson’s correlation 
coefficient 

Significant difference 

Video bench press v Acc bench press 0.813**   No 

Video squat v FP squat 0.966**  No 

Video squat v Acc squat 0.862**   No 

Acc  squat v FP squat 0.876**  No 

Table 5.4 Correlation between each monitoring system 



CHAPTER 5: The key components of simple and complex exercises 
 

 

163 
 

Figure 5.11 Comparison of the bench press and squat acceleration profiles derived from the force platform, video and accelerometer and identification of the key phases during 
execution.  
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5.4 Analysis of complex exercises 

5.4.1 The power clean 

Three reps of a power clean were performed by an elite weightlifter. The power clean is 

a whole body, multi-planar movement that requires weightlifting experience. It is not an 

exercise commonly executed in a gym environment by recreational users. The power 

clean was analysed using video, force platform and accelerometer data. The power 

cleans were not completed in succession, rather, each rep was performed separately due 

to the increased complexity. An overview of the power clean is presented in Table 5.3. 

In comparison to the bench press and squat, there are an increased number of teaching 

points, further implying that the power clean is more complex exercise. The exercise 

does not require a loaded eccentric phase, the subject once in position, exerts a force 

against the bar during the concentric phase until the bar reaches the required height. The 

power clean also requires a jump to force the bar into position with more power, 

therefore there is a period in which the subject leaves the ground (flight phase).   

Table 5.5 Teaching points, joint movement and muscles used during the power clean (ExRx 2011). 

Teaching points Joint movement (Dynamic) Muscles used 

Preparation 
Stand over barbell with balls of feet 
positioned under bar pointing forward, 
hip width apart. Squat down and grip 
bar with over hand grip slightly wider 
than shoulder width. Position 
shoulders over bar with back arched 
tightly. Arms are straight with elbows 
pointed along bar.  

Execution 
Pull bar up from floor by extending hips 
and knees. As bar reaches knees raise 
shoulders while keeping barbell close 
to thighs. When barbell passes mid-
thigh, allow it to contact thighs. Jump 
upward extending body. Shrug 
shoulders and pull barbell upward with 
arms allowing elbows to flex out to 
sides, keeping bar close to body. Pull 
body under bar, rotating elbows 
around bar. Catch bar on shoulders 
before knees bend lower than 90°. 
Stand up immediately so thighs ride no 
lower than parallel to floor.  
 

Hip extension Gluteus maximus 
Semitendiunosus 
Semimembranosus  
Biceps femoris (long head)  
Adductor magnus (ischial fibres)  

Knee extension Quadriceps femoris  

Ankle plantar flexion Gastrocnemius  
Soleus  
Plantaris  
Tibialis posterior  
Flexor hallucis posterior  
Flexor digitorium longus  

Shoulder abduction Deltoid (lateral)  
Deltoid (anterior)  
Supraspinatus  
Pectoralis major (clavicular head)  

Shoulder flexion Deltoid (anterior)  
Deltoid (lateral)  
Pectoralis major (clavicular head)  
Coracobrachialis  
Biceps brachii (short head)  

Shoulder external rotation Teres minor  
Infraspinatus  
Deltoid (posterior)  

Shoulder girdle elevation and 
upward rotation 

Trapezius (upper fibres)  
Trapezius (middle fibres)  
Levator scapulae  
Serratus anterior (upper and 
lower fibres) 

Elbow flexion Biceps Brachii 

http://www.exrx.net/Muscles/Hamstrings.html
http://www.exrx.net/Muscles/Hamstrings.html
http://www.exrx.net/Muscles/Hamstrings.html
http://www.exrx.net/Muscles/Adductors.html
http://www.exrx.net/Muscles/Quadriceps.html
http://www.exrx.net/Muscles/Gastrocnemius.html
http://www.exrx.net/Muscles/Soleus.html
http://www.exrx.net/Muscles/DeltoidLateral.html
http://www.exrx.net/Muscles/DeltoidAnterior.html
http://www.exrx.net/Muscles/Supraspinatus.html
http://www.exrx.net/Muscles/PectoralisClavicular.html
http://www.exrx.net/Muscles/DeltoidAnterior.html
http://www.exrx.net/Muscles/DeltoidLateral.html
http://www.exrx.net/Muscles/PectoralisClavicular.html
http://www.exrx.net/Muscles/BicepsBrachii.html
http://www.exrx.net/Muscles/TeresMinor.html
http://www.exrx.net/Muscles/Infraspinatus.html
http://www.exrx.net/Muscles/DeltoidPosterior.html
http://www.exrx.net/Muscles/TrapeziusUpper.html
http://www.exrx.net/Muscles/TrapeziusMiddle.html
http://www.exrx.net/Muscles/LevatorScapulae.html
http://www.exrx.net/Muscles/SerratusAnterior.html
http://www.exrx.net/Muscles/SerratusAnterior.html
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An example of the digitised power clean trajectory is presented in Figure 5.12(a). The 

red path includes the trajectory of the bar as it is returned to the ground. The green path 

outlines the trajectory relevant to the lift phase. In contrast to the squat and bench press, 

the trajectory is not linear. The trajectory exhibits a looping phase as the legs drive the 

bar in the second phase of the lift. A combination of arcing and rotation occurs. The 

accelerometer does not maintain the original orientation and understanding which axes 

experience acceleration is difficult, requiring gyroscope correction. The resultant 

acceleration profile is illustrated in Figure 5.12 (b). An example of the key movements 

executed during a power clean is presented in Figure 5.15(a). A comparison of the 

corresponding force platform (b), video derived acceleration (c), and accelerometer 

acceleration (d) for one rep is also presented in Figure 5.12.  

 

In contrast to the simple exercises, the acceleration traces show less correlation. Each 

trace has an initial period of acceleration as the bar is pulled from the ground to the mid 

thigh. It was expected that the force platform profile would differ due to the flight phase 

in which the subject leaves the ground and data are not collected. From the GRF profile, 

two distinct phases can be identified before the subject leaves the ground. The first 

relates to the first phase of the power clean during the pull from the ground to mid thigh 

Figure 5.13 (a1). The second pull which requires an aggressive shrug of the shoulders 

Figure 5.12 Bar trajectory path during the power clean, predominant axes of movement and accelerometer 
output for one rep. 



CHAPTER 5: The key components of simple and complex exercises 
 

 

166 
 

and drive from the legs exerts more force and forces the bar to loop slightly, ready to be 

caught on the shoulders Figure 5.13 (a2).  

 

 

 

This is reflected by the two peaks that occur before the subject leaves the ground 

(Figure 5.13 (a3)) and may be a consistent characteristic of the power clean 

performance. The effect of the subject landing is also detected by the force platform. 

The force platform acceleration is derived from the GRF, the large increase in force 

values (from zero to system weight upon landing) causes a significant increase in 

Figure 5.13 Comparison of the acceleration trace derived from force platform, video and accelerometer 
data for a power clean and identification of the key phases in each trace.   
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acceleration. The landing of the whole system weight is indicated by the large positive 

peak (Figure 5.13 (a4)). 

The acceleration derived from the video only considers the acceleration of the bar not 

the whole body. As the bar does not “land” and the acceleration is not derived from the 

GRF data, the resultant video derived acceleration profile does not exhibit a second 

large positive acceleration phase. The video acceleration profile exhibits a positive 

(Figure 5.13 (c1)) and negative phase (Figure 5.13 (c2)). The negative phase occurs 

slightly after the bar is lifted half way as deceleration occurs. As the subject leaves the 

forceplate and reaches maximum height, negative acceleration occurs as the subject 

returns to the floor and the bar is “caught” on the shoulders. The video digitisation of 

the bar is maintained throughout the lift, therefore, acceleration of the bar during the 

flight phase is obtained.  

Small deviation from the video acceleration profile is evident in the accelerometer 

profile. A positive (Figure 5.13 (d1)) and negative phase (Figure 5.13 (d2)) is evident. 

The positive acceleration phase (Figure 5.13 (d1)) differs in length (1.04 s as opposed to 

0.92 s) and magnitude (7.98 m/s
2
 as oppose to 3.60 m/s

2
), whilst identification of the 

flight phase, landing or end of the exercise is not possible using the accelerometer trace 

alone. It is suggested that the increased complexity of the trajectory due to the looping 

and rotation of the bar and the added vibration caused by the jump take off and landing 

reduces the accelerometer ability to monitor the power clean accurately. As explained in 

Chapter 3, rotation of the bar would lead to erroneous acceleration values on the three 

axes using a simple accelerometer without gyroscopes. The rotation experienced during 

a complex lift can result from rotation of the bar (as the bar is caught on the shoulders) 

and arcing of the trajectory. The power clean motion produces both forms of rotation, 

hence, the probability of inaccurate acceleration data when using a simple system (tri-

axis accelerometers and no gyroscopes) is much higher for a complex exercise such as 

the power clean than when monitoring a simple exercise with the simple system. 

Whether the effect of rotation is further amplified by a more complex exercise was 

investigated through the analysis of a power snatch. 
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5.4.2 The power snatch 

Three power snatch lifts were performed by an elite weightlifter. An overview of the 

power snatch movement is presented in Table 5.4 (ExRx 2011). The same methods used 

to analyse power clean performance were used to monitor the power snatch.   

 

The number of teaching points is once again significantly higher than the simple 

exercises. The power snatch consists of the same two phases of pull executed during a 

power clean, however, the remainder of the lift requires an overhead lift of the bar. 

During execution the subject also leaves the ground during the second pull, therefore it 

is expected that the acceleration traces are similar to that of the power clean during the 

initial phases. An example of the bar trajectory is presented in Figure 5.14 (a). The 

Teaching points Joint movement 
(Dynamic) 

Muscles used 

Preparation 

Stand over barbell with balls of feet positioned 
under bar hip width or slightly wider than hip 
width apart. Squat down and grip bar with very 
wide over hand grip. Position shoulders over 
bar with back arched tightly. Arms are straight 
with elbows pointed along bar.  

Execution 

Pull bar up off floor by extending hips and 
knees. As bar reaches knees back stays arched 
and maintains same angle to floor as in starting 
position. When barbell passes knees vigorously 
raise shoulders while keeping bar as close to 
legs as possible. When bar passes upper thighs 
allow it to contact thighs. Jump upward 
extending body. Shrug shoulders and pull 
barbell upward with arms allowing elbows to 
pull up to sides, keeping them over bar as long 
as possible. Aggressively pull body under bar. 
Catch bar at arm's length while moving into 
squat position. As soon as barbell is caught on 
locked out arms in squat position, squat up into 
standing position with barbell overhead.  
 

Hip extension Gluteus maximus 
Semitendiunosus 
Semimembranosus  
Biceps femoris (long head)  
Adductor magnus (ischial 
fibres)  

Hip flexion Iliopsoas  
Tensor fasciae latae  
Rectus femoris  
Sartorius  
Adductor longus  
Adductor brevis   
Pectineus  

Knee extension Quadriceps femoris  

Ankle plantar flexion Gastrocnemius  
Soleus  
Plantaris  
Tibialis posterior  
Flexor hallucis posterior  
Flexor digitorium longus  

Shoulder abduction Deltoid (lateral)  
Deltoid (anterior)  
Supraspinatus  
Pectoralis major (clavicular 
head)  

Shoulder external 
rotation 

Teres minor  
Infraspinatus  
Deltoid (posterior)  

Shoulder girdle 
elevation and upward 
rotation 

Trapezius (upper fibres)  
Trapezius (middle fibres)  
Levator scapulae  
Serratus anterior (upper and 
lower fibres) 

Table 5.6 Teaching points, joint movement and muscles used during the power snatch (ExRx 2011). 

http://www.exrx.net/Muscles/GluteusMaximus.html
http://www.exrx.net/Muscles/Hamstrings.html
http://www.exrx.net/Muscles/Hamstrings.html
http://www.exrx.net/Muscles/Hamstrings.html
http://www.exrx.net/Muscles/Adductors.html
http://www.exrx.net/Muscles/Adductors.html
http://www.exrx.net/Muscles/Iliopsoas.html
http://www.exrx.net/Muscles/TensorFasciaeLatae.html
http://www.exrx.net/Muscles/Quadriceps.html
http://www.exrx.net/Muscles/Sartorius.html
http://www.exrx.net/Muscles/Adductors.html
http://www.exrx.net/Muscles/Adductors.html
http://www.exrx.net/Muscles/Pectineus.html
http://www.exrx.net/Muscles/Quadriceps.html
http://www.exrx.net/Muscles/Gastrocnemius.html
http://www.exrx.net/Muscles/Soleus.html
http://www.exrx.net/Muscles/DeltoidLateral.html
http://www.exrx.net/Muscles/DeltoidAnterior.html
http://www.exrx.net/Muscles/Supraspinatus.html
http://www.exrx.net/Muscles/PectoralisClavicular.html
http://www.exrx.net/Muscles/PectoralisClavicular.html
http://www.exrx.net/Muscles/TeresMinor.html
http://www.exrx.net/Muscles/Infraspinatus.html
http://www.exrx.net/Muscles/DeltoidPosterior.html
http://www.exrx.net/Muscles/TrapeziusUpper.html
http://www.exrx.net/Muscles/TrapeziusMiddle.html
http://www.exrx.net/Muscles/LevatorScapulae.html
http://www.exrx.net/Muscles/SerratusAnterior.html
http://www.exrx.net/Muscles/SerratusAnterior.html
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trajectory is similar to the power clean, however, a bigger loop is formed as the bar as 

held in position overhead.  

 

An example of the acceleration profile derived from the accelerometer is presented in 

Figure 5.14(b).  As identified in the power clean analysis, the trajectory exhibits a 

looping phase as the legs drive the bar in the second phase of the lift. The arcing and 

rotation is further amplified during the power snatch execution due to the lifting of the 

bar overhead. A comparison of the force platform (b), video derived (c), and 

accelerometer accelerations (d) for one rep is presented in Figure 5.15. The 

corresponding movements derived from the video are also identified to determine if 

there is correlation between each device and whether the power snatch has key 

components similar to the power clean.  

 

The video, force platform and accelerometer traces in Figures 5.15 (b), (c) and (d) are 

significantly different. The force platform trace (b) has distinctive phases which 

correspond to specific movements. The two positive peaks correspond to the first and 

second pull of the power snatch (b1 and b2), the flight phase corresponds to the 

dynamic jump (b3) whilst the final peak corresponds to the landing phase (b4). These 

key components are less identifiable in the video acceleration profile (c). The trace 

clearly has a positive (c1) and negative peak (c2), the positive acceleration occurs 

Figure 5.14 Bar trajectory path during the power snatch, predominant axes of movement and accelerometer 
output for one rep. 
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during the first and second pull of the power snatch whilst the negative peak occurs 

during the dynamic jump in which the subject returns to the ground. The accelerometer 

trace (d) however does not correspond to the video trace as expected. The initial 

positive peak (d1) is superseded by two negative peaks (d2 and d3), this implies that the 

bar accelerated against gravity twice (a component that is not shared by the video 

acceleration trace).  

Figure 5.15 Comparison of the acceleration trace derived from force platform, video and 
accelerometer data for a power snatch and identification of the key phases in each trace.   
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Whether the power clean and power snatch produced distinctly different acceleration 

profiles (Table 5.7) and whether the key components differed according to the 

monitoring device used (Table 5.8) was investigated by comparing each profile using  

Pearson’s correlation coefficient.  

 

 

The results listed in Table 5.7 indicate that poor correlation exists between the power 

clean and power snatch profiles derived from the video and accelerometer (correlation 

range = 0.096 - 0.183). Higher correlation exists between the power clean and power 

snatch profile when derived from the force platform (0.682). Therefore, the power clean 

and power snatch profiles differ significantly when derived from kinematic methods. 

Driving the bar overhead is the main difference between the power clean and power 

snatch, this can be identified using the video and accelerometer. This distinctive 

component remains undetected by the force platform as it occurs in flight, resulting in 

higher correlation between the force platform power clean and force platform power 

snatch profiles (0.682). The results listed in Table 5.8 indicate that there is poor 

correlation between each system (correlation range = 0.034
 
– 0.582). Therefore, the 

power snatch and power clean acceleration profiles derived from the video differ 

significantly from the force platform and accelerometer profiles.  

 

Compared profiles Pearson’s correlation 
coefficient 

Significant difference 

Video power clean v Video power snatch 0.183 Yes 

FP power clean v FP power snatch 0.682 Yes 

Acc power clean v Acc power snatch  0.096 Yes 

Table 5.7 Correlation between the power clean and power snatch profiles  
 

Table 5.8 Correlation between each monitoring system 
 

Compared profiles  Pearson’s correlation 
coefficient 

Significant difference 

Video power clean v FP power clean  0.183 Yes 

Acc power clean v FP power clean  0.096 Yes 

Video power clean v Acc power clean 0.582 Yes 

Video power snatch v FP power snatch  0.148 Yes 

Video power snatch v Acc power snatch 0.175 Yes 

Acc power snatch v FP power snatch 0.034 Yes 
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The comparison of an acceleration profile for a power clean (a) and power snatch (b) 

derived from the video, force platform and accelerometer are presented in Figure 5.16. 

The results indicate that the force platform has four distinct phases present in both 

exercises: 

1. An initial linear drive 

2. A second pull  

3. A flight phase  

4. A landing phase 

 

The second pull identification is not clearly defined in the video and accelerometer data 

this may be due to the force platform detecting a change in acceleration and force 

exerted from the lower body that does not cause a distinct reduction in bar acceleration 

and instead provides the force needed to maintain the acceleration of the bar. The video 

power snatch acceleration trace (b) is not highly correlated with the power clean (a); the 

same positive and negative peaks are exhibited during power clean execution, however, 

in contrast to the symmetry of the power clean, each peak differs in magnitude. The 

positive phase (b1) is shallower and longer than the sharp peak of the negative phase 

(b2). This reflects the longer trajectory (see Figure 5.16(a)) and resultant positive 

acceleration required to drive the bar overhead. A large looping phase increases the 

negative acceleration required to catch the bar overhead.  

The accelerometer data deviates from the video data during the power snatch more than 

the power clean resulting in higher correlation between the video and accelerometer 

power clean profiles (0.582) than power snatch profiles (0.175). The reduction in 

correlation is attributed to the non-linear trajectory which causes rotation of the bar to 

occur. The power snatch requires slightly more rotation than the power clean due to the 

need to drive the bar overhead. As explained in Chapter 3, rotation of the bar can cause 

an erroneous acceleration output when using a simple tri-axis accelerometer without 

gyroscopes.  
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Figure 5.16 Comparison of the power clean and power snatch acceleration profiles derived from the force platform, video and accelerometer and identification of poor agreement between 
key components. 
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The rotation experienced during a complex lift can result from rotation of the bar (as the 

bar is caught on the shoulders) and arcing of the trajectory. As identified in Figure 5.17, 

the power clean (a) and power snatch (b) produce both forms of rotation; therefore the 

probability of inaccurate acceleration data is much higher for a complex exercise 

without gyroscope correction.  The two types of rotation acting upon the bar throughout 

the power clean and power snatch movement is identified in Figure 5.17. The rotation 

increases as the looping phase begins following the second pull and the bar is caught on 

the shoulders or overhead. The corresponding video and accelerometer profiles illustrate 

that deviation of the accelerometer trace from the video trace for the power snatch is 

higher than the power clean resulting in reduced correlation (power clean correlation 

value = 0.582 and power snatch correlation (0.175))   

 

 

Figure 5.17 Trajectory and bar rotation occurring during the power snatch and power clean and resultant reduced 
correlation between the video and accelerometer acceleration profiles  
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The correlation between the video and accelerometer when monitoring simple exercises 

(bench press (0.813
**

) and squat (0.862
**

)) indicate that significant difference does not 

exist. The decrease in correlation when monitoring the power clean (0.582) and power 

snatch (0.175) indicates that rotation has a significant effect on the accelerometer 

profiles and a simple tri-axis accelerometer without gyroscopes does not accurately 

monitor complex exercises. The non-linear characteristic of the power clean and power 

snatch trajectory reduces the correlation between each exercise and indicates that 

rotation is a key component of both complex exercises. The key components identified 

using force platform and video analysis are as follows:  

- Linear concentric phase 

- Second pull phase  

- Dynamic jump  

- Landing phase 

- Non linear trajectory  

- Trajectory and bar rotation  
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5.6 Brief Chapter summary 

TARGET OBJECTIVE: 

Conduct testing to identify the components of simple and complex exercises using video, 

force platform and accelerometer technology. 

TARGET RESEARCH QUESTION: 

Do different exercises exhibit unique acceleration profiles? 

Although the bench press and squat are different exercises, the acceleration profiles 

exhibit high correlation (0.798
**

 – 0.899
**

). This is attributed to the linear concentric 

and eccentric phase without bar rotation which are key components of simple exercises. 

The power clean and power snatch acceleration profiles exhibit poor correlation when 

derived from the video and accelerometer (0.096 – 0.182), whilst the force platform 

power clean and power snatch acceleration profiles show higher correlation (0.682). 

The distinguishable phase of the power snatch (the overhead drive) occurs when the 

subject is in flight and is therefore undetected by the force platform. The overhead drive 

is evident in the video profile, whilst the rotation increases the error in the 

accelerometer profile. The bench press and squat exhibit similar acceleration profiles 

due to a linear nature that does not cause bar or trajectory rotation. Therefore, the 

correlation between acceleration profiles differs according to the key components and 

complexity of the exercise.  

 

What are the key components of a simple exercise? 

The key components identified from the bench press and squat analysis are listed below.  

- Linear eccentric phase 

- Linear concentric phase 

- Constant contact with the ground 

- Little or no bar and trajectory rotation 

What are the key components of a complex exercise? 

The range of key components vary according to the level of exercise complexity. The 

power snatch and power clean are at the end of the complexity spectrum, the more key 

compononts listed below that an exercise requires, the higher the complexity of the 

exercise.  

Figure...  
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- Linear concentric phase 

- Second pull phase  

- Dynamic jump  

- Landing phase 

- Non linear trajectory  

- Trajectory and bar rotation 

Do the components differ according to complexity? 

The number and type of key components differ from one end of the complexity 

spectrum to the other. The most simple exercises do not require the subject to jump and 

have a linear trajectory that does not inflict rotation on the bar. The most complex 

exercises require a dynamic jump, a non-linear trajectory and cause both bar and 

trajectory rotation.  

 

Do the components differ according to video, force platform and accelerometer 

analysis? 

The mean correlation between the video and accelerometer profiles decreases from 

0.838
**

 (no significant difference) for the simple exercises, to 0.379 (significant 

difference) for the complex exercises. The mean correlation between the video and the 

force platform profiles decreases from 0.966
**

 (no significant difference) for the simple 

exercises to 0.166 (significant difference) for the complex exercises. Finally, the mean 

correlation between the accelerometer and force platform profiles decreases from 

0.876
**

 (no significant difference) for the simple exercises, to 0.065 (significant 

difference) for the complex exercises. Therefore, the agreement between technology 

decreases as exercise complexity increases. High correlation exists between the video, 

force platform and accelerometer profiles for simple exercises that do not require a 

dynamic jump and have a bar trajectory that moves with the whole body or moving 

body part. If a jump is required, the force platform exhibits a flight and landing phase 

that is less visible in the video and acceleormeter trace. If the bar moves independently 

of the body and rotation of the bar occurs, the video and accelerometer detect 

accelerations that may be undetected by the force platform.  
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Does complexity of the exercise influence the level of monitoring technology 

sophistication?  

A simple tri-axial accelerometer does not account for the rotation of the bar, therefore, a 

gyroscope is required to monitor accurately complex exercises that cause bar and 

trajectory rotation. Force platform technology provides additional performance data for 

exercises that are explosive and require a dynamic jump due to the visibility of the flight 

and landing phase. Furthermore, the forces generated by the lower legs during the first 

and second pulls enable distinction of the phases which are less defined using video and 

accelerometer analysis. However, the full bar acceleration profile cannot be ascertained 

from the force platform alone due to the loss of data as the subject leaves the ground 

(flight phase). Therefore, the power clean and power snatch produce very similar 

acceleration profiles when derived from the force platform. Combining technology may 

provide the most accurate method for monitoring complex exercises as the video and 

accelerometer data provide additional data relating to the bar trajectory throughout the 

whole movement. As the exercise complexity, dynamic jump requirement and 

independent movement of the bar increases, the need to combine monitoring technology 

is increased.  

 

The new knowledge acquired as a result of the research conducted in this Chapter is 

summarised in Figure 5.18. According to the structured methodology outlined in 

Chapter 2, decomposition is required to investigate the design requirements and system 

capability. A breakdown of the analysis is required to identify how the design of a 

monitoring system may change according to the application. Detailed analysis of a 

simple exercise using a simple tri-axial accelerometer to determine the relative and 

absolute validity is required before analysis of complex exercises can be considered.  
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Figure 5.18  The identification of new knowledge acquired as a result of the Chapter and core question findings; the number of key components increases as exercise complexity increases. 
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Chapter 6 

6.0 Monitoring simple linear exercises in the resistance training 

domain  

 

TARGET OBJECTIVE: 

Analyse the execution of simple linear exercises to determine the ability of a simple tri-

axis accelerometer (without gyroscopes) to monitor simple linear exercise.  

TARGET RESEARCH QUESTIONS: 

 Does an accelerometer exhibit high correlation with video analysis when 

monitoring  simple exercises? 

 Does accelerometer location affect correlation with video analysis? 

 What are the advantages and disadvantages of using force platform, waist 

mounted and bar mounted accelerometers to monitor simple exercises? 

 What are the resultant design implications of the conducted studies? 

Figure...  
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6.1 Introduction 

Accurate collection of force and power production is fundamental to sports training. A 

recent study (Crewther 2011) compared the use of a commercially available linear 

position transducer (LPT) and an accelerometer to a force platform during a squat jump 

with varied loads. The results showed that across all loads the linear positional 

transducer and accelerometer peak force (PF) and peak power  (PP) results were 

moderately to strongly correlated with the output from the force platform (r = 0.59-0.87 

and r = 0.66-0.97 respectively (P ≤ 0.05-0.01)). It was hypothesised that the systems 

would show high relative validity (correlation) but would differ in absolute validity 

(mean results). The results confirmed the hypothesis of strong relative validity for each 

kinematic system. However, it was found that the estimates did provide some large 

random values, particularly with the lowest loads. Furthermore, other variables such as 

peak velocity, peak acceleration, time to peak velocity, force, acceleration and power 

were not investigated. Whether kinematic systems can still provide relative validity to 

calculate a range of variables other than peak force and peak power as well as the 

determination of the absolute validity is yet to be determined. 

