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Abstract

Charge-carriers propagating in superlattices exhibit the related phe-

nomena known as negative differential conductivity and Bloch oscil-

lation. This behaviour may be utilised for the generation of tunable

electromagnetic radiation. In this work, the dependence of the drift ve-

locity and displacement of charge-carriers on external, applied electric

fields is investigated. The theory is extended to incorporate a different

miniband structure, with the aim of modelling a superlattice made from

graphene. I predict that, for a chosen set of electric field parameters,

a semiconductor superlattice will emit radiation in the terahertz range.

I create an original mathematical framework within which to calculate

the charge-carrier behaviour in a triangular miniband structure, while

incorporating an arbitrary variable to account for the effects of corruga-

tion or disorder, and predict the appearance of conductivity multistabil-

ity. This may be of interest to further work done on the use of graphene

for superlattice device construction.
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1.1 Band and miniband theory

1.1.1 Band Theory in Solid State Physics

Band theory describes the effect of a lattice on electronic energy levels in

a bulk or macroscopic system. Instead of having discrete energies, as they

would when considered on an individual basis, the available energy states

form bands. Consider two identical atoms, with identical energy spectra,

being brought closer together. The Coulomb interaction between the two

causes the each of the energy levels of both atoms to divide into two narrowly

separated levels.

In a bulk system, such as a crystal lattice, the interactions between all N

atoms present force the energy spectra of the individual atoms to split into N

discrete levels, each very close in energy to its neighbours. For large systems

(large N) each of these groups of divided energy levels can be considered

continuous (the continuum limit). The components of this new spectrum are

known as bands. The lattice periodicity helps determine the nature of the

bands.

1.1.2 Superlattices and miniband formation

A novel type of artificial crystal structure was proposed in 1970 by Leo Esaki

and Raphael Tsu[1], as a candidate for observation of a new electrodynamic

phenomenon. The term ”superlattice” is used to describe an array of two, or

more, periodically arranged materials to form a new system with different
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electronic behaviour.

One-dimensional superlattices have been studied extensively since the veri-

table explosion of interest in Esaki and Tsu’s seminal paper. The most com-

mon superlattice systems resemble stacks of two different semiconducting

materials, periodic along what is called the “superlattice axis”.

It is this layering arrangement that brings about the formation of electron

”minibands”, and the manner in which they are layered can create different

types of superlattice[2]. It is within the mathematical description of these

minibands that the electrodynamic transport properties of superlattices may

be investigated.

Consider a superlattice constructed using two semiconductor materials, sim-

ply denoted 1 and 2 (a typical superlattice may consist of GaAs and AlxGa1−xAs

as materials 1 and 2, respectively). The two materials have different band

widths. As a consequence, when arranged in a layered, periodic manner, the

chemical potential will vary with location inside the resulting superlattice.

This way, it is possible to generate a potential landscape that can be described

as a series of quantum wells, separated by barriers, whose height and thick-

ness are characteristic of the semiconductors used to make the superlattice.

What a charge carrier now experiences is a new superperiodicity: the effec-

tive lattice constant of the superlattice system. This can be much larger than

the original lattice constants of either semiconductor, and is simply the sum

of the barrier and well widths, which are in turn directly dependent on the

layer thicknesses.

Since the lattice period of the superlattice is greater than that of a typical

crystal, its Brillouin zones are correspondingly narrower. In this way, it is
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Figure 1.1: Depicted above is a schematic of a bulk, one-dimensional

superlattice and its corresponding potential landscape. Note how the

variation of chemical potential generates a series of quantum wells

separated by thin barriers.

evident how superlattices exhibit novel electronic substructures known as

minizones and minibands.

Between respective quantum wells, the wavefunctions of charge-carriers within

the superlattice are coupled via the mechanism of quantum tunnelling. The

strength of this coupling depends on the height and width of the potential

barrier separating the wells. In the limit of very high or very thick barriers,

the superlattice can be modelled by considering isolated wavefunctions in

each well, with a very small (but finite) probability of interwell tunnelling.

However, in the case of stronger coupling, interwell interaction causes the
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splitting of energy levels in neighbouring wells into new minibands, in a way

similar to band formation as described above. Under conditions that will be

elaborated upon later in this work, it is valid to describe the dynamics of the

charge-carriers in the superlattice within a quasiclassical framework.

1.2 Miniband structure

1.2.1 The tight-binding approximation

Calculating the band structure of a bulk system is a very important aspect of

solid state physics, and it can prove extremely difficult. There exist different

methods for doing so analytically, such as the free electron model, the KKR

model (also known as the muffin-tin potential), Green’s function methods,

and the tight-binding approximation. These are all useful, and applicable, in

their own ways.

The tight-binding approximation starts building a model of a crystal lattice in

the limit of widely spaced atoms with weakly interacting electronic orbitals.

This approximation remains valid for atoms with closely bound electrons

that have little or no interaction with other atomic potentials. In contrast, the

free electron model most accurately describes materials whose orbitals over-

lap significantly, and whose valence electrons are not bound in an orbital.

The free electron model then is a good choice for modelling metals, where

interatomic distance is small.

It is straightforward to utilise the tight-binding model for calculation of the
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band structure of electrons moving in a periodic potential. This is relevant

because it will now be used to derive the miniband structure of a superlattice.

Consider an electron located inside a finite, periodic potential (a crystal lat-

tice). In order to find the energy levels relevant to this system, it is necessary

to solve the appropriate Schrödinger equation. The approximation used to

formulate the wavefunction of the electron in this crystal is called the tight

binding approximation. The wavefunction then is a linear combination of

the effect of the potentials from all atoms in the crystal upon the electron,

and can be written as[4, 5]:

ψk(r) = ∑
j

ckjφ(r− rj)

which is a sum taken over all j atoms in the lattice. The atomic orbitals are

denoted by φ(r− rj), where rj is the distance to the lattice point under consid-

eration. It is assumed that there is one lattice site per unit cell. These are Bloch

functions, where the coefficients ckj = |A|2eik·rj denote plane waves, and A

is a normalisation constant. This can be proved by considering a translation

from one lattice point to another; a vector denoted t. A Bloch function must

be periodic over the whole system, and therefore the wavefunction should

be similarly periodic. If there are N atoms in the crystal, then the coefficients

are ckj =
1√
N

eik·rj and the wavefunction at the second lattice point is given by

ψk(r + t) =
1√
N

∑
j

eik·rj φ(r + t− rj)

taking the factor eik·t outside the sum allows us to write

ψk(r + t) =
eik·t
√

N
∑

j
eik·(rj−t)φ(r− (rj − t)) (1.1)

= eik·tψk(r) (1.2)
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which satisfies the criterion for being a Bloch function. The normalisation

condition requires ∫
|ψ|2d3r = 1

which allows us to write∫
ψ∗ψ d3r = |A|2

∫
∑
m

e−ik·rm φ∗(r− rm)∑
j

eik·rj φ((r))− φ((r)j) d3r (1.3)

= |A|2
∫

∑
m

∑
j

eik·(rj−rm)φ∗(r− rm)φ(r− rj) d3r (1.4)

where m is an index denoting the destination lattice site after translation by

the vector t. The above integral is true if j = m. Replacing all m with j, we

calculate the probability of finding the electron at any particular lattice site j

in a system of N lattice sites to be

P = ∑
j

∫
φ∗φ d3r =

1
N

We can now write the atomic wavefunctions fully:

ψk(r) =
1√
N

∑
j

eik·rj φ(r− rj)

The next stage involves using the variational method to calculate the lowest

energy eigenstate of the electron. We know that

Ek = 〈ψk|Ĥ|ψk〉 (1.5)

ψ = ∑
k

ckjφ (1.6)

The variational principle states that the ground state energy, E0, is always

less than or equal to the expectation value of the Hamiltonian Ĥ calculated

with any trial wavefunction. The expectation value of Ĥ using a trial wave-

function ψtr is

〈ψtr|Ĥ|ψtr〉 =
∫

ψ∗trĤψtr dt∫
ψ∗trψtr dt

(1.7)
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Since the eigenfunctions of the Hamiltonian form a complete basis, the trial

wavefunction can be expressed as a linear combination of these eigenfunc-

tions:

ψtr = ∑
n

cnψn

where

∑
n
|cn|2 = 1

Remembering that the true eigenfunctions ψn are orthogonal and normalised,

it follows that the trial wavefunctions ψtr are also. This implies that the de-

nominator in equation (1.7) is equal to unity. Let us now calculate the expec-

tation value of the Hamiltonian:

〈ψtr|Ĥ|ψtr〉 =
∫ (

∑
n

c∗nψ∗n

)
Ĥ

(
∑
m

cmψm

)
dt (1.8)

= ∑
n,m

c∗ncm

∫
ψ∗nĤψmdt (1.9)

= ∑
n,m

c∗ncmEmδnm = ∑
n
|cn|2En (1.10)

and since En > E0 for all n, 〈ψtr|Ĥ|ψtr〉> E0. Therefore, using the variational

principle, we can calculate Ek as follows:

Ek = 〈ψk|Ĥ|ψk〉 (1.11)

=
∫ 1√

N
∑
m

e−ik·rm φ∗(r− rm)Ĥ
1√
N

∑
j

eik·rj φ(r− rj) d3r (1.12)

Using a substitution æm = rm − r, the above can be rewritten:

Ek =
1
N ∑

m,j
eik·(rj−rm)

∫
φ∗(r− rm + rj)Ĥφ(r− rm + rj) d3r (1.13)

=
1
N ∑

m
e−ik·æm

∫
φ∗(r−æm)Ĥφ(r) d3r. (1.14)

Now we neglect all integrals higher than first order (i.e. m > 1) and consider

only nearest neighbours. The two remaining integrals are

−α =
∫

φ∗(r)Ĥφ(r) d3r

−γ =
∫

φ∗(r)Ĥφ(r) d3r (1.15)
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It is now possible to write the following:

〈ψk|Ĥ|ψk〉 = Ek = −α− γ∑
m

e−ik·æm

where γ is the overlap energy and æ is the interatomic distance. For a simple

cubic lattice, the vector describing the displacement of the six nearest neigh-

bours from a lattice point situated at the origin is:

ρ = (±a,0,0); (0,±a,0); (0,0,±a)

substituting this into the above result for the energy eigenstates we get

Ek = −α− γ(cos (kxa) + cos (−kxa) + cos (kya) + cos (−kya) (1.16)

+ cos (kza) + cos (−kza))

= −α− 2γ(coskxa + coskya + coskza) (1.17)

Since −1 ≤ coska ≤ 1, then the range of values that the energy can take is

−α − 6γ > Ek > −α + 6γ. As a result, we can say that the energy value is

confined within a band, of ”width” 12γ. It is very important to note that

this tells us that the weaker the overlap energy, the narrower the band. For

|ka| � 1, equation (1.17) can be Taylor expanded to second order:

Ek ≈ −α− 6γ + γk2a2

and the effective mass of the quasiparticle moving through the band can be

calculated using 1
m∗ =

1
h̄2

∂2E(k)
∂k2 giving

m∗ =
h̄2

2γa2

This implies that the lower the overlap energy, the greater the effective mass

of the quasiparticle. Let us consider the one dimensional case, along the z-

axis. The energy-momentum relation along this axis is given by Ek = −α−

2γcoskza, and its extrema are

Ek =

−α + 2γ

−α− 2γ
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which implies a band width of 4γ. Let us define the amplitude of the si-

nusoidal band to be ∆
2 = 4γ

2 = 2γ which is half of the band width ∆. For

simplicity, let us redefine the reference point of Ek in the following way:

Ek − α = 2γ(1− coskza) = εk

where

εk = 2γ(1− coskza) (1.18)

=
∆
2
(1− coskza) (1.19)

This derivation can be directly applied to a charge-carrier moving through

the periodic potential that constitutes a superlattice system. Under the con-

straints that the miniband transport framework requires for validity, it is

trivial to replace the interatomic distance a with the effective period of the

superlattice d; and the band width ∆ with ∆SL, the miniband width, yielding

the energy E(k) of a charge-carrier with quasimomentum k in a superlattice

miniband

E(k) =
∆SL

2
(1− coskd). (1.20)

The Boltzmann transport approach is used in a recent paper[6] to analyse

transient electron behaviour in a semiconductor superlattice.

1.3 Superlattice electrodynamics - static bias

1.3.1 Bloch oscillation

Knowing that the energy spectrum of an electron in the lowest miniband of

a semiconductor superlattice is given by E(k) = ∆
2 (1− coskd) (omitting the
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SL subscript for simplicity); under an applied electric field F = F0z, where

the superlattice axis is parallel to z, we solve Newton’s equation dk
dt =

eF0
h̄ to

find the quasimomentum k(t) as a function of time. We get k(t) = eF0t
h̄ , which,

after using the kinetic equation 1
h̄

dE
dk = vg(t) to calculate the group velocity,

we know the group velocity as a function of time:

vg(t) =
∆d
2h̄

sin
eF0d

h̄
t.

This allows the calculation of the displacement of the electron in real space,

by integrating the group velocity with respect to time to get

x(t) = − ∆
2eF0

coswbt.

This equation describes an electron oscillating in space with the frequency

known as the Bloch frequency, given by wb =
eF0d

h̄ (see Figure 1.2 for illustra-

tion). It is important to note that the Bloch frequency is directly proportional

to both the magnitude of the electric field F0 applied to the superlattice, and

the superlattice’s effective period d; while the amplitude of the motion is

inversely proportional to the size of the electric field. From this, it follows

that increasing the electric field strength will lead to stricter electron confine-

ment, as the amplitude will tend to zero with increasing F0. At (a) in Figure

1.2, time t = 0, the particle has zero momentum and energy as the external

electric field is ”switched on”. After undergoing acceleration due to the elec-

tric field, the particle reaches its top speed at the inflection point (b). From

here the particle begins to decelerate until it reaches zero velocity at point

(c). As the particle is forced to remain in this miniband, the only way to

gain momentum is to continue propagating along the miniband. As a re-

sult, its velocity changes sign and the particle begins moving backward in

space, equivalently ”appearing” at point (d) using the reduced zone scheme

description of the miniband structure. It is important to note that the electric

field in this case is static, and that either the system is assumed dissipation-

less or that the scattering time is greater than the period of Bloch oscillation.
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1st Brillouin zone

zone boundary zone boundaryzone boundary

Bloch oscillation

E(k)

k
(a)

(b)

(c)(d)

Figure 1.2: A charge-carrier undergoes Bloch oscillation in the first

miniband. The group velocity of the charge-carrier is directly pro-

portional to the gradient of its energy-momentum relation for a given

value of quasimomentum.

Bloch oscillation is a quantum mechanical effect, and it appears to constitute

something similar to a Bragg scattering event at the edge of the Brillouin

zone. Later, we will examine the energy landscape under more complex

fields.

In such basic terms, scattering processes have not been taken into account:

this derivation is only valid for an effectively dissipationless system. This can

be rectified when investigating transport properties under such frameworks

as the balance equation approach[7, 8], or by the probabilistic approach used

by Esaki and Tsu. The latter approach will be explored in greater detail and

used as the basis of calculation of drift velocity throughout this thesis.



1.3 Superlattice electrodynamics - static bias 21

1.3.2 Emitted radiation

Inducing Bloch oscillations in a superlattice is a way of using an applied field

to generate radiation of frequency ωemit = ωb, the power of which can be

calculated using the Larmor formula

P(t) =
e2

6πεc3

(
dvg(t)

dt

)2

,

where vg(t) is the time-dependent group (or instantaneous) velocity of an

oscillating charge.

