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Abstract 
 

Multi electrode array (MEA) systems have evolved from custom-made experimental tools, exploited 

for neural research, into commercially available systems that are used throughout non-invasive 

electrophysiological study. MEA systems are used in conjunction with cells and tissues from a 

number of differing organisms (e.g. mice, monkeys, chickens, plants). The development of MEA 

systems has been incremental over the past 30 years due to constantly changing specific bioscientific 

requirements in research. As the application of MEA systems continues to diversify contemporary 

commercial systems are requiring increased levels of sophistication and greater throughput 

capabilities. 

 

This research has identified current requirements of MEA systems. Generic system requirements, 

and application specific requirements, have been identified and prioritised. Product design 

specifications were drafted and a novel MEA biochip concept was designed. Manufacturing 

approach experimentation occurred until a suitable prototype of the biochip concept was produced. 

This first generation of prototype was tested by MEA system users at the University of Nottingham. 

User feedback and testing outcomes resulted in development of a second design concept that was 

also manufactured and tested.   

 

The research presented in this thesis identifies areas within the field of MEA technology application 

where design changes can bring significant benefits to MEA system users, especially to stem cell-

derived cardiomyocyte MEA system users. This thesis presents novel MEA biochip design concepts 

designed to address specific needs of MEA system users. The prototypes that were manufactured 

and tested have demonstrated promise within this application domain. Further work is required to 

achieve robust signal acquisition from the designs presented. The results of prototype testing have 

also been shared internationally at conference and through journal publications. 

  

Keywords: Multi electrode array, Stem cell-derived cardiomyocyte, Biosensor fabrication. 
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This ThesisChapter 1

Introduction

 
Chapter One 

1Introduction 
 

 

 

 

 

 

This thesis presents research that was conducted to understand contemporary Multi Electrode Array 

(MEA) system application and to define requirements that would lead to a novel system design. This 

research also presents the work conducted in the design, manufacture and testing of resulting novel 

prototype devices.   

 

1.1 Motivation 
This research is focused on the development of a novel Multi Electrode Array (MEA) System. MEA 

systems are tools that allow bioscientists to study electrogenic tissues in vitro by detecting and 

capturing electrical activity. Understanding this activity aids characterisation of cells and 

understanding of the functioning of that particular tissue.  

Technical development of the MEA system could: (1) enhance usability, (2) improve signal 

acquisition, (3) increase the volume of meaningful data that is extracted per test, and (4) reduce 



23 
 

_________________________________________________________________________________________________________________ 
Introduction 

time spent setting-up, using and maintaining systems. This thesis presents research undertaken 

during the definition of design-and-build objectives that were used to specify and prototype an MEA 

system-based solution that holds potential to be superior in functionality to current commercially 

available alternatives.   

 

1.2 Current MEA system employment 
Early research focused on protocols documented in literature that described employment of MEA 

systems. Author MEA system users were from institutions all over the world allowing identification 

of the following generic global similarities. Each culture used in conjunction with an MEA is 

prepared, maintained, used and disposed of manually by hand. The cell source(s) of interest must be 

set-up in an MEA biochip in such a manner that is amenable to MEA systems. The user must 

maintain the cells, set-up the MEA system, run the experiments (often timely), dispose of the cells, 

clean the system, and perform an appropriate analysis of the data.  

Currently trends across MEA system-based research utilise high data sampling rates (>10 kHz), 

resulting in generation of vast amounts of data, very little of which is used in analysis. Current 

methods of MEA system employment, and the consequent post experiment analysis, is highly skilled 

and user intensive.  

 

1.3 The research 
The fundamental concern of this research was to investigate the feasibility of an MEA system that 

was less intensive to use. It was intended that a reduction in the overall system and experiment 

complexity could be brought about through this work, resulting in a more intuitive and user-friendly 

MEA system. 
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1.4 This thesis 
This compilation of research demonstrates derivation of specific contemporary user requirements 

that have resulted in the development of product design specifications that have led to novel MEA 

biochip designs. Logical, previously validated research approaches have been used to create 

opportunities to gather information pertaining specifically to this research domain that is relevant 

and correct.  

The hypothesis (theory) driving forward this research is laid out in the initial research proposal 

(Appendix A). The author of this thesis then derived information (questioned) relating to current 

MEA systems and areas of research in which the systems are employed (Chapter 2). Once a basic 

understanding of the domain and its current needs were ascertained (Chapters 3 and 4) work was 

conducted to design and manufacture solution devices (Chapter 5) that better address the identified 

needs. Observations of users before and during testing were made (Chapters 4 and 6). Relevant 

data were generated and appropriate analyses performed (Chapter 6). The outcome of this process 

has resulted in the proposal of further work that needs to be pursued in this research and design 

domain (Chapter 7). This research cycle is depicted in Figure 1.1. 

Theory

Question

Observe

Collect 

data

Propose

Analyse

The Research 

Cycle

 
Figure 1.1: The Research Cycle. 

 [Adapted from How to Research by Blaxter et al, 2000.] 

 

Information relating to the manufacturing approaches that were implemented during prototype 

development is reported into this thesis. Initial testing of the prototypes manufactured is presented. 

Suggestions of future avenues for this research to pursue that are of high relevance are included in 

the conclusions of this thesis.  

The method of research presentation used in this thesis is presented in Figure 1.2 and the content of 

each chapter is summarised in Figure 1.3. 
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Research Statement. 

Multi Electrode Array 

technology holds potential for 

improvement

(Chapter 1)

Research Outline.

Proposal (Appendix A), 

Context and Literature Review 

(Chapter 2)

Research Design.

(Chapter 3)

Conduct Research and 

Record Data.

(Chapters 4 and 5)

Analyse Findings.

(Chapter 6)

Compile, Report and 

Suggest Further Work.

(Chapter 7)

 

Figure 1.2: Structure of the research presented in this thesis 
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Figure 1.3: A summary of the chapter content of this thesis. 
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1.5 Research Question Answers 
This research has considered the following questions: 

1. What is the research problem? 

Multi electrode array systems have developed into a confusing array of different configurations and 

system types, each matched to the subtly differing requirements of varying electrogenic tissue and 

cell preparations. Commercially available systems require further development before truly catering 

for the diverse plethora of contemporary user needs.  

 

2. What is the motivation for completing this research? 

New knowledge continues to be derived using these MEA systems that relates to cellular functioning 

and genetic variation. However, MEA system employment is both slow and costly. Systems better 

suited to contemporary research needs that are scalable would contribute significantly to 

accelerating bioscientific understanding and discovery. 

 

3. What is the current situation in this research domain? 

MEA system development has increased in pace over the past fifteen years. A global industry exists 

that is presently led by seven leading companies. In addition to this industry much technical 

advancement is being made by universities and academic institutions using MEA systems for various 

research purposes around the world.  

Facets that limit MEA system application that can be improved upon to better suit the increasingly 

specific requirements of MEA-based research are: 1) MEA systems are still not suited to humidified, 

incubated environments, 2) MEA systems still take up a relatively large amount of space, and 3) 

throughputs are low and so the amount of valuable data extracted collected is limited following 

significant time and labour outlays. 
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4. How does this thesis address identified research objectives? 

The content of this thesis identifies and addresses objectives by including:  

1) a thorough review of the subject area (Chapter 2),  

2) a description and justification of the processes employed in eliciting user requirements (Chapter 

3),  

3) an investigation of MEA systems in use (Chapter 4),  

4) the generation of solution concepts and investigations into manufacturing possibilities for those 

concepts (Chapter 5), and,  

5) the testing and evaluation of resultant prototypes (Chapter 6).  The testing outcomes are also 

discussed, conclusions draw and further work is suggested (Chapter 7). 
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This Thesis

Chapter 2

Electrophysiology

MEA systems

System Components

MEA biochips

MEA system Application

MEA system development

MEA Signals

MEA Signal Analysis

Future of MEA Systems

Product Design 

Product Assessment

Context Research 

and Literature 

Review

 
 

Chapter 2 

2 Context Research  
 

 

This chapter contains relevant research relating to MEA systems and their applications. Key topics 

are: 

 

 the physiology of a cell,  

 an introduction to electrophysiology,  

 multi electrode array systems and their components, 

 how MEA systems are used across bioscientific disciplines, 

 a brief summary of MEA system history, and of how systems have and are likely to continue 

to develop, 

 the different signal types detected from neural and cardiac cell types and features of 

interest within those signals, 

 how recordings made using an MEA are analysed and used by the bioscientist, 

 a prediction of the direction of future MEA system development. 

 

Product design and innovation management techniques are also included as this research has been 

of a design-and-build nature.  

 

The integration of engineering and biology is more profoundly needed and in vitro Micro or Multi 

Electrode Array (MEA) systems are just one example of a technological tool combining living 

biological samples with sophisticated engineering (Wang et al, 2009a). Further development of MEA 
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systems is required to optimise this tool for its numerous applications. The structure of this chapter 

is demonstrated in Figure 2.1. 

Electrophysiology

Activity in electrogenic tissue

Action 

Potential

Field 

Potential

Patch Clamp: Invasive MEA system: Non-invasive

MEA Systems Core components

Biochip
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Key players
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Leading  User Groups
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BIOCHIP in 

further detail

Variants

Electrodes

Workspace
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For cell-therapy (MEA 

system-based cell 
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Drug Discovery 

and Safety 

Pharmacology

Tool for Neurotoxicity

Tool for Cardiotoxicity

High Throughputs  

Required

Validation of in vitro MEA is supporting in vivo: Brain-Machine Interfaces

What to do?

How to design?
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Product Design and innovation 

Management

Designing for success in the 

biotechnology industry

Connects to

Connects to

Essential Foundation: Basic physiology of a cell

Future of MEA 

Systems: 

Recent 

Influences 

Shaping MEA 

system 

development

Originally Applied to record naturally occurring activity in neural tissue. 

(Then to record activity using different cell types and preparations = applications diversified). 

System 

Development

Progressive 

evolution

Motivated by 

changes in...

 How MEA 

systems are 

applied

 An increase 

in suitable 

material 

availability

Contemporary Application

Cardiac

Neural

Other

Largest 

applications

Generic Analysis

Application Specific Analysis

Engineers provide tools to record potentials

Electrophysiology, and the purpose of MEA systems within electrophysiological research

How MEA systems have been and are used

Existing MEA systems

Commercial 

Systems

Requirements of future MEA systems Designing effectively

(sections 2.1 - 2.5) 

(section 2.6) 

(section 2.7) 

(sections 2.8 - 2.9) 

(sections 2.10 - 2.11) 

(section 2.12) (section 2.13) 

 
Figure 2.1: Chapter 2 Schematic 
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An MEA system is used in bioscientific settings as a sensor to detect, record and quantify 

electrochemical fluctuations as they occur through either a single electrogenic cell (grown over a 

microscopic electrode) or through samples of electrogenic tissue (grown or placed over several 

microscopic electrodes). An understanding of the fundamentals of cell physiology and the 

electrophysiological activity of single and multiple cells is demonstrated in this chapter (sections 2.1 

– 2.4). 

 

Two avenues exist for bioscientists wishing to assess electrophysiological activity of cells: clamping 

techniques (in the contemporary form, patch clamp) or MEA system techniques. Clamping 

techniques are described as invasive because they damage and ultimately kill the cell of interest. 

Non-invasive alternatives use an MEA system that does not require destruction of the cells during 

use. The fundamental difference between the two techniques is that clamping records the actual 

action potential (AP) as it occurs through an individual cell, and an MEA system records the field 

potentials, which are ion current fluctuations through the matter around the cells and close to the 

detecting electrode. 

 

A brief history relating to the evolution of MEA systems and how they have been developed over the 

last decade is included to support identification of current trends in, and possible future avenues of, 

component and system development (section 2.5 - 2.6). Latest developments are described in terms 

of what motivated the development (e.g. the user), how the development was realised (e.g. how it is 

manufactured), and what materials were used (e.g. for the microelectrode tip, tracking, insulation).  

 

Understanding of the activity that occurs on an MEA biochip at the complex cell-electrode interface 

has been pursued (section 2.6.6). A number of theoretical models of the interactions that occur at 

this interface have been collated for comparison and reference. This aspect was investigated to 

consider how a signal is physically detected and transmitted through existing MEA systems. 

 

The differing ways in which MEA systems are presently used has been presented and generic 

features of MEA analysis routines are described. Neural and cardiac applications are summarised 

and the future of MEA system application for higher throughputs via semi-automated or automated 

systems in these domains, as speculated by leading academic and industrial authorities, is 

considered (sections  2.7 - 2.8).  
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MEA systems are made up of a chain of components that are integrated to provide appropriate 

sensitivity to detect microvolt signals that occur in electrogenic tissues. Manufacturers of 

commercial MEA systems maintain close relationships with academic development to keep up-to-

date with the various ways in which systems are being applied.  

 

The research outlined in this thesis has been focused on designing and manufacturing a novel MEA 

biochip. Therefore, current state-of-the-art MEA biochip variants have been identified and are 

presented (section 2.10). The microelectrodes and workspace layouts (key distinguishers for this 

component) show large degrees of variation across collated MEA biochip models. 

 

Understanding ascertained by completing this review has been integrated during the requirements 

definition and design of prototypes. Methods were considered from a product design point of view 

when assessing the success of prototypes. Innovation management and design for the biotechnology 

domain have been explored to support effective design and future product compliance within this 

field (section 2.12). 

 

Answers to the following research questions have been pursued and relevant information is 

contained in this chapter: 

1. In what context(s) are multi electrode array systems used, what are the core components 

and how do they differ between systems? What is the current state-of-the-art? 

 

1. How are MEA systems applied in research, how has that application changed since their 

introduction and are there any trends identifiable in development? 

 

2. What are the key factors that will influence and limit design possibilities and where are 

the biggest challenges associated with this work? 

 

3. How do applications using different cellular preparations differ and how are the signals 

that are recorded used? 

 

4. What is expected of future MEA systems? 

 

5. How can product innovation be managed throughout this research and how can 
developers design and assess prototypes appropriately?  
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2.1 The Cell 
Every living organism is comprised of either a cell or a collection of cells. A cell can be referred to as 

the “basic unit of life” (Allen and Cowling, 2011). Each cell is a separate entity enclosed by a surface 

membrane. Cells interact with the environment around them to extract nutrients and energy for 

growth and maintenance, and most cells are capable of replicating themselves. It has been 

suggested that a human is composed of about 100 trillion cells (Allen and Cowling, 2011).  

 

2.1.1 Fundamental Cell Physiology 
There are numerous types of cells within multi-cellular organisms, each of which has its own 

“blueprint”. A generic representation of the microscopic internal functional entities inside a cell that 

are responsible for metabolism (organelles) is demonstrated below (Figure 2.2). Organelles are built 

from proteins and each one has a particular function or functions. Collectively organelles (i.e. 

ribosomes, mitochondria, Golgi apparatus, endoplasmic reticulum, centriole), in collaboration with 

the surrounding cytoplasm, are responsible for the cell’s metabolism (Starr et al, 2010).  

 
Figure 2.2: Structure of a mammalian cell. 

 [Adapted from Pocock and Richards, 1999.] 
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Organelles (see Appendix B) exist suspended in a jelly-like fluid called cytoplasm that provides water, 

sugars, ions and proteins (Figure 2.2). The cytoplasm and organelles are all contained within a 

phospholipid membrane. All cells are enclosed by this membrane that consists of two layers of 

phospholipids (fat molecules). Membranes in animal cells have proteins embedded that facilitate the 

movement of molecules from the cell’s surrounding environment into the cell. Exchanges between a 

cell and its surroundings, the extracellular matrix, are selectively controlled by these proteins. It is 

the ion fluctuations into and out of cells through the cell membrane that are detected by MEA 

systems in the form of field potentials (see section 2.4.2.2).  
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2.2 The Neuron 
The nervous system in humans is a complex structure consisting of billions of interconnecting nerve 

cells, neurons. Numerous variants of neuron make up the nervous system and they can be classified 

according to their structure (e.g. number of dendrites, size, and degree of myelination) and function 

(e.g. direction of signal, effect on other neurons firing rates, discharge patterns, neurotransmitters 

produced). MEA systems were originally developed for neural research applications. 

 
Figure 2.3: Neuron Structure. 

(A) A typical sensory neuron. (B) A typical motor neuron.  
[Adapted from Scanlon and Sander, 1997.] 

 

The primary function of a neuron (Figure 2.3) is information transfer. Two descriptions are used to 

describe the types of signalling used for this information transfer; intracellular signalling, that is from 

one part of a neuron to another part, and intercellular, from one neuron to another neuron (Levitan 
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and Kaczmarek, 2002). The signal (electrical impulse) that is transmitted through and between 

neurons is called an Action Potential, AP (see section 2.4.1). Neurons consist of a soma (cell body), 

an axon, several dendrites and synapses.  

 

The soma contains the nucleus and therefore the DNA, and typically a high concentration of the 

other organelles necessary for metabolism (e.g. mitochondria, endomembrane system organelles). 

The axon is identifiable as the longest and thinnest projection coming from the soma. The 

movement of charged ions through membrane channels along the length of the axon generates an 

electrical impulse, the AP. Axons in the human brain can be less than 1mm in length, whereas others 

extending from the spinal cord to muscles in limbs can measure over 1m in length (Roberts, 2010).  

The axons of most neurons, especially those found in the peripheral nervous system (PNS) are 

wrapped in an insulating layer called a myelin sheath. Schwann cells make up this sheath 

encapsulating the axon in short sections, serving to insulate the signal and also resulting in an 

increased speed of transmission of that impulse. Small gaps between the Schwann cells, called 

Nodes of Ranvier, are responsible for the increased conduction velocities along neurons.  The nodes 

form specialised areas where ion channels and specific proteins are concentrated (Pavelka and Roth, 

2005). 

 

Dendrites are small protrusions most commonly originating from the soma, but in some cases from 

elsewhere on the cell, that are typically thicker and shorter than the axon. Dendrites are often 

branched resulting in what is called the dendritic tree.  The purpose of dendrites is to receive and 

integrate information from other nerve cells. The distal (away from the body) ends of dendrites are 

called receptors. Where neurons transmit impulses on to other neurons, no physical contact actually 

occurs. Synapses are minute spaces present between one neuron and another. Chemicals that are 

collectively classified as neurotransmitters, of which there are currently >100 identified, are released 

from a site referred to as the synaptic knob, present at the axon terminal, that diffuse rapidly across 

the minute gap to receptor sites on the dendrites of another neuron (Clark, Boutros and Mendez, 

2010). Stimulation of the receptor site by the neurotransmitter generates the electrical impulse that 

travels along the length of the neuron via the axon. 
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The brain has ~1011 neural cells. Each cell can have 10000 connections. Neurons communicate 

information around an organism’s body via APs through a network of nerves. Some basic nervous 

system dimensions and numbers are incorporated in Table 2.1. 

Table 2.1: Typical values for neurons in the human nervous system. 

Node of Ranvier 4µm 

Axon diameter 1-20µm 

Soma diameter 5-20µm 

Nerve diameter  Several mm 

Brain neural cells 1011 

Connections per brain cell  104 

Membrane resting potentials: 

    Resting potential of Na+ 

    Resting potential of K+ 

    Resting potential of Cl- 

 

+55mV 

-102mV 

-76mV 

 [Adapted from Rutten, 2002.] 
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2.3 The Cardiomyocyte 
The mammalian heart beats automatically at regular intervals. This rhythmic contractile activity is 

due to the electrical activity of the myocardium driven by the generation of action potentials in 

individual cardiomyocytes which propagates activity through the myocardium (Niwa and Nerbonne, 

2010). Cardiomyocytes are specialised muscle cells that connect forming myocardial tissue via 

intercalated disks (Figure 2.4). MEA systems are suited to recording from cardiac cell types (Reppel 

et al, 2004). The specific cell of interest within the cardiac tissue is the cardiomyocyte. 

Cardiomyocytes are the sole generators of contractile force within a mammalian heart’s 

myocardium (Lee and Terracciano, 2010). They have the unique ability to contract spontaneously 

without the need for nervous excitation.This research focuses on this cell type from Chapter 5 

onwards. 

 

Figure 2.4: A diagram of the light microscope appearance of cardiomyocytes as myocardial tissue. 
 [Adapted from Stapleton, 1983.] 

 

2.3.1 Cardiomyocyte contraction 
The contraction of cardiomyocytes is also associated with an action potential. These action 

potentials reflect the coordinated functioning of voltage-gated ion channels carrying depolarising 

(Na+ and Ca+) and repolarising (K+) ions.  Numbered phases (0-4) are used to characterise a 

cardiomyocyte AP when recorded via a patch clamp (Figure 2.5). 

Phase 4 is the resting state of the cell. When the cell membrane is electrically stimulated, 

permeability of the membrane alters. At Phase 0 Na+ channels open and sodium ions flow into the 

cardiomyocyte. The transverse potential of the cell membrane reduces. Membrane potential rapidly 

reaches 0mV and transiently becomes positive. This phase is depolarisation. 

Phase 1 is start of repolarisation. Na+ channels have been inactivated and a transient current moves 

the membrane potential back towards 0mV.  
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Phase 2 is mediated by slow Ca2+ channels that first began to open when the potential was 

approximately -40mV, but that remain open much longer than the Na+ channels. With low 

permeability to K+ the potential is maintained at around 0mV. This period is known as the plateau. 

Ca2+ channels begin to deactivate gradually and K+ channels open, beginning phase 3. 

Phase 3 occurs towards approximately -10mV when the K+ permeability increases. At about -60mV 

the K+ channels are most activated, accelerating a return to the resting potential of approximately -

90mV. 

 
Figure 2.5: An action potential (patch clamp) and the relative ion fluctuations for Na

+
, Ca

2+
 and K

+
. The 

resting potential of the cell is represented by phase 4 of the action potential.  
 [Adapted from Lilly, 1993.] 
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The action potential characteristics are also related to the position of the cell in the heart 
(Figure 2.6). 

 
Figure 2.6: The characteristics of action potentials through cardiomyocytes and the corresponding region of 

the heart.  
[Adapted from Pocock and Richards, 1999.] 

 

2.3.2 Stem-cells into cardiomyocytes 
Differentiation of stem cells into cardiac cell types has attracted significant attention in recent years 

and is an especially strong area of interest in the regenerative medicine domain (Braam et al, 2009). 

A major design challenge that accompanies interest in using stem cell-derived cardiomyocytes in 

MEA culture for drug candidate testing is largely associated with the immaturity of stem cell 

differentiation techniques. Generally, differentiation of pluripotent stem cells into beating embryoid 

body’s results in mixtures of ventricular-like, atrial-like and pacemaker-like cardiomyocyte cells 

(Gupta et al, 2010). This variation in cardiomyocyte phenotype has been identified and characterised 

in patch clamp studies of APs (He et al, 2003; Mummery et al, 2003). Specific differentiation 

protocols affect the ratios of cell phenotypes found in EB cultures (Braam et al, 2009). MEA and 

patch clamp tools are currently being applied in parallel, to understand and characterise the cells 

produced.  
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2.4 Electrophysiology 
“Electrophysiology is the branch of physiology that deals with the electrical phenomena associated 

with physiological processes, especially in nerve and muscle; also the electrophysiological 

characteristics of a process, tissue, or disorder” (“Electrophysiology,” Oxford English Dictionary). The 

study of electrophysiology involves functional and physiological responses of electrogenic 

(electrically active) cells, tissues and organs across an assortment of organisms from molluscs (i.e. 

snails (Merz and Fromherz, 2002)) to mammals (i.e. rats (Suzuki et al, 2004a) and humans (Shibasaki, 

2008)). MEA systems exist specifically as a tool to support electrophysiological investigation. 

ELECTROPHYSIOLOGY

Electrocardiology

Electromyography Electrooculography

Disciplines Techniques

I.e. sub-discipline: Electroretinography

Multi Electrode Array
Multi-cell cultures and 

tissue preparations
Acute or Chronic Study

Voltage Clamp

Patch Clamp

Single cell 

Single cell ion 

channel 

Acute Study Only

Electroencephalography

I.e. sub-discipline: Electrocorticography

 
Figure 2.7: Disciplines of electrophysiology and techniques that can be used to detect and record 

electrogenic activity. 
 

Mammalian electrophysiology has been divided into a number of disciplines (Figure 2.7) that are 

most commonly studied as research domains in themselves. Electrocardiography is 

electrophysiological study of the heart, electroencephalography is electrophysiological study of the 

brain, electromyography is electrophysiological study of muscles and electrooculography is the 

electrophysiological study of the eye(s).  

As a large proportion of electrophysiology interacts with the brain these separated disciplines 

overlap greatly sharing a vast number of commonalities (e.g. such as action potentials that have 

originated from neurons of the central nervous system).  To distinguish further regions of 

electrophysiological study these disciplines have in some cases been further defined into sub-

disciplines. For example electrocorticography is the specific study of the cerebral cortex (Ray et al, 
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2008), and electroretinography is the specific study of the retina within the eye. These sub-

disciplines fall into electroencephalography and electrooculography respectively. The underlying 

electrical occurrence fundamental to all of these disciplines and sub-disciplines is the Action 

Potential (AP) (Kaplan and Nguyen, 2011).  

 

2.4.1 Action Potentials 
Electrical potentials exist across many different biological cells due to different distributions in ionic 

concentrations between intracellular and extracellular spaces (Horsman, Conway and Yeager, 1985). 

Excitable cells are those that “are capable of generating rapidly changing electrochemical impulses 

at their membranes. In most instances, these impulses can be used to transmit signals along nerve 

or muscle membranes” (Guyton and Hall, 2000). The instance of one of these impulses is referred to 

as the occurrence of an Action Potential (AP) (Figure 2.8). Action potentials are defined as long-

distance electrical signals (e.g. up to 1m), that are a brief (~1-500ms depending on the cell), rapid 0.1 

to 100m/sec (Matthews, 2001), and large (100mV) change in membrane potential, during which the 

potential actually reverses so that the inside of the cell transiently becomes more positive than the 

outside (Sherwood, 2001). APs propagate along the length of a cell in a non-diminishing manner 

(Martinsen and Grimnes, 2008) meaning that the signal will not weaken as it passes through the 

cell’s membrane.  

To initiate an AP the cell membrane potential must alter (depolarise) from a resting potential of 

about -70mV beyond a threshold of about -55mV. Depolarisation from the resting potential towards 

the threshold potential occurs comparatively slowly. When the potential reaches the threshold 

explosive depolarisation occurs. Membrane potential increases rapidly towards about 30-40mV and 

then rapidly reverses, allowing the potential to drop again (repolarise) towards the resting potential. 

Hyperpolarisation, which is a brief fluctuation below the resting potential (~-10-20mV), often occurs 

as the ion changes responsible for repolarisation overshoot briefly (Figure 2.8). The entire period 

(~1-400ms (Matthews, 2001)) during which the potential changes from resting level, to its peak and 

returns back to resting is defined as the action potential. If the initial threshold (-55mV) is not 

reached during depolarisation no AP will take place. Thus, this threshold is in some texts also 

referred to as the critical all-or-none point (Plowman and Smith, 2008). 
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Figure 2.8: An action potential (neuron). 

 

Neurons exhibit the fastest APs, lasting 1 to 100ms. In muscular tissues the APs are slower (e.g. 

cardiomyocytes ~400ms). APs are often referred to in electrophysiology as spikes (Dai et al, 2010). 

Collections of APs occurring at about the same time or in very close succession (within a few ms) are 

referred to as bursts (Figure 2.39). 

Potassium ions (K+) are most responsible for the resting potential of excitable cells. This is due to the 

cell membrane at rest demonstrating increased permeability to K+ than to sodium ions (Na+). When 

an AP occurs the permeability of the membrane to K+ and Na+ ions changes rapidly, resulting in ion 

currents that are detectable as overall potentials. In brief, an action potential begins with a stimulus 

that prompts the Na+ channels to open, allowing an influx of sodium ions into the cell. The result of 

this influx is that the membrane of the cell becomes positive. As the positivity of the membrane 

increases, K+ channels open, allowing K+ ions to flow out of the cell. The Na+ channels close, ceasing 

the inflow of positive charge. As the K+ channels remain open the outflow of positive charge 

continues, resulting in a rapid drop in membrane potential. When the cell’s membrane potential 

reaches its original resting potential the K+ channels close. 

The occurrence of action potentials can be detected and quantitatively measured using 

electrophysiological techniques developed over the past 60 years. These techniques are either 
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termed invasive, using voltage or patch clamp technology (Levitan et al, 2000), or non-invasive using 

MEA systems (Raoux et al, 2011).  

 

2.4.2 Capturing action potentials 
The following is a brief introduction to the electrophysiology techniques developed for action 

potential detection, recording and analysis (Figure  2.9). 

Electrogenic Cells

I.e. cardiomyocytes, neurons

Fluctuations in ion 

concentrations.

Action 

Potential

(AP)

Field Potential

(FP)

Voltage clamp 

and patch clamp

MEA

Electrogenic Tissue

I.e. ventricle, brain region 

“Invasive”Approaches

“Non-invasive”Approach

Intracellularly 

Extracellularly

 
Figure 2.9: Electrophysiology techniques. 

 

 

2.4.2.1 Invasive Voltage and Patch Clamp Techniques – 

intracellular recording. 
 

Patch clamp techniques (Figure  2.10) are a progression of previous voltage clamp techniques used 

through the 1950’s for the measurement of ion currents through individual neuron membranes 

(Boulton et al, 1990). The patch clamp technique was developed at around the end of the 1970’s 

(Pine, 1980), introducing a greater level of sophistication to single cell characterisation by facilitating 

the assessment of ion movement through individual ion channels in cell membranes.  
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Glass micro-pipette containing 

electrolyte and an electrode is pressed 

against a cell membrane.
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pipette orifice.
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between the micro-pipette rim and the 

contacting cell membrane.
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Glass micro-pipette
Cell

 
Figure 2.10: The patch clamp technique.  

HEK = human embryonic kidney 
 [Constructed with reference to www.sophion.com and Molnar and Hickman, 2007]. 

 

Voltage and patch clamp techniques are the most mature techniques used for analysing the 

electrophysiology of cells. They were fundamental in defining single ion channel communication 

between and within cells. The electrodes used are typically glass micropipettes with open tips. The 

tip opening is usually less than 1µm. These micropipettes are filled with a solution that is conductive 

and connected to a voltmeter. The AP (described in some texts as the “transmembrane voltage”) of 

the cell can then be recorded (Purves et al, 2000). For original voltage clamp recording techniques 

two electrodes were required, one micropipette tip records the membrane voltage, the other passes 

a current to maintain the membrane at a constant “command” voltage (Matthews, 2003). For patch 

clamp measurements only one electrode is required, the tip of which is placed against the cell 

membrane and suction is applied creating a high resistance “gigaseal” (typically >1GΩ) (Mathes et al, 

2009)) around a very small area (~>1µm2), or “patch”, of the cell membrane. Both of these 

techniques are described as invasive as they firstly require the cells to be dissociated out of the 

tissue of origin. Then secondly, the individual cell of interest is placed into a specific conductive 

solution (that is not the same as in vivo conditions) and is attached to, or punctured by, the glass 

micropipette electrode for recording. Due to these conditions of pinching or puncturing, patch clamp 

recordings must be taken within a few hours as the cells utilised are damaged and will die (Osorio 

and Delmas, 2011).  
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The action potentials through the cell membrane also result in ion current fluctuations in the 

extracellular fluid and matrix that surrounds the cell. This fluctuation, called an extracellular Field 

Potential (FP), can be detected using microelectrodes embedded at the centre of an MEA biochip. 

 

2.4.2.2 Non-invasive Multi Electrode Array Technique – 

extracellular. 
The detection of electrical activity occurring in a living sample using MEA systems is based upon the 

presence of membrane voltage gradients, or potentials, not only through cells but also through the 

surrounding extracellular matter and media. These potentials, referred to as field potentials (FPs), 

are a direct consequence of a flow of ions into or out of the fluid media as the result of cellular 

activity (Ray et al, 2008). When measured using an MEA system, ion current changes occurring over 

the microelectrodes (FPs) can be visualised in terms of both space and time, and recorded. This is 

due to the distributed nature of the micro electrodes underneath the sample of cells.  

The use of MEA systems for recording electrogenic activity in in-vitro preparations is now well 

established and validated (Heuschkel et al, 2002; Wagenaar, DeMarse and Potter, 2005). MEA 

system alternatives do not presently exist and so this in-vitro technique is unique in its ability to 

capture (non-invasively) electrical signals from living matter (Stett et al, 2003). In vitro MEA systems 

serve as an intermediary technology between acute patch clamp measurement and the concurrently 

evolving field of chronic in-vivo MEA recording (Caspi et al, 2009).  

In-vitro MEA systems also offer the facility to detect, measure and analyse particular parameters 

thought to be significantly influenced by, or the result of, particular genetic combinations (Valor et 

al, 2007; Chong et al, 2011). Genetic mutation investigations utilise tissues dissected out of 

specifically bred animals. The breeding of animals for laboratory testing is labour intensive and 

expensive (Jurga, Forraz and McGuckin, 2010). It has been described that complementary in-vitro 

MEA recording and analysis techniques help to overcome the limited availability of “significant 

collections of genetically interesting in vivo subjects” by making better use of the tissue and cells 

that are available (Kobel and Lutolf, 2010). For example, a brain region from one mutant mouse can 

be cut into very fine slices and studied on multiple in-vitro MEA biochips.  

Another advantage brought about by MEA systems has been the facility to take repeated 

measurements from the same culture of cells or tissue over prolonged periods of time (Gross and 

Pancrazio, 2006). Some cases have reported results taken from one culture over periods of up to 3.5 

months (Dubois-Dauphin et al, 2010). MEA systems serve too as powerful tools for evaluating the 
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dynamics and differences both in spontaneous activity and in activity evoked by exposure to external 

stimuli (e.g. drugs or electrical stimulation) (Johnstone et al, 2010). This combination of advantages 

described thus far has resulted in the suggestion that to further exploit MEA systems, adaptations 

that will allow an increase in throughput for chemical screening are now required to support the 

fields of safety pharmacology and drug discovery (Denning and Anderson, 2008; Braam et al, 2009; 

Yla-Outinen et al, 2010). 

MEA recorded data, particularly from dissociated cell cultures and stem cell derived cell cultures, 

show significant amounts of variation in terms of SNR, signal size and waveform shapes from culture 

to culture (Shahid et al, 2009; Cohen et al, 2011). These variations can be attributed to innate 

differences in the cultures themselves (e.g. cell size) and to the differing cell types under 

investigation. Cell orientations, spatial distribution of occurring activity, and the timing of that 

activity is also unique to each culture (Lappalainen et al, 2010). Various other user group specific 

factors such as MEA biochip pre-processing procedures (e.g. the use of coatings such as laminin or 

Matrigel) also affect signal detection (Graham et al, 2009). 

 

2.4.3 Cardiac Electrophysiology 
Ion current flows responsible for cardiomyocyte contractions are detectable as action potentials (AP) 

and field potentials (FP) using electrophysiological recording techniques. Cardiomyocyte studies 

conducted on an MEA system detect the extracellular FPs that can be correlated to both patch clamp 

AP recordings and whole heart electrocardiogram (ECG) contraction signals (see Figure 2.11).  

 

Across medicine and the pharmaceutical industry a significant emphasis has been placed on 

understanding the action of chemical substances used as prescription drugs on the natural 

contracting rhythm of the human heart (Braam et al, 2010). This follows unforeseen interactions of 

some commercially available drugs that have been recalled due to risks posed to human life, such as 

Vioxx (Martinez et al, 2004; Goenka et al, 2010). MEA systems are currently receiving much 

attention as a tool in helping to screen substances at pre-clinical stages of development. The 

parameter of most interest is called the QT-interval. It has been demonstrated that the correlation 

of this parameter in vitro (detectable on MEAs) with in vivo signals can be exploited to understand 

further this parameter that if altered in vivo can result in death of the animal or human.  
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Figure 2.11: The correlation between AP, FP and ECG signals. 
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2.4.3.1 Characterisation and Identification of Normal Cardiac 

Activity 
The normal electrophysiological behaviour of the heart is determined by ordered propagation of 

excitatory stimuli that results in rapid depolarisation and slow repolarisation of various excitable cell 

types across the heart (Sadek et al, 2008). The resulting contraction ejects blood from the heart 

forming the basis of the mammalian circulatory system (Sherwood, 2006).  

The excitable cells that make up the myocardium (heart muscle) receive stimuli originating from a 

region of the heart referred to as the sinoatrial (SA) node.  The SA generates a wave of excitation 

that spreads rapidly through both atria reaching the atrioventricular (AV) node. The AV node is 

positioned between the atria and the two ventricles of the heart.  The AV stimulates a bundle of 

conducting fibres, the Bundle of His, that spreads excitation down into the muscle of each ventricle 

through a further network of fibres, the Purkinje fibres (Starr and McMillan, 2007). This set route of 

stimulation is essential for normal cardiac function and can be detected and monitored through the 

use of an electrocardiogram (ECG) (Houghton and Gray, 1997).  

The ECG is used for identification of disorders of cardiac rhythm (e.g. torsade’s de pointes), diagnosis 

of heart abnormalities (e.g. myocardial infarction) and to provide clues to the presence of other 

generalized disorders of the body (e.g. electrolyte disturbances) (Houghton and Gray, 1997).  

The muscle mass of different regions of the heart (atria and ventricles) differs so the electrical 

change that accompanies contraction correlates to those differences. The contraction of the atria 

produces a smaller wave (P wave) of electrical excitation when compared to that detected when the 

ventricles contract (QRS complex).  It is the presence of these waves that allows ECG signals to be 

described in terms of the wave of excitation as it spreads through the heart. Different parts of the 

detected signal are classified using an alphabetical description. The letters P, Q, R, S, T and 

occasionally U (see Figure 2.11) are used to describe all ECG signals (Hampton, 2008).    

Each wave represents either depolarisation or repolarisation of a certain region of the heart. 

Changes (e.g. presence, duration, amplitude) in waves can be used to detect and diagnose 

abnormalities. 

Prolongation of the QT interval is one abnormality that can cause cardiac arrhythmia and 

consequently death (Stett et al, 2003). Pharmaceutical companies must assess all new cardio-active 

substances for adverse effects on the QT interval. QT interval can be detected in whole heart and in 

stem-cell derived beating cluster recordings (Figure 2.11), which can be of use when screening a 

substance for unwanted cardiac interaction (Halbach et al, 2003).  
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2.5 Original MEA system Application 
The development of MEAs began more than 35 years ago (Gross et al, 1977; Wolpaw and Wolpaw, 

2012). MEA system use has increased rapidly over the past twenty years following successful system 

uptake across research applications during the 1990’s (Connolly et al, 1990; Jimbo and Kawana, 

1992: Owens et al, 1995). Planar MEA biochips were the first type to be introduced and have slowly 

but steadily gained the highest degree of popularity amongst neuroscientists (Morin et al, 2005) 

later to be adopted by bioscientists working with other electrogenic cell types. MEA biochips for the 

first time enabled chronic monitoring of excitable cells in-vitro. Early work using these devices was 

able to monitor neural cultures for periods of several months capturing the exhibition of slowly 

altering field potentials and rapidly occurring spikes. For the first time neuroscientists were able to 

view the “plasticity” of neural networks over much more meaningful durations. Plasticity is the 

capacity of the nervous system to change during development and when learning new skills, 

establishing new memories and responding to injury (Purves et al, 2001). By capturing plasticity 

using MEAs neuroscientists have been able to understand more about how the mammalian brain 

works (Frey et al, 2009). 

 

The microelectrodes in an MEA can detect signals from neurons up to ~100µm away in a culture or 

within a tissue slice. The work of Egert et al. (2002a) has also suggested that in monolayer cultures 

typically the majority of signal sources are within a radius of about 30µm from the microelectrode 

centre. The current 8x8 arrangement of 60 electrodes (where one electrode missing at each corner) 

is believed to offer “good spatial and temporal resolution” for most network based neurological 

investigations (Stett et al, 2003).   

 

2.5.1 Stimulating with an MEA system 
MEA biochips have been used to record from cells and also provide electrical stimulation. Stimuli can 

be input to a culture electrically by application of either current or voltage impulses through the 

microelectrodes (Merrill et al, 2005; Kopanitsa, Afinowi, and Grant, 2006; Herrmann and Stett, 

2010). It is generally well understood that across neuroscience MEA application observations have 

shown that neurons respond differently to altered stimulation protocols (Figure 2.12, Wagenaar et 

al, 2004).  
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Figure 2.12: Example stimulation waveforms. 

[Adpated from Wagenaar et al, 2004.]  

 

When stimuli protocols are employed through a specific electrode(s) to a target region of cells the 

membrane polarisation of those cells is affected by an external voltage gradient in the surrounding 

media. The efficacy of stimulation protocols depends upon effective spreading of the input pulse at 

the cell-electrode interface and through the local region of the culture (Fejti et al, 2006). 

Descriptions of stimulation experiments across academic publications usually describe protocols in 

terms of the charge injected through the electrode(s) per pulse (Erickson, 2010; Ide et al, 2010). 

When charge is injected with current pulses the amplitude and duration of the pulse will be 

important in defining the protocol, but where voltage pulses are injected the tissue resistance and 

the capacity of the cell-electrode interface is also important. Most manufacturers of MEA biochips 

have investigated the “charge-injection capacity”. This is a value given in technical data sheets 

specifying the limit to which the biochip’s electrodes can be charged before irreversible damage may 

occur at the electrode surface.  

 

Important factors both users and developers alike must be aware of relating to stimulation include: 

1. Recording during the period of the stimulation is not possible as the electrodes saturate. 

2. Injection of stimuli creates artefacts across most channels during and immediately after 

stimulation due to saturation of the electrodes. This has been addressed across the MEA 
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domain and is typically overcome by specific signal processing or specialist hardware design 

(Morin et al, 2005). 

3. Care must be taken when selecting the input limit (i.e. 4V). If selection is too large harm may 

be inflicted upon cells or to the microelectrodes (Morin et al, 2005). The voltage at the 

microelectrodes should always be controlled to be as low as possible to prevent unnecessary 

electrochemical damage at the electrode surface. Inappropriately designed stimulation 

protocols may cause damage to the tissues under investigation or to the electrode in-use 

(Merrill, Bikson and Jefferys, 2005). 

 

2.5.1.1 Artefact suppression 
A recognised limitation of recording signals while using stimulation protocols is that when 

stimulation is applied it takes time (t = 50-100ms) for the electrodes to recover (Brown et al, 2008). 

The presence of a stimulation artefact results in a problem specifically associated with stimulation 

delivery and the microelectrode’s ability to retain appropriate recording capability during and 

straight after a pulse is input. Blanking circuits have been introduced for users of MEA systems who 

wish to stimulate their cultures or slices and record straight after (Zrenner et al, 2010; Biodo et al 

2010). These circuits are integrated into the headstage and work by decoupling all of the 

microelectrodes during the stimulation. The microelectrodes are then returned to their normal 

recording states prior to the resumption of spike activity in the culture, approximately 40-160msec 

after stimulation (Wagenaar, Pine and Potter, 2004). 
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2.6 MEA System Development 
 

Improvements in both electronics and electrogenic cell culture methods have brought about 

increased uptake of MEA systems for electrophysiological-based study in both academia and 

industrial settings (Johnstone et al, 2010). Original development was centred on simply recording 

signals from collections of neurons. Natural incremental advances from these early experiments to 

meet ever evolving user needs has resulted in improved systems and differing methods of 

employment.  

Objectives that have driven the developments of the first twenty-five years following the MEA 

biochip’s introduction, with more recent requirements that have been made in the last five to ten 

years are listed in Figure  2.13. 

2006 - Present:

 To keep increasing channel number 
(now from 100's to 1000's) for larger 
data sets and superior resolution. 
Systems to develop from cell-cell level 
recordings to synapse level recording. 

 To facilitate testing of thousands of 
chemicals currently used across global 
commerce that have not yet been fully 
characterised.

 To facilitate an increase in the number 
of chemicals characterised for 
potential neuro- or cardio- toxicity 
according to evolving regulatory 
requirements for drugs.

 To re-configure systems for improved 
usability. I.e. The relatively recent 
introduction of multi-well MEA 
biochips to allow increased 
comparability and faster results.

 To exploit appropriately applicable 
advances in micro- and nano- 
manufacturing techniques to increase 
sophistication at the workspace level. 
I.e. workspace patterning and 
microchambers creation.

 To produce more data sets that are 
comparable via the introduction of 
standards.

1975 - 2005:

 Visualise and capture recordings of 
the activity in brain tissue.

 Collect signals after cell activity had 
been evoked by stimuli.

 Reduce investigation time compared 
with clamp-based tests.

 Record from multiple sites in the 
same culture simultaneously. 

 Facilitate more data collection to 
obtain deeper knowledge of cell-to-
cell interactions. 

 Increase the number of channels 
available to facilitate the above 
points.

 Facilitate monitoring of activity over 
periods of time  greater than a few 
hours.

(Stett et al, 2003; Johnstone et al, 2010; Braam et al 2010)  
Figure 2.13: Past and present MEA development objectives. 
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This research presented in this thesis has been focused on design-and-build efforts addressing two 

distinct priorities: (A) the MEA biochip, and (B) the supporting system and required software 

(Figure  2.14). This thesis is centred on priority A. Generation of concepts and production of 

prototypes for testing are documented in this thesis (Chapter 5).  

Design details were identified pertaining to each priority and research was conducted relating to 

each design detail prior to design of the concepts for manufacture and prototype testing. For the 

MEA biochip material suitability, overall chip and workspace configuration, required throughputs 

and overall usability were considered. The cell-electrode interface is a topic still under investigation 

that has been addressed in this research (section  2.6.6). For the underlying system and software, the 

requirements, usability and throughput were considered with the intention to re-configure the MEA 

system to facilitate a reduction in the time required for analysis.  

v Acquisition Software 

Userability

v Analysis time reduction

v Throughput

Supporting System and Software

v Materials

v Configuration

v Throughput

v Usability

v Cell-electrode interface

MEA Biochip

Development focus for the initial stages of this research:

Design Priority 

A

Design Priority 

B

 
Figure 2.14: Priorities of development used in this research.  
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2.6.1 Industrial Case Study 
As the identified innovation leaders in this field, Multi Channels Systems (MCS) have progressed the 

development of their systems as documented into the following series of diagrams. This section 

presents an industrial case study. 

Study of MCS’s MEA systems development shows system iterations launched over the past three 

years since this research began. The standard MEA-60 system configuration, available in October 

2008 and those that have been developed since are depicted. The frequency range across all MCS 

systems is 2 – 50kHz. 

Biochip 

(60 electrodes)

Headstage 

1060

Custom Filter 

Amplifier 

(commonly FA60)

    1. MEA 60 (original MEA system configuration still available to purchase, February 2012).

Temperature 

control

High specification PC

Data acquistion card

(up to 128 channels)
GUI

Spring loaded 

pin connections
68 pin SCSI 

Cable
68 pin SCSI 

Cable

Analogue Analogue Analogue Digitised

 

Figure 2.15: The MEA 60. Multi Channels System’s original standard system. With a specialist PC housing the 
128 channel data acquisition card, running a Windows operating system. 

 

The MEA 60 system (Figure  2.15) consists of an MEA60 biochip connected via an MCS headstage 

1060 (section  2.9.1.2) to a personal computer (PC). The headstage unit connects via a standard 68-

pin SCSI cable to an FA60 Filter Amplifier (FA). The FA60 is sold and configured as part of the 

headstage configuration but exists as a separate unit that sits between the headstage and the 

MC_Card. The MC_Card is a PCB housed inside a PC that serves as the data acquisition unit for the 

system, converting the analogue signals to digital streams for visualisation and analysis. 

 

The MEA 120 system (Figure  2.16) can also be described as the MEA 60 system in a twofold 

configuration. The only alteration is the addition of an MEA_Switch unit. The MEA_Switch is a 

separate unit that connects between the FA60 of each headstage into the MC_Card. 
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Figure 2.16: MEA 120. A representation of how the original MEA-60 can be scaled up using a device called 
the MCS MEA switch to accommodate two MEA biochips at one time. This allowed the data that could be 

captured per trial to be doubled from 60 to 120 channels. 

 

The MEA_Switch can also accommodate input from two further headstage units allowing the MEA 

120 system to also be scaled up into a twofold configuration (Figure  2.17). The number of channels 

that the MEA_Switch can process remains the same, so using the accompanying MEA_Switch 

software to turn on and off microelectrodes, the user must select up to 120 of the available 240 

microelectrode channels to monitor. 

3. MEA 120 Twofold

MEA Switch

Biochip 

(60 electrodes)
Headstage 1060

Custom Filter 

Amplifier 

Biochip 
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Headstage 1060
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Amplifier 
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Amplifier 

Biochip 
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control

Temperature 

control
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GUI

 
Figure 2.17: MEA 120 Twofold. How the same MEA switch device can scale the system to accommodate four 

MEA biochips. The number of recordable channels remains 120. It’s intended to allow groups to capture 
more useful data using the equivalent number of channels (if their application resolution requirements 

permit). A reduction in the number of recordable channels per MEA biochip is required so either smaller 
areas at high resolution or larger areas at lower resolutions across the workspace must be defined. 

 

Developments up to this point allowed scientists to capture more data in one set-up, while 

concurrently allowing opportunity for increased throughput if an appropriate channel compromise is 

accommodated by the testing protocol. USB 2.0 connections (480Mb/s) have been employed in a 

new data acquisition unit that integrates with existing MCS system components (Figure  2.18 & 
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Figure  2.19) allowing increased flexibility in terms of data acquisition volume and the physical 

location of where the MEA system is set-up and on which PC the data is acquired and stored.  

Biochip 
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Headstage 
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Amplifier 
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    4. USB MEA 60

Temperature 

control

Interface Unit

(up to 256 channels)Spring loaded 

pin connections
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USB 2.0

Any PC with 

MC_Rack installed

 
Figure 2.18: USB MEA60. A visualisation of the first MEA-60 USB system. 
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5. USB MEA 240

 

Figure 2.19: USB MEA 240. The USB interface unit integrated with four MEA biochips. In this instance the 
recordable channel and resolution compromises of previous systems is eliminated. 

 

In the second quarter of 2010 a new generation of MEA system was launched by MCS. The model of 

the system was called USB MEA2100-60-HS (Figure  2.20). The headstage unit was redesigned to 

house more of the core technology compactly into one unit, i.e. the custom filter amplifiers (FA) and 

stimulation units were integrated together into one unit. The new headstages, called Headstage 

2100-60-HS, also offer the facility to house up to two MEA biochips side-by-side (Appendix B). 
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Figure 2.20: USB MEA 2100-60. The MEA 2100 system in a 60 electrode MEA format. Two 60 electrode MEAs 
can also be used in this one unit positioned side-by-side is desired. 
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Figure 2.21: USB MEA 2100-120. The MEA 2100 system headstage connectors can also be adjusted to allow 
contact to biochips with >60 electrodes, in this configuration 120. 

 

The alternative configurations of the MEA2100 systems available are documented in figures 

Figure  2.20, Figure  2.21 and Figure  2.22. 
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Figure 2.22: USB MEA 2100-120-2. Two 120 electrode chips can also be accommodated in one experiment 
via the use of two 2100 headstage units. 

 

The most recent models released to the market by MCS have been called “integrated MEA systems”. 

These configurations integrate the headstage and interface unit into one box that plugs in to an 

acquisition PC via USB 2.0.  
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9. USB MEA256
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Figure 2.23: USB MEA 256. The current state-of-the-art for neuron applications. This configuration allow 
MEA biochips that arrange 256 electrodes (16x16) into one biochip to be recorded from in a simple three 

piece system; the headstage, acquisition unit and PC. The headstage in this unit is not the 2100 but again has 
been redesigned into one compact unit. 

 

This unit (Figure  2.23) also accommodates a single biochip with up to 252 contact pads. This system 

can record 252 channels at sampling rates of up to 40kHz. The other 4 channels are additional 

analogue for units such as oscilloscopes or signal splitters. These units are regarded as the current 

state-of-the-art in MEA systems with other major competitors developing equivalents. 

 

 
Figure 2.24: The most recent configuration of USB MEA256 systems available from Multi Channels Systems.  

A) The USB-MEA256 System. B) The USB-MEA32-STIM4 System. 

 
The integrated unit (as of July 2011) is available in two distinctly different forms. The first unit 

(Figure  2.24A) would be classified as the new standard unit that accommodates one MEA biochip of 
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up to 256 electrodes depending upon user preference. The second (Figure  2.24B) has been adapted 

to accommodate the perforated, perfusion specific MEA biochips (Figure  2.25) developed specifically 

for longer term slice studies. 

 
Figure 2.25: A perforated MEA biochip manufactured by Multi Channels System for use in the USB-MEA32-

STIM4 system. 

 

 

2.6.2 System Design Limitations  
To address the complexity of developing a complete MEA system three naturally occurring design 

domains were defined:  (i) the biochip, (ii) the supporting network of electronics and (iii) the 

software(s) used to drive the system. It is also essential to communicate design influencing factors to 

support overall system success. These additional influences are those that dictate how a system is 

applied and have consequently motivated much of MEA system development in the past 

(Figure 2.26). 
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Figure 2.26: Factors influencing MEA system design. The areas highlighted in red show the three distinct 
areas of MEA design where incremental development occurs. 

 

The cell type under investigation affects the type of MEA biochip that a user will select as certain 

types of biochip make it easier to detect appropriate signals (e.g. 3D electrodes used in slice 

applications). The type of biochip coupled with the cell type affects the settings of the required 

underlying electronics as the signal detected will also vary (e.g. slice applications demonstrate higher 

amplitudes than cultured cells). The software must then provide appropriate support for the cell 

type selected (i.e. in terms of required sampling frequency), the biochip of choice (i.e. in terms of 

accommodating the layout and number of channels), the settings of the underlying electronics and 

the analysis requirements of the user.  

 

Continually evolving MEA systems on the market today are the result of development that has been 

motivated and driven by the desire to acquire as much information as possible from the cells of 

interest (increased useful data). This results in increased complexity during signal acquisition and 

analysis, the outcome is that there is an increased understanding of the subject. Consequently new 

questions arise based on this new knowledge (new research questions) and further assessment is 

required, often involving an increased level of sophistication to acquire the data (Figure 2.27). 
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Figure 2.27: The MEA motivation-development cycle. 

 

 

2.6.3 MEA system local environment 
The incubated cell culture environment in which living cells are contained is critical to their survival 

and currently MEA systems are a long way from being optimised for this facet of their use. Heated 

headstages and set-ups with microscope integration have been introduced (Morin et al, 2005) but 

these initial MEA systems developed have not been suited to long-term humidified, incubated 

environments.  

Control over the temperature (~37°C) and humidity (e.g. slow evaporation rates) of the environment 

local to a cell in culture is more critical for culture users than slice users. This is because slices are 

exploited in short studies and not required for the periods of days to months (Egert et al, 2002a). 

Successful survival of living samples in-vitro is dependent upon provision of an environment that 

mimics in-vivo as closely as possible. Temperatures at which cultures are maintained is matched to 

that of the in-vivo region of the body from which that cell type originates, and culture medium 

content is precisely controlled over defined durations by control of evaporation and gas exchange by 

incubators (Mather and Roberts, 1998). A consequence of this need to provide a controllable 

environment is that MEA systems in their current state are sub-optimal in design. Since the early 

2000’s some research groups have experimented with methods and specialised tooling specifically 

with the intention of allowing MEAs containing living contents to be left in MEA headstages for 
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longer under conditions that are better suited to cell survival. Examples of this include the use of dry 

incubators to reduce disturbances to set-ups and support long-term investigations in which the cells 

are monitored continuously and left untouched throughout the trial. The first research group to use 

dry incubators also needed to provide a way to reduce evaporation of the culture media. They 

developed a specialist lid for MEAs allowing them to subsist better in a non-humidified environment 

(Potter and DeMarse, 2001).  

In 2005 Morin et al stated that “establishment of an experimental set-up suitable for very long-term 

monitoring of neuronal networks cultured on planar MEAs is becoming an absolute requirement in 

order to design truly significant experiments”. This statement suggests that MEA systems were still 

not optimised and supports the on-going development of MEA systems that can be left in 

environments more suited to cell culture minimising human interventions after seeding. There is 

however, yet to be a suitable commercially available solution. 

 

2.6.4 Evolution of the motivations driving system 

development 
Since Jerome Pine first reported MEA employment in 1980 (Pine, 1980) numerous research groups 

have designed their own MEA biochips, headstages, amplifiers and even complete systems to match 

more closely their own needs (Jimbo et al, 2003; Chen et al, 2008; Clark et al, 2009; Hwang et al, 

2009; Shimada et al, 2011). The motivations that have driven MEA system development have varied 

from group to group but were roughly summarised by Stett et al (2003) as having been: 

 

i. to gain more information about the interactions that occur between cells, 

ii. to reduce the time required to run an experiment by simultaneously recording from multiple 

sites of the same culture, 

iii. to allow monitoring of the changes of electrical activity that occur over time (e.g. changes in 

burst durations, changes in waveform amplitudes). 

 

To acquire significant data from MEA systems an appropriate throughput capability is required, as is 

the ability to analyse the data in an efficient manner.   

An area that would benefit user applications the most is the increase of throughput via a parallel 

improvement of available signal analysis techniques (Johnstone et al, 2010; Braam et al, 2010; 

Natarajan et al, 2011) as well as rapidly and efficient identification of toxicity (Tanaka et al, 2009).  
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In addition, MEA systems that are simpler to use (e.g. require shorter set-ups, allow more instances 

to collect data per test) are also required (Robinette et al, 2011). Cheaper fabrication of biochips and 

system components will be essential to provide affordable MEA systems for the demanded higher 

throughputs of the future (Rolston et al, 2009). There are also expectations that systems need to 

provide continuous or integrated imaging capability in addition to the core electrophysiological 

monitoring (Shew et al, 2010). In 2010 Johnstone et al described the needs that are now motivating 

developers as:   

 

i. need for better understanding of the tens of thousands of chemicals currently used in 

commerce,  

ii. need to increase number of chemicals characterised for potential toxicity, 

iii. need to reduce the time, 

iv. need to reduce cost, 

v. need to reduce the number of animals used in contemporary tests. 

 

Early MEA system development focused upon elements demonstrated in Figure 2.28. The upshot of 

this focus and the consequent development has been that the elements that are depicted as 

secondary and tertiary design priorities (see Figure 2.28) have become more significant to the overall 

success of the whole system in application. 
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     TERTIARY

SECONDARY

                                                  PRIMARY

System 

Development

Throughput

Analysis

Reduce Cost
Simplify 

Complexities

Environment

Integration of 

optics

Current: Systems facilitate 1-4 

cultures per test.

Future: Systems will facilitate 10's - 

1000's per test. 

Current: Complex parameters and 

correlation studies offline file by file.

Future: Complex parameters and 

correlations with previously 

recorded data in real-time utilising 

all relevant files. 

Current: 

 High-skilled bioscientists prepare cells over 

microelectrodes and run timely experiments. 

 Numerous files of data are recorded to gather 

evidence. 

 Specialist analysis approaches to extract required 

details from numerous files.

Future: 

 Supplier provides prepared biochips with cell type 

in situ. 

 Experiments are run according to internationally 

standardised protocols.

 Analysis is automated and real-time. 

Current: 

 MEA System - £15 000 – 110 000

 MEA Biochips - £180+

Future: 

 MEA System - £100's - 1000's

 MEA Biochips - £1 - 10

Current: 

 MEA systems must be 

exploited in a dry 

environment. 

 Heating elements are 

necessary inside 

headstages as are not 

incubator safe.

Future: 

 MEA systems will be fully 

integrated with optic 

system and heated 

(37°C), humidified 

(>95%), CO2 (5%) 

incubator environments 

(Stein et al, 2011). 

Current: Can be used in conjuction 

with microscopes if system 

purchased is complementary model.

Future: MEA systems will be fully 

integrated with optic system and 

heated (37°C), humidified (>95%), 

CO2 (5%) incubator environments. 

 

Figure 2.28: MEA system development focuses and their prioritisation. 

 

With regard to the increased emphasis upon environment and integration of optics, presently, the 

ability to record from cells and to ensure their viability throughout prolonged testing depends upon 

1) maintaining an environment that ensures cell viability, and 2) providing optics that allow visual 

inspection of the cells (Li et al, 2008). These are important influences on MEA system design that do 

not necessarily appear as essential design parameters as they do not directly influence the data that 

is collected. Nonetheless, without adequate design for these requirements novel MEA solutions will 

fail to find support amongst scientist users and applications.  

 

The points highlighted describe motivations of developers, as well as cost and timing concerns 

associated with employment of this technology on the larger scales currently being demanded. The 

cell source is also a significant area for designers as new cell sources thought to be more suited to 

specific applications are being successfully derived and validated that may require different biochip 
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parameters or system settings. For example MEA biochips specifically for slices (perforated MEA, 

Figure 2.25) are being developed that connect to headstages that have different gains (x550) as 

when compared to a gain setting used in a headstage that is for cultured neurons (x1100) (Kopanitsa 

et al, 2006). 

 

2.6.5 Manufacturing Approach and Materials 

Advancement 
Microfabrication is a general term used for describing the construction of microstructures ranging in 

size from a few to hundreds of micrometres (Kobel and Lutolf, 2010).  MEA biochip developers have 

experimented with microfabrication approaches in line with their emergence as valid manufacturing 

capabilities over the past few decades (He et al, 2000), and the use of microfabrication techniques to 

construct specialised tools for stem cell biology is now becoming common place (Lutolf, Gilbert and 

Blau, 2009). This uptake of micrometre scale tooling has been motivated by a combination of lower 

reagent consumption, high throughput capacities and shorter analysis times (Maerkl, 2009). 

 

2.6.5.1 Microfabrication 
There are three clear schools of thought amongst those who exploit microfabrication approaches for 

MEA biochip advancements:  

1. To make more electrodes, smaller and positioned closer together (Aziz et al, 2007; Charvet 

et al, 2009) for greater detail of activity in recorded data. 

2. To incorporate growth pathways or patterning into biochip workspaces using specific 

biocompatible materials (Wonhee et al, 2010; Kunze et al, 2010). 

3. To design MEA biochips and electrode configurations to fit specifically to physiological 

tissues or regions of interest (i.e. in-vitro MEAs for stimulation of murine hippocampal slices 

(Gholmieh et al, 2006), or ex-vivo Langendorff heart recordings via flexible MEAs (Stett et al, 

2003)).  

 

Arrays with hundreds of microelectrodes at a high spatial density (i.e. 256 - 4096 microelectrodes) 

are being encouraged as results obtained to-date indicate that improved spatial precision will allow 

the simultaneous recordings from numerous dissociated cells without need for skilful control of 

positioning cells. The possibility to measure potentials at a synaptic level would also be more likely 

and that would be highly exploitable by neuroscientists working to understand the functioning of the 

brain (Berdondini et al, 2009). 
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2.6.5.2 Rapid Prototyping 
Modern technologies such as rapid prototyping techniques are also being explored within this 

domain for their suitability to produce customised arrays (Claverol-Tinture et al, 2005). The work of 

Morin et al (2005) is an example of a new method of fabrication for microelectrode arrays based on 

rapid prototyping concepts (Figure 2.29). The outcomes of this work have shown promise as cells 

were generally found to grow readily in the specific microchannels formed (in PDMS).  