The studies conducted in Chapter 5 identified that simple accelerometer technology i.e 

without the use of gyroscopes, could be used to monitor performance within a gym 

environment for linear based exercises using the acceleration profile alone as an 

indicator of repetitions. However, integration errors and failing to monitor the 

orientation of the accelerometer throughout the lift, could cause large errors in 

subsequent complex lifts and velocity reliant performance variables. An understanding 

of the profiles generated by multi-planar and linear movement was gained and 

correlation between the acceleration profiles (relative vaildity) derived from each 

analysis method was investigated in Chapter 5. Whether high correlation exists between 

the force platform, video and accelerometer data when other performance variables are 

calculated (such as peak acceleration, force, velocity and peak power) is yet to be 

investigated in more detail. The two studies discussed in this Chapter aimed to 

investigate the validity (i.e the accuracy of the outputs) of the accelerometer data in 

relation to other kinematic methods during the execution of a squat and squat jump. 

Two structured studies were conducted with the aim of characterising a simple linear 
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exercise (the squat) and a more complex linear movement (squat jump) using 

accelerometer technology.  

 

6.2 Method 

Eight healthy subjects (five male and three female) with a mean age of 23.9 ± 2.3 years 

and body mass of 78.8 ± 25.4kg (2 Std Devs) were recruited to conduct both studies. 

Case study 1 examined the validity of two triaxial accelerometers (kinematic systems) 

located on the bar and waist and one force platform (kinetic system) in relation to video 

analysis. Case study 2 examined the validity of one triaxial accelerometer located on the 

waist and one force platform in relation to video analysis. A camera sampling at 50Hz, a 

Kistler force platform sampling at 1000Hz and two accelerometers sampling at 50Hz 

developed at Loughborough University were required to complete both studies.  The 

testing set up is illustrated in Figure 6.1. The camera was positioned to provide a side 

profile of the participant in the sagittal plane. Synchronisation of the accelerometer(s) 

and video was achieved through the use of a TTL trigger and LED within camera view, 

whilst the forceplate was manually activated simultaneously with the accelerometer 

trigger. The overall testing procedure involved assessment of squat and squat jump 

performance using the kinetic and kinematic systems. 

Figure 6.1 Equipment set up for testing 



CHAPTER 6: Monitoring simple exercises 
 

183 

 

Similarly to the testing conducted in Chapter 5, acceleration of the system mass (body 

and bar) was detected by the force platform, video analysis required double 

differentiation of displacement data of the bar and waist to derive acceleration, whilst an 

accelerometer was placed on the bar and waist to monitor bar and body acceleration. 

The force platform provides the most accurate form of analysis of the system mass 

movement due to the high sampling rate and reduced probabilty of human error (such as 

digitsation error), whilst double differentiation of positional data using video analysis 

increases the noise present in the signal (Kopecky 2007). However, in the absence of 

linear positional transducers (LPT’s), video data was used as a ‘base’ method to 

understand the movement of the bar and body seperately through digitisation of the 

waist and bar movement where the accelerometers were mounted. The results from 

Chapter 5 also indicated the need to identify and separate each repetition before the 

analysis to reduce integration error. Therefore the steps identified in Figure 6.2 were 

followed to analyse the data.  

 

6.2.1 Statistical analysis 

The force platform and accelerometer derived performance variables were statistically 

compared to the video derived results. Whether significant difference existed between 

the video-force platform, video-bar mounted accelerometer and video-waist mounted 

accelerometer was determined using the performance variable mean, standard deviation 

(SD) and standard error between means (SEM). A significance value (sig value) less 

than 2 indicates that no significant difference exists between the compared means 

Figure 6.2 The steps of analysis originally identified in Chapter 5 with an additional step of rep separation 
required before calculation of kinematic variables to reduce integration error.   
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(Everitt 2003). The difference between the video and force platform and video and 

accelerometers was also calculated and the mean derived. The mean percentage 

difference is listed for each variable to quantify the difference in relation to the original 

value derived from the video allowing for comparison between different parameters 

(such as comparing acceleration (m/s
2
) and force (N)). 

6.3 Case study 1: The squat 

Eight subjects of varied gym user 

level experience each performed 

five reps of a loaded squat on two 

separate occasions. Subjects began 

with their feet placed 

approximately shoulder width 

apart and were advised to perform 

a standard squat as outlined in 

previous research (Crewther 2011), 

(Chapter 4 Table 5.3). Each subject 

was instructed to perform each 

repetition with as much power as 

possible and with a two second gap 

between to ensure velocity was at 

zero at the beginning of each squat 

to aid post analysis. The depth of 

squat was not restricted and varied according to each individual. In total, ten squats for 

each subject were completed with five performed consecutively in each session. The 

orientation of the bar and waist mounted accelerometer is identified in Figure 6.3. 

Vertical movement against gravity is detected in the z axis of the bar mounted 

accelerometer and the x axis of the waist mounted accelerometer.   

 

 

 

Figure 6.3 Accelerometer orientation 
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6.3.1 Synchronisation 

Synchronisation of the force platform and accelerometer(s) with the video data was 

achieved by determining the first frame (resolution of 20ms) at which the LED was 

visible in the camera footage. An example of synchronised squat acceleration profiles 

derived from the bar mounted accelerometer and video analysis is presented in Figure 

6.4. Although the accelerometer and video derived profiles indicate that relative validity 

(correlation) may exist, differences are apparent between the peak values. Whether the 

values differ significantly forms a major part of the data analysis in this Chapter. 

 

6.3.2 Rep separation 

Integration to determine velocity is a cumulative process when using a force platform, 

any fixed offset in the original data will integrate to a linear variation, either positive or 

negative depending on the sign of the original offset. To overcome this problem, each 

rep was analysed individually. The synchronised reps were separated according to when 

the video displacement returned to the approximate original position. As acceleration is 

a function of force and mass and the mass remained constant, the acceleration data from 

the accelerometer exhibited a similar trace to the forceplate GRF and therefore provided 

the same cut off points for each rep.  

 

Figure 6.4 Example synchronisation of video and bar accelerometer acceleration profiles 
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The synchronisation of the original data and identification of each rep using the video 

displacement is presented in Figure 6.5. It is clear that the pattern is repetitive, however, 

not all subjects paused for two seconds between each rep indicated as a fluctuation of 

the GRF and accelerometer during the pause. Although this can reduce the accuracy of 

the peak and mean force, power, acceleration and velocity values determined by 

integration, it does not impact the ability to investigate relative validity as each system 

experiences the same fluctuation. Furthermore, in a normal gym environment, 

restricting the time between each rep may reduce the ability of people to train at higher 

loads where holding the load between reps is an added strain. Minimising the disruption 

to a normal resistance training session is a key aspect of performance analysis methods.  

 

6.3.3 Rep analysis 

The following variables were derived from the video, force platform, bar and waist 

mounted accelerometer for each squat: 

 Peak acceleration (PA)  

 Peak force (PF)  

 Peak velocity (PV)  

 Squat depth (SD) 

Figure 6.5 Identification of each rep using video displacement 



CHAPTER 6: Monitoring simple exercises 
 

187 

 

 Time to PA (TTPA) 

 Time to PF (TTPF)  

 Time to PV (TTPV) 

 Time to the end of the eccentric phase (TTEOEP) 

6.3.3.1 Calculation of power 

The power was calculated using two methods to identify whether one method was less 

prone to error or misinterpretation than the other: 

1. Excluding the total system weight when calculating force (i.e. excluding the 

body and bar mass) and multiplying by the velocity.  

2. Including the total system weight when calculating force (i.e. including the 

body and bar mass) and multiplying by the velocity. 

 

 

The different calculation methods and the effect on the resultant power profile is 

illustrated in Figure 6.6. Calculating power without the system weight (using the net 

force (PPNSW)) reduces the power values. Using the net force causes the force profile 

to fluctuate around zero, therefore, as the subject enters the eccentric phase, negative 

force values are derived. When multiplied by the negative eccentric phase of the 

Figure 6.6 Including and excluding the system weight when calculating power 
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velocity profile, a positive peak in power occurs (1). In some cases (when high velocity 

is reached during the eccentric phase) the first peak may be greater than the second 

positive peak (2), this would have a great impact on the design of an automatic real time 

monitoring system that relied upon detecting the highest peak in the PPNSW profile. 

Inaccurate identification of the peak power value and the time at which it occurred is 

possible. True power lies in the concentric phase where work is being done against 

gravity, therefore, the application of this method to a real time monitoring system is 

reliant upon being able to distinguish between the eccentric and concentric peak.   

 

Alternatively, including the system weight in the power calculation (PPSW) causes the 

same reduction in force but the values are not centred about zero. Therefore, negative 

force values do not occur.  This has a significant impact on the power profile as the 

negative and positive phases present in the velocity profile influence the power profile.  

Therefore the eccentric phase remains negative (3) and the concentric phase positive 

(4). To determine whether the different power profiles affect the absolute and relative 

validity between video, force platform and accelerometer analysis, the following 

variables were included in the rep analysis: 

 Peak power excluding system weight (PPNSW)  

 Peak power including system weight (PPSW) 

 Time to PPNSW (TTPPNSW) 

 Time to PPSW (TTPPSW) 

6.3.4 Results 

An example profile derived from the video, force platform and each accelerometer for 

each performance variable is presented. Whether significant difference exists between 

the video-force platform, video-bar mounted accelerometer and video-waist mounted 

accelerometer is determined using the performance variable mean, standard deviation 

(SD) and standard error between means (SEM). Each is listed in a corresponding 

performance variable table. A significance value (sig value) less than 2 indicates that no 

significant difference exists between the compared means. The difference between the 

video and force platform and video and accelerometers was also calculated for each 

squat and the mean derived. The mean percentage difference is listed to quantify the 
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difference in relation to the original value derived from the video allowing for 

comparison between different parameters (such as comparing acceleration (m/s
2
) and 

force (N)). 

6.3.4.1 Peak acceleration 

Example acceleration profiles derived from the video, force platform, bar and waist 

mounted accelerometers for one squat are presented in Figure 6.7. Although a similar 

trace is apparent for each measurement system, the peak values differ. Whether this 

difference is significant is dependent upon the mean peak acceleration derived for each 

system and standard error between the means. The mean peak acceleration and error 

bars (at a 95% confidence interval) for each system are presented in Figure 6.8, the 

mean, standard deviation, standard error between means and level of significance is 

listed in Table 6.1. The results indicate that greatest difference exists between the video 

and force platform (SEM (-0.42 ± 0.25 m/s
2
) and sig value (-1.64)). However, the sig 

value suggests that this difference is not significant (it is less than 2). As previously 

explained in Chapter 5, the video and accelerometers monitor the kinematics of the bar 

and body separately whilst the force platform measures movement of the whole body 

and bar (system mass). Therefore, it is expected that the force platform and video will 

exhibit the largest difference. The bar and waist mounted accelerometer results indicate 

high correlation with the mean peak acceleration derived from the video (SEM (-0.21 ± 

0.25 m/s
2
), sig value (-0.81) and SEM (-0.16 ± 0.25 m/s

2
), sig value (-0.65) 

respectively)). The waist mounted accelerometer has the highest correlation with the 

video derived data and no significant difference exists between the video derived mean 

peak acceleration and subsequent methods.  

The percentage difference between peak acceleration derived from the video and 

remaining systems (force platform and accelerometers) was calculated for each squat. 

The mean percentage difference is listed in Table 6.1. The results support the sig values, 

the waist mounted accelerometer exhibits the lowest mean percentage difference (-5.0 ± 

1.2%), the bar mounted accelerometer (-6.6 ± 1.4%) and the force platform the highest 

percentage difference (-9.6 ± 1.4 %). Each system underestimates the mean peak 

acceleration when compared to the video derived values, however, this underestimation 

is not significant.  
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                Table 6.1 Statistical analysis of the acceleration results derived from the video, force platform and accelerometers to determine whether significant difference exists. 

Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (m/s
2
) 3.98 ± 0.17 3.57 ± 0.19 3.78 ± 0.19 3.83 ± 0.18 

Std Deviation 1.52 1.67 1.68 1.56 

Std Error between means (m/s
2
) N/A -0.42 ± 0.25 -0.21 ± 0.25 -0.16 ± 0.25 

Sig. Value N/A -1.64 -0.81 -0.65 

Mean % difference  N/A -9.6 ± 1.4 % -6.6 ± 1.4% -5.0 ± 1.2% 

Figure 6.8 Mean peak acceleration and error bars (95% CI interval) derived 
using each method. 

Figure 6.7 Example video, force platform and accelerometer derived 
acceleration profiles for one squat 
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6.3.4.2 Peak force 

The force profiles derived from the video, force platform, bar and waist mounted 

accelerometers are presented in Figure 6.9. The mean peak force and error bars for each 

system (presented in Figure 6.10) illustrate the mean, standard deviation, standard error 

between means and resultant level of significance listed in Table 6.2. As force is a 

product of mass (a constant) and acceleration, the profiles are similar. The peak 

acceleration and peak force results are statistically consistent, therefore, once again, the 

greatest difference exists between the video and force platform (SEM (-76 ± 46 N) and 

sig value (-1.66)). The sig value suggests that the difference is not significant. The bar 

and waist mounted accelerometer results indicate high correlation with the mean peak 

force derived from the video (SEM (-43 ± 46 N), sig value (-0.93) and SEM (-24 ± 44 

N), sig value (-0.53) respectively)). Therefore, no significant difference exists between 

the video derived peak force mean and subsequent methods. The waist mounted 

accelerometer has the highest correlation with the video derived data.  

The mean percentage difference is listed in Table 6.2, the results support the sig values. 

The waist mounted accelerometer exhibits the lowest mean percentage difference (-5.4 

± 1.3%), the bar mounted accelerometer (-7.47 ± 1.8%) and the force platform the 

highest percentage difference (-11.6 ± 1.8%). Each system underestimates the mean 

peak force when compared to the video derived values, however, this difference is not 

significant. Once again, the difference between the force platform and video is 

attributed to the force platform measuring the system mass (bar and body) whilst the 

video analysis measured the bar and body separately. Although force platform 

technology would provide the most accurate peak force data, it is accelerometer 

performance that is of most interest. Directly comparing force platform and 

accelerometer derived data would produce inaccurate results as the accelerometers do 

not measure acceleration of the system mass.  
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                            Table 6.2 Statistical analysis of the force results derived from the video, force platform and accelerometers to determine whether significant difference exists                             

Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (N) 499 ± 31 422 ± 34 456 ± 34 476 ± 31 

Std Deviation 280 301 300 278 

Std Error between means (N) N/A -76 ± 46 -43 ± 46 -24 ± 44 

Sig. value N/A -1.66 -0.93 -0.53 

Mean % difference N/A -11.6 ± 1.8% -7.47 ± 1.8% -5.4 ± 1.3% 

Figure 6.10 Mean peak force and error bars (95% CI interval) derived using each 
method. 

Figure 6.9 Example video, force platform and accelerometer derived force 
profiles for one squat. 
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6.3.4.3 Peak velocity 

An example of the velocity profiles derived from the video, force platform, bar and 

waist mounted accelerometers for one squat are presented Figure 6.11. The mean peak 

velocity and error bars (at a 95% confidence interval) for each system are presented in 

Figure 6.12, whilst the mean, standard deviation, standard error between means and 

level of significance are listed in Table 6.3. The results indicate that greatest difference 

exists between the video and force platform (SEM (-0.11 ± 0.05m/s) and sig value (-

1.98)). However, the sig value (although higher than the mean peak acceleration and 

mean peak force) suggests that this difference is not significant. The bar and waist 

mounted accelerometer results indicate higher correlation with the mean peak velocity 

derived from the video (SEM (-0.06 ± 0.05 m/s), sig value (-1.07) and SEM (0.04 ± 

0.05 m/s), sig value (0.76) respectively)).  

 

Similarly to the mean peak acceleration and mean peak force results, the waist mounted 

accelerometer has the highest correlation with the video derived data. However, in 

contrast to the previous results, the velocity is overestimated. This may affect other 

calculations (such as power) that are derived from velocity as this overestimation will 

be further amplified throughout the profile. The sig values suggest that the difference 

between the video and force platform (-1.66), video and bar and waist mounted 

accelerometers (-0.93 and -0.53 respectively) derived mean velocity is not significant. 

However, less correlation is indicated by an increase in the sig value for each method. 

The force platform, bar mounted accelerometer and waist mounted accelerometer sig 

value increased by 0.34, 0.26 and 0.11, respectively when compared to the mean peak 

acceleration sig values. This increased difference can be attributed the error 

accumulated due to the integration process required to derive velocity from 

acceleration. The mean percentage difference between the video-force platform, video-

bar mounted accelerometer and video-waist mounted accelerometer is listed in Table 

6.3. The results support the sig values, the waist mounted accelerometer exhibits the 

lowest mean percentage difference (4.3 ± 1.4%), the bar mounted accelerometer (-7.9 ± 

2.7%) and the force platform the highest percentage difference (-10.1 ± 1.7%).  
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                    Table 6.3 Statistical analysis of the velocity results derived from the video, force platform and accelerometers to determine whether significant difference exists. 

Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (m/s) 1.06 ± 0.04 0.95 ± 0.04 1.00 ± 0.04 1.10 ± 0.04 

Std Deviation 0.33 0.34 0.36 0.33 

Std Error between means (m/s) N/A -0.11 ± 0.05 -0.06 ± 0.05 0.04 ± 0.05 

Sig. value N/A -1.98 -1.07 0.76 

Mean % difference N/A -10.1 ± 1.7% -7.9 ± 2.7% 4.3 ± 1.4% 

Figure 6.12 Mean peak velocity and error bars (95% CI interval) derived 
using each method. 

Figure 6.11 Example video, force platform and accelerometer derived velocity profiles 
for one squat. 
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6.3.4.4 Squat depth 

An example of the eccentric displacement profiles derived from the video, force 

platform, bar and waist mounted accelerometers for one squat is presented Figure 6.13. 

The mean peak displacement and error bars (at a 95% confidence interval) for each 

system are presented in Figure 6.14, the mean, standard deviation, standard error 

between means and level of significance is listed in Table 6.4.  

The results indicate that the maximum squat depth derived from each method is 

significantly different from the video derived displacement (force platform sig value = -

3.05, bar accelerometer sig value = -2.38, waist accelerometer sig value = 2.73). 

Calculation of the displacement requires double integration of the acceleration data, 

therefore, it is expected that the sig values increase further to show less correlation than 

the mean peak velocity results. The error is propagated from the velocity using each 

method, therefore, the greatest difference exists between the video and force platform 

(SEM (-0.08 ± 0.02 m). This difference is closely followed by both accelerometers (bar 

mounted SEM = -0.07 ± 0.03 m and waist mounted SEM = 0.07 ± 0.03).  

The waist mounted accelerometer peak velocity results indicate an overestimation of 

velocity, it would therefore be expected that the squat depth (derived from the velocity) 

would also reflect an overestimation of the squat depth as the error is propagated. This 

is reflected by overestimation of the squat depth when derived from the waist mounted 

accelerometer (SEM 0.07 ± 0.03 m) in comparison to the video displacement data.  The 

mean percentage differences are listed in Table 6.4. The waist mounted accelerometer 

exhibits the lowest mean percentage difference (13.2 ± 3.1%), the bar mounted 

accelerometer (-14.0 ± 3.3%) and the force platform the highest percentage difference (-

17.1 ± 1.3%). Calculating the squat depth using double integration of the acceleration 

profile increases the error and resultant difference between the results derived from the 

video and each system. Therefore, the sig values indicate that significant difference 

exists between the video and each system (force platform, bar mounted and waist 

mounted accelerometer).  
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                 Table 6.4 Statistical analysis of the squat depth results derived from the video, force platform and accelerometers to determine whether significant difference exists. 

Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (m) -0.48 ± 0.02 -0.40 ± 0.01 -0.41 ± 0.02 -0.55 ± 0.02 

Std Deviation 0.18 0.13 0.21 0.18 

Std Error between means (m) N/A -0.08 ± 0.03 -0.07 ± 0.03 0.07 ± 0.03 

Sig. value N/A -3.05 -2.38 2.73 

Mean % difference N/A -17.1 ± 1.3% -14.0 ± 3.3% 13.2 ± 3.1% 

Figure 6.14 Example video, force platform and accelerometer derived 
squat depth for one squat. 

Figure 6.13 Mean peak squat depth and error bars (95% CI interval) 
derived using each method. 
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6.3.4.5 Calculating peak power excluding system weight (PPNSW) 

The power (excluding system weight) profiles derived from the video, force platform, 

bar and waist mounted accelerometers are presented in Figure 6.15. The mean 

difference between each method of analysis and corresponding standard error of the 

means is presented in Figure 6.16. The results indicate that, on average, the force 

platform, bar and waist accelerometer each produce lower peak power values when 

compared to the video values; (force platform = -149 ± 36, bar= -73 ± 42, waist= -60 ± 

42).  The mean difference for the force platform does not fall within 2 standard errors (2 

SE) (sig value (-4.14)), therefore the force platform values are significantly different 

from the video. However, the bar and waist accelerometer mean differences lie within 2 

SE of the video (sig value (-1.75) and (-1.41), respectively). Therefore, significant 

difference does not exist between the video and accelerometer derived values when 

calculating peak power without the system weight. The waist mounted accelerometer 

has the lowest significance value (-1.41), implying that this method of analysis produces 

results most similar to the video derived results.  

The force platform mean percentage difference is the highest (-29.9% ± 4.7%) 

indicating further that significant difference exists between the force platform and video 

derived PPNSW results. The bar mounted accelerometer mean percentage difference is 

-14.6% ± 4.2%, whilst the waist mounted accelerometer has the lowest overall 

percentage difference mean (-8.5% ± 5.2%). The results indicate that the maximum 

mean percentage difference for the bar mounted accelerometer is less than -19% whilst 

the maximum mean percentage difference for the waist mounted accelerometer is less 

than 14%. The force platform maximum mean difference is much higher (34.6%). The 

mean peak force and mean peak velocity derived from the force platform both exhibited 

the highest percentage difference and highest sig value when compared to the 

accelerometers. As power is a product of force and velocity, the underestimation 

identified in both variables using the force platform is propagated when calculating 

power. Therefore, the high sig value and mean power percentage difference can be 

attributed to the mean force difference (-76 ± 46 (N)) and mean velocity difference (-

0.11 ± 0.05 (m/s)), both of which indicate underestimation of the mean values derived 

from the video.   
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6.3.4.6 Peak power including system weight (PPSW) 

The power (including system weight) profiles derived from the video, force platform, 

bar and waist mounted accelerometers are presented in Figure 6.17. The mean 

difference between each method of analysis and corresponding standard error of the 

means is presented in Figure 6.18. The overall means are higher when compared to the 

PPNSW values (due to the inclusion of the system weight when calculating force). The 

force platform and bar accelerometer again produce lower peak power values when 

compared to the video values: (force platform SEM = -408 ± 104 and bar SEM = -42 ± 

121). However, in contrast to the PPNSW, the waist mounted accelerometer, on 

average, overestimates the PPSW (SEM 152 ± 123).  As discussed previously, this 

method of power calculation is more affected by the velocity profile than the when the 

system weight is not included. Therefore, it is suggested that the overestimation present 

in the mean peak velocity values derived from the waist mounted accelerometer are 

propagated by this method of power calculation.  

Although the force platform mean difference and resultant sig values are lower than 

those derived from the PPNSW (excluding system weight), significant difference still 

exists (sig value (-3.91)). The mean difference for the force platform does not fall 

within 2 standard errors (SE), therefore the force platform values are significantly 

different from the video. However, the bar and waist accelerometer mean differences lie 

within 2 SE of the video (sig values (-0.35) and (1.26) respectively). Therefore, 

significant difference does not exist between the video and accelerometer derived values 

when calculating peak power without the system weight. In contrast to the other 

variables, the bar mounted accelerometer has the lowest significance value (-0.35). 

The force platform mean percentage difference is the highest (-24.0 ± 3.7%) indicating 

further that significant difference exists between the force platform and video derived 

PPNSW results. The waist mounted accelerometer mean percentage difference is (15.3 

± 4.8%), whilst the bar mounted accelerometer has the lowest overall mean percentage 

difference (-0.98 ± 5.1%). The results indicate that the maximum mean percentage 

difference for the bar mounted accelerometer is less than -6.1% whilst the maximum 

mean percentage difference for the waist mounted accelerometer is less than 19%. The 

force platform maximum mean difference is much higher (27.7%). The high sig value 
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and mean percentage difference derived from the force platform can once again be 

attributed to the previously identified mean peak force difference and mean peak 

velocity difference. The waist mounted accelerometer results do not show the highest 

correlation with the video derived data as with the previous variables. It is suggested 

that the overestimation present in the mean peak velocity has been amplified further 

using the PPSW calculation.  

The calculation of power using both methods resulted in the lowest correlation with the 

video derived data for each method. As previously stated, this can be attributed to 

deriving power from two other variables, any error is propagated when multiplied. 

Histograms were created to investigate the spread of percentage difference when 

calculating the peak power without the system weight (PPNSW) and with the system 

weight (PPSW) presented in Figures 6.19 and 6.20. The differences are derived for the 

force platform (a), bar mounted accelerometer (b) and waist mounted accelerometer (c). 

The results indicate that each method has a large range of percentage difference, 

therefore the differences present in the derived force and velocity profiles are amplified 

further when calculating power with and without the system weight. These results 

suggest that highest correlation with the video derived data is achieved using the bar 

mounted accelerometer and the PPSW method (including the system weight).  
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                         Table 6.5 Statistical analysis of the PPNSW results derived from the video, force platform and accelerometers to determine whether significant difference exists. 

 

Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (W) 361 ± 31 211 ± 18 288 ± 27 302 ± 28 

Std Deviation 278 162 245 251 

Std Error between means (W) N/A -149 ± 36 -73 ± 42 -60 ± 42 

Sig. Value N/A -4.14 -1.75 -1.41 

Mean % difference N/A -29.9 ± 4.7%  -14.6 ± 4.2% -8.5 ± 5.2% 

Figure 6.15 Mean peak PPNSW and error bars (95% CI interval) derived using 
each method. 

Figure 6.16 Example video, force platform and accelerometer derived PPNSW for 
one squat. 
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                            Table 6.6 Statistical analysis of the PPSW results derived from the video, force platform and accelerometers to determine whether significant difference exists. 
 

Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (W) 1386 ± 83 978 ± 61 1344 ± 86 1539 ± 86 

Std Deviation 750 545 767 769 

Std Error between means (W) N/A -408 ± 104 42 ± 121 152 ± 123 

Sig. Value N/A -3.91 -0.35 1.26 

Mean % difference N/A -24.0 ± 3.7%  0.98 ± 5.1% 15.3 ± 4.8% 

Figure 6.17 Example video, force platform and accelerometer derived PPSW for one 
squat. 

Figure 6.18 Mean peak PPSW and error bars (95% CI interval) derived using 
each method. 
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Figure 6.19 The mean percentage PPSW difference between video and forceplate, video and bar mounted accelerometer and video and waist mounted accelerometer. 

Figure 6.20 The mean percentage PPNSW difference between video and forceplate, video and bar mounted accelerometer and video and waist mounted accelerometer. 
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6.3.4.7 Relative validity: Time to peak values 

Determining the mean difference between the video, force platform, bar mounted and 

waist mounted accelerometers for the identified variables provides an understanding of 

the absolute validity between the methods (whether significant difference exists 

between the mean values). Determining whether the peak values occur at the same time 

when using each method provides an understanding of the relative validity between 

each method. The time to peak acceleration, force, velocity, end of the eccentric phase 

(maximum squat depth) and power with and without the system weight was calculated 

using each method. The results are discussed in the following section.  

6.3.4.8 Time to peak acceleration 

An example of the identification of the time to peak acceleration derived from the 

video, force platform, bar and waist mounted accelerometers for one squat is presented 

Figure 6.21. The mean time to peak acceleration and error bars (at a 95% confidence 

interval) for each system are presented in Figure 6.22, the mean, standard deviation, 

standard error between means and level of significance is listed in Table 6.7.  

The results indicate that there is high correlation between all three methods when 

compared to the video results. Each system exhibits low mean differences and sig 

values. Both the force platform and bar mounted accelerometer have the highest 

correlation with the video (SEM (0.006 ± 0.04 s), sig value (0.14) and SEM (0.006 ± 

0.04 s), sig value (0.14), respectively). The waist mounted accelerometer has slightly 

less correlation (SEM (0.014 ± 0.04 s), sig value (0.30)), however, the difference 

between the video and each method is not significant.  The mean percentage differences 

indicate that the bar mounted accelerometer exhibits the lowest percentage difference 

(0.6 ± 0.7%), the force platform and waist mounted accelerometer have the same mean 

percentage difference (1.0 ± 0.9%). Each method is within ± 2% of the time to peak 

value derived from the video, therefore, high relative validity exists between the video 

and subsequent systems.  
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Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (s) 1.23 ± 0.03 1.23 ± 0.03 1.23 ± 0.03 1.24 ± 0.03 

Std Deviation 0.27 0.27 0.28 0.29 

Std Error between means (s) N/A 0.006 ± 0.04   0.006 ± 0.04 0.014 ± 0.04 

Sig. value N/A 0.14 0.14 0.30 

Mean % difference N/A 1.0 % ± 0.9% 0.6 ± 0.7% 1.0 ± 0.9% 

Table 6.8 Statistical analysis of the TTPA results derived from the video, force platform and accelerometers to determine whether significant difference exists. 

Figure 6.22 Example video, force platform and accelerometer derived TTPA for one 
squat. 

Figure 6.21 Mean peak TTPA and error bars (95% CI interval) derived using 
each method. 
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6.3.4.9 Time to peak force 

An example of the identification of the time to peak force derived from the video, force 

platform, bar and waist mounted accelerometers for one squat is presented Figure 6.23. 

The mean time to peak force and error bars (at a 95% confidence interval) for each 

system are presented in Figure 6.24, the mean, standard deviation, standard error 

between means and level of significance is listed in Table 6.8.  

The results support those derived from the acceleration profiles as the peak force 

inevitably occurs when peak acceleration occurs (as mass is constant). Therefore, high 

correlation exists between all three methods when compared to the video results with 

each method exhibiting low mean differences and sig values (force platform = SEM 

(0.009 ± 0.04 s), sig value (0.21), bar mounted accelerometer = SEM (0.010 ± 0.04 s), 

sig value (0.21) and waist mounted accelerometer = SEM (0.017 ± 0.04 s), sig value 

(0.37)). The difference between the video and each method is therefore not significant. 

The mean percentage differences indicate that the bar mounted accelerometer exhibits 

the lowest percentage difference (0.9 ± 0.8%), whilst the force platform (1.3 ± 0.9%) 

and waist mounted accelerometer (1.3 ± 1%) also exhibit low percentage differences. 

Each method is within ± 2.3% of the time to peak value derived from the video, 

therefore, high relative validity exists between the video and subsequent systems.  

6.3.4.10 Time to peak velocity 

An example of the identification of the time to peak velocity derived from the video, 

force platform, bar and waist mounted accelerometers for one squat is presented Figure 

6.25. The mean time to peak velocity and error bars (at a 95% confidence interval) for 

each system are presented in Figure 6.26, the mean, standard deviation, standard error 

between means and level of significance is listed in Table 6.9.  The results reflect the 

same increase in error when using the velocity profile as identified when comparing the 

peak velocity (see Section 6.3.4.3). The time to peak velocity results exhibit an increase 

in mean difference and sig value when using the force platform (SEM (0.06 ± 0.03 s), 

sig value (1.84)), bar mounted accelerometer (SEM (0.06 ± 0.03 s), sig value (1.60)) 

and waist mounted accelerometer (SEM (0.03 ± 0.04 s), sig value (0.87)). These sig 

values are supported further by the percentage differences which indicate that the 

highest percentage difference exists between the  video and force platform derived time 
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to peak velocity (4.1 ± 0.6%). The least percentage difference exists between the video 

and waist mounted accelerometer (1.9 ± 0.5%), whilst the bar mounted accelerometer 

results lie within the waist mounted accelerometer and force platform mean percentage 

difference ranges (3.6 ± 0.6%). Despite the increased mean difference, sig value and 

percentage difference for each method, the difference is not significant.  

6.3.4.11 Time to the end of the eccentric phase (maximum squat depth) 

An example of the identification of the time to the end of the eccentric phase (TTEOEP) 

derived from the video, force platform, bar and waist mounted accelerometers for one 

squat is presented Figure 6.27. The mean TTEOEP and error bars (at a 95% confidence 

interval) for each system are presented in Figure 6.28, the mean, standard deviation, 

standard error between means and level of significance is listed in Table 6.10.  The end 

of the eccentric phase was determined from the force platform and accelerometer data 

using the point at which the velocity crossed zero in comparison to the digitised point at 

which the subject reached maximum squat depth (the end of the eccentric phase).  In 

contrast to the squat depth peak value results, the time to peak results do not show 

significant difference. Although the peak values may differ, the force platform (SEM 

(0.03 ± 0.04 s), sig value (0.75)), bar mounted accelerometer (SEM (-0.04 ± 0.04 s), sig 

value (-1.13)) and waist mounted accelerometer (SEM (-0.02 ± 0.04 s), sig value (-

0.66)), each highly correlate with the video derived results.  

The percentage differences indicate that the highest difference exists between the video 

and force platform derived time to the end of the eccentric phase (2.3 ± 0.6%), with the 

least percentage difference existing between the video and waist mounted accelerometer 

(-2.5 ± 0.8%). The bar mounted accelerometer results lie within these ranges (-3.2 ± 

1.1%). Overall, the results indicate that despite the high mean difference, sig values and 

percentage difference produced when calculating the squat depth using each method, 

the time to the end of the eccentric phase can still be determined. Therefore, high 

relative validity exists between the video and each system.  
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Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (s) 1.23 ± 0.03 1.23 ± 0.03 1.23 ± 0.03 1.24 ± 0.03 

Std Deviation 0.27 0.27 0.28 0.29 

Std Error between means (s) N/A 0.009 ± 0.04   0.010 ± 0.04 0.017 ± 0.04 

Sig. Value N/A 0.21 0.21 0.37 

Mean % difference N/A 1.3 ± 0.9% 0.9 ± 0.8% 1.3 ± 1% 

Table 6.7 Statistical analysis of the TTPF results derived from the video, force platform and accelerometers to determine whether significant difference exists. 

Figure 6.23 Example video, force platform and accelerometer derived TTPF for one 
squat. 

Figure 6.24 Mean peak TTPF and error bars (95% CI interval) derived using 
each method. 
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Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (s) 1.67 ± 0.02 1.73 ± 0.02 1.72 ± 0.02 1.70 ± 0.03 

Std Deviation 0.22 0.22 0.21 0.24 

Std Error between means (s) N/A 0.06 ± 0.03   0.06 ± 0.03 0.03 ± 0.04 

Sig. value N/A 1.84 1.60 0.87 

Mean % difference N/A 4.1 ± 0.6% 3.6 ± 0.6% 1.9 ± 0.5% 

Table 6.8 Statistical analysis of the TTPV results derived from the video, force platform and accelerometers to determine whether significant difference exists. 

Figure 6.26 Mean peak TTPV and error bars (95% CI interval) derived using each 
method. 

Figure 6.25 Example video, force platform and accelerometer derived TTPV for 
one squat. 
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Table 6.9 Statistical analysis of the TTEOEP results derived from the video, force platform and accelerometers to determine whether significant                  
difference exists. 

  

Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (s) 1.18 ± 0.02 1.21 ± 0.03 1.14 ± 0.03 1.16 ± 0.03 

Std Deviation 0.22 0.23 0.23 0.25 

Std Error between means (s) N/A 0.03 ± 0.04   -0.04 ± 0.04 -0.02 ± 0.04 

Sig. value N/A 0.75 -1.13 -0.66 

Mean % difference N/A 2.3 ± 0.6% -3.2 ± 1.1% -2.5 ± 0.8% 

Figure 6.28 Example video, force platform and accelerometer derived TTEOEP 
for one squat. 

Figure 6.27 Mean peak TTEOEP and error bars (95% CI interval) derived using 
each method. 
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6.3.4.12 Time to peak power excluding the system weight (TTPPNSW) 

An example of the identification of the time to peak power (without the system weight- 

TTPPNSW) derived from the video, force platform, bar and waist mounted 

accelerometers for one squat is presented Figure 6.29. The mean TTPPNSW and error 

bars (at a 95% confidence interval) for each system are presented in Figure 6.30, the 

mean, standard deviation, standard error between means and level of significance is 

listed in Table 6.11.  Each method overestimates the time at which peak power occurs 

when compared to the video (force platform (SEM (0.05 ± 0.05 s), sig value (1.19)), bar 

mounted accelerometer (SEM (0.04 ± 0.04 s), sig value (1.06)) and waist mounted 

accelerometer (SEM (0.06 ± 0.04s), sig value (1.55)). Although the difference is not 

significant, the increased error may be attributed to the lower timing errors occurring in 

the force and velocity profiles.  The percentage differences indicate that the highest 

difference exists between the video and waist mounted accelerometer derived 

TTPPNSW (4.2 ± 1.2%).). The least percentage difference exists between the video and 

bar mounted accelerometer (3.0 ± 1.4%) and the force platform results lie within this 

range (3.9 ± 2.2%).  

6.3.4.13 Time to peak power including the system weight (TTPPSW) 

An example of the identification of the time to peak power (with the system weight- 

TTPPSW) derived from the video, force platform, bar and waist mounted 

accelerometers for one squat is presented Figure 6.31. The mean TTPPSW and error 

bars (at a 95% confidence interval) for each system are presented in Figure 6.32, the 

mean, standard deviation, standard error between means and level of significance is 

listed in Table 6.12.  Similar to the TTPPNSW, each method overestimates the time at 

which peak power occurs when compared to the video (force platform (SEM (0.09 ± 

0.03 s), sig value (2.83)), bar mounted accelerometer (SEM (0.06 ± 0.03 s), sig value 

(1.68)) and waist mounted accelerometer (SEM (0.11 ± 0.04 s), sig value (3.06)). The 

difference between the force platform and waist mounted accelerometer is also 

identified as significant (the sig value is higher than 2). The profile generated when 

including the system weight does not provide a distinct point at which peak power 

occurs, therefore it is suggested that an average is required to gain an accurate 

indication of the power value and the time at which it occurred (as identified in Figure 

6.30.) The percentage differences indicate that the highest difference exists between the 
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video and waist mounted accelerometer derived TTPPNSW (7.6 ± 1.3%), with the least 

percentage difference existing between the video and bar mounted accelerometer (3.9 ± 

0.8%) and the force platform lying within these ranges (6.5 ± 0.7%).  

6.3.4.14 Subject ranking 

To investigate further the relative validity of the force platform, bar and waist mounted 

accelerometers when compared to the video derived results, the mean peak acceleration, 

force, velocity, peak power with and without system weight, squat depth and time to 

peak was calculated for each subject.  The mean peak values per subject for each 

variable were ranked. For example, the subject with the highest mean peak acceleration 

was ranked as (1), the subject with the lowest mean peak acceleration was ranked as (8), 

this was conducted for the video (Figure 6.33(a)), force platform (Figure 6.33(b)), bar 

mounted accelerometer (Figure 6.33(c)) and waist mounted accelerometer (Figure 

6.33(d)). The difference between the video ranking and the ranking derived from the 

remaining methods was calculated for each variable previously investigated.  

The histograms presented in Figure 6.34 display the difference between the video and 

the ranking derived from the force platform (a), bar mounted (b) and waist mounted 

accelerometer (c). The results indicate that the ranking difference for each method is 

centred about zero, (force platform (0.04 ± 0.12), bar mounted accelerometer (0.01 ± 

0.13), waist mounted accelerometer (0 ± 0.11).  This suggests that although the force 

platform and accelerometers may produce significantly different mean peak values for 

some variables (such as power), the relative ranking of each subject correlates highly 

with the video. Therefore, a reduction in performance or improvement relative to a 

previous session and variation between different subjects can still be detected.  
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                  Table 6.10 Statistical analysis of the TTPPNSW results derived from the video, force platform and accelerometers to determine whether significant difference exists. 

 

Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (s) 1.45 ± 0.02 1.51 ± 0.04 1.50 ± 0.03 1.51 ± 0.03 

Std Deviation 0.22 0.34 0.29 0.25 

Std Error between means (s) N/A 0.05 ± 0.05   0.04 ± 0.04 0.06 ± 0.04 

Sig. value N/A 1.19 1.06 1.55 

Mean % difference N/A 3.9± 2.2% 3.0 ± 1.4%  4.2 ± 1.2% 

Figure 6.30 Example video, force platform and accelerometer derived TTPPNSW  for one 
squat. 

Figure 6.29 Mean peak TTPPNSW and error bars (95% CI interval) derived 
using each method. 
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                                  Table 6.11 Statistical analysis of the TTPPSW results derived from the video, force platform and accelerometers to determine whether significant difference 
exists. 

 

 

 

Statistic Video Force platform Bar accelerometer Waist accelerometer 

Mean (s) 1.59 ± 0.02 1.68 ± 0.02 1.64 ± 0.02 1.70 ± 0.03 

Std Deviation 0.22 0.22 0.20 0.25 

Std Error between means (s) N/A 0.09 ± 0.03   0.06 ± 0.03 0.11 ± 0.04 

Sig. value N/A 2.83 1.68 3.06 

Mean % difference N/A 6.5 ± 0.7% 3.9 ± 0.8% 7.6 ± 1.3% 

Figure 6.32 Mean peak TTPPSW and error bars (95% CI interval) derived using 
each method. 

Figure 6.31 Example video, force platform and accelerometer derived TTPPSW for 
one squat. 
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Figure 6.34 Example subject ranking of the mean peak acceleration derived from the video, force platform, bar and waist mounted accelerometers  

Figure 6.33 The mean difference in subject ranking between video and forceplate, video and bar mounted accelerometer and video and waist mounted accelerometer. 
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6.4 Case study 1 summary 

The levels of significant difference calculated as a result of this Case study are listed in 

Table 6.13. The results are plotted in Figure 6.35. The chart displays the sig value for 

each performance variable derived from the force platform, bar and waist mounted 

accelerometer.  The sig value increases as the level of integration to derive the variable 

increases. For example, the peak squat depth sig value is significantly higher for all 

three methods following the double integration of acceleration. The peak acceleration 

and peak force and time to peak acceleration and force sig values are consistent as the 

force is a product of the acceleration multiplied by the mass (which is constant). The 

error incurred when acceleration is integrated to calculate velocity is reflected by the 

increased sig values for each system. This error is propagated when multiplied by the 

force to derive power (both with and without the system weight). Significant difference 

increases as velocity becomes a part of the performance variable output. The results 

suggest that calculating power including the system weight (PPSW) reduces the 

difference and increases correlation between the video and each method.    

 

Figure 6.35 Overview of the sig values for each performance variable, generated by the force 
platform, bar and waist mounted accelerometer when compared to the video results.   
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Table 6.12 Overview of the squat statistical analysis for each performance variable derived from the video, 
force platform and accelerometers and resultant difference significance. 

Variable Method Mean Std 
Dev 

Std Error between 
means 

Sig. 
Value 

Mean % 
difference 

 
PA 

(m/s
2
) 

Video 3.98 ± 0.17 1.52     

Force platform 3.57 ± 0.19 1.67 -0.42 ± 0.25 -1.64 -9.6 ± 1.4 

Bar Acc  3.78 ± 0.19 1.68 -0.21 ± 0.25 -0.81 -6.6 ± 1.4 

Waist Acc 3.83 ± 0.18 1.56 -0.16 ± 0.25 -0.65 -5.0 ± 1.2 

 
PF 
(N) 

Video 499 ± 31 280    

Force platform 422 ± 34 301 -76 ± 46 -1.66 -11.6 ± 1.8 

Bar Acc 456 ± 34 300 -43 ± 46 -0.93 -7.47 ± 1.8 

Waist Acc 476 ± 31 278 -24 ± 44 -0.53 -5.4 ± 1.3 

 
PV 

(m/s) 

Video 1.06 ± 0.04 0.33     

Force platform 0.95 ± 0.04 0.34 -0.11 ± 0.05  -1.98  -10.1 ± 1.7 

Bar Acc 1.00 ± 0.04 0.36 -0.06 ± 0.05  -1.07 -7.9 ± 2.7 

Waist Acc 1.10 ± 0.04 0.33 0.04 ± 0.05  0.76  4.3 ± 1.4 

 
SD 
(m) 

Video -0.48 ± 0.02 0.18     

Force platform -0.40 ± 0.01 0.13 -0.08 ± 0.03 -3.05  -17.1 ± 1.3 

Bar Acc -0.41 ± 0.02 0.21 -0.07 ± 0.03 -2.38  -14.0 ± 3.3 

Waist Acc -0.55 ± 0.02 0.18 0.07 ± 0.03  2.73   13.2 ± 3.1 

 
PPNSW 

(W) 

Video 361 ± 31 278     

Force platform 211 ± 18 162 -149 ± 36   -4.14 -29.9 ± 4.7 

Bar Acc 288 ± 27 245 -73 ± 42  -1.75 -14.6 ± 4.2 

Waist Acc 302 ± 28 251 -60 ± 42  -1.41 -8.6 ± 5.2 

 
PPSW 

(W) 

Video 1386 ± 83 750     

Force platform 978 ± 61 545 -408 ± 104 -3.91 -24.0 ± 3.7 

Bar Acc 1344 ± 86 767 -42 ± 121 -0.35 -0.98 ± 5.1 

Waist Acc 1539 ± 86 769  152 ± 123  1.26  15.3 ± 4.8 

 
TTPA 

(s) 

Video 1.23 ± 0.03 0.27     

Force platform 1.23 ± 0.03 0.27  0.006 ± 0.04  0.14 1.0 ± 0.9 

Bar Acc 1.23 ± 0.03 0.28  0.006 ± 0.04  0.14 0.6 ± 0.7 

Waist Acc 1.24 ± 0.03 0.29  0.014 ± 0.04  0.30 1.0 ± 0.9 

 
TTPF 

(s) 

Video 1.23 ± 0.03 0.27     

Force platform 1.23 ± 0.03 0.27  0.009 ± 0.04  0.21 1.3 ± 0.9 

Bar Acc 1.23 ± 0.03 0.28  0.01 ± 0.04  0.21 0.9 ± 0.8 

Waist Acc 1.24 ± 0.03 0.29  0.017 ± 0.04  0.37 1.3 ± 1.0 

 
TTPV 

(s) 

Video 1.67 ± 0.02 0.22     

Force platform 1.73 ± 0.02 0.22  0.06 ± 0.03  1.84 4.1 ± 0.6 

Bar Acc 1.73 ± 0.03 0.21  0.05 ± 0.03  1.60 3.6 ± 0.6 

Waist Acc 1.70 ± 0.03 0.24  0.03 ± 0.04  0.87 1.9 ± 0.5 

 
TTEOEP 

(s) 

Video 1.18 ± 0.02 0.22     

Force platform 1.21 ± 0.03 0.23  0.03 ± 0.04  0.75 2.3 ± 0.6 

Bar Acc 1.14 ± 0.03 0.23 -0.04 ± 0.04  -1.13 -13.2 ± 1.1 

Waist Acc 1.16 ± 0.03 0.25 -0.02 ± 0.04  -0.66 -2.5 ± 0.8 

 
TTPPNSW 

(s) 

Video 1.45 ± 0.02 0.22     

Force platform 1.51 ± 0.04 0.34 0.05 ± 0.05  1.19 3.9 ± 2.2 

Bar Acc 1.50 ± 0.03 0.29 0.04 ± 0.04  1.06 3.0 ± 1.4 

Waist Acc 1.51 ± 0.03 0.25 0.06 ± 0.04  1.55 4.2 ± 1.2 

 
TTPPSW 

(s) 

Video 1.59 ± 0.02 0.22     

Force platform 1.68 ± 0.02 0.22 0.09 ± 0.03  2.83 6.5 ± 0.7 

Bar Acc 1.64 ± 0.02 0.20 0.06 ± 0.03  1.68 3.9 ± 0.8 

Waist Acc 1.70 ± 0.03 0.25 0.11 ± 0.04  3.06 7.6 ± 1.3 
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A distinctive peak is not present in the PPSW profile, the gradual curve reduces the 

ability to identify the time to peak power. Identifying the time to peak power is easier 

using the PPNSW method given the distinctive peak, therefore the sig values are much 

lower and the difference is less significant. Although calculating the peak power is 

prone to error due to the combined effect of the force and velocity inaccuracies, the 

ranking of performance can still be achieved (reflected by the low ranking mean 

difference present using each system when compared to video analysis (force platform 

(0.04 ± 0.12), bar mounted accelerometer (0.01 ± 0.13) and waist mounted 

accelerometer (0.00 ± 0.11)). The subject who produced the most power according to 

video analysis, will also have produced the most power according to the force platform 

and accelerometer analysis. The variables increase or decrease relative to one another in 

the same manner as the video derived results, indicating that a waist or bar mounted 

accelerometer can be used to monitor integration dependent variables (such as power) 

relatively.  

Overall, the waist mounted and bar mounted accelerometer have similar levels of 

correlation with the video, each exhibiting an increase in sig value as the level of 

integration increases. The waist mounted accelerometer on average produced lower 

mean differences and sig values than the bar mounted accelerometer, however, the 

difference between the accelerometers was not significant (mean sig value 0.76). 

Therefore, the location of the accelerometer does not significantly affect the results 

when monitoring a simple linear exercise. The low sig values derived from the bar and 

waist mounted accelerometers for the peak acceleration (-0.81 and -0.65), force (-0.93 

and -0.53) and velocity (-1.07 and 0.76) indicate that significant difference does not 

exist when compared to video derived results and can therefore both be used to monitor 

simple linear exercises. As the demand for additional performance data and the exercise 

complexity increases, higher accuracy is required (for which gyroscope technology is 

required). Whether a linear exercise of increased complexity can be monitored using a 

waist mounted accelerometer to derive take off velocity and jump height is discussed in 

the following section.  
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6.5 Case study 2 

To progress from the analysis of the squat (a linear, whole body movement), analysis of 

an unloaded squat jump was conducted (a linear, whole body movement requiring time 

in flight). The method outlined in Section 6.2 was followed with the same eight healthy 

subjects (five male and three female) with a mean age of 23.9 ± 2.3 years and body 

mass of 78.8 ± 25.4kg. Only the waist mounted accelerometer was used as a bar was not 

required and each subject performed two squat jumps. The validity of one triaxial 

accelerometer located on the waist and one force platform in relation to video analysis 

was investigated to determine whether the increased explosive nature of a squat jump 

reduced validity between each method. Analysis of the squat jump differed as rep 

separation was not required. Each squat jump was completed individually (not as a set), 

this allowed the subject to produce as much power as possible.  The variables listed 

below were derived from the video, forceplate and waist mounted accelerometer for 

each squat jump, however, the take off velocity and jump height remain as the focus of 

the study. 

 Peak acceleration (PA)  

 Peak force (PF)  

 Peak velocity (TOV)  

 Jump height (JH) 

 Peak power no system weight (PPNSW) 

 Peak power system weight (PPSW) 

 Time to PA(TTPA) 

 Time to PF (TTPF)  

 Time to TOV (TTTOV) 

 Time to PPNSW (TTPPNSW) 

 Time to PPSW (TTPPSW) 

6.5.1 Calculating jump height 

As discussed in Chapter 3, there are numerous calculations used to estimate jump 

height, depending on the equipment available (Beynonn and Johnson 1996). Time in the 

air (TIA) is a commonly used method, the vertical displacement of the centre of mass 

(COM) is calculated using an equation of uniform acceleration (Beynonn and Johnson 
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1996). A jump is defined as “a vertical displacement achieved by a COM from take off 

to the vertex of the flight trajectory” (Moir 2008). This requires consideration of the 

time of flight only, however, using the method, it is assumed that the position of the 

COM is the same at the beginning before take-off and upon landing, subsequent 

questioning of TIA calculation validity has arisen since the COM might deviate from 

the initial position (Bosco 1983).   

Another method involves calculating the vertical velocity of the COM at take off by 

integrating the force trace and using an equation of uniform acceleration to determine 

the jump height. This avoids the assumption that the COM is the same at takeoff and 

landing but does not account for the change in vertical displacement that will occur due 

to joint extension. It is suggested that the vertical displacement can be calculated from 

using motion based systems (Hatze 1998). The two calculations are outlined below. 

1. TIA = ½ g(t/2)2 

2. TOV = TOV^2/2g 

Before conducting the main study using a waist mounted accelerometer, preliminary 

testing was conducted to investigate the effect of the different jump height calculation 

methods and to determine which method would most suitable for the main study.  