(
dvg(t)

dt

)2

=

d
(

v0 sin eF0d
h̄ t
)

dt

2

= (v0ωb cosωbt)2,

where v0 =
∆d
2h̄ . Therefore the instantaneous power of emitted radiation is

P(t) =
e2

6πεc3

(
∆d
2h̄

)2

ω2
b cos2 ωbt,

where ωb = eF0d/h̄. This predicts that the power of emitted radiation from

a superlattice, whose charge-carriers are undergoing Bloch oscillation due

to an applied static bias, is proportional to the strength of the applied field

squared. It is worth noting that the power is similarly proportional to the

miniband width and superlattice period. Let us calculate the average power

emitted from the superlattice:

Pav =
1
T

T∫
0

P(t)dt = A
1
T

T∫
0

cos2 ωbtdt (1.21)

=
A
T

(
2ωbT + sin2ωbT

4ωb

)
(1.22)

where

A =
e2

6πεc3

(
∆d
2h̄

)2

ω2
b
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for simplicity. Averaging over one period T = 2π/ωb, the average power is

given by:

Pav =
A
2
=

e2

12πεc3

(
∆d
2h̄

)2

ω2
b

For a superlattice primarily constructed from GaAs, typical values are ∆ ≈

0.03eV and d ≈ 100Å. For a Bloch frequency ωb ∼ 10THz the average ra-

diation power is Pav ∼ 1eVs−1. This is in agreement with extrapolation of

experimental results in [3].

1.3.3 Terahertz radiation

There exists in the electromagnetic spectrum a region, between the far in-

frared and microwave regions. The range of this ”gap” roughly spans the

orders 11 to 14, or 0.1 to 100 terahertz. Up until recently, interest in this re-

gion of the spectrum has been stunted by the difficulty in finding methods to

generate and detect such frequencies of useful amplitude.

Figure 1.3: Approximate region of the electromagnetic spectrum that

constitutes the ”terahertz gap”.

Terahertz radiation is non-ionising. It can pass through such materials as

clothes, brickwork, paper and cardboard, ceramics, plastics and wood. It is

being investigated for its use in quality assurance, with such scope of appli-

cation that it includes detecting engineering flaws in space shuttle compo-
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nents. Terahertz body scanners are currently being used in airports world-

wide as a major part of the security infrastructure, as they prove adept at

detecting explosives or otherwise dangerous chemicals, plastic firearms, ce-

ramics knives, and other weaponry[15]. The frequency of terahertz radia-

tion matches with biomolecular vibrations. Coupled with their ability to

penetrate several millimetres into skin tissue and lack of ionising-related

damage, terahertz waves may prove invaluable in a broad medical context,

for such things as detection of skin cancer, and imaging and cavity detec-

tion in dentistry. Other uses include submillimetre astronomical research in-

terests, high-altitude telecommunications, manufacture process monitoring,

and many aspects of spectroscopy[16].

Research interest[9, 10] in this so called ”terahertz gap” has been reinvigo-

rated, in part, by advances in branches of physics and electronics, since two

candidates in particular have been found for possible use for terahertz emis-

sion and detection - arrays of Josephson junctions[11, 12], and semiconductor

superlattices[13, 14]. Recent advancements include the production of a chip

capable of transmitting 1.5 gigabits per second[17], and a publication[18] by

researchers from the Tokyo IoT claiming a new record had been set for wire-

less data transmission using terahertz waves, proposing their use as a new

bandwidth for communications.

Bloch oscillations, whereby a charge-carrier spatially oscillates due to quan-

tum mechanical confinement as described earlier, can occur in superlattices.

Since any accelerating charge will radiate electromagnetic waves, the power

of which is given by the nonrelativistic Larmor formula. It follows that if it

is possible to tune the Bloch oscillations taking place in any way, this will

translate to tunability of the emitted radiation.
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This presumption forms the basis of this research. I will examine how apply-

ing electrical fields to superlattice systems can facilitate tunability of electro-

magnetic radiation, with possible application to emission of terahertz radia-

tion.

1.4 Dissipation - Scattering

So far we have dealt only with situations in which the electrons have not in-

teracted with their environment; there has been no dissipation of energy. In

reality, electrical systems are not dissipationless. They lose energy through

a process known as scattering, whereby the charge-carriers moving through

the system collide or interact with the atoms constituting the material. In this

way, the charge-carriers’ group velocities will change as they undergo scat-

tering events. Scattering can be accounted for and included in the following

approaches[4].

1.4.1 Boltzmann transport equation

1.4.1.1 Introduction and background

Under equilibrium conditions, (fermionic) charge carriers in a material are

distributed in energy and momenta, probabilistically weighted and governed

by the well known Fermi-Dirac distribution function:

f 0
k =

1

e
εk−µ
kBT + 1

(1.23)
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where εk is the energy of a particle with momentum k, µ is the chemical

potential, kB is Boltzmann’s constant and T is the temperature. In order to

study transport properties of materials, this concept needs to be extended to

non-equilibrium situations.

The behaviour of charge carriers present in a material is affected by applying

external fields or temperature gradients. Such situations are studied in non-

equilibrium statistical mechanics, and in order to be studied with rigour, a

transport equation needs to be set up which takes into account the statistical

distribution of each particle. Specifically, the situations to be studied are ones

in which particles are accelerated by external influences and undergo scatter-

ing processes, during which they lose or transfer their acquired energy. An

equation which considers all of these conditions can be set up, and is called

the Boltzmann transport equation. It can be used to derive such transport

properties as thermal, electrical, and Hall conductivity.

1.4.1.2 Derivation of the Boltzmann transport equation

Let us define a quantity, or distribution, fk(r), which details the local density

of charge carriers with momentum k in the region r. Firstly, we assume that

we are dealing with a set of non-interacting particles. This means we can use

the single particle distribution function with no approximations. We must

assume that fk(r) varies with time, in three fundamental ways.
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1.4.1.3 Diffusion

Charge carriers enter and exit region r. If vk is the group velocity of a charge

carrier with momentum k, then in a time interval t it will travel a distance

vkt. Since the particles in the material are governed by Hamiltonian dy-

namics, Liouville’s theorem (the phase space distribution function is constant

along trajectories of the system, that is, the density of points in vicinity of an

arbitrary point travelling in phase space is time independent) applies, and

we can say that the number of charge carriers in the vicinity of r at time t is

equal to the number of charge carriers in vicinity of r− vkt at time t = 0:

fk(r, t) = fk(r− vkt,0) (1.24)

This means that the rate of change of the distribution due to diffusion is

∂ fk

∂t

∣∣∣
diff

= −vk
∂ fk

∂r
= −vk · ∇ fk (1.25)

1.4.1.4 External fields

External, or applied, fields will change the momenta of charge carriers at a

rate given by the equation of motion

∂k
∂t

=
e
h̄

(
E +

1
c

vk ×H
)

. (1.26)

We can look at this as the velocity of the charge carrier in k space, so via

analogy with equation (1.24)

fk((r), t) = fk−t ∂k
∂t
(r, t) (1.27)

therefore the applied fields change the distribution at the rate

∂ fk

∂t

∣∣∣
f ields

= −∂k
∂t

∂ fk

∂k
= − e

h̄

(
E +

1
c

vk ×H
)

∂ fk

∂k
(1.28)
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1.4.1.5 Scattering

For the purposes of this derivation we will consider only the effects of the

simplest type of scattering process, elastic scattering. If a particle scatters

elastically, its kinetic energy is conserved, only its direction of motion is al-

tered. The rate of change of the distribution given the occurrence of this

scattering is given by

∂ fk

∂t

∣∣∣
coll

=
∫
{ fk′(1− fk)− fk(1− fk′)}Q(k,k′)dk′ (1.29)

That is, if the momentum of a particle undergoing a collision changes from

k to k′, the distribution function will decrease. The likelihood of this hap-

pening depends on the function fk itself, on the momentum of the incident

charge carrier k, and on the quantity (1 − fk′), which is a measure of the

number of available momentum states k′ the charge carrier can occupy af-

ter the collision. The opposite of this process is also a possibility, weighted as

fk′(1− fk). This needs to be taken into account, as the next step is to sum over

all possible final momenta k′. The quantity Q(k,k′) destroys the symmetry

of these two possibilities by labelling all possible collision situations with a

transition probability which depends on the initial and final momenta of any

given scattering process. Q then quantifies the rate of transition from an ini-

tial momentum k to a final momentum k′ given that before the collision, k

was occupied and k′ was an available momentum state. Furthermore, Q be-

comes a common factor in the integrand above as a consequence of a concept

directly linked to the principle of the conservation of energy, known as mi-

croscopic reversibility, which is a symmetry of this type of electromechanical

process.

The Boltzmann transport equation tells us that for a charge carrier located at

a given point r in the system and in any momentum state k, the net rate of
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change of the distribution is zero. That is

∂ fk

∂t

∣∣∣
diff

+
∂ fk

∂t

∣∣∣
fields

+
∂ fk

∂t

∣∣∣
coll

= 0 (1.30)

it is important to note that this equation describes a steady state, not an equi-

librium state. We label the equilibrium distribution function f 0
k, which we

recognise as the Fermi-Dirac distribution function. This function holds when

the external fields and temperature gradients are not applied to the system.

The next assumption to make is that the steady state distribution function

does not deviate far from the equilibrium distribution. This allows us to de-

fine a distribution gk such that

gk = fk(r)− f 0
k (1.31)

We now need to consider the effects of temperature variance through the

system. Assuming the value of the temperature is well defined at all points,

we can write

gk = fk(r)− f 0
k {T(r)} (1.32)

We can also state that, since we might expect that across the entire range of

possible occupied momentum states k, the sum of all the differences between

the steady state distribution and the equilibrium distribution at each k is

zero, we can write ∫
dk( fk(r)− f 0

k) =
∫

dkgk = 0 (1.33)

Now since we have defined gk in equation (1.31), we can substitute it along

with equations (1.24) and (1.27) into equation (1.30) to rewrite the Boltzmann

transport equation as the following

− vk
∂ fk

∂r
− e

h̄
(E +

1
c

vk ×H)
∂ fk

∂k
= −∂ fk

∂t

∣∣∣
coll

(1.34)

Recalling that fk = gk + f 0
k, this becomes

− vk
∂ f 0

k
∂T
∇T − e

h̄
(E +

1
c

vk ×H)
∂ f 0

k
∂k

(1.35)

=− ∂ fk

∂t

∣∣∣
coll

+ vk∇gk +
e
h̄
(E +

1
c

vk ×H)
∂gk

∂k
(1.36)



1.4 Dissipation - Scattering 29

The group velocity of a charge carrier with energy momentum relation ε(k),

via the kinematic principle, is given by

vk =
1
h̄

∂ε

∂k
(1.37)

where f 0
k denotes the Fermi-Dirac distribution function, therefore the trans-

port equation becomes

−
∂ f 0

k
∂ε

vk ·
{

ε(k)− µ

T
∇T + e(E− 1

e
∇µ)

}
(1.38)

=− ∂ fk

∂t

∣∣∣
coll

+ vk · ∇gk +
e

h̄c
(vk ×H) · ∂gk

∂k
(1.39)

where the term E · ∂gk
∂k has been taken to be zero due to it being proportional

to E2, causing a deviation from Ohm’s law; and the term vk · vk × H ≡ 0

disappears identically to zero. This equation is known as the ”linearised

Boltzmann transport equation”, and will be used to calculate the electrical

conductivity of a given system under certain circumstances.

1.4.1.6 Electrical Conductivity

In a system whose boundaries extend to infinity in space, in the absence of

an applied temperature gradient or magnetic field, equation (1.39) becomes

−
∂ f 0

k
∂ε

vk · eE = −∂ fk

∂t

∣∣∣
coll

(1.40)

which, by equation (1.29), gives us the following integral equation for gk

−
∂ f 0

k
∂ε

vk · eE =
∫
( fk − fk′)Q(k,k′)dk′

=
∫
(gk − gk′)Q(k,k′)dk′ (1.41)

Phenomenologically, we can write

− ∂ fk

∂t

∣∣∣
coll

=
1
τ

gk (1.42)
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This is known as the relaxation time approximation. This makes the assump-

tion that the electron distribution after a scattering process occurs does not

depend on the non-equilibrium distribution beforehand, and that these col-

lisions do not affect the form of the equilibrium distribution function (in this

case, the Fermi-Dirac distribution function). In other words, collisions seek

to return the system to its equilibrium configuration. It is assumed that the

rate of change of fk is proportional to the degree that it differs from f 0
k. Fur-

thermore, as one might expect, in the absence of an applied electric field E,

gk would decay to zero as

gk(t) = g0e−
t
τ (1.43)

Substituting equation (1.42) into (1.40) gives

gk = −
∂ f 0

k
∂ε

τvkeE (1.44)

The next step in calculating the conductivity is to evaluate the current density

J where

J =
∫

evk fkdk =
∫

evkgkdk (1.45)

since the integral of f 0
k ≡ 0 (because it is safe to assume that no current flows

when the applied field is zero). To transform this integral over a volume of

k space into an integral over surfaces of constant energy ε, we can use the

following formula∫
dk =

1
4π3

∫
dε
∫ 1

∂ε
∂k

dS =
1

4π3

∫
dε
∫ 1

h̄vk
dS (1.46)

Current density can now be expressed as

J =
e2τ

4π3h̄

∫∫
vk(vk · E)

(
∂ f 0

k
∂ε

)
∂S
|vk|

dε (1.47)

According to Fermi-Dirac statistics, in a metal, the distribution behaves like a

delta function at the Fermi level (the Fermi-Dirac distribution function tends

toward a step function centered at the chemical potential, whose negative
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gradient therefore tends toward a delta peak). This allows simplification of

equation (1.47), since ∫
−

∂ f 0
k

∂ε
dε ≡ 1 (1.48)

the current density becomes

J =
{

e2τ

4π3h̄

∫ vk · vk

|vk|
dSF

}
· E (1.49)

where the term in brackets is the conductivity tensor σ, requiring us to write

it in explicit dyadic notation:

σ =
e2τ

4π3h̄

∫ vk · vk

|vk|
dSF· (1.50)

If the electrical response to the applied field is parallel to the field, then vk ·

E = vkE and the conductivity is now

σ =
e2τ

4π3h̄
1
3

∫
vdSF (1.51)

σ =
e2

4π3h̄
1
3

∫
λdSF (1.52)

where λ = vτ is the mean free path of a charge carrier with total velocity v.

The factor of 1/3 comes from the fact that we have only taken into account

the velocity contribution along one of the three axes.

1.4.1.7 Fermi surface and distribution function

It can be seen from the kinematic equation k̇ = −eh̄−1E that at the moment

that the electric field is applied, all the electrons in the Fermi sea are acceler-

ated and gain momentum equal to eτh̄−1E before they undergo any scatter-

ing process. From equation (1.44), we can write

fk = f 0
k −

∂ f 0
k

∂ε
eτvk · E = f 0

k −
∂ f 0

k
∂ε

∂ε

∂k
eτ

h̄
· E (1.53)
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Applying Taylor’s theorem, this becomes

fk = f 0(k− eτ

h̄
E) (1.54)

This equation describes how the entire Fermi surface is displaced by eτh̄−1E

in momentum space. These principles are shown diagramatically in Figures

1.4 and 1.5.

Figure 1.4: Fermi sea of electrons moving in response to the applied

electric field E. This figure is slightly misleading should we forget

that the electrons deeper within this sphere, i.e. nearer the bottom

of the band, are prevented by Pauli’s exclusion principle from being

excited by the field or from undergoing scattering processes to lower

their energy. In reality, only the electrons nearer the leading edge of

the Fermi surface can be scattered, and are scattered to other points

on the surface. This is the mechanism by which the Fermi distribution

fk is restored to the equilibrium distribution.