 
Figure 2.29: New method of fabrication for microelectrode arrays based on rapid prototyping concepts using 
photolithographic masks printed on OHP sheets and WL5370 (a photo-patternable silicon from Dow Corning, 
Michigan, USA). (a) Commercial pMEA (Panasonic Medprobe) fitted with patterns with 50μm

2
 chambers and 

25 μm-wide channels. Electrodes are 50μm
2
 and give the scale of the picture. (b) Custom pMEA fitted with 

larger patterns: chambers are 600μm in diameter and channels are 30μm wide. Wiring tracks are 50 μm 
wide and give the scale of the image. 

[Adapted from Morin et al, 2005.] 

 

2.6.5.3 Substrates for manufacture. 
Flexible MEAs that can be curved around tissue and organ structures have also been fabricated 

(Myllymaa et al, 2008; Lacour et al, 2010). These devices are most suited to in vivo applications but 

material and manufacturing techniques have also been applied to produce devices for ex vivo 

applications such as brain slice study (Boppart et al, 1992). The recent emergence of MEAs made on 

thin glass substrates, allowing superior optical monitoring (Multi Channels Systems, 2011) has also 

supported the aforementioned need to incorporate adequate optical characteristics into the biochip 

and headstage design.  

 

2.6.5.4 Biomaterials  
Discussion across design of items for cell culture seeks to investigate the sensitivity of different cell 

types to biophysical factors (e.g. stiffness and density of the growth substrate) in culture (Vickerman 

et al, 2008; Chou et al, 2009; Gilbert et al, 2010). This questioning has come about concurrently with 

the development of, and increased application of, soft biomaterials (such as soft hydrogels), 

intended to mimic the elastic properties of the living tissue in which the cells in culture would have 
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originated (such as that of the brain when investigating the mechanisms of neuron differentiation), 

as cell culture substrates in micro-fabricated platforms (Flaim et al, 2005; Cordey et al, 2008). 

 
 

2.6.6 The Cell-Electrode Interface 
The interpretation of MEA recordings has been challenged by a lack of a definitive detailed electrical 

understanding of the cell-electrode interface (Jenker et al, 2001). Numerous theoretical models have 

been considered similar to the one demonstrated in Figure 2.30 (Stett and Kindervater, 2008).  

 
Figure 2.30: Stimulation and recording of electrical activity in tissue slices with a planar MEA biochip. 

Substrate-integrated microelectrodes can be used for both stimulation and recording.  
[Stett and Kindervater, 2008.] 

 
This interface is particularly important to understand if applications require electrical stimuli to be 

delivered to the cells in culture because the conditions for extracellular stimulation are affected by a 

delicate balance of interface geometry and ion channel dynamics in the target cell’s membrane 

(Kopanitsa et al, 2006). The region of depolarisation is known to depend upon the cell-electrode 

interface in terms of orientation and extracellular matrix (ECM) meaning that the signal shapes 

recorded from a cell sample may have been different if the same sample where placed on a different 

MEA biochip in a slightly different position (Buitenweg et al, 2002). 

 

There is still no single complete theoretical description of the interface that occurs between a cell (or 

tissue) and a planar metallic microelectrode that has been universally accepted. It has been 

suggested that the work of Buitenweg et al (2003) is the best so far as it is the first example of a 

model that attempts to incorporate the ion channel influences on local membrane properties. Finite 

Element Analysis (FEA) models studying both the electrical properties of the contact between a 

passive cell membrane (Buitenweg et al, 2002) and of a membrane containing voltage-gated ion 

channels (Buitenweg et al, 2003) over a planar electrode has been constructed allowing theoretical 

consideration of different influences on parameters that are not presently possible to physically 
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measure. The results of this work offered theoretical spatial and temporal information about the 

combined electrical behaviour of the extracellular space, the electrode-electrolyte interface and the 

cell membrane but additional considerations and reformulations where suggested as further work. 

 

A collection of the state-of-the-art cell-electrode models are provided in Table 2.2 addressing 

neurons and cardiomyocytes. The coupling between the cell and electrode is a critical parameter in 

determining the quality of the acquired signal, in terms of both the signal shape and amplitude 

(Grattarola and Martionoia, 1993). All cell-electrode interface models consist fundamentally of a cell, 

an electrode and the seal between the two, commonly refered to as the seal resistance. The seal 

resistance, the electrode parameters and the shunt capacitance of the interface are all documented 

as having a combined influence over the overall signal acquisition (Nisch et al, 1994; Buitenweg et al, 

1998; Yeung et al, 2008). Note: the discriptions accompanying each diagram are as stated in the 

referenced article. 
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Table 2.2: Examples of proposed models of cell-electrode interfaces in MEA biochips. 

Authors and 

Year  
Paper and model diagram Supporting notes 

Nisch et al, 1994 A thin film microelectrode array for neuronal 

activity in vitro. 

 

Where: 

en – isopotential line of neuron 

Rs - resistance of saline between 

metallic interface and ground 

electrode 

Re and Ce - resistance and 

capacitance of the double layer 

Rm - Resistance of the metallic 

portion of the electrode 

Cs - shunt capacitance to the 

ground 

Ra and Ca - input resistance and 

capacitance of the amplifier 

Ingebrandt et al, 

2001 

Cardiomyocyte-transistor-hybrids for sensor 

application. 

 

 

Where: 

gJ – cleft of electrolyte between the 

membrane and the gate (seal 

conductance), 

CJG the specific capacitance of the 

gate, 

CM - specific membrane 

capacitance,  

VJ extracellular voltage, 

iJM - current through the 

membrane, 

VM - intracellular voltage 

 

   

Buitenweg et al, 

1998, 2002, 2003 

Measurement of the sealing resistance of cell-

electrode interfaces in neuronal cultures using 

impedance spectroscopy (1998). 

Extracellular Stimulation Window Explained by a 

Geometry-Based Model of Neuron-Electrode 
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Contact (2002). 

Geometry-based Finite Element Modelling of the 

Electrical Contact Between a Cultured Neuron and 

a Microelectrode (2003). 

 

(1998) 

 

(2002) 

 

 

(2003a) 

 

(2003b) 

 

 

 

 

1998: Geometry of the neuron-

electrode interface. 

 

 

 

 

 

2002 & 2003b: 

Rseal- the current path through the 

gap between the bottom of the cell 

and the surface of the substrate. 

rc- circular soma radius. 

re- electrode radius. 

dg- sealing gap thickness. 

 

2003a: The neuron-electrode 

interface in extracellular 

stimulation and recording. Due to 

current densities, arising from the 

neuronal membrane of the 

electrode, a potential distribution 

exists in the sealing gap which 

modifies the membrane potential 

(stimulation) or can be probed by 

the electrode (recording). 

 

2003b:Electrical equivalent lumped 

circuit which is commonly used as a 

model of the neuron-electrode 

contact. 
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Morin et al, 2005 Investigating Neuronal Activity with Planar 

Microelectrode Arrays: Achievements and New 

Perspectives. 

 

 

 

For planar electrode, where: 

C, Ionic layer capacitance;  

Rs, spreading resistance;  

Rt, charge transfer resistance;  

Zw, Warburg impedance; 

 Zp, impedance associated with 

porosity; 

Rc, resistance of interconnects; 

Cp, capacitance to electrolyte; 

Cc, coupling capacitance between 

interconnects; 

Cs, capacitance to substrate; 

Vintra, Intracellular potential; 

Vextra, extracellular potential; 

Rseal, sealing resistance (a measure 

of the quality of the contact 

between cell membrane and 

electrode surface); 

Relec and Celec, resistance and 

capacitance of the recording 

electrode, respectively; 

Zinp, input impedance of the 

amplifier; 

Rref and Cref, resistance and 

capacitance of the reference 

electrode, respectively; 

Rcell and Ccell, resistance and 

capacitance of the cell membrane, 

respectively. 

Sommerhage et 

al, 2006 

Simulation of extracellular recorded cardiac action 

potentials. 

"The standard Point-Contact-Model 

for cardiac myocytes". This model 

can distinguish inputs for different 

ion currents. 
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Cho and 

Thielecke, 2008 

Electrical characterisation of human mesenchymal 

stem cell growth on microelectrode. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Schematic model of cell 

monolayer on electrode for FEM 

simulation (not scaled), σ and εr: 

conductivity and dielectric 

constant. 

 

(b) Equivalent circuit. 

CPEel – constant phase element for 

electrode impedance. 

Re – extra cellular resistance. 

CPEm – constant phase element for 

impedance of cell membrane. 

Rs – spreading resistance. 

 

Yeung et al, 2008 The Use of Microelectrode Array (MEA) to Study 

Rat Peritoneal Mast Cell Activation. 

 

 

Where: 

Rj - seal resistance typical distance 

values for the membrane from 

surface lie in range of 10s of nm to 

100nm (ref171) resulting in values 

of 1-10MΩ. 

 Vj - contact point. 

 

This model is for mast cells that 

have slower signals than neurons 

and cardiomyocytes so capacitive 

components have been excluded. 
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Joye et al, 2008 

and 2009 

An electrical model of the Cell-Electrode Interface 

for high-density Microelectrode Arrays (2008).                                                                                                                                                                                                                                   

A Cell-Electrode Interface Noise Model for High-

density Microelectrode Arrays (2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Point-contact model of the cell-

electrode interface (not to scale). 

 

ZCPA – constant phase angle 

impedance (represents the 

interface capacitance in parallel 

with a charge transfer resistance). 

Rct – charge transfer resistance. 

Rspread – spreading resistance. 

Rseal – sealing resistance. 

Zload – load impedance of the cell-

electrode interface system.                                                                                                                                         

Chd - cell membrane-electrolyte 

capacitance                                                                                                                                                                   

Rm and Cm - membrane resistance 

and capacitance. 

 

Equivalent cell-electrode interface 

noise model for (a) no cell and (b) 

one cell lying on top of the 

electrode.                                                                                                                                                                              

Zel – the electrode impedance. 

Vel,noise – electrode noise voltage. 

Vinput,ampli – the input referred noise 

of the amplification stage of a 

CMOS-based MEA. 

Vrseal,noise – seal resistance noise 

voltage. 

 

Krinke et al, 2009 A microelectrode-based sensor for label-free in 

vitro detection of ischemic effects on 

cardiomyocytes. 

 

Where:  

Ze – impedance of the MEA system, 

comprising of an RC circuit in 

parallel (Re, Ce)  and an additional 

constant phase element (CPE, A, n) 

in series. 

Rsl – resistance of the support layer 

for cell adhesion. 

Zcl – impedance of the cell layer 
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constituting of an RC circuit in 

parallel (Rc,Ccl). 

Rbulk – resistance between the cell 

layer and the large counter 

electrode. 

 

 

 

 

2.6.6.1 Cellular sealing and signal-to-noise ratio. 
A number of different attempts to clarify and understand the influences of the “sealing” that occurs 

between a cell and its underlying electrode have been published, aiming to help interpretations of 

amplitudes and waveform shapes recorded by MEA systems. This literature also suggests that the 

signal-to-noise ratio of recordings increases if a cell completely “seals” an electrode, thus enhancing 

signal quality (Hofmann et al, 2011). The stimulation pulse required to evoke particular responses 

also decreases when the stimulating electrode is completely covered by the cell (Bove et al, 1995). 

By decreasing the sealing gap using adhesion promotors significant improvements can also be made 

to the quality of the signals acquired. Matrigel™ in an example of such an adhesion promotor shown 

previously to favourably support human embryonic stem cells (hESCs) (Braam et al, 2008).  

 

2.6.6.2 Simplified interface circuitry 
The following models (Figure 2.31 and Figure 2.32) offer a simplified summary of the theoretical 

models collated in Table 2.2.  

 
Figure 2.31: Cell-electrode model and calculated values of components of the interface model. CEDL – 

capacitance of Electrical Double Layer, RCT – charge transfer resistance, Zw – Warberg impedance, Zp – 
impedance of the porous surface, Rs – spreading resistance, Cx – parasitic capacitance. 

[Adapted from Al-Gayam et al, 2010.]  
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Figure 2.32: Equivalent circuit for a planar microelectrode array element. Where C - Ionic layer capacitance, 

Rs - spreading resistance, Rt - charge transfer resistance, Zw - Warburg impedance, Zp - impedance 
associated with porosity, Rc - resistance of interconnects, Cp - capacitance to electrolyte, Cc - coupling 

capacitance between interconnects, and Cs - capacitance to substrate. 
[Adapted from Kovacs (1994) by Morin et al (2005).]  
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2.7 Contemporary Application 
MEA technology is most commonly applied in cardiac and neural applications (Proceedings of MEA 

Meeting 2008). Other tissue types are discussed in this document as niche applications due to a 

lesser volume of published work validating protocols and findings (section 2.7.3). 

It is possible to use MEA technology with cells that have been dissociated from animal tissues or 

differentiated from various stem cell sources (Charlesworth et al, 2006). Cells can either be in the 

form of cultures or thin tissue slices dissected directly from animal subjects. The data yielded can be 

analysed to provide information for a number of differing research problems that may be considered 

to be within the fundamental research domain, for example “what happens electrically when this 

cell contracts?” or, within an applied research domain, such as “will this drug applied at high 

concentrations induce heart rhythm abnormalities?”   

The cell source used will result in differing application strategies in terms of how the cells are 

positioned and cultured to ensure a recordable signal. For example, when seeding beating 

cardiomyocyte clusters that have been differentiated from stem cells the challenges in terms of 

positioning those cells over the electrodes differs from that of positioning a heart slice dissected 

from a chicken embryo. Where in both cases a close cell-electrode interface is required, but in 

practical terms the achievement of this is pursued differently (see Chapter 4). 

2.7.1 Cardiac MEA Application and This Research. 
MEA systems are used to characterise cardiomyocyte preparations for both fundamental (e.g. 

understanding cell-cell communication) and applied (e.g. chemical entity effects on a cell type) 

research purposes. For this research, focus has been placed upon the stem-cell derived 

cardiomyocyte preparations used by the collaborating institute, the University of Nottingham (UoN), 

in applied cardio-active substance research.  The main topic of interest at the UoN is in the 

investigation and measurement of QT-interval changes following addition of chemical substances 

(e.g. drugs and drug candidates) and combinations of chemical substances.   

The cell sources used were human embryonic and human skin cell-induced pluripotent stem cells. 

From these stem cell lines cardiomyocytes were differentiated in vitro that could be used to monitor 

substance effects via correlations that have been identified (Denning and Anderson, 2008) between 

field potentials from these cells and ECG signals recorded from human hearts.   
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Signal features identification,

Signal features 

characterisation,

Drug candidate analysis,

Cell therapy,

Genetics,

Disease specific

Cell functioning,

Cell-cell communication,

Tissue functions,

Proliferation,

Embryonic to adult 

development

Slice

(I.e. Chicken 

embryo)

In vitro culture

(I.e murine tissue 

dissociation or stem 

cell differentiation)

Cardiomyocyte Electrophysiological 

Characterisation Using MEA Systems

Fundamental 

Research Domain
Applied Research 

Domain

Embryoid body 

derived beating 

clusters

Drug candidates

QT-interval identification

Unique FP signal 

every time

Randomly composed of:

Fibroblasts ( ~80-95%)

Cardiomyocytes (~5-20%)

Random ratio of 

cardiomyocyte phenotypes:

Pacemaker-like

Atrial-like

Ventricular-like

Unique according to 

recording electrode:

Beating segment size, 

orientation and location in 

terms of recording 

electrode.

Example 1

Example 4

Example 2

Example 3

Cell source associated 

DESIGN CHALLENGES

QT-interval prolongation 

detection

University of Nottingham Cardiomyocyte Application

 

Figure 2.33: Contemporary application of MEA systems for cardiac and specifically stem cell-derived 
cardiomyocyte based research. 

 

The research conducted at UoN has been limited by the variability that exists in stem cell derived 

cardiomyocyte clusters. The beating cardiomyocyte clusters that are dissected out and used for 

recording are typically composed of <20% cardiomyocytes.  The inherent variability of these clusters 

results in a different MEA recording for each cluster as no two clusters are the same.  Examples of 

four signals captured from four different beating cardiomyocyte clusters seeded over an MEA 

workspace are demonstrated in Figure  2.33. 
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2.7.1.2 International guidelines 
Over the last 10-15 years the QT-interval has been under investigation by the pharmaceutical 

industry and global regulatory bodies (Braam et al, 2010). Major losses in the region of hundreds of 

millions dollars have been incurred on drugs developed and marketed that have later had to be 

withdrawn due to unforeseen interference with the human QT interval (Frantz, 2007).  

 

At around the start of the millennium, in attempts to prevent QT interval altering drugs from making 

it to the market, the International Conference on Harmonisation’s Global Cooperation Group, 

comprised of representatives from Europe, Japan and the USA, produced two guidelines to be used 

by all parties involved in drug development. The document S7B (Appendix B) endorses nonclinical 

methodologies of QT interval assessment and the document E14 contains the clinical equivalents. It 

is intended that together these two documents will contribute to a better understanding of the link 

between results derived in a laboratory setting and QT prolongations as they actually occur in 

humans. In terms of MEA system application the document S7B is of greatest relevance as it 

emphasises the need to assess all new chemical entities, intended as cardiac therapies or otherwise, 

for any alteration to cardiac ventricular repolarisation.  

 

2.7.1.3 Using stem cell-derived cardiomyocytes 
Each time a new beating cardiomyocyte cluster signal is detected and visualised using MEA 

technology a unique contraction waveform is identifiable. This is due to the novel composition of the 

beating cluster. The resting potentials (signal baseline) of the cells also alters throughout 

development towards maturity. In early embryos it is typically at around -40 to -50mV. This changes 

progressively as the cells develop toward adulthood to approximately -75 to -85mV. The maximum 

rate of rise of an AP upstroke velocity also increases during this growth period from about 20V/sec 

to about 200V/sec. Consequently, the same beating cluster will show differing signal waveform 

characteristics as it matures (Banach et al, 2003; Marin-Garcia, 2011). Comparisons have shown 

hESC-derived cardiomyocytes are morphologically relatively immature but that they do contain the 

appropriate ion channels and signalling pathways previously been shown to be modified by specific 

cardiac drugs (Kohl et al, 2005; Harding et al, 2007). 
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Design Challenges Due to every beating cluster being different.

  Unique in:

  

 Shape

 Size

 Contraction profiles:

o duration of contraction

o maximum amplitude

o minimum amplitude

o duration between contractions 

GEOMETRY OF 

BIOCHIP FEATURES

(Hardware)

AUTOMATION OF 

SIGNAL ANALYSIS

(Software)

Contributes to unique signal: these parameters may also 

vary according to inherent genetic variability.

o Therefore – position of signal source relative to recording 

electrode.

o Therefore – matter (i.e. other cells) between signal source 

and recording electrode. 

Influences

Influences

 

Figure 2.34: Current design challenges in the cardiac domain. 

 

The design challenges that are introduced due to unique nature of each beating cardiomyocyte 

cluster were collated in Figure  2.34 for this research. 

 

 

2.7.1.4 Cell therapy 
In-depth understanding of under lying cellular mechanisms of cells could provide the most promising 

route toward their optimisation for cell therapy. To obtain such information by trial and error would 

take significant time and resources and expose patients to substantial risk. A methodical 

characterisation is required that also accommodates overall therapy safety. MEA systems will 

support safe methodical electrogenic cell characterisation.  

 

2.7.1.5 Commercial QT measuring MEA systems 
The first commercial system and enterprise to address the needs of MEA QT-interval assessment 

were QT-Screen by MCS, Germany and the QTempo service conceived and offered by ReproCELL, 

Japan.  

In the QT-Screen system (Appendix B) a ninety-six well plate specifically adapted to record from 

beating cardiomyocyte clusters has been the focus of design efforts. The format aims to seed 

beating clusters of single cardiomyocyte cells to each well for standardised QT interval analysis. 
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Note:  employment of a 96-well plate could be very labour intensive depending upon the preferred 

laboratory protocols of the user. No independent publications that have employed this system have 

yet been identified. 

The QTempo offers a service whereby functional assays are used to detect functional waveform 

responses. Standard MEA systems (MCS MEA60) are used and analysis is performed as part of the 

service, resulting in results provided to the relevant stakeholders in the form of portable document 

format (.pdf) reports. ReproCELL’s QTempo business model is included in Figure 2.35. 

 
Figure 2.35: Business system QTempo. 

[Adapted from Sengoku et al, 2010.] 

2.7.2 Neural  
Originally developed for neural applications MEA systems have been developed to suit specifically 

the needs of a plethora of neurological investigation domains. A brief summary of slice and culture 

applications in shown below (Figure  2.36). 
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Cell functioning,
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Spike and burst detection,
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Drug candidate analysis,

Cell therapy,

Genetics,

Disease specific,

Etc

Slice

(I.e. murine brain 

region)

In vitro culture

(I.e. murine tissue 

dissociation or stem 

cell differentiation)

Neuron and Brain Region Characterisation Using MEA 

Systems

Fundamental 

Research Domain

Applied Research 

Domain

Different classes and phenotypes of neuron

Mixtures of neurons and glial cells

Unique“spikesignature”for

each neuron

Capture and analyse network activity using numberous signals captured 

from a known segment of the culture/tissue.

Network activity characterised according to identification of spatio-temporal 

activity patterns

Spike sorting distinguish 

activity of each neuron in a 

signal

Brain regions: identify 

specific“pathways”or

patterns of activity. I.e. in 

the hippocampus

Dissociated neurons: 

form networks 

overtime. Neuron 

axons extend towards 

one another in vitro.

Unique network 

activity

Spacing of electrodes and electrode diameter

Biochip 

geometry

Resolution of recording:

Cell-cell, Individual synaptic junctions.

Bursts:

Multiple neurons 

firing in synchrony

Spikes:

Single neurons 

firing

Three-dimensional pointed 

electrodes for slice penetration

Evoke activity 

(spikes and 

bursts)

Observe pattern of 

response and 

Plasiticy

Plasticity: learning of 

neurons and networks 

overtime following input 

stimuli

Stimulation

Planar electrode tips

NEW! Perforated MEA biochips

(Complete new system required)

 

Figure 2.36: Contemporary application of MEA systems for neurology based research. 

The patterns of electrical activity that occur in the brain are complex and rapid (Hill et al, 2010). 

There is still much that is unknown about the mechanisms that underpin the functioning of the 

mammalian and specifically the human brain (Hinton, 2002).  

MEA systems were conceived and initially built by neuroscientists (Thomas et al, 1972). Neural tissue 

can be studied on MEA biochips in one of two forms of preparation (Potter, 2001). Preparations are 
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either dissociated cells cultured over the MEA biochip’s surface or are thin slices precisely anchored 

in place over the microelectrode array.  The cell preparation will influence which type of MEA 

biochip is best suited to use. 

Planar, 3D, perforated planar and CMOS biochips have been introduced, resulting in improved signal 

quality, longer testing times (e.g. minutes to hours) and ever greater degrees of resolution (e.g. from 

cell-cell towards synapse-synapse). Work of neuroscientists is moving deeper into how neural cells 

communicate, by shifting from the study of individual cells towards individual synapses (Berdondini 

et al, 2009).  

 

2.7.2.1 Stimulation studies 
 MEAs have been used in experiments aiming to decipher and comprehend the cellular mechanisms 

of learning and memory. Electrical stimuli have been used to induce activity and monitor plasticity. 

Stimuli and the tissue responses have been recorded and observed using MEA systems (Ide et al, 

2010; Li et al, 2010), with particular brain regions showing reproducible results on comparable set-

ups (Boehler et al, 2012).   

 

2.7.2.2 Cell preparations 
Dissociated neurons can be sourced from brains or brain regions that have been dissected out of 

animals or that have been differentiated from a stem cell source. Dissociated neurons can then be 

dispensed over a treated MEA workspace where a unique neural network will develop in vitro. These 

cultures can be maintained for periods of months (Dubois-Dauphin et al, 2010). Slices can be used if 

anchored securely over an MEA workspace. These preparations are usually maintained for periods of 

hours. In slice preparations, pathways of activity that already exist in tissue can be observed and 

interacted with via targeted stimuli input. In dissociated cultures the part of the neuron that 

successfully survives the dissociation process is the soma (neuron’s main cell body). Axons and 

dendrites are damaged and break off during centrifuge stages. The somas are suspended in media. A 

small sample of the suspension is examined and the number of cells counted so that an 

approximately controlled quantity of cells can be seeded per MEA. This process allows culture 

monolayers if desired. Axons and dendrites re-grow towards one another creating unique networks 

that start to spontaneously interact.  
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2.7.2.3 Tissue composition, spike signatures and spike sorting 
Both slice and dissociated cultures will be made up of a mixture of cell types. Glial cells will be 

present in all cases as they are essential for neuron survival. The activity that occurs through the 

neural samples is referred to as spikes and bursts. A key feature of the spikes, that collectively also 

make up bursts, is that each spike recorded on an MEA will be unique. Therefore each neuron is 

described as exhibiting its own spike signature. The signature is due to physical differences between 

the neurons and its unique position in relation to the recording electrode (Quian Quiroga, 2012).   

Specialist algorithms have been developed (Quian Quiroga et al, 2004; Pereda et al, 2005) that can 

separate out spike signatures thus allowing individual neurons to be identified and monitored.  This 

process is called “spike sorting” and is regarded a fundamental first step in the majority of analysis 

routines for MEA system recorded neural data. Deeper degrees of understanding require on-going 

monitoring of network activity to identify patterns and determine the significance of those patterns. 

 

2.7.3 Other/niche  
Other tissue application domains where MEA technology has been previously demonstrated with 

some success include duodenum tissue (Lammers et al, 1993), stomach tissue (Nakayama et al, 

2006), peritonea cells (Yeung et al, 2008), olfactory epithelium cells (nasal tissue) (Liu et al, 2010) 

and pancreas cells (Raoux et al, 2011) investigations (Figure 2.37).  

Potentials exist in “non-electrogenic” tissues that alter slowly. Slow field potentials that occur across 

muscle tissues of the gastrointestinal tract of small mammals have been successfully detected using 

MEA technology (Lammers et al, 1993; Nakayama et al, 2006). Note: Should MEA technology be 

adopted by gastrointestinal research on larger scales, these types of studies will require systems that 

can record for prolonged durations without disturbance. 
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Example Niché Applications Demonstrating MEA System Versitility

Gastrointestinal

(Lammers et al, 

1993)

Duodenum

(rabbit)

Smooth muscle 

cell preparation

 Possible to record slow wave propagation across muscle tissue.

 Maps produced can compare waves.

 Observed patterns of propagation with respect to stimuli.

 Waveform peak-to-peak amplitudes ~10µV.

Gastrointestinal

(Nakayama et al 

2006)

Stomach

(guinea pig)

Smooth muscle 

cell preparation

 Field potentials recorded with MEA and AP recorded with patch-clamp.

 Drug responses recorded and analysed.

 Waveform peak-to-peak amplitudes ~100µV.

Immune 

Response

(Yeung et al,  

2008)

Peritonea

(rat)
Isolated mast cells

 First study of non-excitable tissue

 Compounds added and changes in field potential detected and analysed.

 Waveform peak-to-peak amplitudes 4-6mV.

Plant – root apex

(Masi et al, 2009)

Root

(Maize Plant)
Root apex cells

 Chemically-elicited electrical activity

 Spatiotemporal characteristics of electrical network of a root or interest.

 ~10-20µV peak-to-peak.

Research Domain
Tissue Type

(source)
Preparation Type Observations

Nasal passage

(Liu et al, 2010)

Olfactory 

epithelium

(rat)

Olfactory receptor 

neurons

 Extracellular recordings taken from dissected tissue layer.

 Odour stimulants examine.

 Time and frequency domain analysis for provision of information of olfactory 

system for artificial olfaction biomimetic design (bioelectric nose)

Endocrine System 

and Diabetes

(Raoux et al, 

2011)

Pancreas

(mice)
Islet cells

 Extracellular recordings taken from clonal β-cells cultured for 2-7days.

 Electrical signals were conditioned, recognised and sampled. Offline 

analysis in MC_Rack. 

 Waveform peak-to-peak amplitudes -30 - +20µV.

 Subsequently developed Application Specific Integrated Circuits (ASICs) on 

Field Programmable Gate Array (FPGA) and implemented wavelet algorithm 

in real-time during online treatment.

 

Figure 2.37: Domains where MEA technology has been successfully applied to record field potential 
fluctuations over time. 

 
The electrical response of mammalian mast cells has been demonstrated (Yeung et al, 2008). Resting 

potential changes were observed in these cells showing successful application of an MEA system to 

collect data from cell samples that do not spike or burst.  

With regard to tissues of the nervous system, it is not just the study of neurons that have been 

demonstrated on MEA systems. Receptor cells also produce detectable signals and have been 

studied using MEA technology to demonstrate and derive knowledge concerning activity so as to aid 

the development of a biomimetic device that hopes to recreate the functionality of real organs (Liu 

et al, 2010). 

Non-mammalian cells have also been used on MEA systems (Masi et al, 2009). The electrical activity 

that occurs at the apex of a maize plant has also been detected and recorded for investigation.  
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2.8 Generic Analysis 
The analysis of MEA signals is a broad and diverse field of expertise however in all cases the generic 

processes involve signal detection, recording and knowledge extraction (see Figure 2.38).  

Detect Record
Replay

(extract data)

Convert file type Import
Manipulate

(extract data) 

Compile findings

Comparable between all users Application and user group specific

 
Figure 2.38: The elements of detection and analysis that are comparable between users and that are specific 

according to application and research group. 
 

Addressing the area of MEA signal analysis involves determining, what is output as a signal and what 

are the features identifiable within those signals. All signals captured contain a roughly consistent 

flat line referred to as the baseline. This baseline typically carries high frequency noise components 

and stays roughly consistent at the resting potential of the cells/tissue (Prentice et al, 2011). The 

high frequency noise, present in varying degrees in all MEA recordings, can be attributed to noise 

generated by items in the surrounding environment (such as lights, nearby PCs or electrical 

monitoring devices, e.g. microscopes). The field potentials occurring across the living sample are 

identifiable when the signal line diverts from the baseline and beyond the noise. This typically occurs 

rapidly, resulting in what is called a spike or a series of spikes called a burst (Figure 2.39), or 

depending on the application, can be identified more gradually as either a positive or negative 

fluctuation of the baseline from initial value and back towards it (Figure 2.39).     

 
Figure 2.39: Two channels of neural data. Each corresponds to a single microelectrode. Spike and burst 

features are distinguishable and baseline noise identifiable. 
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MEA systems present potentials to human users as a voltage value to an accuracy of a few 

microvolts (µV). Spikes that occur above the noise level are identifiable visually on the graphical user 

interfaces that are provided with MEA system acquisition software. These interfaces are essential for 

users who must ensure that their preparations are active, and that the contacts between the cells 

and the microelectrodes permits recordings of a quality that is reliable and valid as a source of data.  

 In some cases the user may focus their attention on specific channels of data within the array, or 

alternatively they may be interested in the spatiotemporal activity over the entire array. In all cases 

the data acquisition software must accommodate the user’s needs.  

View channels are all 

detecting

Observe a signal is 

present

Identify spikes, bursts, 

waveforms

Extract meaningful 

information
Record

 
Figure 2.40: Basic fundamentals of MEA system use. 

 
 

In Figure 2.40 basic user interaction with MCSs MC_Rack software is depicted with the purpose of 

demonstrating core functionalities required of all acquisition and analysis software. It is important to 

highlight that experimental outcomes vary from application to application according to the research 

questions of the scientist user groups. 

All users will prepare their MEA biochip with a living biological sample of interest. A designed 

protocol will be used for testing. A reliable signal is required before executing an experiment. All 

users will insert the biochip into the system’s headstage and wait for a few minutes to observe 

signals on an interface with a grid that corresponds to the microelectrode layout (Figure 2.41). 

Different experiments will quantify and assess different features within the signal shapes so users 

will initially observe signals prior to recording to ensure the feature(s) of interest is (are) identifiable. 

Once satisfied with signal presence and quality the user will conduct the experiment recording data 

as appropriate. The user will then analyse the recorded data in a fashion that best identifies and 

quantifies that feature(s) of interest. 
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Opportunity for 

specialisation more 

complex

Opportunity for simple 

specialisation

Activity occurs over microelectrodes

   

   Acquisition software (MC_Rack) displays all (60) channels available:

User can view each channel in 

greater detail if desired. 

Double click over channel to view 

one channel of interest (COI)

Single channel 

required for trail

Cardiomyocyte 

waveform feature 

extraction

MC-Rack 

software

For: Acquisition 

and analysis

 Visualise activity,

 Record activity to file and save,

 Manipulate data using virtual 

tools configured into a virtual 

rack.

.mcd file type

MC_Rack Replayer

For: Further analysis in 

MC_Rack.

MC-Datatool

For: File type 

conversion:

 binary, text or 

axon binary

Offline analysis

  Alternative softwares for useful data extraction:

- Matlab, Mathworks, Cambridge, UK

- Neuroexplorer, Nex Technologies, MA, USA

- pClamp, Molecular devices, CA, USA

- custom written software/scripts, i.e. R scripts

If >1 channel 

required

Neural 

applications,

Cardiac/GI wave 

propagations, etc

View channels and observe signal

Identify spikes, bursts, waveforms 
Record

Extract meaning

 
Figure 2.41: Analysis routine commonalities. The details of outputs will vary according to the preference of 

the user(s). 
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2.9 MEA Systems 
The core components of an MEA system are demonstrated in series in Figure 2.42 comprising of a 

cell generating an AP that is detected by a nearby voltage probe that is embedded into a circuit on a 

biochip that connects to an amplifier, filter and computer. The computer stores and displays the 

detected signals for the human user to view and analyse.  

Cell or tissue
Signal

(APs à FPs)
Microelectrode MEA Biochip Amplifier

PC

(Data 

Acquisition)

CORE MEA SYSTEM:

Filter

Cells of Interest:

 
Figure 2.42: Core components of an MEA system. 

 

 
Figure 2.43: A Multi Channels Systems MEA60 System in a bioscientific laboratory. 

 

A typical MEA system set-up in a bioscientific research laboratory at the University of Nottingham is 

illustrated in Figure 2.43. Specialist housing or units like that seen in Figure 2.43 are custom-made to 

serve as enclosures for the headstage to improve atmospheric conditions (e.g. temperature (37ºC), 

humidity (>95%), CO2 concentration (5%)) around the cells while in the headstage (Figure 2.47 and 

Figure 2.48). The unit also aims to reduce the possibility of contamination occurring as this particular 
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research group does not use MEA biochip lids. The need for an enclosing unit is also something that 

must also be factored into decision making prior to installation as space for the system within a 

laboratory environment may be limited.  

 

Not all research groups use their MEA system continuously and at times a system can remain unused 

for periods of weeks to months. This occurs due to the varying demands of the overall research 

question being addressed. The issue of portability of MEA systems has yet to be debated on a broad 

scale but recent discussion of “lab-in-a-box MEA systems” suggested that portability is one aspect 

that could be drastically improved upon (Fejti et al, 2006). This has been acknowledged in recently 

launched commercial systems as reconfigurations of the MEA60 set-ups into new plug-and-go units 

using USB connections have emerged (section 2.9.2.1).  

 

2.9.1 System components 
A brief description of the main units and critical components making up MEA system set-ups are 

shown in Figure 2.44. It is essential that developers looking to build a complete MEA system 

understand and can manufacture parts that integrate seamlessly. Microelectrodes must be 

manufactured to a high quality on a base substrate that can be insulated by specifically 

biocompatible materials. The insulation material must also accommodate a water-tight seal 

(between the glass or polymer ring that will form the media well) with an adhesive or sealant that is 

non-toxic and that will withstand periods of up to months in humid environments. A headstage must 

also be constructed that will reliably connect to the contact points on the MEA biochip. Amplifiers 

must be sufficiently close to that point of contact to ensure the signals reach the analogue-to-digital 

converters (ADCs) and required filters without too much noise interference from background 50Hz 

and radio frequency sources. A means of temperature control with sufficient accuracy (+/- 0.5ºC) 

must also be incorporated into the headstage to control the temperature local to where the cells 

and cell media will be positioned. This is especially important for longer recordings (e.g. for periods 

of months). Appropriate connections must be made between the headstage and PC. A PC must be 

programmed to run the MEA system and interface to software constructed for signal acquisition and 

manipulation. 
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MEA System

MEA biochip

Headstage

PC

GUI

 Microelectrodes

 Insulation

 Base Substrate

 Media well/reservoir

 Data Acquisition Card or Unit

 Memory

 Software

 Recording Software

 Analysis software

Cell-to-electrode 

interface

Human 

interface

Biochip to hardware 

interface

Optical 

monitoring
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acquisition and PC 

interface

 Integrated Temperature Control Device 

 Contact Pins

 Pre-amplifiers

 Amplifiers

 Filters

 
Figure 2.44: An MEA system set-up, important interfaces and sub-components applying to each main 

component. 
 

The key interfaces that must be understood are cell-electrode, biochip to headstage hardware 

(electronics), headstage hardware to PC and PC to user.  

 

2.9.1.1 The MEA Biochip  
Typically the shape of an MEA biochip is square (i.e. Multi Channels Systems and Ayanda Biosystems 

are 49mm x 49mm), with the electrode array embedded at its centre (Figure 2.45). Each electrode is 

connected to a contact pad by a thin strip of conductive tracking. Contact pads fan-out around the 

periphery of the biochip in line with the layout of spring-loaded contact pins held in the MEA 

headstage unit. The local area of the biochip surface where the electrode tips are located is referred 

to as the workspace as it is only cells or tissue over this area that electrical activity can be recorded 

from.  
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Figure 2.45: A typical 60 electrode MEA biochip. This model is manufactured by Multi Channels Systems.  
Electrode diameter is 30µm with inter-electrode distances of 100µm. 

 

The standard MEA biochip containing 60 electrodes is arranged in an 8 x 8 grid array. The corners of 

the grid array are not filled with an electrode (see Figure 2.46). Above and around the workspace is a 

volume of space contained by an adhered ring. The ring is made from glass or plastic, forming the 

media well. A known volume of cell media will be added to this well to provide the living cells with 

both the nutrients that they require for in-vitro survival and to provide a means of removing waste 

products excreted. 

 

Figure 2.46: A schematic of the electrode arrangement in a typical 60electrode MEA biochip workspace. 
Inter-electrode distances vary between models (see Figure  2.65). 

 

2.9.1.2 The Headstage 
The headstage is the unit that supports the biochip and houses the initial interconnect pins and pre-

amplifiers. A range of headstage specifications (section 2.9.2.1) are available according to the MEA 

biochip configuration required and the cellular signal source of interest (e.g. brain slices, stem cell 

derived cardiomyocytes). Multi Channels Systems typical 60-channel headstage amplifier consists of 

a circuit board that integrates initial preamplifiers and filter amplifiers in one single unit. The 

dimensions of this unit are 165 x 165 x 19mm. The manufacturing approach used to create the 

circuit within is surface mounted device (SMD) technology (MCS MEA Amplifier for Inverse 
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Microscopes Manual, 2010). MEA headstages require amplification as close to the signal source as 

possible (Chu et al, 2006). This is due to the FPs being in the range of micro-volts thus the best 

signal-to-noise ratio (SNR) attainable is required.  

 
Figure 2.47: A Multi Channels Systems (MCS) Headstage Model, “MEA1060-Inv-BC-Standard”. 

Views are from the top. A) The top plate houses the contact pins and headstage circuitry. 1. Digital 
Input/Output (I/O), 2. Serial I/O (used for the MEA_Select tool where two headstages are used in parallel), 

3. 64-pin Connector to pre-amp and filter unit (FA60), 4. Opening to where the MEA biochip well is enclosed.  
B) The bottom plate. 1. One of four female connection alignment recessions. 2. Contains a brass plate that is 

heated by an external temperature control unit. The brass plate in this instance has a hole at its centre to 
accommodate and inverted microscope set-up. 3. Turning clasps used to hold the two parts of the device 

closed. 
 
 

 
Figure 2.48: The corresponding undersides of the MCS MEA1060-Inv-BC-Standard headstage (fig. 2.47). 

A) The underside of the top plate. 1. One of four male connection alignment pins. 2. Spring loaded gold pin 
interconnections. B) The underside of the bottom plate demonstrating a recession in which the induction 

board is situated for heating the brass plate surface above. 
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A number of headstages are now available with blanking circuits built-in to enhance recording 

properties during stimulation experiments (see section 2.5.1.1). Specialist adapters (i.e. physical 

connectors to the headstage of biochip) are also available that connect directly onto the headstage 

contact pins that are designed for certain stimulating protocols. Users can also have an adapter 

custom made (by MCS) to meet more individual requirements (e.g. most common for specialist 

stimulation experiments).  

In some instances up to four headstages can also be linked to one PC for simultaneous investigation 

of four independent MEA biochips. This is done with MCS systems through the addition of a 

hardware device called an MEA switch.  

 
Figure 2.49: The 68-pin small computer standard interface (SCSI) cable type used for connecting MEA 

components in MCS in-vitro MEA systems. 

 
In original MCS MEA-60 systems a small computer standard interface (SCSI) cable type (Figure 2.49) 

is used to connect the headstage to further filters, an MEA switch and the data acquisition card. The 

data acquisition card that is housed within a PC is based on PCI-bus technology allowing up to 128 

channels to be sampled at a frequency between 2kHz up to 50kHz. Therefore, if four headstages are 

connected to one PC via an MEA switch system, only 120/240 (50%) of the electrodes in the four 

MEA biochips will be recordable.  

Each headstage also has three analogue channels and a digital port for connection to other 

peripheral devices , such as additional oscilloscopes (MCS MEA Manual, 2010). 

 

2.9.1.3 Data acquisition card or unit  
Original MEA-60 systems connect from the headstage and filters, or MEA switch, directly into a data 

acquisition card (Figure 2.50) that is housed in a specially built PC operating an XP or Windows 7 

operating system.  
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Figure 2.50: An MCS MC_Card removed from PC 
 

In more recent years new compact acquisition systems have appeared on the market that connect to 

the PC using USB 2.0 cables. This has made MEA systems more portable in the sense that the 

acquisition unit no longer needs to be housed in a desktop computer and so any computer with 

MC_Rack software (the Multi Channels System acquisition software) installed. In some cases this can 

help user groups with many MEA system users to manage the data produced more effectively. 

Groups can divide up the memory load simply onto each individual user’s PC. Scientists are then also 

responsible for their own recording and analysis, and the adequate protection and back-up of their 

data. It is this feature that has brought MEA technology a step closer to being a tool that any user 

can plug in to and operate intuitively. However, conversely this potential division of memory, and 

thus data, may not be ideal for groups where users need to share centralised data. 

 

2.9.1.4 System software and GUI  
All commercially available MEA systems are provided with a specialist acquisition software allowing 

initial experiment set-up and data acquisition. 

The acquisition software used in conjunction with Multi Channels Systems system is called MC_Rack 

and it is used to record or replay corresponding multi channels data files (.mcd extension). Upon 

opening an instance of MC_Rack the user interface (Figure 2.51) presents a grey work bench area 

that is filled with an appropriate virtual rack of tools. The tools (Figure 2.52) used to record and 

extract information from an .mcd file varies according to the cell preparation and the nature of the 

experiment being conducted.  
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Figure 2.51: The user interface upon opening a previously constructed recording rack in MC_Rack. 

 

 
Figure 2.52: The tools available in MC_Rack. 
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Figure 2.53: The user interface for the MCS 96-well QT-Screen systems acquisition software, called QT-

Screen. 
 
 
 

 
Figure 2.54: The user interface for the accompanying analysis software, called QT-Analyser. 
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The graphical interface of the MCS QT screen’s system software is shown in Figure 2.53 and 

Figure 2.54. The QT-screen is a specialist system for use with cardiomyocyte cells types in chemical 

entity screening. Separate software has been provided for recording (QT-Screen) and analysis (QT-

Analyser). The interfaces of the two software system components are complementary to one 

another. This differs from MC_Rack and other comparable generic MEA software (e.g. 

neuroexplorer) where one software tool acquires and analyses MEA data. 

2.9.1.4.1 Racks 

The virtual instruments used in signal acquisition and manipulation in MCS’s MC_Rack systems are 

built up into custom configured lists, called “racks”, consisting of logically ordered software tools. 

These racks, once constructed, can then be saved with the recorded data for both reference and for 

later re-use. Saving racks into folders with the recorded data also creates a working record of the 

settings and parameters used in both the acquisition and analysis (if MC_Rack is used for analysis). 

For example, in Figure 2.55 all of the data (.mcd files) for a particular test has been created in one 

appropriately labelled folder. The settings used to record those data are also recorded by saving the 

rack to the folder. In this example one rack was used to record the data, and another was used to 

extract information from those data. 

 

Figure 2.55: The storage of acquisition and analysis racks constructed in MC_Rack are clearly distinguishable 
when stored in amongst recorded multi channels data files (.mcd files). 
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An alternative analysis route, exploited by many MEA system users is to utilise other software for 

analysis stages. A software tool that has been widely exploited by MEA system users across 

applications is called NeuroEXplorer from Nex Technologies, Massachusetts, USA (Kapucu et al, 

2009; Tye et al, 2010; Robinette et al, 2011). The interface differs greatly to that of the MC_Rack 

program (Figure 2.56). 

 
Figure 2.56: The user interface upon opening Nex Technologies’ neurophysiological data analysis software 

NeuroEXplorer (Version 4.088). 

 

The analysis capabilities built into NeuroEXplorer software is limited (e.g. can only process one file at 

a time). As a result a number of specialist analysis software tools are also available for more detailed 

analysis of MEA data (e.g. that can analyse a common feature of multiple files at one time). This is 

also the analysis software provided with much of Plexon’s electrophysiology hardware. 

NeuroEXplorer is compatible with a diversity of MEA recorded data due to the built-in facility to 

import data files from all of the major MEA data acquisition software (e.g. Spike-2, Cortex, 

SciWorks). The following data acquisition data formats were supported by NeuroEXplorer at the 

time of writing: 

 Alpha Omega’s data acquisition software Alpha map which is used with Axion Biosystems 

MEA devices as well as Alpha Omega’s other data acquisition hardware (www.alphaomega-

eng.com). 
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 Cambridge Electronic Design’s Spike-2 software (www.ced.co.uk). Cambridge, UK. 

 The Cortex software available from the US National Institute of Mental Health Laboratory 

of Neurophysiology for data acquisition and experimental control (www.cortex.salk.edu). 

Bethesda, Maryland, USA. 

 Cyberkinetics data acquisition systems as demonstrated in and exploited for the highly 

publicised Brain Gate project (www.cyberkinetics.com). Cyberkinetics is a spinout from 

Brown University, Rhode Island, USA. 

 DataWave Technology’s SciWorks core software for data acquisition and analysis. 

(www.dwavetech.com). Colorado, USA. 

 HEKA Elektronik’s numerous data acquisition software (formerly Instrutech). 

(www.heka.com).  Germany, Canada and USA.  

 Multi Channel Systems acquisition and analysis software MC_Rack 

(www.multichannelsystems.com). Reutlingen, Germany.  

 Neuralynx’s Cheetah Data Acquisition Software (www.neuralynx.com). Montana, USA. 

 Plexon’s MEA Sort Client primary MEA software interface (www.plexon.com). Texas, USA. 

 R.C. Electronics data acquisition systems (www.rcelectronics.com). California, USA,  

NeuroEXplorers functionality is described in Figure 2.57. 

NeuroExplorer Functionality

Working with Other Applications: 

Designed as an open analysis environment. Can use other 

programs to extend the capabilities of NeuroExplorer:

 Copy data to Excel, edit the data in Excel and paste it back to 

NeuroExplorer

 Generate data in Matlab and transfer it to NeuroExplorer

 Copy numerical results to Excel or Matlab for additional 

analysis

 Execute Matlab scripts from NeuroExplorer for additional 

processing

 Create a lab book of your results in Power Point

Graphics:

Fully editable publication-quality figures:

 2D and 3D black-and-white and color graphs

 Unlimited number of graphs per figure

 Tables of graphs. Example: all pairwise correlations within a 

group of neurons

 Completely customizable figure elements: colors, fonts, tick sizes, 

etc.

 Single-page and multi-page printing

 Export of graphics to other applications via the clipboard, 

Windows metafiles and bitmaps

 Completely customizable figure elements: colors, fonts, tick sizes, 

etc.

 Create lab books of your results in Power Point.

Analysis:

Spike train

 Interspike interval histograms

 Rate histograms

 Perivent histograms

 Perievent rasters

 Autocorrelograms

 Crosscorrelograms with shift-predictors

 Joint peristimulus histograms

 Burst analysis

 Spectral densities and spectrograms

 Perievent histgorams versus time

 Place cell analysis

 Cumulative activity

 Instantaneous frequency

 Interspike intervals versus time

 Poincare maps of interspike intervals

 Epoch counts

 Coherence analysis

Continuously recorded signals:

 Correlations between spike trains and 

continuous signals

 Spike-triggered histograms and rasters

 Spectral analysis

 Perievent spectrograms

Populations of neurons:

 Principal component analysis

 Population PST histograms

 Spectral analysis

 3D network activity animation

Numerical Results:

Two numerical results tables (Results and 

Summary) are produced for every analysis. 

Results table contains

 Bin location

 Bin counts/frequencies/probabilities

 Shift-predictor values and confidence limits for 

crosscorrelogram analyses

 Joint PST matrix for Joint PSTH analysis

 Other analysis-specific results

Summary table contains:

 The number of spikes used in analysis

 Minimum, maximum, mean, standard 

deviation and standard error of mean of the 

histogram

 Expected values and the confidence limits for 

the PST and crosscorrelogram analyses

 Other analysis-specific statistics

 NeuroExplorer can transfer the data from 

results tables to Excel or Matlab.

Trial-Based Data Analysis:

Support for trial-based experiments:

 Trials of variable duration are supported

 Trials can be selected using the trial list

 Trials can be tagged according to various criteria. 

Example: tag the trials that contain the correct response.

 Analysis can be performed using all data or only the data 

from the specified trial set

 Several trial sets can be used in one analysis. Example: 

calculate crosscorrelograms for the correct-response 

trials and the incorrect-response trials and display them 

side-by-side or overlaid

Internal Scripting:

Built-in scripting language allows automation of 

many analysis tasks:

 Open and close data files

 Select data for analysis

 Specify analysis parameters

 Specify graphics options

 Apply analysis templates

 Save results as a text file

 Send data and results to Excel

 Send data and results to Matlab

 Execute Matlab scripts

 Modify existing spike trains and other data

 Create new events and spike trains

 Read and write text files

 

Figure 2.57: NeuroEXplorer Functionality. 
 [Source: Nex Technologies, 2011.] 
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A user can dictate how many channels to record from, at what frequency, for how long and, if 

desired, which features from the pre-processed raw signal they wish to keep as the resultant data 

files. For example, only the spike traces and their timestamps from a raw signal that cross a set 

threshold may be retained from a recording at 25kHz to reduce the overall file size. 

 

2.9.2 Commercially available systems 
A number of commercial enterprises have created an MEA industry where MEA systems are 

available for special order purchase. Due to the varying needs of scientist user groups around the 

world these systems cannot be described as being available “off-the-shelf”. User groups must 

approach manufacturers with their requirements so that they can be advised of the system 

configuration that is best matched to their needs. Once the required configuration has been agreed 

upon the purchasing user group can acquire anything from a full MEA system down to the bare 

minimum components of a system (e.g. a two-fold system with perfusion cannulas, stages, 

micromanipulators or a basic MEA-60 with just headstage amplifiers and custom-PC) depending on 

their budget. The most prominent industrial players and the global region in which they are based 

are listed in Figure  2.58. 

 
Figure 2.58: The key providers of commercial MEA systems worldwide. 

 

The number of commercially available MEA systems is increasing (currently ~7 manufacturers with 

1-2 systems) with the leading manufacturers providing both the hardware and software solutions. 

MEA development has been driven by the evolving needs of electrophysiological research, and as 

such a number of academic-industrial collaborations exist between the world-leading suppliers and 
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world-leading user groups. Industrial-industrial collaborations are also apparent between the smaller 

industrial players. 

 

Example Collaborations: 

 Potter Lab – Multi Channels Systems (Academic-Industrial). The Potter Lab at Georgia Tech 

(formerly CalTech) developed specialised lids for MEA biochips to prevent contamination 

and maintain local environment around cells (Potter and DeMarse, 2001).  These lids are 

now available commercially via MCS (http://www.multichannelsystems.com/products-

mea/product-details/products/189/ala-mea-mem.html). 

 Ayanda Biosystems - Multi Channels Systems (Industrial-Industrial). Ayanda Biosystems 

manufacture MEA biochips only. Previously held a strong collaboration with MCS so the 

design configurations of Ayanda Biosystems MEA biochips is complimentary to early MCS 

headstages.  

 Ayanda Biosystems – BioLogic (Industrial-Industrial). At the MEA Meeting 2010 a new 

collaboration was demonstrated with the bioMEA system manufactured by BioLogic of Claix, 

France (www.bio-logic.info) following previous collaboration with MCS.  

 Multi channels Systems - NMI Natural, Germany - Medical Sciences Institute at the 

University of Tubingen, Germany (Industrial-Academic-Academic). A large amount of MCS 

research and development activity stems from the work of these two academic institutes. 

 3-Brain – Plexon (Industrial-Industrial). The world’s first CMOS-based commercial MEA 

system was developed by a company called 3-Brain who announced a collaborative 

relationship with electrophysiology key players Plexon in 2010. 

 

2.9.2.1 System Configurations 
Multi Channels Systems provide several system configurations that centre on the number of 

channels and type of data acquisition unit. Competing enterprises have launched a number of 

equivalent systems but fail to exhibit a similar number of varying model configurations (Table 2.3). 

Inv = Design is suitable for use with an inverted microscope. BC = Headstage contains a blanking 

circuit (for use with stimulation protocols. Up = Design is not suitable for an inverted microscope set 

up. Where -2- occurs implies two MEA biochips can be used through the same acquisition hardware 

simultaneously. E = system is supplied with the enhanced perfusion equipment included.  
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Table 2.3: Commercially available configuration and their manufacturers. 

Channels Systems Manufacturer 

60 

MEA60-Basic Systems 

Multi Channels Systems 

MEA60-Inv-System 

MEA60-Inv-System-E 

MEA60-Inv-BC-System 

MEA60-Inv-BC-System-E 

MEA60-Up-System 

MEA60-Up-System-E 

MEA60-Up-BC-System 

MEA60-Up-BC-System-E  
(£34533 – February 2012) 

MEA60-2-Systems 

MEA60-Inv-2-System 

MEA60-Inv-2-System-E 

MEA60-Inv-2-BC-System 

MEA60-Inv-2-BC-System-E 

MEA60-Up-2-System 

MEA60-Up-2-System-E 

MEA60-Up-2-BC-System 

MEA60-Up-2-BC-System-E 

MEA2100-System 

MEA2100-60-System 

MEA2100-60-System-E 
(£42558 – February 2012) 

MEA2100-60-2-System 

MEA2100-60-2-System-E 

USB-Systems 

USB-ME64-System 

USB-MEA60-System 

USB-MEA60-Twofold System 

MED64 
Alpha Med Sciences 

MED64 4-sample system 

The Muse  
(€42000 –June 2010) Axion Biosystems 

MEA Workstation Plexon 

120 

MEA120-2-Systems 

Multi Channels Systems 

MEA120-Inv-2-System 

MEA120-Inv-2-System-E 

MEA120-Inv-2-BC-System 

MEA120-Inv-2-BC-System-E 
(£48671 –February 2012) 

MEA120-Up-2-System 

MEA120-Up-2-System-E 

MEA120-Up-2-BC-System 

MEA120-Up-2-BC-System-E 

MEA2100-System 

MEA2100-2x60-System 
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MEA2100-2x60-System-E 

MEA2100-120-System 

MEA2100-120-System-E 

MEA2100-2x60-2-System 

MEA2100-2x60-2-System-E 

MEA2100-120-2-System 
(£45919 – February 2012) 

MEA2100-120-2-System-E 

USB-ME128-System 

USB-MEA120-Twofold system 

96 MEA96-Well System Multi Channels Systems 

256 

USB-MEA240-Fourfold System 
(£73571 – February 2012) 

Multi Channels Systems 
USB-MEA256-System 

(£52642 – February 2012) 

768 The Maestro (€142000 – June 2010) Axion Biosystems 

4096 BioCAM-4096 3 Brain 
 

 [Correct 31st May 2011] 

 

The fundamental the differences between the systems can be described in terms of the number of 

electrodes through which recordings can be made simultaneously. Each electrode results in a 

channel of data, so the number of electrodes is the number of channels. By offering systems with an 

increased number of channels the flexibility of the MEA system is improved (in certain applications).  

For example, users can take recordings from larger cultures grow over larger surface areas to 

observe the activity of increased, and therefore more complex, neural networks, or, they may use a 

greater number electrodes positioned in a tighter grid array in attempts to identify the activity of 

individual synapses as opposed to entire cells, or, they may use biochips with multi-well layouts that 

have improved resolution (more electrodes) within each well to facilitate more cellular samples per 

test. 

 

 

 

 

 

 

 

 

 

 



104 
 

__________________________________________________________________________________
Context Research 

There are also systems and biochips used in some published literature that are not commercially 

available but that have been built by researchers to cater for specific needs or problems (e.g. need 

to position electrodes in specific geometries or desire to grow cells into or through certain 

structures) (Gholmieh et al, 2006; Oka et al, 1999; Dworak and Wheeler, 2008; Wang et al, 2009b; 

Zhang et al, 2009). Example devices are demonstrated in the following figures (Figure 2.59 to 

Figure 2.63). 

 

60 electrodes

Diameter 30µm

Spacing 50µm

Impedance 176kΩ

Used with MEA60 system

60 electrodes

Diameter 30µm

Spacing 50µm

Impedance 176kΩ

Used with MEA60 system

39 round, 49 square electrodes

Diameter 30µm, 20µm

Spacing 50µm, 50µm

Impedance 110kΩ

Used with MEA60 system

64 electrodes

Square 40µm

Spacing 60µm

Impedance 85kΩ

Used with MMEP system

 

Figure 2.59: An example of an MEA biochip for targeted brain slice stimulation and recording.  
ITO tracking, Au microelectrode tips.  

[Source: Gholmieh et al, 2006.] 
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Figure 2.60: An example of a novel MEA biochip and MEA system for use specifically in hippocampal slice 
studies. 

 [Source: Oka et al, 1999.] 
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Figure 2.61: An example of a biochip for highly selective recordings of axonal signals. 
 [Source: Dworak et al, 2008.] 
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Figure 2.62: An example of the manufacturing approach for a novel flexible MEA made by researchers at 
Philips Research, Netherlands. 

 [Source: Wang et al, 2009b.] 
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Architecture of the sensing 

biochip.

Schematics of the 

preamplifiers.

Biasing circuit for 

preamplifier buffers.

Preamplifier with resistive feedback, 

configured with 20dB gain.

“Signalstobedetectedaretypicallyoforder

100µV – 1mV peak-to-peak.”

OTA = Operational transconductance amplifier.

4 x 6 Microelectrode sensor 

array pixels = 24 analogue 

signal processing channels.

Electrical testing conducted 

using emulated neural 

signals.

OTA 

high-gain 

amplifier 

with on chip 

capacitors

On-chip Capacitors

Single 

analog 

signal 

channel

Planar 

microelectrode 

array sensor

Preamplifier 

buffer 

implemented 

with two-

stage 

amplifier

Reference 

electrode Circle

4 x 6 planar sensor array 

and 24 analog signal 

processing channels

One channel analog 

neural signal

 

Figure 2.63: A 24-channel mixed signal CMOS integrated biochip and buffers, amplifiers and 
control/interface unit schematics. 

 [Source: Zhang et al, 2009.] 
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2.9.2.1.1.1 International Research Interest 

Every two years the world’s only conference for MEA users and developers, MEA Meeting, occurs in 

Reutlingen, Germany. It is at this event that the most up-to-date technical advances are showcased 

alongside presentation of developments in MEA system application. The following table (Table 2.4) 

shows how the division of interrelating MEA-specific research has been done for the past 3 meetings 

and is planned for the next meeting. 

 

Table 2.4: Lists of MEA Meeting conference categories. These lists demonstrate how MEA related research is 
categorised, expanding and diverse  

MEA Meeting 2006 

 

MEA Meeting 2008 

 

MEA Meeting 2010 

 

MEA Meeting 2012 
(Planned) 

Neural Dynamics and 

Plasticity 

Neural Dynamics and 

Plasticity 

Neural Dynamics and 

Plasticity 

Analysis of neural 
dynamics and 
plasticity & 
Information coding in 
neural networks 
 

Retinal Signalling Retinal Signalling Retinal Signalling Applications in 
Systems 
Neuroscience (brain 
slices, retina, spinal 
cord, others) 
 

Signal Analysis and 

Statistics 

Signal Analysis and 

Data Mining 

Signal Analysis, 

Statistics and Software 

Signal analysis and 
statistics: 
(standardization and 
validation of multi-
electrode recordings) 
 

Heart Heart Heart Heart: 
Electrophysiology and 
pharmacology in 
primary and stem 
cell-derived cardiac 
myocyte cultures 
 

Pharmacology, 

Toxicology, Drug 

Screening 

Pharmacology, 

Toxicology, Drug 

Screening 

Pharmacology, 

Toxicology, Drug 

Screening 

Pharmacology, 
toxicology, drug 
screening (with MEA-
based assays) 
 

Advances in culture, 

recording and 

stimulation techniques 

CMOS-based array 

technology; Advances 

in culture, stimulation 

and recording 

Electrodes, Surfaces 

and Set-ups 

New materials and 
MEA design; 
Advances in MEA 
fabrication and 
instrumentation 
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techniques.  

Cellular Sensors Neuronal Engineering Stem Cell Derived 

Neuronal Networks 

Molecular 
engineering and 
analysis of cellular 
and sub-cellular 
neuron properties 

 Neurostimulation and 

Neuroprosthetics 

Electrical Stimulation, 

Implants and Robotics 

Electrical stimulation 
of single cells and of 
neural tissue 
 

  Culture Techniques Cell and tissue culture 
including 
microfluidics 
 

  Active Arrays and 

Electronics 

Multi-electrode 
probes for in - vivo 
applications 
 

  Plant Cells  

   

The amendment of categories through the years shows continuing interest in neural, retina, heart, 

and pharmacological developments. Signal analysis is also a consistent area of interest. In addition to 

that the trend towards development for cell culture and in vivo influences is emerging.  

 

2.9.2.2 Cutting edge MEA Biochip Re-design  
New generations of biochips are emerging (Braeken and Prodanov, 2010). For example, a recent 

advance in biochips specifically suited to slice applications has emerged that allows perfusion of 

media and chemical entities throughout prolonged testing (Motamedi et al, 2011). These biochips 

are called perforated MEAs (pMEA) (Figure 2.65). 