6.5.1.1 Jump height preliminary testing 

A force platform operating at 1000Hz was used to collect GRF data for three unloaded 

squat jumps performed by one subject. The subject was instructed to remain stationary 

for the first few seconds of data collection to ensure that the initial velocity was set to 

zero. The subject was also instructed not to use arm propulsion during the jump. The net 

force calculated from the force platform GRF is presented in Figure 6.36(a). The 

eccentric and concentric phases were identified using video analysis, whilst the flight 

time corresponds to the period of zero net force that occurs after the concentric phase. 

Method 1 relies upon the identification of flight time to calculate jump height. 
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Only GRF data preceding the jump was required to derive the take off velocity. 

Therefore, only the concentric and eccentric phases identified in Figure 6.36(b) were 

used to derive the required kinematic data. In order to calculate velocity, the 

acceleration was first calculated using Newton’s Second Law (Force = Mass x 

acceleration). The acceleration data were then integrated to calculate the velocity 

profile. The resultant velocity profile is presented in Figure 6.36 (b). Method 2 relies 

upon the derivation of take off velocity to calculate jump height. The jump height for 

each squat jump was calculated using the three methods and compared to the jump 

height derived from video analysis.   

6.5.1.2 Jump height preliminary results 

 

The results from the preliminary test are presented in Table 6.14. The results for each 

method were plotted in Figure 6.37 against the jump height derived from the video 

displacement data. The difference between the jump heights calculated using methods 1 

and 2 range from 0.001 to 0.01 m. The difference between methods 1 and 2 and the 

video displacement ranged from 0.01 to 0.02 m. These results suggest that using method 

1 or  2 does not significantly affect the resultant jump height calculation. 

 

Figure 6.36 The data required to calculate jump height using two different methods 
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Table 6.13 Jump height results using each method of calculation 

 

6.5.1.3 Jump height preliminary study summary 

The choice of method is dependent upon the practitioner’s view of “what constitutes a 

jump.” The additional calculations required to obtain the jump height in relation to 

COM movement does not provide additional performance knowledge than methods 1 or 

2. Method 1 is reliant on the ability to determine when the subject leaves the ground and 

lands, this is feasible using video and force platform technology. Whether identification 

of each jump phase is feasible using accelerometer technology alone requires further 

investigation and is discussed in Section 6.5.2. As the results using method 2 were 

highly correlated with method 1 and video displacement, it is suggested that it is the 

most feasible method for determining jump height using accelerometer technology due 

to the simplicity and reduced error accumulation. Whether the acceleration data 

collected using a waist mounted accelerometer could be used to determine jump height 

using the take off velocity, was investigated in the main study. 

 CALCULATING JUMP HEIGHT FOR A SQUAT JUMP 

Method 1 2 

Equation 1/2 g(t / 2)2 TOV2 / 2g 

Data needed Flight time Take off Velocity 

Results(m)  Jump 1 0.27 m  0.27 m 

 Jump 2 0.23 m 0.23 m 

 Jump 3 0.26 m 0.27 m 

Figure 6.37 Jump height results using each method of calculation against the video 
displacement data 
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6.5.2 Monitoring jump height using a waist mounted accelerometer 

The primary objective of the study was to compare the jump height results calculated 

using the take off velocity derived from the video, force platform and waist mounted 

accelerometer. Statistical analysis was conducted to investigate whether significant 

difference existed between each method using the same staistical methods used in Case 

Study 1. The take off velocity (TOV), time to take off velocity (TTTOV) and jump 

height (JH) were all compared.   

The acceleration profiles derived from the video, force platform and accelerometer and 

identified phases of movement are presented in Figure 6.38. Digitisation of both the 

waist and bar mounted accelerometer was required to compare the video and 

accelerometer derived data. The eccentric and concentric phases have been identified 

using the video displacement data, the flight phase has been identified using the force 

platform. The period of zero GRF following the concentric phase corresponds to the 

time in flight (TIA). A summary of the four phases is given below: 

1. First negative peak: The squat jump acceleration profile initially has a negative 

phase as the subject contracts eccentrically and the knees flex prior to the positive 

(concentric) phase of the movement. 

2. First positive peak: The positive phase results in a change in acceleration and 

force direction until a positive peak is reached. This is the driving phase of the 

movement; the continued acceleration of the subject during flight phase is 

included in the video and accelerometer trace.   

3. Second negative peak: Maximum jump height is reached and the subject 

experiences negative acceleration during the return to the ground. Negative 

acceleration may continue as the subject absorbs the landing and flexes the knees. 

4. Second positive peak: The subject contracts concentrically to return to the initial 

standing position. The legs are used to drive against gravity; therefore a positive 

acceleration is experienced.  

 

Although statistical analysis is required to quantify the relative and absolute validity 

between video-force platform and video- accelerometer technology, the results indicate 

that the three phases typical of squat profile (as identified in Chapter 5)  are present in 
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the initial phases of the squat jump. This is inevitable as the squat jump involves the 

same gross movement as the squat to initate the jump. Due to the nature of the squat 

jump, a landing phase must occur, therefore, a fourth phase was also identified as the 

subject returns to the initial standing position. The fourth phase is highly influenced by 

the third phase since the amount of flexion generated by the subject on, landing 

determines how much extension and resultant positive acceleration is required to return 

to the original standing position.  The large negative peak present in the squat jump 

profile is due to the negative acceleration as the subject returns to the ground following 

the jump phase (free fall).  The subject continues to decelerate as the knees bend to 

absorb the shock of the landing.  

 

The preliminary testing indicated that the most suitable method to estimate jump height 

involved calculation of the take off velocity (TOV). This method reduces the integration 

Figure 6.38 Comparison of force platform, video and accelerometer derived acceleration profiles for a squat 
jump and identification of the key components  
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error and eliminates the need to analyse the latter phases of the jump where the noise 

and error seem to increase in the accelerometer trace. Integration of the acceleration 

data was conducted to obtain video, force platform and accelerometer velocity and 

power profiles and resultant jump height estimations. The results are discussed in the 

following section.  

6.5.3 Squat jump results 

An example of the velocity profiles derived from the video, force platform, waist 

mounted accelerometer for one squat is presented in Figure 6.39. The mean take off 

velocity and error bars (at a 95% confidence interval) for each system are presented in 

Figure 6.40, whilst the mean, standard deviation, standard error between means and 

level of significance are listed in Table 6.15. The results indicate that greatest difference 

exists between the video and waist accelerometer (SEM (0.23 ± 0.19 m/s) and sig value 

(1.23)). However, the sig value suggests that this difference is not significant (it is 

within ± 2). The force platform results indicate higher correlation with the mean peak 

velocity derived from the video (SEM (0.06 

± 0.20 m/s), sig value (0.29). In contrast to 

the squat case study results, the force 

platform shows higher correlation with the 

video data. This is attributed to the high 

explosive nature of the exercise which 

improves the ability to generate accurate 

GRF data.  Both the force platform and 

waist mounted accelerometer exhibit low 

mean percentage differences (force 

platform (2.83 ± 2.37%) and accelerometer 

(-6.24 ± 5.15%)).  

The take off velocity was used to calculate the jump height. The mean peak jump height 

and error bars (at a 95% confidence interval) for each system are presented in Figure 

6.41, whilst the mean, standard deviation, standard error between means and level of 

significance are listed in Table 6.16.  The results are consistent with the take off 

velocity but the error is slightly increased (force platform SEM (0.03 ± 0.06), sig value 

Figure 6.39 Example video, force platform and 
accelerometer derived take off velocity for one 

squat jump. 



CHAPTER 6: Monitoring simple exercises 
 

225 

 

(0.53) and accelerometer SEM (0.07 ± 0.05), sig value (1.29)). Although the waist 

mounted accelerometer results are not significantly different, the results suggest that the 

overestimation of the take off velocity present in the accelerometer data is amplified 

when calculating the jump height. The difference between the take off velocity derived 

from the video and force platform is plotted in Figure 6.42 (a). The difference between 

the take off velocity derived from the video and force platform is centred about zero 

(Figure 6.42 (a)). The accelerometer histogram Figure 6.42 (b) displays a wide range of 

error (supported by the standard deviation (0.52)). This relationship is mirrored in the 

jump height results, the accelerometer has a wide variation of error (standard deviation 

0.17 (Figure 6.42 (d))) compared to the force platform which is again centred about zero 

and has a smaller range of error (standard deviation 0.06 (Figure 6.42 (c))).  
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Statistic Video Force platform Accelerometer 

Mean (m/s) 2.71 ± 0.15 2.76 ± 0.13 2.94 ± 0.10 

Std Deviation 0.56 0.52 0.47 

Std Error between means (m/s) N/A 0.06 ± 0.20 0.23 ± 0.19 

Sig. value N/A 0.29 1.23 

Mean % difference N/A 2.83 ± 2.37 6.24 ± 5.15 

Statistic Video Force platform Accelerometer 

Mean (m) 0.39 ± 0.04 0.41 ± 0.04 0.46 ± 0.03 

Std Deviation 0.16 0.14 0.13 

Std Error between means (m) N/A 0.03 ± 0.20 0.07 ± 0.19 

Sig. Value N/A  0.53 1.29 

Mean % difference N/A 6.98 ± 4.17 8.96 ± 10.19 

Table 6.16 Statistical analysis of the TOV results derived from the video, force platform 
and accelerometers to determine whether significant difference exists. 

Table 6.17 Statistical analysis of the jump height results derived from the video, force 
platform and accelerometers to determine whether significant difference exists.  

Figure 6.40 Mean peak TOV and error bars (95% CI interval) derived using each method. Figure 6.41 Mean peak jump height and error bars (95% CI interval) derived using each 
method. 
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Although the focus of this study was to investigate the ability to derive the take off 

velocity and resultant jump height using a waist mounted accelerometer, the 

performance variables collected for the squat were also derived for each squat jump.  

The levels of significant difference calculated as a result of this case study are listed in 

Table 6.17. The results are plotted in Figure 6.43. The mean, standard deviation, 

standard error between means, level of significance and mean percentage difference are 

listed in Table 6.3 for each performance variable. The results indicate that the force 

platform exhibits much higher correlation with the video for the squat jump analysis 

(ranging from 0.14 to -1.30) in comparison to the squat analysis (ranging from 0.14 to -

4.14).  The squat jump requires more power to be exerted than during a squat, the 

explosive nature of the exercise produces higher rates of acceleration (video 12.02 ± 

0.70, force platform 11.87 ± 0.67 and accelerometer 11.12 ± 0.65). As force is a product 

of mass and acceleration, the ability to detect acceleration using a force platform is 

Figure 6.42 The difference between the velocity (m/s) and jump height (m) derived from the video, force 
platform and accelerometers.  
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increased, therefore the overall correlation between the video and force platform for 

each performance variable is improved. 

  

Table 6.14 Overview of the squat jump statistical analysis for each performance variable derived from the 
video, force platform and accelerometers and resultant difference significance.  

 

The chart displays the sig value for each performance variable derived from the force 

platform and waist mounted accelerometer.  Once again, the sig value increases as the 

level of integration increases to derive the variable. The error does not cause the results 

to be significantly different from the video. Similar to the results produced by the squat 

Variable Method Mean Std 
Dev 

Std Error 
between means 

Sig. 
Value 

Mean % 
difference 

 
PA 

(m/s
2
) 

Video 12.02 ± 0.70 2.71     

Force platform 11.87 ± 0.67 2.61 -0.16 ± 0.97 -0.16 -0.30 ± 3.66 

Accelerometer 11.12 ± 0.65 2.52 -0.90 ± 0.96 -0.94 -6.76 ± 3.07 

 
PF 
(N) 

Video 930 ± 61 235    

Force platform 918 ± 60 231 -12 ± 85 -0.14 -0.30 ± 3.66 

Accelerometer 855 ± 56 216 -76 ± 82 -0.92 -6.74 ± 3.07 

 
TOV 

(m/s) 

Video 2.71 ± 0.15 0.56     

Force platform 2.76 ± 0.13 0.52 0.06 ± 0.20  0.29  2.83 ± 2.37 

Accelerometer 2.94 ± 0.10 0.47 0.23 ± 0.19  1.23  6.24 ± 5.15 

 
JH 

(m) 

Video 0.39 ± 0.04 0.16     

Force platform 0.41 ± 0.04 0.14 0.03 ± 0.06  0.54  6.98 ± 4.17 

Accelerometer 0.46 ± 0.03 0.13 0.07 ± 0.05  1.28  8.96 ± 10.19 

 
PPNSW 

(W) 

Video 1891 ± 188 729     

Force platform 1587 ± 170 660 304 ± 254   1.20 12.7 ± 11.0 

Accelerometer 2124 ± 178 689 234 ± 259  0.90 16.73 ± 4.79 

 
PPSW 

(W) 

Video 3587 ± 327 1267     

Force platform 3459 ± 290 1124 -128 ± 437 -1.30 2.74 ± 8.57 

Accelerometer 3856 ± 306 1186  269 ± 448  1.60 10.92 ± 5.06 

 
TTPA 

(s) 

Video 1.04 ± 0.07 0.25     

Force platform 1.05 ± 0.07 0.28  0.02 ± 0.10  0.15 1.34 ± 2.51 

Accelerometer 1.06 ± 0.07 0.27  0.03 ± 0.10  0.26 2.39 ± 1.39 

 
TTPF 

(s) 

Video 1.04 ± 0.07 0.25     

Force platform 1.05 ± 0.07 0.28 0.02 ± 0.10 0.15 1.34 ± 2.51 

Accelerometer 1.06 ± 0.07 0.27 0.03 ± 0.10 0.26 2.39 ± 1.39 

 
TTTOV 

(s) 

Video 1.19 ± 0.06 0.25     

Force platform 1.18 ± 0.07 0.27 -0.01 ± 0.09 -0.03 -0.54 ± 1.01 

Accelerometer 1.20 ± 0.07 0.27  0.02 ± 0.09  0.18  1.36 ± 0.65 

 
TTPPNSW 

(s) 

Video 1.12 ± 0.06 0.25     

Force platform 1.14 ± 0.07 0.27 0.03 ± 0.09  0.26 2.03 ± 0.97 

Accelerometer 1.17 ± 0.06 0.27 0.05 ± 0.09  0.59 5.18 ± 2.65 

 
TTPPSW 

(s) 

Video 1.22 ± 0.07 0.28     

Force platform 1.39 ± 0.11 0.44 0.16 ± 0.13  1.21 13.53 ± 6.96 

Accelerometer 1.14 ± 0.07 0.27 -0.08 ± 0.79 -0.79 -4.90 ± 4.66 
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analysis, determining the time to peak power without the system weight is more 

accurate than when the system weight is included. Overall, the results indicate that a 

waist mounted accelerometer can provide an estimation of take off velocity and 

resultant jump height but force platform technology is required to increase accuracy for 

explosive, complex exercises performed at an elite level (force platform sig value is 

lower (0.29) compared to the accelerometer sig value (1.23)). 

 

To determine whether the correlation between the video and waist mounted 

accelerometer derived results decreased as the exercise complexity increased (from the 

squat to the squat jump) the sig values for the peak acceleration, force, velocity and take 

off velocity, squat depth and jump height and peak power with and without system 

weight were compared.  The results are presented in Figure 6.44. The waist mounted 

accelerometer correlation with the video for the derived peak acceleration, force, 

velocity and peak power with system weight is higher for the squat analysis than the 

squat jump analysis. The squat depth results are significantly different from the video, 

this is expected due to the double integration of the acceleration data. The peak power 

without system weight (PPNSW) correlates more with the video for the squat jump 

analysis rather than squat analysis. Nonetheless the waist mounted accelerometer 

exhibits a higher level of correlation with the video derived results when monitoring the 

squat rather than squat jump (a higher level of exercise complexity). 

Figure 6.43 Overview of the sig values for each performance variable generated by the force platform, bar and 
waist mounted accelerometer when compared to the video results.   
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The decreased correlation between the video and waist mounted accelerometer for 

monitoring the squat jump could be attributed to two causes. The first cause is the 

increase in momentum experienced during the squat jump due to the explosive nature 

(See Figure 6.45 (a), (b) and (c)). This momentum might cause the waist mounted 

accelerometer to rotate more than it would during a squat despite the fact that it is a 

predominantly linear movement. The placement of the accelerometer around the waist 

means that it would rotate as the spine flexes (b). As the power is exerted and the 

subject enters the flight phase, momentum increases the rotation experienced by the 

accelerometer (c). The second cause of decreased correlation between the video and 

waist mounted accelerometer during the squat jump might be attributed to the increased 

difficulty in accurately monitoring the location of the accelerometer in the video images 

during the jump phase. As the subject movement becomes more explosive the location 

of the accelerometer is harder to identify (see Figure 6.45 (c)).   

Both sources of error would combine to increase the difference between the video and 

accelerometer, however, the difference for each variable is not significant (see Table 

6.17). Although the difference between the video and accelerometer increases when a 

dynamic jump is included in a predominantly linear exercise (squat jump), the results 

indicate that a waist mounted accelerometer can be used to monitor performance of 

simple, linear exercises such as the squat or squat jump. As the demand for additional 

Figure 6.44 Overview of the sig values derived from the waist mounted accelerometer for the squat and squat 
jump. 
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performance data and the exercise complexity increases, higher accuracy is required (for 

which gyroscope technology is required). 

 

6.6 Brief Chapter summary 

TARGET OBJECTIVE: 

Analyse the execution of simple linear exercises to determine the ability of a simple tri-

axis accelerometer (without gyroscopes) to monitor simple linear exercise.  

TARGET RESEARCH QUESTION: 

Does an accelerometer exhibit high correlation with video analysis when monitoring  

simple exercises? 

The squat results indicate that the bar and waist mounted accelerometer consistently 

exhibit differences that are not significant (sig values less than 2) when compared to the 

video derived results. The force platform correlated the least with the video derived 

results for the squat. This is attributed to the nature of the movement which was not as 

explosive as the squat jump and does not produce high rates of acceleration to be 

detected by the force platform. Although the squat movement is linear, flexion of the 

Figure...  

Figure 6.45 Increased rotation of the accelerometer and digitisation error during a squat jump.  
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spine and resultant deviation of the waist and bar mounted accelerometer from a linear 

path is detected using video analysis but not detected by the force platform. The force 

generated by the lower body is not necessarily the same amount of force exerted by the 

upper body following extension of the spine.  

 

A waist mounted accelerometer is more subject to erroneous acceleration during a squat 

jump due to the effect of the momentum and does not exhibit the same levels of 

absolute validity derived from the force platform. The higher rates of acceleration 

required to execute a squat jump increases the force platform absolute validity when 

compared to video analysis. The bar and waist mounted accelerometers show higher 

absolute validity when the level of integration and combination of variables required is 

lower (for example, the peak acceleration and peak force require little data 

manipulation, whilst, the squat depth and peak power require integration and a 

combination of variables).  The correlation between the video and waist mounted 

accelerometer is lower for the squat jump than the squat due to the explosive nature of 

the exercise which inflicts rotation on the device and increases the error of the video 

digitisation process. However, this difference is not significant, indicating that the waist 

mounted accelerometer can monitor both squat and squat jump performance at a 

recreational level.  All three systems exhibited high relative validity (identification of 

the time at which each peak variable occurred) when compared to the video results. The 

subject ranking results across all performance variables indicate that accelerometers can 

be used to monitor performance across sessions and between subjects. An increase or 

decrease in performance can be detected which correlates relatively to the video derived 

results.  

Does accelerometer location affect correlation with video analysis? 

The waist mounted accelerometer on average produced lower mean differences and sig 

values than the bar mounted accelerometer for the squat analysis. However, the 

difference between the accelerometers was not significant (mean sig value 0.76). Both 

devices exhibited high relative validity (subject ranking and time to peak differences 

were consistently low). Therefore, the location of the accelerometer does not 

significantly affect the results when monitoring a simple linear exercise. Although the 

bar mounted accelerometer results were not significantly different, it is suggested that 

rotation of the device may have occurred as the bar attachment prototype did not fully 
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prevent rotation of the device during a linear movement. Redesigning an attachment that 

prevents rotation of the bar mounted accelerometer would increase the range of 

exercises able to be monitored and provide addtional data regarding bar trajectory that a 

waist mounted accelerometer would not provide.  

 

How is power output affected when system weight is not included in the force 

calculation?  

Calculating peak power without system weight (PPNSW) and with system weight 

(PPSW) produced significantly different power profiles. Using the net force rather than 

the total force resulted in negative values that were multiplied by negative velocity 

values producing a positive power result. This could cause inaccurate identification of 

the peak power value and the time at which it occurred. True power lies in the 

concentric phase where work is being done against gravity, therefore, the application of 

this method to a real time monitoring system is reliant upon being able to distinguish 

between the eccentric and concentric peak. In contrast, including the system weight in 

the power calculation (PPSW) causes the same reduction in force but the values are not 

centred about zero. Therefore, negative force values do not occur.  This has a significant 

impact on the power profile as the negative and positive phases present in the velocity 

profile influence the force profile.  Both power calculation methods exhibit high sig 

values and reduced correlation with the video due to the effect of integration and 

combining variables. However, the subject ranking results indicate that the difference is 

consistent allowing each subject to be ranked in the same order as that derived from the 

video. Therefore, using either method produces results that are relatively correlated with 

the video, whilst, determining the time to peak power is easier to achieve when the 

system weight is not included due to the distinguished peak.  

 

What are the advantages and disadvantages of using force platform, waist mounted and 

bar mounted accelerometers to monitor simple exercises? 

A summary of the advantages and disadvantages of each device are listed in Table 6.17. 

 

What are the resultant design implications of the study? 

Both waist and bar mounted accelerometers can be used to monitor performance. High 

absolute validity is achieved when “simple” variables are calculated (do not require 

integration or a combination of variables). When calculating more “complex” variables 
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that require integration (i.e velocity) and a combination of variables (i.e power), the 

high relative validity indicates that performance can be ranked and/or the time at which 

the peak variable occurred identified. A waist mounted accelerometer is limited to linear 

exercises, whilst the location of a waist mounted accelerometer may disrupt 

increasingly complex movements in which the the bar is pulled towards the midline of 

the body. A bar mounted accelerometer would provide additional information regarding 

the bar trajectory to characterise more complex exercises if gyroscope technology was 

integrated. The attachment of the bar mounted accelerometer needs to be redesigned to 

reduce rotation so that a range of simple linear exercises can be monitored accurately 

and analysis is not limited to whole body movements in which the bar moves with the 

body.  

 

A force platform provides accurate information when monitoring explosive movements 

and provides a method for determining the force generated by the lower body which a 

bar or waist mounted accelerometer would not. A force platform would therefore be 

suited to monitoring more “complex” exercises that are highly explosive in which the 

bar and body move independently. The differences between the force platform and 

video is attributed to the fact that the force platform predominantly detects the 

performance variables generated by the whole body. In order for the movement of the 

body and bar to be monitored during complex exercises, a bar mounted system (with 

gyroscope technology) and force platform is required.  
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Table 6.15 Summary of the force platform, bar node and waist node advantages and disadvantages 
 

   System Summary 

 

 

Fo
rc

e
 p

la
tf

o
rm

 

 Low sig values and high correlation to video data for explosive movements (squat jump), high absolute validity exists.  

 High relative validity when determining the time to peak variable and subject ranking. 

 Provides accurate whole body analysis for bar and body movement.   

 Unaffected by rotation of the bar. 

 Easy identification of each rep.  

 Limited to explosive movements.  

 Has the highest percentage difference range at all analysis stages and least absolute validity when compared to video analysis but this is due to the 
force platform measuring the movement of the system mass (bar and body) rather than each in isolation.  

 Force platform still provides the most accurate information regarding whole body movement.  

 Zero velocity required at the start of each rep.  

 No information regarding bar trajectory when independent of the body. 

 Not currently suited to a gym based environment.  

  

B
ar

 m
o

u
n

te
d

 

ac
ce

le
ro

m
e

te
r  Low sig values and high correlation to video data, high absolute validity exists.  

 High relative validity when determining the time to peak variable and subject ranking. 

 Can be used to monitor independent movement of the bar which widens the range of exercises that could be monitored.  

 Bar attachment needs to be secured to prevent device rotation. 

 Is affected by rotation of the bar due to the movement. 

 Zero velocity required at the start of each rep to achieve absolute validity. 

   

W
ai

st
 m

o
u

n
te

d
 a

cc
e

le
ro

m
e

te
r 

 Low sig values and high correlation to video data, high absolute validity exists.  

 High relative validity when determining the time to peak variable and subject ranking. 

 Unaffected by rotation of the bar. 

 Lower absolute validity when monitoring more explosive movements, waist attachment must reduce or prevent added vibration during drive and 
landing phase.  

 Can only provide kinetic and kinematic data for the body not the bar. 

 Only suited to exercises where the bar does not move independently of the body. 

 Zero velocity required at the start of each rep to achieve absolute validity. 

 Affected by flexion of the spine. 

 Location of the device may disrupt effective execution of complex exercises.  

 Increased rotation during explosive movements. 

 No information regarding bar trajectory. 



CHAPTER 6: Monitoring simple exercises 
 

236 

 

 
 
 

Figure 6.46 The identification of new knowledge acquired and core question findings; a simple tri-axis accelerometer is suitable for monitoring linear 
exercises such as the bench press or squat providing rotation is prevented through attachment design.  
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Chapter 7 

7.0 Designing a system to monitor elite performance  

TARGET OBJECTIVE: 

Combine the most appropriate forms of technology to develop a combined system that 

supports the analysis of elite performance in the resistance training domain. 

TARGET RESEARCH QUESTIONS: 

 How can the effects of rotation be minimised to improve the analysis of complex 

exercises? 

 Which monitoring methods should be combined to increase performance 

knowledge gained and system validity of an elite based system? 

 

7.1 Introduction 

The methodology proposed in Chapter 2 is centred around the iterative nature of the 

“Vee” model. The framework encourages decomposition of all the elements within the 

design domain to ensure that every design requirement can be derived from a user 

Figure...  
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requirement. Therefore, in order to generate a full set of system requirements for an 

elite based system, the user requirements identified in Chapter 4 and testing results 

obtained from Chapters 5-6 were revisited to ensure each system requirement could be 

attributed to a need. The main aim of this chapter is to support the design phase in a 

structured manner that combines the user requirements and functional requirements 

derived from the testing in Chapters 5 and 6.  