The Boltzmann transport equation allows study of the electrical transport

properties of an ensemble of charge-carriers, distributed in momenta and

energy via temperature. It makes use of the scattering time approximation,

which is used throughout this research.
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Figure 1.5: The form of the distribution function, and how apply-

ing an external electric field E displaces it. From gk = − ∂ f 0
k

∂ε τvk · eE,

we can see from the above diagram that gk is only large near the

Fermi surface (with a bit added on to the side where evk · E > 0 and

vice-versa) and that it will become a delta peak in the limit of zero

temperature.

1.4.2 Drift velocity

Miniband theory states that if the period of a superlattice is shorter than the

mean free path of a charge-carrier propagating inside it, then very narrow

allowed and forbidden energy bands would form, associated with a series

of minizones in the Brillouin zone. Esaki and Tsu pointed out that the com-

bination of miniband formation with the possibility of narrow enough Bril-

louin zones could allow observation of a quantum mechanical phenomenon

known as negative differential conductivity due to the charge-carriers under-

going Bloch oscillation.
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In their seminal paper, published in 1970, Esaki and Tsu used a path integral

method to calculate the drift velocity of a charge-carrier in the first super-

lattice miniband under a static bias, while incorporating the effects of prob-

abilistic scattering. In this way it is possible to examine the current-voltage

characteristics of the system. Since voltage is directly proportional to the

applied bias field, and current is directly proportional to drift velocity, then

calculation of drift velocity as a function of applied field will produce a qual-

itatively identical graph to that of an I-V curve. Let us examine the origins of

the scattering theory.

Note that, while the Boltzmann transport equation deals with a collection

of particles, we are dealing here with a single electron located initially at the

bottom of a miniband. The temperature dependence of its characteristics will

be discussed later.

Scattering processes are necessary for conduction to take place. Impurities in

the crystal structure can interrupt charge flow by destroying macroscopic lat-

tice periodicity. The major cause of scattering within semiconductor materi-

als however is phonon scattering: that is, thermal vibrations in the lattice give

rise to interactions between these phonons and the charge-carriers. In typical

semiconductors, scattering events are dominated by electron-phonon inter-

action. As such, the scattering time is inversely proportional to temperature

τ ∝ 1
T . The scattering time is defined as the average time between two scat-

tering processes, and it is possible to define an effective scattering time τe f f

as a combination of elastic (typically due to lattice imperfections and charged

impurities in the crystal) and inelastic (electrons interacting with phonons),

as follows[19]:

τeff = τin

(
τel

τel + τin

)1/2

Where τin and τel are the inelastic and elastic scattering times, respectively.
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We will concern ourselves with only the effects of inelastic scattering. There-

fore, in the limit of τel → ∞, the effective scattering time τeff = τin. This

approximation is valid when dealing with superlattices made from semi-

conductor materials whose scattering processes are dominated by electron-

phonon interaction. We drop the subscript from hereon, for simplicity.

1.4.2.1 Origin of path integral formulation

Esaki and Tsu make use of the scattering time approximation, which asserts

that upon undergoing a scattering process, the charge returns to zero mo-

mentum; and that the characteristic scattering time of a material is a con-

stant. This assumption is a starting point for the derivation of drift velocity

- applied field relations. Let us define the number of unscattered electrons at

time t within a superlattice miniband as N(t). The probability of any one

electron scattering in the infinitesimal time interval dt is τ−1dt, therefore the

number of electrons that will undergo scattering in that time interval is given

by:
N(t)dt

τ

Bearing in mind that N(t) is the number of presently unscattered electrons,

then after time dt the number of unscattered electrons will be reduced by

τ−1N(t)dt, such that

N(t + dt) = N(t)− N(t)dt
τ

.

Hence the rate at which the number of unscattered electrons changes in time

is

N(t + dt)− N(t) = −N(t)dt
τ

dN(t)
dt

=
N(t + dt)− N(t)

dt
= −N(t)

τ
.
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This can be rearranged and integrated to calculate the number of unscattered

electrons at a given time t, as follows:

dN(t)
N(t)

= −dt
τ∫ 1

N(t)
dN = −1

τ

∫
dt

lnN(t) = − t
τ
+ C

∴ N(t) = N0e−
t
τ , (1.55)

where N0 = N(t = 0) is the number of unscattered electrons at time t = 0.

Then, the probability P of a single electron scattering in time interval dt can

be calculated by dividing the number of electrons that scatter in the same

time interval by the total number of electrons:

P(t)dt =
1

N0

N(t)dt
τ

.

Substituting equation (1.55) into the above gives the probability of an electron

scattering in time interval dt to be:

P(t)dt =
e−

t
τ

τ
dt.

Under the scattering time approximation, electrons only contribute to net

current at a time t (correspondingly, net drift velocity) after undergoing a

scattering event at time t. Therefore, we can write

vd(t) = vg(t)P(t),

where vd is the electron’s drift velocity, and vg is its group velocity. The over-

all drift velocity of a system is a constant in time; and the total drift velocity

of the entire system can be found by integrating the above equation over all
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time, as follows:

vd =

∞∫
0

vg(t)P(t)dt

vd =
1
τ

∞∫
0

vg(t)e−
t
τ dt. (1.56)

Equation (1.56) is the general form for calculating the effect of an applied field

on the drift velocity of an electron in a superlattice. This equation constitutes

much of the foundation of the research in this thesis.

1.4.2.2 Esaki-Tsu result

Using the well-established kinetic equation and the energy-momentum rela-

tion derived earlier, the group velocity of a charge-carrier moving inside the

first miniband is calculated as follows. Newton’s equation is

dk(t)
dt

=
eF
h̄

where k(t) = h̄−1p is the quasimomentum of the charge-carrier and F is the

magnitude of the electric field applied to the superlattice. The kinetic equa-

tion tells us

vg =
1
h̄

dE
dk

where E = E(k) is the energy-momentum relation of charge-carriers propa-

gating in the first miniband. Differentiating both sides of this equation with

respect to t gives
dvg

dt
=

1
h̄

d
dt

dE
dk

Rearranging Newton’s equation for dt and substituting it into the above yields

dvg =
1
h̄

d
dk

eF
h̄

dE
dk

dt =
eF
h̄2

d2E
dk2



1.4 Dissipation - Scattering 38

The velocity change in time increment dt is dvg. The drift velocity vd is given

by the equation

vd =

∞∫
0

e−
t
τ dvg =

eF
h̄2

∞∫
0

d2E
dk2 e−

t
τ dt

where a more general form of this equation is derived later in this section.

Recalling that the energy spectrum of the first miniband was derived earlier

to be

E(k) =
∆
2
(1− cosk(t)d)

and differentiating this twice with respect to k and substituting it into the

integral for vd yields

vd =
∆eFd2

2h̄2

∞∫
0

cos(k(t)d) e−
t
τ dt.

Solving the kinetic equation for k(t) gives k(t) = eFt
h̄ + k0, where k0 is the

quasimomentum of the charge-carrier at initial time, which can be set to zero

for consideration of a charge-carrier originating from the bottom of the mini-

band. Substituting this into the integral allows calculation of the drift veloc-

ity

vd(F,τ) =
∆eF2

2h̄2

∞∫
0

cos
eFdt

h̄
e−

t
τ dt =

∆d
2h̄

(
eFd

h̄

)
τ

1 +
(

eFd
h̄

)2
τ2

.

Let us rewrite this as follows:

vd(F,τ) = v0
ωbτ

1 + ω2
bτ2

which has a maximum of vd = v0 at ωbτ = 1, allowing definition of a ”critical

field” Fc =
h̄

edτ at which the drift velocity peaks, and past which the superlat-

tice exhibits NDV as a result of the onset of Bloch oscillations.
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1 2 3

Figure 1.6: Plot showing the dependence of vd on an applied static

field. Region 1 show that, for small field amplitude, the response

of the superlattice is essentially ohmic. Inside region 2, the charge-

carriers are passing the inflection point in the miniband before un-

dergoing scattering. Negative differential conductivity is exhibited

inside region 3, when the charge-carriers manage to begin undergo-

ing one or more Bloch oscillations before scattering. It is evident that

a more powerful field leads to greater charge localisation within the

superlattice.

1.4.3 Sawtooth model

A scattering event can be assumed to be an inelastic collision in which a small

charge-carrier changes direction after interacting with a phonon. The angle

of impact will determine the angle at which the charge-carrier will rebound.
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The scattering time approximation averages many of these events into the

situation in which a charge-carrier impacts upon an ion, and its velocity is

reduced to zero.

Let us also assume that a charge-carrier will undergo these scattering events

regularly, every τ seconds. In reality, a charge-carrier can only be said to scat-

ter only most likely after this amount of time. This simplification will allow

an analytical calculation of charge-carrier displacement as a function of time

which includes the effect of scattering, as follows.

As calculated previously, the quasimomentum of a charge-carrier in a super-

lattice miniband evolves linearly with time under a static electric bias:

k(t) =
eF0t

h̄

and the group velocity is proportional to the gradient of the miniband. How-

ever, the charge-carrier will undergo a scattering event which returns it to

zero momentum, every τ seconds. This means that the quasimomentum

evolves in time like a sawtooth wave, with period τ and amplitude eF0τ/h̄.

The equation for such a sawtooth wave is

k(t) =
eF0τ

h̄

(
1
2
− 1

π

∞

∑
n=1

sin 2πnt
τ

n

)

Therefore the group velocity of the charge-carrier is

vg(t) =
∆d
2h̄

sin

[
eF0τd

h̄

(
1
2
− 1

π

∞

∑
n=1

sin 2πnt
τ

n

)]

The infinite summation present in the above equations is convergent:

∞

∑
n=1

sin 2πnt
τ

n
=

i
2

[
log
(

1− e
2iπt

τ

)
− log

(
1− e−

2iπt
τ

)]
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It is possible to calculate the displacement analytically

x(t) =
∫

vg(t)dt (1.57)

=
∫ ∆d

2h̄
sin
[

eF0τd
2h̄

(
1− i

π
log
[
1− e

2iπt
τ

]
+

i
π

log
[
1− e−

2iπt
τ

])]
dt

(1.58)

= − ∆
2eF0

cos
[

eF0τd
2h̄

(
1− i

π
log
[
1− e

2iπt
τ

]
+

i
π

log
[
1− e−

2iπt
τ

])]
+C

(1.59)

Where C is to be determined using initial conditions. This is not trivial, as

setting the initial displacement to be zero at time t = 0 is not totally suffi-

cient. The scattering time approximation dictates that immediately following

a scattering event, the charge-carrier returns to zero momentum, hence zero

velocity along its axis of motion. Therefore, its displacement will not return

to zero every t = τ seconds as in the equation for displacement calculated

above, it must simply repeat its trajectory. Because of this, C must be chosen

very carefully in order to fulfill these criteria. Let us express the displacement

as follows:

x(t) =− ∆
2eF0

cos
[

eF0τd
2h̄

(
1 +

i
π

log
[
1− e−

2iπt
τ

]
− i

π
log
[
1− e

2iπt
τ

])]
+C0 +Cτ

Where C0 is determined by the initial condition that x(t = 0) = 0:

C0 = −
∆

2eF0

and where the second quantity Cτ raises the function periodically, by an

amount equal to the displacement already gained by the charge-carrier, af-

ter every scattering event takes place. This will involve a floor function, with

a period equal to the time between scattering events and an amplitude equal

to the charge-carrier’s displacement travelled in that time.

Cτ =

⌊
t
τ

⌋
∆

2eF0

(
1− cos

eF0τd
h̄

)
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Therefore, in the simple case of a charge-carrier propagating through a one-

dimensional superlattice under the influence of a static electrical bias, un-

dergoing scattering processes every t = τ seconds, the displacement can be

expressed analytically as follows:

x(t) =
∆

2eF0

{
1− cos

[
eF0τd

2h̄

(
1 +

i
π

log
[
1− e−

2iπt
τ

]
− i

π
log
[
1− e

2iπt
τ

])]
(1.60)

+

⌊
t
τ

⌋(
1− cos

eF0τd
h̄

)}
(1.61)

The behaviour of a charge-carrier obeying this equation is illustrated in Fig-

ure 1.7.

This simple model has obvious limitations. First, a more physical realisation

of scattering processes in a semiconductor is a probabilistic distribution - that

is, the particle undergoes scattering on average every τ seconds, not exactly

every τ seconds. This might have the effect of ”blurring” the trajectories in

Figure 1.7 due to some scattering events happening earlier or later than in the

simple model. Furthermore, the kinetic energy of a particle after scattering is

a distribution. The particle may only glance a stationary ion, or it may have

its direction completely reversed. This is a shortcoming of the scattering time

approximation used throughout this work.

This model has allowed an analytical calculation of the real space trajecto-

ries of charge-carriers in a superlattice. It provides a clear illustration of the

relation between the gradient of a displacement-time graph inclusive of scat-

tering, and the drift velocity dependence upon field strength. It also pre-

dicts total localisation of charge-carriers in a superlattice miniband, when the

product F0τ corresponds to an even integer multiple of π (when eF0τd
h̄ = 2nπ,

where n = 1,2...). It is essential to point out that this prediction is based on
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Figure 1.7: This surface plot illustrates how the displacement of a

charge-carrier experiencing a static electric field, and undergoing pe-

riodic scattering processes, changes in time. As the strength of the

field increases, the charge-carrier begins to propagate through the su-

perlattice. Its average velocity reaches a peak, corresponding to the

maximal gradient of x(t) versus t. After this, the average displace-

ment goes back to zero. At this point, the charge-carrier has under-

gone exactly one Bloch oscillation and has scattered upon reaching

the bottom of the miniband. Therefore, it has returned to its original

position in real space and scattered. The next troughs correspond to

the particle scattering after exactly two and three Bloch oscillations,

respectively.

the oversimplified model of scattering used to preserve analyticity in this

calculation, and that the troughs seen in Figure 1.7 are artefacts of this over-

simplification as compared to the results predicted by the Esaki-Tsu model.
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Figure 1.8: A trajectory plot of displacement against time, displaying

the difference in the trajectories of a charge-carrier propagating with-

out experiencing dissipation, and one which undergoes scattering ev-

ery t = τ seconds. This diagram demonstrates clearly that dissipation

can induce macroscopic transport. Note that while the instantaneous

gradient of either trajectory curve is the group velocity, the average

gradient is the drift velocity. In these cases, the drift velocity is zero

for dissipationless systems, whereas in systems exhibiting dissipa-

tion, it is usually finite. The specifics of the latter are discussed in

greater detail in this section.
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1.5 Bloch oscillations as sources of radiation, typi-

cal values

When a charge-carrier is localised in a superlattice, it is constantly accelerat-

ing. As a result, it will emit radiation at that frequency, known as the Bloch

frequency. Our sawtooth-momentum model predicts total charge localisa-

tion when
eF0τd
2πh̄

= n; n ∈N+

In a typical semiconductor superlattice largely constructed from GaAs, the

typical scattering time at room temperature is τ ≈ 10−12s. Scattering effects

in such a material are dominated by phonons, and therefore the relation be-

tween scattering time and temperature (as mentioned earlier) is

τ ∝
1
T

which provides a degree of tunability to the scattering time (and therefore,

the regions of localisation). Using σ = neµ and σ = ne2τm−1
eff where σ is the

conductivity, µ the mobility, and n the number density of charge-carriers,

we can calculate the scattering time for gallium arsenide to be τ = 3.24ps.