 

Three dimensional arrays are also under development in the USA as the next step forward in in vitro 

recreation of natural neural conditions for controlled studies (Musick et al, 2009). The concept 

behind such a biochip is production of electrode sites at locations within the three-dimensional 

volume of space over and above the base substrate (Musick et al, 2009). A prototype of one concept 

developed by established researchers in the field (Figure 2.64) consists of a stack of individually 

patterned layers. Chambers are formed through the stacked structure defining a 3D region of 

microtunnels through which neurons are grown. Along the walls of these microchambers and 

tunnels are exposed gold electrodes that allow both recording and stimulation. Silicon elastomer 

microfluidic layers serve as an “artificial vasculature for nutrient supply and aeration” and are 
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incorporated to provide media to the neurons in situ as well as to serve as insulation between 

microelectrodes (Musick et al, 2009).  

 

 

Figure 2.64: A fully assembled 3D array with a layered approach manufactured by the University of Florida’s 
Neuroengineering laboratory (Musick et al, 2009). 
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2.10 The MEA biochip  
 

MEA biochips are delicate consumables that due to their micrometre scale features can be easily 

damaged by micromanipulators or cleaning protocols. Nevertheless, biochips are intended to be 

multiple use products (~10-30 uses) if cared for appropriately (MCS MEA Manual, 2010). Gentle cell 

removal and cleaning (i.e. enzymatic rinses, plasma cleaning, UV sterilisation) can allow repeated use 

before electrode degradation occurs. Johnstone et al (2010) described the MEA biochip as “quite 

economical” at “$10-30 per use”. There are a number of different MEA biochip configurations 

available from industrial vendors (see Figure 2.65) and some facility to make custom biochips also 

exists if scientists require a particular workspace design configuration for their research needs.  

 
 
 

2.10.1 Microelectrodes 
The microelectrode quality is critical to the success of each MEA biochip manufactured. Knowledge 

of material options, electrode geometries, electrode spacing, signal-to-noise ratios and insulation 

types is required.  

 

Microelectrode Materials: Traditionally MEA biochips were made using gold (Au) for the 

microelectrodes, tracking and contact pad material (Wise et al, 1970). Gold is relatively chemically 

inert so serves well as a conductive, non-toxic electrode material. Due to the relatively high 

impedance of pure Au compared to Au alloys later techniques used platinised gold to improve the 

Signal-to-Noise ratio (SNR) (Breckenridge et al, 1995). Alternative material types were required for 

the electrode tips, tracks and contact pads as the platinised Au electrodes were shown to be more 

unstable over prolonged use due to a greater degree of degradation (Fejti et al, 2006).  

 

New fabrication approaches have become available to MEA biochip manufacture, resulting in 

changes to the standard material used at the microelectrode tip, tracking and contact pad. Titanium 

nitride (TiN) microelectrode tips and contact pads are now the most common variant (Figure 2.65) 

due to superior electrical properties (see Table 2.5), with titanium (Ti), or Indium tin oxide (ITO) used 

for tracking tracks. Au is used for cheaper MEA biochips that have larger electrodes at greater 

pitches (e.g. ecoMEA from MCS). Other leading manufacturers, namely Ayanda Biosystems and 

Axion Biosystems, provide gold (Au) and platinum (Pt). Plasma-enhanced chemical vapour deposition 
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(PECVD) is an example of a manufacturing technique exploited for the production of these 

microelectrodes (De Asis et al, 2009).  

 

Table 2.5: Electrical properties of microelectrodes (microelectrode surface area = 80µm
2
) 

Material 
Safe Charge Injection Limit 

(mC/cm2) 

Charge Capacity 

(mC/cm2) 

Zf=1kHz 

(kΩ) 

Au 3.7 5.7 2900 

TiN 23 42 150 

[Adapted from Janders et al, 1996.] 

 
Titanium nitride (TiN) was introduced to MEA biochip manufacture in the 1990’s (Janders et al, 

1996). MCS currently produce a range of configurations using TiN microelectrode tips because of the 

superior electrical properties.  TiN has been adopted in part due to its high nanoporosity, which 

results in electrodes with higher capacitances values when compared to previous Au tips. A high 

capacitance not only results in improved SNR but also reduces undesirable faradaic processes that if 

allowed to occur may harm the cells in situ (Janders et al, 1996). The biocompatibility of TiN is also 

now well documented (Huang et al, 2005). Interesting properties that make it suitable for 

microelectrode tips include reduced levels of bacteria on TiN surfaces (Scarano et al., 2003) and 

improved cell adhesion (Groessner-Schreiber et al., 2002; Cyster et al, 2004) when compared to Ti. 

TiN is also stable in aqueous solutions, and has high abrasion and corrosion resistances (Watari et al, 

2004).  

 

Indium tin oxide (ITO) is optically transparent and has been found to have good biocompatibility 

(Zhang and Oyama, 2005). ITO has been demonstrated as a viable material for creation of recording 

and stimulating biochip elements allowing systems that could monitor network activity without 

limiting optical observation of the network during culture (Gross et al, 1995).  

 

Carbon Nantotubes (CNT): As well as good chemical and thermal stability (Gambazzi et al, 2010) 

carbon nanotubes has exceptional biocompatibility (Harrison and Atala, 2007), are ultra-light weight, 

high mechanical strength, large surface area and excellent electrical properties (Keefer et al, 2008; 

Gabay et al, 2007) which are all ideal for the MEA application environment. 
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MEA Biochip Variants

Standard MEAs with 60 electrodes
 
Electrode arrangement: 8x8 or 6x 10
Inter-electrode distances: 100, 200, 500µm
Electrode material: TiN
Tracking material: Ti or ITO tracks
Electrode diameter: 10 or 30µm electrodes
Electrode impedances: 30µm diameter = 30-50 kΩ, 10µm diameter 
= 250-400 kΩ
Electrode shape: Planar
Reference electrode: Electrode 15
Insulation material: Si3N4 
Base substrate: Glass
Base substrate thickness: ~1mm.
Temperature compatibility: 0 - 125°C

“Thin” MEAs

Electrode arrangement: 8x8, 2x(5x6)
Inter-electrode distances: 30, 100, 200µm
Electrode material: TiN
Tracking material: ITO tracks
Electrode diameter: 10 or 30µm electrodes
Electrode impedances: 30µm diameter = 30-50 
kΩ, 10µm diameter = 250-400 kΩ
Electrode shape: Planar
Reference electrode: Electrode 15
Insulation material: Si3N4 
Base substrate: Thin glass supported on 
ceramic.
Base substrate thickness: Thin glass - 180µm, 
ceramic - ~800 µm
Temperature compatibility: 0 - 125°C
Reason for selection: superior optics.

Flexible MEAs 

Electrode arrangement: 9x8, 6x6, 10x2 +4
Inter-electrode distances: 300, 625, 750µm.
Electrode material: TiN or Au
Tracking material: Au
Electrode diameter: 30, 50, 80, 100µm electrodes
Electrode impedances: ~50 kΩ
Electrode shape: Planar
Insulation material: Si3N4 
Base substrate: Polyimide (2611 foil or Kapton)
Base substrate thickness: ~1mm.
Temperature compatibility: 10 - 40°C (2611 foil), 
0 - 125°C (Kapton).
Reason for selection: For in vivo and semi-intact preparations.

“Eco” MEAs

Electrode arrangement: 8x8, 2x(5x6)
Inter-electrode distances: 100,200,500 µm
Electrode material: TiN or Au
Tracking material: ITO or Au
Electrode diameter: 10, 30, 100µm electrodes
Electrode impedances: 30µm diameter = 30-50 kΩ, 
10µm diameter = 250-400 kΩ, 10010µm diameter = 
~30 kΩ
Electrode shape: Planar
Insulation material: Si3N4, Kapton, SU-8. 
Base substrate: Glass or Kapton
Base substrate thickness: ~1mm.
Temperature compatibility: 0 - 125°C.

High-density MEAs

Electrode arrangement: 16x16
Inter-electrode distances: 60, 100, 200µm
Electrode material: TiN 
Tracking material: ITO 
Electrode diameter: 10 , 30µm electrodes
Electrode impedances: 30µm diameter = 30-50 kΩ, 
10µm diameter = 250-400 kΩ. 

Electrode shape: Planar
Insulation material: Si3N4, Kapton, SU-8. 
Base substrate: Glass
Base substrate thickness: 1mm.
Temperature compatibility: 0 - 125°C.

Spatial resolution for conduction velocity calculation and 
synaptic delay measurability.
100µm spacing in centre, 200µm further out.
Workspace ~2.8 x2.8mm

Multi-well MEAs

Number of wells: 4, 6, 9
Electrode arrangement: 4x (3x5), 6x (3x3), 9x (6x5) recording with 9x (2x1) stimulating
Inter-electrode distances: 200, 300, 500, 1000µm
Electrode material: TiN 
Tracking material: Ti or ITO 
Electrode diameter: 30, 50µm electrodes
Electrode impedances: 30µm diameter = 30-50 kΩ
Electrode shape: Planar
Insulation material: Si3N4, 
Base substrate: Glass
Base substrate thickness: 1mm.
Temperature compatibility: 0 - 125°C.

Electrodes split into groups/patterns.
Groups separated by varying distances.

Where electrodes: Electrode 10µm with Spacing 30µm. Principle = allows the activity of 
single neuron to be picked up by a number of electrodes. Allows “multi-dimensional 
fingerprint-like patterns” for identification of single cells more precisely (Fejti et al, 2006)

Perforated MEAs

Electrode arrangement: 8x8, 6x10
Inter-electrode distances: 200µm (8x8), 100µm (6x10)
Electrode material: TiN 
Tracking material: Ti 
Electrode diameter: 30 (record), 50 (stimulate) µm electrodes
Electrode impedances: 30-50 kΩ
Electrode shape: Planar
Insulation material: Polyimide 
Base substrate: Ceramic or glass carrier with Polyimide film perforated centre
Base substrate thickness: 1mm.
Temperature compatibility: 10 - 50°C.

Different arrangements exist where specific stimulation 
electrodes are integrated.

For slice recording. Positioning and fixation.
Tight contact – for good SNR 
By application of negative pressure.
Additionally the same openings can be used to perfuse 
the slice from the underside.

Addresses concern - penetrating 3D electrodes could 

damage the tissues natural circuitry.

 

Figure 2.65: A summary of state-of-the-art commercially available MEA biochips. Microelectrode shapes, 
materials, diameters, impedances and temperature compatibility can all be compared quickly. 
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2.10.1.1 Electrode Profile 
Microelectrodes may have a planar profile (Figure 2.66) to allow a monolayer of cells (Figure 2.67B) 

to be grown on top of them (Nam et al, 2004) or may alternatively be shaped into three-dimensional 

cones (Figure 2.68) for slice preparations (Figure 2.67A). The “3D tips” are designed to penetrate 

through the outer layers of cells damaged during slicing process to the healthy cells deeper into the 

slice (geometry information can be viewed in Table 2.6). The outcome is larger signal amplitudes due 

to better cell-electrode coupling with the inner undamaged cells (Heuschkel et al, 2002). 

 
Figure 2.66: A planar MEA. Electrode tips 50 x 50µm. 

 [Source: Oka et al, 1999.] 
 
 

 

 
Figure 2.67: Neural cell MEA applications. A) Hippocampus slice positioned over 3D microelectrodes. B) 

Dissocaited neurons cultured over planar electrodes (~1000 cells per mm
2
). 
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Figure 2.68: A scanning electron microscope (SEM) image of a 3D MEA biochip manufactured by Ayanda 
Biosystems intended for use with tissue slice applications. Model MEA60 V5. A) A top view of 5 

microelectrodes diameter 30µm, magnification x1000. B) A closer look at one 3D electrode, magnification 
x2500. 

 

Table 2.6: Example of 3D microelectrode geometries in MEA biochips. 

Author 
Diameter 

(µm) 

Height 

(µm) 
Comment 

Held et al, 2010a 30 50 Cylindrical pillar, Gold 

Vazquez et al, 2010 ~30 ≥50 “Scalloped” cone and pillar 

Held et al, 2010b ≥2 ~5 For intracellular recording on MEA, Silver 

Chu et al, 2005 30 50-70 Cylindrical pillar 

 

2.10.1.2 Signal-to-noise ratio 
Large electrode surface areas result in an increase in capacitance (Janders et al, 1996). High 

capacitance is ideal where low noise is required (Adl and Paekerar, 2008). High capacitance is 

especially relevant in applications that inject electrical stimuli via the microelectrodes, allowing more 

reliable stimulation protocols to be employed (Meacham et al, 2008).  

 

Typically the standard microelectrode diameter is 30µm. Noise levels have been documented at 

around less than +/- 10µV of the baseline when sampled at 25kHz. It is important to be aware of the 

compromises that are interrelated in MEA biochip design. The size of the electrode, the resulting 

signal-to-noise ratio, and the probability of recording a signal all vary between research applications 

(Morin et al, 2005). In terms of design, larger electrodes results in bigger capacitances. This reduces 

impedance values of the electrodes (good for stimulation protocols) but has a detrimental effect on 
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the signal-to-noise ratio. For detection of cellular signalling the signal-to-noise ratio needs to be as 

high as possible to ensure that the field potential is distinguishable from the noise.  

2.10.1.3 Electrode layout and spacing for signal detection 
There is an increasing demand for specific electrode layouts based on specifications laid out by 

scientists in pursuit of particular biological questions (Fejti et al, 2006). Biochips have been 

successfully manufactured that deviate from the traditional 8 x 8 grid array design (e.g. Figure 2.65). 

Previously the size and spacing of the electrodes was considered to be of critical importance when 

seeking to guarantee signal detection (from neurons). Preparation techniques such as controlled 

application of surface treatment agents (such as Poly-D-lysine (Soussou et al, 2007)) prior to cell 

seeding (or plating) are used to enhance attachment and control positioning of the cells over the 

workspace region of the MEA’s surface. 

 

Some particularly representative examples of physical design changes (Figure 2.69) that have been 

made to biochips in attempts to improve controlled cell positioning for signal detection and quality 

include the micro-machining of silicon wafers with integrated electrodes to produce “cages designed 

to imprison neurons” (Maher et al, 1999; Erickson et al, 2008) and production of micro-chambers 

and micro-channels made from agarose material around and between electrodes to “trap neural 

cells” (Suzuki et al, 2004b). Awareness of these designs supported research that has delivered novel 

ideas and findings to this area. 

 
Figure 2.69: “Caged neuron” MEA biochips. A) Scanning electron micrograph (SEM) of a neurochip cleaved to 

reveal the cross section. The octagonal structure on the top surface is the silicon nitride canopy. The radial 
raised bars of the canopy are tunnels through which neural processes can grow. The walls are silicon. The 
floor of the well is a suspended film of silicon nitride. The square centred in the floor of the well is a gold 
electrode. Scale bar: 20 µm.  B) SEM of the “neurocage” design. A neuron is placed in the central chimney 

region, near the electrode. Axons and dendrites are free to grow though the tunnels to synapse with other 
neurons. The cage is made out of 4 µm parylene, a biocompatible polymer. Low-stress silicon nitride 

insulates the gold electrode and leads. Scale bar: 10 µm. 
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2.10.1.4 Insulation 
Insulation materials are applied over the upper surface of the MEA biochips everywhere except at 

the microelectrode tips and the contact pads to isolate the conductive material from the external 

environment and culture medium (Heuschkel et al, 2002). This insulation material effectively serves 

as the underlying cell culture substrate. Biocompatibility is therefore important for all materials 

selected for application as insulators as they are exposed to the cellular environment within the 

media well area. The insulator must also be suitable for use in conjunction with pre-treatments, such 

as poly-D-lysine or Matrigel™, and post-treatments, such as trypsin, industrial methylated spirit 

(IMS) and plasma cleaning protocols. Materials that have been successfully adopted for this purpose 

include silicon nitride (Si3N4), polyimide, silicon resin, polyacrylamide and SU-8.  

 

In many cases the insulation surface is pre-treated with specific biological molecules prior to cell 

seeding to promote cell adhesion (Berichevsky et al, 2009). Treatments (e.g. poly-lysine, laminin, 

polyethyleneimine, and Matrigel™) are applied in minute quantities (e.g. 4µl per 50 biochips) prior to 

cell seeding via dispersion in solutions. These treatments have also been experimented with for 

enhancing signal capture reliability through localised, controlled application to precise locations over 

and between electrodes where cell attachment and growth are most desired (Brewer, Boehler and 

Wheeler, 2006; Worz et al, 2008; Goto et al, 2010). 

 

2.10.1.5 Most Recent Areas of Microelectrode Development  
The recent areas of MEA biochip are listed in Table 2.7. 

Table 2.7: MEA biochip areas of development. 

Area of Development Development 
Publication and Research 

Institution(s) 

Surface engineering of biochip for 

controlled cell positioning and/or 

growth 

“3D Scaffold” geometry or 

microchannels 

 

 

Patterned surface treatments 

 

 

 

Musick et al, 2009 – University of 

Illinois and University of Florida. 

 

 

Kim et al, 2010 - Seoul National 

University, Seoul, Republic of 

Korea /Department of Bio and 

Brain Engineering, Korea Advanced 

Institute of Science and 

Technology, Daejeon, Republic of 

Korea. 
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PDMS microchannels and Wells 

 

 

 

Agarose and hydrogel 

microchannels and wells 

 

 

 

Laser 

 

 

Dworak et al, 2008 – University of 

Illinois. 

 

Nam et al, 2010 - Department of 

Bio and Brain Engineering, KAIST, 

Daejeon, Korea. 

 

 

Harbodt et al, 2010 - University of 

Tübingen, Reutlingen, Germany 

/Multi Channel System MCS 

GmbH, Reutlingen, Germany/ TILL 

Photonics GmbH, Gräfelfing, 

Germany. 

Electrode Surface Carbon nanotubes (CNT) 

 

 

 

 

 

 

 

 

 

 

 

 

Nano-structures 

Gambazzi et al, 2010 - Lab. of 

Neural Microcircuitry, Brain Mind 

Institute, EPFL, Lausanne, 

Switzerland /Dept. Pharmaceutical 

Sciences, Univ. Trieste, Italy 

/Naturwissenschaftliches und 

Medizinisches Institut (NMI), 

Reutlingen, Germany /Dept. 

Biomedical Sciences, Univ. 

Antwerp, Universiteitsplein 2, 

Wilrijk, Belgium. 

 

 

Koester et al, 2010a – University of 

Rostock, Germany. 

 

 

Koester et al, 2010b - University of 

Rostock, Germany / University of 
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Pores 

Freiburg. 

 

Electrode Geometry Pillars and 3D cones for 

stimulation 

 

 

 

 

Cavities 

 

 

 

Microneedles  

Held et al, 2010a – NMI 

Reutlingen, Germany. 

Vazquez et al, 2010 – Technical 

University of Denmark. 

 

 

Baaken et al, 2010 - University of 

Freiburg, Germany  

 

 

 

Saito et al, 2010 – University of 

Tokyo. 

 

Gunning et al, 2010 - University of 

Glasgow, Glasgow, UK /AGH 

University of Science and 

Technolgy, Krakow, Poland 

/University of Indiana, 

Bloomington, IN, USA /University 

of California Santa Cruz, Santa 

Cruz, CA, USA /SLAC National 

Accelerator Laboratory, Menlo 

Park, CA, USA 

Electrode Material CNT 

 

 

 

 

 

Gabriel et al, 2010; Bongard et al, 

2010 - Instituto de 

Microelectronica de Barcelona, 

Spain /Institute of Biomedical 

Research August Pi y Sunyer, 

Barcelona, Spain /Institut Catala de 

Recerca i Estudis Avancats, 

Barcelona, Spain. 
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Solid silver (Ag) Microneedles 

 

 

 

Iridium Oxide 

 

 

 

Boron-doped nanocrytalline 

diamond 

 

 

 

Polymer Coatings 

 

Fuchsberger et al, 2010; Stamm et 

al 2010 - University of Tuebingen, 

Reutlingen, Germany /University 

of Trieste, Trieste, Italy. 

 

 

Held et al, 2010b - NMI Reutlingen, 

Germany. 

 

 

Gobbels et al, 2010 - RWTH 

Aachen University, Germany 

 

 

 

Colombo et al, 2010;Gosso et al, 

2010 – Ulm University, Germany 

/NIS Centre Italy. 

 

 

Ryynanen et al, 2010 (polystyrene) 

– Tempere University of 

Technology, Finland 

Kang et al, 2010 – KAIST, Daejeon, 

Korea. 

 

Gautam and Narayan, 2010 - 

Jawaharlal Nehru Centre for 

Advanced Scientific Research, 

Jakkur P.O., Bangalore, India. 
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2.11 Future 
In vitro MEA systems currently allow a number of different cell types and sources to also be analysed 

in different ways, increasing not only convenience for user groups but also the diversity of 

applications to which these systems can be applied. Figure 2.70 illustrates factors that are 

influencing the design and manufacture of MEA systems.  

Evolution of technology: 
 Through increased throughput (Breier et al, 2010)
 Increased Sophistication – analysis (Brown et al, 

2004), system (Charvet et al 2009), experiment 
protocols (Vickerman et al, 2008)

 Increased automation (Vickerman et al, 2008)
 Reduced system size/footprint (Johnstone et al, 

2010)

Improve specialisation for cell types and preparations:
 Biochips for brain region research (Gholmieh et al, 2006)
 Biochips for general slice preparations (Boppart et al, 1992)
 Biochips for beating cardiomyocyte clusters (Flaherty et al, 2012)
 Biochips for controlled neural network propagation (Dworak et al, 

2008) 

Improve fabrication capabilities:
 Manufacture biochips that allow more recording channels 

(Berdondini et al, 2009)
 Manufacture smaller electrode geometries to facilitate improved 

resolution over equivalent contact area (Aziz et al, 2009).

Pursue novel sensor/electrode materials:
 Carbon nanotubes for better electrical connection with cells 

(Bongard et al, 2010)
 ITO for improved optical parameters (Jahnke et al, 2009)

Types: 
 Neurons (Hill et al, 2010)
 Cardiomyocytes (Denning and Anderson, 2006)
 Other – smooth muscle cell (Nakayama et al, 

2008), mast cell (Yeung et al, 2008), Islet cells 
(Raoux et al, 2001), Plant root apex (Masi et al, 
2009).

Sources: 
 Animal – monkey (Lehmann et al, 2010), 

invertebrate (Merz and Fromherz, 2002), 
chicken (Jones et al, 2011), mice (Biodo et al, 
2010), rat (Hill et al, 2010).

 Human – embryonic stem cell (Banach et al, 
2003), induced pluripotent stem cells (Gupta et 
al, 2010) 

Cells

Biochips

El
ec

tr
on

ic
s

Future MEA 
Technology & Application 

Influenced By...

 

Figure 2.70: Future MEA technology application will be directly influenced by a combination of 
developments across cells, biochips and electronics. 
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There is promise for MEA systems to support assessment of cells for cell therapies, and in new drug 

discovery and safety pharmacology.  A need to screen compounds in their native environments on 

larger scales, rapidly is required.  Increased sophistication of attention to new chemical entity 

treatments prior to in-vivo studies could potentially eliminate earlier those candidates that will fail 

at a later stage (Stett et al, 2003), therefore reducing revenue lost.  

 

The following schematic (Figure  2.71) demonstrates potential cell sources that have been 

successfully coupled to MEA technology and how application of cells types is changing. The 

combination of patch clamp and MEA technologies have been validated as valuable methods of 

assessing electrophysiological characteristics of the cell types described. Systems will continue to 

evolve with the needs of the differing cell sources and electrophysiological characterisation 

requirements of fundamental research, cell therapy development and pharmacology settings. 
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Animal Human

Dissection Stem cell Cadaver

Embryonic

Induced 

pluripotent

Available in very 

low numbers, 

highly laborious, 

use for few hours. 

High maintenance, 

ethical issues 

Correlation studies 

required between 

animal and human
Effects directly 

correlated to 

humans

2. For cell therapies 3. For drug discovery and 

safety pharmacology

FDA recommendations

Assessment of neuro, 

cardio and respiratory 

effects.

Preserve human life, prevent 

suffering and prevent wasted 

investment

For example:

1. Replace damaged areas of 

tissue (i.e. myocardium 

following heart attack)

2. Component of realisation 

of artificial organs

Novel solutions for challenging 

medical problems

Stem cell

Patch clamp MEA Systems

1. For fundamental 

research

Improve understanding of 

cellular and tissue processes

Cell Sources

Electrical characterisation

Potential for combined systems, or systems that shared analysis resources/

routines. Opportunity to test for unidentified correlations.

&

From animal tissue sources towards human stem cell-derived 

sources for superior comparability to human body.

Continue to optimise for:

 
Figure  2.71: How cell sources and electrical characterisation technologies will combine serve future 

research, medical and pharmaceutical industry needs. 

 

2.11.1 Cell types/sourcing 
Much of the work published that has used MEA technology has studied cells and tissues from animal 

sources such as mice (Biodo et al, 2010), monkeys (Lehmann et al, 2010) and chickens (Jones et al, 

2011). Animal cell sources can be genetically mutated (Bazelot et al, 2012) relatively simply and are 

available in greater quantities (Johnstone et al, 2010) than living samples directly from humans. 
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Safety pharmacology applications still require animal tissue based testing but future intentions aim 

to reduce or eradicate the need for animal testing by adjusting testing to cells sourced from human 

stem cells (Johnstone et al, 2010). This source is intended to show a closer correlation of responses 

observed in in vitro testing to human centred in vivo stages at clinical trials. At present work must be 

conducted following animal based trails to correlate findings to likely human tissue/system 

responses.  

 

2.11.1.1 Human Stem Cell Sources 
Human stem cells can be acquired by different means. Embryonic stem cell lines have been 

established using discarded In Vitro Fertilisation (IVF) embryos (Thomson et al, 1998). This source of 

stem cells is globally controversial due to a number of ethical debates centred on the destruction of 

human embryos. Alternatively induced pluripotent stem cells have recently emerged (Takahashi et 

al, 2007) which derive stem cells from human adult somatic cells (already differentiated cells taken 

from an adult donor). A somatic cell can be any cell that contributes to the formation of an 

organism, such as a skin, bone or blood cell.  

Stem cell extraction and passaging from human embryos is illustrated in Figure 2.72. Stem cells are 

transferred from a pre-implantation stage embryo into a culture dish containing an appropriate 

culture medium. The stem cells divide and spread over the surface of the culture dish. In some cases 

a feeder layer is used to support the stem cells in vitro. Mouse cells are used to create a sticky 

surface to which the stem cells can attach. These feeder cells also release nutrients into the culture 

medium.  

If the plated cells survive, divide and multiply enough to crowd the culture dish they are gently re-

plated into several culture dishes. The process of re-plating (known as sub-culturing) is repeated 

many times over several months. Each re-plating (sub-culturing) cycle is referred to as a passage. 

Once a the embryonic stem cells have proliferated in cell culture for a prolonged period of time 

without differentiating , they are confirmed to be pluripotent, and they have not developed genetic 

abnormalities they are referred to as a stem cell line.  

The process of establishing stem cell lines is inefficient so a new line is not established every time 

embryonic stem cells are needed. At any stage in the passaging process batches of cells can be 

frozen and shipped to other stem cell users (The National Institutes for Health Resource for Stem 

Cell Research, 2012).  
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Embryo

hESCs

hESCs

hESCs hESCs hESCs hESCs hESCs

hESCs

hESCs hESCs hESCs hESCs hESCs

Pre-implantation stage embryo

Human embryonic stem cells

hESCs divide and spread over surface

Culture medium

Mouse embryonic skin cells serving as a 
feeder and attachment layer.

(Not used in every case.)

If cells survive and divide

Gently removed and re-plated into 
several fresh culture dishes

hESCs hESCs hESCs hESCs hESCs

hESCs hESCs hESCs hESCs hESCs

hESCs hESCs hESCs hESCs hESCs

hESCs hESCs hESCs hESCs hESCs

hESCs hESCs hESCs hESCs hESCs

hESCs hESCs hESCs hESCs hESCs

hESCs hESCs hESCs hESCs hESCs

hESCs hESCs hESCs hESCs hESCs

The re-plating process is repeated 
many times over many months. Each 
cycle is referred to as a passage.

Once the cell line is established 
millions of embryonic stem cells can 
be yielded from the original cells.

Batches of hESCs can be frozen and 
shipped to other laboratories for use.

 

Figure 2.72: Stem cell passaging and line establishment. 
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2.11.1.1.1 Cells for cell-based therapies 

Cell therapies are amongst the most appealing applications for stem cells. Cardiomyocytes derived 

from stem cells are an example of a cell type currently under examination as potential cell for 

therapy (Xu et al, 2006).  

 

A common mechanism of development of heart failure is the loss of ventricular cardiomyocytes (Lee 

and Terracciano, 2010). It is hoped that they may in the future contribute to restoration of normal 

heart function by replacing damaged cardiomyocytes in damaged tissue (Braam et al, 2008). This is 

an on-going area of research that is believed to hold much promise and early experiments using 

skeletal myoblasts were transplanted with the intention of replacing damaged cells. Results showed 

modest improvements (Taylor et al, 1998) but later repetitions found that cells appear to remain 

mechanically and electrically isolated from the recipient myocardium (Rubart et al, 2004). Bone-

marrow derived cells have also been attempted (Orlic et al, 2001), showed encouraging results, but 

these results have not been replicated by others attempting to reproduce them (Murry et al, 2004). 

Interestingly all groups measured improvement in whole heart function.  

 

2.11.1.1.2 Drug discovery and safety pharmacology. 

Recent work has revealed pharmacological sensitivities that can be identified and characterised 

using MEA systems (Bettencourt et al, 2008; Ham et al, 2008). Any possibility to improve decision 

making and reduce timelines and attrition rates would provide enormous benefits to the process of 

drug discovery and development (Braam et al, 2008). The current work of several laboratories is 

testing the same set of compounds using a standard approach to demonstrate that chemical entities 

can be identified and categorised consistently based on observations of their toxicity pathways 

(Johnstone et al, 2010). A 5 year European Union (EU) funded project called ACuteTox took place 

between 2005-2010. This project involved working to integrate toxicity screening approaches so that 

standard assessments of toxicity can be conducted (Bal-Price et al, 2008). 

 

2.11.1.1.2.1 Neurotoxicity 

“MEAs are high content platforms that can provide detailed information regarding changes in 

function of networks of neurons exposed to test compounds” (Johnstone et al, 2010). At present 

regulatory authorities (e.g. Organisation of Economic Cooperation and Development, U.S. 

Environmental Protection Agency) use solely animal in vivo methods for both adult and 

developmental neurotoxicity testing. Until now “no in vitro approaches for evaluating the neurotoxic 

hazard of compounds have been formally validated.” The main problem in the development of a test 
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strategy with a predictive capacity for neurotoxicity is the complexity of action on the human 

nervous system. Mechanisms underlying the effects of compounds in the central nervous system 

(CNS) and the peripheral nervous system (PNS) are so diverse that it is currently impossible to cover 

all these mechanisms with one single model and using a small set of end points (Bal-Price et al, 

2010). 

 

Previous work has used spike rates or average spike rate for neurons in a network as one parameter 

to describe actions of drugs or chemicals even though even more sophisticated assessment is 

possible on MEAs. The possibility to determine concentration-response curves using neural activity 

as a neuronal specific endpoint has been suggested and early demonstrations presented (Lenk and 

Priwitzer, 2011). 

 

2.11.1.1.2.2 Cardiotoxicity 

Effects on the hERG channel present in the cell membranes of cardiomyocytes, which governs the IKr 

current, can be blocked by drugs resulting in cardiotoxic effects. The hERG channel has a major role 

in cardiac repolarisation. Interference at the hERG channels affects the length of action potentials 

and consequently the QT interval on an ECG. In humans a prolongation to anything greater than 

about 440-460ms may result in life threatening arrhythmias. Identification of QT interval changes 

and specifically its prolongation has led to the withdrawal of some drugs from the global market. 

 

The QT interval on an ECG corresponds to the total time of ventricular depolarisation. It’s now part 

of standard pre-clinical evaluation of all new drug candidates to assess risk of delayed repolarisation 

and prolonged QT interval (Braam et al, 2008). 

 

 

2.11.2 Medium to High Throughput Screening 
The need for higher throughputs throughout future MEA system applications is summarised in 

Figure 2.73. MEA technology application is presently time consuming and labour intensive. 

Increasing the throughput capability of systems will allow opportunities to speed up experiments 

and to improve experiment efficiencies. Development of new MEA technologies will improve 

reproducibility of results in fundamental research by providing larger more detailed data sets, 

applicable cell therapies development, and especially in drug discovery and safety pharmacology 

settings. This combined with automation may be key to convincing the pharmaceutical industry to 
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use planar MEA technologies for drug discovery and high-throughput drug screening (Morin et al, 

2005).  

Future MEA:

Fundamental Research

Cell Therapy

Drug discovery and Safety 

Pharmacology

All require testing on statistically 

significant numbers of targets

Requires high throughputs 
(has been the case in other 

bioscientific screening domains)

 
Figure 2.73: Future MEA technology will be required with high throughput capability across application 

domains. 

 

 

2.11.3 MEA for a Brain Machine Interface 
The emerging field of neuroprosthesis aims to restore some of the lost neural function by selective 

electrical stimulation of specific sensory or motor pathways. A key element in this research field is 

the interfacing of the electronics that will deliver the stimuli with the nervous tissue. Development 

of penetrating MEAs for in vivo applications is concurrently evolving drawing upon over lapping 

scientific principles and microfabrication techniques. The active tips in these penetrating MEAs 

provide selective access to small populations of neurons or nerve fibres.  These MEAs also provide 

scientists with an ability to study spatiotemporal activity and information processing in a living 

nervous system, findings which may form the basis of future therapies. This technology is still in its 

infancy but current proof of principle studies argue much potential (Normann, 2007). 
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2.12 Product Design and Assessment 
Each time a novel product or new iteration of an existing product is developed, appropriate 

assessments must be carried out on that product to ensure that it delivers performance according to 

initial specifications. A design process incorporating innovation management principles relevant to 

MEA technology development is illustrated in Figure 2.74.     

 

MEA System 

Design

Multi-disciplinary:

 Bioscience,

 Materials engineering

 Chemical engineering,

 Electrical engineering,

 Mechanical engineering,

 Manufacturing engineering,

 Software development,

 Packaging design.

Innovation

Target Principles:

 Beneficial

 Usable

 Economical

Management

Effective pre-validated innovation 

management factors:

 Communication

 Iterative design

 Process modelling (Enterprise)

RESULT = Product 

superior to competitors!

A product 

that meets 

specification

Combined expertise to bring 

about

Must be successfully managed

To bring about

 
Figure 2.74: Innovation management principles. 

[Adapted from Le Corre and Mischke, 2005.] 

 



131 
 

__________________________________________________________________________________
Context Research 

2.12.1 Product design 
A new product must be designed with features that distinguish it from other alternatives (Saffer, 

2010). The research and design process must identify and realise potential product differentiators 

that will motivate consumers to purchase this product over competing equivalents. Distinguishers 

must be decided upon during the concept design stages to ensure adequate inclusion into the final 

product. In the case of MEA technology an existing industry and assortment of products already exist 

so distinguishers will be particularly important for intended large scale system user uptake. Work to 

introduce a new device or system will depend upon marketable distinguishers that offer real value 

to current and future system users. Before realisation planning can take place, a final design must be 

conceived. The design must be original if a unique benefit is to be brought to system users. The 

process of manufacture must then also be designed to realise the final concept as physical devices.  

Figure 2.75 describes concept design stages common to all design problems that lead to a final 

design, and the corresponding inclusion of those stages relating to this thesis. 

Identify and understand the market 

(chapters 2, 3, 4)

Identify and understand competitors 

(chapter 2)

Identify potential distinguishers and 

conceive a final design

(chapter 5)  

Awareness of existing products to 

serve a basis for ‘improvement’.

Knowledge of competing products. 

What’s influenced development that 

is likely to influence contemporary 

designs.

Significant in in aiding the 

determination and prioritisation of 

development objectives, and 

allocation of resources and 

expertise.

Design new product with 

strength vs. competing 

equivalents due to 

distinguishers.

Understand key stakeholder 

interactions and design to satisfy 

needs of all stakeholders 

adequately.

Identify and understand consumers 

(chapters 2, 4)

Design 

Process

A Product Exists

Motivation: Developers believe 

improvement is possible.

 
Figure 2.75: Product design research principles. 



132 
 

__________________________________________________________________________________
Context Research 

2.12.2 Innovation management 
Strategic business approaches are employed across industries in order to identify: (1) customers and 

markets to be served, (2) competitors, and (3) potential competitive strengths of a new product or 

redesign (Saffer, 2010). A framework for evaluating products and potential opportunities can be 

constructed via appropriate product planning (see Chapter 3), influencing product success from a 

number of angles. For example, if considering a product’s positioning relative to competing 

products, appropriate identification of distinguishers and product differentiators must be 

incorporated into the product development.  Awareness of competing products in the sense of how 

they have been, and how they continue to be developed is another angle that aids the 

determination and prioritisation of development priorities for new products. Resource allocation for 

product development and product deployment should also be contemplated and distributed 

appropriately in planning stages. This can be done by utilising information derived from forward 

planning (Schattenberg et al, 2005).  

Management principles that can be applied to innovation include: (1) manage time from start to 

finish, (2) map out objectives and allocate resources appropriately, (3) pilot tests prior to full scale 

commencement, (4) identify and understand key figures and institutes, (5) embrace techniques and 

technologies that will be required to facilitate innovation and communicate output early on, and (6) 

share responsibility appropriately between innovators (Stark, 2011). 

Early identification of key stakeholders in a product’s lifecycle serves as a good way to assess major 

interactions that are likely to occur during all product development stages, as well as throughout the 

product’s life in service (Finkbeiner, 2011). The stakeholders in this field and their interactions with 

one another can be seen in Figure 2.76. Relevant interaction details that are part of the overall 

impacts that may affect stakeholder parties that must be considered if changes are made to this 

particular product are depicted in this diagram. 
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STAKEHOLDER INTERACTIONS 

End User Groups

System Suppliers

Components Suppliers

DemonstrationTeam,

Sales Team,

Installation Team,

Training Team,

Maintenance
Experience Users,

Witnesses

Use System

Failures

Weaknesses

Requirement

Specifications

Budget

System Recommendation

Laboratory Installation

Technical Specifications

Manuals

Useage Instructions (Application Notes)

Maintance Guide

Upgrade Documentation

Spare parts

Component Parts Component Data 

Sheets

= Information

= Human Resource

= Physical Resource

 
Figure 2.76: The major human involvements, physical parts and information flows that result from MEA 

technology in use. 

 
Research at Cambridge University’s Centre for Technology Management has outlined a five-step 

process for making a business case for new technologies (see Figure 2.77 (IfM Briefing, 2009)). These 

steps have been taken into account during this work so as to ensure a final product that brings 

significant value to the real end-users. The five steps are concisely defined in terms of this project as 

follows: 

1. Identify the technology/problem combination.

2. Select potential customers and sales strategies.

3. Understand the chosen customers’ needs.

4. Develop the business case with the customer.

5. Present the business case and negotiate next 

steps.

 
Figure 2.77: Five steps for making a business case for new technologies. 

[Source: IfM Briefing 2009]. 
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1. Identify the technology/problems combination: MEA systems exist in a relatively immature 

state and are presently expensive to purchase. In addition to this, systems are inherently 

complex in both design and user interaction. The scales of employment of MEA technology 

in scientific trials is limited by hardware capability constraints and a lack of appropriately 

sophisticated analytical tools. 

 

2. Select potential customers and sales strategies: MEA-systems are sold on a global scale. 

Early employment of this technology has been for addressing specific research questions; 

the needs of which are becoming ever more diverse. Application of MEA-systems within a 

range of research domains has highlighted potential for next generation exploitation of this 

technology on greater scales within the pharmacology industry (Meyer et al, 2004).  

 

3. Understand the chosen customer needs: Systems that meet the specific needs of three end 

user cases have been explored. Proper identification and understanding of the needs of each 

case is essential if systems are to be designed to meet true user needs (see Chapter 5). 

 

4. Develop the business case with the customer: A final system that can be exploited 

economically must not only be what a high number of end users will desire, but it must also 

be a viable purchase that is affordable, maintainable and fully exploitable by individuals with 

differing skill sets. Input from the current user groups assists in ascertaining what these 

“desires” will be and what level of financial output will be acceptable to differing groups 

around the world. 

 

5. Present the business case and negotiate next steps: This step is covered in Chapter 7.  

 

 

These steps have been utilised throughout this product development and the information derived 

from them is presented in this thesis.  
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2.12.3 Biomedical industry 
In the last decade the biomedical industry has been the fastest growing sector of the US economy. 

Annual spending on healthcare in the USA increased from $75 billion in 1970 to $2.2 trillion in 2007, 

and estimates are at $4.3 trillion for 2018 (Turchetti et al, 2010). A positive correlation exists 

between the adoption of new medical technologies and the increased overall healthcare costs. The 

current global economic climate is resulting in increasing pressure on technology developers to 

produce medical technologies that are more cost effective. The role of biomedical device testing and 

evaluation is thus concurrently evolving to ensure that in products delivered at a lower cost overall 

safety is maintained. These evaluation processes also influence adopters decision to acquire, 

implement and apply these new technologies. 

 

The modelling technique used in this research seeks to improve efficiencies by identifying 

weaknesses or bottlenecks that can be improved through technical solutions. The CIMOSA technique 

has previously been used in a clinical setting to model the protocols employed in providing care to 

patients in a hospital (Staccini et al, 2001). This work highlighted inefficiencies that could be tackled 

through the development of new management methods and technological devices. The CIMOSA 

modelling technique has not been reported as having been used to assess protocols used in a 

bioscientific cell culture setting before. In the case of this research this method of user requirement 

elicitation is novel.  

  



136 
 

__________________________________________________________________________________
Context Research 

2.13 Chapter Summary 
 

The following list is a summary (Figure 2.78) of the key points identified and understood from initial 

context research and literature reviewed. 

 MEA systems are tools developed for evaluating tissues and cells non-invasively. 

 

 Traditionally MEA technology has facilitated testing of cells for longer durations than 

invasive patch-based recording techniques. In addition to this whole samples of tissue can 

be studied improving upon previous single cell methods. 

 

 Numerous tissue types can be examined using MEA systems. In more recent years some 

cases using non-electrogenic tissues where a resting potential could be detected have been 

successfully demonstrated. 

 

 It is possible to detect and capture signals by careful and specific preparation that varies 

according to tissue type and source. 

 

 Signal traces captured using MEA systems differ vastly between cell types, the form of cell 

preparation and the testing protocols employed. 

 

 MEA systems offer opportunities to exploit tissues from genetically mutated animal 

candidates more thoroughly and on larger scales; helping to provide better value genetics 

research.  

 

 Different types of stimuli can be applied to the cells in controlled and repeatable ways.  

 

 Analysis of signals is often via a custom routine that has been developed by the bioscientist’s 

research group, institution or collaborators. 

 

 An MEA system consists of a number of interconnected complex components. 

 

 Each component must be designed to fulfil its own function as well as be complementary to 

all of the other interdependent components in the system. Where necessary some 
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components must be designed and manufactured to be specifically configurable to the 

particular cellular preparations and/or applications. 

 

 A number of software packages can be adopted to meet the ever evolving needs of analysis; 

usability of these software could be improved. 

 

 A number of system configurations are commercially available from a small number of 

vendors. Systems must be custom ordered and configured to a specification that specifically 

suits the intended application(s) of users. 

 

 MEA biochips exist in a number of configurations to suit the needs of the differing cellular 

preparations.  

 

 In addition to differing configurations biochips are manufactured in a range of materials to 

help to accommodate differing budgets and applications. 

 

 Microelectrodes have evolved over the past thirty years due to improved sophistication of 

microfabrication and manufacturing techniques. 

 

 A number of research groups around the world are working to improve and further optimise 

MEA biochip designs. Current trends in design support re-configuration of MEA biochips 

toward cell type and application specialisation and away from a standard biochip for all.  
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Figure 2.78: A summary of the findings of Chapter 2. 
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2.14 Research Question Answers 
The following address the research questions originally defined at the start of this chapter. 

 

1. In what context(s) are multi electrode array systems used, what are the core components 

and how do they differ between systems? What is the current state-of-the-art? 

Used to: 

Multi electrode array systems are employed to detect and capture the electrical signalling occurring 

in electrogenic tissues and cells. Research characterising various cell types and seeking to 

understand specific responses can be conducted using these systems to detect, monitor and record 

changes of specific ionic concentrations over time. These systems are predominantly applied to 

record activity occurring through neural and cardiac tissues, or more specifically through neuron and 

cardiomyocyte cells.  

Used in: 

MEA technology is a tool that is suitable for both fundamental and applied research. For example 

MEA-based studies can be used to investigate fundamental research questions such as “how do 

neurons grow in vitro?” or “at what stage in development do neurons start communicating 

spontaneously?”, and applied research questions such as “how does this chemical entity effect 

activity in this neural network?”. 

Used by: 

MEA systems are also employed in the most part by small teams of research scientists working with 

a specific cell type that is prepared or cultured for recording in a particular way. For example, some 

MEA user scientists will prepare slices of tissue that will be anchored tightly over the 

microelectrodes for recording, whereas others will culture neurons dissociated from tissue and 

cultured over the microelectrodes surface. These differences in preparation will result in differences 

in signal detection that results a need to allow for system configurability.  

MEA systems are comprised of a biochip, interconnecting into a unit referred to as a headstage, that 

usually houses specialist amplifiers and filters that interconnects to a data acquisition system and 

PC. An acquisition and basic analysis software is usually supplied with MEA systems by the 

manufacturers. A number of other peripheral tools support MEA system application. For example 
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appropriate optical tooling makes it possible for bioscientists to work with microscopic cell 

populations.    

Different system configurations exist to meet differing needs of users. In essence the configuration 

used will depend on the cell type and the intended preparation of that cell type that is to be 

investigated. The model of MEA biochip will also be selected according to the cell preparation and 

intended nature of the investigation being conducted. The amplifiers will provide appropriate 

degrees of gain to suit the anticipated signal and filters will be configured to removed noise 

components and enhance signal features of specific interest. The settings in the acquisition unit and 

software will be dependent on the requirements of the users with regard to how they intend to 

analyse and interpret the data collected. 

Current state-of-the-art in MEA systems is demonstrated by Multi Channels Systems as the USB 

MEA256 system (section 2.6.1) and their USB-MEA32-STIM4 system. The USB MEA256 system can 

be considered that most advanced generally applicable MEA system, suited to all cell types and 

preparations. The USB-MEA32-STIM4 system is the first of new range of systems optimised 

specifically for slice studies. This system has perforated MEA biochips and an option for automated 

perfusion through the biochip and system while in use.  

The competing MEA system vendor Axion Biosystems, USA, intends to offer the new state-of-the-art 

system in the form of the “Maestro” system. This system will incorporate 768 recording electrodes 

into varying multi-well biochip configurations but has yet to appear on the market or in published 

literature. 

The relatively immature vendor, 3 Brain, offers the world’s first commercially available CMOS based 

MEA. This tool holds particular promise for neurological studies as the fine resolution of the 4096 

sensors offers superior resolution. A limitation of this system however is the restricted optical 

inspection of cells once cultured on the array; for studies where optical inspection is essential and 

resolution is less important this system is unlikely to be adopted. 

 

2. How are MEA systems applied in research, how has that application changed since their 

introduction and are there any trends identifiable in development? 

Initially MEA systems were developed by neuroscientists to facilitate recordings of the electrical 

activity in neural tissue with the intention to bypass the necessity to physically damage the cellular 

sample as is the case for early clamp-based electrophysiological recording techniques. For the first 
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time MEA tools allowed scientists to record several areas of activity simultaneously from a culture of 

cells. More has been learnt about the functioning of the mammalian brain due to early MEA-based 

testing and as more has been understood new questions requiring greater and greater degrees of 

resolution have been required. 

As a consequence of the need for greater resolution the number of channels that can be recorded 

from has also increased resulting in larger data sets if desired or required.  

The facility to record responses to stimuli has been demonstrated across differing cell types and 

preparations. Both chemical and electrical stimuli have been successfully delivered at non-lethal 

doses to cells on MEA biochips.  

So as more application compatibility has been demonstrated and understood, new questions have 

been asked and development of system components to suit this increasingly specialised questioning 

has resulted. A dominant trend in MEA development has been to facilitate more channels to record 

from in each single MEA biochip. In addition to this, the configuration of the available electrodes has 

also been explored on numerous occasions.  

 

3. What are the key factors that will influence and limit design possibilities and where are 

the biggest challenges associated with this work? 

Influence: 

The cell types used influence design and introduce diverse requirements. Literature sources report a 

broad selection of cell sources with predictions of moves from animal sources towards stem cells. 

Global research and development is especially strong in areas that offer high value returns, such as, 

drug identification and development, and pursuit of understanding how mammalian and human 

brains function. This may influence how systems develop if requirements in these fields are 

particularly specialised and strong. 

To understand complex research questions with thousands of variants that must be explored 

experiment scales required are large.  

Greater system applicability has led to greater system uptake across a plethora of bioscience 

settings. This has and will continue to identify new design priorities. In addition to this, if MEA 

systems are employed in larger numbers, economies of scale will improve, possibly reducing the cost 

to research using such systems. 
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Most importantly developers must try to anticipate the future needs of users based on findings and 

observations of contemporary experiments.  

Limit: 

Certain applications, such as spatiotemporal neural network investigations require high sampling 

frequencies (~25kHz). Developments will be limited by computing technology capabilities. As 

appropriately priced hardware develops that is capable of managing hundreds to tens of thousands 

of channels sampling at these high rates in real time MEA developers will continue to merge these 

tools into systems. 

Manufacturing techniques and resolutions available will continue to limit and facilitate what 

features shapes and sizes in micrometre and nanometre ranges can be made to an appropriately 

high quality using the biocompatible materials suited to the applications. 

Development of MEA systems uses top of the range technologies and highly skilled expert 

knowledge resulting in high development costs. 

The humid, warm environments suited to in vitro cell culture environments is not suited to 

electronic devices. 

Analysis capabilities must evolve with the hardware technologies to ensure that the increased data 

acquisition is adequately supported to allow users to reliably and robustly extract meaning and 

therefore value from the system. 

Greatest challenges: 

The development of systems globally applicable to diverse applications is complex and requires 

exceptional organisation, communication and management. Opportunities for and actions towards 

standardisation where possible would support development of high tech products in the future that 

are delivered to markets in a timely manner.  

 

4. How do applications using different cellular preparations differ and how are the signals 

that are recorded used? 

Cultured: 

Cells that are cultured over MEA workspaces are typically dissociated from an animal or stem cell 

source into a separated cell suspension. The MEA biochips surface will have been treated with a 
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specific growth protein prior to seeding of the suspended cells to ensure that close attachment 

occurs over the microelectrode tips. Typically a less dense covering of cells is achieved in these 

samples as when compared to a slice placed on top. Monolayers (layers of cells that are one cell 

thick) are also possible by careful control of the volume of cells dispensed into the MEA biochips 

media well.  

Attachment is important for signal detection, especially from immature cells. Signal amplitudes are 

typically in the region of tens to a few hundred microvolts (µV). 

Slice: 

Slices are made of a dissected organ and placed over the microelectrode array. In some cases careful 

positioning of anatomical landmarks may be required to study specific network pathways. Slices are 

anchored using commercially available weights or custom built micromanipulators to ensure tight 

cell-electrode coupling. Microelectrode tips used for slices are typically 3D in profile to penetrate 

through the outer layer of cut-through damaged cell matter. Signals captured are typically larger 

than from cultures.  

Stimulation experiments are common where groups use slices to study existing naturally developed 

networks or tissue responses. 

Neurons: 

A neuron action potential is triggered by a sufficient chemical or stimuli at a synapse. The action 

potential travels along the length of neuron in a few milliseconds. The corresponding field potentials 

(FPs) that are detected by nearby microelectrode tips are seen as spikes in the resting baseline data. 

Where several spikes occur at the same time or within a few milliseconds of one another the 

occurrence is referred to as a burst (see Figure 2.39).   

Cardiomyocytes: 

Cardiomyocytes contract in a rhythmic, roughly simultaneous manner, producing FP waveforms that 

are detectable when coupled to an MEA. These waveforms are the combination of the APs from all 

of the contracting cells present (which can vary in phenotype). Signal spikes, or waveforms, are 

much longer in duration than those recorded from neurons typically lasting several hundred 

milliseconds. 
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5. What is expected of future MEA systems? 

Present applications are moving towards targeted testing of cellular characteristics or chemical 

entities that require repeated experiment repetitions to ensure reliable and valid findings. Therefore 

it can be predicted that the trend to increase the number of useful channels per experiment will 

continue from the now hundreds of channels available into systems offering thousands and tens of 

thousands channels. Further re-configuration of biochips and systems will be required to facilitate 

this trend that will depend on cutting edge micro and nano-fabrication technologies. 

System usability must also improve to facilitate methods in which user scientists can manage and 

maintain larger numbers of cell cultures in conjunction with needs of future MEA biochips and 

systems.  

 

6. Can product innovation be managed throughout this research, and how can developers 

design and assess prototypes appropriately? 

Innovation management is required to steer design efforts towards a product possessing 

distinguishers that offer the best value to target users. 

This research requires inclusion of expertise from a number of overlapping disciplines to bring about 

a product that is usable, realistic and beneficial. The multidisciplinary team required must 

communicate effectively to prevent confusion that may otherwise be detrimental to efficient new 

product development. Employment of pre-validated modelling techniques allow thorough 

understanding of target user populations as well as offering a clear and comprehensive 

communication medium that is suited to multidisciplinary research. 

Throughout concept design and design development appropriate methods of prototype assessment 

must be agreed upon to ensure a final product that meets specification and is superior to competing 

equivalents. 
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This Thesis

Chapter 3

Research Design 

and Methodology

Problem Evaluation

Effective Design 

Quantitative Data

Qualitative Data

Modelling

Impacts of Context Specific Application Differences

 

Chapter Three 

3 Requirement Capture Methodology 
 

 

 

 

 

 

 

 

To tackle a research and design problem a strategy must be employed that controls how designs 

evolve and that available resources are exploited (Blaxter et al, 2000). A structured approach was 

sought for the research contained in this thesis to ensure research objectives were managed 

effectively, to ensure the delivery of research outcomes. The following research questions are 

addressed in this chapter: 

 

1. What can be done to ensure that a thorough evaluation of the field of multi electrode 

array application and system production is performed, to support the identification of 

robust end-user requirements in this research area? 
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2. Can formalised product design approaches be implemented to support the conception of 

effective component and system designs? 

 

3. What kinds of information will be required to support effective design and manufacture of 

prototypes? 

 

4. What formalised approaches should be used to represent and communicate research 

inputs and outputs? 

 

The logical order taken by this research is demonstrated in Figure  3.1. Research conducted and 

documented in this thesis has been based upon the research methods described in the following 

sections.  

Information 

(Quantitative and 

Qualitative)

1. Problem 

Evaluation

2. Effective design

3. Evaluation of 

solution(s)

Users, industry, literature, media

Realistic, economical, safe, 

compatible, novel, practicle.

Must be: 

obtainable, 

accurate,  

reproducible, 

reliable,

meaningful, 

communicable.

In terms of manufacture

In terms of employment

Construction of Research

ESSENTIAL

Considers:

Considers:

Considers:

drives forward

tested by

In terms of appropriate 

regulators. I.e. ICH, FDA

 

Figure  3.1: Construction of this research.  

 

Problems encountered by current MEA system users are evaluated and the resulting solution 

designs driven forward by product design specifications constructed to provide effective solutions to 

current needs.  There are many ways of designing, executing and analysing research (Edwards and 

Talbot, 1999), hence a mix of previously validated research methods have been used to evaluate the 

outputs of this work prior to physical prototyping and testing. 
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3.1 Evaluation of the Problem 
 

This research contains and draws upon information gathered using group meetings, one-on-one 

interviews, literature reviews, e-mail communications and enterprise modelling of MEA application 

domains (Figure 3.2). Information concerning the context of the research problems identified (user 

requirements) has been collated and summarised, highlighting problems as identified by the system 

stakeholders. 

Problem Discovery and 

Problem Evaluation
E-mails

One-on-one

Group Meetings

Enterprise 

Modelling

Literature

(Academic and 

industrial)

Context Research  

 
Figure 3.2: Research approaches brought together by this project to thoroughly evaluate problems faced by 

MEA technology users across three different applications. 

 

Key points identified through literature review as critical to the success of this research are listed 

below (Figure 3.3). 

A) Strategy: To design a product that will be successful a strategic design approach should 

be used. 

 

B) Existing MEA Systems: MEA systems are complex and exist in a number of different 

configurations (section 2.9.2.1). Each commercially available system configuration has a 

number of potentially different settings that have to be adjusted upon system 

installation according to the intended application (i.e. amplification gain settings, 

number of channels required for recording). 
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C) Applications: MEA technology is mainly used in brain and cardiac research domains, 

resulting in generic but also application specific needs. Any new system must maintain a 

comparable level of flexibility as is present in commercial systems, to permit 

experimental application of the system with other tissue types.  

 

D) Data Outputs: Data output formats and the approaches used to analyse those data vary 

between applications. There are nonetheless some commonalities that can be roughly 

defined as “standards” to work with, in terms of basic output requirements of any new 

or replacement software analysing system.  

 

E) Data Analysis:  MEA system users analyse data post-recording according to the needs of 

their research. The level of sophistication of analysis that is possible offline (post-

recording) is not possible online (while recording). This has led to a lack of comparability 

across published results as MEA users do not disclose full details of analysis routines in 

published results. The outcome of this has been calls for steps towards standardisation 

to be made (Smith et al, 2007a).  

Design Challenges

(addressing identified needs)

Strategy

Existing Systems

Applications

Data Outputs

Data Analysis

Finances

Expertise

Facilities

Time

Selection of appropriate 

project actions according 

to:

Affected by available:

 
Figure 3.3: Design challenge influencers. 

 

In this research design targets are defined in terms of the technology component or sub-component 

being designed (system needs), and also in terms of the application domain (user needs), i.e. heart 

or brain, dissected slice or stem cell-derived. A number of complex design (e.g. high frequency real-

time systems) challenges are associated with the development of MEA systems and system 

components (Rolston et al, 2009) that have to be refined into design specifications. The goal is to 

select the most appropriate approaches to address these specifications depending on capabilities in 

terms of expertise, time, facilities available, and financial constraints. Strategies employed to 
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ascertain relevant user and systems requirement information pertaining to the major application 

domains drew upon three current MEA system applications (see Chapter 4).  

A well-structured and previously validated modelling approach was adopted to represent relevant 

information and functionality while observing and interviewing the collaborating MEA system users. 

The enterprise modelling (EM) techniques utilised enabled a deeper understanding of current MEA 

system employment protocols to be determined than if literature alone had been used.  

 

3.1.1 Drafting Product Design Specifications 
Regular interview, meeting and email conversations followed initial shadowing of the MEA user 

groups studied during the construction of enterprise models. Three product design specifications 

(PDS) have resulted from what was uncovered using the multi-method combination of research 

approaches. A generic MEA system PDS (Figure  3.5) that can be considered as an industry-wide PDS 

(PDS1), an intermediary PDS that focuses on the specific needs of the collaborating users in this 

project (PDS2), and a specific cardiomyocyte application PDS (PDS3) have all been defined (Appendix 

C). Within the specification documents, defined points can be classified as system-requirement-

centred or user-requirement-centred.  

 

Specific

Local

GlobalUser Needs:

PDS1

PDS2

PDS3

Global – the combined 

needs of all MEA users 

across application 

domains.

Local – the combined 

needs of users supporting 

this work.

Specific – the needs of 

local users that will be 

targeted in this project. 

 
Figure  3.4: Product Design Specification Formats. 
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3.1.2 Design Objective Prioritisation 
The overall industry-wide needs of MEA systems from a global point of view were address in PDS1. 

PDS2 is an evolution of the industry-wide PDS1, following a review and specialisation process 

introducing needs identified by enterprise modelling as specific to project collaborators. Therefore, 

PDS2 defines the longer term targets of the project. Within PDS3, realistic design requirements were 

laid out that allowed targets to be set with respect to time, cost, facility and expertise available at 

the time. Solutions that are realistic and that would bring the best value to MEA system users in the 

time scale of this research were targeted.  

Note: This research has focused efforts primarily on PDS3. All PDS documents are contained in 

Appendix C. 

 

3.1.2.1 PDS 3 
This product design specification incorporates specific features required by the University of 

Nottingham end users (cardiomyocyte applications) with global and local points that are of high 

importance to system success. 

Nottingham University users have specified needs for the biochip to be re-designed in accordance 

with their specific application needs. They have also specified the direction in which software 

changes should be made in order to support their analysis requirements more effectively than 

current protocols. It is the needs of the Nottingham users that this project will primarily focus time 

and resource on: 

Biochip: 

 Modify well maintaining commercial interface configuration. 

Comments: that will interface with the current MCS MEA60 System in their lab. 

 Alter well dimensions to be close to those of a 35mm culture dish. 

Comments: internal dimensions 35mm diameter, 10mm height, culture area 8.8cm2, media 

volume 3ml. 

 Incorporate a light-transmissible lid. 

Comments: to prevent evaporation. 

 Interior of well must allow for potential etching or patterning. 

 Re-usable. 

Comments: therefore must withstand sterilisation using UV light and 70% ethanol. 

 16 micro-wells. 
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Comments: in any pattern. 

 Microwells as far apart as possible.  

Comments: at least 5mm in from the edge of the dish.  

 Microwells 500µm diameter,  

 with a maximal depth of 250µm,  

 and a slightly curved shape. 

Comments: cardiomyocyte clusters at time of seeding vary between 200-500µm in diameter. 

 Electrode in centre of well flush to the surface. 

 Microwells with as large a surface area as possible. 

 Made from biocompatible material(s). 

 

Software: 

 Intuitive, simple-to-use software. 

 Output results in real-time 

Comments: while maintaining the current feature of optional post-processing if desired. 

 Features to allow patch clamp files to be analysed in the same software. 

Comments: WinEDR software format suggested. 

 Facility to average all traces for a given treatment. 

 Facility to compare averaged traces. 

 Increased detail at individual waveform level. 

Comments: QT-period identification and comparison emphasised as most important feature 

for automated extraction. Other waveform elements of interest detailed in the MEA 

Specification document by the UoN. 

 Adjustable, automatic pre-processing. 

 Automatic thresholding at the time of recording. 

 

System: 

 Sample rates of at least 2-25kHz. 

 Grounded. 

 Parts that can be sterilised  

Comments: If the entire system is to go in an incubator the electronics must be sealed in 

a suitable casing for sterilisation as incubators are sterile environments. 
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 Input capabilities limited appropriately. 

Comments: to protect/prevent damage to cells or tissue. 

 Appropriate pre-processing and amplification. 

 Facilitate/support a constant cell environment. 

Comments: I.e. temperature, humidity. 

 Allow easy access 

Comments: for users to perform culture maintenance and run perfusions systems. 