7.2 Evaluating the user and testing requirements 

The testing conducted in Chapter 4 has outlined a number of user requirements. These 

user requirements form the basis of the subsequent testing and functionality analysis 

conducted in Chapters 5 and 6. Using the combined methodology, outlined in Chapter 

2, testing was broken down into evaluating the performance of subsystems, resulting in 

an analysis of simple and complex exercises. Further decomposition identified that as 

the level of exercise complexity increased (i.e. from linear movements such as the 

bench press or squat to multi-planar movements such as the power clean or snatch) the 

number of key components and level of technology sophistication required to 

effectively monitor performance increased. An overview of the user requirements 

derived from Chapter 4 and the resultant functionality analysis conducted is presented 

in Figure 7.1. Functionality analysis conducted in Chapters 5 and 6 identified the 

following testing requirements: 

 Chapter 5: The key components of the simplest exercises involved a linear 

trajectory and simultaneous bar and body movement. The key components of 

complex exercises involved non-linear trajectories, independent bar and body 

movement and bar and trajectory rotation. Therefore force platform technology 

is required to monitor body movement whilst a gyroscope is required to account 

for the rotation of the bar and monitor the independent bar movement. 

 Chapter 6 Case study 1: Started at a low level of simplicity (analysis of the 

squat), monitoring linear movement in which the bar and body moved together. 

The results suggested that a simple tri-axial accelerometer could be used to 

monitor simple exercises providing the bar attachment was improved to reduce 

device rotation relative to the bar. 
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Figure 7.1 An overview of the user requirements identified in Chapter 4, the functionality analysis conducted to target the user requirements and the resultant design requirements. 
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 Chapter 6 Case study 2: Investigated the ability to monitor dynamic jump 

performance (a more complex exercise) using a waist mounted tri-axial 

accelerometer. The squat jump is a slightly more complex exercise but one 

which still required linear movement and aligned movement of body and bar. 

The results indicated that a simple tri-axial accelerometer could provide relevant 

kinematic data for linear exercises. At an elite level, additional performance data 

is required that cannot be determined using an accelerometer. For example, two 

force platforms (one for each leg) would be required to monitor the equality of 

force generated and differences between the left and right leg which could 

indicate weaknesses and/or injury. Uneven distribution of weight during a lift 

could result in serious injury which may hinder elite performance significantly, 

particularly during explosive movements (for which force platform analysis is 

most suitable). As a result of the decomposed testing, several design 

requirements were identified (illustrated in Figure 7.2). The design and 

development of each element is documented in this Chapter.  

Figure 7.2 The resultant main hardware design requirements identified using functionality analysis to 
design a system suitable for elite monitoring within a gym environment. 
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7.3 Device rotation 

The results from Chapter 5 identified two types of rotation, bar rotation and trajectory 

rotation caused by non-linear lifts (see Chapter 5 Section 5.4). Both bar and trajectory 

rotation can be attributed to the technique required to execute the lift and therefore 

cannot be prevented. However, it is suggested that rotation of the device due to 

“slipping”, (as illustrated in Figure 7.3) during a linear lift could easily result in 

erroneous data. To minimise the amount of correction, rotation can be minimised by 

redesigning the prototype attachment that secures the accelerometer to the bar. 

 

 

 

 

 

 

 

 

7.3.1 Case Study 1: Investigating the effect of device rotation  

A pilot study was conducted to investigate whether “slipping” and rotation of the device 

was likely to occur during the execution of simple exercises which would be amplified 

further during complex exercises. One subject was asked to perform 3 sets of 5 squats. 

The subject was asked to attach the same prototype used in Chapter 6 to a 20kg bar, no 

instructions were given to the subject regarding the tightness of the strap or device 

orientation. The aim was to investigate how a user may interact with the current 

prototype and the result it would have on the accelerometer output. An example of an 

xyz axis squat set in which slipping of the device did not occur (A) and acceleration and 

Figure 7.3 Representation of device rotation due to ineffective bar attachment design. 
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vector profiles derived from the final squat set in which slipping of the device did occur 

(B and C), is presented in Figure 7.4. 

 

The degradation of the xyz axis acceleration profile (B and C) in comparison to the 

example without rotation (A) suggests that accuracy of the data and ability to identify 

each rep is greatly affected by slipping of the device. The results indicate that rotation 

of the accelerometer occurred at the point of axis cross over (B). The first squat is 

identified in the trace (shaded column), however, following the cross over point, the 

signal does not exhibit the typical squat trace identified in Chapters 5 and 6. Therefore, 

slipping of the device due to insufficient tightening can dramatically reduce the 

accuracy of the accelerometer output. The pilot study clarified the need to prevent the 

rotational slipping of the device through redesign of the bar attachment. 

Figure 7.4 An example of the acceleration in all three axes experienced by an accelerometer during a squat 
set in which slipping of the device did not occur (A) and acceleration and vector profiles derived from the 

final squat set in which slipping of the device did occur(B,C). 
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7.3.2 Design generation of bar attachment 

The initial stages of design generation required re-iteration of the design requirements.  

The elements listed provide a number of criteria against which the initial designs were 

evaluated. Each design was rated on a scale of 1 to 5, with 5 corresponding to fulfilment 

of the criterion. The total score was calculated to provide an overall rank. The initial 

design ideas are presented in Figure 7.5. The resultant ranking of each design using the 

identified criteria is listed in Table 7.1. The factors influencing the sensor attachment 

are also presented in Table 7.1 

Criteria Reason A B C D E 

Bar mounted User requirements and testing indicated that a 
bar mounted design was most suitable. 

5 5 5 5 5 

Athlete Device should not restrict athlete movement. 5 1 1 3 5 

Range of 
exercises 

Device should not limit the exercises that can be 
executed using the device. 

5 1 1 2 5 

Fixed location WIMU must remain in a fixed position and not 
spin freely to enable rep identification and 
analysis.  

1 1 4 1 5 

PCB layout The PCB board does not currently have any 
mounting features, inner packaging must hold 
and protect the board in place.  

4 4 4 2 5 

Antenna The antenna must be accommodated and the 
casing must not affect the signal. 

4 4 4 4 4 

Preparation Set up must not disrupt the session 3 2 3 3 4 

Environment Packaging must withstand unforeseen impacts in 
the gym environment.  

4 4 2 2 4 

Score  31 22 24 22 37 
Table 7.1 Bar attachment design criteria and corresponding ranking of initial designs 

 

The results indicate that the most suitable design is example E. The bayonet design (see 

Figure 7.5 (E)) allows the sensor to be attached to the inner bar that does not freely 

rotate. The subject does not have to alter grip or technique to execute any lifts and the 

range of exercises is not limited. The resultant design development using the bayonet 

example is documented in the following section.  
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Figure 7.5 Initial generation of bar attachment design to reduce device rotation, in which design (E) was identified as the most suitable.  
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7.3.3 Development of a bayonet bar attachment 

The bayonet design was generated further using Computer Aided Design (CAD). The 

design consisted of a circular box within which the WIMU was held securely in a new 

orientation (illustrated in Figure 7.6.) The new orientation meant that the z axis was 

placed along the bar, the x axis experienced (g) and detected movement in the vertical 

plane, whilst the y axis detected movement in the horizontal plane (forward and back). 

The cover of the box was threaded and held by a single screw to allow access to the 

sensor unit. The design focused on securing the existing circuit board (PCB) with no 

mounting features, therefore a foam block was included to secure the device and offer 

protection to the board when the bar was dropped during training. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To implement and test the design, a barbell required modification. The modification 

required removal of the bar end to allow the bayonet design to be attached as presented 

in Figure 7.7 (A). The box could then be detached from the weight bar allowing the pin 

and box to remain as a single unit, as demonstrated in Figure 7.7 (B). The box was 

designed with larger diameter than that of the collar of the bar to reduce the risk of 

weight discs being added to the bar whilst the device was still attached to the bar 

(preventing potential damage to the WIMU circuit board).  The prototype design was 

manufactured from nylon and shaped using a lathe. Secondary machining operations 

were achieved using a milling machine. The manufactured prototype is presented in 

Figure 7.8. Detailed drawings of the bayonet design are presented in Appendix B. 

Figure 7.6 New orientation of the accelerometer using bayonet attachment. 
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Figure 7.8 Further development of the bayonet design using Computer Aided Design  (CAD).  

Figure 7.7 Manufactured prototype of bayonet bar attachment design (Gordon et al  2011) 
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7.4 Development of a Wireless Inertial Measurement Unit 

(WIMU) 

Trajectory rotation is a fundamental aspect of the more complex exercises such as the 

power clean and power snatch. As identified in Chapter 5, a simple tri-axial 

accelerometer is affected by rotation and significantly reduces the accuracy of the 

derived acceleration profiles (correlation between the WIMU and accelerometer 

decreases from (0.862
**

) for a simple exercise to (0.175) for a complex exercise. 

Therefore, more advanced technology is required to account for the rotation during a 

complex lift. During complex exercises, the bar trajectory and nature of the lift causes 

bar rotation that cannot be eliminated. The results from Chapter 5 identified that 

rotation of the bar was a fundamental component of the power clean and power snatch, 

as illustrated in Figure 7.9.  

 

A combination of the device slipping, bar and trajectory rotation can dramatically 

reduce the accuracy of the accelerometer output. Therefore, in order to monitor complex 

exercises in which rotation of the bar is a key component, both the attachment of the 

Figure 7.9 Bar and trajectory rotation present in both power clean and power snatch execution.  
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device and integration of a gyroscope to form a wireless inertial measurement unit 

(WIMU) is required. The following section details the methods used to integrate a 

gyroscope and create a WIMU. As discussed in Chapter 3, a WIMU combines a single 

unit tri-axis accelerometer and two dual-axis gyroscopes to measure acceleration in 

three axes and angular velocity in three axes. The algorithms developed in this chapter 

have to be embedded in the developed product to allow real time data analysis.   

7.4.1 Wireless Inertial Measurement Unit (WIMU)  

 

A WIMU consists of three orthogonal MEMS accelerometers to measure acceleration in 

3 axes and a tri-axis MEMS gyroscope to measure angular velocity in three axes 

(Woodman 2007). The accelerations measured in the local axis (i.e. body frame x′, y′, 

z′) have to be translated to a set of global axes (X, Y, Z), allowing for compensation of 

the earth’s gravitational field. A sensor aligned with the global axes compared to a 

misaligned sensor (i.e. local frames x′, y′, z′, at angles β, α and φ to the global X, Y, Z)  

is presented in Figure 7.10 (a) and (b). As explained in Chapter 3, when stationary, the 

sensor orientation can be determined using the projection of the gravity vector detected 

by the accelerometers. When accelerating, the sensor orientation has to be derived from 

the angular velocity measured by a tri-axis gyroscope aligned with the x′, y′, z′ axes to 

detect rotation. Once the orientation is known, accelerations can be projected onto the 

global axes through a transformation matrix.  

 
 
 
 
 
 
 
 
 
 
 

7.4.2 2D Transformation matrix 

As discussed in Chapter 3, a 3D transformation matrix can be used to determine the 

initial orientation. However, by fixing the x axis to be aligned with the bar (see Figures 

7.7 and 7.8), a 2D transformation matrix should be sufficient to reduce both the 

complexity of the transformation and the associated processing time (see Figure 7.11). 

Figure 7.10 Sensor body axes aligned with global axes(a) and Sensor body axes not aligned with global 
axes (b). 
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An overview of the 3D transformation matrix first discussed in Chapter 3 and 

corresponding 2D transformation is presented in Figure 7.11.  

 

The initial orientation of the bar can be determined using the correction methods 

demonstrated in Table 7.2. These methods can be integrated to calculate the initial 

device orientation from which the subsequent angular rotation due to bar movement can 

be derived. The application of the 2D transformation rather than the 3D transformation, 

simplifies the analysis process significantly, since otherwise the initial angles have to be 

determined by solving the inverse of the matrix listed in Figure 7.11. In addition, the 

restriction of the movement of the accelerometer axis along the bar via the attachment 

design ensures that the rotation effect is minimised.  

 

 

 

 

 

 

 

 

Figure 7.11 Overview of the 3D and 2D transformation matrices required to calculate and correct for the 
deviations from the global frame.  

Table 7.2 Correction methods used to account for >90 degree deviation when using the 2D 
transformation matrix. 
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An overview of the processing required to 

collect accurate data using a WIMU is 

presented in Figure 7.12. The gyroscope and 

accelerometer devices must be calibrated and 

filtered to increase the accuracy of the 

WIMU data. The calibration procedure for 

the accelerometer and gyroscope is 

documented in Appendix C. As described in 

Chapters 5 and 6, a Butterworth filter was 

used to reduce the effect of noise in the 

accelerometer data. A moving mode filter 

was used to smooth the gyroscope data (De 

Levie 2004). The individual reps are 

identified and the initial angle determined 

(θi). The gyroscope angular rotation data is 

then integrated with the acceleration data to 

determine the final angles of the WIMU (θf). 

The original angles are re-aligned to match 

the angles derived using the gyroscope and 

the accelerations are transformed to the 

global frame (X, Y, Z). 

7.4.3 Case study 2: Validation testing of WIMU and bar attachment 

To investigate efficacy of the new WIMU ability to monitor simple and complex 

exercises, a pilot study was conducted. Two athletes were monitored one recreational 

and one elite using video, force platform and WIMU technology. Each performed two 

sets of three cleans to investigate the following: 

 Whether the bayonet bar attachment affected the wireless signal strength. 

 Whether the bayonet bar attachment minimised device rotation. 

 Whether the WIMU increased the validity of bar kinematic data for complex 

rotational exercises. 

 Whether differences in technique could be identified using WIMU bar kinematic 

data. 

Figure 7.12 Processing steps required to derive 
kinematic data from a WIMU.  
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The clean exercise involves both bar and trajectory rotation. The recreational subject 

(subject A) lifted a 20kg Olympic bar, whilst the elite subject (subject B) lifted 60kg. 

The recreational subject required support benches to lift the bar slightly off the ground 

to ease execution. The processing steps identified in Figure 7.12 were followed to 

analyse the WIMU data. This method was reliant upon the ability to identify and 

separate each rep manually. The 2D transformation matrix was used to determine the 

initial and final angles for each rep. Each rep was analysed up to and including the catch 

phase.  

7.4.3.1 WIMU testing results 

No loss of data was experienced during the study, indicating that the ability of the 

sensor to transmit wirelessly was not affected by the new bar attachment. The results 

from Chapter 6 indicate that error is propagated as the integration of the data increases, 

therefore, the calculation of velocity and velocity dependent parameters (such as power) 

are more prone to error. As discussed in Chapter 3, Section 3.5.4, the ability to produce 

power is particularly important at an elite level and velocity is required to determine 

power. The WIMU testing therefore focused upon the ability to derive velocity and 

resultant power.  Example velocity profiles derived from the recreational and elite 

subjects are presented in Figures 7.13 and 7.14 respectively.  Pearson’s correlation 

coefficient was calculated for each recreational and elite clean velocity profile to 

determine the mean level of correlation between the video, force platform and WIMU 

derived velocity profiles (as conducted in Chapter 5). The results are presented in Table 

7.3. The closer the correlation value is to 1, the higher the correlation between each 

system (video, force platform and WIMU).   

Subject Compared profiles  Pearson’s correlation 
coefficient 

Significant 
difference 

Recreational  Video velocity v FP velocity 0.414   Yes 

Video velocity v WIMU velocity 0.942**  No 

WIMU velocity v FP velocity 0.417 Yes 

Elite Video velocity v FP velocity 0.675   No 

Video velocity v WIMU velocity 0.822** No 

WIMU velocity v FP velocity 0.632 No 

Table 7.3 Correlation between the recreational and elite clean velocity profiles derived from each monitoring 
system (* = sig at the 0.05 level, ** = sig at the 0.01 level) 
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The results presented in Table 7.3 indicate that high correlation exists at the 0.01 level 

between the video and WIMU derived velocity profiles for both the recreational 

(0.942
**

) and elite subject (0.822
**

). Significant difference does not exist between the 

video and WIMU velocity profiles. This is in contrast to the results discussed in Chapter 

5 Sections 5.4.3, in which the mean correlation between the video derived acceleration 

and simple tri-axis accelerometer (without gyroscopes) for the power clean and power 

snatch indicated that significant difference existed between the two systems (0.379).  

Significant difference exists between the recreational velocity profiles derived from 

video and force platform (0.414) and WIMU and force platform (0.417). An example of 

the bar trajectory and resultant velocity profiles produced by the recreational subject is 

presented in Figure 7.13 (a) and (b).  The results indicate that the derived force platform 

peak velocity (Figure 7.13 (a), (1.02 m/s)) occurs earlier (0.8 s rather than 0.92 s) and is 

significantly lower than the video (2.49 m/s) and WIMU (2.46 m/s) derived peak 

velocity (Figure 7.13 (b)).  These data support the low correlation values listed in Table 

7.3. However, once again, low correlation between the video and force platform is 

expected as the force platform measures whole body movement whilst the video 

analysis measures bar and body movement separately. The force platform data for the 

recreational subject suggest that peak velocity of the body occurred before peak velocity 

of the bar was reached (a difference of 0.12 s). This delay caused the subject to 

complete the remainder of the exercise using the upper body alone creating a loop in the 

trajectory (Figure 7.13 (b)).  As discussed in Chapter 3 Section 3.5.1, the path of the bar 

should remain as close to the body as possible to allow the legs to drive the bar against 

gravity without straining the back. However, the bar trajectory and resultant velocity 

profile produced by the recreational subject indicates that the trajectory significantly 

deviated from the body and a large loop was performed resulting in one definitive 

velocity peak detected by each system.  

An example of the bar trajectory and resultant velocity profiles produced by the elite 

subject is presented in Figure 7.14 (a) and (b).  In contrast, significant difference does 

not exist between the elite velocity profiles derived from video and force platform 

(0.675) and WIMU and force platform (0.632). The results indicate that the elite and 

recreational velocity and power profiles differed greatly. The velocity profile produced 

by the elite subject (Figure 5.14 (b)) exhibits 2 distinct phases, indicating that the 
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double knee bend technique was utilised (Stone et al 2006). The first (b1) and second 

pull phase (b2) of the clean is clearly visible. The first pull occurs as the bar is 

deadlifted in a linear fashion to the mid thigh. The subject then uses the double bend 

technique to drive the bar into the catch position, reducing the work done by the upper 

body.  The difference in magnitude of the peak velocity derived from the force platform 

(1.47 m/s), video (2.62 m/s) and WIMU (3.00 m/s) is lower than that produced by the 

recreational subject whilst the delay between the force platform, video and WIMU peak 

velocity is reduced (0.04 s). These data support the higher correlation values between 

the video and force platform (0.675) and WIMU and force platform (0.632) derived 

velocity profiles in comparison to the recreational subject (0.414 and (0.417) 

respectively.  

The reduced delay between the force platform derived velocity and video and WIMU 

derived peak velocity suggests that the elite subject was able move the bar linearly with 

the body to exert force generated from the body to the bar more efficiently, resulting in 

a higher peak velocity. The higher efficiency of the lift is characterised further by the 

trajectory which remains close to the midline of the body (Figure 5.14 (a) and (b)). 

Therefore, ineffective technique may be characterised by an increased time delay 

between the WIMU and force platform derived peak velocity and lack of a double peak 

in each profile. Such timing differences between the bar and body would not be possible 

using either monitoring system in isolation.  
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 Figure 7.13 Elite velocity profile during a clean and identification of the double knee bend 
technique (1) first pull phase (2) second pull phase, present in the video, WIMU and force 

platform data.  

Figure 7.14 Recreational velocity profile during a clean indicating high correlation between the video and 
WIMU and a difference in velocity of the body detected by the force platform.  
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7.4.3.2 Calculating power for complex exercises using WIMU data 

There is much debate over the most relevant approach to determine power in weight 

training (Dugan et al 2004, Harris 2008). The methods of power calculation used in 

Chapter 6 investigated the calculation of power using two methods, one which included 

the system weight in the force calculation (PPSW) and one which excluded the system 

weight (PPNSW).   

The results indicated that the time to peak was easier to identify using the PPNSW 

profile but the PPNSW profile provided the highest overall correlation. Including the 

system weight eliminated the possibility of a positive peak occurring during the 

negative phase of the squat exercise, preventing the inaccurate calculation of peak 

power during the eccentric phase. However, more complex exercises, such as the clean 

or snatch, do not have an initial eccentric phase and the bar does not move with body 

centre of mass. The kinematic behaviour of the bar does not match that of the body 

centre of mass and therefore cannot be characterised by the power derived from the 

force platform vertical GRF alone. There is a need to determine the amount of power 

exerted by the body and how this power is transferred to the bar to monitor accurately a 

complex exercise. For this need and analysis, a bar mounted system is essential. 

7.4.3.2.1 Combined power calculation 

Calculating the power generated by the body using the force platform and the power 

exerted on the bar using the WIMU can provide a combined estimation of power. Using 

this combined estimation may provide a method for determining the amount of power 

generated by the body in relation to the resultant power exerted on the bar as a measure 

of lifting efficiency. An illustration of the proposed combined power concept is 

presented in Figure 7.15.  

The combined power value represents the maximum amount of power that would be 

produced if the total force generated by the whole body (detected by the force platform) 

was transferred to the bar when combined with the velocity of the bar (detected using 

the WIMU). The WIMU derived power (WIMU force x WIMU velocity) can be 

compared to the combined power (force platform force x WIMU velocity) to estimate 

the efficiency of the lift (see Figure 7.15). A WIMU derived power value less than the 

combined power value would indicate that force was not efficiently transferred from the 

whole body to the bar. A WIMU power value higher than the combined power value 
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would indicate that the force generated by the whole body was fully transferred to the 

bar and an additional component of force was generated by the upper body to produce a 

higher power value. A WIMU value of a similar magnitude to the derived combined 

power value would indicate that a high proportion of the force produced by the lower 

body was transferred to the bar and the lift was therefore more efficient. This method of 

comparison could be used to distinguish between good (high transfer of whole body 

force to the bar to produce more power) and poor performance (where little force is 

generated or transferred from the whole body to the bar).  The proposed combined 

power calculation involves the division of the WIMU power by the combined power 

value. It is proposed that the closer this value is to one, the higher the efficiency of the 

lift (as illustrated in Figure 7.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15 The calculation of “combined power” by multiplying the 
force platform data with the WIMU bar velocity.  
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The results from Chapters 5 and 6 also indicate that calculation of integration dependent 

variables such as velocity and power are prone to error. By combining the power 

calculated separately for the bar and body, the error present in the force platform 

derived power and WIMU derived power would be amplified further. Using the force 

platform to calculate the force component and multiplying this value with the derived 

bar velocity, provides a combined power estimation of higher accuracy. The force 

platform power, WIMU power and combined power were each calculated for the 

recreational and elite subject to identify whether the combined value provides additional 

information.  

 

Example power profiles derived from the recreational and elite subjects are presented in 

Figures 7.16 and 7.17 respectively. Each method of analysis (video (762 W), force 

platform (1150 W), WIMU (1463 W) and combined power (1485 W)), (Figure 7.17 (a) 

and (b)), indicates that the elite subject produced significantly higher peak power values 

than the recreational subject ((video (173 W), force platform (237 W), WIMU (274 W) 

and combined power (542 W)) (Figure 7.16 (a) and (b)). The recreational profile 

indicates that the WIMU derived peak power occurred earlier (Figure 7.16 (a)) than the 

video, force platform or combined peak power (Figure 7.16 (b)). Alternatively, the 

WIMU peak power occurs at approximately the same time in the video, force platform, 

and combined peak power profile for the elite subject (Figure 7.17 (a)). However, the 

elite subject produced two peaks in the trace for combined power. The second peak is 

attributed to the elite subject exhibiting a flight and landing phase during the second 

pull of the clean (Figure 7.17 (b)). As discussed in Chapter 6, identification of the peak 

that corresponds to the actual peak power is a design requirement that needs to be 

accommodated in the software design as manual identification of the exercise rep in the 

early stages of design development may be required.  

 

Pearson’s correlation coefficient was calculated for each recreational and elite clean 

power profile to determine the mean level of correlation between the video, force 

platform and WIMU derived power profiles (as conducted in Chapter 5). The results are 

presented in Table 7.4. The closer the correlation value is to one, the higher the 

correlation between each system (video, force platform, WIMU).  
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Figure 7.16 EIite power profiles calculated using several methods:  WIMU, video and net force data in 

isolation and combining the force platform force and WIMU velocity. 

 

 

Figure 7.17 Recreational power profiles calculated using several methods:  WIMU, video and net force data 
in isolation and combining the force platform force and WIMU velocity. 
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Table 7.4 Correlation between the recreational and elite clean power profiles derived from each monitoring 
system. 

The results presented in Table 7.4 indicate that significant difference does not exist 

between the video and WIMU derived power profiles at the recreational (0.676) and 

elite level (0.833
*
). However, the correlation is lower than that between the video and 

WIMU derived velocity profiles at the recreational (0.942
**

) and elite level (0.822
**

). 

This can be attributed to the amplification of error through the combination of variables 

(force x velocity). The results contrast those produced in Chapter 5 Sections 5.4.3, in 

which the mean correlation between the video derived acceleration and simple tri-axis 

accelerometer (without gyroscopes) for the power clean and power snatch indicated that 

significant difference existed between the two systems (0.379). 

The lowest correlation exists between the combined power and video derived power 

profiles for the recreational subject (0.533). The correlation between the combined 

power and WIMU derived power for the recreational subject (0.632) is lower than the 

correlation between the combined power and WIMU derived power for the elite subject 

(0.712
*
). This is supported by Figure 7.16 (a) and (b) in which the profiles do not 

exhibit the same synchronicity present in the elite power profiles (Figure 7.17 (a) and 

(b)). Lower correlation between the combined power and WIMU for the recreational 

subject may indicate that either significant force was produced by the upper body or that 

little force was transferred to the bar from the lower body to exert power. This cannot be 

determined without calculating the WIMU derived power to combined power ratio. This 

proposed combined power estimation ratio was calculated for six lifts, the results are 

presented in Table 7.5.  