Therefore, the sawtooth model predicts that electrons in a superlattice will

undergo extended periods of Bloch oscillation at integer multiples of roughly

20THz (assuming a critical field Fc of 103V cm−1). 1
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1.6 Non-static electrical bias

1.6.1 Single AC field

The purpose of this research is to investigate how applying electric fields to a

superlattice mitigates tunability of the resulting I−V curve. The next logical

step is to calculate the drift velocity’s dependence upon an applied DC field

accompanied by an AC driving field:

F(t) = F0 + F1 cos(ω1t + φ)

where φ is the initial phase of the driving field F1. The equation used to

calculate the drift velocity in this case is derived using the balance equation

approach by Ignatov and Renk[21] and is given below:

vd =
1
T

∫
T

vg(t)dt (1.62)

where the group velocity is calculated using

vg(t) =
1
τ

t1∫
−∞

e−(t−t1)/τ sin

 e
h̄

t∫
t1

F(t2)dt2

 . (1.63)

In this way, the effect that the phase of the driving field has on the motion of

the particle is taken into account. Using the Jacobi-Anger expansions

e±iαsinθ =
∞

∑
n=−∞

Jn(α)e±inθ (1.64)

e±iαcosθ =
∞

∑
n=−∞

(±i)n Jn(α)einθ (1.65)

along with the result for the time-averaging integral calculated by Ignatov et

al.[22] and the Fourier series expansion

J0(Z sinα) = J2
0(Z/2) + 2

∞

∑
n=1

J2
n(Z/2)cos(2nα)
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allows the group velocity to be expressed in an integrable form and substi-

tuted into the adapted form of the equation for drift velocity, yielding

vd = v0

∞

∑
n=−∞

J2
n(ω

′
/ω1)

(ωb + nω)τ

1 + (ωb + nω)2τ2 . (1.66)

This function is plotted in Figure 1.9 in dimensionless units, for a range of

AC field strengths F1 = 0..10 and frequencies ω = 0..20. Looking at Figure

1.9, we can elaborate on two interesting emergent behaviours. First, as the

frequency of the applied AC field increases and approaches the Bloch fre-

quency ωb, the initial slope of the vd(F0) curve decreases at a rate propor-

tional to F1 while the peak drift velocity occurs for greater values of F0. This

means that, while ω < ωb, the superlattice only enters its active region under

the application more intense static fields, but as ω approaches ωb, the elec-

trons become increasingly localised in a region of F0 which is proportional to

F1. This behaviour is demonstrated by the fifth graph in Figure 1.9, where

the drift velocity becomes zero for several combinations of F0, F1 and ω, for a

given τ. If an electron is localised under application of a DC field of strength

F0 ≈ 7Fc and AC field of strength F1 = 10Fc, then, assuming that the mini-

band gap is sufficiently large to prevent Zener tunnelling, the electron will

oscillate spatially with a frequency 17h̄−1edFc (where Fc = h̄/edτ denotes the

critical field strength - the value of static field strength at which the drift ve-

locity is maximum when F1 = 0). This corresponds to a frequency of roughly

5THz. This value can be increased by increasing the strength of the applied

AC field, F1, to extend the region of electron localisation and force the elec-

trons to oscillate at a higher frequency, or decreased by decreasing F0. In this

way, it is theoretically possible to tune the superlattice to emit radiation of

a particular frequency. Second, as the AC field frequency increases beyond

ωb, the superlattice begins to allow electron flow for given multiple values

of F0, as can be seen in the sixth graph. This implies that the superlattice

has entered a domain where it has multiple active regions between regions
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Figure 1.9: Graphs illustrating the effect that applying a harmonic

driving field to a superlattice in addition to a static field. The black

lines on each graph corresponds to the static field only case. Of par-

ticular interest here is the fifth graph in the series, showing a high

degree of charge localisation.
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of relatively Ohmic behaviour; the size of these regions depends on F1 and

ω. Combined with the appearance of negative conductivity occurring for

positive values of F0, this switching behaviour could be of interest for novel

circuit design. Finally, as the AC field frequency becomes much larger than

ωb, the Ohmic regions between active regions become smaller, and the vd(F0)

characteristics converge on the DC only behaviour, effectively destroying the

useful electronic behaviour.

1.6.2 Super Bloch oscillations

The group velocity of a particle can be thought of as its instantaneous ve-

locity, its infintesimal rate of change of displacement. Therefore, for time

periods shorter than the scattering time τ, it is possible to examine the de-

pendence of the charge-carrier’s real space displacement when under the in-

fluence of these applied electric fields.

x(t) =
∫

vg(t)dt = v0 ∑
n

Jn

(
ω′b
ω1

)∫
sin [(ωb + nω1)t]dt (1.67)

= −v0 ∑
n

Jn

(
ω′b
ω1

)
cos(ωb + nω1)t

ωb + nω1
+ C (1.68)

where C should be chosen such that x(t = 0) = 0 in order to define the initial

displacement of the charge-carrier to be zero:

C = −v0 ∑
n

Jn

(
ω′b
ω1

)
ωb + nω1

A Super Bloch oscillation is, effectively, a normal Bloch oscillation scaled up

in amplitude and period. It follows that, if an electron undergoes Bloch os-

cillations at, say, 200THz, and the SBO has a time period TSBO = 20TBO, then
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Figure 1.10: Appearance of so called ”Super Bloch” oscillations, with

an effective period dependent on the difference between the Bloch

frequency and the frequency of the applied AC field. Above are plot-

ted displacement-time curves for .

the electron will also oscillate macroscopically in space with a frequency of

10THz.

As ωb
ω1
→ n, the period of the Super Bloch oscillation goes to infinity. That

is, as the applied field frequency approaches an integer multiple of the Bloch

frequency, the scaling factor between the BO and the SBO begins to increase.

In this way it is possible to tune the strength and frequency of an applied AC

field along with the strength of the DC field, in order for SBOs of required

frequency manifest.

A problem with SBOs is that the characteristic scattering time must scale with

the period of the SBO in order to preserve its coherence. This would require a

larger effective superlattice period, or a longer characteristic scattering time.

The latter might be achieved by lowering the operating temperature.



Chapter 2

Graphene, a novel material
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2.1 Introduction, properties of graphene

2.1.1 Introduction to graphene

There exist several allotropes of carbon in the world, two of which are di-

amond and graphite. These two materials consist solely of carbon atoms,

bonded together in a crystal lattice structure. Diamond’s lattice structure is

isometric-hexoctahedral, whereas graphite consists of planes of hexagonally

arranged atoms, stacked one on top of the other, the layers bound together by

weak Van der Waals forces. It is thanks to the weakness of these forces that

graphite is an effective writing implement - layers of carbon are very easily,

with little force, “peeled” from the graphite crystal onto paper.

Graphene is the name given to a single, isolated layer of graphite - a monatom-

ically thin layer of benzene rings. The term was perhaps first used by Mouras,

et al. [23], but has been theorised (or at least, touched upon) since 1946[24],

in a paper that examined the properties of a single layer of graphite using the

tight-binding approximation.

Over recent years, there have been a vast number of papers published and ex-

periments conducted to further examine this new material - mainly thanks to

the intensive research of Geim, Novoselov et al., at the University of Manch-

ester [25, 26]. It was there that the first graphene was created and isolated

succesfully, and was discovered to be stable and maintain its crystallinity

even at room temperature.

Graphene has been shown[27, 28] to contain charge carries which have a

very high mobility, and which travel on almost perfectly ballistic trajectories
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through the lattice. The speed with which these charge carries move is one

three-hundredth of that of light, and they seem to exhibit zero effective mass.

(The term ”zero effective mass” here denotes a parameter that describes how

a charge carrier responds to applied forces at particular wavevectors. The

fact that this parameter goes to zero in the case of graphene’s quasiparticles

implies that their velocity remains constant.) In this situation, these particles

can only be accurately described by a Dirac-like equation. It is this prop-

erty of graphene which, in many ways, forms links between condensed mat-

ter physics and quantum electrodynamics, even on the scale of a laboratory

desktop.

2.1.2 The graphene construct

Graphene’s crystal lattice is actually made up of two symmetrical triangular

sublattices, which overlap one another to form the hexagonal lattice we see.

The figure below (2.1 shows the components of the graphene lattice, denoted

sublattices A and B.

Note that the lattice site of one sublattice is in the centre of a triangle defined

by the other sublattice, and that the lattice is invariant under 120◦ rotation.

That being the case, there are therefore two carbon atoms per unit cell. The

Brillouin zone is constructed as shown in Figure 2.2; and close to the K (and

K′) points, where the energy bands are formed by quantum mechanical “hop-

ping” of the charge carries between sublattices, the electronic band structure

ceases to be familiarly parabolic and becomes linear.

It is in these regions that the charge carries have zero effective mass, due to

their linear dispersion relation given by

E(k) = h̄vFk (2.1)
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Figure 2.1: This diagram[29] clarifies how the hexagonal lattice is,

more fundamentally, two symmetrical, interlocking sublattices[34,

35, 36]. It is this crystal symmetry between the sublattices from which

graphene’s linear dispersion characteristics arise.

It is also significant that at the K and K′ points, there is no energy gap whatso-

ever between the conduction and valence bands. This means that graphene

is a gapless semiconductor; and its quasiparticles are described formally by

the following equation[37]:

Ĥ0 = −ih̄vFσ5 (2.2)

where σ = (σx,σy) are the Pauli spin matrices and vF is the Fermi velocity,

mentioned earlier to be approximately c/300.
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Figure 2.2: The above figures[30, 31] show the location in the Bril-

louin zone of the six Dirac points, points near which the dispersion

relation becomes linear and there is an absence of any band gap.

However, it is important to note that only two out of these six points

are physically inequivalent, due to symmetry constraints.

The linear dispersion relation implies that the velocity of charge carries through

the lattice is not a function of momentum - rather, it is a constant. This prop-

erty, when combined with the vanishing mass of the charge carries, and de-

scribed under the framework of relativistic quantum mechanics, further im-

plies that the free particle states in graphene are chiral. In the case of spin

1/2 particles, chirality is equivalent to helicity, which is the projection of the

spin of a quantum particle on its momentum.
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2.1.3 Graphene’s links to quantum electrodynamics

Let us examine then the further links between graphene and quantum elec-

trodynamics. In conventional condensed matter theory, electrons and holes

in conduction and valence bands are described by two separate Schrödinger

equations, with each type of charge carriers having a different effective mass

(as a consequence of the Seitz sum rule[38]). In the case of graphene, the

charge carries are interconnected because of the crystal symmetry of the sub-

lattices, leading to an analogy with charge conjugation symmetry. Chirality

itself arises from the fact that, due to the intersecting linear dispersion rela-

tion of graphene, an electron with energy E and a hole with energy−E prop-

agating in opposite directions have come from the same branch of the spec-

trum - implying that both electrons and holes have the same “pseudospin”[39,

40]. This symmetry is what allows the introduction of chirality, (as said

above, the projection of a particle’s spin on its momentum) which is posi-

tive for electrons and negative for holes. This kind of chirality is very similar

to the chirality in quantum electrodynamics.

The term ”pseudospin” used above might most easily be described by look-

ing at the Dirac equation for the energy of massless, relativistic fermions in

quantised fields[41, 42, 43, 44]:

EN = 2eh̄c2
∗B
[

N +
1
2
± 1

2

] 1
2

(2.3)

The ± here refers, in quantum electrodynamics, to the contributions from

particles with positive and negative spins. When referring to graphene how-

ever, the ± accounts not for physical spins, but ”pseudospin”’ - which is a

result of the crystal structure of the lattice consisting of two identical inter-

locking sublattices (particles originating from different sublattices have op-

posite pseudospin). Interestingly, if we look at the N = 0 case for the above
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equation, we see that the lowest Landau level has zero energy and accom-

modates only one projection of the pseudospin (in this case, −1); whereas all

other levels (i.e. all other N 6= 0) contain two. This implies that the degen-

eracy of the lowest Landau level is half of the degeneracy of any other level.

A more succinct way of describing the situation here would be to say that all

Landau levels have the same “compound” degeneracy, but the zero-energy

Landau level is shared equally between electrons and holes. This peculiar

realisation helps describe graphene’s unique half-integer quantum Hall ef-

fect. To complement the theory here, the observed anomalous quantum Hall

effect in itself could be the most direct evidence for the existence of Dirac

fermions acting as charge carries in graphene systems.

2.1.4 Phenomenon of frequency multiplication in graphene

It is theorised[45, 46, 47] that, in the presence of sufficiently high alternat-

ing electromagnetic fields of frequency ω and low temperatures, graphene

should begin to emit similar radiative fields with frequencies correspond-

ing to higher (odd) harmonics of the original applied frequency ω. This

conclusion follows from the idea that placing a particle with a linear disper-

sion relation in an external electromagnetic field E(t) = E0 cosωt will move

with momentum calculated using classical mechanics: ṗ(t) = −eE(t) giving

p(t) = − eE0
ω sinωt. The velocity of the particle can then be calculated using

v(t) = ∂ε
∂p where ε = vF(p2)1/2, giving v(t) = −vFsgn(sinωt). This implies

that

j(t) = ensvFsgn(sinωt) = ens
4
π

{
sinωt +

1
3

sin3ωt +
1
5

sin5ωt + ...
}

(2.4)

The term on the right is an elementary Fourier series expansion of sgn(sinωt).

One important note is that the amplitudes of each successive harmonic do
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not decrease quickly - they only go as 1/m, where m is the harmonic num-

ber 1,3,5.... This is important because of its relevance to the efficiency of

producing these higher frequencies with an applied field - implying that a

particularly strong field is not necessary for the production of much higher

frequencies, thus the aim of generating radiation in the terahertz region may

not be difficult.

Mikhailov goes on to discuss this situation in the context of kinetic Boltz-

mann theory, an approach chosen to take into account the Fermi distribution

of charge carriers over the quantum states in the conduction and valence

bands in graphene. This frees the restrictions on the amplitude of the applied

field E(t), and allows the study of the effects of any E(t) on the system. How-

ever, having calculated the intra-band conductivity, it is shown that there are

restrictions on the validity of this quasi-classical approach and that higher

frequencies can be generated approximately between the frequencies 5 and

10 THz.

2.1.5 Minimum conductivity and the Klein paradox

A further important property of graphene is one that possibly raises the most

eyebrows - that even at zero charge carrier density, there remains a positive,

finite conductivity[25, 48, 49, 50]. Theorists still struggle to agree on a com-

plete and concise explanation of the exact details of this phenomenon.

More than one value of this minimum conductivity have been predicted, in-

cluding 4e2/h[48], and e2/h[40]. All are of the order of e2/h. One approach

that yields a simple, yet not perfectly unambiguous, answer is one involving
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the Klein paradox in graphene and Mott’s estimation. The argument goes as

follows: There is enough disorder in two dimensional systems to give rise to

separation of electronic states by barriers with vanishing transparency, lead-

ing to Anderson localisation. In graphene, these barriers have a transmis-

sion coefficient close to (or equal to) unity, thus not allowing confinement of

charge carriers by barriers that are smooth on atomic length scales. In the

absence of localisation, it is valid to invoke Mott’s assumption that the mean

free path cannot be lower than the electronic wavelength. If we then set the

mean free path to be of the order of the wavelength, we get

σ =

(
e2

h̄

)(
l
λ

)
=

(
e2

h̄

)(
λ

λ

)
≈ e2

h
(2.5)

The Klein paradox is important in the above argument because it accounts

for the transmission coefficient in graphene being so high. The Klein paradox

itself describes how relativistic particles tunnel through very high potential

barriers with probability approaching unity via the notion of conservation of

pseudospin (hence the significance of the appearance of chirality) - that is, as

a particles approaches the barrier, its antiparticle is created inside the barrier

wall whose pseudospin aligns with the incoming particle. This allows the

creation of a particle on the opposite outside of the barrier, which propagates

away - implying perfect transmission. This is also discussed in the context of

Andreev reflections in [51]. For an illustration of this process, see Figure 2.3.
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Figure 2.3: Here[32], electron and hole states in graphene’s band

structure are converted into each other during a process known as

Andreev reflection. Charge is conserved in this process by the cre-

ation of a Cooper pair.