(Perfusion systems are ideal MEA system components as they support long term 

experiments (especially those using slices) and the balanced distribution of nutrients 

and/or chemical entities throughout the culture media during system use. In certain 

experiments perfusion systems are essential for the execution of particular testing 

protocols.) 

 Support visual inspection of the cells. 

 Simple to learn. 

 User-friendly interfaces. 

 

 

 

  



153 
 

__________________________________________________________________________________
Requirement Capture Methodology 

3.2 Effective Design 
 

A number of previously formalised design approaches or methodologies exist (e.g. design for failure 

(Hojnacki, 1992), or design for sustainability (Dimson, 1996)) that could be suitable for supporting 

conception and the creation of a successful product. 

3.2.1 Design methods 
Product design specifications used in conjunction with approaches incorporating principles of 

iterative design, user centric design, design for manufacture, design for failure, and cost effective 

design are valid product design approaches (Pugh, 1991). The key point is that for any product to be 

successful it must be designed with the users in mind.  

3.2.2 Communication 
Careful communication of user needs to interdisciplinary team members has been used throughout 

this project to support the design of a system that will:   

(1) address real user needs,  

(2) that can be manufactured,  

(3) at a reasonable cost, and,  

(4) in an appropriate period of time.  
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3.3 Derivation of Information 
 

A multi-method approach has been taken throughout this research (Figure 3.5) to derive the 

required design information (Blaxter et al, 2000). Management of information compiled from 

multiple research methods involves a process of sorting, labelling (or coding), reducing and 

summarising. It is important to reduce size and scope of the information that is collected so that 

meaning can be subtracted from it. The summarised information that remains then consists of the 

important and significant information that relates specifically to particular development objectives. 

In this research enterprise models and PDS documents have been used to collate and condense 

research information of differing types into useful summaries that have been used to draw out the 

design and manufacture objectives.  

Multi-method research involves the integration of several research methods (e.g. one-one 

interviews, group brainstorming, observations) to determine information about the research topic. 

Research can be desk-based, involving the use of literature and media such as brochures and 

websites, or field based, involving activities to physically identify and attain information by means of 

some sort of pursuit (i.e. observing a human interacting with the system under investigation).  Both 

desk- and field-based methods have been used throughout this research.  

The information gathered by multi-method approaches is a mixture of qualitative (i.e. learning about 

how a user feels about the device being researched (high-value qualitative information)) and 

quantitative (i.e. gathering numerical data relating to the frequency of use of the device (high-value 

quantitative information)) (Figure 3.5). 
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Figure 3.5: Research in pursuit of useful information. 

 

3.3.1 Flexible Planning 
Flexible planning strategies involve acting opportunistically as opposed to following a fixed pre-

planned schema (Wallace, 1991; Schattenberg et al, 2005). Flexible planning was incorporated into 

this research so that appropriate amendments to objectives could be made as new information was 

ascertained, and to enable essential compromises to be accommodated during production of 

prototypes as necessary. This approach was particularly relevant as the project involved several 
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variables (e.g. number of recording channels required, electrode geometry required) resulting in the 

need for design alteration to facilitate progress towards achieving objectives. 

 

3.3.2 Enterprise Modelling 
To understand the needs of target MEA user groups in detail, enterprise modelling (EM) was 

adopted and used as a tool to support the derivation of relevant, up-to-date information.  

 

3.3.2.1 Process Modelling of Workflows 
EM is a variant of process modelling (Huertas-Quintero, 2010). Process modelling (also referred to as 

process mapping) is described as a way to “represent graphically the transactions and stories that 

make up a business” and it helps to complete an analysis of a process or processes (Jacka and Keller, 

2002). EM is one of a number of methodologies that have evolved to support design, analysis and re-

design of workflows, which in its entirety is a procedure known as Business Process Reengineering 

(BPR).  A workflow is “the sequence of processes through which a piece of work passes from 

initiation to completion”.   
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Figure  3.6: The high-level “drill down” associated with bioscientific research. 

 

 
BPR is used by both large and small organisations alike (Childe et al, 1995), as a way of characterising 

processes that are carried out in particular areas (domains) of their business. A thorough 

understanding achieved using BPR can influence overall improvements in the enterprise’s efficiency. 

BPR is a top down technique (see Figure  3.6). In terms of this project the EM feature of BPR serves as 



157 
 

__________________________________________________________________________________
Requirement Capture Methodology 

a pre-validated method of identifying and understanding potential or existing bottlenecks in 

processes that can be addressed with protocol amendment, product alteration or a combination of 

both. 

 

3.3.2.2 Static Enterprise Modelling (AS-IS) 
The starting point for conducting BPR is to view the system under scrutiny as it currently is (Kawalek, 

1995; McHugh et al, 1995). Static models are generated identifying the major processes (workflows) 

undertaken to achieve a particular enterprise goal. The main process or processes of interest are 

then modelled to a greater extent as sets of smaller, more detailed individual workflows that 

collectively represent the whole (Peppard and Rowland, 1995). This allows the modeller to capture 

and document each and every activity exactly as it is currently completed. Therefore, these static 

workflow models are also referred to as “AS-IS” models (Petersen et al, 2010).  

Of the four levels of “drilling down” shown in Figure  3.6, the EMs derived and documented in this 

project pertain specifically to levels 3 and 4 as levels above do not directly influence project outputs. 

Thus the greater details of these levels have been modelled in the case studies completed (Chapter 

4). The “AS-IS” EMs that were constructed represent the entire duration of, and approach to, using a 

standard MEA system for different types of bioscientific investigations. A variety of information 

types have been amalgamated into one clear visual format in these models.   

In many cases, static “AS-IS” models can be used as a basis for drafting “TO-BE” processes, allowing 

experimentation of potential alterations to a workflow prior to any real-life execution of that change 

taking place. Therefore, any failing or loss that would have otherwise occurred as the result of 

implementing a particular change is identified and rectified before ever being made in reality. The 

result is a vast reduction in the amount of physical reengineering that was previously relied upon in 

past “trial-and-error” workflow improvement approaches (McHugh et al, 1995). 
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3.4 Modelling to Understand Users and 

Represent Information 
 

Models are representations that allow complex processes or systems to be represented in a more 

manageable format (Johansson et al, 1993). Through the thought processes used in the construction 

of models, different types of knowledge can be generated, formalised and used to benefit the 

organisation (DTI, 2002; DTI , 2004). It is important to be aware of who is doing what, how they are 

doing it, where and when is it done, and what is achieved by doing it.  Knowledge of these elements 

allows identification and extraction of requisite details of a system. As a consequence a better 

understanding of the important complexities and interactions involved in critical workflows is 

achieved (Hunt, 1996). It is these complexities and interactions that ultimately impact upon overall 

process or system redesign. In this research MEA system user workflows (e.g. activities to prepare 

MEA biochips, activities to run tests, activities to clean MEA biochips) have been defined as the 

workflows that are most critical to successful novel MEA system and component design.   

 

 

  



159 
 

__________________________________________________________________________________
Requirement Capture Methodology 

3.5 Modelling Architecture Selection 
 

A number of previously defined and applied reference architectures exist (e.g. IDEF - Integration 

Defintion for Function Modelling (Kim et al, 2003), GRAF - Graphs with Results and Activities 

Interrelated integrated methodology (Doumeingts et al, 2000), Petri nets (Peterson, 1977), CIMOSA - 

Computer Integrated Manufacturing Open System Architecture (Vernadat, 1998)). Specific modelling 

architectures are used to provide structured models that are comparable. By using a previously 

validated reference structure the EMs are constructed in a consistent manner allowing 

straightforward, reliable comparisons to be made (Monfared, 2000). The CIMOSA-based approach 

has been exploited in both academic and industrial fields (Zwegers and Gransier, 1995; Pierard, 

1995; Ong, 2004; Mullane et al, 2010) and is the reference architecture chosen for this thesis. 

CIMOSA was also selected due to its greater level of versatility when compared to alternative 

methods (see Figure 3.7). 

 
Figure 3.7: Comparison of available modelling techniques. 

 [Adapted from Augilar-Saven, 2004] 
 

CIMOSA offered greater scope for learning, design, and development execution, which are all of 

importance to this research (Figure 3.7). CIMOSA was applied so that systematically generated sets 
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of EMs could be used to collectively represent all of the available knowledge relating to MEA system 

employment protocols and manufacturing processes used in this research. Multiple EM sets across 

three different settings by each partner user group permitted a more detailed understanding of 

generic MEA system user needs.   

 

3.5.1 One Architecture for All 
Throughout this thesis representation of physical bioscientific protocols and human-MEA system 

interaction, and manufacturing approach documentation, has been presented using a single EM 

architecture (CIMOSA).   

Process representation is a sub-set of CIMOSA enterprise modelling (Monfared, 2000) that suited 

the requisites of the required workflow examination in this research.  

Careful construction of sets of EMs was chosen as a single method to depict and visually 

communicate physical protocols and the human-MEA system user interaction. The single 

architecture offered a structured means of allowing the overall use of an MEA System to be broken 

down in terms of: 

(i) information inputs (e.g. cell type under investigation, cell preparation type),  

(ii) information outputs (e.g. number of MEAs sterilised and pre-treated per batch, number 

of data files recorded per experiment),  

(iii) resources consumed (e.g. volumes of media/solutions required per MEA biochip per 

experiment, high-skilled human dependant tasks, additional essential tooling),  

(iv) time required (e.g. time taken to set-up experiment, time to run experiment, time in 

terms of human labour, time taken to analyse), and 

(v) the dependencies on the human users (e.g. by-hand positioning of cells over 

microelectrodes, visual observation of cell viability prior to experiments, visual 

assessment of cell-substrate attachment quality).  
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3.6 The CIMOSA-based Modelling Solution 
 

CIMOSA  supports system decomposition into:  

1. an enterprise (workflow) modelling framework,  

2. an integrating infrastructure, 

3. an (computer) integrated (manufacturing) system lifecycle. 

(Adapted from Vernadat, 1996.) 

 

A number of fundamental concerns are incorporated into the CIMOSA approach. The multi-

dimensional nature of the approach is highlighted in Figure 3.8.  
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Figure 3.8: The concerns of the CIMOSA framework. Additional concerns can be added as required. 

 (Adapted from Vernadat, 1996). 

 

 

3.6.1 CIMOSA Flexibility 
When generating enterprise models using CIMOSA four different views are integrated to facilitate 

full description of workflows within an overall system (Figure 3.8). The views are divided into the 

function, information, resource and organisation views:  

 

 Function – is an activity-centred view. Models demonstrate activities that make workflows 

happen to reach endpoints and produce outputs. 

 Information – information enters and exits functions. 
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 Resources – are required to make functions happen and can be either human or physical. 

 Organisation – functions are ordered to ensure inputs become outputs during workflows. 

 

The DERIVATION dimension covers the lifecycle aspect of the system, from requirements definition 

to design specification and implementation.  

 

The INSTANTIATION is concerned with the level of granularity of the respective views (i.e. from the 

generic to the particular aspects of a domain).   

 

 

3.6.2 Specific CIMOSA Architecture Adaptation 
Application of CIMOSA relies upon representing processes and activities using constructs (see 

Table 3.1). Constructs have been adapted to improve the communicability of models generated in 

this research.   

 

Table 3.1: Constructs applied in this research. 

Constructs: Constructs with regard to MEA system research:  

Events Extraction of electrophysiological signals 

Domains In research and pharmaceutical industry laboratories 

Domain Processes Laboratory standard operating procedures (SOPs) and good practice 

Business Processes Application and laboratory specific protocols 

Enterprise Activities  Activities involved in carrying out SOPs and relevant protocols 

Functional Operations.  Activity details. This is where activities may be made up of a further 

set of activities, requiring a further drill down to ascertain all relevant 

information. Relevant information is included as various function 

operations. 

 

These constructs have been applied in modelling overall system functionality and user group 

behaviour in this work. A collection of pre-defined diagrams need to be adopted to enable the 

details of the domain to be represented in terms of these constructs. 
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3.6.3 Diagram Structure Type 
The specific types of diagram used in this work are based on Monfared’s (CIMOSA-based) Modelling 

Approach (MMA). This approach has been applied because it has been well represented within 

academic literature as a technique that can be used effectively to represent real processes and 

activities (Ong, 2004; Dong, 2006; Mullane et al, 2010), and it has been previously validated by 

Loughborough University (Monfared et al, 2002; Aguiar, 1995).  

 

A set of four basic representational diagrams that focus on the function view are required 

(Figure 3.9) (Monfared, 2000). Representations are decomposition-based breaking down workflows 

into distinct units that enable information (e.g. timing, cost, resource utilisation) to be readily 

derived.  

 

The context-, interaction-, structure- and activity-centred diagrams have been constructed (see 

Chapters 4 and 5) to provide a set of “views” of real bioscientific laboratory protocols and 

manufacturing approaches at varying levels of abstraction. The MMA modelling notations used to 

represent the different processes are documented in Figure 3.9. The four diagram types allow visual 

representation of all workflow processes in a manner that ensures derivation of clear and 

comparative information. The details contained within these diagrams serve as integrated sources of 

information. The information has been derived and exploited for the definition of user and system 

requirements, and for prioritisation of actions to meet those requirements.  

 

Context diagrams are used to define the high level of the workflows of an enterprise that are under 

investigation. For example, a research institute is comprised of a number of different areas of 

expertise that combine to produce new knowledge. Within an area of expertise different aspects are 

interrelated that are in themselves different areas of investigation (Figure  3.6). Distinctions between 

areas of expertise and differing investigations can be readily visualised using context diagrams.  

 

Structure diagrams indicate activities that make up workflows.  

 

Interaction diagrams can be used to demonstrate complexities (e.g. elements where outputs of one 

activity may vary, therefore resulting in alternative ensuing activities) that might exist within or 

between workflows. 
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Example 4: Interaction Diagram

Example 3: Activity Diagram
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Figure 3.9: The diagram types used in this research. 

 [Adapted from Monfared, 2002.] 
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All diagrams are constructed from the notations shown (Figure 3.9) allowing clear visual 

representation of the various details of domains, domain processes, processes and/or activities 

modelled.  

 

 

3.6.4 Model Set Organisation and Comparability 
To represent a system in detail using CIMOSA requires a number of differing models to be 

constructed. Careful organisation of these models into sets helps to define distinct modules within 

certain settings and can reduce overall system complexity, thereby improving information 

manageability (Smith, 2007b). 

 

The CIMOSA constructs are used to model domains, domain processes, processes and activities. A 

domain is a region that the modeller will choose to focus upon at its highest level (e.g. MEA system 

application in neuroscience). Domains (D) are broken down into sets of Domain Processes (DP), 

which are broken further down into Processes (P), that are made up of series of Activities (A).  
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Figure 3.10: A context diagram identifying the main research domains that are currently exploiting MEA 
systems. 

 

Decomposition serves a functional purpose. Domains interact with one another by the exchange of 

events and results. In bioscience, for example, researchers from different domains publish findings 

obtained using multi-electrode array systems, this information can be of use to other MEA user 

groups, potentially altering workflows across domains (Figure 3.10). For example, a group working in 

the pharmaceutical industry with brain slices on MEA systems exploits findings derived by 
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researchers that are studying disease in dissociated neurons on MEA systems. The result is a change 

the pharmaceutical group’s protocols or workflows. 

 

In Figure 3.10 the niche domain (D.4) has been incorporated to represent the application of MEA 

technology in low volume novel domains such as nasal tissues (Liu et al, 2010) and the 

gastrointestinal tract which are fields that may expand in the future depending on the outcomes of 

these early investigations. 

 

In this case domain processes are the processes involved in using an MEA system independent of the 

research question under investigation. Each domain process (DP) is an end-to-end process. 

Modelling of DPs provides overviews of the sequence of activities that are carried out by the 

collaborating laboratories. DPs have defined starting conditions and finishing points that together 

provide a measurable or quantifiable end-result that can then be used by the bio-scientist. The 

domain processes delineated for this work are demonstrated in Figure 3.11. Specific model sets 

incorporating details of each partner user group’s workflows have been constructed (Chapter 4).  

 

Activity diagrams are detailed descriptions of a domain process in terms of functionality. The 

CIMOSA architecture defines an enterprise activity (in this case adapted to an Activity) as a set of 

elementary actions requiring resources and time for execution. Activity models are sets of 

elementary processing steps executed by one functional entity, in this case the MEA-system user. 
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Figure 3.11: The flow through generic domain processes demarcated for this work. 
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3.6.5 Application of the Modelling Approach 
Research domains where MEA technology has been applied (Chapter 2) have been separated into 

domains (see Figure 3.12). Within each domain MEA-systems are employed using different protocols 

to best suit the varying needs of each application. Differing application domains (D) consist of 

domain process (DP) details. For example, approaches employed when conducting trials using acute 

neural slices differ significantly from when using chronically cultured neurons. For more detail see 

Chapter 4. 

Generic 

Domain Processes

DP.2.

Set-up tools

DP.1.

Obtain Cells 

Of Interest

(Signals)

DP.5.

Process Signals 

DP.3.

Run Experiments

DP.4.

Save data

DP.6.

Derive Meaning

 

Figure 3.12: Domain processes generic to MEA system application into a context diagram. Domain processes 
that have been identified for modelling as part of this work are highlighted in red. 

 

Unique domain specific models were constructed following the initial model’s structure to provide 

increased levels of detail for each individual case study application.  

 

Context diagrams have been used to demonstrate each domain process as a distinct flow of 

activities using the activity diagrams constructed using detailed knowledge derived from protocol 

analysis and interview.  
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DP.1.

Obtain signal

P.3

Seed and culture 

cardiomyocytes on 

MEA

A.1. A.2. A.3. A.4.

A.9.

A.7.A.5. A.8.A.6.

P.3

P.4

D.3. 

Domain (D): 

CARDIOLOGICAL RESEARCH

Domain Process (DP):

OBTAIN SIGNAL

(Generic to all MEA applications)

Process (P):

CULTURE CELLS

(Application specific)

Activities (A):

A.1 DIVIDE MATRIGEL,

A.2 THAW MATRIGEL,

A.3 DILUTE INTO BASE,

A.4 DISPENSE ON MEA,

A.5 LEAVE AT RT FOR ~45 

MINUTES,

A.6 ASPIRATE MEDIUM,

A.7 ADD FRESH MEDIUM,

A.8 SEED CELLS, 

A.9 INCUBATE WELL.

(Application specific)
 

Figure 3.13: The decomposition of a Domain into its Domain Processes, then into individual Processes, and 
then into the Activities involved in carrying out one of those processes. 

 

Figure 3.13 is a representation of how domains, domain processes, processes and activities 

decompose deeper and deeper into these cases of MEA-system use. An activity is the elementary 

unit within the architecture. A process is usually comprised of more than one activity. Activities are 

carried out in flowing routines to bring about a result or output. For example the activities (A.1. to 

A.9.) could be, A.1. Divide up Matrigel upon delivery and store in freezer, A.2. Thaw Matrigel prior to 

use, A.3. Dilute Matrigel in base media, and so on, depending upon the user application. 

 

3.6.6 Successful Application 
The CIMOSA modelling approach was successfully applied in this research setting due to the 

flexibility of the modelling constructs. MEA-system workflows are almost certainly unique to every 

institution and research group that uses an MEA system at this time. In addition to the clear 

institutional/research group differences it was possible to observe how individual preferences within 

groups at the same institute, working to the same guidelines, resulted in subtle differences in 

protocols (workflows).   
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3.7 Identification of Influential Application 

Differences 
 

Multi-method approaches to gather data for case studies that are of a comparable nature, such as 

those documented in Chapter 4, highlighted key differences between model sets (Figure 3.14). 

Research methods were selected and applied that suitably addressed collection of appropriate 

information for each set.  

The number of workflow stages required varied between MEA system user groups and their 

applications (e.g. the number of activities in sterilisation, cell seeding, experiment execution).  

Flexibility of the applied modelling architecture allowed models that differed to large extents while 

remaining comparable. The cell type used and type of preparation of that cell type resulted in 

substantial differences in MEA-system workflows.  All three user groups modelled used different cell 

preparations that are used in conjunction with an MEA system in different ways (Figure 3.14). 
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One MEA System

(MEA60)

Cardiomyocyte Neurons

Same source (mutant mouse). 

Different preparation (brain 

slice/dissociated cell culture).

Different cell types/preparations require different MEA biochip 

preparation and seeding approaches to achieve appropriate cell-

electrode contact to facilitate signal detection.

Results in different bioscientific protocols (workflows) for comparable 

processes (e.g. MEA biochip sterilisation, cell seeding, experiment 

protocol).  

Results in different sets of comparable enterprise models.

(Dissected stem cell derived 

beating clusters from embryoid 

bodies.)

 
Figure 3.14: Derivation of different workflows using the same MEA system. 

 

The University of Nottingham user group apply MEA systems in the electrical characterisation of 

stem cell derived cardiomyocyte (SC-CM) cells derived from one of a number of maintained stem cell 

lines. The cardiomyocytes are differentiated from human-derived stem cells into microscopic 

clusters of beating cardiomyocyte cells. The beating cluster, referred to by users as “beaters”, are 

dissected out of the original culture by hand and seeded into an MEA biochip over the array of 
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microelectrodes. In contrast, the scientist users at the Sanger Institute use two distinctly different 

instances of the same cell type from the same source type (mutant mice); brain slice and dissociated 

neuron culture. The dissociated neuron culture user (modelled in section 4.3) applies MEA 

technology to cultures where a dissected section of tissue is initially obtained from specifically 

genetically mutated mice and the cells are the dissociated from one another using specific enzymatic 

agents resulting in a suspension of single cells. It is these suspended cells that are separated (by 

centrifuge) and seeded into MEA biochips. Cells prepared in this manner are then allowed a period 

of attachment and re-growth in incubation, during which time new networks of activity will 

propagate. The brain slice user also uses brains taken from specifically mutated mice but in this 

instance the slices are left intact in their natural networks. Slices are then simply placed on top of 

the electrode array and gently secured in place. The protocols (workflows) undergone by each 

instance described differ, the result of which is that the three sets of EMs are unique, possessing 

differing timing and resource consumption information. 

 

3.8 Evaluation of Solutions 
 

The findings of the research conducted for this project are presented through this thesis and in 

research publications. Discussions of the areas of this research that must be evaluated (Figure 3.15) 

are included in Chapters 6 and 7. The following points have been defined for evaluating the research 

presented and for discussion in the closing chapters of this thesis as they are considered essential 

areas of evaluation specific to this research context.    

1. The effectiveness of the data collection methods.  

2. The design approach and prototype manufacture.  

3. The likelihood of product acceptance - that the designed solution will be accepted and 

adopted by real MEA system users.  
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Literature 

Review

Product 

Design 
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Enterprise 

Modelling
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Final Design 

Concept
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Development 

of 
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Product 

Quality

Time

Cost
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tooling 
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Performance 

of product in 

use 
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(in-house 

quality 

assurance)

„Wet‟testing

(using live 
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End-user 

Feedback

Identification 

of new user 

needs

By assessment 

of the identified 

user and system 

requirements

By production of 

a functioning 

prototype

By use of the 

prototype outputs

 

Figure 3.15: Defined areas of research evaluation for this project. 

 

 

3.8.1 The effectiveness of data collection methods 
An assessment of the techniques that have been used for gathering, archiving, communicating and 

exploiting information and data collected throughout this project is required.  

Compilation of a literature review, product design specification drafting and enterprise modelling 

research techniques have been used in both user and system requirements (Chapter 5)  definition 

and during the concept design stages. Physical prototypes were constructed to meet the 

requirements identified that have been tested by end-users. Feedback from users relating to the “in-

use characteristics” of the solution devices was sought and is described in Chapter 6.  
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3.8.2 The design approach and prototype manufacture   
An assessment of how design concepts were conceived and produced, and of how physical 

prototypes manufactured of those concepts performed in both “dry” (without living content) and 

“wet” environment have been carried out and documented in Chapter 6.  

 Testing and evaluation of prototypes was conducted with regard to MEA biochip integrity and also 

in a system integrated MEA system fashion. 

Planned configurations were pre-defined for testing and evaluation of prototype devices prior to 

commencing manufacture: 

 Prototype biochip(s) in commercial hardware (e.g. hardware: headstage, amplifier, ADC) 

with commercial software. 

 Prototype biochip(s) in commercial hardware with novel software. 

 Prototype biochips(s) in novel hardware with novel software. 

 Novel software with commercial MEA biochip in commercial hardware. 

 Novel software with commercial MEA biochip in novel hardware. 

 Novel hardware connecting to commercial MEA biochip and commercial software. 

 

The likelihood of product acceptance was considered throughout this research. An assessment of 

how the user felt using the prototypes was pursued (Chapter 7) during this research.  
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3.9 Summary 
 

In research and development, set approaches are used to support identification of issues or areas to 

be targeted for improvement, and to provide focus to the consequential derivation of appropriate 

solutions. The major objective of this research has been to produce a novel state-of-the-art multi-

electrode array system. A summary diagram of the content of this chapter has been included 

(Figure 3.16). 

 Research was constructed around three distinct project stages: (1) Problem evaluation, 

where short- and mid-term targets were defined; (2) Effective design, where the defined 

targets were addressed, resulting in the output of prototypes (solutions), (3) Evaluation of 

solutions, where prototypes were tested and evaluated.  

 During problem evaluation, felicitous context research facilitated the identification of up-to-

date user and system requirements and product design specification documents were 

consequently constructed. Context research was conducted logically and strategically in 

order to attain a crucial understanding of the research domain, existing MEA system 

technologies and different types of MEA system application. Producers of cutting-edge 

technologies in the field of MEA system application were identified as both competitors and 

domain leaders. It was understood from conducting strategically focused early research that 

different application of the same technology leads to considerably different data outputs 

and new knowledge contributions. New knowledge is excogitated based on quantified 

measurements extracted from those differing data types. 

 Through effective design, solution devices (prototype MEA biochips and system) were 

sought that would match user expectations at the same time as being economically viable 

and industrially competitive. Qualitative and quantitative information was called upon 

throughout decision making as evidence to support design decisions. Information and data 

was gathered using a multi-method research approach that integrated both desk-based and 

field-based findings to provide a detailed view of the design challenges (user and system 

requirements). It was identified that communication of relevant information between 

researchers and project stakeholders was important. A process modelling methodology was 

selected and exploited as a tool for documenting and communicating MEA system 

applications and specific application differences. The same previously validated and 

internationally standardised modelling framework was also used to model manufacturing 
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workflows as they were conceived and developed allowing simple monitoring of critical 

manufacturing details (e.g. time, resource input) as manufacturing workflows evolved.   

 

 Evaluation of the outputs of this research was conducted in terms of the physical prototype 

solutions demonstrated. The evaluation was conducted to address how well the research 

approaches used identified user and system requirements (Chapter 5), as well as how this 

research can be of use to others (Chapter 7).  
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Figure 3.16: A summary of the findings of Chapter 3. 
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3.10 Research Questions Answered 
The following statements address the research questions originally defined at the start of this 

chapter. 

1. What can be done to ensure a thorough evaluation of the field of multi electrode array 

application and system production is performed so as to support the identification of real 

end-user requirements in this research area? 

It was intended as part of this research that real end-user requirements would be identified to 

support the composition of a design specification that would be used throughout design and 

manufacture of a new state-of-the-art MEA system. Identification of user requirements 

depended upon appropriate understanding of how users apply MEA systems and where they 

encounter problems or issues that could be tackled through component and/or system redesign. 

Up-to-date research was pursued so as to identify current requirements that would ensure the 

evolving solutions would be classed as novel and state-of-the art. 

Thorough understanding of the field of MEA system technology use was sought. In addition to 

this it was recognised that a number of MEA system components depend upon recently 

developed manufacturing techniques. To ascertain appropriate knowledge with regard to both 

MEA system use and system component manufacture a strategic multi-method approach to 

research was engaged. This involved using a number of well-established, previously validated 

research techniques (Figure 3.2) to gather a broad range of information and relevant data. 

 

2. Can formalised product design approaches be implemented to support conception of 

effective component and system designs? 

A number of design approaches are described and formalised in design and innovation 

literature. For example, design for manufacture, design for failure, user-centred design and 

sustainable design are all examples of terms used to describe design processes with particular 

emphasis on a particular aspect of design (Pugh, 1991). Design for manufacture and user-

centred design foci have been most significant in this research. 

Formalised modelling (via CIMOSA enterprise modelling) of existing MEA systems as they are 

currently used, as well as during prototype manufacture also supported communication of 

necessary component and system details (e.g. MEA biochips electrode geometries used with 
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which cell type and preparation, what gains are set in the detection hardware) used throughout 

design conception and iteration.  

 

3. What kinds of information will be required to support effective design and manufacture of 

prototypes? 

A combination of qualitative (i.e. user preference and opinion) and quantitative information (i.e. 

timing and resource data) have been used to support PDS drafting and the consequent design of 

prototype solutions. Varying information has been collected from different sources using both 

desk-based and field-based research to provide a balanced and broad collection of information.  

Effective concept generation and user-centred design was supported by well-informed 

identification of user and system requirements.  Derivation of design specifications relied upon 

literature sources, observations, meetings, documents, emails and one-to-one interviews.  

Effective design for manufacture was supported by identification of information relating to 

current manufacturing approaches for similar existing devices (e.g. how commercially available 

MEA biochips are made, what manufacturing approaches offer a means to produce feature 

desired using materials necessary), as well as communication of timing and cost information 

relating to the novel manufacturing approaches being developed.  

 

4. What formalised approaches should be used to represent and communicate research 

inputs and outputs? 

Enterprise models have been used extensively throughout this research to document and display 

a range of input types (i.e. material, human labour). Conference paper and journal papers have 

been produced and published to communicate research findings in the form of prototype design 

and manufacture, testing and validation. In addition to this, this thesis presents the research 

from start to finish in one document. 
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This Thesis

Chapter 4

MEA Application 

Case Studies

1. Cardiomyocyte Clusters

2. Dissociated Neurons

3. Brain Region (Hippocampal) Slices

 

Chapter Four 

4 Case Studies and Requirement 

Identification 
 

 

 

 

 

 

“A case study is an account or description of a situation, or sequence of events, which raises issues 

or problems for analysis and solution” (Heath, 2002). Case studies have been used in this research to 

support problem, and user and system requirements identification.  

To consider the differing domains in which MEA systems are applied (i.e. in the neural research 

domain or the cardiac research domain), and to understand the ways in which MEA systems are 

used within those domains (i.e. differences between use in slice-based experiments and dissociated 

cell culture-based experiments with the neural research domain), three research institute-based 

case studies have been pursued and are presented in this chapter. Note: the domains of MEA system 

application and the ways in which systems are used within those domains is continually evolving and 

diversifying (section 2.7).  
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Case studies contained within this chapter have supported identification of user and system 

requirements across application domains.  The following research questions are addressed through 

the work presented in this chapter: 

1. How are MEA systems currently employed by users that are working with different cell 

sources and cell types? 

 

2. What are the major differences between the applications examined? 

 

3. Can any system or component changes that have been identified as requirements by this 

research offer value to users, and of those changes, which ones can be realised by this 

research? 

 

The overall population of MEA system users is diverse so samples of representative users are 

discussed in this thesis. The population of MEA users has been divided into population samples 

depending upon the cell of interest (e.g. neuron, cardiomyocyte). Two cases from the neural tissue-

based sample and one from the cardiac tissue-based sample are presented (Figure 4.1). 

 

Population Samples of population
Case Studies

MEA Systems Users

A
p

p
lic

a
ti
o

n
s

Neural Tissues

Cardiac Tissues

Other

Slice

(Case Study 3)

Dissociated  Culture

(Case Study 2)

Slice

(Future Case Study)

Beating culture

(Case Study 1)

Alternative tissue/cell 

type

(Future Case Study)

 
Figure 4.1: MEA system applications and corresponding case studies. 
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The MEA system user groups that have partnered this work are: 

1. The Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM) at The 

University of Nottingham’s Centre for Biomolecular Sciences 

Group leader: Professor Chris Denning.  

Major project contacts: Dr David Anderson and Miss Divya Rajamohan. 

Website: 

http://www.nottingham.ac.uk/news/expertiseguide/experts/d/professorchrisdenning.aspx 

 

2. Genes to Cognition Research Group at the Wellcome Trust’s Sanger Institute (moved to 

University of Edinburgh November 2011).  

Group leader: Professor Seth Grant.  

Major project contacts: Dr Paul Charlesworth and Dr Maksym Kopanitsa.  

Website:  http://www.genes2cognition.org 
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4.1 Case Study Development 
 

The method used to develop the presented case studies is illustrated in Figure 4.2. Data collection 

took place through desk-based research methods resulting in Chapter 2. Field-based research was 

required to gather the requirement specific information that was structured as enterprise models. 

As understanding of the application and user requirements of each application increased additional 

supplementary information was gathered and integrated into the case studies. 

1. Data Collection

2. Data Restructuring

3. Case Enhancement

NeedspecificVs„trawling‟

Decide structure, write and edit

Supplementary material – printed word, audio, video

 
Figure 4.2: The case study development process. 

[Adapted from: Heath, 2002.] 

 

The enterprise modelling (EM) architecture used is described in Chapter 3. EM was applied to create 

structured sources of information that supported problem understanding, as well as up-to-date user 

and system requirement identification, definition and prioritisation.  

 

4.1.1 Case Study Commonalities 
Across the MEA system user population commonalities exist: i) obtain and/or culture appropriate 

cells over MEA electrodes, ii) record signals that these cells produce, and iii) analyse the signals to 

derive understanding so as to contribute new knowledge. The remainder of this Chapter 

demonstrates user group specific information that was collected and constructed into enterprise 

models centred on identifying application specific differences and problems associated with MEA 

system’s use. 
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4.1.2 Information for Requirement Identification 
Information derived during observations of MEA system users has identified user requirements that 

are presented at the end of each case study.  The information that is combined in the construction 

of each EM was initially obtained via passive observation of user workflows (bioscientific protocols) 

in each context.  Further detail was captured though interaction between the modeller (thesis 

author) and the system users, and also with the physical workflows themselves (e.g. the modeller 

gained hands on experience of the protocols with the users). Meetings were also held prior to and 

post modelling to plan what to observe and to collect supplementary information as required after 

observation. Reference to laboratory standard operating procedure (SOP) documents written by the 

UoN and Sanger Institute users were also referred to for additional details. Examples of these 

documents are contained in Appendix D. 

 

4.1.2.1 Modelling Identifiers and Process Relevance 
Processes and activities of each case study are presented as overall workflows using the CIMOSA 

architecture and modelling constructs. This approach enables the identification and definition of 

MEA system use into elements. Alphanumeric identifiers are used to note individual actions and to 

group actions into processes (see Figure 3.13). For example, the abbreviation P.1 represents process 

one, the first process of the overall workflow, and the abbreviation A.1 is used to represent the first 

activity carried out in order to complete that process. 

So in the forthcoming figure, Figure 4.4, process one could be “Obtain stem cells” which in this case 

is out of the immediate scope of this project but is a vital process that all project stakeholders need 

to be aware of. Process two in the same model, “Derive cardiomyocytes”, is also out of the scope of 

this project but is a focal area of research for the UoN group and must be documented in the model. 

Process three, “Seed and culture cardiomyocytes” is the first process that has direct relevance to the 

focus of this research and is dependent upon successful completion of P.1 and P.2. Process three is 

the first to have been modelled in further detail as  drill down models and this is usually represented 

in the model by the presence of a shadow under the shape in which the words “P.3. Seed and 

culture cardiomyocytes” are contained. Processes four, five, six and seven are also relevant to this 

research so have been modelled in further sub-models too, again indicated by shadowing. Processes 

eight (P.8 –Derive meaning) and nine (P.9 – Share findings) are not directly relevant so have also not 

been modelled beyond this point. 

The identifiers are constant throughout all three of the ensuing case studies.  
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4.2 Case Study One: Stem cell-derived 

Cardiomyocyte Application 
 

There are areas of cardiological research where using MEA systems to record electrogenic activity as 

it occurs in cardiomyocyte cells or across cardiac tissues can serve as tools that are used to 

contribute new knowledge (Caspi et al, 2009). Examples of such areas include: investigations of the 

mechanisms of arrhythmia, which is irregularity of the heartbeat (Jacquir et al, 2008); investigation 

of specific membrane channels present in cells of the myocardium (heart muscle) (Law et al, 2010), 

and investigation of responses to pharmacological substance testing (Caspi et al, 2009). 

Jacquir et al (2008) studied monolayers of cardiomyocytes cultured over an MEA. Basal conditions 

were observed. Proarrhythmic conditions (the new or more frequent irregularity of cardiac 

contractions) were then induced by using the MEA electrodes to deliver high frequency electrical 

stimulations to the cardiomyocytes. The response of cells to anti-arrhythmic drugs was then 

observed and the implications discussed. 

Law et al (2010) studied the effect of potassium channel openers (a selection of cardio-active drugs 

that facilitate transport of ions through potassium channels) by using an MEA system to facilitate 

observation of metabolic inhibition of cardiomyocyte cells. Parameters of cardiac activity captured 

from the system were beat frequency and field potential amplitudes and durations. This work 

supports the use of MEA systems for long- and short- term monitoring of metabolic inhibition of 

cultured cardiomyocytes and suggested that models of the heart on MEA systems could serve as a 

reliable platform for discovery and study of cardioprotective drugs.  

Caspi et al (2009) examined the possibility of combining single cell electrophysiology (see 

section 2.4.2.1) with MEA recordings as a novel model for complete electrophysiological drug 

screening. Anti-arrhythmic substances were examined to observe known responses using the MEA 

system. Alterations in field potential durations, and consequently QT-intervals, were observed and 

discussed to support MEA systems use in cardio-active substance screening.   

The context diagram in Figure 4.3 is an example of the highest high level of CIMOSA model created 

in this research case study. Figure 4.3 shows domains that can be autonomous research fields in 

their own right but that are also interdependent as they are all associated with the use of stem cell-

derived cardiomyocytes (SC-CM) for research. It is of use to this research to be aware of advances in 

the other fields depicted as they each contribute to an increased understanding across cardiological 
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research. Developments in one area (e.g. culturing of a stem cell line to meet a demand) may 

potentially influence developments in another field too (e.g. use MEA tools to extract useful 

electrophysiological data from SC-CM sources). Figure 4.3 also places electrophysiological data into 

context with overall research and development in the SC-CM research domain. 

 

Establish Stem Cell Line

Culture Stem Cell Line to meet demand

Develop stem Cell Differentiation Techniques

Use MEA Tools To Extract Useful 

Electrophysiological Data From SC-derived 

Cells

Apply SC-derived Cells To Research Needs

D.3.

Cardiological

- CIMOSA Domain

- Non-CIMOSA Domain

 
Figure 4.3: A context diagram depicting the interdependent research fields that are implemented 

contributing to successful stem cell-derived cardiomyocyte research. 

 

 

4.2.1 Case Study Context 
This case study is focused on an application that uses MEA systems to extract useful 

electrophysiological data from stem cell derived cardiomyocytes as they are exposed to various 

chemical entities.  

Bioscientific protocols have been defined by University of Nottingham (UoN) MEA system users to 

facilitate this application.  

Enterprise models (EMs) in this section communicate information relating to how MEA systems are 

presently used by the UoN and what current biochip and system requirements have been identified. 
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4.2.2 Modelling of the University of Nottingham SC-CM 

Application 
The ensuing EMs document the protocols employed in a specialist cell culture laboratory 

environment at the UoN. Early construction of a high-level application summary model (Figure 4.4) 

outlined the overall workflow used in this cardiomyocyte-centred MEA application. The workflow is 

broken down into processes that are elements with clear start and end points. Further “drill down” 

models were constructed of processes that were relevant to MEA system interaction to ensure 

collection of detailed knowledge of all relevant processes.  

 

4.2.2.1 Overview 
The UoN workflow used to detect, record and analyse electrical field potential signals from stem cell-

derived cardiomyocytes has been summarised as (Figure 4.4):  

 Process One (P.1.) – Obtain stem cells   

 Process Two (P.2.) – Obtain cardiomyocytes from those stem cells 

 Process Three (P.3.) – Seed and culture the cardiomyocytes over the electrodes of an MEA 

biochip 

 Process Four (P.4.) – Select and obtain substance(s) to be investigated 

 Process Five (P.5.) – Set-up and run experiment 

 Process Six (P.6.) – Collect data output 

 Process Seven (P.7.) – Analyse output offline 

 Process Eight (P.8.) – Derive meaning from values ascertained through analysis 

 Process Nine (P.9.) – Share findings to contribute new knowledge to the research community 
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P.1

Obtain Stem Cell 

source for 

differentiation

P.2

Derive 

cardiomyocytes

P.3

Seed and culture 

cardiomyocytes on 

MEA

P.4

Select and obtain 

the drug of choice

P.5

Set-up and run 

trial

P.6

Collect initial 

output data

P.7

Post-process raw data 

and produce visual 

representations

P.8

Derive meaning

P.9

Share findings

New 

knowledge

hESC

Scientist

Culture Media

Equiped Laboratory

hESC-CM

Scientist

Coating Media
t=~20 days

 Overall t= 

~2-5 days

MEA Biochips

Reason for 

selection

Scientist

Scientist

MEA System Hardware

MC_Rack 

Parameters for 

recording

Scientist

MC_Rack 

MC_Rack 

Software

MC_Datatool

Other Softwares

Scientist

Scientist

Trial 

runs

Cell line under constant 

maintenance

72 minutes to 

seed each batch

Batch size: 

5-8 MEAs

Six output files per drug:

1 basal, 5 concentrations

Time investment in terms of 

time spent producing beating 

clusters of CMs from stem 

cells

Experiment set-up 

time required to reach: 

healthy, attached and 

contracting clusters 

over electrodes. 

Microscope

Optics essential 

to confirm all 

three.

Need to increase number 

of beating clusters per 

media well because if the 

beating cluster stops 

contracting all time spent 

on that biochip to that 

point is wasted. 

When beating cluster is 

healthy, well attached 

and contracting testing 

can be fast

t= 18 mins 

(3mins x 

6.mcd files)

t=1hr 45 mins 

(to process 6 

.mcd files = one 

substance)

t= 57 mins 

(per substance - 

1control, 5 

concentrations)

Lengthy analysis

- process

- document

- human resource

- physical resource

- event

- information

- finance

 

Figure 4.4: An activity diagram of the overall workflow of processes implemented by UoN MEA system users. 
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To complete an investigation from start to finish takes a total of approximately 22-25 days. 

The protocols of most interest to this research are those where the MEA system or a component of 

the system has been physically interacted with in some way. These processes are identified and 

modelled further to capture relevant detail. Shadows are used under modelling constructs (e.g. P.3, 

P.5, P.6 and P.7) to indicate where further models have been constructed to incorporate details 

relevant to this research.  

 

User and system requirements identified during the observation and the construction of the overall 

workflow used for this application are:  

1. To ensure as many beating clusters as possible make it from differentiation to the end of 

testing through facilitating appropriate handling and cell culture conditions. 

2. To increase the number of beating clusters per media well, thereby improving the volume of 

output per test and to improve efficiencies of the MEA biochip preparation process. 

3. To ensure outputs are of comparable or better quality than current. 

4. To ensure tests can be conducted with comparable or better ease and speed. 

  

4.2.2.1.1 University of Nottingham processes 

The following models document each process that is MEA system or component relevant. 

Process Three – Seed and culture cardiomyocytes on MEA Biochip 

Process three (Figure 4.5) is the preparation of each MEA biochip (workspace and media well) to a 

standard suitable for beating cluster attachment and survival in vitro. This requires sterilisation and, 

depending upon the user preference, treatment of the surface with an appropriate attachment 

matrix, which in this case is e.g. Matrigel. The beating clusters of cardiomyocytes are seeded into the 

MEA biochips, one at the centre of each workspace and therefore per media well. 

Once seeded, the MEA biochips are moved from the culture hood into the incubator where the 

environment is controlled at a steady 37°C with a CO2 concentration of 5% (which is required to 

control acidity levels within the culture media) and left undisturbed for a period of at least sixteen 

hours. The exact incubation period differs, depending upon the individual scientist and the duration 

of time that each individual beating cluster takes to attach adequately to the underlying attachment 

matrix or surface.  
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P.3.A.1
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P.3.A.5

Well is left at Room 

Temperature until a film 

(invisible to the human 

eye) develops on the base 

surface.
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Well is held in a controlled 

environment while 
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User

Optical Tooling

Micropipette

Custom 
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Incubate
 

Figure 4.5: An activity diagram depicting the activities carried out to complete process three. 
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User and system requirements identified: 

1. Sterilisation of the biochip takes 20 minutes. Treatment of the workspace surface with 

Matrigel takes a further 1 hour and 45 minutes.  

2. Attachment of the contracting cell cluster requires at least 16 hours. UoN users have 

described occasions where, due to the contracting nature of the sample, the beating cluster 

has moved away from the microelectrodes prior to attachments forming with the surface. 

On these occasions no signal is detected, so the time spent preparing the biochip to this 

point has been wasted. In addition to this, if the beating cluster of cardiomyocytes is to be 

re-used, more time is lost dissecting it out of the MEA for re-seeding onto a newly prepared 

MEA biochip. A biochip that ensures attachment over electrodes every time is required.   

Note: ~10% of cardiomyocyte clusters seeded onto an MEA biochip complete the testing process 

from initial seeding to full data capture (Personal Communication, Dr David Anderson). 

 

Process Four – Select and obtain drug 

Process four, select and obtain the drug of choice, is user dependant and is out of the scope of this 

project in terms of delivering improvements to the MEA system.  

 

Process Five – Set-up and run trial 

Process five (Figure 4.6), set-up and run trial, is when the MEA system is physically put to into use. 

Signals are detected and recorded into files that contain data for all of the 60 microelectrodes. The 

files are called multi channels data (.mcd) files. The response of the cardiomyocytes to chemical 

treatments added during recording is of primary interest to UoN users in this case study.  

User and system requirements identified: 

1. Every stage of each test is carried out manually by the user. Automation of the process or of 

parts of this process (i.e. automatic perfusion of the culture media and substances that are 

under investigation) would increase convenience to users and reduce the likelihood of 

human error. 
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P.5.A.6
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P.5.A.7
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Drug

P.5.A.8

After recording. Aspirate 

medium from the MEA 

with a plastic Pasteur 

pipette and discard in to 

pot containing trigene

Pasteur pipette

P.5.A.9

Wash with ~1ml Diff Med 

using a second pipette

P.5.A.3

Allow cells to 

stabilise 

P.5.A.10

Allow cells to 
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Pasteur pipette

P.5.A.4

Insert MEA into 

headstage

P.5.A.11

Add next 

concentration and 

record again

P.5.A.12

Dispose of cells 

and sterilise MEA 

for storage or re-

use

If all required 

data for culture 
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User

User
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t= 15 secs

User

User

MC_Rack

PC User

t= 3 mins

User

Pasteur pipette Pasteur pipette

User

User

t= 5 mins

User

User

t= 3 min
P.5.A.13b

Obtain next MEA 

biochip culture

t= 30s

t= 10s

t= 7 mins

t= 3 mins

t= 30s

t= 1 min

x4

P.5.A.13a

End Trial

- process

- document

- human resource

- physical resource

- event

- information

- finance

Recording durations are 

short

 

Figure 4.6: An activity diagram depicting the activities carried to complete process five. 
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Process Six – Collect initial output data 

Process six, collect initial output data (Figure 4.7), uses the MC-Rack re-player function to re-run 

recorded raw data files through a previously configured rack that has been specified to output 

specific parameters of interest.  

Parameters of interest 

 For this case study those parameters were:  

 Beat rate –  number of contractions per minute  

 Average peak-to-peak amplitude (per minute) – µV 

 Average minimum amplitude (per minute) – µV  

 Average duration between beats (per minute) – ms  

 Average QT-interval (per minute) – ms (see process seven) 

From the configured 

rack display windows 

extract readings. Taken 

at the end of each 1 

minute bin.

Trial is 

running

PC with MC-Rack 

running

User

Notebook

Information extracted: 

Beats per minute(bin),

Amplitude (mean),

Minimum Amplitude (mean),

Maximum Amplitude (mean),

Durations (mean).

t= 3 mins 

per trial

 
Figure 4.7: An activity diagram depicting process six, the initial data extraction using the replayer function in 

MC_Rack. 

 

Process six captures the parameters identified in bold type above. Average QT- interval is extracted 

by process seven.  

Process six takes a little over three minutes per file to perform. Six files are recorded per cell cluster, 

per test (1 basal, 5 during treatment with different concentrations of a substance). The data used is 

from the final two minutes of each three minute recording and is from a single channel. Values for 

each parameter for the signal occurring on the channel selected are documented by hand into a 

spreadsheet. The channel used is the “channel of interest” throughout the analysis (P.6 and P.7). 
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This process can be carried out during testing (online) but is most often done after the recordings 

have been made (offline) so as to reduce the likelihood of human error during the live experiments. 

User and system requirements identified: 

1. Automated extraction of basic parameters including beat per minute, amplitude values and 

durations of and between waveform features (i.e. duration between beats, duration of QT-

interval). 

 

Process Seven – Post-process raw data and produce visual representations of data 

Process seven, post process the raw data and produce representations, is documented in Figure 4.8. 

P.7.A.1

OpenMC_Rack, 

find .mcd file to be 

re-recorded and 

check content

P.7.A.2

Manually add 

trigger and re-run 

file to confirm 

trigger works

P.7.A.3

Re-record 

triggered data as a 

new .mcd file

MC_Rack

P.7.A.4

Open 

MC_Datatool, 

import newly 

recorded file and 

select option to 

convert to .abf

P.7.A.5

Depress the COI 

button on the GUI 

and leave all other 

default settings

P.7.A.6

Select location for 

saving file, file 

name and click 

save

MC_Datatool

P.7.A.7

Open ClampFit 

and import .abf file

P.7.A.8

Perform statistical 

manipulations

P.7.A.9

Extract valuable 

information

ClampFit

P.7.A.12

Copy and paste 

plots into 

powerpoint and 

overlay into one 

image.

P.7.A.10

Insert values into 

excel spreadsheet 

for multiple files

P.7.A.11

Perform 

comparisons 

between files

MS PowerPointExcel

t= 7min per file 

(typically 6 files) 

t= 2min per file 

(typically 6 files) 

t= 1min per file 

(typically 6 files) 

t= 40min t= 5min 
 

Figure 4.8: An activity model of process seven as it is currently performed. 
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In this application analysis of the raw signals recorded is conducted offline, assessing the influence of 

a substance or substances on a known feature of the cardiac waveform that is called the QT-interval. 

Process 7 takes a significant amount of time to perform 

The shape of signals varies between cell clusters (see Figure 2.33). Consequently user perception of 

where the Q feature starts and T feature ends is currently a variable.    

The parameter of interest extracted by this process is: 

 Average QT-interval duration (per minute) – ms (process seven) 

This is a critical parameter of drug development and safety pharmacology that is considered as part 

of new substance development prior to any clinic-based testing (section 2.11.1.1.2). 

The following further drill down models demonstrate how QT interval is extracted in further detail in 

way that is repeatable by different users of the same research group. 

 

Further drill down modelling 

Activity models have been used to document further details of each protocol. In this section the drill 

down models generated for this case study are presented and additional requirements identified are 

noted. 

Process Five 

Activities pursued to complete action P.5.A.4 are shown in Figure 4.9, insert MEA into headstage, 

into defined in the higher-level model of process five (Figure 4.6).  
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P.5.A.4.1

Ensure pre-

equiliberation.

P.5.A.4.2

Start computer

P.5.A.4.3

Switch on heated 
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temperature 

P.5.A.4.4
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User
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Click CHANGE 
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P.5.A.4.6
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T= 32°C

User
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User
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P.5.A.4.10

Allow settling 

period

t= ~5-10 mins
 

Figure 4.9: The low-level activities carried out to complete activity four or process five. 
 

P.5.A.4.3 to P.5.A.4.10 (Figure 4.9) are repeated where >1 seeded MEA biochip is tested. P.5.A.4, 

insert MEA into headstage, takes approximately 10-15 minutes per biochip due to the need to allow 

a settling period. In this example an experiment may be repeated on five cell clusters. Therefore 

P.5.A.4 repeated five times adds ~50 minutes to the overall test duration. This research has been 

able to highlight that if five cell clusters were seeded into one MEA biochip and independent 

contractions maintained, then at least 40 minutes could be saved per experiment.  
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User and system requirements identified:  

1. Support system electronics that can facilitate more seeded beating clusters of 

cardiomyocytes per execution of a test automatically.  

 

The activities involved in P.5.A.5 are demonstrated in Figure 4.10, the initial software set-up at the 

start of the experiment. When a new analysis routine is constructed a new rack may be constructed 

that can be saved and re-used for subsequent relevant tests (section 2.9.1.4.1). Within this model 

P.5.A.5.3 has been modelled further as this aspect may be adjusted by users between individual 

MEA biochips in a complete testing cycle using several MEA biochips. 

 

P.5.A.5.2a

Open predefined 

rack. 

P.5.A.5.4

Create subfolders in 

accordance with 

established system

P.5.A.5.5

Set any 

parameters, 

subfolders or 

associated tabs

P.5.A.5.6

Click PLAY to check 

all working OK.

(Quality Control)

P.5.A.5.1

Open MC-Rack

P.5.A.5.3

Check and adjust 

rack tabs

P.5.A.5.7

Adjust individual 

channel thresholds by 

hand

t= 30s

User

PC with MC_Rack 

Installed

t= 30s

t=~1-3mins

t= 4s

t= 1s

t= 2 mins

t= 1 min

P.5.A.5.2b

Set up a new rack

I.e. the channel on which the 

usable signal is present will alter 

between MEA biochips 

depending on where over the 60 

microelectrodes the beating 

cluster attaches.

 

Figure 4.10: The low-level activities carried out in order to complete activity five of process five. 
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The following models incorporate further details of how the software is used in a visual manner. The 

software was described by users as complicated and lacking intuitive ease of use. For a novel 

software solution to be implemented a thorough knowledge of how current software is interacted 

with was sought by the author of this thesis. Figure 4.11 shows the steps taken to set-up the analysis 

rack used.   

P.5.A.5.3.11

Click on 

MC_Card icon

P.5.A.5.3.19

Click Raw Data to 

display tabs

P.5.A.5.3.1

On the Recorder 

Icon in the Rack 

windom. 

P.5.A.5.3.6

Click Recorder  

P.5.A.5.3.8

Specify file name 

for each new 

recording

P.5.A.5.3.7

Set file 

size to 3 min and 

tick auto Stop

P.5.A.5.3.4

Click Channels 

P.5.A.5.3.5

Tick Electrode Raw 

Data. Ensure all 

other options 

unchecked

P.5.A.5.3.9

Click Window

P.5.A.5.3.10

Highlight 

Continuous

P.5.A.5.3.12

Click Rack 

P.5.A.5.3.13

Check Status. No 

other action

P.5.A.5.3.15

Set Input voltage 

range to -819 

to +819mV

P.5.A.5.3.16

Set sampling 

Frequency to 

10000Hz

P.5.A.5.3.14

Click Hardware

P.5.A.5.3.20

Click Rack 

P.5.A.5.3.21

Check Status. No 

other action

P.5.A.5.3.22

Click Layout 

P.5.A.5.3.23

Open inverted 8x8 

file

P.5.A.5.3.24

Click Data 

P.5.A.5.3.26

Set plot type to 

trace

P.5.A.5.3.25

Tick Electrode Raw 

Data. Ensure all 

other options 

unchecked

P.5.A.5.3.27

Click Window

P.5.A.5.3.28

Highlight 

Continuous

P.5.A.5.3.17

Click Info

P.5.A.5.3.18

Confirm details 

are correct

P.5.A.5.3.2

Click on the Rack 

tab

User

PC with MC_Rack 

Installed

P.5.A.5.3.3

Checkstatus“No

otheraction”

P.5.A.5.3.29

Add further 

analysis features 

to rack if required.

 

Figure 4.11: The low level activities carried out to complete A.5.3 of process five. (This process also the same 
for activity 2b of process five.) 

 

Settings are adjusted in the rack tabs prior to testing, via a series of repetitive click tasks. It is this 

element of software interaction that UoN users have described as complex and lacking intuition. This 

aspect of set-up is entirely user dependant so it must be carried out correctly if the recordings taken 

are to be useful. Figure 4.12 shows what the rack and its tabs in this instance look like. 
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Open the previously 

created .rck file

Check status of the 

rack



200 
 

__________________________________________________________________________________
Case Studies and Requirement Identification 

 

Adjust channels to be 

recorded

Define the file that is 

to be created 
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Adjust window setting 

to continuous

Set hardware (the 

MC_Card) settings
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Confirm details

Set the layout map for 

the ensuing tools
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Set data

Set window to 

continuous
 

Figure 4.12: Setting up the recording rack for the UoN cardiomyocyte MEA system application. 
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User and system requirements identified: 

1. Software that has a greater level of automation. Should be more intuitive and less complex.   

 

Process Seven – QT-interval data collection 

The process used to extract the QT-interval are documented in greater detail in the figures 

Figure 4.13 to Figure 4.21. 

MC_Rack 

The MC_Rack replay function is used to re-record the original raw data files that have been recorded 

and used to extract other basic parameters into “triggered files”. A triggered file breaks the 

continuous stream of raw data into individual windows of data that each contain a single contraction 

waveform (SC-CM cluster field potential).  

The process required to add a trigger is:  

 A.1.1 – A.1.3: Add Replayer > Replay file tab > Select file > Slow replay rate to ~1.0x. 

 A.1.4 – A.1.5: Add display > Press play to run file in fast mode to confirm signal present and 

COI. 

 A.1.6: Return to replayer> adjust replay speed further if required. 

 A.1.7 – A.1.9: Double click on display over COI> Right click> Turn on “display crosshairs”> Use 

cross hairs to decide where threshold should be set and approximately how long each beat 

is in duration. Note values on a piece of paper. 

 

 A.2.1 – A.2.5: Add Trigger Detector > Select Trigger tab> Set channel to COI> Set Level to 

appropriate position for threshold (decided using cross hairs on replayer display)> Set dead 

time to point beyond end of last wave feature and before start of next wave > choose for 

trigger to be on the positive or negative slope of the spike. 

 A.2.6 – A.2.9: Add Display to trigger detector > Layout> Select COI in Channel drop down 

menu> Data > Check “Electrode Raw Data” and “Trigger 1” > Window> Start on Trigger> 

Drop down Trigger to “trigger 1”. 

 A.2.10 – A.2.11: Return to configuring replayer 

o Set start time to begin 181 seconds from end (last three minutes of recording. 

o Replay file. Ensure the Trigger detector display is showing each window overlaying 

and not the raw data stream. 
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 A.3.1 – A.3.6: Configure recorder: 

o Channels > Select channels to export 

o Recorder>Set file name and saving location 

o Window> Check “Start on Trigger” > Set start time to before wave begins>Select 

appropriate window extent by measuring using cross-hairs feature of 

MC_Rack>Leave Trigger 1. 

 A.3.7: To start rerecording the triggered file>On the main display press down the red 

“recording” spot button> Press play. 

 

If the settings are not correct during the re-recording of the data with the trigger the file will fail to 

convert in the MC_Datatool software. 
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P.7.A.1.1

Open MC_Rack

P.7.A.1.2

Click to add the 
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P.7.A.1.3

On the File tab 
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and select most 

appropriate COI

P.7.A.1.6
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replay speed if 
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On the display 
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P.7.A.1.8

Right click and 

select“display

crosshairs”.

P.7.A.1.9
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P.7.A.2.1
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P.7.A.2.2
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“Trigger”taband
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P.7.A.2.3
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and set deadtime
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any peaks that 

may re-trigger the 

same event. 

P.7.A.2.4
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negative slope of 
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P.7.A.2.6

Add a display to 

the trigger 

detector

P.7.A.2.7

Select the 

“Layout”tab. On 

the“Channel”drop

down list select 

the COI.

P.7.A.2.8

Selectthe“Data”

tab. Ensure 

“electrodeRaw

Data”andTrigger

1" are both 
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P.7.A.2.9

Select“Window”

tab. Select“start

onTrigger”and

check drop down 
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“Trigger1”.

P.7.A.2.10
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configuring 

replayer. Set 

replay time to last 
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data.

P.7.A.2.11

Replay file 

watching trigger 

display. Ensure 

window shows 

overlaying of 

signals and not 

raw data stream.

P.7.A.3.1

Configure 

recorder. Select 

the“Channels”tab

and choose the 

channel(s) to re-

record in the 

triggered file.

P.7.A.3.2

Select the 

“Recorder”tab. 

Click browse and 

choose location to 

save new file. Add 

new file name.

P.7.A.3.3

Select the 

“Window”. Choose 

“StartonTrigger”.

P.7.A.3.4

Choose a start 

time before start of 

event. Choose 

Window extent to 

include duration of 

entire event.

P.7.A.3.5

Ensure“Trigger1”

is the Trigger 

selection.

P.7.A.3.6

Start recording by 

pressing the Red 

recording icon 

followed by the 

play icon.

P.7.A.1

P.7.A.2

P.7.A.3

MC_Rack

 

Figure 4.13: The low level activities of activities 1 to 3 of process seven. 
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MC_Datatool 

The MC_Datatool is a specialist software tool that specifically converts .mcd files into alternative 

formats that can be imported into other software. The MC_Datatool supports conversion to binary 

(.bin), text (.txt) and axon binary (.abf) file types. In this case users convert the raw .mcd files into 

.abf files, which is required to import MEA system data into the Clampfit software (Molecular 

Devices, Sunnyvale, CA, USA) used in the ensuing stages of the analysis (Figure 4.14). 

P.7.A.4.1

Open 

MC_Datatool. 

Click on file.

P.7.A.4.2

Select“Open

.MCD”

P.7.A.4.3

Find and select file 

for conversion.

P.7.A.4.4

Review“DataFile

Information”to

ensure correct 

content for 

conversion.

P.7.A.4.5

Select the 

conversion to .abf 

icon on the 

toolbar.

P.7.A.5

Click on the button 

representing the 

COI in the centre 

of the display.

P.7.A.6.1

Click browse and 

select location to 

save converted 

triggered file.

P.7.A.6.2

Click“Save”

P.7.A.6.3

Check new file is 

created in desired 

location

P.7.A.6.4

Close 

MC_Datatool.

P.7.A.4

P.7.A.5

P.7.A.6

MC_Datatool

 
Figure 4.14: The low level activities of activities 4 to 6 of process seven. 

 

The process required to convert from .mcd to .abf is:  

 A.4.1 – A.4.3: Open MC_Datatool>File>Open MCD>Select file for conversion from .mcd 

(multi channels data) to .abf (axon binary file). 

 A.4.4: Check Data File Information. 

 A.4.5: Select the button on the main toolbar that looks like this . 

 

 A.5: Click on the button in the middle of the display that shows the channel of interest.  

 

 A.6.1 – A.6.3: Click Save. 

 A.6.4: Close the MC_datatool. 
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Clamp Fit 

Clampfit (pCLAMP v10) is a specialist electrophysiology data acquisition and analysis software that 

regards itself as the “gold standard” software for this electrophysiology application. This software 

has been developed recording and analysis of patch clamp data. In this application all of the 

waveforms in one triggered file (lasting 181 seconds) are averaged and the QT-interval is extracted 

by hand using drag-and-drop cross-hairs (Figure 4.15).  