Subject Compared profiles  Pearson’s correlation 
coefficient 

Significant 
difference 

 
 
Recreational  

Video power v FP power 0.724* No 

Video  power  v WIMU  power 0.676 No 

WIMU  power  v FP  power 0.711 No 

Combined power v video power 0.533 Yes 

Combined power v FP power 0.786* No 

Combined power v WIMU power 0.632 No 

 
 
Elite 

Video  power  v FP  power 0.813** No 

Video power  v WIMU  power 0.857** No 

WIMU  power  v FP  power 0.901** No 

Combined power v video power 0.645 No 

Combined power v FP power 0.686 No 

Combined power v WIMU power 0.712* No 
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The results indicate that the elite subject WIMU power values are much closer to the 

estimated “combined power” values resulting in higher efficiency values (ranging from 

0.70 to 0.96). Using the suggested efficiency ranges (low, medium to high) the elite 

subject executed all three lifts with high to medium efficiency. In contrast, the 

recreational subject executed all three lifts with medium to low efficiency due to the 

significantly lower WIMU derived values when compared to the “combined power” 

values (ranging from 0.44 to 0.53). The low WIMU derived power values and high 

combined power values indicate that force generated by the whole body was not 

efficiently transferred to the bar. The results suggest that the difference between the bar 

mounted accelerometer and force platform data can be used to quantify the lifting 

efficiency for complex exercises. In order to do so, a combined system that consists of a 

bar mounted accelerometer and force platform is essential.    

A summary of the results produced using a bar mounted accelerometer with gyroscope 

technology in comparison to those originally derived in Chapter 5, Section 5.4.3 using a 

simple tri-axis accelerometer to monitor complex exercises, is presented in Table 7.6. 

Overall the results suggest that a simple tri-axis accelerometer without gyroscopes is not 

suitable for monitoring complex exercises and that a WIMU is capable of monitoring 

complex exercises (correlation range between the video and WIMU increased from 

(0.175 - 0.582) to (0.676 - 0.942
**

)). Significant difference does exist between the force 

platform and WIMU velocity for the recreational subject (0.417), however this is 

supported by corresponding low correlation between the video and force platform 

derived velocity (0.414). The agreement between the video and WIMU derived velocity 

indicates that a low proportion of velocity was driven from the lower body and exerted 

on the bar. This is reflected further by the combined power estimation ratio which 

Subject Lift WIMU power 
(W) 

Combined 
power 

WIMU to combined 
power ratio 

Efficiency 

Recreational  Clean 1 274  542 0.51 Low/Med 

Clean 2 250 566 0.44 Low 

Clean 3 270 511 0.53 Low/Med 

Elite Clean 1 1463 1485 0.99 High 

Clean 2 1231 1760 0.70 Med 

Clean 3 1527 1593 0.96 High 

Table 7.5 Estimation of the lift efficiency using the WIMU power to combined ratio. 
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suggests that the lifting efficiency was low and little force or power was generated and 

transferred to the bar from the lower body. The significant looping of the bar trajectory 

(Figure 7.16 (a) and (b)) also suggests that the lift was inefficient. The bar kinematic 

data could aid distinction between elite and recreational analysis due to the looping 

present in the trajectory and ability to identify execution of the double knee bend 

technique (as identified in Figure 7.14 (b)). Using either the WIMU or force platform 

technology in isolation would not provide a wide range of information or data regarding 

lifting efficiency. Whether the power transfer ratio is higher for elite athletes would be 

an area for future investigation using the developed technology. 

The ability to use both force platform and WIMU technology also allows the efficiency 

between the body and bar to be monitored using the time between peak variables. As 

discussed in Section 7.4.3.1, the time delay between peak variables (such as peak 

velocity) detected using the force platform and WIMU may indicate that the transition 

from the first pull to the second pull of a complex lift was not smooth or efficient. 

Determining optimal timing between the body and bar peak variables would provide 

invaluable data to monitor elite performance and would only be possible with a bar 

mounted WIMU and force platform integrated system.  

 

Unequal force distribution may also affect the alignment of the bar preventing it from 

remaining parallel to the floor. Misalignment of the bar will be detected through 

analysis of the accelerometer axis monitoring movement along the bar. How this 

component changes during the execution of a lift could provide useful information 

regarding subject lean which may be enhanced further using force platform analysis in 

an integrated system. An example of a subject leaning significantly to the right during a 

squat is presented in Figure 7.18 (c).  Example acceleration detected by the 

accelerometer x axis (along the bar) without lean (a) and with lean (b) is also illustrated 

Compared 
profiles  

Simple tri-axis 
accelerometer 
correlation range 

Sig. 
diff 

WIMU velocity 
(accelerometers and 
gyroscopes) 

Sig. 
diff 

WIMU Power 
(accelerometers 
and gyroscopes) 

Sig. 
diff 

Video  0.175 - 0.582 Yes 0.822 – 0.942
**

 No 0.676 – 0.857
**

 No 

Force 
platform  

0.096- 0.034 Yes 0.417 – 0.632
**

 Yes 0.711 – 0.901
**

 No 

Table 7.6 Summary of the improved correlation between video, force platform and accelerometer technology 
when gyroscopes are integrated. 
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(Figure 7.18). The xyz acceleration trace in which the subject does not significantly lean 

to one side (a) indicates that the acceleration along the x axis does not significantly 

fluctuate (the x axis output lies within 0.05(g) of the initial orientation reading). In 

contrast, the xyz acceleration trace in which the subject does significantly lean to one 

side (b) indicates that the acceleration along the x axis does significantly fluctuate (the x 

axis output fluctuates between 0.1(g) and 0.3(g)). The fluctuation is synchronous with 

the z and y axes (the peaks occur at the same time) indicating that the bar is tilting 

consistently with each rep. Whether this tilt is attributed to unequal force distribution 

from the lower body or whether it is a result of poor upper body alignment can only be 

identified using a combined WIMU and double plate force platform system in which the 

right and left foot force production can be analysed separately. The development of a 

force platform to be combined with the WIMU in a gym environment is discussed in the 

following section.  

Figure 7.18 Example of subject lean during a squat and resultant identification in the acceleration trace placed 
along the bar (x axis).  
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7.5 Development of a force platform  

As identified at the beginning of the Chapter and supported further by the results from 

Case study 2, a combination of WIMU and force platform technology would provide 

both bar and body kinematic data. Therefore it is suggested that to provide elite 

performance analysis both force platform and WIMU technology is required to fully 

analyse complex exercises at an elite level. A case study was conducted to determine 

whether two force platforms would be most suitable for a combined elite based 

performance monitoring system rather than one to investigate the difference between 

right and left leg force production. 

7.5.1 Case study 3: Determining the value of double plate force platforms  

An elite and recreational subject were instructed to place one foot on each plate to 

investigate whether there was a significant difference in force generation from each leg 

during the execution of the squat. The acceleration, velocity, force and power profiles 

were derived from the force platform to investigate whether significant difference 

existed between the recreational and elite profiles. It was hypothesised that significant 

difference between user experience and resultant acceleration, velocity and force 

profiles would enable identification of the elements that characterise good or bad 

performance. 

The GRF bilateral differences between the left and right foot for the recreational and 

elite subject are illustrated in Figure 7.19 (a) and (b) and Figure 7.20 (a) and (b) 

respectively. The three distinct phases of the squat identified in Chapter 5 and 6 ((1) 

Negative peak as the subject contracts eccentrically and the bar is lowered, (2) Positive 

peak following the change in direction and concentric contraction as the work is done 

against gravity and (3) Rapid deceleration causing a final large negative peak) are 

present in the recreational (Figure 7.18 (a) and (b)) and elite squat (Figure 7.19 (a) and 

(b)). 
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Figure 7.19 a and b Left and right foot force distribution during two recreational squats 

Figure 7.20 a and b Left and right foot force distribution during two elite squats 
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It is clear that force generation is not evenly distributed in the recreational squat. The 

recreational subject leans to the left slightly and therefore exerts more force from the 

left hand side. This puts more pressure on the knee joint and could lead to injury. 

Maximum imbalance occurs between phases 1 and 2 for the first (a difference of 212 N 

between each foot) and second recreational squat (a difference of 252 N between each 

foot) (see Figure 7.19 (a) and (b)). This is when maximum work is done against gravity 

during the concentric phase and could inhibit the ability to generate force.  In contrast, 

Figures 7.20 (a) and (b) indicate that force distribution is more balanced during the elite 

squat, whilst the three phases are more distinct. The results suggest that the use of two 

force platforms is essential for identifying unequal force generation, in preventing 

injury and improving technique.  

To quantify the bilateral difference and resultant subject lean, the difference between 

the right and left foot was calculated for a recreational and elite squat. The results are 

plotted against the corresponding total net GRF for the recreational subject (Figure 

7.21) and elite subject (Figure 7.22). The net GRF was used to distinguish which subject 

generated a higher peak force. The velocity data derived from the force platform were 

integrated to calculate the displacement which is plotted to identify the eccentric and 

concentric phases of the squat. Despite the reduced accuracy of the displacement data 

derived from the force platform for the recreational subject (see Figure 7.21), it is clear 

that the elite subject squats lower (0.6m) (Figure 7.22) and spends longer in the 

eccentric phase (1.6 s) than the recreational subject who only squats to a depth of 0.3 m 

in 1.07 s.  

The elite subject generates a higher peak force (541 N) (Figure 7.22) than the 

recreational subject (316 N) (Figure 7.20), whilst the elite peak imbalance occurs near 

the beginning of the eccentric phase (0.92 s) (see Figure 7.22). The recreational subject 

reaches a peak imbalance at the start of the concentric phase (1.15 s), this is a crucial 

point in the execution of the squat as the subject is required to drive against gravity 

from zero velocity. Unequal distribution of force during this phase is likely to increase 

the risk of injury and inhibits force production, reducing peak force.  
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The effect of joint loading and hip and knee torque forces during the squat is discussed 

by Fry et al (2003). Torque forces increase during the eccentric phase of the squat in 

which the subject descends. The maximum torque forces are experienced as the subject 

transfers from the eccentric to concentric phase, rising from the maximum knee bend. 

The ability to identify when maximum imbalance is occurring would enable coaches to 

prevent the likelihood of injury (Zhang et al 2004). Calculating the left to right peak 

imbalance in relation to the overall force generated as a percentage may provide an 

immediate form of performance feedback that could be implemented in a gym 

environment. Identifying the point at which this peak imbalance occurred is crucial in 

determining the impact of such imbalance (for example a high peak imbalance 

occurring during the eccentric phase as the bar is lowered would not impact 

performance as much as a peak imbalance occurring during the concentric phase as the 

Figure 7.21 Identification of the peak force and peak imbalance using force platform analysis for a 
recreational squat 

Figure 7.22 Identification of the peak force and peak imbalance using force platform analysis for an 
elite squat 



CHAPTER 7: Monitoring elite performance  

267 
 

bar is driven against gravity). The time at which the peak imbalance consistently occurs 

may indicate further differences between recreational and elite performance.  Therefore 

distinction between elite and recreational performance would benefit from system 

functionality that identifies the peak imbalance between the left and right foot as a 

percentage of total force generated and the phase in which it occurred. For this 

functionality, a double force platform is essential.  The remainder of this section 

documents the design generation of a double force platform design suited to a gym 

environment.  

7.5.2  Ixthus 3-Axis Force Platform Design  

 

This section documents the design of a double force platform system manufactured at 

Loughborough University. Rather than using existing products, the components of a 

force platform were decomposed to design a force platform system at a reduced cost 

(<£3000), reduced thickness (<65mm) and dimensions that accommodate two separate 

plates on a lifting platform (900 x 500 mm ± 10mm) to fit within the HiPac Training 

Centre at Loughborough University. Two types of transducers were supplied by Ixthus 

to measure both vertical and lateral GRF. The overall assembly of one force platform is 

illustrated in Figure 7.25. Each component is discussed in Table 7.4 whilst the design 

specification and cost comparison to an off the shelf Kistler force platform is located in 

Appendix D. 

Figure 7.23 Design generation of a double plate force platform suitable for the gym environment.  
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The plates were designed to accommodate a weight lifting platform, ensuring that they 

were still surrounded by shock absorbing material. An isometric bar was also included 

to allow for a wider range of exercises to be executed and monitored using the force 

platform. The elite based system is designed to monitor both body and bar movement to 

ensure that complex exercises are accurately monitored. The results from this Chapter 

indicate that bar and trajectory rotation generated during complex exercises can only be 

monitored using a WIMU that is securely attached to the bar. The redesigned bar 

attachment successfully prevented device rotation and wireless transmission was not 

affected. Determining the efficiency of the lift requires GRF data as well bar kinematic 

data, for which a WIMU and force platform is required. 

Component Detail 

Vertical 
transducers 

 Torsion load cell which is located between top and bottom plates in each 
corner and measures purely the vertical (Z) force (83)  

 The load cell was inserted upside-down so that the transducer could be 
secured through the top plate 

 Load cell was not fixed to the bottom plate, allowing the top plate small 
lateral movements through which the exerted lateral force could be 
captured. 
 

Lateral 
transducers 

 The second type of transducer was a tension and compression load cell 
model 8417 (84). 

 Two were positioned perpendicular to each other to measure the lateral 
force components (X & Y) exerted on the plate 

 The transducer has a deflection limit of 60μm along its axis, but was 
sensitive to any shear force applied. 

Bottom 
plate 

 Dimensions of 896x646mm = wider than the top plate to provide space for 
an isometric bar attachment.  

 Seven levelling screws provided a means to level the plate.  

 Series of holes allowed for the plate to be securely clamped down to a 
concrete floor.  

 The space for 4 cylindrical transducer spaces to allow for the vertical load 
cell transducers to ‘float’. 

 Stainless steel disc inserted above and below each vertical load cell to 
prevent issues with material interaction between the stainless steel vertical 
load cell and aluminium plates.  

 Central recess to accommodate a lateral force measurement system which 
required two pairs of holes for securing two transducer blocks to the bottom 
plate. 

Top plate  Dimensions of 896x500mm = available area over which force can be exerted.  

 Ground bolts and levelling screws to the outer edge of the bottom plate left 
uncovered by the top plate to allow for calibration. 

 Central and inner bolts and screws have had access provided to them 
through the top plate with small (Ø=30mm) threaded access holes, and two 
larger (Ø=70mm) access holes. 

Table 7.7 List of main components required to develop a double plate force platform.   
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Figure 7.24 Design of a combined double plate force platform and WIMU system to monitor elite performance in a 
gym environment. 
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7.6 Brief Chapter summary 

TARGET OBJECTIVE: 

Identify the most appropriate forms of technology to develop a combined system that 

supports the analysis of elite performance in the resistance training domain. 

TARGET RESEARCH QUESTIONS: 

How can the effects of rotation be minimised to improve the analysis of complex 

exercises? 

Three forms of rotation exist, rotation that is irrespective of the bar and is attributed to 

the bar attachment design, bar rotation and trajectory rotation. Case study 1 indicated 

that linear exercises can be greatly affected when only one type of rotation is present. 

Therefore it can be assumed that this error is amplified further once bar and trajectory 

rotation is introduced. Both bar and trajectory rotation require more sophisticated 

technology. A WIMU is required for monitoring at the elite level as bar and trajectory 

rotation are fundamental to complex exercise execution. 

 

Which monitoring methods should be combined to increase performance knowledge 

gained and system validity of an elite based system? 

The results from Case study 2 indicated that the integration of a gyroscope with a tri-

axial accelerometer to form a WIMU increased both WIMU and video (from 0.175 to 

0.857
**

) and WIMU and force platform (0.034 to 0.901
*
) correlation. To calculate 

lifting efficnecy for a complex exercise, the power generated by the lower body and 

resultant power transferred to the bar must be calculated. The difference between the bar 

and body peak variables can also be used to distinguish between elite and recreational 

performance as a measure of efficiency. For this analysis both WIMU and force 

platfrom technology is essential. Whether a subject leans significantly to one side 

during a lift can be identified in the WIMU acceleration profile using the axis 

positioned along the bar. Determining whether the lean originates from unequal force 

distribution from the right and left foot or is attributed to poor alignment of the upper 

body can only be determined using a combined bar mounted WIMU and double plate 

force platform.  The results from Case study 3 indicated that differences in squat 

performance between an elite and recreational subject could be identified by 

considering the bilateral difference throughout the execution of the lift using two force 

Figure...  
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platforms. The ability to identify peak imbalance and time to peak imbalance 

throughout any lift could aid the identification of weakness or prevent injury. Although 

the processing complexity is increased, the performance knowledge gained using a 

combined WIMU and double plate force platform system is much higher than with a 

simple tri-axial accelerometer. The increased knowledge is identfied in Figure 7.27. An 

overview of the knowledge acquired as result of this Chapter is presented in Figure 

7.28.  

 

 

 

 

 

Figure 7.25 Summary of the increase in technology sophistication required as exercise 
complexity and the desire for performance knowledge increases. 
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Figure 7.26 The identification of new knowledge acquired and core question findings; Both WIMU and force platform technology is required to monitor the bar and body movement 
experienced during complex exercises.  
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Chapter 8  

8.0 Software development for an elite performance monitoring 

system  

 

TARGET OBJECTIVE: 

To apply the proposed combined methodology to design supporting software for an elite 

based performance monitoring system and determine the flexibility of the proposed 

combined methodology.  

TARGET RESEARCH QUESTIONS: 

 Can the combined methodology be applied to the software domain? 

 How does the combined methodology promote user-centred design? 

 Is the design methodology flexible? 

 

 

Figure...  
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8.1 Introduction 

The focus of this research has been to investigate the advantages of adapting a 

structured process to design a system suitable for elite performance monitoring in the 

resistance training domain. As specified in Chapter 1, in order to gain performance 

understanding in the sports domain, three aspects must be considered, the collection, 

analysis and communication of data. The previous chapters have documented the 

application of the proposed design methodology to investigate the design of suitable 

hardware and analysis methods for elite monitoring. The aim of this Chapter is to 

investigate the application of the proposed methodology to target how the data are 

communicated to the user through software design. One of the main targets of the 

methodology was to ensure it was flexible, therefore, whether the same methodology 

can be applied to another sporting domain. An evaluation of this flexibility is provided 

by detailing the design of a GUI for monitoring elite swimming performance.  

8.2 Application of the combined methodology to support software 

design within the resistance training domain 

The combined monitoring system developed in Chapter 8 was designed following 

thorough decomposition of the subsystems identified within the domain (linear, 

dynamic jump and rotational movement). The testing results were then integrated to 

form a combined system. The application of the proposed methodology to support 

software design requires less testing and more focus upon understanding the type of 

data flow within the current domain and how to accommodate the new data flow. A 

review of the methodology first proposed in Chapter 2 is presented in Table 8.1. The 

methodology applied to software design is illustrated in Figure 8.1. 

The previous chapters have focused on investigating the capability set of the technology 

and integrating user needs to aid the development of system functionality and hardware 

product design specification. However, as discussed in Chapter 2, how the user interacts 

with the product is a fundamental aspect of successful design. The systems analysis and 

domain classification provided an overview of the proposed and current system to 

identify the data flow. This gave some indication of the structures that need to be in 

place to accommodate such a system-whether they are physically or logically based. 

Therefore the aims of the remaining design process stages are to integrate further the 
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user needs specific to the interface design. At the user requirements elicitation stage, the 

questionnaire was designed to gain functionality and visualisation based feedback, 

therefore consideration of the user interface must still begin in the initial stages when 

gathering user input. The suggestion is that when a product requires both software and 

hardware design the final stages allow the developer to investigate fully the user 

interaction from a software perspective. Similarly, if a product does not require any 

software development stages 1 to 5 can all be conducted in the proposed order to 

provide a structured design process for the functionality and hardware. 

The full model has been reapplied to structure the software design process. The 

definition of objectives was addressed in earlier Chapters, however, re-iteration of the 

design objectives in relation to the software design alone is required. The user 

requirements specific to software design are also derived from the testing conducted in 

Chapter 4. Feasibility testing of the hardware has been conducted and the capability of 

the system is understood, therefore, the software can be designed according to the 

known capability of the product rather than through assumption. The remaining steps 

are investigated in the remainder of the Chapter.  

Table 8.1 Proposed design methodology and corresponding model/modelling techniques. 

STEP AIM MODEL/MODELLING TECHNIQUE 

1 Define objectives SSADM  
2 Define user requirements 

 
“vee” process model 
Spiral process model 

3 Feasibility testing SSADM 
“vee” process model 

4 Systems analysis CIMOSA 
SSADM 
“vee” process model 

5 Domain classification CIMOSA 
SSADM 
“vee” process model 

6 Business process analysis CIMOSA 
SSADM 
“vee” process model 

7 Consolidation of the subsystems and 
design generation 

“vee” process model 

8 HMI task analysis HMI storyboarding 
“vee” process model 
SSADM 

9 Consolidation of HMI tasks HMI storyboarding 
“vee” process model 
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Figure 8.1 Proposed combined methodology applied to the software domain. 
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 8.2.1 Define objective(s) 

The objective of the methodology application is to: 

“design supporting software for an elite based performance monitoring system in the 

resistance training domain”  

The testing required to understand the capability of the system has been investigated in 

Chapters 5-7. Testing conducted through protocol analysis also identified further 

software related user requirements, further supporting the use of the re-iterative nature 

of the methodology. An overview of the user requirements is presented in the next 

section.  

8.2.2 User requirements 

The definition of user requirements using both conversational and observational 

techniques was discussed in Chapter 4. The techniques were used to identify the 

hardware and software requirements. Therefore, as well as requiring real time analysis, 

the user needs specifically related to communication of the data are identified in Figure 

8.2. The initial software user requirements identified the need to provide a choice of 

both graphical and numeric display. The monitoring of training inputs refers to the need 

to provide rest to work time feedback, a record of sets and reps and resultant training 

zone identification (endurance, hypertrophy, strength or power). Feedback is mostly 

desired in the time between sets but a record of data is required to allow the user to 

compare performance and refer to past data post session.  

The GUI requirements were also derived as a result of the hardware testing and product 

capability (see Chapters 5-7). The limitation of the integration error in the data 

identified the need to select the start and end of individual reps before analysis is 

undertaken. Therefore the software must provide a method for selecting each rep or 

calibrating each exercise to allow a correlation algorithm to be used (Oppenheim and 

Schafer 2010). The ability to determine readiness to perform for elite and recreational 

calibration and the need for both bi-lateral force platform and WIMU feedback also 

heavily influences the software design. Therefore, to decompose further the user 

requirements, the steps identified in the combined methodology were followed. Each 

step is documented in this Chapter.  
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8.2.3 Systems Analysis 

Collecting user requirements throughout the design process only forms one element to 

successful user-centred design. In order to understand fully the system requirements 

from the developer’s perspective, there needs to be an understanding of the current 

system and the proposed system so that comparisons can be made in terms of improved 

data flow and interaction. As stated previously, this is generally a “fact-finding” stage 

which focuses on producing models and diagrams of the current system. Data flow 

modelling is utilised to form context diagrams and data flow diagrams which establish 

the internal and external entities in the weightlifting domain and the flow of data 

between them. Current performance analysis in the weight lifting domain has to be 

considered from an elite and recreational point of view. A context diagram for both the 

current elite and recreational analysis system is illustrated in Figures 8.3 and 8.4 

respectively. The context is investigated further using data flow modelling to identify 

the current data flow between the internal and external entities from the elite and 

recreational view, illustrated in Figures 8.5 and 8.6. 

Figure 8.2 Using the original user requirements and testing requirements to derive software requirements.  
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Both the elite and recreational users have very different data flow models (see Figures 

8.5 and 8.6). The elite require more feedback from numerous external entities to gain a 

good understanding of performance (e.g biomechanist, nutrionist, sport scientist and 

coach input is often required). The current effectiveness of such communication is 

limited due to the reliance on verbal communication between the sports professionals. 

In order for the training programme to be optimised, the sports professionals need to be 

able to view all data to prevent overtraining or regression (ACSM 2002). The 

recreational data flow model is less complex, simply requiring input from a training 

partner and manual logging of the load and volume lifted. The results from Chapter 4 

Figure 8.4 Recreational weightlifting environment context diagram 

Figure 8.3 Elite weightlifting environment context diagram 
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indicated that although users were aware of other monitoring devices such as heart rate 

monitors, they were not commonly used to gauge performance during weightlifting. 

Accommodating the proposed system data flow is reliant upon providing an appropriate 

software structure that collects, analyses and communicates athlete data. The proposed 

data flow model is illustrated in Figure 8.7.  To determine how to accomodate the data 

flow model, the general themes generated from the user requirements and systems 

analysis were categorised to form a basic structure from a software perspective. This 

was conducted through domain classification (see Table 8.2).  

 

Figure 8.5 Data flow modelling in the elite environment 
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Figure 8.7 Data flow modelling in the recreational environment Figure 8.6 Proposed data flow model for the weightlifting domain  



CHAPTER 8: Software development  

282 

 

8.2.4 Domain Classification 

Using both the user requirements and systems analysis data it was previously concluded 

that the system would need to provide real time feedback both during and after the set. 

Following the feasibility testing it was also concluded that collection of the desired 

parameters for both elite and recreational users would require forceplate and WIMU 

data. An overview of the domain classification and domain processes within each 

domain is presented in Table 8.2. The domain processes relate to the likely interaction 

with the system according to the domains outlined in Table 8.2. The design 

methodology followed throughout this project aims to avoid the common mistakes 

experienced when software development is an afterthought to the hardware design or 

vice versa.  

Enterprise 
Domain  

Name  Domain 
Process  

Explanation  

DM1  Real time feedback from node  BP1.1 Login access validation 

  BP1.2 Select training analysis  

   Select jump or lift  

  BP1.3 Identify that node is activated  

  BP1.4 Input session variable s( load, sets, reps)  

  BP1.5  Begin collection of raw data  

  BP1.6  Filter data for meaningful kinematic variables  

  BP1.7  Choice of delivery – graphical or tabular 

  BP1.8  Save data to database  

DM2  Real time feedback  from forceplate  BP2.1 Login access validation 

  BP2.2 Select jump or lift  

  BP2.3  Begin collection of data  

  BP2.4  Save data to database  

DM3  Data storage  BP3.1 Login access validation 

  BP3.2  Save data according to date and username 

  BP3.3  Update when user profile is edited 

DM4  Post analysis  BP4.1 Login access validation 

  BP4.2 Select date(s) to view or compare  

  BP4.3  Retrieve data from database according to 
username and date (s) selected  

  BP4.4  Choice of delivery – graphical or tabular 

  BP4.5  Export session configuration to pdf  

DM5  Configuration  BP5.1 Add user  

  BP5.2  Edit user  

  BP5.3  Edit exercise directory  

  BP5.4  Zero forceplate  

  BP5.5  Check node battery life  

Table 8.2 List of domain processes existing within each sub domain 
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8.2.5 Business Process Analysis 

The aims of the remaining design process stages are to integrate further the user needs 

specific to the interface design. Functional decomposition of the business processes is 

demonstrated in Figure 8.8 the resultant Level 2 and Data Flow Diagrams (DFDs) are 

illustrated in Figures 8.9 and Figure 8.10. The method of functional decomposition 

allows the developer to view the overall system in a structured manner. The inputs 

needed to plan a session and how these inputs can be obtained by each individual user is 

presented in Figure 8.9. The Date, Time and Username will be crucial in ordering input 

values and storing data specific to each user. Consideration of weaknesses is reliant 

upon the ability to collect the data and retrieve it for comparison at a later date. The 

training goals will be dependent on the acute variables associated with a weight training 

session. In order to show progression during a training programme, load, sets, reps, rest 

time and exercise type, all provide a tool for manipulating the programme so it is 

specific to the user and their goals. Therefore, the system must allow for acute variable 

input.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8 Top level business process analysis within performance feedback domain. 
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Functional decomposition of setting up a session is presented in Figure 8.10. Three 

central internal entities that require interaction in order to set up the session are 

identified. The Graphical User Interface (GUI) is a major component of this process, the 

nature a GUI access will influence the subsequent data that can be viewed, how this is 

done is not considered at this level. Both session objectives and acute variables are 

required to ensure the system is ready to collect the data the user in interested in. Setting 

up the session is reliant upon defining the session objectives, whilst the ease of setting 

up will have a great impact on the system’s success. Being able to identify common 

session objectives or allowing the user to plan their session based on the objectives and 

input this to the system will have a great effect upon the resultant set up required.  