2.2 Tight-binding model, derivation of linear band

structure

2.2.1 Basis Vectors and the Reciprocal Lattice

Graphene is a single two-dimensional layer of graphite, consisting of car-

bon atoms arranged in a honeycomb structure. This hexagonal arrangement

consists more fundamentally of two interlocking triangular Bravais lattices,

which we call sublattices “A” and “B”, forming a two-point basis (see Fig-

ure 2.1).

For the purposes of this investigation, we say that the graphene sheet lies

in the x − y plane. ”A” sites sit on the sites ~R of the underlying triangular

lattice. ”B” sites sit at sites ~R + ~d, where ~d are the nearest neighbour vectors
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defined below. The primitive vectors of the Bravais lattice are

~a1 = ax̂

~a2 =
a
2

x̂ +

√
3

2
aŷ

Let us define the following basis vectors

~0

d =
1
3
(~a2 + (~a2 − ~a1))

=
a√
3

ŷ

The primitive vectors of the reciprocal lattice are

~b1 =
2π

a
x̂− 2π√

3a
ŷ

~b2 =
4π√

3a
ŷ

The nearest neighbours of site A are displaced from A by nearest neighbour

vectors ~d, ~d′ = (~a1 −~a2) + ~d = a
2 x̂− a

2
√

3
ŷ, ~d′′ = −~a2 + ~d = − a

2 x̂− a
2
√

3
ŷ.

2.2.2 Atomic Orbitals

Atomic carbon has electronic structure 1s2(↑↓) 2s2(↑↓) 2p2(↑↑) There are six

electrons per carbon atom, with four of those electrons in the outermost n = 2

shell. The 1s2 electrons have significantly lower energy than the n = 2 elec-

trons. When carbon forms the honeycomb structure of graphene, they re-

main tightly bound to the carbon ion and do not participate in bonding or

conduction. Thus we can forget about them from here onwards.

The 2s2 and 2p2 electrons are very close in energy. When carbon forms the

honeycomb structure, these atomic orbitals will mix, or “hybridise”. For car-
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Figure 2.4: Demonstration[33] of how the s orbital hybridises with

the two in-plane p orbitals to form sp2 hybridised orbitals. The pz

orbital, normal to the graphene sheet, remains unchanged.

bon in a 2D honeycomb structure, one finds that the s, px and py orbitals all

mix together roughly equally (these are the orbitals which have significant

electron probability density in the x − y plane) while the pz orbitals remain

distinctly seperate. The s− px − py mixed states are called sp2 hybridised, as

one s mixes with two p orbitals.

The sp2 states give rise to three σ bonding bands and three σ∗ antibonding

bands. The pz states give rise to two bands - the π band and the π∗ band

(making a total of eight bands).

The σ-bonding bands give wavefunctions with electron concentration along

the free nearest neighbour bonds between A and B sites in the x − y plane.

These are the covalent bonds that hold the honeycomb structure together.

The σ bonding bands have the lowest energy and all lie below the Fermi

energy. In the ground state they are completely filled taking six of the eight

electrons per BL cell. Since these bands are filled, they play no role in electric
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conduction in graphene.

The σ antibonding bands all lie above the Fermi energy. In the ground state

they are completely empty, hence we ignore them. (There is a finite energy

gap between the minimum energy of the σ∗ bands and the Fermi energy).

All the interesting effects concerning conduction there lie with the π and π∗

bands. These are essentially between the σ and σ∗ bands (though actually the

σ band means its maximum overlaps somewhat with the minimum of the π

band, and the maximum of the π∗ band overlaps somewhat with the min-

imum of the σ∗ band, but these overlapping regions lie well below, or well

above, the Fermi energy, and so they play no role in conduction - conduction

is determined by electrons in close vicinity of the Fermi energy only).

We will soon see that the π and π∗ bands do not overlap. Therefore, in the

ground state, with eight electrons per BL cell, six electrons go to completely

filling the three σ bands, and two electrons go to completely filling the π

band. The σ∗ and π∗ bands are completely empty. This would be an insulator

except we will see that the π and π∗ are degenerate (there is no energy gap) at

the Fermi surface. We will therefore do a tight-binding calculation involving

only the pz orbital, as a rough calculation for the π and π∗ bands.

2.2.3 Tight-binding calculation

If one performs a tight-binding calculation of the band structure from the

n = 2 shell electrons, one needs to take into account all 2s, 2px, 2py and 2pz

orbitals. Since there are two atoms per primitive cell of the Bravais lattice



2.2 Tight-binding model, derivation of linear band structure 64

(due to the Bravais lattice having a two-point basis) and there are four atomic

orbitals to consider, the Bloch wavefunction is a mixture of eight terms

ψk = ∑
~R

{bAsφAs + bApx φApx + bApy φApy + bApz φApz

+bBsφBs + bBpx φBpx + bBpy φBpy + bBpz φBpz }

where φA(B)s, φA(B)px etc are the atomic orbital wavefunctions centered at site

A(B). For each value~k in the first BZ one then gets eight energies εn(~k), that

is, eight bands. Let

φA(~r) ≡ φ(~r)

φB(~r) ≡ φ(~r− ~d)

where φA,B is the pz orbital centered at site A,B. Our assumed Bloch wave-

function then has the form

ψk(~r) = ∑
~R

ei~k·~R
{

bAφA(~r− ~R) + bBφB(~r− ~R)
}

; k ∈ 1st BZ

Consider the following

〈φA|H|ψk〉 = 〈φA|Hat + ∆U|ψk〉

= E〈φA|ψk〉+ 〈φA|∆U|ψk〉

where E is the energy of the atomic pz orbital and ∆U is the correction to

the atomic potential due to neighbouring atoms. Let us now consider the

coefficient

〈φA|ψk〉 = ∑
~R

ei~k·~R
{

bA〈φA(~r)|φA(~r− ~R)〉+ bB〈φA(~r)|φB(~r− ~R)〉
}

= ∑
~R

ei~k·~R
{

bA

∫
d3r φ∗(~r)φ(~r− ~R) + bB

∫
d3r φ∗(~r)φ(~r− ~R− ~d)

}
We will assume that all overlaps are negligible except for nearest neighbours

- recall that the nearest neighbours of A sites are B sites, and vice-versa. So
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in the first term the only ~R we consider is ~R = 0, corresponding to the origin.

In the second term, we consider only ~R for ~R + ~d =
{
~d , ~d′, ~d′′ }, that is the

vectors to the nearest neighbours: ~R = 0, ~R = (~a1 −~a2) and ~R = −~a2.

〈φA|ψk〉 = bA + bB

∫
d3r φ∗(~r)φ(~r− ~d)

[
1 + ei~k·(~a1−~a2) + ei~k·(−~a2)

]
having recalled that∫

d3r φ∗(~r)φ(~r) = 1 (normalisation)

and ∫
d3r φ∗(~r)φ(~r− ~d)

=
∫

d3r φ∗(~r)φ(~r− ~d′)

=
∫

d3r φ∗(~r)φ(~r− ~d′′)

where the overlap integrals are all equal since φ has rotational symmetry

about the ẑ axis, and

|~d| = |~d′| = |~d′′|

The term in the square brackets is just ∑ ei~k·~R over the set of ~R=
{
~0, ~a1 −~a2,−~a2

}
that give the nearest neighbours

{
~d,~d′,~d′′

}
. The overlap integral α= 〈φ(~r)|φ(~r−

~d)〉 is a common factor for all these terms. Therefore we can write

〈φA|ψk〉 = bA + bBα
[
1 + ei~k·~a1e−i~k·~a2 + e−i~k·~a2

]
= bA + bBα

[
1 + e−i~k·~a2ei~k·~a1

2

(
ei~k·~a1

2 + e−i~k·~a1
2

)]
= bA + bBα

[
1 + ei~k·

(
~a1
2 −~a2

)
2cos

(
~k · ~a1

2

)]
Now recall that~a1 = ax̂, and~a2 =

a
2 x̂ +

√
3a
2 ŷ. Substituting into above yields

〈φA|ψk〉 = bA + bBα

[
1 + e−i

√
3

2 kya 2cos
kxa
2

]
= bA + (bBα) f (~k),
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calling the term in square brackets f (~k). Now let us calculate

〈φA|∆U|φB〉 = ∑
~R

ei~k·~R
{

bA

∫
d3r φ∗(~r)∆U(~r)φ(~r− ~R)

+bB

∫
d3r φ∗(~r)∆U(~r)φ(~r− ~R− ~d) }

Again, keep only nearest neighbour overlaps, so ~R = 0 only in the first term,

and ~R =
{
~0, ~a1 −~a2,−~a2

}
in the second term. The conditions concerning the

overlap integrals are the same as before, because φ(~r) is symmetric around

the z-axis, and because ∆U(~r) has rotational symmetry of order three around

the z-axis, mapping
{
~d 7→ ~d′ 7→ ~d′′

}
. Now, defining the following

β ≡ −
∫

d3r φ∗(~r)∆U(~r)φ(~r)

γ ≡ −
∫

d3r φ∗(~r)∆U(~r)φ(~r− ~d)

allows us to write

〈φA|∆U|φB〉 = −bAβ(−bBγ) f (~k)

We can now write

(εk − E)
[
bA + (bBα) f (~k)

]
+ bAβ + (bBγ) f (~k) = 0

= (εk − E + β)bA + [(εk − E)α + γ ] f (~k)bB = 0 (2.6)

Need to now consider the same process to find

〈φB|H|ψk〉 = εk〈φB|ψk〉 = E〈φB|ψk〉+ 〈φB|∆U|ψk〉

Repeating the previous steps we arrive at

(εk − E + β)bB + [(εk − E)α + γ ] f ∗(~k)bA = 0, (2.7)

where f ∗(~k) is the complex conjugate of f (~k). Note that α, β and γ are real,

because for the pz orbital φ is real (that is, φ = φ∗). We can combine equa-

tions (2.6) and (2.7) into a set of two homogeneous, linear equations in two



2.2 Tight-binding model, derivation of linear band structure 67

unknowns bA and bB. We can therefore write εk − E + β [(εk − E)α + γ ] f (~k)

[(εk − E)α + γ ] f ∗(~k) εk − E + β

bA

bB


= M

bA

bB

 = 0.

There is a non-trivial solution for bA and bB only when det M = 0. This con-

dition gives a quadratic equation to solve for the two possible values of ε(~k),

which we can denote ε±(~k). For each~k there are two solutions: ε−(~k) is the

π band, while ε+(~k) is the π∗ band. To make the above equation simpler, let

us consider the relative magnitudes of α and γ.

α ≡
∫

d3r φ∗(~r)φ(~r− ~d)

γ ≡ −
∫

d3r φ∗(~r)∆U(~r)φ(~r− ~d)

Since ∆U(~r) is large at (~r− ~d), then |φ(~r− ~d)| � |∆U(~r)φ(~r− ~d)|. Therefore

we can justify saying that α� γ, and eliminate terms in α from the above

equations, leaving

M =

εk − E + β γ f (~k)

γ f ∗(~k) εk − E + β


allowing det M = 0 to be solved much more simply:

det M = (εk − E + β)2 − γ2| f (~k)|2 = 0

Solving for εk gives

ε±(~k) ≡ E− β± |γ|| f (~k)|

Note that |γ|
∣∣∣ f (~k)∣∣∣ > 0. This implies the following:

ε+(~k)> E− β

ε−(~k)6 E− β



2.2 Tight-binding model, derivation of linear band structure 68

Meaning that the bands do not overlap. That is, the minimum energy of the

π∗ band is always greater than the maximum energy of the π band:(
min ε+(~k)> max ε−(~k)

)
Consider now

f (~k) = 1 + e−i
√

3
2 kya 2cos

kxa
2

| f (~k)| =
[

1 + 4cos2 kxa
2

+ 4cos
kxa
2

cos

√
3

2
kya

] 1
2

which is largest when kx = ky = 0. This implies that min ε+(~k) and max ε−(~k)

both occur at~k = 0. Furthermore, ε−(~k) (the energy of the π band) increases

towards the surface of the first BZ; and conversely ε+(~k) (the energy of the

π∗ band) decreases towards the surface of the first BZ.

2.2.4 Linearity near the Dirac points

Near the Dirac points, the energy spectrum becomes increasingly linear. It is

possible to make some approximations in this limit - this is known as the low

energy approximation. We know that in our basis we have a point of zero

energy at~k0 =
(

2π
3a , 2π√

3a

)
. Let us define a change in basis:

kx =
2π

3a
+ k̃x

ky =
2π√

3a
+ k̃y

and substitute these new variables into f (~k):

f (~k) = 1 + e−i
(

2π√
3a
+k̃y

)
a
√

3
2 2cos

(
a
2

[
2π

3a
+ k̃x

])
= 1− e−i a

√
3

2 k̃y 2cos
( a

2
k̃x +

π

3

)
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Figure 2.5: Dispersion relation of graphene calculated under the

tight-binding model. The six Dirac points bounding the first BZ are

shown. Note the linearity of the band structure near these points.

Now, in this new basis, we are interested in positions in k-space close to the

Dirac points - corresponding to k̃x,y ≈ 0. This justifies Taylor expanding the

exponential function around k̃y. If we neglect all terms higher than first order

in k̃y, then f (~k) becomes

f (~k) = 1−
(

1− i
a
√

3
2

k̃y

)
2cos

(
ak̃x

2
+

π

3

)

= 1−
(

1− i
a
√

3
2

k̃y

)(
1
2

cos
ak̃x

2
−
√

3
2

sin
ak̃x

2

)
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Figure 2.6: A two-dimensional, “top-down” view of the dispersion

relation of graphene. The shape and size of the first BZ here are clear,

as are the locations of the Dirac points.

and since

cos
ak̃x

2
≈ 1

sin
ak̃x

2
� 1

near the Dirac points, f (~k) can be simplified further:

f (~k) = 1−
(

1−
√

3a
2

k̃x −
i
√

3a
2

k̃y + O(k̃x k̃y) . . .

)

f (~k) =
√

3a
2

k̃x +
i
√

3a
2

k̃y

∴ f ∗(~k) =
√

3a
2

k̃x −
i
√

3a
2

k̃y



2.2 Tight-binding model, derivation of linear band structure 71

The tight-binding Hamiltonian then becomes

H = γ

√
3

2
a

 0 ik̃y + k̃x

−ik̃y + k̃x 0


Now we need to take inhomogeniety into account - since electrons scatter

when they encounter it. This is done simply by replacing k̃ with its equivalent

operator - in this case, since ~p = h̄~k, we replace k̃ with h̄−1 p̂. The Hamiltonian

is now

Ĥ = γ

√
3

2h̄
a

 0 i p̂y + p̂x

−i p̂y + p̂x 0


where the coefficient γ

√
3

2h̄ a = vF, the Fermi velocity, and finally; this matrix

can be separated, transforming the Hamiltonian into

Ĥ = vF(σx · p̂x + σy · p̂y)

= vF(~σ · ~p)

= ĤD

where ĤD is the symbol for the Dirac Hamiltonian. To find the eigenvalues

of this Hamiltonian, use the characteristic equation det Ĥ − Iλ = 0:∣∣∣∣∣∣ −λ ik̃y + k̃x

−ik̃y + k̃x −λ

∣∣∣∣∣∣ = 0⇒ λ = ±
√

k̃2
x + k̃2

y

Since Ĥψk = εkψk, we can say that

εk = ±h̄vF

√
k̃2

x + k̃2
y



Chapter 3

Graphene superlattice

Investigation of a material’s current-voltage characteristics is a commonplace

activity in physics, but what would a purely theoretical enquiry into such

characteristics of graphene yield? Esaki and Tsu’s paper[1] investigated the

properties of semiconductor superlattices, using a path integration method

to calculate drift velocity, and predicted the phenomena of Bloch oscillation

and negative differential conductivity. Their electronic energy band model of

a superlattice (an infinitely long, one-dimensional periodic lattice structure)

was a sinusoidal one.