P.7.A.7.1

Open ClampFit 

10.2. Click File.

P.7,A.7.2

Click“Opendata”

and select file of 

interest.

P.7.A.7.3

View default 

display of all 

events overlayed

P.7.A.8.1

Click on the 

Analyse option on 

the main toolbar. 

Select“Average

Traces”.

P.7.A.8.2

Leave default 

settings on 

diaglogue box and 

click ok.

P.7.A.8.3

View averaged 

trace. Move 

cursors 1 and 2 to 

duration of interval 

of interest.

P.7.A.9

Read values and 

note by hand 

P.7.A.7

P.7.A.8

P.7.A.9

ClampFit

 
Figure 4.15: the low level activities of activities 7 to 9 or process seven. 

 

The process required to average the waveforms and capture the QT-interval is: 

 A.7.1: Open Clamp Fit 10.2 

 A.7.2: File>Open Data> Double click .abf of interest. 

 A.7.3: View all windows captured overlayed (Figure 4.16). 
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Figure 4.16: The ClampFit graphical user interface with the analyse tab selected.  

 

 A.8.1: Analyse> Average traces 

 A.8.2: Average Traces Button> click > Following Dialogue box appears>click OK 

(Figure 4.18).  

 A.8.3: View averaged trace> Move cursors at top of display to read off timing information and 

amplitude values (Figure 4.18). 

 

 A.9: Note values by hand for insertion.  

 

 
Figure 4.17: The average traces panel in the ClampFit software. 
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Figure 4.18: The averaged trace with click-to-drag cross-hairs that are accompanied by a panel displaying the 

time (ms) and amplitude (µV) of the selected data point. 

 

Additional analysis facility: The facility to extract statistical information regarding the file is also 

available. This is not fully exploited by users in this specific application but the outputs of this feature 

are considered useful by the bioscientist user. 

The process of accessing this statistical information is: 

 Click Analyse>Statistics…>Select preferences from panel demonstrated in Figure 4.19. 

 Click OK 

 To view results minimize the display to see the results spreadsheet (Figure 4.20). 

 Extract required data by hand and input into excel. 
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Figure 4.19: Statistical tools available in ClampFit. 

 

 
Figure 4.20: The resulting spreadsheet from the panel shown in figure 4.20.  
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Excel and Powerpoint 

The remaining stages are Microsoft Office based (Figure 4.21). Values are collated, correlated and 

presented as combined images to compare the cellular response to different concentrations, 

different substances and different combinations of substances.  

P.7.A.10.1

Open a new Excel 

spreedsheet

P.7.A.10.2

Construct table for 

hand derived FPD/

QT values

P.7.A.10.3

Add values 
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period of 10 trials 

to document

P.7.A.11.1

Use excel 

functions to 

calculate % of 
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mean average of 

these values.

P.7.A.11.2

Use excel 

functions to 

calculate the 

standard 

deviations

P.7.A.11.3

Use excel 

functions to 

calculate the 

Standard Error 

Mean

P.7.A.11.4

Use excel 

functions to 

calculate T-tests.

P.7.A.11.5

Using excel 

charting functions 

plot data of 

choice.

P.7.A.12.1

Copy and paste 

elements of the 

ClampFit traces 

into powerpoint

P.7.A.10.4

Add copy and 

pastes of average 

traces created in 

ClampFit.

P.7.A.12.2

Align signal traces 

according to axes

P.7.A.12.3

Save slide as an 

image

P.7.A.10

P.7.A.11

P.7.A.12

Microsoft Excel

Microsoft Powerpoint

 

Figure 4.21: The low level activities completed to carry out activities of process seven. 

 

Examples of the outputs from this stage can be seen in Appendix D. 

User and system requirements identified from process seven drill down models: 

1. Introduce automatic triggering or remove need for triggering. 

2. Automatic QT-interval identification. 

3. Facility to compare QT-interval values between different data files (data mining).  
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4.2.2.2 UoN Requirements summary 
Through carrying out this case study the following requirements have been identified as required by 

this specific application. The identified needs that are addressed by this research (compliment PDS 3) 

are marked in bold. Other needs identified are to be addressed by further work.  

1. To ensure as many beating clusters as possible make it from differentiation to the end of 

testing through facilitating appropriate handling and cell culture conditions. 

2. To increase the number of beating clusters per media well thereby improving the volume 

of output per test and to improve efficiencies of the MEA biochip preparation process. 

3. To ensure outputs are of comparable or better quality than current. 

4. To ensure tests can be conducted with comparable or better ease and speed. 

5. Removal of the need to sterilise and treat attachment surfaces would significantly reduce 

preparation time. (Comment: This could be addressed through further consideration of 

production using low cost, disposable materials supporting production of MEA biochips that 

can be sold in a pre-treated, sterile package and thrown away after use. The facility to print 

suitably biocompatible, conductive material onto transparent polystyrene substrates will 

facilitate this in the future. Application of dehydrated artificial extracellular matrix materials 

could also be considered in line with current experimental applications of comparable 

substances across this research domain if required.) 

6. A biochip that ensures attachment over electrodes every time is required.   

7. Every stage of each test is carried out manually by the user. Automation of as many 

processes or of parts of processes (i.e. perfusion of culture media and investigated 

substances during testing or automated software configuration) would increase convenience 

to users and reduce the likelihood of human error. 

8. Automated extraction of basic parameters including as beat per minute, amplitude values 

and durations of and between waveform features (i.e. duration between beats, duration of 

QT-interval). 

9. System which automatically facilitates more beating samples per test.  

10. Software that has a greater level of automation which is intuitive and less complex.   

11. Introduce automatic triggering or remove need for triggering. 

12. Automatic QT-interval identification. 

13. Facility to compare QT-interval values between different data files (data mining).  
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4.3 Case Study Two: Neural Cell Culture 

Application 
Neurologists have spent centuries investigating the workings of the human brain (Finger, 1994). 

Several different types of neural cells have been identified (Hao and Young, 2009) within complex 

structures throughout the brain (Halloway, 1967). Neurons communicate by the propagation of 

action potentials (APs) (see section 2.4.1). Neural APs propagate from cell to cell across synapses, 

which are physical gaps (20-40nm) between the axon terminal of one cell and the dendrites of 

another (see section 2.2). Minute volumes of chemical substances, collectively known as 

neurotransmitters, are released across a synapse resulting in a shift in ionic charge all the way along 

the membrane of the neuron. This change in ionic charge is the AP, which is recorded by MEA 

systems in the form of field potentials. Observing spikes and bursts of APs (see section 2.4.2) using 

MEA systems is contributing to furthering understanding of the brain. 

 

4.3.1 Case Study Context 
MEA systems are used by neuroscientists at the Sanger Institute to study synaptic function via the 

monitoring of spatial and temporal aspects of the electrical activity in neural tissue simultaneously 

(Chiappalone et al, 2008; Teemu et al, 2008).  

The networks studied in this case study are grown over the MEA biochip microelectrodes from 

somas (cell bodies, see section 2.2) of neurons that have been dissociated (chemically separated into 

single cells) from dissected samples of brain tissue. While in culture new axons and synapses grow 

out from the somas forming new neural networks. Neural cells dissociated from samples of brain 

tissue (typically murine sourced) have been used in research investigating network development 

(Chippalone et al, 2006), learning and plasticity (Broccard et al, 2009), memory (Marom and Shahaf, 

2002) and degenerative diseases, such as Alziemer’s disease or dementia (Gortz et al, 2004).  

Chippalone et al (2006) cultured networks from dissociated neurons over MEA biochip workspaces. 

Spontaneous activity was monitored during development. Results of correlations between 

recordings taken at regular intervals demonstrated the development of rich patterns of activity over 

the electrode array. These patterns changed as the network matured. 

Broccard et al (2009) used cultures of dissociated neurons to investigate learning and plasticity.   
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Marom and Shahaf (2002) investigated the formation of neural activity groups that was defined as 

learning and the conservation of those activity groups as memory using dissociated neurons grown 

over an MEA. 

Gortz et al (2004) investigated neuropharmacological effects of homocysteine (a substance 

connected to the occurrence of dementia and Alzheimer’s) on neuronal networks developed from 

dissociated neurons. 

 

4.3.2 Modelling of the Chronic Neural Cell Culture 

Application 
Specifically bred mice are used to source genetically specific brain tissue in the application presented 

in this case study. Spontaneous network activity is recorded that is no way induced by any form of 

chemical or electrical stimuli. All of the activity observed is associated with the natural development 

of the neural network in vitro. The MEA system allows the neuroscientist to visualise and quantify 

the growth and formation of these functional networks over time.  

Neurons are dissociated from a genetically mutated mouse brain and seeded over the electrode 

array. They are then and left in incubation for ~6 days before recording. Spiking activity (the 

presence of APs) can be observed in a newly developing neural network after about 3 days in vitro 

(DIV). The neuroscientists in this case study have observed the development of hundreds of these 

unique neural networks over several years to create a bank of data files. Comparison of hundreds of 

data files is carried out using statistical analysis written as R scripts. Particular parameters are 

calculated and correlated automatically by the scripts, for example, spiking frequency and the 

duration of bursts.  

 

4.3.2.1 Overview 
The EMs in this case study document the bioscientific protocols employed by the Genes to Cognition 

research laboratory at the Wellcome Trust’s Sanger Institute (WTSI) when studying dissociated 

neurons in culture. An overview of the application (Figure 4.22) was constructed to separate the 

workflow used into distinct processes that encompassed all of the scientific protocols used from the 

start of an MEA system-based experiment to its completion.  
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The overall workflow used to in the MEA system application of this case study is: 

 Process One (P.1.) – Breed genetically mutated mice 

 Process Two (P.2.) – Kill mice, dissect brain region of interest, dissociated desired cells 

 Process Three (P.3.) – Prepare MEAs 

 Process Four (P.4.) – Seed and culture cells 

 Process Five (P.5.) – Set-up and run trials 

 Process Six (P.6.) – Condition data and analyse 

 Process Seven (P.7.) – Derive meaning 

 Process Eight (P.8.) – Share findings 
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Figure 4.22: An activity diagram of the overall workflow carried out by the chronic neural cell culture users 
at the Sanger Institute. 

 

The processes of interest to this research were those where the MEA system or its components are 

interacted with. These processes are identified in modelling using shadows: P.3, P.4, P.5, and P.6. 

The shadowing indicates that further modelling has taken place in order to extract all details 

relevant to understanding the system in use, and to support user and system need identification.  
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User and system requirements identified from construction of Figure 4.22: 

1. To guarantee recordings are obtained from cells due to the high cost of the source.  

2. To improve surface properties of MEA biochip to reduce or eliminate the need for special 

cell type specific workspace surface treatments.  

3. To provide a system that allows longer or continuous recording. 

4. To provide a system that correlates new data with previously recorded data automatically 

and quickly. 

 

4.3.2.1.1 Chronic Culture (Neurons) Sanger Institute Users Processes 

 

Process Three – Prepare MEAs 

In carrying out process three in this instance, the MEA biochips are removed from storage and 

treated in a plasma cleaner. The workspace is treated for improved cellular attachment by applying a 

small amount of Poly-D-lysine using a suspended solution. After a two minute settling period the 

contents of the well are aspirated out and reverse osmosis water is used as a rinse. The Neurobasal 

medium is then added to the well and a small amount (4µl) of Laminin is dropped exactly over the 

workspace. A specially made zero-evaporation lid is placed over the well. All of the biochips 

prepared in that batch are then placed into a Petri dish and inside an incubator at 32°C with 5%CO2  

and left for >45minutes (Figure 4.23). 
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Figure 4.23: An activity model depicting process three, Prepare MEAs. 

 

User and system requirements identified: 

1. Remove the need to apply specific treatment the MEA surface. 

 

 

 

 

 



220 
 

__________________________________________________________________________________
Case Studies and Requirement Identification 

Process Four – Seed and culture cells 

Process four involves dispensing 21µl of the previously prepared neural cell suspension over the 

MEA workspace (Figure 4.24). The user must set-up the required items in a culture hood, refresh the 

culture media and dispense the cells into the centre of the media well. A lid is placed over the MEA 

to prevent media evaporation and contamination. Labels are added and the biochip use is logged 

manually by-hand in a notebook. Cells are visualised under an inverted light microscope to check for 

adequate dispersion over the workspace area. Seeded MEA biochips are carefully moved into 

incubation where they are left for >3 days.   
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Figure 4.24: An activity model of process four, seed and culture cells. 
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User and system requirements: 

1.  To provide an automatic or electronic based method of recording MEA biochip use. Possibly 

creating facility the to insert into data file metadata for future reference. 

Process Five – Set-up and run trial 

Process five is the stage at which the full MEA system is employed to record the field potential data 

that is of value to the user application (Figure 4.25).  
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Figure 4.25: an activity model of process five, set-up and run trials. 

 



222 
 

__________________________________________________________________________________
Case Studies and Requirement Identification 

To record the cellular signalling that is analysed in this application the user removes the MEA biochip 

from incubation, visually assesses the cells under a microscope to ensure health and attachment to 

the workspace area, and places it into a pre-heated MEA system headstage (see section 2.9.1). The 

configuration of system used in this instance is the MEA 60 two-fold system. Two instances of this 

configuration are used at the same time by the user observed for this work, Dr Paul Charlesworth, so 

up to four MEA biochips are recorded from simultaneously. 

When all four headstages are set-up the user opens two instances of a previously configured and 

saved recording rack in the MC_Rack software. The user checks all 60 channels of each MEA to see 

where spiking activity is occurring using the graphical user interface (GUI). For every channel where 

bursts or spikes (see Figure 2.39) are present the threshold bar for that channel is adjusted by-hand 

to ensure the spike amplitude(s) exceeds the threshold required for detection. A recording of 15 

minutes is taken. The MEA biochips are then returned to the incubator where they will remain in 

culture until the next testing day.   

User and system requirements: 

1. A system where the MEA biochips do not need to be removed from the incubator. 

2. A system that can record continuously. 

 

Process Six - Condition data and analyse 

This process (Figure 4.26) involves the conversion of the data files generated, multi channels data 

(.mcd), into multi channels time (.mct) files using NeuroExplorer software (Nex Technologies, 

Massachusetts, USA).  The .mct file then contains only timing information pertaining to the spikes 

recorded in the original .mcd file. Noise and periods of inactivity are discarded, thereby reducing the 

file size. These .mct files are linked to the statistical scripting software, “R”, by inserting the file name 

into a condition table that exists in Microsoft Excel. Once the condition tables are complete a full 

automatic analysis is run using a custom written “R script”. The outputs generated by these scripts 

are compiled directly into a report format that contains the data tables and plots of correlations 

generated by the R script. These reports are created as portable document format (.pdf) files. The 

content of the reports is then manually manipulated for presentation by entering useful sections 

into the data analysis and graphing software OriginPro (OriginLab Corporation, Massachusetts, USA).   
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User and system requirements:  

1. Remove the need to convert file types by facilitating The facility to produce statistical 

outputs through the recording software  

2. Statistical outputs in real-time. 

3. The facility to automatically produce plots. 
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Figure 4.26: An actvity model of process 6, condition data and analyse. 
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4.3.2.1.2 MEA biochip cleaning protocol 

Applications presented in case study two (chronic neural network culture) and in case study three 

(acute brain slice) clean the biochips following use in the same manner. The process used to clean 

MEA biochips after use, in preparation for storage before re-use, is shown in Figure 4.27. 
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Figure 4.27: The cleaning protocol employed by the Sanger Institute applications presented in case study 
two and three. 

 

User and system requirements identified:  

1. Remove need to clean MEA biochips or make process automated. 
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4.3.2.2 Chronic Culture (Neurons) Requirements summary 
Through carrying out this case study the following requirements have been identified that are 

specific to this application.  

1. To guarantee recordings are obtained from cells due to the high cost of the source.  

2. To improve surface properties of MEA biochip to reduce or eliminate the need for special 

cell type specific workspace surface treatments.  

3. To provide a system that allows longer or continuous recording. 

4. To provide a system that correlates new data with previously recorded data automatically 

and quickly. 

5. Remove the need to apply specific treatment to the MEA surface. 

6. To provide an automatic or electronic based method of recording MEA biochip use. Possibly 

creating facility to insert into data file metadata for future reference. 

7. A system where the MEA biochips do not need to be removed from the incubator. 

8. A system that can record continuously. 

9. Remove the need to convert file types by facilitating The facility to produce statistical 

outputs through the recording software  

10. Statistical outputs in real-time. 

11. The facility to automatically produce plots. 

12. Remove need to clean MEA biochips or make process automated. 

 

The requirements that have been identified through this case study are to be addressed by further 

work. 
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4.4 Case Study Three: Brain Slice Application 
 

This application differs from the applications presented in case studies 1 and 2 in the following ways: 

 it investigates responses of brain slices to electrical stimuli delivered via a microelectrode.  

 cell sources are not cultured inside an incubator. Slices are used for recording on the same 

day that they are dissected; they are then disposed of at the end of testing. 

 the MEA biochip used with the MEA-60 system the 3D 8x8 grid array, whereas for case study 

1 and 2 the planar 8 x 8 array is used. 

The Multi Channels MEA-system requires a specialist system called a Stimulus_II that injects 

electrical stimuli into slices though user designated microelectrodes.  

For this application the positioning of the brain slice over the electrode array is imperative as 

stimulus pulses must be delivered to precise anatomical locations in the brain slice. Controlled 

positioning of stimulus delivery is required to evoke the particular network pathway under 

investigation.  

 

4.4.1 Case Study Context 
The application observed for this case study electrically stimulates known signal pathways that are 

present in the hippocampus. The response of neurons at particular locations is recorded and 

analysed. Slices tested are genetically different. The user in this application is investigating the ability 

of the slices to learn responses to the same stimulation protocol, and then is correlating differences 

that are observed between the different genetic combinations assessed. 

4.4.2 Modelling of the Acute Brain Slice Application  
Modelling the processes employed in this application has resulted in the identification of application 

specific user requirements. 

4.4.2.1 Overview 
An overview of the workflow used in this application is documented in Figure 4.28.  

The overall workflow used to in the MEA system application of this case study is: 

 Process One (P.1.) – Breed genetically mutated mice 

 Process Two (P.2.) – Kill mice, dissect out brain region of interest, prepare slices 
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 Process Three (P.3.) – Prepare MEAs 

 Process Four (P.4.) – Position slices, set-up software and run trails 

 Process Five (P.5.) – Convert data and analyse 

 Process Six (P.6.) – Derive meaning 

 Process Seven (P.7.) – Share findings 

 

 

P.1.

Breed genetically 

mutated mice

P.2.

Kill mice, dissect 

our brain region of 

interest, slice.

P.3.

Prepare MEAs

P.4.

Position slices, 

set-up softwares 

and run trails

P.5

Convert data and 

analyse

P.6.

Derive meaning

P.7.

Share findings

New 

knowledge

Mutant Mice

Scientist

Culture bath to 

maintain slices in.

Equiped 

Laboratory

Scientist
t=~3hrs

MEA Biochips (x8)

Scientist

Scientist

MEA System 

Hardware (x4)

MC_Rack 

Parameters for 

recording

MC_Datatool

Other Softwares
Scientist

Specailist mice breeding 

facility.

Slices are 350µm thick

MC_Stimulus II 

t=~ 1 month 

t= 2 mins

t= ~4-6hrs

t= ~8 hours

Time invested in 

creating cell source 

for investigation

Additional time 

spent preparing the 

cells and the MEA 

biochips

Position of slice is 

of great importance. 

Data analysis is 

performed by hand

- process

- document

- human resource

- physical resource

- event

- information

- finance

 
Figure 4.28: An activity model of the overall workflow implemented by the acute brain slice Sanger Institute 

users. 
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Genetically appropriate mice are bred and the brain region of interest, in this case the hippocampus, 

is dissected out. The hippocampus is cut into slices of a thickness ~300-350µm and stored in a 

special brain slice chamber (Warner Instruments, Connecticut, USA). Slices are placed into MEA 

biochips and stimulated. Recordings are taken of the stimuli delivery and the consequential 

responses that are analysed offline to examine the plasticity exhibited by that particular genetic 

combination. 

 

User and system requirements identified: 

1. Biochips that make hippocampal slice positioning easier and quicker. 

2. Automated data analysis. 

 

4.4.2.1.1 Acute Brain Slice Sanger Institute Users Processes 

 

Process Three – Prepare MEAs 

The activities carried out to complete process three are shown in Figure 4.29.  

P.3.A.1

Aspirate out 

contents.

P.3.A.2

Place MEA into 

Plasma Cleaner. 

Turn on.

P.3.A.3

Remove from 

cleaner ready for 

use.

User

t= ~60-100 s

Aspirating pipette

User

User

Plasma Cleaner

 
Figure 4.29: An activity diagram of MEA biochip preparation for brain slice application. 

 

While in storage the MEA biochip media well is filled with distilled water. This water is removed prior 

to placing the MEA biochip into the plasma cleaner. After ~60-100s inside the plasma cleaner the 

biochip is ready for use in this particular application.  

 Users are very satisfied with this process and did not highlight any problems or suggest any 

improvement. 
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Process Four – Position slices, set-up software and run trial  

Process four describes the steps executed from inserting the slice into the media well to recording 

the useful data (Figure 4.30).  
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Figure 4.30: An activity model depicting activities carried out in order to complete process four.  

 

MEA biochips are inserted into the headstage and filled with artificial cerebrospinal fluid (ACSF) prior 

to addition of the hippocampus slice. Slices are carefully positioned by eye through a light 

microscope and gently clamped in position using a home-made mesh. The intended recording 

electrodes are observed according to the anatomy of the slice and assigned in the software. Base 

line readings are taken of the response of the slice to a 2V pulse. The full stimulation protocol 
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(Table 4.1) is executed generating .mcd files containing the useful data, and when complete the 

slices are disposed of.  

Table 4.1: The stimulation protocol delivered by this application user: 

Stimulation Type Frequency of delivery Voltage 

Biphasic stimulations 

(positive/negative, 

100µs/a phase) 

2 trains of 100 pulses at 100Hz 

 

– 2V up to a maximum of 4.2V 

 

 

The system configuration used in this application involves 8 MEA system headstages in two four-fold 

configurations. Two stimulus generators are used. The operator sets-up up all of the MEA biochips 

and the software, and the stimulation protocols are the delivered together using two separate 

computers. 

User and system requirements identified: 

1. MEA biochips that offer better slice positioning.  

2. One system that can facilitate ≥8 MEA biochips at one time. 

3. A stimulus generator that can deliver protocols to >4 MEA biochips at one time. 

 

Process Five –Convert data and analyse 

Process Five also explains analysis at the very highest level (Figure 4.31).  

A.5.1

Convert to .txt

files

A.5.3

OriginPro for 

manipulation and 

visualistion

A.5.2

Separate data in 

excel sreadsheet

MEA_Datatool

Excel

OriginPro

User

User

Usert= 3 min 

per file

t= ~1-2hrs

t= ~4-5hrs
 

Figure 4.31: An activity model of process five. 

 

One .mcd data file is generated per stimulus generator. Therefore two files are recorded per system 

per stimulus protocol repetition. So in this application 8 .mcd files (2 baseline, 6 stimulated) contain 
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the data used to investigate the response of the hippocampus under investigation. Each file is 

converted into a text (.txt) file using the MEA_Datatool software. The text file is imported into 

Microsoft Excel and relevant data extracted by-hand and inserted into OriginPro for further 

manipulation and presentation. 

User and system requirements identified: 

1. Analysis features in the recording software. 

2. Analysis in real-time. 

 

Further drill down modelling 

Additional activity models have been generated for this case study to incorporate relevant 

information that provided better understanding. Additional needs collated by addressing/including 

deeper details are noted. 

Process Four 

The protocol undergone for checking the set-up and configuring the recording software is 

documented in Figure 4.32.  

A.4.7.1

Check gain

1100x or 550x

A.4.7.2

Set sample rate

10kHz

A.4.7.4

Ground well 

through 

headstages

A.4.7.5

Optically check 

slice positions

A.4.7.6

Check 

temperature 

controllers

32°C

A.4.7.6

Ensure perfusion 

cannula running

Refreshing 

ACSF

A.4.7.3.

Select electrode(s) 

for stimulation

MC_Rack

MEA-Select

MC_Stimulus II

Light Microscope

Temperature Controller

Perfusion System

Headstage

Additional reference electrode

User

User

User

User

User

User

User

t= 10s

- process

- document

- human resource

- physical resource

- event

- information

- finance

t= 10s

t= 10s

t= 10s

t= 1min

t= 16mins

t= 10s

t= 8mins
 

Figure 4.32: A model of the activities carried out in order to complete process four, activity seven, check set-
up and configure recording software. 
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User and system requirements identified: 

1. Predefined stimulating electrodes facilitated by anatomically precise microelectrode 

positioning. 

2. Automated slice position checking. 

3. Integrated perfusion system.  

The protocol undergone for obtaining at baseline recording from each slice is documented in 

Figure 4.33.  

A.4.8.1

Ensure correct 

electrode(s) for 

stimulation 

selected on both 

computer 

systems.

A.4.8.2

Apply initial 

voltage through 

computer one

A.4.8.4

Recorded 

response

MEA-Select

A.4.8.3

Straight after 

apply same initial 

voltage through 

computer two

MC_Stimulus II

User

A.4.8.5

Review responses 

are as expected 

prior to starting 

trial. Adjust any 

settings.

User

User

User

User

MC_Rack

t= 8mins

- process

- document

- human resource

- physical resource

- event

- information

- finance

t= 1min

t= 1min

t= ~30mins

t= ~15min
 

Figure 4.33: A model of the activities carried out in order to complete process four, activity eight, obtain 
baseline for each slice. 

 

User and system requirements identified: 

1. Automatic baseline recording feature. 

The protocol undergone for delivering the stimulations is documented in Figure 4.34.  

The stimulation protocol delivered using the MC_Stimulus II software for this process is documented 

in the aforementioned Table 4.1. 
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A.4.9.1.1

Apply voltage 

steps to computer 

one.

A.4.9.1.2

Record responses

Amplitude, duration 

and frequency of 

stimulus controlled 

by MC_Stimulus II 

software

MC_Stimulus II

A.4.9.2.1

Apply voltage 

steps to computer 

two.

A.4.9.2.2

Record responses

MC_Stimulus II

 
Figure 4.34: A model of the activities carried out in order to complete process four, activity nine, run 

stimulation tests. 

 

User and system requirements identified: 

1.  System that can apply defined stimulation protocol to all >4 MEA biochips. 

2.   System with lists of stimulation protocols that the user can select without needing to adjust.  

 

4.4.2.2 Acute Brain Slice Requirements Summary 
Through carrying out this case study the following requirements have been identified that are 

specific to this application.  

1. Biochips that make hippocampal slice positioning easier and quicker. 

2. Automated data analysis. 

3. MEA biochips that offer better slice positioning.  

4. One system that can facilitate ≥8 MEA biochips at one time. 

5. A stimulus generator that can deliver protocols to >4 MEA biochips at one time. 

6. Analysis features in the recording software. 

7. Analysis in real-time. 

8. Predefined stimulating electrodes facilitated by anatomically precise microelectrode 

positioning. 

9. Automated slice position checking. 

10. Integrated perfusion system.  

11. Automatic baseline recording feature. 

12. System that can apply defined stimulation protocol to all >4 MEA biochips. 

13. System with lists of stimulation protocols that the user can select without needing to adjust.  

The requirements that have been identified through this case study are to be addressed by further 

work. 
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4.5 Summary 
 

Accounts of the sequences of activities that are required by three different MEA system applications 

were documented to support identification of user and system requirements for this research. 

The applications observed and presented in this chapter as case studies were:  

1. Stem-cell derived Cardiomyocyte Application 

2. Neural Cell Culture Application 

3. Brain slice Application 

The case studies were developed thoroughly and methodically using research approaches 

documented in Chapter 3.  

All MEA systems require the user to source cells. The MEA biochip must be made sterile and, 

depending upon the application, treated before the living cells can be added. The durations that 

cellular samples spend on an MEA biochip’s surface before testing can be from ~15 minutes to 

several months depending upon the preparation. The user will insert the MEA biochip into the full 

MEA system when appropriate for recordings of the electrical activity in the cells above to be made. 

These recordings are then analysed offline in all of the case applications. Following experimentation 

and recording the cells are discarded and the MEA biochips are cleaned in preparation for future re-

use. 

A summary of all of the requirements derived from these case studies is contained in Figure 4.35. 

The case studies differ from one another significantly. This research has chosen to address the 

requirements derived through case study one. Consideration and prioritisation of those needs is 

presented in Chapter 5. 

The requirements identified through case studies two and three are suggested as further work 

following achievements of the design targets defined in Chapter 5. 
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Case 1:
Stem-cell derived 

cardiomyocytes for 
cardio-active substance 

screening

Case 2:
Dissociated neural cell 

cultures for observation 
and assessment of 

network development 
and synaptic plasticity

Case 3: 
Hippocampal slices for 

known pathway 
plasticity following 

stimulation 
experiments.

Obs. 1.1  Facilitate appropriate handling for cell culture.
Obs. 1.2  Increase the number of contracting cell clusters per media well/per biochip. 
Obs. 1.3  Ensure output  at comparable or better quality than current.
Obs. 1.4  Ensure testing can be comparable, faster and simpler. 
Obs. 1.5  Remove need to sterilise and treat biochip before use.
Obs. 1.6  Provide a way to guarantee attachment of cell cluster over electrodes every 
time.  
Obs. 1.7  Automation of as many processes (or of parts of processes as possible).
Obs. 1.8  Automated extraction of basic parameters.  
Obs. 1.9  Automation of software to be more intuitive and less complex.  

-  Automatic triggering or remove need for triggering.
-  Automatic QT-interval identification and QT-interval value 
   comparisons between different data files (data mining). 

Obs. 2.1  Provide a way to guarantee recordings are obtained.
Obs. 2.2  Reduce or eliminate the need for cell type specific workspace surface 
treatments. 
Obs. 2.3  Facilitate longer or continuous recording.
Obs. 2.4  Correlates new data with previously recorded data automatically and quickly.
Obs. 2.5  Electronic based method of recording MEA biochip use. 
Obs. 2.6  An incubator compatible MEA system.
Obs. 2.7  Remove the need to convert file types.
Obs. 2.8  Statistical outputs in real-time.
Obs. 2.9  Automatic production of plots.
Obs. 2.10  Removal of need to clean MEA biochips or introduction of an automated 
cleaning process.

Obs. 3.1  Biochips for fast and easy hippocampal slice positioning.
Obs. 3.2  Automated data analysis.
Obs. 3.4  One system that can facilitate ≥8 MEA biochips at one time.
Obs. 3.5  A stimulus generator that can deliver protocols to >4 MEA biochips at one 
time.
Obs. 3.6  Analysis features in the recording software delivered in real-time.
Obs. 3.7  Predefined stimulating electrodes facilitated by anatomically precise 
microelectrode positioning.
Obs. 3.8  Automated slice position checking.
Obs. 3.10  Integrated perfusion system. 
Obs. 3.11  Automatic baseline recording feature.
Obs. 3.13  System with lists of stimulation protocols ready for use. 

 

Figure 4.35: Case study observed requirements 
[Format adapted from: Gerring, 2007.] 
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4.6 Research Questions Answered 
 

The following statements address the research questions originally defined at the start of 

this chapter. 

 

1. How are MEA systems currently employed by users that are working with different cell 

types and cell sources? 

The overall process stages are the same irrelevant of the application. This research has focused on 

the following common stages: 

1. Preparing the MEA biochip to the point of use,  

2. Insertion of the MEA biochip in the MEA system for recording of electrogenic activity of 

the cells within the MEA biochip, 

3. Extraction of meaning from those data.  

The details of the activities undertaken at each stage differ between applications resulting in 

significant differences between the case study model sets generated. 

 

 

2. What are the major differences between application domains and application types within 

those domains? 

Each application domain differs significantly due to the differing nature of the cells that are used, 

and the form in which those cells are used. For example, case study one and two differ most 

significantly due to case study one’s exploration of the cardiomyocyte cell type and case study two’s 

exploration of the neuron. Different cell types result in different requirements. Case studies two and 

three both seek to understand neural functions but use different formats of cells sources (individual 

cells grown in culture versus slices) which also have different requirements. 

The major differences identified through case study construction are: 

 The MEA biochip can be altered to suit the form in which the cells are to be observed. For 

example the planar style microelectrode grid array is well suited to cultured neurons, but for 

slices a 3D electrode profile is more suitable so as to enable closer detection of the field 

potentials generated from the live cells away from the sliced surface. For the cardiomyocyte 
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application this work has defined a requirement to alter the MEA biochip to better suit the 

beating clusters produced from the stem cells. 

 The signals that are recorded across each of the case study applications differ significantly. 

This is attributed back to the different cell types and the format in which those cells are 

presented to the microelectrodes. Consequently the signal features that are of interest in 

each case study differ. 

 The system settings (e.g. amplifier gain, sampling frequency) differ for each application. The 

cultured neurons sample at 25kHz, the brain slice application at 10kHz and the 

cardiomyocyte application at 2kHz. 

 

3. What system or component changes have been identified as required?  

This question is addressed by the summary section (section 4.5) and Figure 4.35. 
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This Thesis

Chapter 5

Design and 

Manufacturing at 

Loughborough 

University

Specifications

Concept Designs

Manufacturing Approaches 

Prototype One

Design Iteration

Prototype Two – A & B  

Chapter Five 

5 Requirements, Concept Design, and 

Manufacturing Approach  
 

 

 

 

 

In the preceding chapters research has: 

 Described current MEA system technology and its application (Chapters 2 and 4) ,  

 Demonstrated the research methods selected and implemented to identify and define 

contemporary user requirements and the needs of next generation systems (Chapters 2, 3 

and 4),  

 Presented three real end user case studies conducted to support the understanding of 

practical realities associated with MEA system application in differing settings. Case studies 

also demonstrated the diversity of applications and identified application specific user 

requirements that have been targeted by this work (Chapter 4). 

 Derived and described three product design specifications created by this research to drive 

the definition of objectives (Chapter 3). The product design specification that is specifically 

addressed by the remainder of this thesis is PDS 3.  

The work in this chapter has been carried out to address the following research questions: 
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1. What current and future user and system requirements have been derived from literature 

reviews, commercial system assessment and case studies that can be realistically addressed 

by this research? How does this research prioritise requirements? 

 

2. How can this research project meet the defined and targeted requirements? 

 

3. What manufacturing solutions are suitable for production of the proposed solution concept?  

 

4. What are the critical manufacturing outcomes with regard to the proposed solution? What is 

the benchmark or gold standard to which the novel biochip will be compared?  

 

Contemporary MEA biochip design modifications are (see section 2.9.2.2 and Figure 2.65): 

i) Reductions in microelectrode tip geometries; to facilitate more electrodes, with denser 

distributions, to assist closer coupling to cells and more detailed data collection. 

 

ii) Provision of specifically patterned surfaces using growth proteins or materials with 

hydrophobic characteristics, or growth pathways through polymers or hydrogels; used 

for the controlled and/or structured proliferation of cells in-vitro. 

 

iii) Provision of microelectrode layouts specifically suited to certain physiological 

geometries or experimental requirements; to improve ease of set-up and experiment 

result consistency and repeatability. 

 

These modifications have not occurred sequentially but concurrently through academic necessity 

(MEA Meeting 2010, Reutlingen, Germany). Each development has been made possible due to 

technical advances in microelectronics and microelectromechanical systems (MEMS) manufacturing 

(Khoshnoud and de Silva, 2012). This research has investigated how existing electronics fabrication 

techniques could be exploited to produce new generations of MEA biochip that are better suited 

specifically to the cardiomyocyte application documented in case study one.  

  



240 
 

__________________________________________________________________________________
Requirements, Concept Design, and Manufacturing Approach 

5.1 Design Rationale 
 

The initial aims of this research presented a vision for a new MEA system that is compatible with 

continuous operation within a humidified incubator with integrated optics for neural applications 

(Appendix A). The areas that guided realistic prioritisation of early research objectives are 

(Figure  5.1): (1) existing systems, (2) MEA system application, (3) manufacturing possibilities, and (4) 

the pursuit of novelty, were of most significance to the production of successful prototype devices.   

MEA Systems are

This research has 

ascertained 

knowledge of...

Manufacturing 

Approach and 

Expertise 

Assessment 

Manufacture of larger 

electrode geometries.

Reduced number of 

electrodes per media well.

Scalability (future).

Feasibility of delivering a 

solution based on user 

requirements (within time 

frame of this research)

(Influence of other research 

revolving around system 

electronics (hardware) and 

software.)

MEA biochip with microwell features

Designed to specification written by 

users.

Complex

Used for many 

different applications

Electrophysiology and electrogenic cell types,

MEA systems and their components,

Bioscientific domains in with MEA systems are applied,

Historical development and suggested future of MEA systems,

Signal types,

Signal recording and analysis,

Needs of real-life applications.

1. Existing

2. Application

3. Manufacture

4. Novelty

Current MEA biochips are 

not suited to cardiomyocyte 

applications 

- throughput is low

- analysis is slow

Realistic

 
Figure  5.1: Design Rationale. 

 

PDS documents were generated to target the overall research objective to create a novel MEA 

system. These documents considered research targets from differing levels (section 3.3.1): general 

(e.g. needs of all MEA systems), partial (e.g. needs identified from all case study users) and specific 

(e.g. needs specific to cardiomyocyte beating cluster applications). The design targets focused upon 
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in this thesis were specific in nature to address the needs of the stem cell-derived cardiomyocyte 

(SC-CM) application domain.   

Prior to action on any design targets an assessment of manufacturing facilities and the expertise 

available was carried out (see section 5.4.1.1). Manufacturing facilities immediately available for 

prototyping were limited to producing circuitry resolutions >~100µm. Smaller feature sizes were not 

possible during early stages of concept prototyping. 

Chapters 5 and 6 of this thesis describe research conducted to develop a novel MEA biochip that is 

optimised specifically for stem-cell derived cardiomyocyte applications.  
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5.2 MEA Biochip Specification 
 

The research targets addressed in the following concepts are based on a specification document 

derived from University of Nottingham (UoN) MEA system users defining application specific 

requirements (Appendix C).  

The following specification points were set as design deliverables for this research incorporating user 

requirements from UoN with generic and partial PDS points identified as of high in importance to 

system success (see PDS 1 & PDS 2).  

Biochip: 

 Modify the media well while maintaining commercial interface configuration. 

Comments: that will interface with the current MCS MEA60 System in their lab. 

 Alter the media well dimensions to be close to those of a 35mm culture dish. 

Comments: internal dimensions 35mm diameter, 10mm height, culture area 8.8cm2, media 

volume 3ml. 

 Incorporate a light-transmissible lid. 

Comments: to prevent evaporation. 

 Interior of well must allow for potential etching or patterning. 

 Re-usable. 

Comments: therefore must withstand sterilisation using UV light and 70% ethanol.  

 16 micro-wells. 

Comments: in any pattern. 

 Microwells as far apart as possible.  

Comments: at least 5mm in from the edge of the dish.  

 Microwells 500µm diameter,  

o with a maximal depth of 250µm,  

o and a slightly curved shape. 

Comments: beating clusters at time of seeding vary in size and shape (Figure  5.1) between 

200-500µm in diameter. 

 Electrode in centre of well flush to the surface. 

Comments: To support early attachment of the beating cluster to the surface. 

 Microwells with as large a surface area as possible. 

Comments: To support early attachment of the beating cluster to the surface. 
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 Made from biocompatible material(s). 

Comments: Essential for cell culture. 

System: 

 Sample rates in the range of 2-25kHz. 

Comments: Current commercial systems 2-50kHz though few applications utilise 

>25kHz. 

 Electrically grounded. 

Comments: Essential for provision of reference channels and electrical safety. 

 Parts that can be sterilised  

Comments: If the entire system is to go in an incubator the electronics must be sealed in 

suitable casing for sterilisation as incubators are sterile environments. 

 Input capabilities limited appropriately. 

Comments: to protect/prevent damage to cells or tissue. 

 Appropriate pre-processing and amplification. 

Comments: Noise reduction or removal. Commercial gains: Slice ~x550, Culture ~x1100. 

 Facilitate/support a constant cell environment. 

Comments: I.e. temperature, humidity, etc 

 Allow easy access 

Comments: for users to perform culture maintenance and run perfusions systems. 

 Support visual inspection of the cells. 

 Simple to learn. 

 User-friendly interfaces. 

 

UoN users specified requirements for a biochip design that would complement their cellular 

preparation, stem cell-derived beating cardiomyocyte clusters (Figure  5.2), more appropriately than 

the most suitable commercial biochip currently used; which is a standard planar 60 electrode 8x8 

array (Figure 2.45). 
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Figure  5.2: Stem cell-derived cardiomyocyte cells. A) A single cardiomyocyte in culture. B) A monolayer of 
cultured cardiomyocytes. C) An example of freshly dissected ‘beating cluster’, consisting of fibroblast cells 

and cardiomyocytes. D) An example of the attachment that forms between a beating cluster and the 
substrate. Fibroblast cells are the predominant cell type present in a cluster and are responsible for the 
attachment of the cluster to the base substrate. E & F) Examples of beating clusters seeded over MEA 

biochip microelectrodes. (Scale: electrode tips are 30µm in diameter.) 

 

5.2.1 New Product Development and Quality Assurance 
To consider how the aforementioned requirements influence one another and affect design and 

manufacturing decisions a Quality Function Deployment (QFD) methodology was employed.  

QFD is a part of internationally standardised quality management system (QMS) guidance (ISO 

9000:2005; ISO 9001:2008). QMS guidance was produced to specifically support the achievement of 

customer satisfaction through the appropriate execution of planning, design and manufacture 

(Justham and West, 2008) making this guidance relevant to this research.  

QFD methods are applied during investigation and definition of user requirements, and also while 

translating those requirements (“user desires”) are translated into technical requirements. QFD has 

been successfully demonstrated in diverse application domains, such as hospitality and finance, as 

well as in engineering (Shahin and Chan, 2006; Justham and West, 2008), and as such was deemed 

suitable for the needs of this work.  
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5.2.1.1 The House of Quality Interrelationships Matrix 
An enterprise can improve its productivity, control costs and remain competitive through application 

of QFD (Madu, 2006). The primary planning tool available in QFD is the house of quality (HoQ) matrix 

(Besterfield et al, 2011). A HoQ matrix is completed to logically examine a number of factors that 

influence a product’s quality in terms of meeting customer or user expectations. User requirements, 

technical requirements, requirement interrelationships, planning for competitiveness and design 

and manufacture targets, are all incorporated into one structure (Figure  5.3).  

Within the matrix user requirements are identified and prioritised (see section 5.2.1.1.1). Existing 

products are compared and evaluated, identifying potential areas of greatest pay-off (see 

section 5.2.1.1.2). Technical characteristics required in order to respond to the user requirements 

are identified (see section 5.2.1.1.3), and relationships between the customer requirements and 

technical characteristics are considered (see section 5.2.1.1.4 and 5.2.1.1.5). Product development 

targets are defined using scores generated by all of these aspects together (Barkley and Saylor, 

2001).   

 
Figure  5.3: The QFD House of Quality Matrix. 

 

The complete HoQ used in this research can be viewed in Appendix E. The spread sheet template 

was sourced from QFD (Quality Function Deployment) Online (2010). 
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5.2.1.1.1 User Requirements 

The requirements from PDS 3 were listed and given an importance weighting by a system user 

(Figure  5.4). This panel of the matrix represents the “voice of the customer” (Zhang and Wang, 

2011). Weightings were given assigning a number between zero and five to each requirement; five 

indicated most important/essential and zero indicated not important.  

 
Figure  5.4: HoQ User requirements 
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Requirements were also listed in groups, biochip-centred and system-centred (Figure  5.5), for clarity.  

 
Figure  5.5: HoQ Biochip- and system-centred user requirements. 

 

5.2.1.1.2 Product Planning 

The product planning panel (Figure  5.6) correlates the listed user requirements with user perception 

of how existing products perform in terms of those requirements.  

This panel of the matrix serves to demonstrate current user satisfaction and to highlight areas where 

improvements may provide the greatest pay-back when compared to existing products. Sales points 

have been used to add to weight requirements that could be heavily exploitable in marketing the 

product according to current user trends (Chapter 2).  

Combined scores relating to each user requirement have been calculated by multiplying 

previously defined user importance weighting by the improvement (0 = poor, 5= best) and 

sales point scores (0 = neutral, 1 = current sales point). 
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Figure  5.6: HoQ Product Planning and Competitive Analysis 

 

This panel identified that an MEA biochip that meets the biochip-centred user requirements 

defined at the start of this chapter will better meet the needs of users of SC-CMs and this 

will offer good competitive advantage. The system-focused requirements that were 

assessed did not offer as clear an advantage. 
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5.2.1.1.3 Technical Requirements 

It is in this panel (Figure  5.7) the engineering requirements (“voice of the company”) are described.  

Technical requirements that are perceived as important in meeting the specified user requirements 

were listed and analysed. An additional row at the top of the panel illustrates the direction of the 

intended change of each characteristic to achieve the desired improvement.  

 
Figure  5.7: HoQ Technical Requirements 

 

This panel highlighted: 

 Materials are required at the lowest possible prices, while facilitating processing techniques 

that are as low cost and fast as possible. 

 The selection of the materials for biochip construction should be such that the highest 

durability available for each sub-component (e.g. interconnection point, insulator, electrode 

surface).  

 The weight of the biochip should be low so as to ease both handling and transportation.  

 The overall size of the MEA biochip should be small to promote future biochip footprints 

that are as small as practically possible. Initial interconnect design had to be kept the same 

as commercial equivalents so as to meet the user specified requirement to connect with 

commercial systems.  

 A flexible design that facilitates a vertical interconnection layout should be aimed for so as 

to support system foot print and module size reduction.  
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5.2.1.1.4 Requirement Interrelationships 

This panel (Figure  5.8) forms the main body of the matrix and its purpose is to translate the user 

requirements into technical requirements. Combined consideration of user and technical 

requirements resulted in the definition of design and manufacturing targets used in this work.  

 
Figure  5.8: HoQ Interrelationships 
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In this grid (Figure  5.8) symbols were used to represent interrelationship significance in terms of 

product success. Correlations between each user-technical requirement were considered and rated 

using a four point scale (high significance, medium significance, low significance, no significance). 

These ratings then corresponded to a score that was agreed prior to completing the matrix (e.g. high 

– 9, medium – 3, low – 1, none – 0). This panel guided decision making when compromises where 

required. The strength of relationships could be visually referred to with ease. The scores generated 

in this panel also contributed to the final weighting calculation of the design and manufacture 

targets derived. 

  

5.2.1.1.5 Technical interrelationship impedance or support  

The “roof” of the matrix looked at how previously defined and scored technical requirements either 

supported or impeded one another (Figure  5.9). Consideration was made of whether improving one 

requirement would cause either an improvement or deterioration of the other requirement. 

 
Figure  5.9: HoQ Technical Requirement Interrelationships 
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Where deterioration was identified a “-” symbol is inserted and where improvement was identified a 

“+” symbol was inserted. The level of positive or negative interactions was indicated by adding 

strength to the indicators:  

 + = weak positive,  

 ++ = strong positive,  

 - = weak negative,  

  = strong negative).  

This panel was used during concept design to identify positive interrelationships (e.g. increasing the 

number of recording channels would support the ability of the biochip and system to record and 

analyse from more than one beater at a time. Negative interactions were also identified and given 

attention in attempts to seek an innovative solution that would not introduce new problems where 

compromises had to be made (i.e. in selection of material and manufacturing processes). 

 

 

5.2.1.1.6 Targets 

This was the final panel of the HoQ to be completed (Figure  5.10). The targets panel summarises the 

conclusions drawn from completing the matrix. Within this panel the relative importance of each 

technical requirement in meeting the specified user requirements was calculated from the 

weightings contained in the other panels. Design and manufacture targets were set and the difficulty 

of achieving those targets quantified and considered prior to action.  
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Figure  5.10: HoQ Targets 

 

 The outputs from this panel (Figure 5.52) are ordered in Figure  5.11.  

 
Figure  5.11: Priority of defined development targets according to HoQ matrix score.  

 

The highest importance score (416.0) was obtained by the requirement “ability to analyse all 

detecting channels”. Although this requirement is therefore prioritised as priority 1 this requirement 

could not be directly addressed in conjunction with the following biochip-centred requirements. 

Highly scoring biochip-centred requirements could be addressed in conjunction with one another so 
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were tackled in this research.  Table 5.1 shows prioritised targets in terms of the HoQ weightings. 

The combined biochip-centred requirements scored more highly than the system-centred targets 

justifying this research’s pursuit to design and manufacture a novel MEA biochip for this particular 

application domain. 

Table 5.1: Prioritised targets with discussion. Blue panels = biochip, orange panels = system. 

HoQ 

Priority 
Target Discussion 

1 The system must possess the ability 

to analyse data collected from all of 

the detecting channels.  

This is an essential system requirement. All existing and 

future MEA systems possess this feature. The biochip 

produced must also support this requirement. 

2 Biochip must be as small as possible 

(supporting scale up). 

Small biochips improve practicality for bioscientist users by 

allowing batch sterilisation, preparation, cleaning and 

storage. The area to work with inside culture hoods is 

limited. Small biochips facilitate scaling up by better suiting 

the limiting dimensions of incubators. (In this application 

cells must be cultured over the microelectrodes prior to 

recording.)  

3 Biochip to withstand greater than 

10-15 uses. 

Present day commercial biochips degrade with use and it is 

recommended by manufacturer’s that they are replaced 

after every 10-15 uses. To improve value and convenience 

(3-6 weeks delivery) to customers biochips that can be used 

>15 times are desired.   

4 Materials used to be the most 

durable possible (i.e. support 

production of a device that is suited 

to at least 10-15 uses). 

Current degradation of biochips is attributed to the delicate 

nature of the materials and feature size, as well as 

detrimental consequences of stimulation protocols. 

Materials that do not degrade with use are required. 

=5 Use of manufacturing processes that 

are of lowest possible cost while 

producing device at required quality.  

A number of manufacturing processes are combined to 

produce an MEA biochip. There are choices in which 

combination of processes are employed at each stage of 

device manufacture. Compromises are made between 

speed: cost: quality. Decisions are also influenced by 

expertise: tooling: funding. Low cost approaches are 

favoured.  

=5 Use of manufacturing processes that 

produce devices to required quality 

as quickly as possible 

MEA biochips are developing rapidly (chapter 2) so 

processes that can produce devices quickly and efficiently 

are favoured so as to realise a suitable device as soon as 

possible. In addition to that processes that take a long time 

to execute in this manufacturing domain may be high-skilled 

and high cost.  

6 Materials selected to be lowest 

priced available 

Materials used to manufacture current commercial MEA 

biochips (i.e. glass, gold, titanium nitride) are relatively high 

cost. Where the in use and manufacturing properties of two 
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 materials is comparable the price of the material must be a 

priority. Compromises between function: quality: cost: 

processing. 

7 Safety of the biochip (i.e. when in 

use, when in storage).  

Must be comparable to or better than standard commercial 

equivalents. The new device must not pose any additional 

risks. 

8 Safety of the system (i.e. when in 

use, when in storage). 

Must be comparable to or better than standard commercial 

equivalents. The new device must not pose any additional 

risks. 

9 System should be modular in design 

to accommodate easy upgrade of 

components.  

Due to the diversity of MEA application types a system that 

can be adapted to meet the needs of either different 

applications or of future needs of contemporary applications 

is desired. Chapter 2 demonstrates the diversification of 

systems into application specific units due the need for 

different hardware settings. Modular design to facilitate 

maximum component and sub-component cross over is 

desired which will also increase efficiency in terms of 

production. 

10 Successfully support >1 beating 

cluster 

 

For the novel biochip to be competitive with a commercial 

equivalent it must support the attachment and recording 

from 2 or more stem cell-derived beating cardiomyocyte 

clusters per media well.    

11 Light-weight 

 

Biochips must be light-weight to support ease of use and 

transportation but without any compromise to durability. 

12 Designed for scalability   In order to compete with state-of-the-art commercial 

systems the novel system is required to support hundreds of 

channels. 

13 Small as possible (system) Competitive advantage can be gained by producing a system 

that is a compact and small as possible. Current commercial 

systems are about the size of a shoe box. A system that is 

comfortably accessible while operating inside an incubator is 

desired. 

14 Interconnects and tracking that is as 

short and close together as 

functionally possible 

 

In order to facilitate production of a low noise, small MEA 

system components and sub-components should be design 

with close interconnects and short lengths of tracking. 

15 Best low noise components possible 

 

The components sourced to build system units should be 

specified with low noise characteristics as a high priority if 

affordable. 
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5.2.2 Section Summary 
This research has sought to identify and prioritise targets for design and manufacture of a novel 

device. The QFD methodology’s HoQ matrix resulted in a prioritised list of targets used in concept 

design, prototype manufacture and testing. 

The targets focused on by the work in this thesis were: 

 Produce a biochip to support >1 beating cluster of SC-CMs at one time, providing >1 

channel of usable data per test repetition.  

 Provide a biochip that safely interconnects with an existing MEA system that is small, 

lightweight and can withstand repeated use (at least 15 times).  

 Manufacture a biochip using the best quality possible, lowest priced materials that 

complement fast and low cost production.  

 Design a biochip flexibly to allow potential future scalability, whilst also featuring low 

noise design properties. 
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5.3 MEA Biochip Concept Design 
The specification provided by the UoN and targets identified through the HoQ matrix highlighted 

potential competitive advantage in biochip-centred user requirements over system-centred 

requirements (section 5.2.1.1). Biochip-centred requirements were used to generate a design 

concept suited specifically to stem-cell derived cardiomyocyte beating cluster cell preparations.  

A number of manufacturing approaches were conceived for manufacturing the novel design, and 

due to varying degrees of success, were progressively adapted until a prototype of a satisfactory 

quality meeting the specified requirements was achieved.  

5.3.1 Critical MEA Biochip Components  
An MEA biochip is comprised of two components: (1) a patterned base substrate and (2) a media 

well (Figure  5.12). The media well is usually a ring of material adhered to the base substrate so as to 

enclose the surface area of the biochip that supports the microelectrode tips, which is referred to as 

the workspace (see Figure 2.46). The volume of space within the media well is filled with a liquid cell 

culture media (e.g. Neurobasal, DMEM) when in use.  

Design of an MEA biochip requires appropriate consideration of the techniques applicable for the 

manufacture of: i) a base substrate, with integrated microelectrodes capable of detecting microvolt 

sized amplitudes and appropriate contacts for external interconnects; and ii) a media well that 

reliably adheres to ensure a water-tight product that can be used for periods of hours to months in 

incubated conditions. 

 

 
Figure  5.12: The two main components in MEA biochip design and manufacture. 

 

All commercially available MEA biochips have an insulating material applied over the upper, 

patterned surface of the base substrate. The insulation layer ensures only the tips of the 

microelectrodes are exposed to the cellular environment and media reducing noise and protecting 

the underlying circuitry. Insulation is described in section 2.10.1.4. 
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5.3.2 The Concept  
Throughout the process of designing a suitable manufacturing approach the fundamental design 

concept for the novel MEA biochip remained consistent. A recess of ~200-250µm, with a diameter of 

500µm at each electrode site, to accommodate a single beating cardiomyocyte cluster directly over 

an electrode (see Figure  5.13) was required.  

An inter-electrode distance (pitch) of ~5mm was maintained across designs to accommodate the 

user requirement to keep beating clusters far enough apart so as to keep contractions independent 

from one another while in the same culture media. It has been observed by UoN users that beating 

clusters of cardiomyocytes that are in close proximity will gradually exhibit synchronised 

contractions. 

 
Figure  5.13: A computer aided design of the original MEA concept for beating cluster cardiomyocyte 

applications at the University of Nottingham. 
 

The geometry of the peripheral interconnect design was kept consistent with commercial 

equivalents produced by Multi Channels Systems and Ayanda Biosystems (see Figure  5.14) so as to 

facilitate the connection with the commercial system headstage (e.g. in this case MCS MEA60) as 

specified by the UoN user group.  
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Figure  5.14: Interconnection geometry of Ayanda Biosystems and Multi Channels Systems standard 60 
electrode MEA biochips. Contact pads are represented by yellow squares. The numbering on each pad 

represents the channel that the pad corresponds to in the recording and analysis software. 
 

5.3.3 Section Summary 
A biochip specifically suited to SC-CM beating cluster cell source applications does not yet exist and 

is required. A microwell feature over each electrode is desired by users to increase the number of 

beating clusters accommodated per biochip. Underlying circuitry must be appropriately insulated 

using materials that are biocompatible and that can withstand wet and warm (~37°C) conditions for 

periods of days to months.  

Media wells are essential around the area of the electrodes as the SC-CMs require a constant supply 

of cell culture medium, which in this application is Dulbecco's Modified Eagle's medium (DMEM). 

The peripheral interconnect layout was to be kept consistent with commercial designs. 

The user specified microwell feature at each electrode is completely novel in its size, shape and 

suggested material. This novel feature brings new advantages to the user by facilitating easier cell 

positioning during the seeding process, improving signal quality as cells will attach directly over the 

larger surface area of the larger diameter electrode, and creating the facility to process more than 

one beating cluster per MEA biochip. 
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5.4 Manufacturing Approach Selection 
 

A design concept was conceived to meet the prioritised biochip-centred design and manufacture 

targets. Manufacturing approach and materials suited to production of the design concept were 

considered (Figure  5.15) with respect to possibilities the materials or techniques offer, limitations 

that might be of significance, costs, environmental factors and scalability for manufacture of the 

likely quantity of biochips required, both separately and in association.  

 

Possibilities 

(e.g. provides good optics, cells adhere well)

Limitations 

(e.g. requires several high skilled techniques to process, poor availability)

Cost 

(e.g, of materials, of facilities, of tooling maintenance)

Environmental 

(e.g. location and facility in which approach is carried out, chemicals used in processing are 

detrimental to the environment)

Scalability and quantity 

(e.g. will quantity required by market increase due to product introduction, if so is process scalable to 

meet predicted demand)

Design of the 

Manufacturing Approach

Possible Fabrication ApproachMaterials

Procedure

Tooling and facilities

Expertise

Suitability for 

manufacturing approach

Compatibility with  cell 

culture environment

Integrated Circuit (IC) 

and Micro Electrical 

Manufacturing 

Systems (MEMS) 

Techniques

Electroplating

Laser Processing

Inkjet Printing

Gold

Indium Tin Oxide

Titanium Nitride

Glass

FR4

Polyester

Hydrogel

 

Figure  5.15: Manufacturing approaches conceived were described in terms of what was possible, what 
materials were suitable and specific advantages and disadvantages posed by each approach. 
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Possibilities and limitations: Manufacturing technology was evaluated to determine what would be 

possible and where limitations of techniques might rule them out with regard to identified potential 

manufacturing techniques (section 5.4.1) in terms of: 

i) the physical procedures required to execute that technique;  

ii) the tooling and facilities those procedures required;  

iii) the feature sizes and geometries attainable using that technique; 

iv) the level of expertise available to ensure necessary procedures could be carried out 

effectively and safely.  

These considerations are described in Table 5.3. 

This research demands the use of materials that suit biosensor applications. Only materials that 

were biocompatible and suited to incubated conditions were considered. Materials selection priority 

was such that materials chosen would be compatible with:  

1. the needs of the cell culture environment; 

2. the manufacturing approach.  

 

Costs: Associated costs that would impact upon the manufacture and thus the final unit price of the 

MEA biochip and/or system were taken into account. The scale on which the novel MEA biochip 

could be manufactured was an influence as it is essential that manufacturers balance the scale of 

production and supply to the actual market need (Fisher et al, 1994).  

 

Environment: Environmental concerns are now a major consideration for all parties involved in 

manufacturing electrical or electronic products (Toyasaki et al, 2011). Disposable devices would be 

ideal for MEA system user groups as they could vastly reduce demands on users in terms of 

sterilisation and preparation. However, the ability to reclaim the high cost raw materials (such as 

gold or ITO) used in fabrication would be an environmental concern if large quantities were 

manufactured and sold.  

 

Quality and scalability: Current commercial manufacturing uses approaches that are carried out in 

batches. Scalable approaches are desired as the demand for devices in this application area will 

initially be low during research to validate the stem cell-derived cardiomyocyte as a reproducible 
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and reliable cell source. If substance screening is validated using these cells it is hypothesised that 

the pharmaceutical industry will require assays that process 100’s to 1000’s beating clusters per 

instance. 

 

5.4.1 Possible Fabrication Approaches 
A number of existing microelectronics manufacturing approaches were identified as potentially 

suitable for the manufacture of the novel MEA biochip concept: 

 Integrated Circuit and Micro Electrical Manufacturing Systems (MEMS) Techniques  

- Photolithography 

- Thin Film Deposition 

- Etching (wet) 

 Electroplating 

 Laser Machining 

 Additive Manufacturing (Inkjet Printing) 

[Source: Campbell, 1996.] 

 

The following sections describe each approach and the ways in which that approach is suited to the 

manufacture of the concept. 

 

5.4.1.1 Integrated Circuit and Microelectromechanical Systems 

(MEMS) Techniques 
Microelectromechanical systems (MEMS) are combinations of electrical and mechanical systems 

with manufactured parts that are less than 1mm in length (Meyer, Bischoff and Feltrin, 2009). The 

manufacture of MEMS devices draws upon many batch processing technologies that are used in the 

manufacture of various integrated circuit (IC) devices (Figure  5.16).  
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IC and MEMS Manufacture

Thin Film 

Deposition
Photolithography Etching

Sputtering

Physical Vapour 

Deposition (PVD) 

or

Evaporation

Chemical Vapour 

Deposition (CVD)

Ultraviolet (conventional 
photolithography)

Deep UV

Extreme UV

X-ray

Electron beam

Wet

Dry 

Sputter

Reactive Plasma

Physical-chemical

Cryogenic
= used in this research

 

Figure  5.16: Processes used for the manufacture of Integrated Circuits (IC) and Microelectromechanical 
Systems (MEMS) that are applicable to this research. 

 

This research utilised UV photolithography, e-beam PVD and wet etching throughout the described 

approaches. 

Technique suitability was considered in terms of possible feature size, process complexity, tooling 

sophistication, facility access and expertise availability (Table  5.2 and Table  5.3), contributing to 

decision making during manufacturing approach selection and implementation. 

Table 5.2: Suitability and accessibility states used in Table 5.3. 

Consideration Possible States 

Feature Size ≥100µm, <100µm, ≤30µm 

Process Complexity Low, Moderate, High 

Tooling Sophistication Low, Moderate, High 

Facility Access Available, Limited Access, No Access 

Expertise Access Available, Limited Access, No Access 
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Table 5.3: Technique suitability with regard to this research 

Technique Consideration State Comments 

IC and MEMS 

(Conventional 

photolithography and 

etching @ LU) 

Feature Size ≥100µm Facility and expertise is 

readily available at low cost 

to the research. Proof-of-

principle parts can be 

manufactured in a few days. 