Functional decomposition of beginning a session is presented in Figure 8.11. This is an 

ideal user interaction scenario in which data collection simply relies upon a “start” 

button, however, this level of decomposition does not detail how this will be achieved.  

The output values are identified but the processing of the data is not. How the user 

receives feedback upon their performance is decomposed further using a Level 3 DFD 

illustrated in Figure 8.12. This level highlights the need for differing statistical views, 

the storage of summary statistics, a comparative tool and a user database. Overall this 

method is not conclusive, it does not define the exact protocol of use but outlines 

software structure required to allow such processes to occur.  
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Figure 8.10 Level 2 decomposition of planning session objectives Figure 8.9 Level 2 decomposition of setting up session 
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Figure 8.12 Level 2 decomposition of setting up session Figure 8.11 Level 2 decomposition of planning session objectives 
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Figure 8.13 Overview of the data required to accommodate proposed system data flow 
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The data required to develop a suitable system are identified in Figure 8.13. The 

skeleton of software was developed using the design process methodology to determine 

the data flow within the current and proposed system environment. Using this structure 

as a basis for the software development, another form of analysis is used to understand 

how different user types would interact with the system. 

8.2.6 HMI task analysis 

In order to understand potential user interaction with a performance monitoring system 

within a gym environment, the web based questionnaire documented in Chapter 4 was 

analysed to investigate aspects of a Human-Machine Interface. The aim of the user 

interaction questionnaire section was to derive preferred order of tasks that users 

followed and identify whether user interaction decreased as the number of HMI 

functions increased.   

The questionnaire required users to select the order and number of HMI functions to 

fulfil a given task. Three main tasks were identified using the results from the system 

decomposition through systems analysis and business process analysis (see Sections 

8.2.3- 8.2.5). A list of possible options to complete the task was presented in a random 

order to the user so as not to influence the order of the tasks selected. An example of the 

questionnaire task analysis section is presented in Figure 8.14. The three tasks presented 

to the user were as follows: 

1. Create a new profile 

2. Start a new session  

3. Review data 
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8.2.6.1 HMI task analysis results 

The results from the questionnaire are presented in Figures 8.15-8.17. The pie charts 

represent the spread of data regarding the function selected at each step, the most 

common step selected at that stage is identified on each step. The response rate is 

documented beneath the HMI steps. A summary of the task analysis data is presented in 

Table 8.4. The percentage response rate for each selected function is displayed in Figure 

8.18. All three tasks resulted in a response rate between 80-100% to the third HMI step, 

furthermore, there is a significant decrease in response rate after the fifth HMI step. 

Therefore, the supporting software should focus upon ensuring that the number of steps 

required to perform a task should not exceed 5 steps. This would further improve the 

usability of the system (Ledoux 2005).  

Figure 8.14 Example of the HMI questionnaire designed to investigate user interaction 
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Figure 8.15 HMI user task analysis questionnaire results indicating the most preferred user interaction path for creating a new profile.  

Experienced user interaction: Creating a new profile 
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Figure 8.16 HMI user task analysis questionnaire results indicating the most preferred user interaction path for starting a new session 
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Figure 8.17 HMI user task analysis questionnaire results indicating the most preferred user interaction path for reviewing data. 
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8.2.7 HMI Storyboarding  

The task analysis results were used to design the software structure using a HMI 

storyboarding technique (Schneidermann 2004). This is an important design process as 

it refers back to the user requirements and focuses the developer on reducing the 

number of HMI functions the user needs to accomplish their requirement. The fewer 

tasks required, the more usable and desirable the system is. Consideration of the 

different user types is fundamental to this process, as mapping the navigational path 

specific to the user increases the usability of the system. This HMI storyboarding 

technique has been applied to the weightlifting domain using the software requirements 

collected at each stage as shown in Figure 8.19.  

Table 8.3 Summary of HMI task analysis questionnaire results identifying the most preferred order of steps 
to complete each task. 

  TASKS 

 Step Create new profile Start new session Review session 
P

re
fe

rr
e

d
 s

te
p

 o
rd

er
 1 Create new profile Log in Log in 

2 Input name and DOB Start new session Review 

3 Input height and weight Input load/resistance Input dates to review 

4 Input training goals Input number of reps Summary of workout 

5 Save details Input number of sets Graph view 

6 Save details Input rest between sets Statistical view 

7 Save details Record Analysis of reps/sets 

8 Save details Record Compare sessions 

Figure 8.18 Summary of the HMI task analysis questionnaire results which indicate a rapid decrease in user 
response rate as the number of HMI steps increases. 
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The aim of the structure presented is to reduce the number of HMI tasks the user needs 

to perform to reach the desired screen. The athlete details are retrieved from the athlete 

database following the log in. Storing vital statistics such as the athlete weight, allows 

the forceplate to be zeroed without having to input the athletes weight. A balance needs 

to be found in order to communicate accurate data and provide multiple functionality. In 

order to view detailed information whether using the jump or weightlifting analysis, the 

user needs to advance to another screen. The immediate feedback is the first screen the 

user interacts with following the analysis type selection.  

8.2.8 HMI consolidation 

The final stage of the design involves consolidation of the HMI screens and 

implementing the software structure. The examples presented in Figures 8.20-8.22 are 

the initial software structure design prototypes. This structure provided a foundation 

upon which the software was developed. The aim was to ensure that navigation through 

Figure 8.19 Example of the HMI storyboarding technique applied to the resistance training domain.  



CHAPTER 8: Software development  

295 

 

the system did not exceed interaction with more than four screens before reaching the 

desired interface, whilst reducing the user inputs. The user requirements derived from 

the initial requirements elicitation process (Chapter 4) and hardware testing were also 

considered.  

Validating the software design against the user requirements is a fundamental part of the 

proposed design methodology. The user requirement corresponding to the identified 

functionality is documented in Table 8.4. The user requirements evaluation indicates 

that the prototype software fulfils each of the requirements, therefore suggesting that the 

design methodology was successful. However, flexibility is a key component of the 

methodology, therefore the success cannot be judged on the ability to enable hardware 

and software design in the resistance training domain. Whether the methodology can be 

applied to another sporting domain is required to determine the flexibility. True value 

lies in the ability to apply a structured design process to hardware and software 

development across multiple domains. As a result, a case study was conducted to 

investigate whether the combined methodology can be used to support software design 

in another sporting domain. The case study is documented in the following section.  

User requirement Screen 

Choice of graphical display B1.1, B1.2 

Review data C1,  

Monitoring of training inputs A2 

Timer functionality A2.1, B1, B1.2 

Feedback between sets B1, B1.1, B1.2, C2, C2.1,C2.2, C2.11, C2.21, C3 

Manual rep selection C1 

Rep calibration A2, A2.1, A2.2, A3 

Force platform and WIMU data A1 

Jump analysis functionality A1, D1, D1.1, D2 

Compare sessions C2, C2.21, C2.11, C2.3 

Table 8.4 Identification of the software requirements and corresponding HMI screens. 
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Figure 8.20 Software prototype: the HMI screen navigation designed to set up for a weights session.  
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Figure 8.21 Software prototype: the HMI screen navigation designed to start a session 
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Figure 8.22 Software prototype: the HMI screen navigation designed to accommodate jump analysis functionality.  
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8.3 Case Study: Application of the combined methodology to 

another sporting domain 

Re-usability of software design is of most use to a designer (Monfared et al 2002, 

Rahimifard and Weston 2007). Having developed and implemented an iterative design 

methodology for a performance monitoring system within weightlifting, the next 

challenge was to investigate the methodology flexibility (as identified in Figure 8.23).   

 

Maintaining focus in the sporting domain means that the partial of design level (i.e 

sports monitoring (see Chapter 2) remains the same, however, the particular domain 

has been changed from weightlifting to swimming. The same wireless technology has 

been applied to the swimming domain. A non-invasive component-based integrated 

system, using wireless sensor nodes for monitoring elite swimmers is being developed 

Figure 8.23 Investigating the flexibility of the design methodology by applying the methodology to another 
sporting domain. 
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at Loughborough University (Le Sage 2010). This comprises of non-invasive wireless 

sensor nodes, wireless data transfer, a vision analysis system using a high speed video 

camera and real time automatic image processing components.  

The aim of the integrated system is to collect multiple swimming parameters in real 

time, provide feedback to the relevant stakeholders and record them simultaneously for 

further analysis. Thorough feasibility testing and successful development of prototype 

product designs means this system is at a different stage of the system development life 

cycle. In contrast to weightlifting, this design process does not require documentation of 

hardware development and analysis. It is the communication of the data to the user 

which currently provides a barrier to use, therefore the design life cycle has a different 

starting point. The aim of this section is to apply the iterative design approach to the 

swimming domain, focusing on the design of software to communicate the functionality 

of the technology.   

8.3.1 Differences in application 

Designing a monitoring system for the resistance training domain required the 

consideration of users from the recreational user to the elite to determine how the 

sophistication of technology would need to increase. The product was also intended to 

be a gym environment in which the user operating the system is also performing the 

exercise. The swimming domain was chosen as the operator is likely to be different to 

the user performing the exercise. The operator will not necessarily differ in level of 

understanding but more intended use. The aim of the Graphical User Interface (GUI) in 

this case study is to provide a general performance monitoring tool that considers more 

than data collection alone. This GUI tool is required to act as a main source of 

communication between the sports scientists, coaches and athletes. Consequently, the 

design must consider not only different user types but also their likely interactions 

dependent on their intended use.  

The weightlifting system will be located in an environment accessible to both elite and 

recreational performers, therefore the interface must accommodate differences in 

understanding. In contrast, the swimming application will be used by sports 

professionals and elite athletes, the log in details must be used to restrict access 

accordingly. The aim is to provide a navigation path through the software specific to the 
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user level. Such contrasting applications have been selected in order to investigate fully 

the flexibility of the proposed methodology. 

A summary of the differences between the swimming and weightlifting domain is 

presented in Figure 8.24. The subsequent application of the methodology to the 

swimming domain is documented in the remainder of the chapter.  

 

8.3.2 User requirements 

The first step involved collecting data from the user types. Rather than using a 

questionnaire, data was collected using interview techniques. The stakeholders  

identified in the elite sports monitoring domain are listed below: 

 

- Athlete 

- Bio mechanist 

- Nutritionist 

- Strength and Conditioning Coach 

 

Figure 8.24 Differences in between the weightlifting and swimming domain 
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Conducting numerous interview techniques with each user type generated a list of user 

requirements listed in Table 8.5. The next step involved combining related patterns into 

sub-themes, these themes were identified by bringing together components or fragments 

and establishing the links.  

 

8.3.3 Systems analysis  

To support the GUI requirements definition phase, a detailed systems analysis was 

conducted to fully understand the flow of data within the swimming environment from a 

user and system point of view. Complete systems analysis integrates process and data 

Requirement Detail 

Multi-tier application A multi-tier architecture (often referred to as n-tier architecture) is a client–
server architecture in which the presentation, the application processing, 
and the data management are logically separate processes. 

User friendly The tool should be simple and intuitive to use. The number of operations 
should be minimized. 

Capture/Visualization 
capability 

The tool should allow the end user to store the session data into persistent 
storage and also display the session statistics in the display device. 

Choice of delivery The tool should allow the user to view the measurable statistics in a 
graphical or a tabular manner. 

System integration The tool should be able to integrate other data streams such as video  

User level distinction User operations should be masked based on the level of the user. For 
example, the sports scientist should be responsible for configuring the 
teams, sessions, review session data etc. The athlete should be allowed to 
view only their individual session history and training calendars. 

Session Planning The GUI should allow the sports scientist to create the session plans ahead of 
the actual sessions. 

Sensor identification Every athlete has a sensor attached to them. The sensor – athlete mapping 
configuration has to be done before the GUI starts to display or store live 
sensor data. 

Post session analysis  The raw sensor data will not make much sense to the end user. The GUI 
should do a post processing before the data is presented to the end user. For 
instance, in the case of swimming, stroke counts, lap counts would make 
more sense in comparison to raw accelerometer data. 

Measurable 
performance 
parameters 

The post processed data should be presented to the user on real time 
analysis as well stored into persistent storage for post session analysis 

Selective analysis of 
data 

The end user should be able to choose to view all or a few measurable 
quantities 

Athlete Diary The tool should be able to review and update competition diary, nutrition 
diary, training diary, hormone diary etc. 

Database storage Relatively large database memory should be available 

Changeability In practice, it is expected that some of requirements might change during 
development and post release. The design should be able to deal with 
changes effectively. 

Table 8.5 List of software user requirements in the swimming domain. 
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modelling whilst building a strategy for a complete and accurate requirements 

specification. This is required when developing an interface as it encourages the 

developer to consider the interface and database structure needed to accommodate the 

data flow, their directions (sent or received) and any communicative issues that need to 

addressed by the subsequent domain classification. The context diagram presented in 

Figure 8.25 provides an understanding of the overall current system. 

8.3.3.1 Systems analysis of the current system 

An inevitable effect of introducing a new system is a change in data flow and data type 

available to the user. The data flow within the current swimming training environment 

is illustrated in Figure 8.26. The internal entities are shown within the dotted circle. The 

arrows refer to the direction of data flow. The current environment does not allow for 

regular referral to athlete summary statistics and the coach must rely upon verbal 

communication only. The sport scientist must manually input athlete data which is time 

consuming and increases the likelihood of human error. There is no official record of 

swimmer attendance and the swimmer does not play an integral role in the data analysis 

or feedback system. Communication between all sources is reliant upon verbal 

Figure 8.25 Context diagram of the swimming performance monitoring domain 
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communication and there is no central system to which the sports professionals and 

athletes have access to review past and current performance.    

8.3.3.2 Systems analysis of the new system 

In order to understand the data flow effect, the same process was applied to the 

proposed system. The increase of data sources within the training session directly 

impacts the data flow. Directional arrows are used to improve communication channels 

between entities. The context diagram for the proposed system is illustrated by Figure 

8.27. The inclusion of an athlete database and the GUI application allows the data to be 

accessed from a variety of sources. The central database ensures that the sports 

professionals and athlete can view past and present performance data. The GUI provides 

real time data that can be communicated within a session, minimising the coach’s 

reliance upon verbal communication. The functionality to store and review WIMU, 

force platform and video data increases the performance knowledge that can be gained 

for each athlete during and post session. The structure of the GUI and the supporting 

database will directly impact the overall perceived usefulness of the system. Using the 

proposed data flow context diagram and considering the user requirements, the 

developer can identify the domains within the GUI to accommodate the data flow. 

 

Figure 8.26 Data flow within the current swimming environment  
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8.3.4 Domain Classification 

Domain analysis and classification was conducted using the user requirements (Table 

8.5) and systems analysis to determine the sub themes. In contrast to the weightlifting 

application, there is a desire to incorporate the external aspects to training so that all the 

sports professionals within the elite swimming domain can benefit. The aim is to 

increase quantitative feedback in the session using immediate feedback and also after 

the session through post analysis.  The domains chosen for the GUI functionality and 

subsequent domain processes within each domain are listed in Table 8.6. 

 

 

 

 

Figure 8.27 Data flow within the new swimming performance monitoring environment 
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8.3.5 Business process analysis  

A level 1 data flow diagram is presented in Figure 8.28, this is a high level analysis 

taking into account the entities involved and the processes that construct an overall 

session from beginning to end. Each business process is decomposed further to 

investigate the enterprise activities present, the breakdown of business process one 

(BP1) is shown in the Level 2 data flow diagram (Figure 8.29). BP1 focuses on the 

activities required for planning a session. The complexity of the diagram is increased 

due to the identification of the database capability required to store and access data table 

information. This also demonstrates how communication between different analysts 

(e.g. biomechanist, nutritionist and strength training coach) is required in order to plan 

and implement an effective training plan.  

 

 

Table 8.6 List of domain processes existing within each sub domain 

Enterprise 
Domain 

Domain Name Domain Process Explanation 

DM1 Real time monitoring BP1.1 Data collection set up 

  BP1.2 Display measurable variables real time 
and post process raw accelerometer 
data into more meaningful information 
like stroke count, lap counts etc. 

  BP1.3 Choice of delivery – graphical or tabular 

DM2 Data storage BP2.1 Login access validation 

  BP2.2 Store data to database 

  BP2.3 Retrieve data from database 

DM3 Post session analysis BP3.1 Retrieve user data 

  BP3.2 Display performance parameters  

DM4 Settings and 
configuration 

BP4.1 Configure resources 

  BP4.2 Configures sessions 

  BP4.3 Configure hardware – sensors, force 
plates 

  BP4.4 Save configuration to database 

  BP4.5 Export session configuration to pdf 

DM5 Biomechanical and 
nutritional  

BP5.1 Other analysts will need to view certain 
data, effective training stems outside 
the sports specific training session 
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The data flow sequence required for the configuration of the external monitoring 

devices (e.g. WIMUs, video cameras and force platforms) and the session data capture 

within BP2 and BP3 is demonstrated in Figure 8.30. This involves recording 

accelerometer data using the WIMU (as per Chapter 7) both over and under water video 

cameras and force plates. The coach/sports scientist configures (or calibrates if 

necessary) the sensor nodes before the start of a training session. Either of the above 

mentioned user types is responsible for determining the physical mapping between the 

WIMUs and the swimmers and also for configuring the external monitoring devices for 

the data capture. Once all the devices are active, the data capture can be started using a 

trigger mechanism. The GUI software displays in real time the sensor data, video 

footage and the force platform data. The coach/sports scientist can instruct the GUI to 

start or stop recording the desired session data into database tables. The deactivation of 

the hardware devices will stop any data from being displayed on the software or being 

stored in the database.   

Figure 8.28 Level 1 document flow diagram of the proposed system 
business processes and relationship to internal and external entities. 
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Figure 8.30 Level 2 data flow diagram breakdown of BP1 Level 3 Figure 8.29 data flow diagram breakdown of BP2 and BP3. 
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8.3.6  HMI task analysis 

The aim of this process primarily involves the design of the screens the user will 

interact with and determining the relationship between each to help identify any areas 

where the user has to input too much data or repeat a process- both of which reduce the 

usability of the system. However, often this process does not account for the different 

type of users, relying upon the “generic user” needs to create the navigational path. By 

referring back to the initial stages in the overall system design process from generic to 

particular and brainstorming the order of HMI functions in relation to the user type 

further increases the usability of the system. Reducing the number of clicks to the 

screens of highest priority, identified in the user requirements section, demonstrates 

how this method allows the developer to envisage the path of the user in multiple 

scenarios. 

This process was conducted for the coach, swimmer, sports scientist, nutritionist and 

biomechanist at the particular level. The order of operation each user is likely to take is 

illustrated by Table 8.7. Brainstorming the navigational paths allows the designer to 

identify which HMI screens are to be accessed by all and therefore require easy access 

from all user starting points in comparison to those that are specific to the user. 

Although the HMI tasks and task order are identified in Table 8.7, storyboarding the 

navigational path is of more use to the designer as it clarifies the relationships between 

each type and the most efficient route to take to achieve the needs of highest priority. 

There is a desire to collect and correlate as many sources of information as possible to 

identify major influences on performance.  The software is not a only a one to one 

interface, it is a one to many, being able to store and view data from different sources to 

create a “bigger” picture through a “training diary” has a major impact on the software 

design.  

Coach Sports Scientist Swimmer Biomechanist Nutritionist Strength and 
Conditioning 

1. Session Plan 
2. Record session 
3. Review session 
4.Settings and 
configuration 

1. Session Plan 
2. Record session 
3. Review session 
4. Settings and 
configuration 

1. Profile 
2. Training 
diary  
3.Review  
(Individual) 

1. Video archive 
2. Session plan 
3. Training diary 

1. Session 
plan 
2. Training 
diary 

1. Session 
Plan 
2. Training 
diary 

Table 8.7 The order of operation according different user types 
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8.3.7 HMI Navigational paths 

The proposed method of HMI task application, by using a storyboard technique to 

distinguish the order of tasks identified in Table 8.7 is presented in Figure 8.31. It is 

much clearer to the designer which screens can be replicated and reused for each user 

type, improving the efficiency of the design process. The “widgets” illustrate the 

buttons used to access each screen, for example, being able to create a session plan is 

required by multiple users, although their plans will be different, the generic format of 

the session plan screen can remain the same throughout the system. This screen can be 

used as a major communication tool, allowing each user to view the date and type of 

training already planned for each swimmer, whilst reducing the design time in creating 

multiple screens specific to the user, which fundamentally have the same purpose.  

The aim is not to identify HMI tasks and create screens to target each individually, it is 

more to identify areas where functionality is shared between user types and distinguish 

the different order of tasks. Creating user specific navigational paths is of more use to 

both the user and designer in improving the usability and intuitive nature of the system. 

Furthermore, routes that force the user to complete too many tasks are easily identified. 

The designer should aim to decrease the number of screens at each HMI level. Only two 

HMI screens are present at the fifth HMI level as illustrated in Figure 8.31. Although 5 

“clicks” may seem too high, this only applies to the users who are required to configure 

the system and have increased functionality.  

A compromise must be made between providing such functionality and reducing the 

HMI levels. Reaching these same screens but at an individual level can be achieved by 

the swimmer within four clicks. This is a good example of shared functionality but via a 

different route that increases the usability specific to user type. The implementation of 

the storyboarding technique to create prototype software is presented in Figure 8.32. 

The session plan screen provides a joint communicative base, this reinforces the 

principles of training across domains, whether the planned session is set by the coach in 

the water or by the strength and conditioning coach in the gym, the same principles 

apply. Although individually each coach may be planning an effective training 

programme, if they are not aware of the demands being placed on the swimmer in other 

sessions, overload is likely to occur. 
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Figure 8.31 HMI storyboarding used to determine user specific navigational paths in the swimming domain 
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 Figure 8.32 Implementation of HMI storyboarding navigational paths in the swimming domain 
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Similarly, the nutritionist needs to be aware of the demands being placed on the 

swimmer in all training sessions in order to meet fully the individual needs. Providing a 

generic session plan HMI screen also simplifies the system design process as each user 

will access this one screen but with restricted editing capability. For example, the 

biomechanist can only alter the biomechanist session yet they can view the planned 

sessions set by the sport scientists.  

Each swimmer analyst can access a swimmers individual training diary from this 

session plan based upon the date and selected swimmer. This further supports targeting 

the individual needs of the swimmer. This path is suited to the nutritionist, biomechanist 

and strength and conditioning coach as they do not need a direct link to data analysis 

and so can view swimmer results by accessing the training diaries first. However, both 

the coach and sports scientist will often analyse swimmer results as a group and 

individually, therefore providing a “short cut” to a “review page” decreases the number 

of HMI tasks they have to complete and again increases the usability.  Using this 

method the developer is forced to reconsider the importance of the user and user types, 

demonstrating the iterative nature and user focus.  The fulfilment of the software user 

requirements using the current and new system is presented in Table 8.8. The results 

indicate that the new system design meets all the specified user requirements. Therefore 

it can be concluded that the design methodology is flexible and can be readily applied to 

other sporting domains.  

Table 8.8 Comparison of the current and new system in relation to the identified requirements. 
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8.4 Brief Chapter summary 

TARGET OBJECTIVE: 

To apply the proposed combined methodology to design supporting software for an elite 

based performance monitoring system and determine the flexibility of the proposed 

combined methodology.  

TARGET RESEARCH QUESTIONS: 

Can the combined methodology be applied to the software domain? 

When applying the combined methodology to the software domain, there is more focus 

upon the decomposition of the system requirements using the identified modelling 

approaches rather than testing. Hardware testing must be conducted before software 

design can begin as the product capability must be well understood. The data flow 

within the current system and the proposed data flow must be considered to prevent data 

redundancy. 

 

How does the combined methodology promote user-centred design? 

The user requirements are re-iterated throughout the process, investigating the data flow 

within the environment considers how data is currently communicated to derive how the 

new system should communicate data to the user. HMI task analysis, storyboarding and 

consolidation ensures that how the user interacts with the system and user navigation is 

considered. The derivation of system requirements from user requirements ensures that 

all functionality is relevant and the system is not over complicated.  

 

Is the design methodology flexible? 

The methodology was successfully applied to the swimming domain in which the 

system requirement were significantly different. The reference architecture enabled the 

software design to progress from a generic to particular level using each step in the 

methodology. The designed software targeted each user requirement and supported user 

distinction to restrict user access using the same methodology applied to the 

weightlifting domain. This suggests that the methodology can be applied to numerous 

domains to support both hardware and software design. 

 

Figure...  



CHAPTER 8: Software development  

315 

 

  

Figure 8.33 The identification of new knowledge acquired and core question findings: The combined methodology can be applied to promote user centred software 
design and communicate the data to the user effectively.  
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Chapter 9 

9.0 Conclusions and future work 

9.1 Research summary 

The overall aim of this research was to investigate the promotion of user centred design 

in the sporting domain focusing on the development of technology within the resistance 

training domain based upon the primary research question listed below:  

How should hardware and software design and development be implemented in the 

sports domain to facilitate performance understanding and accommodate changing user 

requirements? 

The research had to consider three elements to develop, apply and validate a user 

centred design methodology. The research was split into the three categories listed 

below: 

 Development of a user centred design process methodology for the sporting 

domain. 