Graphene’s dispersion relation is linear, and its band structure consists of in-

tersections of the conduction and valence bands, suggesting that a graphene

superlattice would exhibit a periodic but triangular arrangement as shown in

Figure 3.1. Our first goal is to use the same method as employed by Esaki and

Tsu to investigate the effects of an applied electric field on the drift velocity

of charge carriers in graphene, in the context of this unique band structure.

A graphene superlattice displaying the same or similar miniband formation
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Figure 3.1: This diagram presents our simple model for a graphene

superlattice with lattice vector spacing k0. This band structure also

shows the (relative) directions of propagation of the charge carriers.

might be realised as follows. Consider an insulator or semiconductor sub-

strate patterned with periodically arranged, thin strips of metallic contact

material all connected to a voltage source. On this substrate it is feasible to

deposit or grow a monatomically thin sheet of graphene. The metallic con-

tacts generate a series of potential barriers of variable height. We suggest

that this may be one way of producing a strongly coupled series of quan-

tum wells and barriers in the potential landscape, leading to the formation of

minibands. See Figure 3.2 for a diagram of this setup.
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Figure 3.2: This diagram presents our simple model for a graphene

superlattice with lattice vector spacing k0. This band structure also

shows the (relative) directions of propagation of the charge carriers.

3.1 Modelling miniband structure of graphene su-

perlattice

3.1.1 Infinite Fourier series

We know from the study of Fourier analysis that any periodic function can be

represented as some finite, or infinite, summation of sinusoidal waveforms.

Since the band structure we are dealing with resembles a triangular wave, an

accurate mathematical description could be formulated by drawing analo-

gies between the triangular waveform and graphene’s periodic/linear band

structure, thus allowing us to derive a very specific Fourier series which rep-

resents the energy-momentum relation of the superlattice’s first miniband.
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The Fourier series of a function f (x) is given by:

f (x) = a0 +
∞

∑
n=1

an cos
nπx

L
+ bn sin

nπx
L

(3.1)

a0 =
1

2L

L∫
−L

f (x)dx (3.2)

an =
1
L

L∫
−L

f (x)cos
nπx

L
dx (3.3)

bn =
1
L

L∫
−L

f (x)sin
nπx

L
dx (3.4)

Figure 3.3 is a basic diagram showing this simple arrangement. To draw the

Figure 3.3: This is the model used to begin tailoring a specific Fourier

series that represents a graphene superlattice’s band structure.

analogies between Figure 3.3 with a graphene superlattice’s band structure

(Figure 3.1), we see that:

x ≡ k (3.5)

L ≡ k0

2
(3.6)

f (x) ≡ h̄vF|k|; −L ≤ k ≤ L (3.7)

(3.8)

It is also important to remember E(k) = E(k + k0) - the periodicity of the
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function. The next step is to calculate each of the coefficients a0, an and bn.

a0 =
1
k0

k0/2∫
−k0/2

h̄vF|k|dk (3.9)

=
h̄vFk|k|

k0

∣∣∣∣∣
k0/2

−k0/2

(3.10)

=
1
4

h̄vF|k0| (3.11)

an =
2
k0

k0/2∫
−k0/2

h̄vF|k|cos
2nπk

k0
dk (3.12)

=
2h̄vF

k0

|k|k2
0

4n2π2k

(
cos

2nπk
k0

+
2nπk

k0
sin

2nπk
k0

)∣∣∣∣∣
k0/2

−k0/2

(3.13)

=
h̄vF|k0|
n2π2 (cosnπ + nπ sinnπ − 1) (3.14)

And since f (k) = |k|sin βk is an odd function, we know that

bn =
2
k0

k0/2∫
−k0/2

h̄vF|k|sin
2nπk

k0
dk = 0 (3.15)

So all odd terms vanish from the series. Our function then is given by the

following:

E(k) =
h̄vF|k0|

4
+

∞

∑
n=1

h̄vF|k0|
n2π2 (cosnπ + nπ sinnπ − 1)cos

2nπk
k0

(3.16)

Note that sinnπ = 0, so that term vanishes. The term remaining in brackets

is always equal to zero or −2:

(cosnπ − 1) =

−2 n odd

0 n even
(3.17)

Thus the series for E(k) becomes:

E(k) =
h̄vFk0

4

(
1− 8

π2

∞

∑
n=1

1
(2n− 1)2 cos (2n− 1)

2πk
k0

)
(3.18)
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Figure 3.4: These three graphs demonstrate the validity of this

Fourier series as used to model a graphene superlattice. Note, when

looking at the graph of the second derivative of the series, that as n

increases, Dirac delta peaks begin to emerge.

Figure 3.4 displays this series and its derivatives. The next step is to differen-

tiate this equation twice with respect to k, and substitute in k = eF0t/h̄, since

we are considering the simplest case of application of a static field, to get E(k)

in terms of t ready for the integration1. The result is shown below - for full

working, please refer to the appendix.

∂2E
∂k2 =

8h̄vF

k0

∞

∑
n=1

cos (2n− 1)
2πeF0t

h̄k0
(3.19)

1The assumption that k = eF0t/h̄ implies that at t = 0, k = 0. This is easily justifiable here,

as we are working with a pure (undoped) lattice structure.
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The expression for vd then becomes as follows, and is ready to be integrated:

vd =
eF0

h̄2
8h̄vF

k0

∞∫
0

dt e−t/τ
∞

∑
n=1

cos βt, (3.20)

where β = (2n− 1)2πeF0
h̄k0

. This integral requires a minimal amount of mathe-

matical working, as it is a standard integral given by:

∞∫
0

dt e−t/τ cos βt =
τ

1 + (βτ)2 (3.21)

=
τ

1 + (2n− 1)2
(

2πeF0τ
k0h̄

)2 (3.22)

The final step is to compute the summation:

vd =
eF0

h̄
8vF

k0

∞

∑
n=1

τ

(2n− 1)2
(

2πeF0τ
k0h̄

)2
+ 1

(3.23)

= vF tanh
h̄k0

4eF0τ
(3.24)

The result for the drift velocity in terms of an applied static field F0 and scat-

tering time τ is given by the following:

vd = vF tanh
h̄k0

4eF0τ
(3.25)

Infinite conductivity appears when an ideal graphene superlattice is subject

to a static bias. This result will be investigated further under other mathemat-

ical frameworks, and under the influence of more complex applied fields.

A recent paper[56] reports the observation of negative differential resistance

in a three-terminal graphene-based device similar to a FET, a device utilising

the zero band gap property of graphene.
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Figure 3.5: This plot demonstrates the appearances of both infinite

conductivity and negative differential conductivity, the latter being

when the charge-carriers within the graphene superlattice are in-

creasingly localised by the application of a DC field. The former is

demonstrated by the discontinuity at zero applied field, and might

suggest multistability of current flow, meaning that charge-carriers

will propagate at their maximum speed vF in any direction when

no force is applied. This could be a consequence of their quasi-

relativistic nature as Dirac quasiparticles.

3.1.2 Formal representation of band structure using Heavi-

side functions

A particularly formal way of mathematically representing a triangular wave-

form such as it mimics graphene’s band structure is to use products of Heavi-

side functions to construct a pseudo-piecewise function. The below equation

is the result of discussion (and some trial and error work) between Professor



3.1 Modelling miniband structure of graphene superlattice 80

Kusmartsev and myself:

E(k) =
∞

∑
n=−∞

{
(−1)n

(
h̄vFk− h̄vFk0n

2

)
+

h̄vFk0

2

(1− (−1)n

2

)}
(3.26)

Θ
(
(n + 1)

h̄vFk0

2
− h̄vFk

)
Θ
(

h̄v f k− h̄vFk0n
2

)
(3.27)

The three distinct sections of this equation construct the function as such: The

two Heaviside functions “section” the function, that is divide it into sections

corresponding to the terms in the summation. The term in curly brackets

generates either a positive slope or negative slope in its relevant “section”,

and also shifts the line up by a value equal to Emax if the slope is negative

(because it would originate from the x axis and decrease from there). The

result is the function you see.

For simplicity, from hereon the Heaviside and Delta functions that contain

the coefficient (n + 1) will be denoted with subscript 1, and those functions

that contain the coefficient n will be denoted with subscript 0; and the term

in curly brackets will be simply called Ψ. That is:

E(k) =
∞

∑
n=−∞

ΨΘ1Θ0 (3.28)

Now this must be differentiated twice with respect to k, as follows

∂2E
∂k2 =

∞

∑
n=−∞

Ψ
(

Θ1
∂2Θ0

∂k2 + Θ0
∂2Θ1

∂k2 + 2
∂Θ0∂Θ1

∂k2

)
(3.29)

+
∂Ψ
∂k

(
Θ1

∂Θ0

∂k
+ Θ0

∂Θ1

∂k

)
+ Θ0Θ1

∂2Ψ
∂k2 (3.30)

The last term on the right is zero. Now to substitute in all the derivatives:

∂2E
∂k2 =

∞

∑
n=−∞

(h̄vF)
2Ψ
(
Θ1δ′0 + Θ0δ′1 − 2δ0δ1

)
+ (−1)n(Θ1δ0 −Θ0δ1

)
(3.31)

The next step is to integrate
∂2E
∂k2 e−

t
τ with respect to t, so we need to express

∂2E
∂k2 as a function of t. This is done simply by recalling that k = eF0t/h̄, as
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calculated using the kinematic and Newton’s equations earlier: There are

five seperate terms in the integrand. These are as follows:

1. (h̄vF)
2ΨΘ1δ′0e−

t
τ

2. (h̄vF)
2ΨΘ0δ′1e−

t
τ

3. −(h̄vF)
2Ψδ0δ1e−

t
τ

4. −(−1)n(h̄vF)
2Θ0δ1e−

t
τ

5. (−1)n(h̄vF)
2Θ1δ0e−

t
τ

Note that integrating number 3 with respect to t will give zero, as there is a

product of two delta functions of different arguments. To perform the in-

tegrations, some important integral properties of delta functions must be

utilised. These are outlined below. The next step is to multiply it by e−t/τ

and integrate with respect to t from zero to infinity. However, we are dealing

now with functions that must be integrated carefully, bearing in mind the

necessary properties. These are:

(i)
∞∫

0

f (t)Θ(b− at)δ′(ct− d) e−t/τ dt (3.32)

=
ae−

d
ct δ
(

b− ad
c

)
f
(

d
c

)
+ 1

τ e−
d
ct Θ
(

b− ad
c

)[
f
(

d
c

)
− τ f ′

(
d
c

)]
|c|2

(3.33)
(ii)

∞∫
0

f (t)Θ(at− b)δ′(d− ct) e−t/τ dt (3.34)

=
−ae−

d
ct δ
(

b− ad
c

)
f
(

d
c

)
+ 1

τ e−
d
ct Θ
(

ad
c − b

)[
f
(

d
c

)
− τ f ′

(
d
c

)]
|c|2

(3.35)
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(iii)
∞∫

0

Θ(at− b)δ(d− ct) e−t/τ dt =
e−

d
ct Θ
(

d
c

)
Θ
(

ad
c − b

)
|c| (3.36)

(iv)
∞∫

0

Θ(b− at)δ(ct− d) e−t/τ dt =
e−

d
ct Θ
(

d
c

)
Θ
(

b− ad
c

)
|c| (3.37)

There are four terms to integrate, each using one of the integration rules out-

lined above. Below, the results only are given - please refer to the appendix

for the full working. Term 1 uses rule (i), term 2 uses rule (ii), term 4 uses

(iii), and 5, (iv); giving the four contributions to vd. Hence, below is the result

for vd:

vd =
eF0

h̄2

∞

∑
n=0

[
h̄2

τe2|F0|2

([
1− (−1)n

2

]
h̄vFk0

2
− τ(−1)nevFF0

)](
e−

h̄k0n
2eF0τ + e−

h̄k0(n+1)
2eF0τ

)
+

(−1)nh̄2vF

e|F0|

[
Θ
(

h̄k0n
2eF0

)
e−

h̄k0n
2eF0τ −Θ

(
h̄k0(n + 1)

2eF0

)
e−

h̄k0(n+1)
2eF0τ

]
The final step is to calculate the four summations that correspond to the four

results just calculated. Once more, please refer to the appendix for the calcu-

lation in full. The final result is as follows:

vd = vF tanh
(

h̄ko

4eFτ

)
(3.38)

Which is precisely the same as calculated using an infinite Fourier series ap-

proach, lending credence to the result. Again, this suggest the appearance of

infinite conductivity at zero field strength.

3.1.3 Testing results using a parabolic approximation tech-

nique

It is possible to use a simple approximation to model the miniband struc-

ture of the graphene superlattice. To avoid the discontinuities inherent in the
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delta functions’ peaks, we “smooth away” the sharp peaks of the triangular

energy spectrum into parabolae. Our function then is linear everywhere, like

before, except inside small intervals where the discontinuity would normally

occur (the peaks and troughs of the spectrum). Below (Figure 3.6) is a dia-

gram of this new, approximated spectrum.

Figure 3.6: The intervals shown here have width ε, which is to be

taken to zero upon calculation of the final result. The “discrepancy”

denoted α is a consequence of this parabolic approximation, and has

the effect of reducing the reach of the sharp points up from E(k) = 0

to E(k) + α and down from E(k) = Emax to E(k) = Emax − α. As ε gets

closer and closer to zero, α will likewise disappear. The light blue

lines on this diagram indicate where the spectrum originally would

have been before the approximation is used.

Some important points to remember as we continue are the following

1. That the curved sections are quadratic parabolae

2. That the nature of the curves means that the peaks and troughs are not
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quite as high or low as they were

3. That we must define our new function and its derivative as being con-

tinuous as the function crosses from being linear to being parabolic

4. That we must be able to take a limit in such a way that the approxima-

tion can become zero

5. When performing the integration, we must bear in mind the necessity

of defining new, correct limits

6. That the result we gain might not agree with the results already calcu-

lated - this will tell us (assuming the approximation is valid) that the

previous results are inaccurate

This approximation is useful in two ways. Firstly, since such effects as cor-

rugation might be the source of the rounding of the otherwise discontinuous

spectrum, in this way it may be possible to simply model these effects and

discuss how they may relate to the phenomenon of infinite conductivity. Sec-

ondly, when the limit ε→ 0 is taken, if it is the same as the two already cal-

culated for this model of a graphene superlattice, it serves to provide further

legitimacy.