Process Complexity Low 

Tooling Sophistication Low 

Facility Access Available 

Expertise Access Available 

IC and MEMS 

(Clean room based thin 

film deposition @ 

HWU) 

Feature Size ≤30µm Access can be booked 

month in advance. Process 

is time consuming. 

Additional expertise 

required to supervise. 

Process Complexity Low 

Tooling Sophistication Moderate 

Facility Access Limited Access 

Expertise Access Limited Access 

IC and MEMS 

(Clean room based 

photolithography and 

etching @ HWU) 

Feature Size <100µm Access can be booked 

month in advance. Variable 

results as done by hand. 

Time consuming.  

Process Complexity Moderate 

Tooling Sophistication Moderate 

Facility Access Limited Access 

Expertise Access Limited Access 

Electroplating Feature Size <100µm Low throughput. Time 

consuming. Facility to 

perform batches of ~4 

biochips. Electroplating 

parameters experimental.  

Process Complexity Moderate 

Tooling Sophistication Moderate 

Facility Access Available 

Expertise Access Limited Access 

Laser Machining Feature Size ≤30µm CO2 and Excimer laser 

facilities available. High 

cost.  Expertise available. Process Complexity High 

Tooling Sophistication High 

Facility Access Available 

Expertise Access Available 
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Additive Manufacture  

(Inkjet Printing) 

Feature Size ≤30µm Available through 

collaborative efforts with 

Printed Electronics Limited. 

Au inks on glass not 

optimised. 

Process Complexity Moderate 

Tooling Sophistication High 

Facility Access Limited 

Expertise Access Limited 

HWU= Heriot Watt University 

Conventional photolithography facilities were readily available to this research. Photolithography is 

used to produce commercial MEA biochips (Heuschkel et al, 2002). This technique has been 

exploited in this research in clean and non-clean environments. 

 

5.4.1.1.1 Photolithography. 

Photolithography has been used in all manufacturing approaches presented in this thesis for the 

production of the electrode patterns on the upper surface of the MEA biochip base substrates. The 

exact procedure executed and the materials used differ slightly between manufacturing approaches 

to suit the needs of concept iterations. However, the overall principles of manufacture via 

photolithography are consistent (Figure  5.17). The feature sizes possible using different types of 

lithography (Table 5.4) support the suitability of photolithography for MEA manufacture. The 

smallest feature sizes present in commercial MEA biochips (section 2.10) is 10µm. Therefore UV 

photolithography was confirmed as suitable for manufacture of all base substrate electrode patterns 

where material selection is complementary. 

Table 5.4: General characteristics of lithography techniques. 

Technique Wavelength (nm) Finest feature size (nm) 

Ultraviolet (photolithography) 365 350 

Deep UV 193 190 

Extreme UV 10-20 30-100 

X-ray 0.1-1 20-100 

Electron beam - 80 

[Source: Dupas et al, 2004.]  
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i) Design pattern 

ii) Produce electronic 

artwork of pattern

(I.e. AutoCAD file)

iii) Make a photomask

iv) Obtain suitable 

base substrate with 

appropriate conductive 

material layer

v) Coat conductive 

surface of the base 

substrate material to 

be patterned with a 

photoresist

vi) Align and expose to 

UV light with 

photomask in position

vii) Develop photoresist

viii) Etch away 

exposed conductive 

material

ix) Strip away 

remaining photoresist

x) Rinse patterned 

substrate clean of 

chemicals

 
Figure  5.17: Step-by-step photolithography procedure overview. The details at each stage may differ 

depending upon intended geometries and resolution of the pattern being transferred. 

 

As seen in Figure  5.17, the stages of photolithography are as follows: 

The photolithography process involves developing a design concept (i) and an electronic file, called 

an artwork (Figure  5.18), of that design constructed (ii). A number of CAD and electronic design 

software are suited to this purpose (e.g. AutoCAD, DipTrace, CadSoft EAGLE). From this file a 

photomask of the pattern is made (iii). A photomask can be made in either a positive or negative 

format to suit the photoresist that it is to be manufacture micro electrode array used in conjunction 

with. 
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Figure  5.18: Artworks produced for this research in a format to suit either positive or negative photoresists. 

 

A base substrate is selected (iv) that has been previously coated or laminated with a conductive 

material (e.g. copper, Figure  5.19) is processed to produce the desired conductive pattern on its 

surface using the photomask. Designers select the conductive material and the thickness of the film 

(laminated layer) of that material that is required to give appropriate resistivity to the conductive 

pattern being produced. The process of transferring the pattern from the photomask to the 

substrate is the photolithography stage of the MEA biochip manufacture. The most common form of 

lithography (Campbell, 2001), and the type used in this research is optical (photo) lithography. Other 

types of lithography used in the production of microelectronics include x-ray lithography, electron-

beam lithography and ion beam lithography (Kalpakjian and Schmid, 2008). 
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Figure  5.19: Copper laminated FR4 used as base substrate for manufacturing approaches 1, 2 and 3, and 

consequently Prototype 1. 
 

 
Figure  5.20: Photolithography Stages 

 

A photosensitive material called photoresist is thinly and evenly deposited (e.g. by lamination, spin 

coating, sputtering) over the conductive surface that is to be processed (v). Photoresists are 

available in various forms (i.e. liquid, film) that can be classified into positive or negative resists 

(Figure  5.20). The photoresist coated substrate is positioned with the photomask tightly over the top 

and given a controlled exposure to UV light (vi). The exposed areas of resist undergo a 

photochemical reaction resulting in some areas of photoresist being resistant to a developing 

solution and other areas being easily dissolved by the same solution. 
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Figure  5.21: Continued photolithography stages. 

 

The exposed samples are developed to remove areas of dissolvable photoresist (vii) resulting in 

patterned areas of developed photoresist and exposed conductive material. The exposed conductive 

material is etched away by submerging the sample in an appropriate acidic formulation (viii). When 

all of the exposed conductive material has been removed the semi-prepared substrates are removed 

from the acid and immediately rinsed clean under water.  

The desired conductive pattern has now been created (Figure  5.21, viii and Figure  5.22) on the 

substrate surface (viii). Remaining photoresist is removed using an appropriate alkali solution and 

samples are rinsed clean again (x) and dried. 

 
Figure  5.22: An example of a patterned substrate made during this research by photolithography. 

 

There are two kinds of photoresist used in photolithography: positive and negative (Figure  5.23). 

In the case of positive resists the area of the resist that is exposed to UV light under goes chemical 

changes that result in those areas becoming soluble to a particular developing solution. Therefore 

when the area that has been exposed to UV light is submerged in developer the photoresist covering 

that area is removed.  

In the case of negative resists the area of resist that is exposed to UV light polymerises to more 

resistant to being dissolved by the developing solution. Therefore it is the unexposed areas of the 

negative resist that are removed. 
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Positive 
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resist
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(i.e. FR4)
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UV Light

 
Figure  5.23: Positive and negative photoresists. 

 

Photoresists that have been used in this research are negative Alpha 940 and positive AZ 9260. 

5.4.1.1.2 Thin Film Deposition   

Films of various materials are thinly deposited over substrate materials for various microelectronics 

manufacturing requirements, such as patterning, protecting or insulating. The type of material 

depends upon the function required of the layer and the properties of the material. In the case of 

conductive films used for circuitry, materials such as titanium, copper and gold, (used in this 

research) are usually selected for their suitably low resistivity, current carrying ability and suitability 

for connection. 

Thin films may be deposited via a number of deposition techniques. Techniques vary in terms of 

pressure, temperature and vacuum systems required. The simplest and oldest method of thin film 

deposition is evaporation. Sputtering and chemical-vapour deposition techniques are also available 

for film deposition and have not been used in the research presented in this thesis but may be suited 

to future work. 
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Physical Vapour Deposition (PVD)/ Evaporation 

Involves heating (via a hot filament or electron beam) metal in vacuum to the point of vaporisation 

(e.g. for Au temperature of vaporisation =~2800ºC). The vaporised (or evaporated) metal forms a 

thin layer on the surfaces of substrates contained within the deposition chamber.  

Electron beam deposition was used in this research. Detailed description of this approach is included 

in section 5.8.2.1). 

 

Sputtering 

Involves bombarding a target with high-energy ions (typically Ar+) in a vacuum. As the ions strike the 

target material atoms are knocked off and deposited on wafers mounted in the system. Sputtering 

gives a highly uniform coverage (Ueda et al, 2006). Advanced sputtering approaches have been 

developed using radio-frequency power sources (RF sputtering) and magnetic fields (magnetron 

sputtering). 

Sputtering was not used in this research but may be useful to future work. 

 

Chemical Vapour Deposition (CVD) 

In CVD the film of metal covering a substrate is deposited by way of the reaction and/or 

decomposition of gaseous compounds. There are two different set-ups: 

Low pressure chemical vapour deposition (LPCVD): operates at low pressures and is capable at 

higher production rates than atmospheric pressured CVD. The low pressure approach also provides 

superior uniformity with lower consumption of carrier gases. 

Plasma-enhanced chemical vapour deposition (PECVD): involves processing wafers in an RF plasma 

containing source gases. The advantage of this process is that it can operate at relatively low 

temperatures. 

These approaches may exploited in future work. 
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Thin film deposition and this research 

Thin film deposition stages for the materials used in this project were carried out commercially in 

the case of FR4 based prototypes. Cu laminated FR4 is readily available. For the glass based 

prototypes thin film deposition processes were carried out as part of this research. The specific 

process used in this work was e-beam deposition of Ti and Au at very low pressure. 

 

5.4.1.1.3 Etching  

Once a photoresist pattern has been created on the surface the next stage is to transfer that image 

into the relevant layer of material (e.g. Cu, Ti) underneath. Etching is used to remove the conductive 

material and is classified as either dry or wet (Campbell, 1996).  

Wet etching involves immersion of the photoresist patterned substrate into an etchant solution. The 

etchant reacts with the exposed areas removing the material from the substrate into the solution. 

Dry etching involves the acceleration of reactive ions towards the base substrate in a low pressure 

system. Dry etching usually provides improved directionality when compared to wet etching 

(Kalpakjian and Schmid, 2010) but is typically more expensive (Wilkinson and Rahman, 2004). There 

are four variants of dry etching: (i) sputter, (ii) reactive plasma, (iii) physical-chemical and (iv) 

cryogenic. Dry etching has not been used in this research. 

This research called upon wet etching of Cu (sections 0, 0, 0), Ti (section 0) and Au (section 0) 

through various manufacturing approaches designed. 

 

5.4.1.1.4 Clean rooms 

Clean room facilities are necessary for the production of IC and MEMS devices due to the scale 

features produced. Clean rooms serve to remove potentially damaging particles from the 

manufacturing atmosphere (e.g. dust, smoke, perfume, bacteria). There are varying levels of 

cleanliness of clean room defined into internationally standardised classes. The system of 

classification refers to the number of particles within a cubic foot of air that are greater than 0.5µm. 

Most clean rooms used for microelectronics manufacturing range from class 1 to 10. The size and 

number of particles are used to classify clean rooms, demonstrated in Figure  5.24. 
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Figure  5.24: Particle size and concentrations of particle per m

3
 for clean room classes. 

[Source: ISO 14644-1:1999] 

 

A class 1000 clean room was used by this research for the manufacturing approach described in 

section Error! Reference source not found.. 

 

5.4.1.2 Electroplating 
Electroplating is the process of coating an article with metal by means of electrolysis (Oxford English 

Dictionary, 2012). The article that is being plated is referred to as the cathode and the metal being 

used as the plating material is called the anode. This research has both implemented (section 0) and 

outsourced (section 0) electroplating. 

The electroplating process can be described as follows:  

1. Metal ions from the anode are discharged by means of a potential (usually from an external 

power source) or are delivered in the form of metal slats. 

2. The metal ions dissolve into solution. 

3. The metal ions move to the cathode where they are deposited on its surface. 
[Adapted from Kalpakjian and Schmid, 2010] 

 

Copper (Cu) is commonly the coated material where electroplating is used. Cu has been 

electroplated with gold (Au) in this research to meet biocompatibility requirements. A typical 

electroplating process involves the application of a DC voltage between the article that is to be 

plated (cathode), and a source of the material that is to be deposited (anode). Both the cathode and 

the anode are submerged in a conductive electrolyte solution. Application of voltage results in the 
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metal ions of the anode migrating to the cathode. Upon reaching the cathode’s surface the ions lose 

their charge and are consequently deposited on the surface. 

Plating can be controlled to produce high quality end results. Appropriate selection of a combination 

of variables is required for controlled plating. Those variables are:  

 the electrolyte and concentration of its various dissolved components, 

 the temperature of the electroplating bath, 

 the electrical voltage and current. 

Variables are interrelated increasing process complexity and making the process of control a more 

challenging problem (DeGermo, Black and Kohser, 1999). Investigation of appropriate control of the 

above variables has been a challenge encountered by this research. 

5.4.1.2.1 Surface preparation for electroplating 

Preparation of the surfaces prior to plating is especially important to quality of the final surface. 

Holes, scratches, and defects must be removed if a smooth end result is to be achieved. Degreasing, 

cleaning and pickling can be used to ensure a chemically clean surface prior to plating.  

5.4.1.2.2 Part geometry in electroplating 

The geometry of the part to be plated also influences the final surface shape and finish. Plated metal 

tends to be preferentially attracted to corners and protrusions and as such design recommendations 

exist for parts to be electroplated (Figure 5.25). 

 
Figure 5.25: Design Recommendations for Electroplating Operations. (Source: DeGarmo, Black and Kosher, 

1999) 



275 
 

__________________________________________________________________________________
Requirements, Concept Design, and Manufacturing Approach 

Electroplating has been used in this research to pursue a manufacturing approach based on via 

(through) hole filling approaches used in layered PCB construction (section 5.6.1). The geometry of 

the feature electroplated in section 5.6.1 is a blind hole.  

 

5.4.1.3 Laser-beam Machining  
Laser-beam machining (LBM) uses various sources of focused, high-density energy as tools that can 

melt and vaporise a target’s material in a controlled manner (Dubey and Yadava, 2008). LBM can be 

used to process metallic and non-metallic materials. In this research lasers are used in conjunction 

with non-metallic materials. Different lasers are advised for different purposes (Table 5.5). 

Table 5.5: General applications of lasers in manufacturing. 

Application Laser Type 

  

Cutting 

Metals 

Plastics 

Ceramics 

 

Pulsed CO2, Continuous Wave CO2, Nd:YAG, ruby 

Continuous Wave CO2 

Pulsed CO2 

Drilling 

Metals  

Plastics 

 

Pulsed CO2, Nd:YAG, Nd:glass, ruby 

Excimer 

Marking 

Metals 

Plastics 

Ceramics 

 

Pulsed CO2, Nd:YAG 

Excimer 

Excimer 

Surface Treatment Continuous Wave CO2 

Welding 

Metals 

Plastics 

 

Pulsed CO2, Continuous Wave CO2, Nd:YAG, Nd:glass, ruby, Diode 

Diode, Nd:YAG 

 CO2 = Carbon dioxide,  Nd:YAG  = neodymium: yttrium-aluminium-garnet, Nd:glass  = neodymium: glass. 
[Source: Kalpakjian and Schmid, 2010.] 
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The outcomes of LBM are affected by the physical parameters of the surface of the material that is 

to be processed. Reflectivity and thermal conductivity influence LBM outcome. The lower the 

reflectivity and thermal conductivity the more efficient the process (Kalpakjian and Schmid, 2008).  

 

Gas streams: Many lasers are used in conjunction with gas streams (e.g. oxygen, nitrogen, argon) to 

leave oxide free surfaces and edges. Gas streams also have the important function of blowing away 

molten and vaporised material from the surface of the workpiece. 

 

Carbon dioxide (CO2) laser: The CO2 laser is one of the most efficient and powerful lasers used 

industrially for cutting and welding. The laser consists of 10-20% carbon dioxide, 10-20% nitrogen, a 

few per cent hydrogen, and the remaining helium (Hummel, 2011). 

The smallest comparable features that can be manufactured using a CO2 laser have been 12.6µm 

(Longsine-Parker and Han, 2012) supporting the use in this application setting. 

 

Excimer lasers: Are used across materials processing, medical devices and research and 

development settings (Csele, 2004). The term Excimer laser does not describe a single device but a 

family of lasers (Table 5.6) that possess comparable output characteristics (Hecht, 1992). Excimer 

systems work by using pulses of short wavelengths such as ArF (193nm), KrF (248nm), XeCl (308nm) 

and XeF (351nm). The pulses are short in duration (3-10 ns) and high in energy. The pulses interact 

rapidly with the sample material resulting in material ablation at the surface (Lee and Wu, 2007). 

Excimer lasers have been reported in use for the fabrication of components with feature sizes 

between 0.05µm -1mm (Gower, 2001).  

Table 5.6: The excimer laser family gas mixtures. 

Excimer Species Halogen Inert gas Balance 

KrF 0.2% fluorine 5% krypton Helium 

0.1% fluorine 2% krypton Neon 

ArF 0.23% fluorine 14% argon Helium 
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0.1% fluorine 4% argon Neon 

XeF 0.39% fluorine 0.75% xenon Helium 

0.15% fluorine 0.35% xenon Neon 

XeCl 0.06% hydrogen chloride 1.5% xenon Helium 

0.06% hydrogen chloride 1.5% xenon Neon 

[Source: Csele, 2004.] 

The excimer laser type used in this research was KrF (section Error! Reference source not found.).  

 

5.4.1.4 Additive Manufacturing (Inkjet Printing) 
Inkjet printing is used in manufacturing because of its high speed and accuracy (Fahad, 2011). The 

material processed in inkjet printing presently exhibit poor mechanical properties. The functionality 

of printed products is therefore limited. 

Inkjet printing has however been applied across a diversity of applications including industrial, 

textile, bio-medical, and electronics manufacturing.  

Electronic applications of inkjet printing include (Fahad, 2011):  

i. Manufacture of printed circuit boards (PCB), 

ii. Manufacture of polymer light emitting diodes (PLED) 

iii. Manufacture of colour filters for liquid crystal displays (LCD) 

iv. Manufacture of organic thin film transistors (OTFT). 

Inkjet printing is classified into two categories: Continuous Inkjet Printing (CIJ) and Drop-on-Demand 

Inkjet Printing (DOD). 
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Inkjet Printing

Continuous Drop-On-Demand

Binary Deflection 

System

Multiple Deflection 

System

Thermal Electrostatic Piezoelectric Acoustic

Squeeze Bend Push Shear

 
Figure 5.26: Categories of Inkjet Jet Printing. 

 [Source: Le, 1998] 

CIJ is the provision of a steady stream of droplets onto the substrate at a controlled rate. These 

droplets are produced and controlled by the continuous vibration of a piezoelectric crystal inside the 

printer head. The vibration creates a pressure wave inside the chamber where the ink is held forcing 

a droplet out of the nozzle (Fahad, 2011). 

DOD sends a signal to the nozzle only when needed. DOD is categorised according to the actuation 

system used: electrostatic, acoustic, thermal and piezoelectric.   

A wide variety of materials have been printed using inkjet technology (e.g. polymers, organic 

solvents, ceramic suspensions, nanoparticle materials, molten metal, biological materials). 

Properties that will influence the final quality of the print include: 

 Surface tension 

 Viscosity 

 Molecular weight 

 Concentration of the polymer (in polymer based suspensions or solutions). 

Inkjet printing is promising in electronics manufacture due to the ability to pattern high-purity 

electrically functional materials without the need for a mask (Sekitani et al, 2008). It is the facility to 

print PCBs that was pursued as an avenue of interest to this research. The feasibility of using inkjet 

printing was considered in collaboration with PEL Printed Electronics Limited (Invotec Group, 

Tamworth, UK).  Further details are presented in section 5.9.  
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5.4.2 Selection of manufacturing Approaches for 

Implementation 
The major factors (Figure 5.27) influencing which manufacturing approaches should be implemented 

were materials suitability, fabrication technique suitability, resolutions and geometries limitations, 

suitability for sterilisation and cleaning, and robustness.   

MEA Biochip Manufacture

Fabrication 

Techniques

(Chapter 5)

Design feature 

resolution

(Chapter 2)

Robustness

(Chapters 2 and 

4)

Cleaning and 

sterilisation

(Chapter 4)

 Water-tight

 Re-usable

 Transporatable

 Material Deposition

 Photolithography

 MEMS

 Laser Processing

 Ink jet Printing

 Millimeters

 Micrometers

 Nanometers

 Trypsin

 Ethanol (70%)

 UV Light

 Plasma Cleaner

 Laminate

 Plasma Enhanced Chemical Vapour Deposition 

(PECVD)

 Electron Beam

 Sputtering

 Mm

 µm

 nm

Conventional tooling and approach

High precision clean room facilities

 Ink formulation

 Droplet size

 Resolution

 High Temperature Curing

 Possible Base Substrates

 Laser source

 Feature geometry

 Ablation Rates

 Consistency

 Laser Alignment

 Material Properties

 Ablation Debris

Requirements of 

design concept

(Chapter 3, 4 

and 5)

 See PDS 3

Materials

(Chapters 2 and 

5)

 Base substrate

 Conductive Pattern

 Adhesive or sealant

 Insulator

 Media Well

 Interconnect contact pads

 Electrode Tip

 Tracking

Cell culture 

environment

(Chapter 4)

 Warm = ~37ºC

 Humidity = >95%

 Atmosphere = 5% CO2

 

Figure 5.27: Factors Influencing Manufacturing Approach Selection. 

 

Note: The MEA biochip must be made to be robust enough to withstand repeated use, exposure to 

prolonged periods in humidified incubation and the repeated cleaning and sterilisation procedures 

associated to that use without failure.  
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5.4.2.1 Materials Selection 
Appropriate material selection for MEA biochip sub-components was based upon the materials 

demonstrated in comparable applications, material properties, processing technique suitability, 

availability and costs. 

 

5.4.2.1.1 Conductive Pattern and Electrode Tips 

Copper, gold, platinum, titanium, ITO and TiN were considered as potential materials for the 

conductive pattern and electrode tips of the novel MEA biochips designed and manufactured during  

this research. 

 

Gold: Is used for areas of the electrode surface that are exposed to the cellular environment 

throughout derived design concepts as a wealth of literature reviewed had previously demonstrated 

its successful application in numerous similar biochip designs (Nam et al, 2004; Held et al, 2010a). Au 

is biocompatible (Chen, 2011) and was favoured over ITO and TiN because the processing of Au 

using photolithography methods is more mature with a vast amount of published information 

available to support experimentation. Suitable facilities and access to expertise (PMD Plating, 

Coventry) supported the use of Au during this project.  

Au was selected for use in all of the manufacturing approaches that were designed by this research 

as the cell-electrode surface interface material.  

 

Indium tin oxide (ITO or tin-doped indium oxide): Is a semiconductor made from a mixture of 

typically 90% indium oxide (In2O3) and 10% tin oxide (SnO2) and is  exploited in the manufacture of a 

number of contemporary electronic devices (e.g. flat panel displays, solar cells). ITO exhibits good 

transparency, low electrical resistance and excellent surface adhesion (Damiani and Mansano, 2007).  

ITO also demonstrates good physical and chemical stability (Eisgruber et al, 1999) making it a 

suitable candidate material for transparent tracking in MEA biochip manufacture. Thin films of ITO 

are required in MEA manufacture. A selection of techniques can be used to deposit films of ITO: (i) 

Thermal evaporation deposition, (ii) Direct current (dc) and radio frequency (rf) magnetron 

sputtering, (iii) Electron-beam evaporation, (iv) Spray Pyrolysis, (v) Chemical Vapour Deposition 

(CVD), (vi) Dip coating, or (vii) Pulsed Laser Deposition (Singh, 2006). Of these, sputtering is one of 
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the most versatile methods with the advantage of providing uniform thin films reproducibly (Singh, 

2006). 

The research presented in this thesis has not used ITO in designs but future design iterations may be 

suited to this material. 

 

Titanium Nitride (TiN): A surface is coated in TiN by reactive sputtering and CVD with titanium 

tetrachloride as the metal source and either nitrogen gas or ammonia gas as a source of nitrogen 

(Pierson, 1996). TiN is ideal for MEA biochip electrodes as it is biocompatible, stable in aqueous 

solutions, and has high abrasion and corrosion resistances (Watari et al, 2004) 

The research presented in this thesis has not used TiN in designs but future design iterations may be 

suited to this material. 

 

Electrode Material Combinations: Combinations of metals are use in manufacture to reduce costs 

and improve quality and performance. In this research the combinations Cu/Au and Ti/Au were used 

for the conductive patterns and electrodes of the prototype biochips produced.  

Cu/Au combinations were used to reduce costs in prototype one. Ti/Au was used in prototype two A 

and B as Au on glass required an initial seed layer of Ti to ensure high quality coating on the glass 

surface. 

Using thin film deposition, glass substrates were coated with titanium (Ti) as a seed layer and then 

gold (Au).  

 

5.4.2.1.2 Base Substrate and Media Well 

The polymer-based material FR4 was used in initial prototyping (sections 5.6.1, 5.6.2, and 5.6.3) as it 

was suitable for manufacturing approaches available and the FR4 and Cu layer were designed such 

that there would be no contact with the live matter. Glass was also used as a base substrate and 

media well material. Glass was selected due to its superior optical qualities as when compared to 

transparent and translucent plastics (Thibaud et al, 2005), as well as its suitability and durability for 

repeated processing and sterilisation. In addition to that glass is also bio-inert making it suitable for 

chronic cell culture.  
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5.4.2.2 Bioscience Influences 
Selection and implementation of the varying manufacturing approaches has also been influenced by 

the bioscientific application environment. General observations identified during case study 

construction influenced decision making.  

 

An example of an influence from observation of the bioscientific environment in which the device is 

to be applied that may have affected component geometry decisions or compromises is that the 

amount of space in a tissue culture hood. This space is limited and the specific tooling used during 

cell seeding is of particular dimensions. Awareness of these factors (that will influence how the user 

interacts with the biochip) helps to make appropriate design compromises when defining 

component geometries. 

 

Influences that were specific to using SC-CMs were also central to design decisions. An example of 

an observation that influenced material selection was awareness of UoN users’ observations that SC-

CMs attach differently to different materials. During material selection certain materials were 

favoured over others if they were suited to the manufacturing workflow under development (e.g. 

UoN users have observed that polyester can facilitate better cell attachment than glass which is also 

supported by the work of Jiao and Cui (2007) who demonstrated the importance of the surface 

interface on attachment using osteoblast cells).  

 

In the initial biochip design novelty was favoured over optical assessment capability. This 

compromise was made by UoN users; a high quality signal for analysis was considered more 

important than good optical assessment. 
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5.4.3 Section Summary 
A number manufacturing approaches can be used to produce the feature geometry specified in PDS 

3. Decisions relating to which approach to pursue in the following section of this chapter are based 

upon material suitability, facilities availability, expertise, time and reducing the cost of manufacture.  

This research called upon combinations of the listed manufacturing techniques while attempting to 

manufacture the concept designed to meet the needs of real users: 

 MEMs approaches – in the form of UV photolithography, physical vapour deposition and 

etching 

 electroplating 

 laser machining 

 inkjet printing 
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5.5 Manufacturing Approach 

Implementation 
 

A design concept was conceived (Figure  5.13) using PDS3 and attention was directed toward 

planning a method of manufacture. An overview of the manufacturing approaches planned and 

implemented during this research is described in Figure 5.29. The manufacturing approaches were 

designed and implemented as workflows (Table 5.7). A period of concurrent manufacturing 

development occurred until a suitable prototype was achieved (section 5.6.3).  

The prototypes were tested using live SC-CMs, and initial user feedback collected which led to a re-

evaluation of the MEA biochip design concept, resulting in a different second generation design 

concept.  

Clean room based manufacture was required to produce a finer conductive pattern in the second 

MEA biochip design concept. The new design, concept 2, was manufactured with two different 

electrode iterations, A and B (Figure 5.28, section 5.8). These prototypes were also tested using live 

SC-CMs (Chapter 6). 

The remainder of this chapter describes how each manufacturing approach was planned and 

implemented, and the general success of each approach in terms of critical manufacturing 

outcomes. Detailed results of each manufacturing approach are presented in Chapter 6. 

 

 
Figure 5.28: The electrode designs (A & B) used in the second generation of MEA biochip prototypes. 
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Figure 5.29: The design cycle used throughout this work. Three initial manufacturing approaches were 
designed and progressively adapted until a prototype of satisfactory quality was achieved for testing. 

Following feedback from that testing a new approach was adopted for the next generation of prototype. 
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5.6 Prototype One Manufacturing  
 

Four manufacturing approaches were implemented by this research with differing levels of success. 

Each manufacturing approach described in the following text was implemented successively, and for 

a time concurrently, building upon the successes and failures of the previous approach until a 

satisfactory prototype was achieved. Table 5.7 summarises each approach explored and visualises 

the planned outcome. 

Table 5.7: A brief summary of manufacturing approaches designed and implemented in pursuit of functioning 
prototypes. 

1. Via Hole Fill 2. Vertical Pins 3. Micro drilling 4. Clean room based 

Photolithography

Concept

Design

Progress

Approach

Failed at manufacture Failed at manufacture Generation One Prototype
Generation Two Prototypes A 

and B

Section in this 

thesis
5.6.1 5.6.2 5.6.3 5.8

 

Where an approach is investigated via a number of tangents the details of those tangents are also 

described. The success of the manufacturing approach in terms of production of a prototype is 

stated in Table 5.7. Manufacturing approach success was considered and compared in terms of the 

following critical component outcomes (Table 5.8).  

Table 5.8: Outcomes critical to successful manufacture of an MEA biochip. These critical outcomes were also 
prioritised with respect to interdependencies. 

Priority Critical Manufacturing Outcome 

1 Produce satisfactory base substrate 

2 Produce satisfactory media well 

3 Facilitate adequate attachment of the media well and base substrate components 

4 Produce a satisfactory electrode site for cell-electrode interfacing 

5 Produce an appropriate micro-well geometry around electrodes 

6 Produce enough sites so as to allow assignment of a reference 

7 Produce an MEA biochip that allows appropriate optical inspection of living samples 
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5.6.1 Manufacturing Approach One: Via hole filling 

(Electroplating). 

1) Create deep hole through Petri dish  to underlying 

electrode pattern below. 

2) Use through hole (via) fill electroplating techniques to 

plug the hole creating a microwell with Cu to a specified 

depth (~250µm).

3) Plate exposed Cu surface with Au for biocompatibility.

 
Figure 5.30: The intention of the via hole fill manufacturing approach. 

 

The first manufacturing approach exploited a well-defined and extensively demonstrated process 

used throughout printed circuit board (PCB) manufacturing.  An electroplating process is used to fill 

“vias” and “through holes” in layered printed circuit boards (PCBs). The same principle was utilised 

as a method of filling 500µm diameter holes drilled through a 35mm diameter Petri dish previously 

adhered over an underlying electrode pattern. Each hole was to be filled to a controlled depth, 

resulting in a recession ~250µm deep. Electroplating was used to fill the hole/ a filling tolerance of 

~10µm was aimed for. The intention was to create a microwell feature into which the beating cluster 

would be seeded and “held” during the physical attachment period. The intention of this 

manufacturing approach is seen in Figure 5.30 and Figure 5.31. 

500

1
6

0
0

8
0

0

5
7

0

2
0

0

Cu Foil

Electroplated Cu

Electroplated Au

FR4

PS Petri dish

Adhesive

All dimensions in µm.
 

Figure 5.31:  A schematic of the intended cross-section though the electroplated microwell. 
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5.6.1.1 Manufacturing Approach One Description 
On overview of this manufacturing approach can be seen in Figure 5.32. The CIMOSA modelling 

technique described in Chapter 3 and demonstrated in Chapter 4 has been used to construct these 

manufacturing approach models. 
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Figure 5.32: A CIMOSA activity diagram representing the major processes attempted for the via hole filling 

manufacturing workflow design. 
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The processes physically implemented for this manufacturing approach are: 

 P.1. – production of base substrate,  

 P.2. – securing of media well (35mm culture dish),  

 P.3. – drilling of the microwell recessions, 

 P.4. – copper electroplating processes (via hole filling).   

 

Process One – Production of base substrate 

Base substrates were produced using photolithography (section 5.4.1.1.1). The precise approach 

implemented for this process is documented in the activity model below (Figure 5.35). 
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Figure 5.33: A CIMOSA activity diagram of the photolithography process used to manufacture Cu patterned 
base substrates for the novel MEA biochip design. 
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For the activities A.1 - A.3 the materials required for this approach were purchased and a conductive 

pattern was designed using AutoCAD software (Autodesk, Inc., CA, USA). The pattern was printed 

onto to draft paper using a deskjet printer. The printed pattern was transferred to orange dry peel 

film by UV exposure resulting in a photomask to scale (Figure 5.34).   

 
Figure 5.34: An orange dry peel film photomask used in the manufacture of base substrates for the via fill 

approach. 
 

During activity A.4, an A4 sized sheet of Cu coated (35µm) FR4 (Figure  5.19) was laminated by hand 

with a negative dry film photoresist, Alpha 940 (Figure 5.35) on one side by passing through an 

Albyco PhotoPro33 laminator (Figure 5.36) set at 115°C. A roll through speed of 350mm/min was 

used to ensure a uniform covering.  

 
Figure 5.35: Aplha 940 negative dry film photoresist. 

 

During activity A.5, the photomask was then secured over the laminated substrate and the 

combined sheet exposed to UV light using a Parker Graphics UV exposure unit (Figure 5.37). 

Exposures were 9 seconds in duration at full power. 
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Figure 5.36: The Albyco laminator used to cover the FR4 substrates with the negative dry film photoresist. 

 

 
Figure 5.37: The Parker Graphics UV exposure unit used for UV exposure. 

 

During activity A.6, the exposed sheets were passed through a film developing tank (Figure 5.38). A 

Roller speed setting 6 (~0.2m/min) was used to pass the sheets through jets of the alkaline K2CO3 

developing solution (1% potassium carbonate). The temperature of the solution was 35°C. 

Developed sheets were rinsed under tap water and dried before etching. 

 
Figure 5.38: The dry film developing unit. 



292 
 

__________________________________________________________________________________
Requirements, Concept Design, and Manufacturing Approach 

To etch the exposed areas of Cu, as occurs in A.7, the developed sheets were passed through a Mega 

Electronics etching machine (Figure 5.39) containing a ferric chloride solution. The substrate sheets 

were rinsed under tap water and dried.  

 
Figure 5.39: The Mega Electronics etching machine. 

 
Throughout activities A.8 – A.10 the developed photoresist was then stripped from each sheet using 

the stripping well portion of a Circuitape Circuit 4 Processor (Figure 5.40). Sheets were rinsed under 

jets of distilled water following stripping. The resulting patterned sheets were cut into individual 

biochip substrates by hand (Figure 5.41). 

 
Figure 5.40: The Circuitape Circuit 4 Processor used for photoresist stripping following Cu etching. 
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Figure 5.41: Individual patterned FR4 substrates manufactured for Via hole filling approach 

experimentation. Top: Larger resolutions used during initial process experimentation. Bottom: Ensuing finer 
resolutions.  

 
 

Process Two - Securing of media well 

An example of the commercially available Petri dishes utilised in experiments is seen in Figure 5.42.  

 
Figure 5.42: A 35mm diameter Petri dish made by Corning, USA. 

 

The process used to secure the commercially available 35mm diameter Petri dish is documented in 

Figure 5.43. This process was completed by-hand for speed and convenience as small batches were 

required to experiment with critical approach parameters (e.g. the electroplating parameters were 

more important to spend time on than precise positioning of the Petri dish at this point).  
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Figure 5.43:  The activities (carried out by-hand) to secure the Petri dish onto the base substrate. 

 

During activities A.1 – A.7, the materials required were gathered and the biochip components 

cleaned. The two part adhesive was mixed in a small disposable vessel and an approximate amount 

added to the centre of the biochip substrate. The Petri dish carefully positioned over the base 

substrate and a gentle, even force was applied to spread the adhesive between the dish and 

substrate. A circular 25g weight was placed into the Petri dish and the part was left for ~24hours to 

cure. 
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Figure 5.44: A biochip base substrate with Petri dish adhered prior to drilling. 

 

The adhesive used in the proof-of-principle tests described was transparent epoxy-based resin 

(Figure 5.44), Epoxicure™, manufactured by Buehler (Dusseldorf, Germany). The recommended cure 

time at room temperature, 6 – 8 hours, was exceeded in all devices to ensure the resin was 

completely cured prior to further processing. The ratio of resin to hardener was 5 parts resin to 1 

part hardener. 

 

Process Three - Drilling of microwell recessions 

The process used to create the holes that would subsequently be filled to a controlled depth to 

result in microwells was investigated using two different methods (Figure 5.45). Computer 

numerically controlled (CNC) drilling and CO2 laser beam machining (LBM) approaches are described.  

Drilling 500µm diameter hole, through polystyrene and 

epoxy, to a depth of 700-800µm

Computer numerically 

controlled (CNC) 

drilling

Carbon dioxide (CO2) 

laser ablation

 
Figure 5.45: Two approaches investigated for the creation of the microwell recessions. 

 

Drilling specification: 

 16x 500µm Ø holes through the polystyrene dish and adhesive to the underlying Cu surface,  
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 in a square arrangement, spaced 5mm apart (Figure  5.46). 
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Figure 5.46: The drilling diagram for CNC processing. 

 

Process Three by Computer Numerically Controlled (CNC) Drilling: The CNC drilling procedure 

(Figure  5.48) exploited to produce holes through a polystyrene Petri dish and epoxy resin to an 

underlying Cu electrode pattern was carried out by high-skilled workshop technicians to 

aforementioned specification (Figure  5.46) using a Hurco VM1 3 axis milling machine (Figure  5.47). 

 
Figure 5.47: The Hurco VM1 CNC milling machine used in this research. 
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Figure 5.48: The CNC drilling process used to drill through the polystyrene culture dish and epoxy resin to 
the underlying Cu pattern. 

 

In activities CNC.A.1 – CNC.A.4, a biochip with Petri dish secured was positioned inside the drilling 

machine and held in place using a jig. The CNC drilling programme was configured and allowed to 

run. The biochip was removed and these steps repeated for each biochip in a batch of 20. 

During CNC.A.5 – CNC.A.8, large debris was shaken off the biochips. To remove smaller debris that 

may have been inside the 500µm diameter holes the biochips were submerged in deionised water in 

an ultrasonic bath for 5 minutes. Samples were dried and the holes were inspected using light 

microscopy.  

 

Process Three by CO2 Laser Ablation: The carbon dioxide laser-based process required precise 

positioning of the substrates in the system such that the co-ordinates of the pins measured and 
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entered into the lasers program were drilled in the precise location required to within a tolerance of 

5 - 10µm. Activities carried out are depicted in Figure 5.49. 
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Figure 5.49: The CO2 laser process used to drill through the polystyrene culture dish and epoxy resin to the 
underlying Cu pattern. 

 

Activities CO2.A.1 - CO2.A.2 were the start of drilling where the CO2 laser was set-up and the beam 

focused. The typical diameter of the focused beam throughout this process was 0.2 – 0.3mm. The 

pulse repetition rates used were varied across samples in pursuit of approach optimisation. The 

observations and outcomes of this drilling method is detailed in Chapter 6. 

During activities CO2.A.3 - CO2.A.7, a biochip was positioned onto the headstage inside the laser unit 

and secured in place with adhesive tape. The laser program was configured by zeroing the system 

and providing the appropriate drilling co-ordinates. The laser program was run. The MEA biochip 

substrate was removed from the laser system and cleaned. 

(Activities A.3 – A.6 were repeated for each biochip. MEA biochip substrates were processed in a 

batches of 10.) 
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The laser parameters for this approach were: 

 Wavelength: 10.6µm 

 Pulse energy: 10V 

 Focused beam diameter: 0.2-0.3mm 

The laser configurations were tested for this method (Table 5.9):  

Table 5.9: The CO2 laser repetition rates tested for manufacturing approach one. 

Pulse-repetition 

rate 

Number of 

passes 
Comments 

500/30 2 No hole 

500/35 2 Observed holes not through PS 

to Cu. Measured depths 

between 0.535 - 0.674 µm. 

500/40 2 Not through 

500/50 2, 3 Not through. For three passes 

hole depths between 0.756 – 

0.800µm. Sooty deposits. 

500/65 3 Not through. Sooty deposits. 

500/75 3 Not through Sooty deposits. 

500/85 3 Not through. Sooty deposits. 

500/95 3 Not through. Sooty deposits. 

 

This approach resulted in sooty deposits around the holes. The Petri dish was distorted around the 

holes which were irregular in shape. Debris material also coated the surrounding surface of the Petri 

dish so samples from the CO2 laser drilling method were not carried forward to the electroplating 

stage. 

 

Process Four – Copper electroplating 

The following CIMOSA model (Figure 5.50) represents the electroplating stage implemented for this 

research using only samples that had been drilled mechanically using the CNC process. 
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In activity A.1, two electrolyte solutions were tested. One was commercially available through-hole 

plating solution (Electroposit 1300) and the other was a recipe made in-house. 
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Figure 5.50: The electroplating process implemented by manufacturing approach one. 
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Home-made electroplating solution 

The electrolyte solution mixed by hand for initial electroplating experimentation failed to produce a 

filling suitable for this work (section 6.1.1). 

 

The formula of the electrolyte used was:  

22.4g Copper (II) sulphate hydrate (CuSO4) • 5H2O:  0.26 mol/dm3  

42.61ml Sulphuric acid (H2SO4):  2.0 mol/dm3 

357.4ml Deionised water 

This recipe is for 400ml of electrolyte which was the quantity mixed for each test.  

 

Operating conditions used:  

Temperature: Room temperature 18-20ºC 

Agitation: Regular agitation by ultrasonic vibration. 

Ventilation: Electroplating took place in a well-ventilated laboratory. 

 

Commercial Solution 

The Electroposit™ 1300 acid copper solution (The Dow Chemical Company, USA) is a single 

component additive that is specifically designed to improve reliability in via and through-hole plating 

in PCB manufacture.  

As the Electroposit solution is a commercial product the formula is unavailable. The mixture is 

however described as > 95% water and <5% inorganic salts. 

 

The advised operating conditions were adhered to while using this solution: 

Temperature: advised 20-25ºC, used 20 ºC.  

Agitation: advised moderate, used stirring and occasional ultrasonic bath. 

Ventilation: advised to work in a ventilated space, used a ventilated laboratory. 

 

The results of electroplating were improved by using this solution. The outcomes were however not 

up to the standard required of this application (see section 6.1.1). 
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Activities A.2 – A.3 of Figure 5.50 demonstrate the electroplating set up. The equipment used was 

set-up and a cathode and anode created using electrode probes and a copper sheet (Figure 5.51). 

The electrolyte solution was added to a glass vessel into which the biochip was submerged vertically. 

The areas of the biochip that were not to be plated (tracking and peripheral interconnect points not 

insulated by the Petri dish) were previously covered in protective insulating tape and the anode 

connection made using solder paste.  

A.4 – A.10: Place the glass vessel into an ultrasonic bath. Suspend the copper cathode in the 

electrolyte close to the Petri dish connect both the cathode and the anode to the DC Supply TTi PL 

330 unit. Begin electroplating by switching on the power supply. Turn on the ultrasonic bath every 

thirty minutes for five minutes to dislodge any air bubbles. After 7-8 hours switch off the power 

supply.  

 

Figure 5.51: The electroplating set-up used for the via hole filling manufacturing approach. 

 

A.11 – A.13: Remove biochip from the solution and rinse under deionised water. Prepare samples for 

quality inspection. 

 

Cross-sections of the holes filled using this approach are contained in section 6.1.1. 
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5.6.1.2 Manufacturing Approach One Summary 
A 35mm diameter Petri dish was adhered over a prepared Cu patterned base substrate using an 

epoxy resin. Drilling of 16, 500mm diameter holes, 5mm apart was computer-numerically controlled 

(CNC) allowing hole depth controlled to a tolerance of a few micrometres. The tolerance for this 

aspect is important to prevent detrimental removal of the underlying Cu pattern that was essential 

for successful electroplating. The drilled holes were ~800µm in depth. A conventional via hole filling 

(electroplating) procedure was adopted to fill the 500µm.  

 
Figure 5.52: An exploded view of the amended original concept according to the possibilities of the initial 

design of a manufacturing approach using via hole filling techniques. 

 

Copper (Cu) filling to a depth of ~600µm was aimed for with Gold (Au) to be plated on top to seal in 

the Cu, creating a cell-friendly surface. An exploded diagram depicts the intended Cu filling of the 

drilled holes (Figure 5.52). 

This approach initially plated too slowly using the home-made electrolyte. When the electrolyte was 

replaced for a commercial equivalent the quality of the outputs improved but the presence of air 

bubbles in all samples plated was a continuing problem.   
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5.6.1.3 Evaluation of Manufacturing Approach One 
The via hole filling approach produced the following outcomes. 

Table 5.10: The outcomes of the via hole filling approach. 

Priority Critical Manufacturing Outcome Approach achieved? 

1 Produce satisfactory base substrate Yes 

2 Produce satisfactory media well Yes 

3 Facilitate adequate attachment of the media well and base 

substrate components 

Yes 

4 Produce a satisfactory electrode site for cell-electrode 

interfacing 

No 

5 Produce an appropriate micro-well geometry around 

electrodes 

No 

6 Produce enough sites so as to allow assignment of a reference No 

7 Produce an MEA biochip that allows appropriate optical 

inspection of living samples 

No 

 

Further description of the results of this approach are contained in section 6.1.1. 
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5.6.2 Manufacturing Approach Two: Vertical Pins. 
An alternative manufacturing approach was developed in parallel with the on-going experimentation 

of the via hole fill approach. 

The vertical pin approach was considered as a potential avenue for developing an MEA biochip that 

has vertical as opposed to presently commercially available horizontal interconnections. A metallic 

pin was sought to serve as the electrode tip that could be mounted such that it would protrude 

through the culture dish into a drilled microwell recession to a controlled depth, thus filling the hole 

to result a ~200-250µm microwell feature with an electrode at the bottom (Figure 5.53). 
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Figure 5.53: A schematic of the intended cross-section at the microwell-electrode site for the Gold Pin 
manufacturing approach. 

 

Vertical interconnects are described in the original novel system vision. The intention of vertical 

connections is to support the pursuit to reduce the overall footprint of the MEA system. Moving the 

interconnect points away from the biochip periphery would be novel in in vitro MEA biochips and 

the use vertical pin interconnects would enhance the feasibility of creating a system where the 

electronics are contained in a compact package underneath the MEA biochip while in situ.   
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5.6.2.1 The Pins 
The pins used in early approach experimentation were sourced from pin grid arrays, PGA 

(Figure 5.54) as they are easy to obtain quickly and at low cost.  

 
Figure 5.54: A standard 68-pin gate array. 

 

The pins used were made of beryllium copper core, encased by a tin pin protrusion that is plated in 

100µm nickel. It was intended that once the overall approach was approved the pins used would be 

replaced with the more expensive Au equivalents so as to introduce biocompatibility. 

 

 
Figure 5.55: A visualisation of the PGA Gold Pin concept and the microwell-electrode site. 

 

The new design concept (Figure 5.55) connects the vertical interconnect points to a patterned FR4 

base substrate to accommodate proof-of-principle testing in an existing MEA system. 
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5.6.2.2 Manufacturing Approach Two Description 
Processes implemented for this manufacturing approach are (Figure 5.56): 

 P.1. – Make patterned MEA base substrate 

 P.2. – Drill Petri dish 

 P.3 – Produce electrode in microwell 
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Figure 5.56: A CIMOSA activity diagram representing the major processes attempted for the Gold Pins 

manufacturing workflow. 



308 
 

__________________________________________________________________________________
Requirements, Concept Design, and Manufacturing Approach 

Process One  – Make patterned MEA base substrate 

For details of the UV photolithography method used to manufacture the base substrate see 

section 0. 

To connect the sections of pins (four pins per section) tin (Sn) paste was used to create a conductive 

interface between the vertical pins and the underlying Cu patterned FR4 substrate. In future designs 

the patterned base substrate is not intended to be a necessary feature of the design as vertical pins 

are intended to connect straight in the system electronics below.  

Process Two - Drill Petri dish. 

The Hurco VM1 3 axis milling machine was used to drill holes in the Petri dishes that would align 

with the spacing of the PGA pins. PGA pin alignment was measured using a Zygo 3D touch probe and 

co-ordinates calculated for the CNC program.  

Process Three - Produce electrode in microwell 

For this process attention was paid toward how to locate the pins in the correct position. 

Fundamentally two methods were considered (Figure 5.57).  Both methods considered for securing 

the pins were intended to hold the pins in position in a robust, water-tight manner at a controlled 

depth, allowing the pins to create electrode tips over which contracting SC-CM clusters could be 

seeded. 

Vertical Pin Design Concept 

Manufacturing Approaches

Method One Method Two

A B
Push pins through 

as far as possible 

and secure and 

fill.

Re-drill to produce 

microwell 

recession at 

electrode

Push to level that 

is flush with 

surface and 

secure and fill.
Cut back excess 

pin

Re-drill to produce 

microwell 

recession at 

electrode

Position pin so tip 

is at desired level 

and secure and fill

 
Figure 5.57: The different methods experimented with for the vertical pin approach.  
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1. Push pin through pre-drilled hole in Petri dish firmly to furthest point, fix in position using a 

filling and sealing material, cut-off the protruding part of the pin and drill the pin back down 

to a level that is ~200-250µm from the culture dishes surface. 

2. Position pin precisely in pre-drilled hole to a controlled depth, control adhesion and filling 

around the pin to hold in correct position.  The manufacturing approach did not progress 

past this point during this research as alternative approaches yielded prototypes for testing 

(see sections 5.6.3 and 5.9). 

Method 1 above requires a precise re-drilling procedure to ensure the first drilling of holes aligns 

exactly with the second. The drilling was to be carried out using the CNC procedure documented in 

section Error! Reference source not found.. 

Method 2 required a device to facilitate controlled pin positioning during the securing process, 

ensuring that the pin tip (serving as the electrode tip) is 200-250µm from the inner surface of the 

Petri dish. This approach contemplated whether to position pins level with culture dish surface and 

drill back slightly (method 2A, Figure 5.58) or, to position the pin tip at the correct depth, removing 

the  second drilling process (method 2B, Figure 5.59). 

Method Two A 

A circular, perfectly flat mild steel weight was placed into the Petri dish over the holes. The 

transparent adhesive, Araldite Instant Clear, was injected all around the pins and left for 24 hours to 

harden. A second drilling over each pin to a depth of 200-250µm was then to be carried out to 

create a concave pin tip and therefore microwell.   

 
Figure 5.58: Method 2A. A) Secure pin tips flush with the inner surface of the Petri dish. B) Drill back 200-

250µm to create a microwell.  

Method Two B 
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A custom-made block with precisely aligned nipples was to be used to hold pins to the desired depth 

during filling and sealing. This method was not practically implemented by this research as an 

alternative manufacturing method produced prototypes for testing prior to manufacture of the 

nippled block.  

 
Figure 5.59: Method 2B. A) Secure pin tips at desired depth using nippled block. B) Remove block leaving 

pins in place. 

 

 

5.6.2.3 Manufacturing Approach Two Summary  
A section of mounted pins were adhered to a previously made patterned base substrate. Holes were 

drilled into a commercially available 35mm diameter Petri dish. The intention was to mount the Petri 

dish over the pins in a controlled manner. Two methods were considered for ensuring the provision 

of a microwell that the specified meets user requirements. One method considered a second drilling 

of pins after mounting. Another considered precise positioning so as not to require a second drilling 

procedure. This approach failed to yield a prototype. The outcomes are summarised in following 

section and described in greater detail in Chapter 6.   
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5.6.2.4 Evaluation of Manufacturing Approach Two 
This approach was under investigation concurrently with manufacturing approaches one and three. 

The outcomes are summarised Table 5.11 and described in greater detail in Chapter 6.   

Table 5.11: The outcomes of the gold pins approach. 

Priority Critical Manufacturing Outcome Approach achieved? 

1 Produce satisfactory base substrate Yes 

2 Produce satisfactory media well No 

3 Facilitate adequate attachment of the media well and base 

substrate components 

No 

4 Produce a satisfactory electrode site for cell-electrode 

interfacing 

No 

5 Produce an appropriate micro-well geometry around 

electrodes 

No 

6 Produce enough sites so as to allow assignment of a reference No 

7 Produce an MEA biochip that allows appropriate optical 

inspection of living samples 

No 

 

Further results of this approach are contained in section 6.1.2. 
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5.6.3 Manufacturing Approach Three: Micro Drilling 
As the Via Fill and Gold Pin approaches were being optimised a third alternative approach was also 

conceived and concurrently investigated.  
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Figure 5.60: A schematic of an intended cross-section of the microwell-electrode site for the micro-drilling 
approach. 

 

This manufacturing approach was the first of the three approaches under development to yield a 

prototype suitable for presentation to and testing by our external collaborating user group at the 

UoN. A cross-section schematic of the microwell feature produced using this approach is 

represented in Figure 5.60. 

This approach aimed to create a microwell over each electrode site by carefully drilling a 500µm hole 

through a layer of insulating material (Figure 5.61). This process was implemented with glass and 

polyester coverslip materials. Outcomes of implementation are included in section 6.1.3. 

 
Figure 5.61: An exploded view of the micro drilling concept where the Melinex film is drilled through over 

the conductive pattern to form a microwell over each electrode. 
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5.6.3.1 Manufacturing Approach Three Description  
All of the processes of this manufacturing approach were implemented (Figure 5.62). 
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Figure 5.62: A CIMOSA activity diagram representing the major processes attempted for the micro drilling 

manufacturing workflow. 

 

 P.0. – Source consumables 

 P.1. – Make patterned MEA base substrate 

 P.2. – Gold plate copper base substrate 

 P.3 – Adhere coverslip material 

 P.4 – Drill holes 

 P.5 – Clean 

 P.6 – Secure media well 

 P.7 – Clean 

 P.8 – Package and distribute for testing 
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Process One – Make MEA base substrate 

The process used to make the base substrate pattern is described in section 0. 

Process Two – Gold plate base substrates 

Base substrates were outsourced to PMD Group, Coventry, UK for Au plating. The Au coating was 

approximately 3-5µm thick. 

Process Three – Add coverslip material 

Coverslip material was employed as a growth surface and insulator due to depth problems 

encountered when using the 35mm diameter Petri dish. The Petri dish was base was also relatively 

thick (~800µm) in comparison to coverslips. Therefore the hole in the Petri dish (plus adhesive) was 

too deep to meet user specified microwell depth. Filling wasn’t producing satisfactory results so an 

alternative approach was to alter the insulating material and media well. Coverslip coverglass 

material is available in thicknesses from 150 to 220µm. These thicknesses plus adhesive held the 

potential to create a well simply by drilling through them. Glass and polyester coverslips were 

tested. A specialist film, Melinex, was also commercially available as a specifically treated cell culture 

substrate material in sheets of thicknesses 125 - 350µm. Being available in sheet form offered 

advantages over coverslips that are available in standard geometries, or alternatively if custom made 

are high cost.  

Process Four – Drill holes  

CNC drilling and Excimer laser ablation were considered for precision drilling of holes through the 

insulating material to the underlying electrode pattern (Figure 5.63). These methods were both 

implemented with polyester and glass coverslips and Melinex film. The results for each material 

investigated are discussed in section 6.1.3. 

 

Au plated conductive pattern insulated by 

sheet material (e.g. glass, polyester)

CNC Drilling
Excimer laser 

ablation

 
Figure 5.63: The two methods of drilling the 500µm diameter holes required to produce the microwell 

features. 
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The CNC drilling approach detailed in section Error! Reference source not found. using the Hurco 

VM1 3 axis milling machine was used to create 500µm diameter holes over each electrode. 

This approach damaged the surface of electrodes resulting in exposed copper and was therefore not 

appropriate for further investigation. 

An Excitech Lambda Physik LPX 100i Excimer laser, consisting of a short-pulse laser source (KrF, 

wavelength 248nm) and an Aerotech positioning system was used to ablate 500µm diameter holes 

at each electrode site (Figure 5.64). 
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Figure 5.64: An activity diagram of the Excimer laser process implemented by this research. 

 

During activities A.1 – A.3, a mask was made by drilling a 5mm diameter hole into a brass plate. The 

brass plate was inserted into the laser system during set-up. A program was written and configured 

to control the laser source and positioning system. 

During A.4 – A.5, biochip substrates were positioned on the positioning system’s headstage one at a 

time and the laser program run. These two activities were repeated until a batch consisting of 

between 4 to 10 samples (depending on success of previous sample) had been machined. Where the 



316 
 

__________________________________________________________________________________
Requirements, Concept Design, and Manufacturing Approach 

processed showed to be repetitively breaking or causing damage to the sample, testing was ceased. 

The program was adjusted to testing different degrees of exposure. Figure 5.65 demonstrates the 

system and the system while carrying out this process. The results of this activity using three 

different test materials are included in this thesis in section 6.1.3.2.  

 

 

Figure 5.65: The Excimer laser system used in this research with example of a base substrate being 
processed. 

 

For activities A.6 –A.7, each hole of each biochip was inspected optically. If samples demonstrated 8 

good holes they were cleaned and progressed to the next process. 

Process Five - Clean 

Samples were placed into glass vessel containing deionised water. The glass vessel then was placed 

into an ultrasonic bath for 50 minutes to remove any debris from the ablated holes.  

Process Six - Secure media well 

Two adhesives were used to secure a PE and glass ring to the surface of the insulating Melinex™ film. 

The results of adhesive testing for this prototype are contained in section 6.1.3.  
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Process Seven – Clean 

The cleaning process was completed by submerging the completed biochips in 70% ethanol in an 

ultrasonic bath for 2 minutes, removing and leave to dry.  

Process Eight – Package and distribute for testing 

Packaging for storage and transportation exploited 90mm diameter Petri dishes. Biochips were 

secured to the surface using adhesive tape and the lid placed over the top. Lids were seal with 

adhesive tape to prevent dust contamination and prototypes were delivered to the UoN for testing. 

 

5.6.3.2 Manufacturing Approach Three Summary 
This approach created a microwell in the insulating material over each electrode (see Figure 5.66). 

An FR4 base substrate that had been patterned in Cu and outsourced for a thin layer of Au to be 

electroplated on top was insulated using a layer of cell friendly material (e.g. polyester, polystyrene, 

glass) with a thickness comparable to the specified microwell depth. An excimer laser process 

successfully removed selective areas of insulator over the underlying gold electrodes. 

 
Figure 5.66: A CAD model of the concept and microwell site for the micro drilling manufacturing approach. 

 

The approach exploiting an excimer laser produced results of a satisfactory quality for testing with 

live SC-CM cells. Live testing is incorporated into this thesis in Chapter 6. 
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5.6.3.3 Evaluation of Manufacturing Approach Three 
The micro drilling approach produced the following outcomes. 

Table 5.12: The outcomes of the micro drilling (Excimer laser) approach. 

Priority Critical Manufacturing Outcome Approach achieved? 

1 Produce satisfactory base substrate Yes 

2 Produce satisfactory media well Yes 

3 Facilitate adequate attachment of the media well and base 

substrate components 

Yes 

4 Produce a satisfactory electrode site for cell-electrode 

interfacing 

Yes 

5 Produce an appropriate micro-well geometry around 

electrodes 

Yes 

6 Produce enough sites so as to allow assignment of a reference Yes 

7 Produce an MEA biochip that allows appropriate optical 

inspection of living samples 

No 

 

This manufacturing approach resulted in the first prototype (Figure 5.67) available for testing.  

Further description of the results of this approach are contained in section 6.1.3. 

 

 
Figure 5.67: Prototype One. A) Made using 33mm diameter opaque polyester media well ring, adhered using 

epoxy resin. B) Made using 22mm diameter glass ring, adhered using silicon sealant.  
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5.7 Prototype One Design Iteration 
Prototype one underwent a period of testing that was conducted by MEA users in a cell culture 

laboratory at the University of Nottingham, UK. Testing was conducted in small batches. Feedback 

was collected through observation of the prototype in use, and through interviews following testing. 

Early feedback led to sub-component alteration of the prototype.  

Further testing that ensued following sub-component amendment resulted in total MEA biochip re-

design. Testing is described fully in section 6.2.1. 

5.7.1 Early testing of prototype one. 
Problem 1: The media well geometry specified by the user was excessive. The media well was too 

deep so in retrospect the end users specification was incorrect. 

Problem 2:  The initial feedback (received during testing of the first batch of prototypes, Figure 5.68) 

was that the optics where too restricted when compared to using to the commercial standard.  

Problem 3: The beating cluster was difficult to position into the microwells. It was suggested that 

this was due to the combination of the reduced lighting of the culture media, the large media well 

wall height, and the geometry of the microwell or size of the beating culture used in this particular 

instance. 

Problem 4: No beating clusters attached inside a microwell. Contractions could not be observed. No 

signals were recorded. 

Action: The opaque polyester ring used as the media well (Figure 5.67,A) was replaced with a glass 

alternative of smaller dimensions (diameter 22mm, height 6mm) to improve lighting for optical 

enhancement and to improve access to the microwells. Further testing using the amended 

prototype (Figure 5.67,B) was conducted. 

Problem 4: The adhesive used to secure the Melinex™ film (insulating and microwell material) to the 

base substrate and the media well to the Melinex™ film showed signs of having absorbed some 

culture medium after use. A pink residue was present in each microwell and around the inner seal of 

the media well to Melinex film joint. 

Action: Replace adhesive with a non-absorbent alternative. 
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Figure 5.68: Seeding of a beating cluster of stem cell-derived cardiomyocytes into prototype one. 

 

5.7.2 Ensuing testing of prototype one. 
An example of the alterations made to the first prototype design following the first batch of tests 

can be seen in Figure 5.67. This amended version of prototype underwent further testing and the 

following problems were identified and actions taken as solutions. 

5.7.2.1 Problems and solutions 
Each problem identified through the wet testing conducted at the UoN is documented in Table 5.13. 

The implications of the problem are briefly presented from the users’ point of view and the actions 

decided upon to address each problem is described. 

Problem 1: Scientists could still not confirm whether clusters were contracting or were adequately 

attached due to the limited optics. 

Action: Replace the translucent base substrate with a transparent alternative. 

Problem 2: Although seeding of cells into microwells was more successful a number of seeded 

beating clusters did not attach inside the microwell. 

Action: Alter microwell geometry. 

Problem 3: No signals were recorded from any of the MEA biochip prototypes where beating 

clusters were growing inside a microwell. 
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Action: Investigate cell-electrode interface. Amend electrode design to improve likelihood of good 

cell-electrode interface formation. Investigate if detection system parameters are appropriately 

complimentary for detection of the microvolt signals. Adjust detection system parameters if 

appropriate. 

Problem 4: The media well joint between the glass ring and the Melinex™ film failed during second 

use. 

Action: Investigate suitable alternative and replace the adhesive.  