 Application of the methodology to design a user centred, elite based, 

performance monitoring system for the resistance training domain. 

 Application of the methodology to the software domain and another sporting 

domain to investigate the flexibility of the proposed methodology.  
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9.1.1 Developing the user centred design methodology 

The design methodology was structured to target the main elements required to promote 

user centred design (illustrated in Figure 9.1). Chapter 2 focused upon the evaluation of 

current enterprise modelling techniques and systems process models to identify the most 

user centred, systematic, iterative and flexible modelling components. Rather than 

selecting one to use in isolation, several models and modelling approaches were 

combined. The methodology was based on the reference architecture supported by the 

CIMOSA framework, the decomposition and integration framework supported by the 

“vee model”, the iterative nature of the spiral process and data flow modelling 

supported by systems analysis. Combining the methods promoted user centred design 

by ensuring the user was involved from the start of the design process and user 

requirements were re-iterated. The knowledge required to promote user centred design 

to bridge the gap between the user and developer is displayed in Figure 9.1. The 

corresponding methodology step designed to acquire that knowledge and application to 

the resistance training domain is also identified. The structure indicates that the 

methodology incorporated all the user centred design elements.  

 

Figure 9.1 The elements required to promote user centred design and identification of the corresponding design methodology 
steps used to target each one.  
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9.1.2 Application of design methodology to the resistance training domain 

The design methodology was then applied to the resistance training domain to design a 

user centred, elite based performance monitoring system. In order to apply the generic 

sporting domain design model to the resistance training domain an understanding of the 

domain and the current gaps in technology and research was required.  

Therefore, Chapter 3 was focused on providing a thorough literature review to develop 

an understanding of the technology and research limitations. The results indicated that 

most research focused on the monitoring performance using video and force platform 

analysis. A review of the current literature indicated that few studies had been 

conducted investigating the capability of accelerometer and WIMU technology to 

monitor performance in the resistance training domain. Of the studies conducted, 

research was limited to linear exercises (Chang et al, 2007) or did not consider the 

effect of rotation inflicted during complex exercises (such as the power snatch) (Sato et 

al 2009). The significant lack of monitoring technology suitable for the gym 

environment and corresponding user requirements also indicated that there was a need 

to increase research regarding accelerometer and WIMU development. Research 

documenting accelerometer application did not investigate the effect of rotation 

occurring during more complex exercises. Real time analysis was not available in a gym 

environment, therefore users relied upon manual notation of training inputs and verbal 

feedback. At the elite level, the force platform was the most common form of 

technology used, with the squat jump being the most commonly investigated exercise.  

There was a need to investigate a wider range of exercises numerous monitoring 

devices. The results also identified that there was no distinction between simple and 

complex exercises, in which complexity was based upon the number of key components 

required to execute the exercise. 

Using the identified gaps in research and technology, the design methodology proposed 

in Chapter 2 was followed throughout the remainder of the research. Chapter 4 targeted 

steps 1 and 2 by focusing on user requirement elicitation using both observational and 

conversational techniques. The aim was to investigate both user opinion and behaviour 

and identify how a user distinguished between simple and complex exercises. Step 3 

was followed in Chapters 5-7 to investigate the product capability set. Step 3 formed a 

major part of the research as hardware development heavily relied upon a thorough 

understanding of the product capability. Therefore the testing was broken down into 
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simple and complex exercises which followed the decomposition process of the design 

methodology. The testing was also designed to identify the key components of complex 

and simple exercises to determine the level of technology sophistication required for the 

analysis of both simple and complex exercises. 

The results of the functionality analysis conducted in Chapters 5-7, were used to 

generate the design of a combined system capable of monitoring both simple and 

complex exercises in the resistance training domain. Chapter 7 focused on the design 

and development of a combined system that eliminated device rotation and corrected for 

bar and trajectory rotation, whilst considering both bar and body kinematics for 

complex exercises. The system included the design of a bar attachment that reduced 

device rotation and a combination of WIMU and force platform technology to collect 

both body and bar kinematics. The force platform was designed to monitor bilateral 

difference using a double plate design.  

The collection and analysis of data has been considered in Chapters 3-7 and the 

communication of data was documented in Chapter 8. The development of supporting 

software to communicate performance data was achieved using the design 

methodology. Decomposition of the user and system requirements was achieved 

through data flow modelling, domain classification and business process analysis. 

Rather than focusing on functional analysis, testing focused upon user interaction 

through HMI task analysis. HMI storyboarding allowed the navigation through the 

system to be considered, ensuring that user tasks could be performed within 5 HMI 

screens to increase usability. The House of Quality first presented in Chapter 4 was 

revisited to evaluate the combined system. Evaluation of the overall combined system 

including hardware and software user and system requirements is presented in Figure 

9.2. The results indicate that the new system meets all of the identified user 

requirements and significantly increases monitoring capability in comparison to other 

products. The requirements score for the new system is between 36%-61% higher than 

the three competitors.  Therefore, it is concluded that the design methodology 

successfully facilitated the development of an elite based performance monitoring 

system suitable for the resistance training domain.   
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Figure 9.2 Evaluation of the new system using the House of Quality first presented in Chapter 4 to evaluate the ability of the new system to meet the user 
requirements in comparison to competitor products.   
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9.1.3 Flexibility of the design methodology 

The flexibility of the design methodology was investigated by applying the process to 

the software domain to ensure communication of performance data was considered. The 

ability to apply the methodology to another domain was also addressed in Chapter 8 

which documented the software design for a monitoring system in the swimming 

domain using all 9 steps of the design methodology.  The extent of the design 

methodology flexibility is illustrated in Figure 9.2. Flexibility was investigated at the 

highest level through application to another sporting domain. Evaluation of the 

weightlifting and swimming software indicated that the user and system requirements 

had been achieved. This suggests that the design methodology successfully captured 

user requirements and facilitated the development of supporting software to 

communicate performance data in both sporting domains.  User centred design was 

promoted in the hardware and software domain and two different sporting domains, 

therefore, it can be concluded that the design methodology is flexible.   

Overall, the research did not simply focus upon developing a performance monitoring 

system within the resistance training domain. The research aimed to develop a 

monitoring system, using a structured and generic user centred design process that could 

be tailored to the resistance training domain. The flexibility of the methodology enabled 

the design of both hardware and software to ensure that the collection analysis and 

Figure 9.3 Identification of the elements targeted to investigate the design methodology flexibility and the 
corresponding Chapters.  
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communication of performance data was considered. The CIMOSA framework 

provides a reference architecture that allows developers to work from a general level to 

specific design. The number of steps and iterative components of the CIMOSA based 

methodology result in an extensive process that may be simplified within the sporting 

domain. It is suggested that the outlined methodology should be used as a guideline and 

the developer may simplify the concept depending upon whether the system is a large 

multi-stakeholder design or a one-to-one machine system. As the population and user 

type diversity increases (large multi-stakeholder system), the need to apply the complete 

CIMOSA methodology from the general to particular level increases due to the need to 

accommodate multiple changing user requirements and a variety of human-machine 

interactions. For more bespoke applications, it is suggested that the developer focuses 

on the particular level of the CIMOSA framework.  

9.2 Contributions to new knowledge 

At the end of each chapter, a summary of the new knowledge acquired as a result of the 

research was provided. A number of objectives were outlined at the beginning of each 

Chapter, these formed the basis of the research to acquire new knowledge. The Chapter 

target objectives and questions were based upon the core questions identified in Chapter 

1, illustrated in Figure 9.4.  

Figure 9.4 The core questions identified in Chapter 1 addressed in each Chapter to acquire new knowledge.   
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This structure was re-addressed in every chapter to demonstrate how new knowledge 

was acquired. A summary of the new knowledge is provided in Table 9.1. A summary 

of the new knowledge in relation to the core questions is presented in Figure 9.5.  

Chapter Research summary 

2  User centred design can be promoted by selecting themost iterative, flexible and systematic 
elements from numerous modelling techniques. 

 Combining the techniques is more useful than using each one is isolation.  
3  Bar rotation is a neglected area of research. 

 There is no distinction between simple and complex exercises using derived kinematic data.   
4  Re-iteration and filtering the user requirements according to user level has a significant 

effect, causing calorie feedback to change from the most important to least important 
performance monitoring variable. 

 Misuse of the acute training variables to structure a training program occurs more 
frequently in the endurance and hypertrophy zone.        

 The ability to perform more complex exercises is highly dependent upon the ability to 
perform a squat. There is a need to understand what the key components of simple and 
complex exercises to determine how monitoring and analysis can support the monitoring of 
both. 

5  High correlation exists between video, force platform and accelerometer acceleration 
profiles for simple exercises. 

 Correlation decreases as complexity increases. 

 Simple exercises do not inflict rotation of the bar and have linear trajectories. 

 Complex exercises inflict rotation on the bar and have non-linear trajectories. 

 A simple tri-axial accelerometer is not sufficient to accurately monitor complex exercises 
that inflict rotation. 

 A combination of technology is required to accurately monitor performance for complex 
exercises. 

6  A bar or waist mounted accelerometer can be used to monitor  an increase or decrease in 
performance across sessions due to the high relative validity. 

  A bar or waist mounted accelerometer  can be used to rank subject performance due to 
high relative validity.  

 Due to the high correlation between the waist node and video, whether jump performance 
can be monitored  using a tri-axial accelerometer needs to be investigated.  

 A waist accelerometer could be used in a gym environment  to provide squat jump analysis 
at a recreational level. 

7  A 2D transformation matrix is sufficient  for monitoring in the resistance training domain. 

 Force platform and WIMU technology is required to fully characterise complex lifts using 
both bar and body kinematics.   

 Case study 3 results: a double plate force platform provides performance knowledge 
through the consideration of bilateral difference during a lift. 

8  The full combined methodology can be applied to the software and hardware domain.  

 The initial user derived requirements and testing requirements need to be combined to  
promote user centred design that matches the product capability. 

 Decomposition can be achieved using data flow modelling, domain classification and 
business process analysis. 

 Understanding the current and proposed data flow within the domain is fundamental to 
ensure that no data is left redundant.  

 The design methodology is flexible and can be applied to different sporting domains.  

 The partial level of the reference architecture distinguishes between the domain using 
requirements analysis. 

Table 9.1 Summary of research conducted in Chapters 2-8. 
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Figure 9.5 Summary of the new knowledge in relation to the core questions acquired as a result of the research. 
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Answering the core questions using the structure presented in Figure 9.5 identified the 

following: 

 Combining the “vee” model decomposition and integration, CIMOSA 

framework, systems analysis data flow modelling and spiral process re-iteration 

provided a generic design methodology that is applicable to the sporting 

domain.  

 Accelerometer research and consideration of bar rotation is limited. 

 Wireless transmission to enable real time monitoring is not yet possible in the 

resistance training domain. 

 A spectrum of exercise complexity was generated. The bench press and squat 

were considered to be the most simple and frequently used exercises in the gym 

environment. 

 The most complex exercises were identified as the Olympic lifts. 

 Complexity was determined by the number of key components required to 

execute the exercise. 

 Simple exercises require linear, simultaneous bar and body movement and 

contact with the ground throughout. 

 The most complex exercises inflict bar and trajectory rotation, involve whole 

body movement in which the bar moves independently of the body and include 

a dynamic jump.  

 A simple tri-axial accelerometer is suitable for the analysis of simple, linear 

exercises. 

 WIMU technology is required to monitor complex exercises that inflict rotation 

on the bar. 

 A 2D matrix transformation is suitable for WIMU processing within the 

resistance training domain. 

 WIMU and force platform technology maximises monitoring in the resistance 

training domain and enables bar and body kinematic data to be collected. 

 The design methodology accommodated the development of software to ensure 

the collection, analysis and communication of data was achieved.  
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9.3 Future work  

 
The research presented in this thesis was focused on the development of an elite based 

performance monitoring system using a user centred methodology. As several areas 

were addressed, future research should focus on further development within each area. 

The user centred design methodology was applied to the weightlifting and swimming 

domain, further research is required to investigate thoroughly the flexibility of the 

methodology.  

The system designed to support performance analysis in the resistance training domain 

is in the early stages of testing. The research conducted in Chapter 7 only provided 

initial testing results using the WIMU and bayonet bar attachment, whilst the double 

plate force platform system requires further testing. Due to the research focus on the 

collection, analysis and communication of data, time constraints limited the analysis 

conducted using the combined system. Therefore, in order to validate the system, testing 

similar to that conducted in Chapters 6 and 7 is required. Future research should focus 

on understanding the full capability of the product to increase performance 

understanding. Functionality analysis indicated that monitoring of a simple, linear 

exercise could be achieved using a tri-axial accelerometer, whether a recreational 

product can be developed using accelerometer technology alone is an area to be 

investigated. The development of a waist mounted accelerometer should also be 

investigated as the results from Chapter 6 indicated that a simple tri-axial accelerometer 

could be used to monitor linear jump performance. The aim of the design methodology 

was to increase performance understanding, therefore, future testing of the WIMU and 

double plate force platform needs to be more focused upon sports specific testing to 

increase performance understanding rather than functionality analysis alone.  

Future work should also consider the validation and re-iteration of the weightlifting 

software. The current system requires manual selection of each exercise rep in order to 

derive accurate kinematic data. Further analysis of a wider range of exercises using a 

wider population is required to establish whether a correlation algorithm can be used to 

automatically select reps.  This would occur during the set up of the equipment, the user 

would perform the exercise to calibrate the system. This process is currently 

accommodated by the software but further research is required to determine whether 

this process is affected by changes in performance. Further signal processing research 
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using the WIMU to distinguish key components of exercises would enhance further the 

performance knowledge acquired using the elite based monitoring system. 

In Chapter 1, the development cycle within the sporting domain was discussed. The 

ability to increase performance understanding was identified as being dependent on 

sufficient research and development of monitoring technology to conduct sports specific 

testing sessions, from which performance data needed to be communicated. This 

cyclical approach is illustrated in Figure 9.6. The research documented in this project 

has targeted the first three elements of the cycle to provide a monitoring system to 

collect, analyse and communicate the performance related data. However, to achieve 

performance understanding, further testing and analysis is required using the developed 

technology for which numerous re-iterations of the same process is required. Therefore, 

more sports specific testing sessions need to be conducted using the developed system. 

Although thorough testing of the developed system has not been achieved, this research 

project has provided the functionality to support future testing to support performance 

monitoring in the resistance training domain. Furthermore, the design methodology 

provides a structure which can be applied to any sporting domain to develop both 

hardware and software to increase performance understanding at an elite and 

recreational level.  

 

 

 

 

 

 

 

 

 

Figure 9.6 Illustration of the development cycle within the sporting domain required 
to increase performance understanding and identification of the need to repeat the 

cycle through future research. 
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11.1  APPENDIX A: Pilot survey 

MONITORING PERFORMANCE IN A GYM ENVIRONMENT 

Section 1: Participant Information 

Male   Female 

Specialised sport(s)? 

…………………………………………………………………………………………………................... 

Coach  Elite  Competitive  Recreational 

How often do you visit the gym? (Please tick the relevant box) 

Once a week          Twice a week         3 times a week          4+ times a week 

Do you follow a structured resistance training program?     Yes         No 

Have you used any kind of performance monitoring technology before in a training or sports 

environment such as running watches or cycling power meters?   If so please list below.  

……………………………………………………………………………………………………………… 

Section 2: Free weights and resistance machines 

1.    Please tick the upper and lower body exercises you regularly perform in the gym    

   according to barbell, dumbbell and resistance machine use, if you perform the exercise 

   using more than one method, please tick each one individually: 

Exercise Barbell Dumbbell Resistance machine 
(including cables) 

Clean    
Snatch    
Overhead Press     
Deadlift    
Bench press    
Upright row    
Squat    
Jump squat    
Lunge     
Standing calf raise    
Bicep curl    
Bent over row    
Bent arm pullover    
Shoulder fly    
Frontal raise    
Shoulder press    
Chest fly    
Chest press    
Tricep extension    
Leg press    
Leg extension    
Leg curl    
Lat pulldown    
Hip ab/adductor    
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Section 3: Monitoring your performance 

2a.   Please rank the 3 variables that you would most like to view during your training session. 

Rank preferences from 1 to 3, where 1 is the most important and 3 is the least important: 

Quantifiable variable View during training? 

 
Peak power  
 

 

 

 
Average power 
  

 

 

 
Peak velocity 
 

 

 

 
Average velocity 
 

 

 

 
Peak force 
 

 

 

 
Average force 
 

 

 

 
Rate of force development 
 

 

 

 
Rate of power development 
 

 

 

 
Calories burned 
 

 

 

 

2b.    Please give any reasons for selecting your first choice in the previous question? 

 

 

 

 

3a.   If the following 3 methods were available for measuring performance in the gym, please 

rank which of the following would be your preference from 1 to 3 (where 1 is most preferable, 3 

is least preferable): 

Task Preference 

 
A device worn on the wrist 
 

 

 

 
A device worn on the waist 
 

 

 

A device attached to the weight which 
is taken on and off between equipment 
changes (similar to a collar) 
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3b.  Please select one of the following reasons for your first choice in the previous question?: 

   Comfort   Appearance   Accuracy of data 

 

Section 4: Reviewing your performance 

 

1. When would you prefer to see the measurements? (Please tick one) 

 During a set     After a set       During & after a set        After workout 

 

5a.   Please circle which display you prefer between the pair given? (A or B) 

 

5b.   Please circle which display you prefer between the pair given? (A or B) 

 

 

 

 

 

 

 

 

A 

OR 

OR 

B 

A B 
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5c.    Please circle which display you prefer between the pair given? (A or B) 

 

 

 

6. Can you please detail any reasons for your choices to question 5 (parts a, b and c)?  

 

 

 

 

 

 

 

 

Please ensure you have completed all questions on the front and back of each page. 

Thankyou for completing the questionnaire, all information remains confidential and is used for 

research purposes only. 

 

 

 

 

 

A B 
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11.2 APPENDIX B: Calibration 

The data sampled from the WIMU requires manipulation in order to derive useful 

information. An example of one sample is presented in Figure 11.1. In this example the 

WIMU was not moving and the X axis accelerometer was experiencing 1G.  The 

equation for the line presented in Figure 11.1 was used to relate the raw values to 

acceleration in meters per seconds squared. The “R2” term indicated that there was a 

linear trend between the acceleration and raw acceleration values ensuring that the 

equation describing the relationship could be used with confidence. Each accelerometer 

was calibrated to increase the accuracy of the converted data. Gyroscope calibration was 

achieved by rotating the device under known conditions.  The relationship between the 

known speeds and raw gyroscope data was analysed and an equation derived to 

integrate the values. The gyroscope data was converted to radians per second.   

 

 

 

 

 

 

 

 

 

 

 

 

 

11.2.1 Accelerometer Calibration  

The WIMU was clamped and aligned using a dial gauge and a set square. The 

calibration of the z axis is demonstrated in Figure 11.2. To ensure the WIMU was 

parallel to the surface a dial gauge in a fixed position was used to measure the height in 

multiple areas on the board. The WIMU was adjusted in the vice until the overall 

difference was within 0.2mm. This same method was employed when reading -1G in 

which the WIMU was rotated 180 degrees.  

Figure 11.1 Linear trend between raw and converted accelerometer output. 
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Each accelerometer was rotated in 3 positions to read 1, 0 and -1G. In each position 

three readings were taken, switching the accelerometer off in between each one. A test 

was conducted to compare the accuracy of the gyroscope rig and the accelerometer 

calibration method. The results presented in Table 11.1 indicate that there was a 

difference between the two methods with a maximum average error of 0.08% (when 

reading 1G is equivalent to 7.85x10-3ms2
). Any error in theses acceleration values 

would be propagated through its integration to velocity and position.  

 

 

 

 

 

 

 

 

 

 

11.2.2 Gyroscope Calibration  

In order to rotate the WIMU at known angular speeds a rig was built to hold the WIMU 

securely in alignment with the centre of rotation. The rig was designed to hold the 

WIMU parallel to the outer surfaces whilst being placed into a lathe with a four-jaw 

chuck. A small drill bit was used in the lathe to accurately be align the WIMU against 

the centre of the lathe’s rotation. The adjustment in the alignment came from the 

utilisation of the four jaws of the chuck. 

Table 11.1 Percentage error in accelerometer output between an enclosed 
and WIMU 

Figure 11.2 Aligning WIMU in calibration box with set-square 
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To calibrate the WIMU and investigate the feasibility of the method the first batch of 

WIMUs calibrated were spun at 25, 40, 55 and 80 revs per minute (RPM). Each 

gyroscope was spun at each of these speeds three times for 10 seconds. The WIMU was 

aligned by locating the centre of the gyroscope with the drill. To test the need for such 

alignment, the WIMUs were also spun without this alignment whilst still retaining the 

gyroscopes axis parallel to that of the lathes centre of rotation.  It was important that the 

lathe was not assumed to be rotating at exactly its specified angular speed. The two 

accelerometers sat perpendicular to the gyroscope under calibration experienced peak 

acceleration when their axis was aligned vertically both positively and negatively. An 

example of the accelerometer output is illustrated in Figure 11.3.  

 

 

 

 

 

 

 

 

The distance between the peaks represent the time elapsed between each rotation, 

allowing the lathe speed to be calculated. The results indicate that gyroscope alignment 

does affect the output, therefore ensuring gyroscope alignment with the centre of 

rotation is required for accurate calibration results. The calibration results presented in 

Table 11.2 indicate that this method was feasible for gyroscope calibration. For 

increased accuracy a purpose built rig which incorporates the functionality of the lathe 

i.e. through an electric motor should be designed.  

 

 

 

 

 

 
Table 11.2 Accelerometer readings during gyroscope calibration 

Figure 11.3 Accelerometer output during calibration testing 
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11.2.3 Gyroscope summary  

1. Position WIMU in the calibration box aligning as best as possible, use small set 

square.  

2. Using a lathe with a four-jaw chuck set calibration box with WIMU inside flat 

against chuck and align with jaws. Align gyroscope component through box’s window 

to a small drill bit in the lathe.  

3. Spin WIMU at a minimum of 4 angular speeds, such as 25, 40, 55 and 80rpm for 

approximately 10 seconds.  

4. Process data by first finding actual RPM of the lathe using accelerometer values. 

Relate raw gyroscopes values with lathe speed via a scatter graph, plot trend line and 

calculate equation of the line.  

5. Input these individual equations for each gyroscope into software.  

6. WIMU’s gyroscopes are now calibrated and can be used to capture actual data.  

 

11.2.4 Accelerometer summary  

1. Clamp the WIMU to a vice on a flat surface. 

2. Ensure WIMU is parallel or perpendicular to surface with the use of dial gauges and 

set-squares.  

3. Record data for the WIMU twice for at least 10 seconds in each position.  

4. Process data one accelerometer at a time. Relate raw acceleration values with known 

values, 1,0,-1 G.  

5. Plot trend line and calculate equation of the line. If trend does not appear linear more 

testing is necessary to determine accelerometer functionality.  

6. Input these individual equations for each accelerometer into software.  

7. WIMU’s accelerometers are now calibrated and can be used to capture actual data.  
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11.3 APPENDIX C: Bayonet design 

 

 

 

 

 

Figure 11.4 Bayonet bar end engineering design 

Figure 11.5 Bayonet box base engineering design 
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Figure 11.6 Bayonet box lid engineering design 
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11.4 APPENDIX D: Force platform design and PDS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stock Kistler Designed Kistler Ixthis (3 axis) Ixthus (1 axis) 

Functionality  3-axis  3-axis  3-axis  1-axis  

Plate Cost  -  £1,180  £1,180  £1,180  

Transducer Cost  -  £26,000  £8,240  £5,240  

A/D Cost  -  £2,000  £2,000  £1,000  

Manufacturing 
Cost  

-  £2,500  £3,000  £3,000  

Total Cost  £50,000  £31,680  £14,420  £10,420  

% Saving  -  37%  71%  79%  

 

 

 

 

 

 

Table 11.3 Three axis Ixthus force platform bill of parts 

Table 11.4 Force platform cost comparison 
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1 Performance 

1.1 The device should measure the vertical (Z) and lateral (X and Y) components of the 
ground reaction force exerted by a user on the plates. 

1.2 The vertical (Z) component measured by each plate must have a range of 0-10kN 
1.3 The device should give accurate and repeatable results when installed onto a concrete 

surface. 
1.4 Levelling screws and ground fixing bolts on the bottom plate should be accessible 

while the top plate is installed. 
1.5 The device should be fastened securely to the ground with no possibility of being 

ripped up by the use of a fixed isometric bar. 
1.6 The top plate surface should be smooth wrt not having exposed or unfilled holes 
1.7 The device should have adequate holes available in the bottom plate for allowing an 

isometric bar to be retrospectively fitted. 
1.8 The top plate of the force plate must have a maximum deflection under loading of 

2mm across its area to ensure a load normal to the force plate is transmitted 
accurately through the transducers. 

2 Environment 

2.1 Device operational inside within a gym environment 
2.2 Device must be water resistant (athletes sweat) 
3 Life in Service 

3.1 Should withstand an operational period of 8 hours uninterrupted use per day for a 
period of 5 years.   

4 Target Costs 

4.1 The product has an end use maximum cost for a pair of force plates of £15000.   
4.2 The cost of manufacture of a pair of force plates should be a maximum of £ 3000 
5 Maintenance 

5.1 Ground fixings and levelling screws must be accessible when the top plate is installed. 
5.2 Other than the above and software updates and calibration, the device should be 

maintenance free. 
6 Size Restrictions 

6.1 The depth of the assembled installed plates must not exceed 65mm 
6.2 The area of each top plate (working area) should be 900x500mm to fit the location, 

within a tolerance of +/-10mm. 
6.3 The maximum footprint of the force plate pair is 1000x800mm. 
7 Aesthetics 

7.1 Top plate top surface should be brushed to give an even finish. 
7.2 The ‘Loughborough University’ logo is to be embedded into the top plate top surface 
7.3 The ‘SmartWeights’ logo is to be embedded into the top plate surface. 
8 Ergonomics 

8.1 Top plate top surface should be brushed to give an even but rough finish for grip. 
9 Lead Time 

9.1 Force plates to be machined by mid June 2011. 
10 Component 

10.1 Sensors 

10.1.1 Must use Vishaye RLC Ring Torsion Load Cell type C3 (for vertical force 
component) 

10.1.2 Must use Burster Subminature Load Cell type 8417-6001 (for lateral force 
components) 

10.1.3 Must use Burster In-line Amplifier type 9235-E 
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