Remembering the previous formulae that have been derived, and studying

the above model diagram, we can say that this piecewise function can be
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written as the following:

E(k) =


∞

∑
n=0

[
h̄2k2

2m∗
+ α

]
(−1)n +

1− (−1)n

2
h̄vFk0

2
inside the intervals

∞

∑
n=0

[
h̄vFk− h̄k0n

2

]
(−1)n +

1− (−1)n

2
h̄vFk0

2
otherwise,

(3.39)

where α is to be determined. An aside: Recall that the dispersion relation for

graphene is given by E(k) = h̄vFk, and the maxima in the spectrum occur at

k =
nk0

2
, n∈N. This means that the amplitude of the spectrum is Emax(k) =

h̄vF
k0

2
. Now, equate the derivatives of equations 3.39 at a point where they

meet (bearing in mind the relevant term in the summation), say at n = 0⇒

k =
ε

2
. This leaves us with

∞

∑
n=0

h̄2k
m∗

(−1)n =
∞

∑
n=0

h̄vF(−1)n (3.40)

h̄2k
m∗

= h̄vF (3.41)

h̄ε

2m∗
= vF (3.42)

ε =
2m∗vF

h̄
(3.43)

Now equate equations 3.39 on the same boundary, and substitute 3.43 into

the result to find α:
h̄2k2

2m∗
+ α = h̄vFk (3.44)

h̄2ε2

8m∗
+ α =

h̄vFε

2
(3.45)

α =
h̄vFε

2
− h̄2ε2

8m∗
(3.46)

α =
1
2

m∗v2
F (3.47)
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So now we know E(k) fully, it is expressed as follows:

E(k) =


∞

∑
n=0

[
h̄2k2

2m∗
+

1
2

mv2
F

]
(−1)n +

1− (−1)n

2
h̄vFk0

2
; nk0 − ε

2 ≤ k ≤ nk0 +
ε
2

∞

∑
n=0

[
h̄vFk− h̄k0n

2

]
(−1)n +

1− (−1)n

2
h̄vFk0

2
; nk0 +

ε
2 ≤ k ≤ (n + 1)k0 − ε

2

(3.48)

∂2E
∂k2 =


∞

∑
n=0

h̄2

m
(−1)n ; nk0 − ε

2 ≤ k ≤ nk0 +
ε
2

0 ; nk0 +
ε
2 ≤ k ≤ (n + 1)k0 − ε

2

(3.49)

vd =
eF
h̄2

∞∫
0

{
∞

∑
n=0

h̄2

m
(−1)n

}
e−t/τdt (3.50)

This equation above is simply the equation for drift velocity, with the non-

zero part of
∂2E
∂k2 substituted in. However, it isn’t correct, because we need

to change the limits quite drastically. Actually, there are an infinite series of

integrals, because the function
∂2E
∂k2 is periodically non-zero in the intervals

defined before. This means the above equation should look like the following

vd =
eF
m∗

∞

∑
n=0

(−1)n


ε
2∫

0

e−t/τ +

k0+
ε
2∫

k0− ε
2

e−t/τ +

2k0+
ε
2∫

2k0− ε
2

e−t/τ + . . .

 (3.51)

We can incorporate the summation outside the brackets into the integration

summation - either by alternating +1 and −1 coefficients between each suc-

cessive term, or perhaps more usefully, by switching the limits of every 2nd

term (i.e. each term that would have had a −1 coefficient).

vd =
eF
m∗


ε
2∫

0

e−t/τ +

k0− ε
2∫

k0+
ε
2

e−t/τ +

2k0+
ε
2∫

2k0− ε
2

e−t/τ + . . .

 (3.52)

Computing the integral gives us

vd = −
eFτ

m∗

{
e−t/τ

∣∣∣∣∣
ε
2

0

+ e−t/τ

∣∣∣∣∣
k0− ε

2

k0+
ε
2

+ e−t/τ

∣∣∣∣∣
2k0+

ε
2

2k0− ε
2

+ . . .

}
(3.53)
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It is simplest to extract the first term in the curly brackets above, then we can

formulate what remains in the bracket as an infinite series.

vd = −
eFτ

m∗

(
eεh̄/2eFτ − 1

)
− eFτ

m∗

{
e−t/τ

∣∣∣∣∣
k0− ε

2

k0+
ε
2

+ e−t/τ

∣∣∣∣∣
2k0+

ε
2

2k0− ε
2

+ . . .

}
(3.54)

The infinite series of terms in the curly brackets can be expressed most simply

as two summations:

∞

∑
n=1

(−1)ne−α
(

nk0
2 +β

)
+

∞

∑
n=1

(−1)n−1e−α
(

nk0
2 −β

)
(3.55)

where α = h̄k0/2eFτ and β = ε/2. Calculating these two summations, and

recalling that m∗ = h̄ε/2vF gives:

vd =

(
−2vFeFτ

h̄ε

)[(
e−

h̄ε
2eFτ − 1

)
+

∞

∑
n=1

(−1)ne−α
(

nk0
2 +β

)
+

∞

∑
n=1

(−1)n−1e−α
(

nk0
2 −β

)]
(3.56)

=

(
−2vFeFτ

h̄ε

)[(
e−

h̄ε
2eFτ − 1

)
+

(
eαβ − e−αβ

)
1 + e

k0α
2

]
(3.57)

=
2eFvFτ

h̄ε

1− e
−εh̄
2eFτ −

2sinh
{

εh̄
2eFτ

}
e

h̄k0
2eFτ + 1

 (3.58)

Figures 3.7 and 3.8 display what effect the value of ε has on the relationship

between the drift velocity vd and the applied field F.

lim
ε→0

2eFvFτ

h̄ε

1− e
−εh̄
2eFτ −

2sinh
{

εh̄
2eFτ

}
e

h̄k0
2eFτ + 1

 (3.59)

= vF

{
e

h̄k0
2eFτ − 1

e
h̄k0

2eFτ + 1

}
(3.60)

vd = vF tanh
h̄k0

4eFτ
(3.61)
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Figure 3.7: This 3D plot helps demonstrate how the maximal values

that drift velocity takes, and the corresponding values of the applied

field for which the occur, change with the scale of the smoothing -

represented by the quantity ε.

which is in perfect agreement with the result calculated when the band struc-

ture was expressed as an infinite Fourier series.

Further analysis of charge-carrier behaviour in graphene superlattices was

written for a paper to be submitted for publication, and is contained within

Appendix B as a preprint version.
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Figure 3.8: This graph helps to show how decreasing the value of ε

forces the curve to tend to a hyperbolic tangent curve in 1/F.



Chapter 4

Suggestions and further work
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There remain several relatively unexplored avenues of interest closely related

to the research in this thesis. Investigation, both theoretical and experimen-

tal, into the field of semiconductor superlattices, has never really slowed

since 1970. Indeed, since the advent of graphene-related research, interest in

superlattice systems has seen yet another surge. The unity of these two topics

motivated my own interest into the possibility of using graphene, or another

material with similar properties (specifically, the linear relation between en-

ergy and momentum), as the fundamental constituent of a superlattice. This

idea forms the basis of our paper (see supplementary materials at the end of

this thesis for a preprint version), which we are to submit to PRL in the near

future.

The topic of effects of magnetic fields applied to superlattices is notably ab-

sent in this work. This area is being looked at by colleagues of mine at Lough-

borough University and has formed the basis of several theses by research

students at the University Of Nottingham [53, 54, 55]. All effort expended

for this work has been put into examining current-voltage and charge density

characteristics and how they change under different, increasingly complex,

applied external biases.

Certain circumstances seem to indicate that superlattices can be forced into a

so called ”active region”, in which all interesting phenomena occur. These

include NDV, Bloch oscillations, gain effects [7, 8], and absolute negative

conductivity [52] due to multistability. The majority of this research turned

towards the possibility of using superlattices to generate radiation, particu-

larly in the Terahertz range. More accurately, the work focusses on tunability

of the system under different applied field configurations: that is, how the

applied fields can be altered in order to manipulate the shape of the drift ve-

locity - field characteristics. In this way, it seems possible to find multiple



92

ways of localising the charge-carriers in the superlattice as they propagate,

thus causing them to accelerate, and ultimately radiate. The frequency of the

radiation, in the same way as the behaviour of the current-voltage relation,

appears to be tunable.

Graphene has been the subject of an immense amount of interest, especially

since Geim and Novoselov won the Nobel Prize in Physics for its discovery

in 2010. Its applications to electronics and nanotechnology notwithstanding,

the discovery of stable, monolayer graphene, and its fascinating properties,

created an opportunity to direct my superlattice research towards the prop-

erties that a superlattice made from graphene might have. As far as possi-

ble, I have aimed to maintain an analytical approach to the investigation of

current-voltage characteristics of a superlattice constructed from graphene

or other materials which exhibit the rare linear energy-momentum relation,

bearing in mind the possibilites for generating emitted radiation using these

superlattice systems. In this way I hope to have provided a transparent foun-

dation for further work in this direction - perhaps for an investigation into

applying alternating fields to the graphene superlattice in the same way as

was done for the semiconductor superlattice.
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A.1 Calculation of ∂2E(k)
∂k2 for Fourier series model

E(k) =
h̄vFk0

4
− 2h̄vFk0

π2

∞

∑
n=1

1
(2n− 1)2 cos (2n− 1)

2πk
k0

(A.1)

∂E
∂k

= +
2h̄vFk0

π2

∞

∑
n=1

2π

k0(2n− 1)
sin (2n− 1)

2πk
k0

(A.2)

∂2E
∂k2 =

2h̄vFk0

π2

∞

∑
n=1

4π2

k2
0

cos (2n− 1)
2πk
k0

(A.3)

=
8h̄vF

k0

∞

∑
n=1

cos (2n− 1)
2πk
k0

(A.4)

=
8h̄vF

k0

∞

∑
n=1

cos (2n− 1)
2πeFt

h̄k0
(A.5)

A.2 Integration using properties of Heaviside, Dirac,

and Dirac prime functions

A.2.1 Integrating term 1 using rule (i)

Term 1 = ψΘ1δ′0e−t/τ(h̄vF)
2 (A.6)

a = evFF0 (A.7)

b =
h̄vFk0

2
(n + 1) (A.8)

c = evFF0 (A.9)

d =
h̄vFk0

2
n (A.10)

ψ = f (t) = (−1)n
[
(evFF0)t−

h̄v f k0

2
n
]
+

h̄vFk0

2

(
1− (−1)n

2

)
(A.11)
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Substituting everything into rule (i) gives:

⇒ 1
evFF0

e−
h̄k0n
2eF0τ δ

(
h̄vFk0

2

)
ψ

(
t =

h̄vFk0n
2evFF0

)
(A.12)

+
1
τ

1
(evFF0)2 e−

h̄k0n
2eF0τ Θ

(
h̄vFk0

2

)[
ψ

(
t =

h̄vFk0n
2evFF0

)
− τψ′

(
t =

h̄vFk0n
2evFF0

)]
(A.13)

=e−
h̄k0n
2eF0τ

{
1

τ(evFF0)2

(
h̄vFk0

2
1− (−1)n

2
− τ(−1)nevFF0

)}
(A.14)

Since δ(x, x 6= 0) = 0 and using Θ(x ≥ 0 = 1). Therefore the result is

=
h̄2e−

h̄k0n
2eF0τ

τe2F2
0

(
h̄vFk0

2
1− (−1)n

2
− τ(−1)nevFF0

)
(A.15)

A.2.2 Integrating term 2 using rule (ii)

Very similar to previous process.

Term 2 = ψΘ0δ′1e−t/τ(h̄vF)
2 (A.16)

a = evFF0 (A.17)

b =
h̄vFk0

2
n (A.18)

c = evFF0 (A.19)

d =
h̄vFk0

2
(n + 1) (A.20)

ψ = f (t) = (−1)n
[
(evFF0)t−

h̄vFk0

2
n
]
+

h̄vFk0

2

(
1− (−1)n

2

)
(A.21)

Substituting everything into rule (ii) gives:

⇒ 1
evFF2

0

{
1
τ

e−
h̄k0(n+1)

2eF0τ

[
ψ

(
t =

h̄vFk0(n + 1)
2evFF0

)
− τψ′

(
t =

h̄vFk0(n + 1)
2evFF0

)]}
(A.22)

Thus the result is

= h̄2v2
F

1
evFF2

0

{
1
τ

e−
h̄k0(n+1)

2eF0τ

[
1− (−1)n

2
h̄vFk0

2
− τ(−1)nevFF0

]}
(A.23)
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A.2.3 Integrating term 4 using rule (iii)

Term 4 = −(−1)nΘ0δ1e−t/τ h̄2v2
F (A.24)

a = evFF0 (A.25)

b =
h̄vFk0

2
n (A.26)

c = evFF0 (A.27)

d =
h̄vFk0

2
(n + 1) (A.28)

Substituting everything into rule (iii) gives:

⇒ − h̄2v2
F(−1)n 1

evFF0
e−

h̄k0(n+1)
2eF0τ Θ

(
h̄k0(n + 1)

eF0

)
(A.29)

=
−(−1)nh̄2vF

eF0
e−

h̄k0(n+1)
2eF0τ Θ

(
h̄k0(n + 1)

eF0

)
(A.30)

A.2.4 Integrating term 5 using rule (iv)

Finally, in a process similar to the one above:

Term 5 = (−1)nΘ1δ0e−t/τ h̄2v2
F (A.31)

a = evFF0 (A.32)

b =
h̄vFk0

2
(n + 1) (A.33)

c = evFF0 (A.34)

d =
h̄vFk0

2
n (A.35)

Substituting everything into rule (iv) gives:

⇒ − h̄2v2
F(−1)n 1

evFF0
e−

h̄k0n
2eF0τ Θ

(
h̄k0n
eF0

)
=

(−1)nh̄2vF

eF0
e−

h̄k0n
2eF0τ Θ

(
h̄k0n
eF0

)
(A.36)



A.3 Final calculation of vd for Heaviside model 97

A.3 Final calculation of vd for Heaviside model

The expression for drift velocity is now:

vd =
eF0

h̄2

∞

∑
n=0

(Sum of the 4 contributions)

As calculated in Appendix B. Therefore:

vd =
eF0

h̄2

{
(A.37)

1
eτF0

∞

∑
n=−∞

((
1− (−1)n

2

)
h̄vFk0

2
− (−1)nτevFF0

)
e−

h̄k0n
2eF0τ (A.38)

1
eτF0

∞

∑
n=−∞

((
1− (−1)n

2

)
h̄vFk0

2
− (−1)nτevFF0

)
e−

h̄k0(n+1)
2eF0τ (A.39)

vF

∞

∑
n=−∞

(−1)nΘ
(

h̄k0n
2eF0

)
e−

h̄k0n
2eF0τ (A.40)

−vF

∞

∑
n=−∞

(−1)nΘ
(

h̄k0(n + 1)
2eF0

)
e−

h̄k0(n+1)
2eF0τ

}
(A.41)

The four summations are calculated to be:

0 (A.42)

0 (A.43)

vF

[
1
2
− 1

ex + 1

]
(A.44)

vF

[
1
2
− 1

ex + 1

]
(A.45)

(A.46)
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Therefore, the expression for drift velocity now is as follows:

vd = vF

[
1− 2

ex + 1

]
(A.47)

= vF

[
ex + 1
ex + 1

− 2
ex + 1

]
(A.48)

= vF

[
ex − 1
ex + 1

]
(A.49)

= vF tanh
x
2
= vF tanh

h̄k0

4eF0τ
(A.50)
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Abstract
We describe a new type of superlattice with a linear Dirac spectrum which has many of the

special properties of graphene. Such superlattices can be made from graphene and/or various

semiconductors using electronic band-structure engineering. Electronic transport in such graphene-

like superlattices has been described taking into account both a high level of disorder and possible

formation of a miniband gap in the Dirac spectrum. Limiting electron motion to the first miniband

we find an exact analytic equation for the current-voltage characteristics of the graphene-like

superlattice, which exhibit negative differential conductivity. We estimate the value of the critical

field Fc required for onset of Bloch oscillations and predict that such a superlattice can enter

its active region for a significantly lower critical field strength than conventional semiconductor

superlattices, reducing the possibility of Zener tunnelling to higher minibands. The frequency

of the Bloch oscillations depends on the bias, Fermi velocity and the miniband gap width. We

show that for all described structures the miniband gap in the Dirac spectrum can be precisely

determined from direct electrical measurements of their current-voltage characteristics.
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INTRODUCTION

A highly influential paper, published in 1970 by Esaki and Tsu[1], investigated the current-
voltage properties of semiconductor superlattices. They used a path integration method and
the scattering time approximation within the Boltzmann transport approach to calculate
the relationship between the strength of a voltage bias (or electric field) and the drift ve-
locity (average current) of the charge-carriers. They described a semiconductor superlattice
consisting of a regular array of square potential wells separated by square barriers as a single
miniband tight binding model with an associated cosinusoidal electronic energy-momentum
relation. This approach allows the calculation of both charge-carrier displacement and drift
velocity when a static electric field F is applied and the prediction of quantum phenomena
known as negative differential conductivity and electron localisation due to Bloch oscilla-
tions.