 

5.7.3 MEA Biochip Re-design 
A number of problems were identified with the first concept that impact upon the success of the 

design concept and the manufacturing approach used to construct the prototype. The MEA biochip 

design was revised.  Actions that were considered necessary by this research to produce a final 

device that would meet the user needs are collated and Table 5.13.  

Table 5.13: Problems associated with prototype, the implications each problem has for the user and actions 
to solve each problem. 

Problem Implication for user Action to solve 

Difficulty getting beaters 

to attach inside the 

microwells 

Cells must attach very close to, or 

on, the electrode surface for a 

signal to be detected. 

Improve ease of cell positioning 

by increasing the size of the 

microwell. Cloning rings (viable 

in Figure 5.68) are used to aid 

cell positioning. The new 

microwell geometry 

specification was diameter 

800µm to 4mm, height 200 - 

250µm.  

The level of optical 

inspection was not 

suitable for confirming 

the degree of attachment 

of the beating cluster to 

the surface or if the 

The clusters of cells that are 

derived from stem cell in this way 

contract spontaneously. Clusters 

may stop contracting at any time 

for currently unknown reasons. A 

signal will only be detected from a 

Change the base substrate to 

glass to suit the inverted 

microscope facilities at the 

testing laboratory. 
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cluster is contracting. beating cluster. The routine prior 

to setting up an MEA based test 

using cardiomyocytes involves 

visually confirming that cells to be 

recorded from are both attached 

to the MEA surface and are 

contracting. Cells are also checked 

visually during testing. 

Where a beating cluster 

is seen to be inside the 

microwell no signals have 

been recorded from any 

of the devices tested. 

The signals recorded contain the 

information of use to the scientist. 

Without signals this device fails. 

Investigate possibility of short 

circuits in the prototype device. 

Investigate alternative 

electrode geometries that offer 

greater likelihood of beating 

cluster attachment. 

 

 

5.7.4 Section Summary 
The prototype devices manufactured using manufacturing approach three – micro drilling – were 

tested in wet trails using live stem cell-derived cardiomyocyte beating clusters. Problems were 

identified with:  

 adhesive 

 well size 

 well material 

 micro-well geometry 

 base substrate transparency 

 signal capture 

Actions to address the identified problems (Table 5.13) were incorporated together into an 

improved design concept. Design concept 2 and the required manufacturing approach to produce 

prototypes for testing are presented in the following section. 
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5.8 Prototype Two Manufacturing 
 

An improved concept design was conceived to address the following actions defined as required of 

this research: 

1. Improve ease of cell positioning by increasing the size of the microwell. Cloning rings (viable 

in Figure 5.68) are used to aid cell positioning. The new microwell geometry specification 

was diameter 800µm to 4mm, height 200 - 250µm. 

2. Change the base substrate to glass to suit the inverted microscope facilities at the testing 

laboratory. 

3. Investigate why no signals were detected. Consider the possibility of short circuits in the 

prototype device. Investigate alternative electrode geometries that offer greater likelihood 

of beating cluster attachment. Consider if detection system was appropriately matched.  

5.8.1 Generation Two Concept Design 
The actions are present in the concept design alteration in the following ways. 

1. Improve ease of positioning – The purpose of the microwell feature is to provide a perimeter 

around the area of MEA biochip’s surface where the electrodes are located. This perimeter is 

intended to ensure that the beating clusters containing cardiomyocyte cells, which move 

due their contracting nature, attach over an electrode every time. There can also be 

additional movement of the beating cluster from the original position on which it has been 

positioned due the fact that the MEA biochip must be moved by hand from the culture hood 

where seeding takes place, into an incubator. A larger perimeter has been specified to 

ensure the beating cluster of cells can settle and attach within it. Consequently the electrode 

geometry was increased. 

2. Change the base substrate – The area of micro electrode array workspace for all 

commercially available MEA biochips is made from glass. The use of glass for this part of the 

device allows good quality visual inspection of the cellular sample. This work has used glass 

to allow visual confirmation that cell samples seeded are contracting before testing and to 

allow verification that the beating cluster is attached to the base substrate. The electrode 

geometry has been amended to facilitate optics. 

3.  Investigate why no signals were detected – The conductivity of the surrounding culture 

media (DMEM) was assessed and impedance of the electrodes compared to a previously 

demonstrated commercial equivalent. The electrode geometry was altered in two variants 
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to ensure that an increased number of beating clusters seeded would attach to the 

electrode surface. 

5.8.1.1 MEA biochip Concept 2 
The re-designed MEA biochip is demonstrated in Figure 5.69. Two different electrode geometries 

were considered to address the question – will altering the electrode geometry influence signal 

detection? Both variants of electrode were manufactured in exactly the same way at the same time 

using a clean room based UV photolithography process. The patterned MEA biochip substrates were 

outsourced to Fondazione Filarete, Milan, Italy, for microwell creation using a novel process 

currently under development. 

 
Figure 5.69: An exploded view of MEA biochip design concept 2. 

 

The results for both A and B versions of this chip in live testing were the same. User feedback 

showed slight variation as the user commented that the radiator (B) pattern was easier to use as the 

cloning ring appeared to catch on the spiral design, making movement more awkward. Details of 

testing and results are contained in Chapter 6. 

5.8.1.1.1 A – Spiral electrode 

The spiral shaped electrode was designed to the following specification: 

 Spiral diameter: 3.5mm 
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 Width of track from contact pad to spiral: 150µm 

 Width of spiral tracking: 80µm 

 Spacing between spiral tracking: 150µm 

 Contact pad: 2mm x 2mm 

 Largest gap between tracking (at spiral centre): <300µm 

The position of the contact pads matches commercial equivalents so that the biochip can be tested 

in the headstage of a commercial MEA system (MCS MEA-60). The artwork generated for this 

electrode pattern is below (Figure 5.70).  

 
Figure 5.70: Artwork generated for the spiral electrode design. 

5.8.1.1.2 B – Radiator Electrode 

The radiator shaped electrode was designed to the following specification: 
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 Radiator dimensions: 2.5mm x 2.75mm 

 Width of track from contact pad to radiator: 150µm 

 Width of radiator tracking: 100µm 

 Spacing between tracking: 100µm 

 Contact pad: 2mm x 2mm   

 Largest gap between tracking (at spiral centre): <300µm 

The position of the contact pads matches commercial equivalents so that the biochip can be tested 

in the headstage of a commercial MEA system (MCS MEA-60). The electrode pattern can be seen 

Figure 5.71.  

 
Figure 5.71: The radiator shaped electrode. 
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5.8.1.1.3 Microwell 

The material that was selected for insulation and microwell formation in this design was 

polydimethylsiloxane (PDMS). PDMS is a lower cost material than traditional micro-fabrication 

materials such as silicon and glass (Jo et al, 2000). PDMS is also chemically inert, thermally stable, 

and simple to handle (Mata et al, 2005) and has been successfully demonstrated in biomedical 

microdevices (Fujii, 2002; Yabuta et al, 2003).  The application of the PDMS onto the glass substrates 

was carried out by a collaborating research group at Fondazione Filarete, Milan, Italy using a plasma 

surface activation technique to adhere hand stamped PDMS discs over the biochip surface 

(Figure 5.72). 

 

 
Figure 5.72: A CAD representation of the intended design concept 2 with PDMS microwells. 

 

The results of this approach are presented in section 6.2.2. 
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5.8.2 Manufacturing Approach Four: Clean Room Based 

Photolithography 
All of the processes of this manufacturing approach were implemented (Figure 5.73). 
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Figure 5.73: An activity diagram depicting the major processes used in clean room based MEA biochip 
manufacture. 
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All of the processes were successfully implemented resulting in the production of prototype 

biochips. 

P.1. – Use electron beam deposition to coat glass slides with titanium and then gold. 

P.2. – Spin coat the Ti/Au coated glass substrates with photoresist 

P.3. – Expose the photoresist coated samples to UV light with patterned photomask in place. 

P.4. – Develop the exposed photoresist 

P.5. – Etch the exposed areas of the Au and Ti layers  

P.6. – Strip the remaining photoresist to expose Au pattern 

P.7. – Adhere PDMS microwells 

P.8. - Add a media well to each biochip 

P.9. – Package for transportation 

P.10. – Distribute for testing 

 

 Process One – Electron beam deposition 

An electron beam deposition system was used for this process (Figure 5.74). The process used to 

make the base substrate pattern is described in Figure 5.73. Additional drill down models of each 

activity can be viewed in Appendix E. Coating was done using batches of five base substrates. 

Substrates were coated in Ti then Au while inside the system. 

 
Figure 5.74: Electron beam deposition system. 
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Figure 5.75: The process used to make the base substrate pattern for the clean room based manufacturing 
approach. 

 

In activities A.1 – A.3 (Figure 5.74) the deposition was set-up by switching on the electron beam (e-

beam) deposition system and venting the chamber up to atmospheric pressure. The chamber was 

opened and the glass wafers that have the glass base substrates secured (Figure 5.76) were placed 

inside on to the turn table (Figure 5.77). 
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Figure 5.76: Glass base substrate secured to glass wafer for mounting in the e-beam deposition system 

chamber. 

 

 
Figure 5.77: The turn table inside the chamber that allows sample to be rotated directly over the metallic 

source as it is heated by the electron beam. 

 

For activities A.4 – A.6, the chamber was closed and pumped down to low pressure. Ti deposition 

was performed first. Then the source crucible was rotated to the Au and Au was deposited over each 

substrate. When completed the system was allowed to cool and vented back to atmospheric 

pressure. The chamber was opened and the coated glass substrates removed (Figure 5.78).  

 
Figure 5.78: A Ti/Au coated substrate. 

 

For system shut down, A.7, the chamber was closed, pumped down and switched off.  
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Process Two – Spin coat 

The negative photoresist AZ 9260 was applied to each substrate by hand using a spin coating 

machine. Figure 5.79 shows the processes used. 
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Figure 5.79: The activities carried out for spin coating of the glass base substrates. 
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For A.1 the SPS spin processor 150 (Figure 5.80) was switched on and allowed to initialise up to the 

programming options.  

 
Figure 5.80: The SPS spin processor 150 used in this manufacturing approach. 

 

Table 5.14: The Spin coating program used to apply AZ 9260 photoresist. 

Step One Step Two 

Time 60 Time 40 

RPM 400 RPM 2400 

 

During activities A.2 – A.4 the substrate to be coated was positioned as centrally as possible onto the 

chuck. The vacuum was switched on to hold substrate in position. Using a disposable pipette 2.5ml 

of the AZ 9260 photoresist was dispersed onto the substrate in the centre (Figure 5.81) while taking 

care not create any air bubbles in the resist.  
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Figure 5.81: Application of AZ 9260 onto a Ti/Au coated base substrate. 

 

For activities A.5 – A.8 the coating program was allowed to run. When the program was complete 

the lid was opened, the vacuum switched off and the coated substrate removed. Substrate where 

then left for 15 minutes before baking on a hot plate (Figure 5.82) at 100ºC for 3 – 4 minutes. 

 
Figure 5.82: The hot plate and temperature control unit used in this manufacturing approach. 

 

Process two was repeated for each individual base substrate. 
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Process Three – UV expose 

Each photoresist coated substrate was exposed one-by-one in a UV exposure machine (Figure 5.83).  
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Figure 5.83: An activity model of clean room based UV exposure.  

 
For activities A.1 – A.2 of process three the UV exposure unit (Figure 5.84) was switched on, allowed 

to initialise and programmed to exposure for a given period (30s) at a set energy (800mJ/cm2).  

 
Figure 5.84: The UV exposure system. 
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For activities A.3 – A.6 the AZ 9260 coated substrates were positioned on the system’s stage. The 

acetate photomask (printed by JD Photo-Tools Ltd, Oldham, UK) was carefully lined up over the 

substrate by hand and a vacuum switched on to secure. The exposure program was run. When 

complete the substrate was removed from the system. This process was repeated for each base 

substrate.  

 
Figure 5.85: A coated substrate being positioned in the UV exposure system with the acetate photomask in 

place. 
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Process Four – Develop 

The following model (Figure 5.86) described the activities carried out to develop the exposed 

substrates. 
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Figure 5.86: Developing the UV exposed base substrates. 

 

For activities A.1 – A.4, a glass Petri dish was filled with 200ml of AZ developer, 1 part AZ® 400K with 

3 parts purified water. The substrate was placed into the Petri dish and gently agitated to move the 

solution over the surface. The substrate was left in the developer (Figure 5.87) for 8-10 minutes until 

all of the exposed resist had been removed. The substrate was removed from the solution and 

rinsed under purified water. To dry the sample a pressurised stream of nitrogen gas was moved over 

the surface.  
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Figure 5.87: A base substrate in AZ developer. The pattern can be seen as the exposed areas of photoresist 

are dissolved. 

 

 

Process Five – Etch 

Etching was a two part process (Figure 5.88). The gold material was etched using a solution of nitric 

acid mixed with hydrochloric acid (1: 3 parts respectively). The titanium layer was then etched using 

a solution of hydrofluoric acid (HF) with hydrogen peroxide in deionised water (1: 1:20 parts 

respectively).  
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Figure 5.88: An activity diagram of the etching activities carried out for the clean room manufacturing 

approach. 
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To complete activities A.1 – A.8 200ml of the gold etchant solution was poured into a glass Petri dish 

and 200ml of the titanium etchant was poured into a polystyrene petri dish. The base substrate was 

placed into the etchant and gently agitated until the exposed metal was removed. The substrate was 

rinsed under purified water and dried under the nitrogen gas stream between etches, and again 

after etching. See Figure 5.89 for images of the process etching conducted. 

 
Figure 5.89: The etching of design concept 2 base substrates. 
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Process Six – Strip 

The process used to strip the remaining photoresist from the patterned substrate is documented in 

Figure 5.90. Substrates were clean using acetone manually in a one-by-one fashion. Each one was 

them rinsed and dried using nitrogen gas. 
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Figure 5.90: The photoresist stripping process for the clean room-based manufacturing approach. 

 

Process Seven – Adhere PDMS microwells 

The PDMS microwell and insulating material was applied to the prepared base substrate 

(Figure 5.91) by researchers at Fondazione Filarete, Milan. 

 
Figure 5.91: A base substrate with the PDMS microwells adhered. 

 

Process Eight - Add media well 

The media well attachment was conducted using the same process described in section 0. 

Processes 9 and 10 – package and distribute are the same as those described in section 0. 
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5.8.3 Manufacturing Approach Four Summary 
This manufacturing approach was completed inside a class 1000 clean room at Heriot Watt 

University, Edinburgh, UK. UV photolithography tooling was used to produce patterns in Ti/Au of 

resolutions down to 80µm. Two pattern variants were manufactured as one batch. A total of 24 base 

substrates were patterned. After a quality inspection the base substrates suitable for testing were 

constructed into MEA biochips for wet testing at the University of Nottingham.  

 

5.8.4 Evaluation of Manufacturing Approach Four 
The clean room based photolithography approach produced the following outcomes. 

Table 5.15: The outcomes of the micro drilling (Excimer laser) approach. 

Priority Critical Manufacturing Outcome Approach achieved? 

1 Produce satisfactory base substrate Yes 

2 Produce satisfactory media well Yes 

3 Facilitate adequate attachment of the media well and base 

substrate components 

Yes 

4 Produce a satisfactory electrode site for cell-electrode 

interfacing 

Yes 

5 Produce an appropriate micro-well geometry around 

electrodes 

Yes 

6 Produce enough sites so as to allow assignment of a reference Yes 

7 Produce an MEA biochip that allows appropriate optical 

inspection of living samples 

Yes 

 
This manufacturing approach resulted in the second generation of prototype available for testing 

(Figure 5.92).  Further description of the results relating to this manufacturing approach and the 

prototypes tested are contained in section 6.2.2. 



343 
 

__________________________________________________________________________________
Requirements, Concept Design, and Manufacturing Approach 

 
Figure 5.92: The second generation prototype, with spiral shaped electrodes.  
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5.9 Inkjet Printing Investigation 
In addition to the manufacturing approaches, described the feasibility of using inkjet printing 

manufacturing techniques to make the base substrate component was investigated. The 

investigation of this approach was conducted by Printed Electronic Limited of the Invotech Group 

(Tamworth, UK).  Attempts were made to print the design concept 2 pattern directly on to glass 

using an Au ink. The results of this investigation are demonstrated here in Figure 5.93 and 

Figure 5.94.  

 
Figure 5.93: The design concept 2 pattern printed using a gold ink. 

 

 
Figure 5.94: Examples of the failed adhesion (highlighted within yellow circles) of the Au ink to the surface of 

the glass. 
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The findings of this work imply that inkjet printing might be a viable manufacturing technique for 

devices such as MEA biochips in the future if ink formulations can be suited to the necessary base 

substrate materials. The key benefit that inkjet printing offers is fast (e.g. patterns as illustrated in 

Figure 5.94 can be produced in <15 minutes) and flexible production of conductive parts. A 

potentially limiting factor that would require appropriate consideration if this technique were to be 

implemented in the future would be that printed inks show poor mechanical properties so may not 

be suited to the cleaning protocols required by the bioscience environment and re-use facility 

demanded by consumers purchasing these high cost consumables.  
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5.10 Summary 
 

The rationale used to guide design and manufacture target definition considered both the original 

aim of the research, to produce a novel MEA system (described in Appendix A), and also existing 

systems in terms of what would be novel and realistic. Existing systems were considered in terms of 

capabilities they offer users, how components of existing systems are manufactured, and how 

systems are used.  

An application specific design specification was created during this research and used to generate 

targets that were prioritised into design and manufacture deliverables. 

The prioritisation of targets intending to produce a solution device that would meet the defined user 

requirements was made using a house of quality matrix that assessed interrelationships and 

influences present between user requirements and the technical requirements brought about by the 

solution concept designed. 

Two novel concepts were designed and manufactured to meet the prioritised targets. 

In the pursuit of prototype manufacture a number of possible manufacturing techniques were 

considered and implemented to differing extents. The results of prototypes manufactured during 

this research are presented and discussed in the following chapters.  

The requirements, rationale, concept design, manufacturing and prototype success that have been 

presented through this Chapter are detailed in Figure 5.95. 
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MEA Biochip Concept and Manufacturing 
Approach Design

1. Applications have been identified and 
user needs defined. Manufacturing solutions 
for needs defined in PDS 3 are focused upon 
in this chapter.

2. Contemporary in the field of MEA biochip design:
- increased numbers of electrodes, at smaller geometries, more 

densely packed,
- specifically enhanced surfaces and growth corridors or 

structures in an range of materials such as hydrogels, etc,
- electrode layouts in geometries suited to study of particular 

anatomical sites (e.g. in hippocampal slice investigations.)

3. Rational – cardiomyocytes application centred on as 
PDS3 offers most achievable design objectives 

4. Rationale – manufacturing facilities suited 
to resolution >100µm

5. Rational – lesser number of recording 
electrodes required per biochip 

 6. Rationale – the selected microprocessor (ARM Cortex 
M3) supports a limited number of channels.

7. Rationale – PDS was provided by real users well 
qualified to identify contemporary needs.

8. Critical components in all current MEA biochip 
manufacture: (1) base substrate incorporating 

microelectrodes, (2) a media well.

9. Solution concepts have been 
designed and modelled in CAD. 
Design is in line with PDS and 

therefore target application group 
needs. Methods of how to 

manufacture the concept have 
been investigated.

10. Manufacturing workflows were constructed considering:
- what was possible,

-what materials were compatible,
- what were the advantages or disadvantages of considered 

techniques and workflows.
So as to attempt to identify the best manufacturing approach 

in terms of quality, scalability, time and costs.

12. Technique selection was influenced by material, 
tooling of technique, resolution and geometries 

achievable, suitability of produced parts for cleaning 
and sterilisation required in cell culture settings, and 
final robustness of produced component or device.

11. Existing manufacturing techniques were 
investigated in the course of this aspect of the research 

presented in this thesis:
 -photolithography
- electroplating

-laser processing
-Inkjet printing

-MEMS techniques

13. Gold selected as electrode material as previously 
successfully applied in equivalent devices, at start of 

research was less expensive than common alternatives 
ITO and TiN, and expertise of processing gold was 

available.

14. Three manufacturing workflows were 
concurrently developed until an initial prototype 
of a quality suitable for testing was produced. Via 

hole filling (electroplating), gold pin and micro 
drilling approaches are detailed in this chapter.

15. The Excimer laser dependent micro drilling workflow 
produced the first suitable prototype. This design was 

tested and initial feedback prompted a radical redesign. 
Clean room based photolithography was suited to 

manufacture of the new design concept with features 
<100µm in resolution.

16. A PDMS surface treatment was considered as a possible 
method of creating the desired microwell on the second 
generation of prototype. Limitations in the procedure used 
to position hand cut wells resulted in limited testing taking 
place before the project time elapsed. 

Requirements

Design rationale

Concept design

Manufacture

Prototypes
 

Figure 5.95: A summary of the contents of chapter 5. 
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5.11 Research Questions Answered 
 

1. What current and future user and system requirements have been derived from literature 

reviews, commercial system assessment and case studies that can be realistically addressed 

by this research? How does this research prioritise requirements? 

User requirements identified and documented throughout Chapters 2, 3 and 4 have been prioritised 

using the quality function deployment house of quality (HoQ) method. The HoQ considered 

interrelationships and influences present between both user and technical requirements. The 

following targets were prioritised and addressed by this research: 

 Biochip must be as small in size as possible 

 Biochip must be re-useable at least 10 – 15 times 

 Materials used in manufacture must be durable 

 Manufacture of the device must be through techniques that are as low cost as possible 

 Manufacturing techniques must be as fast as possible 

 Materials utilised must be as low cost as possible 

 Prototype devices must be safe 

 Solution biochips must support >1 beating cluster per media well 

 The biochip must be lightweight 

 

2. How can this research project meet the defined and targeted requirements? 

This research constructed product design specification documents to collate the numerous needs 

identified through this research (section 5.2). User requirements were assessed and prioritised 

targets used to specify and create solution design concepts (section 5.3). Investigation took place of 

how to manufacture the design concepts into prototypes for testing (section 5.4 – 5.9). Prototypes 

manufactured were tested and the results in terms of successfully meeting targets are discussed in 

Chapters 6 and 7. 
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3. What manufacturing solutions are suitable for production of the proposed solution concept?  

A number of existing microelectronics manufacturing approaches were identified as suitable for the 

manufacture of the novel MEA biochip concept: 

 Integrated Circuit and Micro Electrical Manufacturing Systems (MEMS) Techniques  

- Photolithography 

- Thin Film Deposition 

- Etching 

 Electroplating 

 Laser Machining 

 Additive Manufacturing (Inkjet Printing) 

 

The ways in which each method has been implemented in pursuit of prototype manufacture are 

described in this chapter.  

 

The success of the above approaches implemented in this work are listed in Table 5.16.  

Table 5.16: A summary of successes of the manufacturing approaches implemented. 

Approach Successful / Unsuccessful 

IC and MEMS Techniques 

- Photolithography 

- Thin Film Deposition 

- Etching 

Successful  

     Successful (sections Error! Reference source 

not found.) 

     Successful (section 5.8) 

     Successful (section 5.6 and 5.8) 

Electroplating Unsuccessful (section 5.6.1) 

Laser Machining Successful (section 5.6.3) – Excimer laser 

Unsuccessful (section 5.6) – CO2 laser 

Additive Manufacturing (Inkjet Printing) Unsuccessful (section 5.9) 
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4. What are the critical manufacturing outcomes with regard to the proposed solution? What is 

the benchmark or gold standard to which the novel biochip will be compared?  

Manufacturing approaches were assessed during implementation through achievement of the 

following critical manufacturing outcomes: 

 Produce satisfactory base substrate 

 Produce satisfactory media well 

 Facilitate adequate attachment of the media well and base substrate components 

 Produce a satisfactory electrode site for cell-electrode interfacing 

 Produce an appropriate micro-well geometry around electrodes 

 Produce enough sites so as to allow assignment of a reference 

 Produce an MEA biochip that allows appropriate optical inspection of living samples 

The benchmark and gold standard device for the target application type, stem cell-derived 

cardiomyocyte beating clusters, is the same. A typical planar microelectrode array, arranged in an 

8x8 grid array with ~200µm spacing is available for all MEA manufacturers  and is presently the most 

suited MEA biochip for this particular cell source. Novel prototypes are compared to this device.  
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This Thesis
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Evaluation

Manufacturing Approach Results

Prototype Testing Results  

Chapter Six 

6 Manufacturing and Prototype Testing 

Results 
 

 

 

 

 

 

This chapter presents the findings of this research in terms of the manufacturing approaches 

implemented, and the subsequent testing of the resulting prototype MEA biochips. 

The work in this chapter answers the following research questions: 

1. What has this research done to produce a solution device to meet the requirements 

identified? 

 

2. How were the manufactured prototypes tested, and what were the outcomes of those 

tests? 

 

3. Has a suitable alternative to current the standard commercial biochips used in 

cardiomyocyte cluster application been realised? 
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6.1 Results of Manufacturing Approaches 
Each manufacturing approach presented in Chapter 5 is described in the following sections.  

6.1.1 Via Hole Filling Approach 
The via hole filling manufacturing approach produced the following MEA biochip outcomes 

(Table 6.1). 

Table 6.1: The outcomes of the via hole filling approach. 

Priority Critical Manufacturing Outcome Approach achieved? 

1 Produce satisfactory base substrate Yes 

2 Produce satisfactory media well Yes 

3 Facilitate adequate attachment of the media well and base 
substrate components 

Yes 

4 Produce a satisfactory electrode site for cell-electrode 
interfacing 

No 

5 Produce an appropriate micro-well geometry around 
electrodes 

No 

6 Produce enough sites so as to allow assignment of a reference No 

7 Produce an MEA biochip that allows appropriate optical 
inspection of living samples 

No 

Prototype produced for testing: No 

6.1.1.1 Base substrate 
The base substrates were manufactured using a UV photolithography approach. The lowest feature 

resolution produced in manufacturing was ~ 100µm. Figure 6.1 shows the first batch of MEA base 

substrates manufactured at Loughborough University using standard FR4 board with a 35µm Cu foil 

cladding.  

A B C

 

Figure 6.1: An example of three base substrates patterned by hand for experimentation during the 
development of manufacturing approach one. 
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The initial interconnect contact pads and electrode sites patterned were 2mm x 2mm. Tracking was 

500µm wide. Large electrode sites reduced the precision required of early drilling process 

experimentation while providing samples for electroplating testing. Samples A, B, and C (Figure 6.1) 

demonstrate the variation in patterning quality where substrates were processed in the same way. 

Sample B particularly demonstrates occurrences where areas of speckled Cu remained on the 

substrates. The consequence of this speckling of conductive material over the substrate is significant 

if it results in short circuits.  

 

The quality of base substrates patterned was variable throughout manufacture. Factors that 

influenced the variability of samples were: the manual positioning of the photomask and UV 

exposure system set up; the presence of dust contamination in the atmosphere during UV exposure; 

and the concentrations of the etchants used, varying between processing of different batches due to 

numerous facility users. Improved control over these variables resulted in achievement of an 

optimum manufacturing process for base substrates (Figure 6.2) that was used by manufacturing 

approaches one to three (Chapter 5).  

 
Figure 6.2: A suitably patterned base substrate containing 16 electrode sites and 1 reference electrode site 

at the centre. 

 

In the demonstrated samples (Figure 6.1 and Figure 6.2) the outer geometries of the boards are 

random. Samples were cut by-hand for speed and convenience as these base substrates were for 

experimental use only. As the patterning process was optimised smaller electrode and track 

dimensions ensued for base substrates and biochip dimensions were more tightly controlled. 
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6.1.1.2 Media well selection and attachment to the base 

substrate  
To accommodate the specified 35mm diameter media well dimensions commercially available Petri 

dishes were selected. The Petri dishes required a small amount of pre-processing to make them 

suitable for application. The bottom surface of the dish has a small lip to aid stacking. This lip was 

polished down using a very fine grade of wet and dry paper producing a flat surface. A flush contact 

between the Petri dish surface and the Cu patterned base substrate was achieved.  

 
Figure 6.3: A base substrate with a 35mm Petri dish adhered. Scale: Electrode tip diameter is 500µm. 

 

A transparent epoxy resin suitably affixed the Petri dish over the Cu pattern as demonstrated in 

Figure 6.3. A cylindrical 25g weight was placed into the Petri dish during curing to ensure good 

contact. 

 

6.1.1.3 Satisfactory electrode sites and microwell geometry  
Each prepared substrate required individual positioning inside a CNC drilling machine (Figure 5.47) 

due to biochip-biochip variation.  

Cu Foil

FR4

PS Petri dish

AdhesiveA

B
C

Drilling Machine 

Headstage and Clamp

 

Figure 6.4: The zeroing positions considered for this process.  
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A problem encountered during the CNC drilling process related to the by-hand, relatively imprecise 

positioning of the Petri dish on the base substrates and base substrates on the drilling stage. Base 

substrates placed on the level stage did not sit level due to warping of the FR4. Figure 6.4 shows 

three positions (A, B and C) considered as zeroing points for the CNC drilling program. 

The most significant issue encountered during drilling was in controlling the tolerance of the drilling 

depth in the z-axis.  The base substrates had each been cut by-hand and were of differing 

dimensions. A standard jig was also not able to guarantee that the substrates were positioned in 

exactly the same position each time. The Petri dishes had also been adhered to the base substrate 

by-hand resulting in differing thicknesses of adhesive between the two surfaces on differing 

prototype samples. The consequence of this was that the drilling in the z-orientation could be either 

too deep, resulting in detrimental removal of the underlying Cu, or not deep enough, therefore not 

reaching the Cu. 

Zeroing position A –This was not used as substrates were different shapes and were positioned by-

hand each time.  

Zeroing position B – This position was considered to provide greater z-axis control due the variations 

in adhesive thickness. By drilling from the surface through to the plane on which the Cu was located 

would improve drilling success.  In this case, where base substrates sat level on the drilling stage 

surface adequately, controlled depth of drilling was achieved. However, a number of the substrates 

did not lay flat resulting in holes that were of differing depths. A number of holes were either too 

deep, resulting in detrimental removal of the underlying Cu pattern, or not deep enough to reach 

the Cu.   

Zeroing position C – This position was considered as a method of preventing imprecise drilling on the 

z-axis but was not implemented due to time constraints. 

Substrates failed to progress beyond the drilling stage due to the following drilling process defects: 

 Holes too deep  

 Holes not deep enough 

 Holes were not completely over an electrode. 

For the substrates where drilling was successful, to minimise costs of material consumption, initial 

electroplating was Cu. A final thin layer of Au was plated on top to seal in the Cu from the living cells 

and culture media. The depth of holes through the Petri dish and adhesive to the under lying Cu 

were approximately 780-850µm. The Cu layer was intended to be ~550-600µm deep to create a 
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recess over each electrode that would serve as the microwell into which a single beating cluster of 

cardiomyocytes would be placed. Unfortunately, this approach failed to fill adequately due to air 

bubbles lodged in the drilled holes during electroplating (Figure 6.5 and Figure 6.6).  

 
Figure 6.5: Images of the electrode sites and attempted microwell filling. Petri dishes and adhesive were 

carefully removed to reveal the extent of filling. 

 
Initial drilling and electroplating was performed using the pattern design demonstrated in Figure 6.2. 

Different electroplating solutions were tested (section 0). The commercial solution, 

Electroposit™1300 (Figure 6.6), produced better results than the home-made alternative 

(Figure 6.5). To tackle the problem of air bubbles in the drilled holes the electroplating process was 

conducted in an ultrasonic bath. Improvements were made but bubbles inside the holes persisted 

(Figure 6.6). 
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Figure 6.6: Cross-sectional micrograph images of the microwells filled during manufacturing approach 

implementation. 

 

Control over the depth of the filling was variable. The surface of the holes that did fill was also not 

level or smooth which was not suitable for the intended application where consistent microwells are 

required that can be thoroughly cleaned. 
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6.1.2 Gold Pins Approach  
The gold pins manufacturing approach produced the following outcomes (Table 6.2). 

Table 6.2: The outcomes of the gold pins approach. 

Priority Critical Manufacturing Outcome Approach achieved? 

1 Produce satisfactory base substrate Yes 

2 Produce satisfactory media well No 

3 Facilitate adequate attachment of the media well and base 

substrate components 

No 

4 Produce a satisfactory electrode site for cell-electrode 

interfacing 

No 

5 Produce an appropriate micro-well geometry around 

electrodes 

No 

6 Produce enough sites so as to allow assignment of a reference No 

7 Produce an MEA biochip that allows appropriate optical 

inspection of living samples 

No 

Prototype produced for testing: No 

6.1.2.1 Base substrate 
The base substrates were manufactured using the photolithography process previously described. 

The only difference was that the artwork was adjusted to produce a pattern of contact points that 

matched the alignment of the pins held in sections of PGA (Figure 6.7). The sections of pins were cut 

by-hand and successfully connected to the base pattern using a conductive tin solder paste.  

 
Figure 6.7: The adjusted pattern of contact points used for the gold pin manufacturing approach to ensure 

prototypes could connect to a commercial MEA system for testing. 
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6.1.2.2 Media well drilling and attachment of the media well to 

the conductive pins 
Base substrates were paired with Petri dishes that had been drilled with hole configurations 

matching the PGA vertical pin geometry. Petri dishes were secured in position using clear epoxy 

resin (Figure 6.8). Two methods were explored for securing the Petri dishes in position (section 0). 

For methods where a second drilling process was intended, imprecise positioning of the Petri dish 

resulted in difficulty repeating the drilling process. Method 2B was not implemented so no results 

are presented. 

 
Figure 6.8: Securing the previously drilled Petri dish to the base substrate that has PGA pins connected to 

each electrode site. 
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Problems with this approach were: 

 For method 2B a precision manufactured nippled blocker was required. 

 Ensuring a water-tight seal every time without encapsulating the electrode tip or protruding 

out of the hole was difficult to control.  

 Where the PGA attachment was not at exactly 90° there were differences in pin location that 

were significant when drilling for the second time.  (The re-drilling process was difficult to 

align due to the imprecise construction of the biochips, described in 5.6.2.2). 

While this approach was being explored manufacturing approach 3 (micro drilling) was also being 

developed. Manufacturing approach 3 provided a prototype for testing before this approach was 

developed any further. 
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6.1.3 Micro Drilling Approach  
The micro drilling manufacturing approach produced the following outcomes (Table 6.3). 

Table 6.3: The outcomes of the micro drilling approach 

Priority Critical Manufacturing Outcome Approach achieved? 

1 Produce satisfactory base substrate Yes 

2 Produce satisfactory media well Yes 

3 Facilitate adequate attachment of the media well and base 
substrate components 

Yes 

4 Produce a satisfactory electrode site for cell-electrode 
interfacing 

Yes 

5 Produce an appropriate micro-well geometry around 
electrodes 

Yes 

6 Produce enough sites so as to allow assignment of a reference Yes 

7 Produce an MEA biochip that allows appropriate optical 
inspection of living samples 

No 

Prototype produced for testing: Yes 

 

6.1.3.1 Base Substrate 
Base substrates were manufactured in Cu and outsourced to PMD Group, Coventry, UK for Au 

plating. Eight electrode sites were incorporated per biochip, of which one (not seeded with cells) 

required assignment as a reference electrode in the detection and recording software. 

 
Figure 6.9: The Cu pattern produced for manufacturing approach three. Design compliments connections for 

Au plating. 
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6.1.3.2 Production of microwell features  
Three materials were tested during this manufacturing approach development as insulator and 

consequent microwell material: glass coverslips, PE coverslips and Melinex PET film. Two methods 

were investigated for drilling microwells into these materials: a mechanical CNC drilling technique 

and an Excimer laser ablation technique. 

CNC Drilling: Glass and PE cover slips were drilled using the Hurco VM1 CNC milling machine 

described in section Error! Reference source not found.. The glass cover slips shattered for all 

attempts at drilling. The PE coverslips were successfully processed using this approach but 

difficulties arose relating to the control of the exact depth of the hole (as described in 

section 6.1.1.3). This process damaged the underlying metallic surface on test samples due to 

warping of the FR4 base material and the variation of the thickness of the epoxy adhesive. The holes 

produced were also distorted in shape. 

Excimer laser ablastion: Glass and PE coverslips were initially investigated. The PE samples were 

ablated at much lower energies than the glass equivalents. All of the glass coverslips used in testing 

broke with handling so glass was eliminated from testing. To overcome the dimensional limitation of 

standard coverslips an alternative film, Melinex™, was tested. Melinex is a polyethylene 

terephthalate (PET) film available as A4 sized sheets of varying thicknesses (12-350µm) that had 

been used previously in cell culture as a growth substrate (Laskarakis, Georgiou and Logothetidis, 

2010). Melinex™ is treated on both sides producing a surface that is well-suited to cell culture. The 

Melinex™ film was ablated successfully to produce microwells meeting the specification. 

 
Figure 6.10: A cross sectional micrograph of the microwell ablated over an electrode through Melinex™ to 

form a microwell that meets the specification. 
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6.1.3.3 Media Well 
Media wells were made by cutting standard PE tubing into rings (height 10mm) and adhered to the 

Melinex surface to complete construction (Figure 5.67). During trials the user testing the devices 

recommended that this sub-component was changed to a transparent material and was reduced in 

height. The PE tubing material was replaced with transparent tubing cut to heights of 6mm. 
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6.1.4 Clean Room Based Photolithography  
The clean room based photolithography manufacturing approach produced the following outcomes 

(Table 6.4). 

Table 6.4: The outcomes of the clean room based photolithography approach. 

Priority Critical Manufacturing Outcome Approach achieved? 

1 Produce satisfactory base substrate Yes 

2 Produce satisfactory media well Yes 

3 Facilitate adequate attachment of the media well and base 
substrate components 

Yes 

4 Produce a satisfactory electrode site for cell-electrode 
interfacing 

Yes 

5 Produce an appropriate micro-well geometry around 
electrodes 

Yes 

6 Produce enough sites so as to allow assignment of a reference Yes 

7 Produce an MEA biochip that allows appropriate optical 
inspection of living samples 

Yes 

Prototype produced for testing: Yes 

6.1.4.1 Base Substrate 
The base substrates were successfully manufactured using the processes described in section Error! 

Reference source not found..  

 
Figure 6.11: A patterned glass substrate made using clean room based photolithography. 

 

6.1.4.2 Microwell  
Microwells were created on five sample substrates by researchers at Fondazione Filarete, Milan, 

Italy, for testing of a PDMS alternative microwell and insulating material. The microwell geometry 

was re-specified in this design to a diameter of 4mm and depth between 150-250µm. The 4mm 

diameter was specified to compliment the dimensions of the cloning rings that are used to control 

beating cluster position during seeding. The electrode geometries are also intended to cover the 
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surface area within these large microwells with the intention of achieving 100% attachment of all 

clusters seeded over the electrode. 

Five circles, 19mm in diameter, were stamped out of sheets of PDMS (that differed in thickness) by-

hand. Four microwell holes, 4mm in diameter, were stamped by-hand out of each circle. A stencil 

was placed underneath during stamping for accurate positioning of microwell holes. The PDMS 

samples were then activated using a plasma treatment and placed over the glass samples. This 

positioning (Table 6.5) was also carried out by-hand, resulting in variations in alignment of the circle 

microwells over the electrodes on each sample. Samples 1, 2 and 5 were used in prototype testing at 

the UoN. 

 

Table 6.5: The five base substrates that had PDMS samples adhered over the electrode space.  

Sample Number Thickness of PDMS PDMS on the base substrate 

1 150 m 

 

2 240 m 
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3 240 m 

 

4 250 m 

 

5 240 m 
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6.1.4.3 Media wells 
Glass rings, 21mm inner diameter x 24mm outer diameter x 6mm height, were sourced as bespoke 

parts from MDC Vacuum Limited, Sussex, UK, and adhered to samples using transparent epoxy resin 

(Figure 6.12). The epoxy resin was replaced by a silicon sealant during testing as the epoxy-glass 

interface resulted in leaks. 

 
Figure 6.12: A complete PDMS coated MEA biochip. 
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6.2 Prototype Testing 
The manufactured prototypes were tested by experienced UoN bioscientists using stem cell-derived 

cardiomyocytes as described in case study one (see section 4.2). A limited number (20) of beating 

cardiomyocyte clusters were made available for testing by the UoN group due to the time intensive 

and experimental nature of their differentiation. Testing was completed in small batches (2 – 4 

biochips) over a period of several months. Iterative design improvements were implemented as tests 

revealed manufacturing or prototype flaws. The following sections of this chapter describe the 

outcomes of testing using living matter (contracting cardiomyocyte clusters) from the perspective of 

user satisfaction (users can position cardiomyocyte clusters as desired) and functionality (data can 

be collected biochips for analysis). 

6.2.1 Prototype One Testing 

An overview of the entire procedure used to test the first generation of MEA biochip prototypes is 

incorporated in Chapter four, Figure 4.4. 

6.2.1.1 User interaction and cluster seeding testing 
The following images (Figure 6.13 - Figure 6.21) demonstrate the process of cell seeding used. This 

was the first point of interaction between a user and prototype device allowing observations to be 

made and feedback to be captured.  

 
Figure 6.13: Sterilisation procedure for the first batch of tests, soaking in industrial methylated spirit (IMS). 

 

The space in which the bioscientist works can also be seen in these figures facilitating better 

understanding of the constraints imposed on design by the environment in which the MEA biochips 

are used. 
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Figure 6.14: MEA biochip is left to dry inside the laminar flow culture hood. 

 

 
Figure 6.15: MEA biochip is rinsed with phosphate buffered solution (PBS). 

 

Matrigel™ treatment was not used for generation 1 prototype testing as the microwell was intended 

to eradicate the need for surface treatments. 
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Figure 6.16: The MEA biochip was filled with Dulbecco’s Modified Eagle Medium (DMEM) and microwells 

were checked for air bubbles. 

 

 
Figure 6.17: Dr Anderson locates the stem cell-derived clusters of cardiomyocytes within the embryoid body 

(EB) and confirms cells are contracting. 
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Figure 6.18: The contracting cardiomyocyte cluster is identified under the culture hood integrated inverted 

microscope. A stem cell knife is used to carefully dissect the contracting area of cells from the EB.  

 

 
Figure 6.19: The dissected area is drawn into the stem cell knife’s tip, held and transferred into the MEA 

biochip. 
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Figure 6.20: A cloning ring was used to help move released cardiomyocyte clusters into the microwells. 

 

 
Figure 6.21: The lid from a 35mm Petri dish was placed over the MEA biochip to prevent contamination. 
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6.2.1.2 Signal capture testing 
After a period in culture (varied between 3-12 days) the MEA biochips were inserted into a 

commercially available MEA system to test signal detection. The Multi Channels System MEA-60 was 

used for testing of all seeded prototypes (Figure 6.22).  

 
Figure 6.22: A first generation prototype in the MEA60 system. 

 

A control MEA biochip was used prior to each testing session to ensure the MEA system was 

functional. A commercial MEA biochip seeded with a one cardiomyocyte cluster of the same age, 

and that had been treated and seeded in the same way, was used as the control biochip device.   

Each prototype biochip tested was removed from incubation, visually assessed under a light 

microscope, and if contamination free, was inserted into the pre-heated (37ºC +/-0.5ºC) MEA system 

headstage (Figure 2.47). The findings for each individual test conducted are contained in Table 6.6. 

During testing stages the lead contact changed from Dr Anderson (DA) to Miss Rajamohan (DR). The 

protocols used to test biochips remained consistent due to adherence to laboratory standard 

operating procedure documents (Appendix D). 
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Table 6.6: The tests conducted using the generation one prototypes made using the micro drilling 
manufacturing approach. 

Scientist/ 
Test 

number 
Biochip 

Cells 
monitored 
optically 

Contamination 
free 

Attachment 
to a surface 

Attachment 
in microwell 

Contracting 
before 

insertion 

Signal 
detected 

Contracting 
following 
removal 

DA 
1 

G1 
V1a 

No 
(Figure 6.24) 

Contaminated  Yes No - - - 

DA 
2 

G1 
V1a 

No  
(Figure 6.25) 

Contaminated  Yes Yes - - - 

DA 
3 

G1 
V1b 

No Contaminated  No - - - - 

DA 
4 

G1 
V1b 

No Contaminated  Yes No - - - 

DR 
5 

G1 
V1a 

No Yes Yes No  
(Figure 6.26) 

- - - 

DR 
6 

G1 
V1b 

No Yes Yes Yes  
(Figure 6.27) 

Unknown No Unknown 

DR 
7 

G1 
V2a 

No Yes Yes Yes Unknown No Unknown 

DR 
8 

G1 
V2b 

No Yes Yes No - - - 

DR 
9 

G1 
V2a 

No Yes Yes Yes Unknown No/ No Unknown 

DR 
10 

G1 
V2b 

No Yes Yes Yes Unknown No/ No Unknown 

DA= Dr David Anderson, DR= Miss Divya Rajamohan, G1= Prototype one, V1= opaque media well, V2= 

transparent media well, a,b= prototype identifier. 

Where two results exist the first relates to use in the MEA60 system and the second relates to use in 

the custom-built system. 

Where V1 and V2 are included this represents the media well material change described in 
section 6.2.1.  
 
 

6.2.1.3 Discussion of tests 

6.2.1.3.1 Cleaning 

The first sterilisation process used a five minute IMS soak, which was inadequate and led to 

contamination. For all following tests a 20 minute exposure to UV light (Figure 6.23) with an IMS 

soak was used. Contamination did not re-occur throughout remaining tests. 
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Figure 6.23: A culture hood undergoing UV exposure for sterilisation. 

6.2.1.3.2 Optical monitoring of cells 

Optical assessment of the seeded cardiomyocyte clusters was not possible using the inverted 

microscope systems installed in the UoN laboratory.  The biochip prototypes were assessed to 

establish whether shadowing could be used to identify the cell clusters, electrode tips or tracking. 

Figure 6.24 and Figure 6.25 demonstrate observations made. Defects that can be seen in these 

figures are damage that occurred to the base substrates underlying surface during manufacturing. 

Tracking, electrodes and cell clusters cannot be identified. 

 
Figure 6.24: An image of G1 V1a MEA biochip positioned with electrode tips directly under the microscopes 

field of view. 

 

 
Figure 6.25: An image of G1 V2a positioned with an electrode tip directly under the microscopes field of 

view. 
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At the request of the UoN the media well material was changed from white PE (G1 V1) to 

transparent polystyrene (PS) (G1 V2) (see Figure 5.67) to improve illumination within the media well. 

This change did not permit users to ascertain if the seeded clusters were beating. The height of the 

media well was also reduced from 10mm to 6mm to improve ease of access while under the 

microscope during cell seeding process. 

 

6.2.1.3.3 Microwell 

End users reported that it was “difficult” and “awkward” to position the cardiomyocyte clusters into 

the microwells respectively. The cardiomyocyte clusters used in testing ranged in size and shape, 

varying between 200 -500 µm in diameter or length.  Ten cell clusters were seeded directly over ten 

microwells throughout G1 tests, eight of which formed attachments to the Melinex surface, and four 

of which attached inside the microwells and were used for signal tests. Figure 6.26 demonstrates a 

cardiomyocyte cluster that was initially positioned over the centre of the microwell that, due to its 

contracting nature, formed its attachments with the base substrate away from the microwell and 

electrode. Figure 6.27 shows a cardiomyocyte cluster that is attached inside a microwell. 

 
Figure 6.26: An example of a cluster of cardiomyocytes attached to the Melinex surface away from the 

microwell. Scale: Target microwell 500µm in diameter. 
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Figure 6.27: An example of a cardiomyocyte cluster attached inside a microwell. Scale: Target microwell 

500µm in diameter. 

 

6.2.1.3.4 Signal detection 

Each cardiomyocyte cluster attached inside a microwell over an electrode was tested for signal 

detection. In every case no signal was detected.  

A total of ten cell clusters were seeded over a microwell, four of which attached inside the microwell 

and therefore over an electrode. It was not possible to confirm whether or not these clusters were 

contacting prior to or following tests due to the optical constraints imposed by material choices. The 

importance of being able to confirm visually that the cardiomyocytes were contracting at the start of 

tests was emphasised so it was agreed that a re-design would take place to exploit a transparent 

base substrate that would allow optical assessment.  

Two MEA systems were used for signal detection testing of this prototype. The described MCS 

MEA60 system and an experimental, custom-made system, that is currently under development 

(Appendix F). Neither system detected a signal from any of the prototypes.  
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6.2.2 Prototype Two Testing 
The second concept design (see section 5.7.3) was manufactured to provide an alternative prototype 

intended to address problems highlighted in initial tests of the first prototype (see section 5.7.1). 

This second generation (G2) of prototype was made using clean room based photolithography (see 

section Error! Reference source not found.) on glass substrates. The results of the testing using 

cardiomyocyte clusters are presented in the following sections. 

 

6.2.2.1 User interaction and cluster seeding testing 
The second generation of prototypes were cleaned, seeded and maintained in culture in the same 

way as the first generation (G1) prototypes (Figure 6.28).  

 
Figure 6.28: The seeding of second generation prototypes. 

 

Improvements in the testing of this generation of prototype as when compared to testing of the first 

generation were:  

 Suited to cleaning 

 Adequate optical assessment 

 Improved media well height 

 Greater ease of cardiomyocyte cluster positioning in the microwell over the centre of the 

underlying electrode. 
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6.2.2.2 Signal capture testing 
The MCS MEA60 system used (Figure 6.29) to test the first generation prototype was also used to 

test all of the generation two prototypes (Table 6.7). Three of the G2 prototypes successfully seeded 

with cardiomyocyte clusters over the electrodes were also connected to the custom-made MEA 

system (see Appendix F, Figure 6.30).  

No signals were detected from either MEA system from any of the G2 prototypes tested. 

 

 
Figure 6.29: A second generation prototype in the MEA 60 system. 
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Figure 6.30: A second generation prototype being tested with the custom-made MEA system. 
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Table 6.7: The tests conducted using the generation one prototypes made using the micro drilling 
manufacturing approach. 

Scientist/ 

Test 

number 

Biochip 

Cells 

monitored 

optically 

Contamination 

free 

Attachment 

to a surface 

Over 

electrode 

Contracting 

before 

insertion 

Signal 

detected 

Contracting 

following 

removal 

DR 

1 

G2 S 

n/m a 
Yes Yes Yes 

Yes  

(Figure 6.31B) 

Leaked 

Yes No Yes 

DR 

2 

G2 S 

n/m b 
Yes Yes Yes 

Yes 

Leaked 

No - - 

DR 

3 

G2 R 

n/m c 
Yes Yes Yes 

Yes. Lost in 

handling. 

Leaked 

- - - 

DR 

4 

G2 R 

n/m d 
Yes Yes Yes 

Yes  

(Figure 6.31D) 

Leaked 

Yes No Yes 

DR 

5 

G2 S 

n/m 
Yes Yes Yes 

Yes  

(Figure 6.33) 

Yes No Yes 

DR 

6 

G2 S 

w/m 
Yes Yes Yes 

Yes  

(Figure 6.33) 

Yes No Yes 

DR 

7 

G2 S 

w/m 
Yes Yes No 

No  

(Figure 6.34) 

No - - 

DR 

8 

G2 R 

n/m 
Yes Yes Yes 

Yes  

(Figure 6.34) 

Yes /Yes No /No Yes/Yes 

DR 

9 

G2 S 

w/m 
Yes Yes Yes Yes  Yes /Yes No /No Yes /Yes 

DR 

10 

G2 S 

w/m 

 

Yes Yes Yes No  No - - 
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DR 

11 

G2 S 

w/m 
Yes Yes Yes Yes Yes/ Yes No/ No Yes/ Yes 

DR 

12 

G2 S 

w/m 
Yes Yes Yes Yes Yes No Yes 

DR 

13 

G2 S 

w/m 
Yes Yes Yes Yes Yes No Yes 

DR 

14 

G2 S 

w/m 
Yes Yes Yes Yes Yes No Yes 

DR= Miss Divya Rajamohan, G2 = Design concept two, S= spiral shaped electrode design, R= radiator 

electrode design, n/m = no microwell, w/m = with PDMS microwell 

Where two results exist the first relates to use in the MEA60 system and the second relates to use in 

the custom-built system. 

The spiral (S) and radiator (R) electrode designs are described in section 5.8.1.1. 
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6.2.2.3 Discussion of tests 
 

Cleaning:  All G2 prototypes were cleaned using a 20 minute UV light exposure and 5 minute IMS 

soak. There were no instances of contamination during generation two tests. 

Optical monitoring of cells: The new design facilitated good optical inspection of cells. It was now 

possible to confirm if cardiomyocyte clusters were contracting prior to and after testing in the two 

MEA systems. 

6.2.2.3.1 Media Well 

The first media wells employed were glass rings (21mm inner diameter x 24 outer diameter x 6mm 

height) adhered using epoxy resin. The G2 prototypes leaked (Figure 6.31) and the epoxy showed 

signs of absorption of the culture media (Figure 6.32).  

 
Figure 6.31: The first batch of tests during which the G2 prototypes leaked. A) Spiral electrode biochip 

prototype. B) The cardiomyocyte cluster attached to the spiral electrode in the biochip demonstrated in A. 
Scale: Electrode tracking width 80µm. C) Radiator electrode biochip prototype. D) The cardiomyocyte cluster 
attached to the radiator electrode in the biochip demonstrated in C. Scale: Electrode tracking width 100µm. 
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For biochips shown on Figure 6.31, the attached beating clusters were still contracting and so were 

tested for signals before retrieval and re-seeding. 

In Figure 6.31 the prototype shown in image B has not had a Matrigel treatment applied to the 

surface. The cardiomyocyte cluster shows good attachment to the glass/electrode surface. Matrigel 

has been used on the prototype shown in image D, in case cardiomyocyte clusters had failed to 

attach to the glass/electrode so as to ensure a signal test could be conducted. It was also noted that 

if prototypes could function reliably without the need for a Matrigel pre-treatment, further savings 

could be brought to the user, adding an additional competitive advantage to the novel MEA biochip 

over the existing commercial standard.  

 
Figure 6.32: Examples of absorption of culture media by the adhesive used to secure the media well. A) A 

spiral electrode prototype. B) A radiator electrode prototype. 

 

The epoxy resin used to secure the media wells was changed to Geocel aquarium grade silicon 

sealant (Geocel Ltd, Plymouth, UK). The Geocel silicon was first tested at Loughborough University 

by securing glass rings and un-patterned glass substrates (Figure 6.33). The sealant was tested as it 

would be used during UoN testing prior to incorporation into prototypes: DMEM was left in the 

media wells for 10 days, the samples were then rinsed with deionised water and treated with trypsin 

(used at UoN to remove the cellular matter and to breakdown the Matrigel), followed by an IMS 

soak and 20 minute UV light exposure. The samples were then re-filled with DMEM for 14 days. No 

leaking occurred across any of the samples so the silicon sealant was used for remaining prototypes. 
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The Geocel sealant prevented leaks and did not show signs of culture media absorption following 

use in trials with living matter at the UoN. Cells seeded in prototypes made using this sealant did not 

show any adverse effects after up to three weeks in culture implying that the biocompatibility of the 

sealant is suited to this application. 

 
Figure 6.33: An un-patterned glass substrate used to test adhesives. 

 

6.2.2.3.2 Microwell 

PDMS was selected to replace the Melinex™ film for the insulation and microwell material as it was 

believed that PDMS would encourage cell adhesion to the glass/electrode surface as opposed to the 

surrounding areas of the biochip or the microwell walls.  

PDMS possesses a natural tendency that inhibits cell adhesion (De Silva et al, 2004) so it was 

believed that if, due to the contracting nature of the cells the cluster moved to the edge of the 

microwell, then they would preferentially form their attachments with the underlying 

glass/electrode substrate as opposed to the wall of the microwell or the insulating material as 

occurred in first generation prototypes.  

To test attachment to PDMS two cell clusters were seeded per prototype. One cluster was seeded 

the glass/electrode substrate, at the centre of the electrode; and the other at the centre of the 

media well on the PDMS surface. The results of this test are described in Table 6.7 and can be seen 

in Figure. The amount of movement that occurred between initial positioning and attachment to the 

underlying surface can also been seen. 

The clusters over the electrodes attached to the underlying substrate surface. The clusters 

positioned over the PDMS demonstrated no attachment. Where Matrigel had been used on some 

samples a lighter attachment was observed between the cell cluster and the PDMS than was 

apparent between the other cell cluster and the glass/electrode substrate in the same prototype at 

the same time. 
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Figure 6.34: Second generation prototypes with PDMS microwells, with cardiomyocyte clusters. Beating 

clusters over electrodes were initially positioned at the centre of the corresponding electrode. The beating 
clusters on the PDMS were positioned at the centre of the media well. 

 

6.2.2.3.3 Signal Detection 

Ten beating clusters (differing size diameter ~150 - 500µm) attached directly over the electrodes on 

second generated prototypes that were used to test for signal detection (Figure 6.34 and 

Figure  6.35). No signals were detected (Table  6.7). Clusters were seen to be contracting and well-

attached to the base substrate in all cases prior to, and following, insertion into the MEA systems. 

 

 
Figure 6.35: Examples of more attached beating clusters over second generation prototype electrodes. Left: 

Spiral electrode. Right: Radiator electrode. 
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6.2.3 Signal detection investigation 
To investigate why both prototypes failed to show signals when tested in two different MEA systems 

the following impedance investigation was conducted to compare the prototype electrodes 

manufactured characteristics to those in the commercial standard. 

 

6.2.3.1 Impedance Measurements  
A Wayne Kerr Principle Component Analyser (PCA) (Figure 6.36) was used to measure the 

impedance of electrodes in the prototypes and a commercially available MEA biochip.  

Measurements were taken from each MEA biochip while containing a physiological saline solution 

that was confirmed to have comparable conductivity to the culture media used in this MEA 

application, Dulbecco’s Modified Eagle Medium (DMEM) (Figure 6.37). The measured conductivity of 

each solution is contained in Table 6.8.  

 
Figure 6.36: The Wayne Kerr Principle Component Analyser used for impedance measurements. 

 

 
Figure 6.37: The DMEM and saline solutions used during impedance measurements. 
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Table 6.8: Conductivity of solutions used in impedance tests. 

Solution mS 

Saline Solution 17.6 

DMEM 17.3-18.07 

 

Table 6.9: PCA Impedance Measurement parameters. 

Internal Bias Off 

 150mVac 

Measurement AC 

 

 

  



389 
 

__________________________________________________________________________________ 

Manufacturing and Prototype Testing Results 
 

6.2.3.1.1 Prototype One 

Ten values were recorded for six frequencies, using the principle component analyser unit shown in 

figure 6.36, for each of the connections indicated in Figure 6.38 (A, B and C). The analyser’s 

operational set-up as described in table 6.9. Average impedance values for each frequency are 

displayed in Figure 6.38. 

 

 
Figure 6.38: Impedance results for the solid 1mm diameter Cu/Au electrodes on an FR4 base substrate in 

prototype generation 1. 
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6.2.3.1.2 Prototype Two 

Ten values were recorded for six frequencies for each of the connections indicated in Figure 6.39(A, 

B and C). The analyser was set-up as described in Table 6.9. Average impedance values for each 

frequency are displayed in Figure 6.39. 

 

 
Figure 6.39: Impedance results for the spiral shaped Ti/Au electrodes on the glass base substrate prototype 

generation 2. 
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6.2.3.1.3 Commercial MEA biochip 

Ten values were recorded for six frequencies for each of the connections indicated in Figure 6.40 (A 

and B). The analyser was set-up as described in Table 6.9. Average impedance values for each 

frequency are displayed in Figure 6.40. 

 

 

 
Figure 6.40: Impedance results for a commercially available 60 electrode planar MEA biochip. 
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6.2.3.1.4 Discussion 

The hypothesis used during the electrode design throughout this research was: 

 Greater electrode tip surface area results in lower impedance, which would result in 

improved signal detection.  

Impedance measurements were made using two probes, a sensing probe and counter probe (the 

reference), connected to the principle component analyser in Figure 6.36. The measurements taken 

demonstrate that the impedance of the electrode change depending on: (1) the frequency of the 

input, and (2) the location of the sensing probes on the MEA biochip. 

The measurement locations that are comparable between the biochips shown in Figure 6.38, 

Figure 6.39 and Figure 6.40 are seen in Table 6.10. 

Table 6.10: Comparable impedance measurement locations 

Measurement Location 

Description 

Prototype 

One 

Prototype 

Two 

Commercial 

Standard 

Electrode tip – Electrode tip A A 
Not possible with 

probes available 

Electrode tip – interconnect 

contact pad 
B B A 

Interconnect contact pad – 

interconnect contact pad 
C C B 

 

It was not possible to measure the impedance of the electrode tip – electrode tip in the commercial 

standard as the probes used were too large to adequately touch one 30µm diameter tip without 

contacting another adjacent electrode tip. 

The highest impedance values observed from these measurements were from the interconnect 

contact pad – interconnect contact pad locations. This recording location is directly comparable to 

the MEA systems recording interconnections (through spring loaded pins) during the live testing 

conducted.  

Impedance values were also observed to be highest at low frequencies. The recording frequency 

used at the UoN during MEA system employment is 2000Hz. The value used in measurement that 

compares closest to this frequency was 1000Hz. Therefore the impedance values observed at the 

interconnect  contact pad – interconnect contact pad locations while using a frequency of 1000Hz 
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were believed to be closest to the impedance values during the live prototype testing conducted. 

These values were compared and it was confirmed that both of the prototype devices produced 

provided electrodes with significantly lower impedances than the commercial standard. 

A summary of these conclusions is represented in Figure 6.41. 

Impedance measurements show...

Impedance measures vary depending upon where the recording probes were placed. The difference in 
values measured that is location dependant (figs. 6.38, 6.39, 6.40) is more significant at low 

frequencies. At higher frequencies the measurements taken at each recording location are comparable.

The location from which measurements were taken that was most representative of the MEA system 
connection with the biochips in testing was: 

Prototype one (G1) = location C
Prototype two (G2) = location C

Commercial standard = location B  

The frequency at which the MEA systems were used in testing was 2000Hz. 

Measurements taken at 1000Hz from location C (G1), C (G2) and B (Commercial) are most 
representative of the testing environment.

Prototype One:  550 Ω 
Prototype Two:  750 Ω 

Commercial standard:  100 kΩ 

Conclusion: The prototype MEA biochips show significantly lower impedances than the commercial 
standard. The hypothesis during electrode design was that greater surface area would provide lower 
impedance, which would result in improved signal capture through MEA biochip devices constructed. 

This hypothesis remains unproven following the research presented in this thesis.

Further work: Further work is required to produce an MEA biochip prototype that meets the user 
specification and provides signals (see Chapter 7). 

 
Figure 6.41: Impedance measurements conclusion 
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6.3 Summary 
 

This chapter has demonstrated the results of: (1) the manufacturing approaches implemented 

during this research, (2) testing of prototypes manufactured using live stem cell-derived 

cardiomyocyte clusters, and (3) the work conducted in order to characterise impedance of prototype 

electrodes compared to those of a commercial standard. 

 

Manufacturing 

 Four manufacturing approaches were implemented demonstrating different problems.  

 Two different prototypes resulted from manufacturing approach experimentation. 

 Testing of the first generation of prototype with live cardiomyocyte clusters influenced the 

design and manufacture of the second generation of prototype.   

 

Testing using cardiomyocyte clusters 

 Prototype MEA biochips were tested using the exact protocols used in real application of the 

commercial standard MEA biochip. 

 Problems encountered relating to the first generation prototype were: 

o The initial cleaning procedure employed failed and the seeded cells were lost due to 

contamination. 

o The media well material was opaque limiting illumination of the area to be seeded 

inside the biochip. 

o The media well height made access (for cluster seeding) while under the microscope 

more difficult. 

o The base substrate material and electrode geometry resulted in restricted optical 

monitoring of the cardiomyocyte clusters once seeded inside the MEA biochip.  

o The microwells geometry resulted in difficulty during cluster seeding. It was 

observed that larger microwell geometries may be more suitable due to the differing 

sizes of the cardiomyocyte clusters. 

o No signals were observed from the microwells that had cardiomyocytes successfully 

attached inside. 
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 Improvements implemented in the second generation of prototype: 

o Media well height was reduced so that it was easier to access the area inside more 

easily during cardiomyocyte cluster seeding. 

o The glass base substrate and altered electrode geometry allowed monitoring of the 

clusters after seeding and throughout testing. This allowed confirmation that the 

clusters were contracting prior to and following signal detection tests. 

o The glass/electrode surface exhibited appropriate cardiomyocyte cluster attachment 

over the electrodes. 

o PDMS used as the microwell and insulating material demonstrated poor cell 

attachment making it a more suitable material than the Melinex™ used in the first 

generation of prototype. 

o The large microwells improved ease of cluster positioning during seeding. 

 Problems encountered relating to the second generation prototype were: 

o The media wells leaked and epoxy demonstrated signs of culture media absorption. 

o No signals were observed from the microwells that had cardiomyocytes successfully 

attached inside. 

 First and second generation prototypes were tested in two different MEA systems, one 

commercially available system and one custom-made system. No signals were captured 

from any of the tested prototypes tested in either MEA system. 

 

Impedance comparison 

 Various impedance measurements were made of each prototype and of the commercial 

standard used in testing as the control MEA biochip. 

 Prototype electrodes were shown to have significantly lower impedance as when compared 

to the commercial standard. It was hypothesised that this would result in improved signal 

detection. This hypothesis was disproved through the live testing conducted. 

 It is thought that two factors may have influenced the failed signal detection tests: (1) the 

detection electronics (MEA system configurations) were inappropriately matched to the 

electrode’s properties, or (2) a better understanding is required of the cell-electrode 

interface to ensure electrode properties match the physics of signal transmission. 

Figure 6.42 summarises the contents of this chapter. 
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Manufacture and Prototype 

Testing

Four manufacturing 

approaches were 

implemented in pursuit of 

prototype production.

Two generations of 

prototype were 

successfully manufactured 

for testing.

The results of the testing 

conducted of the first 

generation of prototype 

directly influenced the 

design and manufacture of 

the second prototypes.

Protocols used in testing 

were the same as those 

used in the employment of 

a commercial MEA system 

in this application domain 

A number of problems where highlighted during 
testing of the first generation prototypes:
- Opaque media well material was not favoured by 
MEA users. The height of the media well was also too 
high.
-The facility to observe cardiomyocyte clusters 
contracting while in situ is essential in this application 
domain.
-Microwells with a diameter of 500µm are not 
optimally sized for the varying sizes of cardiomyocyte 
clusters produced. A number of clusters seeded failed 
to attach inside the microwells over which they were 
originally positioned. 
- The first prototype failed to show any signals where 
cardiomyocyte clusters were attached over an 
electrode. 

Improvements that were implemented 
in the second generation of prototype 
following testing of generation one 
prototypes:
-Media well material was altered to a 
transparent one and the height 
reduced.
-A glass base substrate was introduced 
and the electrode geometry altered to 
allow optical monitoring of the clusters.
- Microwell goemetry was increased. 
PDMS used as the microwell and 
insulating material demonstrated poor 
cell attachment making it a more 
suitable material than the Melinex™ 
used in the first generation of 
prototype.

Problems highlighted during testing of 
the second generation of prototypes: 
- media wells leaked where epoxy had 

been used to adhere glass to glass.
- This generation of prototype also 

failed to detect signals from the 
contracting cardiomyocyte clusters 

attached over the electrodes.

Two MEA systems were used 

to test for signals from each 

biochip.

1) Multi Channels Systems 

MEA60-Inv-BC-system,

2) Custom-made experimental 

system
Impedance measurements were 

made of each prototype version 

and a commercial standard 

MEA biochip used as the control 

during testing. Impedance of the 

novel prototypes electrode were 

shown to be significantly lower 

than the electrodes in the 

commercial standard. 

Further consideration is required of the 

following points in pursuit of greater 

understanding why signals were not 

detected: 

1) the configuration of the detection 

electronics to complement the 

electrodes,

2) a greater understanding of the 

physics of signal transmission at the 

cell-electrode interface.

Manufacture

Prototypes

Impedance
 

Figure 6.42: A summary of the contents of Chapter 6. 
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6.4 Research Questions Answered 
 

1. What has this research done to produce a solution device to meet the requirements 

identified? 

Following user requirement identification (Chapter 4) a design concept was drafted for a 

prototype solution device that would meet the user needs (Chapter 5). In attempts to 

manufacture the design concept a number of manufacturing approaches were implemented 

(Chapter 5).  

The problems that arose during manufacture (section 6.1) were strategically targeted until a 

prototype that was suitable for testing was manufactured. The resulting first generation (G1) of 

prototype was tested in a bioscientific laboratory by skilled MEA system users. The testing 

protocol was equivalent to the protocols used in real MEA system application when using stem 

cell-derived cardiomyocyte clusters. The results of testing conducted (section 6.2.1) led to a 

concept re-design with the intention to produce a prototype better suited to additional user 

requirements highlighted in G1 tests.   

The new concept design was manufactured using a different manufacturing approach and 

materials combinations resulting in a second generation (G2) of prototypes suitable for testing in 

the cardiomyocyte cluster bioscientific application environment. The results of G2 testing 

(section 6.2.2) highlighted further issues with design that must be addressed before arriving at a 

suitable solution MEA biochip device.   

 

2. How were the manufactured prototypes tested, and what were the outcomes of those 

tests? 

Prototypes were tested for user satisfaction and functionality. The ease of cardiomyocyte cluster 

positioning, and optical monitoring were considered as user satisfaction metrics and 

biocompatibility and signal detection were considered as functionality metrics.  

First generation prototypes exhibited poor cardiomyocyte cluster positioning and poor optical 

characteristics. The materials used were demonstrated to be suitably biocompatible but no 

signals were detected through the electrodes. 
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Second generation prototypes exhibited good cardiomyocyte cluster positioning and good 

optical monitoring, satisfying user requirements in terms of these essential metrics. The base 

substrate, electrode, and microwell and insulation materials were demonstrated to be 

appropriately biocompatible. The signal detection function however failed, resulting in overall 

prototype failure.   

 

3. Has a suitable alternative to current the standard commercial biochips used in 

cardiomyocyte cluster application been realised? 

The prototype devices manufactured and tested during this research do not provide a solution 

device that would be equivalent or superior to the commercially available MEA biochips used in 

this MEA system application domain.  

Further work is suggested as required to provide a suitable solution device (see Chapter 7). 
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This Thesis

Chapter 7

Discussion and 

Conclusions

Research Review

Research Achievements

Continuation of Research  

Chapter Seven 

7 Conclusions and Recommendations 
 

 

Early research evaluated the research problem using literature and MEA system user observations so 

that effective design would result in a manufacturable concept that is well suited to testing with 

living tissue. The intention of this research was to realise a new design that would meet the 

identified (Chapters 4 and 5) and prioritised (Chapter 5) requirements.  

Chapters 2, 3 and 4 present the context research that was compiled and used to gain a thorough 

understanding of current MEA system components, applications, developmental trends and user 

requirements.  

Requirements were identified that were separated into global generic requirements, local 

collaborator specific requirements, and application of interest specific requirements, through the 

use of three progressively specific product design specification (PDS) documents (Appendix C).  

A diversity of requirements were identified, that due to limited resources and the time scale of this 

research, could not all be addressed in a single PDS. One user application was focused upon for the 

remainder of the research conducted. The stem cell-derived cardiomyocyte cluster application was 

selected because a PDS containing realistic and achievable design objectives was drafted by MEA 

system users that could be immediately focused upon (PDS 3). 

PDS 3 contained requirements that were analysed and prioritised using an internationally 

standardised quality management system methodology (HoQ Matrix, see section 5.2.1.1). This 

methodology led to a prioritised list of design objectives that supported the design and manufacture 

of a device that offers best novelty and competitive advantage. 
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A novel MEA biochip concept was designed that was intended to specifically address issues relating 

to the positioning of the contracting cardiomyocyte clusters over the microelectrodes. The design 

was manufactured and tested (section 6.2.1). Feedback gained during testing of this first concept 

(generation one prototypes) led to a revised second novel MEA biochip design (generation two 

prototypes) that sought to meet the original user requirements targeted in PDS 3. 

Prototypes were successfully manufactured that met a number of the PDS design objectives. 

However, the overall functionality of both generations of prototype failed in tests using living 

cardiomyocyte clusters. Contraction field potentials could not be visualised using detection 

hardware available. 

 

In summary research in this thesis was conducted to: 

1. Investigate the feasibility of designing and manufacturing of a novel MEA system 

2. Identify current user and system requirements 

3. Develop solution concepts and manufacture solution prototypes  

4. Test manufactured prototype devices  

 

 

7.1 Research Review 
Numerous research questions arose and were addressed throughout the course of this research. 

Each research question is addressed at the end of each chapter. 

 

Knowledge and understanding of MEA systems has been ascertained through this research in terms 

of: 

1. System components (Chapter 2), 

2. How systems are used (applications) (Chapters 2, 3 and 4),  

3. How system use has changed since their introduction approximately 35 years ago (Chapters 

2, 4 and 6). 
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Experience has been gained of:  

1. Conducting context research and requirement identification, definition and prioritisation 

(Chapter 2),  

2. PDS construction (Chapter 3),  

3. Enterprise modelling (Chapter 4),  

4. Concept design (Chapter 5),  

5. Implementation of manufacturing techniques (Chapter 5),  

6. Testing of prototype devices using stem cell derived cardiomyocyte clusters (Chapter 6).  

 

While seeking to address the throughput issue stated in Chapter 1 the following novelty has been 

presented in this thesis: 

1. A novel electrode layout has been introduced with the specific intention to support >1 

cardiomyocyte cluster in one media well. 

2. A microwell feature has been introduced to limit the mobility of the contraction 

cardiomyocyte clusters immediately after seeding and during the attachment period. 

3. The biochip and microwell features have been manufactured using a manufacturing 

approach that is novel in this domain (e.g. Melinex coupled with excimer laser ablation for 

first generation prototypes, and PDMS over novel electrode geometries for second 

generation prototypes). 

This novelty has been designed to be transferable to future systems that will be humidified 

incubator compatible and also more compact. 

 

 

7.2 Research Achievements 
This research identified MEA system requirements from three perspectives (global, local and 

application specific). This research then developed novel MEA biochip concepts that were 

application specific. The novel design concepts were successfully manufactured as prototypes using 

a combination of approaches not used in this manufacturing domain before. Testing of the 

prototype devices was conducted, validating the manufacturing approaches and the varying material 

combinations exploited.  
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Contributions have been made to academic research through presentations and publications. 

The findings of this research have also emphasised an importance of complimenting MEA biochip 

electrode design and detecting system configuration to facilitate adequately support biochip 

functionality.  

 

7.3 Continuation of Research 
Recommendations for further work in the continuation of this research are as follows: 

1. Implement alterations to the custom-made system currently under development and re-test 

existing prototypes for signal detection. 

2. Reconfigure the electrode and microwell design to provide smaller electrode geometries 

while still providing a microwell that adequately sized to contain cardiomyocyte clusters of 

varying sizes (~200-800µm). 

3. Consider packaging of all components developed such that they are suited to long periods 

within the incubated environments essential during cell culture. 

4. Address the remaining unaddressed requirements cardiac application requirements 

presented in Figure 7.1. 

5. Address the remaining unaddressed requirements neural application requirements 

presented in Figure 7.1. 

 

 

 



403 
 

__________________________________________________________________________________
Conclusions and Recommendations 
 

P
o

p
u

la
ti

o
n

:
M

EA
 S

ys
te

m
 U

se
rs

Sa
m

p
le

: 
N

eu
ra

l A
p

p
lic

at
io

n
s

Sa
m

p
le

: 
C

ar
d

ia
c 

A
p

p
lic

at
io

n
s

Case 1:
Stem-cell derived 

cardiomyocytes for 
cardio-active substance 

screening

Case 2:
Dissociated neural cell 

cultures for observation 
and assessment of 

network development 
and synaptic plasticity

Case 3: 
Hippocampal slices for 

known pathway 
plasticity following 

stimulation 
experiments.

Obs. 1.1  Facilitate appropriate handling for cell culture.
Obs. 1.2  Increase the number of contracting cell clusters per media well/per biochip. 
Obs. 1.3  Ensure output  at comparable or better quality than current.
Obs. 1.4  Ensure testing can be comparable, faster and simpler. 
Obs. 1.5  Remove need to sterilise and treat biochip before use.
Obs. 1.6  Provide a way to guarantee attachment of cell cluster over electrodes every 
time.  
Obs. 1.7  Automation of as many processes (or of parts of processes as possible).
Obs. 1.8  Automated extraction of basic parameters.  
Obs. 1.9  Automation of software to be more intuitive and less complex.  

-  Automatic triggering or remove need for triggering.
-  Automatic QT-interval identification and QT-interval value 
   comparisons between different data files (data mining). 

Obs. 2.1  Provide a way to guarantee recordings are obtained.
Obs. 2.2  Reduce or eliminate the need for cell type specific workspace surface 
treatments. 
Obs. 2.3  Facilitate longer or continuous recording.
Obs. 2.4  Correlates new data with previously recorded data automatically and quickly.
Obs. 2.5  Electronic based method of recording MEA biochip use. 
Obs. 2.6  An incubator compatible MEA system.
Obs. 2.7  Remove the need to convert file types.
Obs. 2.8  Statistical outputs in real-time.
Obs. 2.9  Automatic production of plots.
Obs. 2.10  Removal of need to clean MEA biochips or introduction of an automated 
cleaning process.

Obs. 3.1  Biochips for fast and easy hippocampal slice positioning.
Obs. 3.2  Automated data analysis.
Obs. 3.3  One system that can facilitate ≥8 MEA biochips at one time.
Obs. 3.4  A stimulus generator that can deliver protocols to >4 MEA biochips at one 
time.
Obs. 3.5  Analysis features in the recording software delivered in real-time.
Obs. 3.6  Predefined stimulating electrodes facilitated by anatomically precise 
microelectrode positioning.
Obs. 3.7  Automated slice position checking.
Obs. 3.8  Integrated perfusion system. 
Obs. 3.9  Automatic baseline recording feature.
Obs. 3.10  System with lists of stimulation protocols ready for use. 

Addressed in this thesis

To be addressed by future work

 
Figure 7.1: Case study observed requirements. Those addressed in this thesis (blue box) and those still to be 

addressed are identified (orange box).
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Research Proposal 

 

Cell Friendly Electrophysiological Characterisation of Cells and Cell Therapies using Novel Modular 

Multi Electrode Array Systems 

Research: 

The objective of this research is to show the feasibility of scalable cell friendly electrophysiological 

characterisation using a novel modular multi electrode array system. 

The work will research a novel physical architecture for each sample well module supporting both 

electrical and optical requirements via vertical electrical interconnect and the integration of novel 

optical waveguide technology to support integrated electrical and optical monitoring capabilities. 

Signal processing, sensor integration and control logic for both stimulation and recording will be 

realised as software web services. Depending on requirements, appropriate encapsulation of the 

module and its rechargeable power units, measurements can proceed without ever needing to 

remove the cells from the cell friendly but electronics harsh environment of the 

incubator/manufacturing system. 

Configuration of the hardware is envisaged to encompass the possibility for end user design of 

electrode: (i) geometry (i.e. 2D, 3D size and shape), (ii) layout and separation, (iii) structure (i.e. 

surface porosity, central through holes to enable possible vacuum attachment to electrodes) and (iv) 

bio-compatible surface coatings. These capabilities will support better cell integration with the 

electrodes ((i), (iii) above), closer mapping recording layout to the physical cell architecture ((ii) 

above) and better longevity of cells ((iv) above).  

 

The aim of this proposal is to support (eventually via a case database of best practice) the end user 

in being able to determine his own appropriate shape, diameter, separation, insulation and coating 

to obtain the best signal to noise ratio for the cells under investigation. If this is unknown best case 

defaults for other successful applications will be available for start-up trials. Configuration of 

software will support the tuning of, for example, system logic, signal processing and signal pattern 

recognition based upon the requirements. Post processing software will include the detailed 

visualisation and analysis of the output of the system based upon the detailed requirements. There 

are significant challenges to the successful outcome of this research, primarily the requirement to 

integrate optical monitoring, integrate control, signal processing and sensors all within a scalable 

wireless package of the size of a well that can operate robustly within the cell culture environment 

and have 2D and 3D electrode geometries of relevance.   
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A.1: System concept – 2D 
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Key cell organelles 

Nucleus: Every cell contains a nucleus of which the contents are contained by a membrane. The 

nucleus contains the genetic material for the cell (the DNA) which is protected from the constant 

metabolic activity occurring in the cytoplasm.  

 

Endomembrane system: This consists of multiple organelles, the endoplasmic reticulum, vesicles 

and Golgi apparatus. The Golgi bodies and endoplasmic reticulum organelles modify proteins, and 

synthesise lipids as required by the cell for metabolism. The vesicles basically transport, store or 

digest substances. 

 

Mitochondria: Mitochondria are 2-6µm in length and 0.6µm in diameter (Pocock and Richards, 

1999) and are responsible for converting adenosine triphosphate (ATP) into energy. When one of the 

three negatively charged phosphate groups present in ATP is removed by hydrolysis a more stable 

molecule, adenosine diphosphate (ADP) results. The change from a less stable to more stable 

molecule results in the release of energy. This hydrolysis occurs within mitochondria and it is this 

energy that is used for all cell activities (Goldberg, 2010). 

 

Cytoskeleton: The cytoskeleton is made from proteins in the form of filaments (micro and 

intermediate) and microtubules. The cytoskeleton serves to provide support to the cell and gives it 

shape. Cytoskeletal elements interact with the cell membrane (Doherty and McMahon, 2008) and 

aid in movement of cell parts or of the whole cell. 
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Bioscientific Cell Characterisation Techniques 

Optical assessment:  Visual assessment of cell, tissues and their components using light microscopy 

is limited due to various cellular components (e.g. mitochondria) possessing similar optical densities 

(Cormack, 2001). In addition a single culture may contain several thousand cells making it difficult to 

distinguish one cell from another. Skilled cell culture experts rely upon visual methods to assess 

culture viability (e.g. staining) and to quantify cell populations in culture (e.g. to monitor growth 

through calculation of population multiplication/depletion). 

 

Staining:  Difficulties viewing cells and their particular cellular components are over come through 

the use of a range of selectively absorbed dyes or markers. There are dozens of variants of 

histological stains that reveal tissue components by either colouring them selectively or by 

increasing their optical densities to different extents (Cormack, 2001). Stains differ according to the 

sample that is to be observed and what the bioscientist is interested to see. A list of the 50 most 

commonly used stains in cell culture-based research is incorporated in table B1. 

Table B1: Standard histology staining procedures.  [Source: Florida State University College of Medicine, 2012.] 

Acid Fast Stain 

(for 

mycobacteria) 

Acid Fast Stain  

Alcian Blue Stain 

Alcian Blue-PAS 

Stain (PAB) 

Hyaluronidase 

Digestion for 

Alcian Blue 

Alizarin Stain for 

calcium 

Auramine-

Rhodamine Stain 

(fluorescent) 

Bielschowsky 

Stain (for senile 

Colloidal Iron 

Stain 

Congo Red Stain 

Copper Stain 

Elastic van Gieson 

Stain 

Elastic - Weigert's 

resorcin-fuchsin 

method 

Modified Elastic 

van Gieson Stain 

Fontana-Masson 

Stain for melanin 

Melanin Bleach 

Fraser Lendrum 

Stain 

Giemsa (Modified 

Gram (Modified 

Brown-Brenn) 

Stain 

Gridley's Stain for 

ameba 

Grimelius 

Argyrophil Stain 

(Pascual's 

Method) 

Grocott's 

Methenamine 

Silver (GMS) Stain 

Holzer's Glial 

Fiber Stain 

Hortega's Pineal 

Stain 

Iron Stain 

(Prussian blue) 

Methyl Green 

Pyronin (MGP) 

Stain 

Mucicarmine 

Stain 

Nissl Stain 

Oil Red O Stain 

Orcein Stain 

Periodic acid-

Schiff Stain (PAS) 

Periodic acid-

Schiff, digested 

Stain (PAS-D) 

PTAH Stain 

Reticulin Stain 

Spirochete Stain 

(Steiner & Steiner 

Sudan Black B 

Stain (for 

lipochrome) 

Sudan Black B 

Stain (for fat) 

Trichrome Stain - 

Masson's method 

Trichrome Stain - 

microwave 

method 

Thioflavin S Stain 

(for amyloid in 

tissues) 

Modified 

Thioflavin S Stain 

(for senile 

plaques) 

Toluidine Blue 

Stain (for mast 
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plaques) 

Bile Stain 

Bodian's Stain 

 

May-Gruenwald) 

Stain (for 

hematopoietic 

tissues) 

Giemsa Stain (for 

Helicobacter) 

 

Iron Stain 

(Turnbull's blue) 

Jones' Silver Stain 

Luxol Fast Blue 

(LFB) Stain 

 

method) 

 

cells) 

Urate Crystal 

Stain 

VonKossa Stain 

for calcium 

 

Monitoring growth and multiplication/depletion:  Cells can be counted using a tool called a 

haemocytometer (Lund et al, 1958; Wiedemann et al, 2011). This is small tile or specimen slide with 

a microscopic grid etched into the glass. Samples from a culture are prepared to a known 

concentration in a solution with water. A controlled quantity of the mixed solution is dispersed over 

the grid and cells are counted by eye. Calculations are used to estimate the number of cells per ml of 

solution and then corrections are made for dilution to establish populations. This process is time 

consuming and user dependant. There is an advantage to using a haemocytometer, and that is that 

dead cells can be identified by eye and eliminated from the count. 

An electronic alternative such as a Coulter counter can also be utilised which is faster than using a 

haemocytometer, but cannot distinguish between live and dead cells (Strober, 2001).  

Recent technologies intending to offer automated cell counting with the in-built ability to distinguish 

and disregard dead matter include the CASY and xCELLigence systems from Roche (Sussex, United 

Kingdom).  The CASY system is designed for overall cell culture quality control (e.g. cell concentration 

determination, cell viability, cell volume, cell aggregation and cell debris) (Roche Media Release, 

March 2011). The xCELLigence system is “for label-free (e.g. stain free) and real-time monitoring of 

cell viability” (Ke et al 2011). 

 

Biomechanical properties and microforce generation:  It has been shown that there are links 

between the structure, mechanical properties, phenotype behaviour and function of cells in 

microenvironments that are believed to have implications in human health and the biotechnology 

industry (Addae-Mensah and Wikswo, 2008). Scientists seeking to understand forces exerted in cell 

culture environments have created numerous techniques for investigating the mechanical and 

microforce properties of cells in vitro. The deformation of cells in culture has been addressed using 

tools that generate compressive or tensile forces, shear forces, bending forces, twisting forces, or a 
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combination of forces. The following table (table B2) describes methods that have been classified as 

either exerting forces actively or recording forces passively to calculate force generation in cells. 

Table B2: Techniques applied in the study of mechanical and microforce generation of cells in 
vitro, classified as either passive or active.   [Adapted from Addae-Mensah and Wikswo, 2008]. 

Passive Active 

Technique - Principle Example 

publications 

Technique – Principle Example 

publications 

Elastic Substratum Method – 

Wrinkling patterns developed 

in artificial flexible sheets are 

used to infer cell traction 

forces. 

Harris et al, 

1980; 

Danowski, 

1989. 

Atomic force microscopy 

(AFM) - Relative deformation 

of a cantilever tip and 

substrate (cell) is used to 

estimate forces. 

Hoh and 

Schoenenberger, 

1994; 

Radmacher et al, 

1996; 

Mathur et al, 

2001.  

Flexible Sheets with 

Embedded Beads – 

Displacements of beads within 

flexible sheets are used to 

infer cell traction forces.  

Lee et al, 

1994; Dembo 

and Wang, 

1999; 

Munevar et al, 

2001; Butler et 

al, 2002. 

Micropipette Aspiration – 

Gentle suction is applied to a 

micropipette attached to a 

cell. 

Jones et al, 

1999; 

Alexopoulos et 

al, 2003; Chu et 

al, 2004. 

Flexible Sheets with 

Micropatterned Dots or Grids 

– Deformation of grid or dot 

patterns is used to infer cell 

traction forces. 

Balaban et al, 

2001. 

Optical Tweezers – Dielectric 

beads of high refractive 

index are moved using laser 

beams. 

Henon et al, 

1999; Dao et al, 

2005. 

Micromachined Cantilever 

Beam – Horizontal deflection 

of cantilever with attachment 

pad is used to infer traction 

force.  

Galbraith and 

Sheetz, 1997. 

Micromachined Force 

Sensors and Actuators – 

Movable parts are fabricated 

in silicon and various 

methods such as piezo 

actuation are used to move 

them. 

Yang and Saif, 

2005; Serrell et 

al, 2007. 

Array of Vertical 

Microcantilevers – Horizontal 

deflection of individual 

vertical microcantilevers is 

used to infer traction forces.  

Tan et al, 

2003; Addae-

Mensah et al, 

2007; du 

Roure et al , 

2004; du 

Shear Flow Methods – 

Enclosed chambers with inlet 

and outlets for fluid flow are 

used to subject cells to fluid 

shear stress. 

Dong et al, 1999; 

Civelek et al, 

2002; Ainslie et 

al, 2005; Leyton-

Mange et al, 
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Roure et al , 

2005; 

2006. 

  Stretching Devices – The 

flexible membrane is 

attached to structures that 

enable the membrane to be 

stretched. 

Wang et al, 

2000; Zhuang et 

al, 2000. 

  Carbon Fibre- Based Systems 

– Carbon fibres are attached 

to directly to a cell and 

controlled mechanically 

using feedback systems. 

Yasuda et al, 

2001; Nishimura 

et al, 2004; Iribe 

et al, 2007. 

  Magnetic tweezers/magnetic 

twisting cytometry – 

Magnetised ferromagnetic or 

superparamagnetic beads 

are moved by weaker 

directional magnetic 

fields/gradients. 

Bausch et al, 

1999; Chen at al, 

2001; Lele et al, 

2007. 

 

 

Electrical Characterisation:  Cells and tissues can be characterised in terms of electrical activity. The 

details of which are described throughout Chapter 2. 
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Multi Channels System MEA2100-System Headstage 
 
This headstage is available in two configurations to house one or two MEA biochips (B.1). 
 

 
B.1: The two available variants of the MEA2100 headstage. 
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Product Design Specifications 

British standard BS 7373-3:2005 outlines the primary elements of a Product Design Specification 

(PDS); these elements have been considered in the context of this project and given a high, low or 

medium priority according to this work. 

 

PDS1 

The following points can be described as the “gold standard” for this project area. 

Product Design Specification for MEA Systems (in accordance with BS 7373-3:2005).  

1st June 2009 

O.M.Flaherty 

a. Aesthetics. 

Priority: LOW  

Comments: are of relatively low importance to this product. 

 

b. Company constraints. 

Priority: HIGH 

Comments: the development of this novel system is to be completed by three full 

time researchers utilising limited facilities and funding. 

 

c. Competitors.  

Priority: HIGH 

Comments: this is an area of industry that is becoming highly competitive. There is a 

lot of interest globally in how this technology can be developed and adapted (MEA 

Meetings 2008 and 2010). 
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d. Cost of product. 

Priority: HIGH 

Comments: this technology is relatively high-cost in terms of both purchasing and 

setting it up and also in its employment. 

 

e. Customer. 

Priority: HIGH 

Comments: this system is aimed at researchers across a number of biological 

disciplines as well as towards the pharmacology industry. Ability of designs to meet 

their needs will dictate success of this work. 

 

f. Disposal. 

Priority: MEDIUM 

Comments: There are currently no specific regulations governing the disposal of 

MEA systems. The disposal of biochips and systems is likely to require similar 

processing facilities to electrical products regulated by the European Waste 

Electrical and Electronic Equipment directive (WEEE). Reclaimability of materials to 

some degree would be highly desirable. 

 

g. Documentation. 

Priority: MEDIUM 

Comments: the production of appropriate documentation or manuals to for users 

will be required and should be developed alongside the technology at the 

appropriate time. 
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h. Environment. 

Priority: MEDIUM 

Comments: the environment in which the system is to be used will be defined in 

literature. Environmental issues such as power consumption and recycling will be 

considered further into the project once prototyping design in underway. 

 

i. Ergonomics. 

Priority: LOW 

Comments: modular design will be utilised to make the novel system superior to 

present systems from an ergonomic perspective. Current systems are not portable 

and elements that humans interact with are relatively lightweight so this aspect is 

not a pressing priority at this time.  

 

j. Installation. 

Priority: MEDIUM 

Comments: it is not intended that specialist installation will be required as is the 

case for current commercially available systems. 

 

k. Legal.  

Priority: LOW 

Comments: systems used in drug development will need to be robust and 

incorporate appropriate quality control to ensure legal aspects are fully are 

addressed. Regulators will specify details as required. 

 

l. Life (shelf/storage). 

Priority: MEDIUM 

Comments: products will initially be made to order according to demand. 
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m. Life (service). 

Priority: HIGH 

Comments: systems used for chronic studies will be used for months at a time. 

Systems must be robust enough not to fail during use. Biochip parts must be re-

usable at least 10 times, as is the case for commercial equivalents. 

 

n. Life span of product. 

Priority: HIGH 

Comments: System parts must be comparable or better in this element than the 

equivalent part in commercial systems. Biochips = 10 uses, Full system = 5-15 years. 

 

o. Maintenance. 

Priority: HIGH 

Comments: the novel system should require a lesser degree of maintenance than 

present systems. Time savings potentially brought about by design changes must not 

be cancelled out by a need for increased maintenance. 

 

p. Manufacturing facility.  

Priority: HIGH 

Comments: manufacturing capabilities at Loughborough University will be exploited. 

If specialist facilities are required appropriate collaborations will be pursed. 

 

q. Market constraints. 

Priority: LOW 

Comments: this product is intended to compete globally with a number of different 

variants across a number of disciplines. 
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r. Materials. 

Priority: HIGH  

Comments: novel materials may be experimented with. All materials used for 

biochip preparation will be bio inert. 

 

 

s. Packing. 

Priority: LOW 

Comments: will be investigated for each component. Must be able to be sterilised 

and ideally suited to an incubator environment. To be addressed once the initial 

core components have been designed, prototyped and validated. 

 

t. Patents. 

Priority: MEDIUM  

Comments: have been investigated and will be kept up-to-date with regular 

searches throughout the duration of the project so as to ensure Loughborough 

University’s designs do not breach other existing patents. 

 

u. Performance. 

Priority: HIGH 

Comments: all system parts must function robustly. Modes of failure must should be 

considered during design. 

 

v. Politics. 

Priority: LOW 

Comments: are of low importance to this project and product area at this time. 
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w. Processes.  

Priority: HIGH 

Comments: have been identified from the user perspective that must not be 

lengthened but can be shortened.  Manufacturing processes will be addressed in 

more detail in future work according to design decisions. 

 

x. Quality and reliability. 

Priority: HIGH 

Comments: to avoid overall product failure quality and reliability must be proven to 

be equivalent or superior to commercial equivalents at the time of launch. 

 

y. Quantity. 

Priority: MEDIUM 

Comments: will be predicted in future work. 

 

z. Safety.  

Priority: HIGH 

Comments: will be of high importance throughout manufacture and prototype 

testing. The final product must be safe to use and if it fails, it must fail in a safe way. 

Use must pose zero risk to the user.  

 

aa. Shipping.  

Priority: LOW 

Comments: will be considered at the end of the project 
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bb. Size. 

Priority: MEDIUM 

Comments: systems will be designed to be as small and compact as realistically 

possible. 

 

cc. Standards Specifications.  

Priority: MEDIUM  

Comments: shall be investigated in more detail in future work to ensure parts and 

the final system meet any standards identified at the time. 

dd. Testing. 

Priority: HIGH 

Comments: shall be of major importance and will be conducted throughout 

development. 

 

ee. Time scales. 

Priority: HIGH 

Comments: this project is funded for a two years during which time results must be 

generated. 

 

ff. Weight. 

Priority: MEDIUM 

Comments: will not be a major consideration in design. 

 

The following points are in addition to the standard PDS points listed above. The following factors 

are design elements incorporated into the PDS as needs identified of users generically that must be 

addressed by designers in this industry as a whole. 
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MEA technology specific needs identified by users in literature and meetings (broad MEA 

application): 

 

gg. Insulation for cell-to-substrate adhesion. 

Priority: MEDIUM 

Comments: Find a highly hydrophilic insulator that is biocompatible and more 

economical (either in labour or cost) than laminin, Matrigel™, poly-d-lysine, etc. 

 

hh. Opportunity to anchor tissue slices. 

Priority: MEDIUM 

Comments: slices need to be securely but gently secured in place. 

 

ii. Higher density of electrodes. 

Priority: HIGH 

Comments: create opportunity to record from larger areas or to a greater precision 

without compromising the intensity of stimulus that you can pass between the 

electrodes. 

 

jj. One contained system. 

Priority: MEDIUM 

Comments: ideally all testing operations and protocols executed via one interface 

located within full view or as a part of the hardware set-up. 

 

kk. Easy to sterilise. 

Priority: HIGH 

Comments: must withstand current good practice procedures for sterisation. 
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ll. Scalable. 

Priority: HIGH 

Comments: current trends in this industry is for more electrodes and thus data to be 

required. Suggestions that this technology should be used on larger scales would be 

complemented by automation of elements. 

 

mm. Frequency. 

Priority: HIGH 

Comments: maintain or increase current facility to record at rates between 2kHz and 

50kHz. The ability to change frequency of from 0 – a 1000’s Hz is required. It must be 

easy for the user to do this. 

 

nn. Analysis features enhancement. 

Priority: HIGH 

Comments: A new system will be accompanied by an acquisition software that must 

match or be better than current equivalents. Post processing should be designed out 

by writing enhanced capability into a single acquisition and analysis software.  

 

oo. Archiving and data accumulation. 

Priority: MEDIUM 

Comments: ability to automatically analyse hundreds or thousands of trail files 

irrelevant of time of collection quickly is required to make sense of the data being 

captured. 

 

pp. Recording limitations. 

Priority: MEDIUM 

Comments: users do not currently record all of the data but future systems ideally 

should (Kopanitsa et al, 2006). The ability to record from every electrode every time 

without having to be overly concerned about consumption of disk space. 

 

 



494 
 

__________________________________________________________________________________
Appendices 
 

qq. Constant evaluation. 

Priority: MEDIUM 

Comments: allow recording and simultaneous analysis 24 hours a day, 7 days a 

week.  

 

rr. Automatic logging. 

Priority: LOW 

Comments: need improved ways to log which exact pieces of equipment have been 

used  in the creation of each file. Incorporating where and when files were recorded 

and by whom.   

 

ss. Non-invasive. 

Priority: HIGH 

Comments: must be non-invasive to cells. 

 

tt. Interface. 

Priority: HIGH 

Comments: user-friendly interface is essential to guarantee scientist acceptance and 

uptake of the system.  Simple “grab and drop” controls are ideal. Interface MUST be 

simple as users do not want to spend much time learning how to use new software. 

Must be quick to learn. Users would like option boxes that they simply check, click 

“go” and it gives requested values. It will be suitable if this feature has to be carried 

out offline as currently it does not exist. 

 

uu. Perfusion. 

Priority: MEDIUM 

Comments: allow integrated control of perfusions systems.  
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vv. Auto-thresholding. 

Priority: HIGH 

Comments: shifting of preset functions in a rack. Many windows in MC_Rack must 

currently be done one by one, by hand. Automatic threshold setting feature where 

the system sets thresholds according the data coming in. 

 

ww. Wave elements. 

Priority: HIGH 

Comments: New systems need to incorporate more functions that will measure 

actual wave elements automatically. Currently much measurement  is done by hand 

after data has been collected. 

 

xx. Simplify employment. 

Priority: HIGH 

Comments: improved methods for seeding of cells. I.e. potentially eradicate the 

need for coating. MEA with incorporated recession to aid in placement of cells. 

 

yy. Data flexibility. 

Priority: MEDIUM 

Comments: The facility to add markers/flags to the data set online and offline. 

 

zz. Quality control 

Priority: HIGH 

Comments: components that reach users must perform consistently. 
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PDS 2 

July 2009 

The following points are additional to the points discussed in PDS1. These requirements have been 

specifically emphasised by users at The Wellcome Trust’s Sanger Institute and Nottingham 

University’s Centre for Biomolecular Sciences during early group meetings.  

 

 System must sample at 10-25kHz. 

 Hardware must be grounded. 

 Hardware biosensor surfaces inside the media well must be made from biocompatible 

material(s). 

 All hardware parts must be contained in a casing that can be sterilised or must 

themselves be suited to sterilisation. 

Comments: If the entire system is to go in an incubator the electronics must be 

sealed in suitable casing for sterilisation as incubators are sterile environments. 

 Input capabilities must be limited in hardware. 

Comments: to protect/prevent damage to cells or tissue. 

 Hardware headstage unit and amplifiers must have appropriate pre-processing and 

amplification to allow for spike identification. 

 System must allow cell environment to be kept constant. 

Comments: I.e. temperature, humidity, etc. 

 System must allow appropriate human access 

Comments: for culture maintenance and perfusions systems. 

 System must incorporate a visual inspection method. 

 New software must allow thresholds to be configured to data at the time of recording. 

 Software must incorporate adjustable and ideally automatic pre-processing. 

 Software must allow for appropriate post-processing facilities if not incorporated in. 

 Software must be simple for users to learn. 

 Software must incorporate a user-friendly graphical user interface. 
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PDS3 

This product design specification lays down exactly what Loughborough University’s team have been 

working on, incorporating specific points from a document developed by Nottingham University 

users (cardiomyocyte applications) with global and local points that are of high importance to 

system success. 

 

Nottingham University users have specified needs for the biochip to be re-designed in accordance 

with their specific application needs. They have also specified the direction in which software 

changes should be made in order to support their analysis requirements more effectively than 

current protocols. It is the needs of Nottingham Users that this project will primarily focus time and 

resource on. 

 

Biosensor PDS: 

 Modify well maintaining commercial interface configuration. 

Comments: that will interface with the current MCS MEA60 System in their lab. 

 Alter well dimensions to be close to those of a 35mm culture dish. 

Comments: internal dimensions 35mm diameter, 10mm height, culture area 8.8cm2, 

media volume 3ml. 

 Incorporate a light-transmissible lid. 

Comments: to prevent evaporation. 

 Interior of well must allow for potential etching or patterning. 

 Re-usable. 

Comments: therefore must withstand sterilisation using UV light and 70% ethanol. 

 16 micro-wells. 

Comments: in any pattern. 

 Microwells as far apart as possible.  

Comments: at least 5mm in from the edge of the dish.  

 Microwells 500µm diameter,  

 with a maximal depth of 250µm,  

 and a slightly curved shape. 
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Comments: beating clusters at time of seeding vary between 200-500µm in 

diameter. 

 Electrode in centre of well flush to the surface. 

 Microwells as large a surface area as possible. 

 Made from biocompatible material(s). 

 

 

 

Software PDS: 

 Intuitive, simple-to-use software. 

 Output results in real-time 

Comments: while maintaining the current feature of optional post-processing if 

desired. 

 Features to allow patch clamp files to be analysed in the same software. 

Comments: WinEDR software format suggested. 

 Facility to average all traces for a given treatment. 

 Facility to compare averaged traces. 

 Increased detail at individual waveform level. 

Comments: QT-period identification and comparison emphasised as most important 

feature for automated extraction. Other waveform elements of interest detailed in 

the MES Specification document by NU below. 

 Adjustable, automatic pre-processing. 

 Automatic thresholding at the time of recording. 

 

System: 

 Sample rates of at least 2-25kHz. 

 Grounded. 

 Parts that can be sterilised  

Comments: If the entire system is to go in an incubator the electronics must be 

sealed in suitable casing for sterilisation as incubators are sterile environments. 

 Input capabilities limited appropriately. 
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Comments: to protect/prevent damage to cells or tissue. 

 Appropriate pre-processing and amplification. 

 Facilitate/support a constant cell environment. 

Comments: I.e. temperature, humidity, etc. 

 Allow easy access 

Comments: for users to perform culture maintenance and run perfusions systems. 

 Support visual inspection of the cells. 

 Simple to learn. 

 User-friendly interfaces. 
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The MEA Specification Document Drafted for LU by Nottingham University Users. 
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Appendix D 
 

 Case Study Timing Data 

 Standard Operating Proceedure Examples 

 QT-interval Analysis Output Example 
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Case study timing data 

In some cases variation of certain user dependant protocols resulted in timing data that is 

represented as a range (i.e. ~1-3mins). Timing information is represented in this manner where 

skilled dependencies exist in MEA system application. An example of such a situation is 

demonstrated in the figure below (D.1). 

 

 

Remove tissue EB 

form incubator

Identify beaters 

and dissect out

Transfer to 

prepared MEA

Incubator

Place lid over petri 

dish and replace 

into incubator

Differentiated EB

Microscope

Dissection tools

Micropipette

Prepared MEA

User

User

User

User

A part of P.3.A.8 that 

has not been modelled 

in detail as is not 

directly relevant to 

system design but is 

useful in understanding 

how a user interacts 

with the MEA biochip.

 
D.1: An example of an activity where timing information was skilled user dependant. 

The above figure accounts for the variable time given by UoN users for P.3.A.8 in Chapter 4, Figure 

4.6. This phase of the protocol differs depending upon the naturally formed geometry of the newly 

differentiated EB, and also depending upon the skill level of the individual scientist that is 

performing the dissecting task. 
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Example University of Nottingham SOP Documents 

 

SOP for Multielectrode array (MEA) use and pharmacological 

testing on hESC cardiomyocytes 

 

Preparing the MEA 

1) Prepare beating EBs by forced aggregation. Use beating EBs of ideally >20 days of 
differentiation. 

a. Use suitable cardiac selected MEFs for BGK-conditioned medium 
b. Use suitable cardiac selected serum for Diff Medium (= 78% DMEM, 20% cardiac 

serum, 1% NEAA, 1% GlutaMax, 10uM -ME 
2) Prepare MEA (all in class II hood) 

a. If MEA is being reused, treat with 0.25% trypsin for at least 16 hrs 
b. Wash with PBS x 2 
c. Place in 70% ethanol for 5 mins 
d. Allow to dry for ~10’ in a fresh Petri dish 
e. UV treat for 30’ 
f. Matrigel treat MEA 

i. use 1ml of Matrigel and allow to polymerise for 45’ in the hood. 
g. Aspirate and add 1ml PBS 
h. Aspirate and add 1ml of Diff Med 
i. Equiliberate in incubator for > 2hrs 

3) Position up to 4 beating areas on the electrodes of the MEA under the stereo scope. Ensure 
they are sufficiently spaced so not touching each other.  
CARE NOT TO DAMAGE ELECTRODES WITH PIPETTE OR STEM CELL KNIFE (MEAs cost ~£300 

each!!!) 

4) Allow to attach for ~2hrs on the heated stage in the hood.  
5) Check attachment and move (very gently) to incubator to fully attach overnight 
6) To pre-equiliberate Diff Med, add sufficient volumes to T75 flask(s) and place in incubator 

overnight (MEA recordings next day) 
N.B. Although not common practice for normal culture, add pen / strep to Diff Med as current 

MEA recording conditions are non-sterile 
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MEA setup 

7) Ensure sufficient Diff Med to T75 flask(s) has been pre-equiliberated (see above) 
8) Start computer 
9) Switch on heated stage 
10) Open [MEA select] on desktop 

a. Click [change MEA] 
i. This reduces electrical interference to subsequent recordings 

b. Unclip housing and lift top plate 
c. Insert MEA  

i. reference strip = black strip to right hand side = electrode 15 
d. Replace top plate 
e. Fasten clips 
f. Cover with Petri dish 
g. Unclick [change MEA] 

11) Open [MC_Rack] on desktop 

a. For a previous used recording rack open D:/Profile 
Examples/Example of recording rack. If this rack is used, 
jump to click [play] several steps below 

b. If setting up from scratch, proceed to next step 
12) Establish subfolder system as follows 

a. Recorder 
i. MC_Card 

1. Data display (rename to ‘raw data’) 
13) Set parameters in subfolders and associated tabs as follows  

a. Recorder tabs 
i. Rack – no action 

ii. Channels – tick only Electrode raw data 
iii. Recorder  

1. specify file name for each new recording 
2. Set file size to 3 min and tick auto Stop 

iv. Window – highlight Continuous 
b. MC_Card tabs 

i. Rack – no action 
ii. Hardware 

1. Input voltage range -819 to +819mV 
2. Sampling Freq 10000Hz 

iii. Info – no action 
c. Display (raw data) tabs 

i. Rack – no action 
ii. Layout – open inverted 8x8 file 

iii. Data 
1. check only electrode raw data 
2. Plot type – trace 

iv. Window – highlight continuous 
14) Click [play] to check all working OK. 

a. N.B. some parameter adjustments CANNOT be changed when system is playing or 
recording 
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MEA data capture 

15) With a plastic Pasteur pipette, aspirate medium and discard in to pot containing trigene  
a. take care not to damage beaters or MEA 

16) Add 900 ul pre-equiliberated Diff Med 
17) Allow cells to stabilise for 5 min 
18) Click [recorder] 

a. Click recorder tab 
b. Click [browse] 
c. Assign file name 

19) Add 100ul of 10x stock drug (e.g. isoprenaline) and start recording immediately by clicking 
[record] and then [play].  

a. This will record for 3min and then auto stop. 
20) With one plastic Pasteur pipette, aspirate medium and discard in to pot containing trigene 
21) Using a second plastic Pasteur pipette, wash with ~1ml Diff Med 

a. Using a second pipette only for washing should reduce chance of drug carry over 
between treatments 

22) Add 900 ul pre-equiliberated Diff Med 
23) Go to step highlighted in red above 
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Drug concentrations (Make all drug dilutions on day of use) 

 

Agent   Company  Code  Quantity  Price 

 

Isoprenaline  Tocris    1747  100mg   £35 

(Isoproterenol) 

 

Weight out xxx and dilute into YYY of ZZZ (water??) 

Make 10x stocks at 10-8M 

(10nM) 

10-7M 

(100nM) 

10-6M 

(1000nM) 

10-5M 

(10000nM) 

Using 100ul into 900ul Diff Med gives working conc of 

 

10-9M 

(1nM) 

10-8M 

(10nM) 

10-7M 

(100nM) 

10-6M 

(1000nM) 

 

Propranolol  Sigma   P0884  1g   £12 

 

Weight out xxx and dilute into YYY of ZZZ (water??) 

Make 10x stocks at 10-6M 

(1000nM) 

Using 100ul into 900ul Diff Med gives working conc of 

 

10-7M 

(100nM) 
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Finishing 

24) Ensure locations of different beaters on the MEA are recorded in you lab book in a 
diagrammatic form for future reference 

25) Photograph beaters on MEA  
a. if necessary also take video recordings using digital camera on tripod (see Chris for 

details) 
26) Transfer each beater from MEA to eppendorf tube  

a. Alternative 1, place beater in MatTek dish for immunos 
b. Alternative 2, disaggregate and seed to MatTek dish for immunos 

27) Snap freeze in Liq N.  
28) Store at -80oC 
29) Wash MEA twice with PBS 
30) Add 1ml of 0.25% trypsin and incubate for at least 16hrs at 37oC. This: 

a. releases any cells still attached to the MEA 
b. digests the Matrigel matrix.  

31) MEA can be reused following the instructions in ‘Preparing the MEA’ above 
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Play back and analysis (Off-line analysis) 

32) Open [MC_Rack] on desktop 

a. For a previous used analysis rack open D:/Profile 
Examples/Example of analysis rack. If this rack is used, jump 
to Replay File several steps below 

b. If setting up from scratch, proceed to next step 
33) Establish subfolder system as follows 

a. Replayer 
i. Spike sorter 

1. Analyser (set name to Beat rate) 
a. Parameter Display (set name to beats) 

2. Analyser (set name to Amplitude) 
a. Parameter Display (set name to Amp) 

3. Analyser (set name to Minimum Amp) 
a. Parameter Display (set name to Min Amp) 

34) Set details of each folder as follows 
a. Recorder 

i. This tab does not need to be adjusted 
b. Replayer  

i. Rack – no action 
ii. Replayer  

1. Adjust Replay Speed to ensure spike are being analysed properly in 
the display windows 

2. Each file should be 3 min long. Set the start time to 60s 
3. Use Start / Pause button 

iii. Replay File – use to open file to be analysed 
iv. File info – no action 
v. Buffer info – no action 

c. Spike sorter  
i. Rack – no action 

ii. Settings 
1. Pre trigger = 20ms 
2. Post trigger = 100ms 
3. Dead time = 100ms 

iii. Channels – check Electrode Raw Data 
iv. Detection – Threshold channel 12; -119.9uV negative slope; Std Dev -3 
v. Sorting – no spike sorting 

vi. Layout – Use to define electrode that will appear in the display windows 
d. Beat rate  

i. Rack – no action 
ii. Channels – check only spikes 

iii. Analyser 
1. Window means (No. of windows) = 1 
2. Check only Number 

iv. ROI – continuous 2 min bins 
e. Beats 

i. Rack – no action 
ii. Layout – use to define electrodes to be analysed 

iii. Data 
1. check Parameter 1 and Number 
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2. Highlight Number 
iv. Colour – no action 
v. Ranges 

1. Set X and Y axis to min = 0; max = 100 
f. Amplitude 

i. Rack – no action 
ii. Channels – check only Electrode Raw Data 

iii. Analyser 
1. Window means (No. of windows) = 1 
2. Check only Peak-Peak Ampl. 

iv. ROI – continuous 1 min bins 
g. Amp 

i. Rack – no action 
ii. Layout – use to define electrodes that will appear in the display windows 

iii. Data 
1. check Parameter 2 and Peak-Peak Ampl 
2. Highlight Number 

iv. Colour – no action 
v. Ranges  

1. Set X axis to min = 0; max = 100s 
2. Set Y axis to min = -800; max = 800uV 

h. Minimum Amp 
i. Rack – no action 

ii. Channels – check only Electrode Raw Data 
iii. Analyser 

1. Window means (No. of windows) = 1 
2. Check only Minimum 

iv. ROI – continuous 1 min bins 
i. Min Amp 

i. Rack – no action 
ii. Layout – use to define electrodes that will appear in the display windows 

iii. Data 
1. check Parameter 3 and Minimum 
2. Highlight Number 

iv. Colour – no action 
v. Ranges  

1. Set X axis to min = 0; max = 100s 
2. Set Y axis to min = -800; max = 800uV 

 

35) Open file for play back from replayer > Replay File tab (browse) 
36) Go to Replayer > Replayer tab and set start time at 60s  
37) Click start  

a. Ensure thresholds on spike sorter are detecting spikes correctly 
b. Move thresholds by drag & drop 

38) Record data (Can pause run if time is needed to record data) 
a. One reading / electrode will be produced for beats and represents beats in 120s 
b. Two readings / electrode will be produced for Amp (record both) and represent bin 

1 = 60-120s and bin 2 = 120-180s 
c. Two readings / electrode will be produced for Minimum Amp (record both) and 

represent bin 1 = 60-120s and bin 2 = 120-180s 
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MATRIGEL ALIQUOTS AND COATING 

 

PREPARATION OF MATRIGEL 

Available from BD Biosciences, Growth Factor Reduced (GFR) MatrigelTM Matrix is a solubulized 

basement membrane preparation extracted from Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a 

tumor rich in ECM proteins (Greenlee et al., 2004; see www.bdbeurope.com). Its major component 

is laminin, followed by collagen IV, heparan sulfate proteoglycans, and entactin. Matrigel is frozen at 

-20oC, liquid at 0oC and polymerises at room temperature to produce biologically active matrix 

material. This resembles the mammalian cellular basement membrane and can provide a 

physiologically relevant environment for studies of cell morphology, biochemical function, migration 

or invasion, and gene expression (Greenlee et al., 2004). It is also an effective substrate for the 

culture of hESCs in feeder-free conditions.  

 

MATRIGEL ALIQUOTS 

1. Matrigel will arrive in a 10ml pot frozen on dry ice. Transfer immediately to -80oC until 
ready to make aliquots as described below.  

2. To aliquot, place Matrigel pot in a large beaker of ice overnight in the fridge. The 
beaker must still contain ice by the following morning otherwise the Matrigel will start 
to polymerise. Also place a 5 ml pipette, 20 x 0.5 ml eppendorf tubes and an eppendorf 
tube rack at -20oC  

Note: All plastics must be thoroughly chilled and all procedures must be carried out 

swiftly, otherwise polymerization will occur while aliquotting Matrigel.  

3. Using the chilled pipette and tubes, prepare 0.5ml aliquots of Matrigel and store 
immediately at -80oC  

Note: Matrigel can also be stored at -20oC. However, many 20oC freezers undergo freeze 

/ thaw cycles that could adversely affect Matrigel. Therefore, we store Matrigel aliquots 

at -80oC.  

 

PREPARING MATRIGEL-COATED CULTURE VESSELS 

1. To prepare Matrigel-coated flasks and dishes, place 50 ml cold DMEM base medium 
(direct from fridge) into a tube. Also take a 0.5 ml aliquot from the -80oC freezer.  

2. Using a P1000 pipette, draw up cold medium and use this to defrost the aliquot of 
Matrigel. 

3. Transfer the Matrigel to the 50ml tube and mix well.  

4. Immediately add 0.2ml / cm2 of diluted Matrigel to flasks and dishes (i.e. 5ml diluted 
Matrigel / T25 flask; scale volumes according to culture vessel surface area). 

5. Allow to polymerise for 45 min in the hood or overnight in the fridge  

http://www.bdbeurope.com/
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Note: There should be no visible changes when the diluted Matrigel polymerises 

because the Matrigel layer will form as a very thin, transparent layer bathed in excess 

diluting DMEM. If blobs of Matrigel are visible, the diluting or coating process was not 

carried out swiftly enough and premature polymerization occurred. 

6. Matrigel-coated vessels can be stored in the fridge for ~ 1 month. Flasks should have 
the caps fully tightened and dishes should be sealed with parafilm to prevent 
evaporation of the bathing DMEM diluent  

Note: The biological properties of Matrigel are only maintained when wet. It is critical 

that evaporation during storage is minimized. We also use a spirit level to ensure the 

shelves of the fridge are level so parts of the Matrigel-coated vessels do not dry out.  
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QT-interval Analysis Output Example 
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Appendix E 
 

 House of Quality Matrix 

 Additional e-beam deposition models 
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House of Quality Matrix 
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Additional drill down models for Process One of the Clean 
Room Based Photolithography Manufacturing Approach 

 
The following interaction models (E.1 – E.4) captured and communicated further detail of the e-

beam deposition used to coat the glass substrates with Ti and Au. 

 

“Dirty”Area

P.1.A.1.1

Switch on pump 

isolater, system chiller, 

extraction fan, wet 

bench water and mains.

P.1.A.1.3

Check High Vacuum 

Valve is closed, 

Roughing Valve is 

closed, and Backing 

Valve is open.

P.1.A.1.4

Turn on Rotary Pump 

and check pressure 

( 5 x10
-2 

mbar).

P.1.A.1.2

Check High Vacuum 

Valve is closed, 

Roughing Valve is 

closed, and Backing 

Valve is open.

P.1.A.1.5

Switch on Diffusion 

Pump.

t= 5 mins

LU

LU

LU

LU

LU

P.1.A.1

Enter clean 

room

t= 5 mins

- CIMOSA Domain

- Non-CIMOSA Domain

- External Link

- Activity

- Decision

- Document

- Human Resource

- Physical Resource

- Event

- Information

- Finance

 
E.1: Process One (Electron beam deposition), Activity One (Switch on e-beam depositing system). 
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P.1.A.2.1

Check High Vacuum Valve is 

closed, Roughing Valve is 

closed and Backing Valve is 

open.

P.1.A.2.2

Open Isolation Valve and 

then Vent Valve

Leave to reach 

atmospheric 

pressure 

(~8 mins)

P.1.A.3.1

Winch open chamber. Perform 

a general optical check of the 

inside of the chamber. 

P.1.A.3.2

Position the samples for 

evaporation in crucibles inside 

the crucible carrier. 

P.1.A.3.3

Position the substrates for 

coating in the wafer carrier 

above the crucible area.. 

P.1.A.3.4

Check that the mirror held 

inside the chamber is in a 

position that will allow the 

crucible to be seen from the 

viewing port.

P.1.A3.5

Gently winch down the top 

section of the chamber and 

look into the viewing chamber 

to be assured everything is in 

the correct position. 

LU

LU

LU

LU

LU

LU

LU
t= 10 mins

Crucibles x2 Au Sample (5g) Ti Sample

3 inch glass 

wafers x5
Glass substrates x 5 Adhesive t= 5 mins

P.1.A.2 and A.3

- CIMOSA Domain

- Non-CIMOSA Domain

- External Link

- Activity

- Decision

- Document

- Human Resource

- Physical Resource

- Event

- Information

- Finance

E.2: Process One (Electron beam deposition), Activity Three (Insert substrates and materials for deposition). 
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P.1.A.4.1

Close Vent Valve and 

close Isolation Valve.

P.1.A.4.2

Close Backing Valve and 

open Roughing Valve.

Pressure at Head 

2 should drop to 

~7 x 10
-2

 mbar

P.1.A.4.3

Open Isolation Valve to 

“roughout”thechamber.

Leave for ~30 

mins while 

pressure drops to 

< 1 x 10
-1

 mbar

P.1.A.4.4

Close the Isolation Valve, 

close the Roughing Valve 

and open the Backing 

Valve.

P.1.A.4.5

Open the High Pressure 

Valve. Pressure fluctuation 

may knock off the Diffusion 

Pump but it should recover 

within ~5 mins.

P.1.A.4.6

Switch on the Edwards 

Active Gauge Controller. 

Wait for initialisation to 

complete and turn on 

display.

Leave for ~1.5 – 

2 hours mins 

while pressure 

drops to < 2.2 x 

10
-5

 mbar

LU

LU

LU

LU

LU

LU

t= 40 mins

t= ~90-120 mins

P.1.A.4

Process 

other 

substrates

Process 

other 

substrates

- CIMOSA Domain

- Non-CIMOSA Domain

- External Link

- Activity

- Decision

- Document

- Human Resource

- Physical Resource

- Event

- Information

- Finance

E.3: Process One (Electron beam deposition), Activity Four (Pump down the chamber). 
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“Dirty”Area

P.1.A.7.1

Close chamber.

P.1.A.7.2

Close Vent Valve and close 

Isolation Valve.

P.1.V.7.3

Close Backing Valve and 

open the Roughing Valve.

P.1.A.7.4

When pressure at Head 2 is 

~7 x 10
-2  

open Isolation 

Valve to“roughout”the

chamber.

P.1.A.7.5

Close Roughing Valve and 

open Backing Valve.

Allow pressure to 

drop

(~20 mins)

P.1.A.7.6

Switch off Diffusion Pump 

and then Rotary Pump.

Thisisthesystems“normalstate”.

P.1.A.7.7

Switch off all power sources 

in cleanroom.

P.1.A.7.8

Switch off pump isolater, 

system chiller, extraction 

fan, wet bench water and 

mains.

LU

LU

LU

LU

LU

LU

LU

LU

t= 25 mins

t= 10 mins

P.1.A.7

Leave clean room - CIMOSA Domain

- Non-CIMOSA Domain

- External Link

- Activity

- Decision

- Document

- Human Resource

- Physical Resource

- Event

- Information

- Finance

 
E.4: Process One (Electron beam deposition), Activity Seven (Close down system). 
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Appendix F 
 

 Custom-made supporting electronics 

  



531 
 

__________________________________________________________________________________
Appendices 
 

The Supporting Electronics and Software Solution 

 

Additional research overlapping with this work also specified supporting electronics for a new MEA 

system (F.1). Hitex Development Tools, Coventry UK, manufactured the prototype to filter and 

amplify signals with complimenting embedded real-time signal processing capability.  

A signal simulator was incorporated into the unit to test the surrounding electronics that would not 

be required in systems that were to be supplied to an end user.  

 
F.1: The Loughborough University Supporting Electronics Prototype. 

The custom-made supporting electronics was designed to be powered by a +12V continuous power 

supply. 

In order to consider the level of amplification present in the MCS system presently exploited by 

project collaborators an MCS MEA Signal Divider (SD) was purchased (F.2). The MEA-SD is inserted 

into the MEA 60 system between the MEA 1060 amplifier and the MC_Card also using 68-pin SCSI 

cables (see figure below). Comparing values of signals visualised in MC_Rack with those visualised on 
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an oscilloscope connected to the signal divider it is possible to understand the level of amplification 

in the MCS headstage. 

 

 
F.2: An MCS MEA Signal Divider for connection between the MCS 1060 headstage amplifier and the 

MC_Card. The supply voltage inputs are ordinarily not used for this device. A low-noise isolated power 
supply with 21W power and ±7V output voltage (PS20W) can be used for custom setups where the IPS10W 
power supply (usually integrated into the PC) is not connected. Input supply voltage can range from 6V to 

12V in such cases. 

 

The custom-made electronics connects up to 8 channels of signals from a live culture in an MEA 

biochip. The connections for both the live inputs and the simulated inputs, used in pre-test system 

and software validation, are demonstrated in the figure below (F.3). 

 
F.3: The Loughborough University Real-time Inputs and Signal Simulator Connections. 



533 
 

__________________________________________________________________________________
Appendices 
 

The outputted filtered and amplified signals from the custom-made system can be visualised 

through connection of an appropriate device to the inputted channels corresponding BNC connector 

(F.4). 

 
F.4: The Loughborough University Real-time Outputs via BNC connection. 

 

The ARM Cortex-M3 microprocessor was state-of-the-art in January 2009 when hardware 

specifications were drafted. A top of the range microcontroller was selected to facilitate the 

intention to develop improved processing of neural signals in real-time (a long-term objective of the 

project). The contracted company (Hitex, Coventry UK) defined the maximum number of recording 

I/Os as 8 channels per microcontroller. System components designed would be scaled accordingly. 

Therefore 4, 8, 10 and 16 channel layouts were investigated throughout MEA biochip design 

iteration.  