Here we introduce a new class of superlattices which have a Dirac-like miniband electron
spectrum and therefore have advanced electrical properties similar to pristine graphene, the
name given to a single layer of carbon atoms arranged in a hexagonal lattice. Graphene
exhibits semi-metallic behaviour and a linear Dirac energy-momentum spectrum. Originally
it was shown that two-dimensional electrons with such a gapless spectrum have very high
mobility and conductivity when the temperature decreases[2]. The high mobility of the
charge carriers in graphene can be used in various devices and superlattices if the Dirac
spectrum with a small, or controllable, miniband gap is engineered. Then they may work
both as amplifiers and transistors. Indeed, modern technology has developed advanced
methods of electronic band-structure engineering[3] where materials and superlattices may
be constructed with any needed electronic energy-momentum relation such as the Dirac-like
spectrum. For example, when in the semiconductor superlattice consisting of GaAs/AlAs
layers a very thin InAs layer is inserted the position of the miniband shifts while its width
changes[4]. Thus, the presence of the subnanometer thick InAs layer in the central plane
of each GaAs quantum well allows control of the electron injection into the superlattice
and facilitates single miniband transport. Here we would like to consider properties of a
superlattice where the lowest miniband has the Dirac-like spectrum (as in the Tomonaga
model[5]) which may be built up with electronic band-structure engineering. Graphene is a
good candidate for construction of such devices and in general for development of graphene-
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based electronic technology. One of the analogous devices - an array of antidots - has
been recently developed and its properties investigated[6]. The graphene-like superlattice
(GSL) with the Dirac-like miniband spectrum can be also made from graphene or graphene
nanoribbons or in general from structures made of mutilayered semiconductors, while their
miniband structure may be designed with electron-band engineering[3].

In the first case, to make such a GSL from graphene, for example, the graphene sheets
should be decomposed into nanoribbons and then deposited on a semiconductor or insula-
tor substrate. These ribbons are narrow and straight-edged strips of graphene. They are
predicted to exhibit electronic properties that make them attractive for the fabrication of
nanoscale electronic devices. The nanoribbon formation can open up a miniband gap whose
value depends on the width of the nanoribbon. Moreover, more general practical devices
and circuits will require the production of dense arrays of ordered nanoribbons, which can
be done by electron lithography of graphene deposited on a substrate or on copper foils[10].
Devices made from nanoribbons deposited on a substrate usually exhibit very strong disor-
der, which is associated with the defects in the substrate. As a consequence these devices
have very low driving currents[7–9] and therefore to describe the electronic transport there
the approach used in the original paper by Esaki and Tsu[1] is applicable.

A superlattice of graphene nanoribbons deposited on a substrate will have a miniband
structure where the majority of the Brillouin zone has a linear energy-momentum relation,
similar to graphene. Due to this linear energy-momentum relation its electron-hole transport
dynamics are very interesting[2]. As derived under the tight-binding model, graphene’s
dispersion relation is given by the following[11]

|ε(kx,ky)|= ~vF
(

1 + 4cos2 kxa

2 + 4cos kxa2 cos
√

3kya
2

)

where a is the interatomic C−C spacing, and kx,y are the reciprocal lattice vectors. It is
linear near the Dirac points, which are situated on the Fermi level; therefore only charge-
carriers around these points contribute to conduction. As in the Tomonaga model[5, 12] the
miniband structure of a GSL can be periodically linear (resembling a triangular waveform),
assuming that the Brillouin zone, of width k0 = π/d, is sufficiently narrow. This assump-
tion will take into account the main feature of GSLs, namely the linear Dirac spectrum,
and simultaneously allow us to find an exact solution for electron transport in very disor-
dered superlattices even when a miniband gap arises in the Dirac spectrum. The proposed
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miniband structure may be considered as an approximation of the original spectrum of a
superlattice of square potential wells induced in two dimensional graphene[13]. However,
such a spectrum allows us to produce analytic calculation of the effects of applied fields
on charge-carrier dynamics and investigate the nature of the Bloch oscillations. That is,
we focus our studies of the GSL with an effective period d long enough to ensure that the
energy-momentum relation remains effectively linear within |k| ≤ π/d.

We would like to study the properties of such novel devices which may be made, for
example, from an array of nanoribbons deposited on a substrate as those discussed in the
paper[7] or multilayer composition made from various semiconductors. We expect that this
new class of graphene-like superlattices (GSL) we introduce here, with the Dirac miniband
spectrum, can be made by MBI both from graphene and various semiconductors.

We make use of the path integration method as used by Esaki and Tsu to calculate the
transport properties of a graphene-like superlattice. Such a GSL should exhibit miniband
structure as seen in Figure 1. Various ideas for construction of GSLs have been already

FIG. 1. This diagram presents a simple model for a graphene-like superlattice whose first Brillouin

zone lies within |k0| ≤ 2π/d, that generalizes a Tomonaga model spectrum[5] to that of a superlattice

energy-momentum relation associated with the first miniband.

discussed in the literature [14–16]. The transport properties of such device can be studied
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using the Kronig-Penney[13, 17, 18] model of periodic potential barriers embedded on the
graphene sheet.

PARABOLIC APPROXIMATION FOR A MINIBAND-GAP FORMATION

We use a simple approximation to model the periodic E(k) relation associated with the
superlattice. Due to a semiconductor or insulator substrate as SiO2 there in the Dirac spec-
trum may arise a miniband gap, equal to ∆ = 2α described in the Ref. [23]. The formation
of the miniband gap allows us to avoid the discontinuities present at |k| = nk0/2, n ∈ N0

. Therefore we “smooth away” the sharp peaks of the triangular energy spectrum of the
Tomonaga model into parabolae. The function then is linear everywhere, as before, except
inside intervals where the discontinuity would normally occur (the peaks and troughs of
the spectrum). Figure 2 demonstrates this new, approximated spectrum. As the piecewise

FIG. 2. The intervals shown here have width ε, the limit of which can be taken to zero upon

calculation of the final result. The “discrepancy” denoted α is a consequence of this parabolic

approximation, and has the effect of reducing the reach of the sharp points up from E(k) = 0 to

E(k) +α and down from E(k) = Emax to E(k) = Emax−α. As ε gets closer and closer to zero, α

will likewise tend to zero.

equation which describes this model is generated, the following must be taken into account:
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That the curved sections are quadratic parabolae, that the nature of the curves means that
the peaks and troughs of the spectrum are not as high or low as they were (this discrepancy
is defined and quantified below), that we must define our new function and its derivative
as being continuous as the function crosses from being linear to being parabolic, and that
we must be able to take a limit in such a way that the approximation can become zero;
corresponding to a periodically linear miniband.

This approximation is useful in two ways. Firstly, impurities and defects in the lattice,
the surface corrugation, and the disorder arising due to a lattice mismatch with a substrate
might all be the source of the rounding of the otherwise discontinuous spectrum. In this
way it may be possible to model these effects and how they affect the I-V curves of GSLs
and relate to the phenomena of NDV and Bloch oscillation. Secondly, when the limit as
ε→ 0 is taken, the behaviour of a “perfect” GSL miniband may be examined. Studying the
model schematic in Figure 2, we can say that the piecewise function describing the the first
Brillouin Zone of the miniband may be written as follows:

E(k) =





∞∑

n=0

[
~2k2

2m∗
+ 1

2mv
2
F

]
(−1)n+ 1− (−1)n

2
~vFk0

2 ; nk0− ε
2 ≤ k ≤ nk0 + ε

2
∞∑

n=0

[
~vFk−

~k0n

2

]
(−1)n+ 1− (−1)n

2
~vFk0

2 ; nk0 + ε
2 ≤ k ≤ (n+ 1)k0− ε

2

(1)

where ε can vary from zero to k0/2. The quantity α corresponds to a half of the miniband
gap. The effective mass m∗ is related to the interval width ε via m∗ = ~ε/2vF , and the
miniband gap ∆ via ∆ =m∗v2

F .
Using Esaki and Tsu’s method[1], the drift velocity-field characteristic is calculated via a

path integration method using the equation

vd(F (t), τ) = 1
τ

∞∫

0
vg(F (t), t)e−

t
τ dt (2)

When the DC field only case F (t) = F is considered, the group velocity is given by vg(t) =
~−1∂E(k)/∂k, and the quasimomentum k(t) is found by solving Newton’s equation k′(t) =
eF/~ giving k(t) = eF t/~. The constant of integration is assumed to be zero, corresponding
to zero initial quasimomentum. Equation (2) becomes

vd = eFτ

m∗


1−2e

−ε~
2eFτ +

4sinh
{

ε~
2eFτ

}

e
~k0
eFτ −1


 (3)
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See the Appendix for details. Figure 3 displays what effect the value of ∆ has on the
relationship between the drift velocity vd and the applied field strength F .

Esaki and Tsu received a similar result for a band structure made up of parabolae of
opposite curvature, meeting at an inflection point ki defined as a fraction of the Brillouin
zone size kd. For ki = kd/2, and taking ε = k0/2 in our model, a direct comparison can be
made:

vd
vETd

= m(0)
m∗

= 8~vF
E1πd

(4)

where the superscript ET denotes the Esaki-Tsu characteristic, m(0) = 2~2/∆d2 is the ef-
fective mass of a charge-carrier at the bottom of a semiconductor superlattice miniband, vF
the Fermi velocity of a charge-carrier propagating in graphene, and v0 = E1d/2~ the max-
imum drift velocity of a charge-carrier propagating within a semiconductor superlattice as
implented in Esaki and Tsu’s cosinusoidal model (corresponding to the charge experiencing
a static field of strength Fc = ~/edτ and propagating through a miniband of width E1). For
a typical semiconductor superlattice made mainly of GaAs-GaAlAs, and a graphene-like
superlattice of effective period d= 100Å, this ratio is

vd
vETd
≈ 5.6

In the limit of zero ε (or ∆), the equation for drift velocity becomes:

vd = vF tanh ~k0
4eFτ (5)

corresponding to a perfectly linear miniband structure. A discontinuity in the current-
voltage curve manifests as a jump from vd =−vF to vd = vF at zero field strength; an infinite
gradient, and since the DC conductivity σDC = endvddF is directly proportional to the gradient,
this suggests an instability within the electronic behaviour of the graphene system leading
to spontaneous current generation and extremely high conductivity. Recall that m∗ ∝ ε, so
as the interval size decreases and the miniband becomes more linear, the effective mass of
the charge-carrier vanishes. The zero effective mass of charge-carriers in graphene is broadly
discussed and is related to their relativistic behaviour as Dirac fermions[20–22].

MINIBAND GAP

The model for GSL has been introduced where the energy-momentum relation has been
defined as a piecewise function. This model is used to calculate the I-V curves or the drift
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FIG. 3. The above plot displays current-voltage characteristics for three values of the miniband gap

∆ = ∆max ≈ 50meV (thin, black), ∆ = 10meV (dashed, blue), ∆ = 5meV (dot-dashed, black) and

0.01meV (solid, red) as given by equation (8). The following values are used: τ = 1ps, d = 100Å,

vF = 106ms−1. As the miniband gap decreases, the critical field which defines the active region

threshold also decreases. Furthermore, the peak drift velocity increases with decreasing band gap,

implying that the larger the linear sections of the miniband get, the higher peak velocity that a

charge-carrier propagating through the miniband can attain. These results are remarkably similar

to those calculated for a suspended graphene nanoribbon of varying width[19].

velocity-field characteristics of such a superlattice. The appearance of NDC resembles the
result derived by Esaki and Tsu. In a specific case (ε= k0/2, kd/ki = 2), there exists a basis
for direct comparison of the I-V characteristics for semiconductor and graphene superlattices.
In the limit of small ε, the drift velocity can be expressed to first order as

vd ≈ vF
(

1− 2
1 + e

~k0
eFτ

− ~ε
4eFτ

)
(6)
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for which the maximum drift velocity occurs for the critical field

Fc(∆) = π~

edτ ln
(

2π~vF
∆d −1±

√
2~vF
∆

√
2π2
d2 − 2π∆

d~vF

) (7)

(where ∆ = 2α is the size of the miniband gap) which converges upon zero for vanishing ε and
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FIG. 4. Critical field dependence on miniband gap ∆ = 2α according to equation (7), where both

(±) solutions are presented, corresponding to NDV regions occurring in the current-voltage curve

for positive and negative applied field. The maximum value ∆ can assume within this model relates

directly to the maximal interval width ε = k0/2, and is approximately equal to 50meV when the

superlattice period is equal to d= 10 nm.

∆, implying that as the interval width ε or miniband gap ∆ defined within this approxima-
tion is reduced, the current-voltage curve tends toward tanhF−1 behaviour, implying that,
effectively, the critical field Fc required to force the charge-carriers into performing Bloch
oscillations reduces (from Fc = ~/(edτ)) to zero in that limit. Therefore the onset of Bloch
oscillations should occur in a linear miniband structure given the application of a static bias
of minimal strength. Furthermore, it is important to point out that all interesting features
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of superlattice dynamics occur within the negative differential portion of the current-voltage
characteristics. This region is known as the active region. The results discussed here sug-
gest that a superlattice exhibiting a linear miniband structure as shown in our model will
enter its active region for a lower critical value of applied field strength. By reducing this
value, the possibility of charge-carriers gaining enough energy from the applied field and
undergoing Zener tunnelling, thus destroying the NDV characteristics, will also be reduced.
This will increase the possibility of observing Bloch oscillation, thus increasing the possible
range of radiation frequency emission in comparison to the original Esaki-Tsu results.

The miniband gap ∆, is directly related to the interval width from equations (9) and
(10), allowing the drift velocity to be expressed as a function of the size of the miniband
gap:

vd(∆) = eFτv2
F

∆


1−2e−

∆
eFτvF +

4sinh
{

∆
2eFτvF

}

e
~k0
eFτ −1


 (8)

In our phenomenological model ∆ can vary from zero to ~vFπ/4d≈ 51meV. In this way, by
introducing some rounding to the linearity of the superlattice energy-momentum relation,
it is possible to create a miniband gap up to a value of roughly 50meV, around one half of
that when considering the energy spectrum of corrugated graphene in two dimensions[23].

Equation (8) and Figure 3 demonstrates the dependence of drift velocity on miniband gap
size. This dependence resembles the effect that a suspended graphene nanoribbon’s width
has on its own current-voltage characteristics as calculated by Betti et al[19]. Increasing
the width of the GNR increases the peak velocity of the charge-carriers and decreases the
critical field strength required to enter the superlattice’s active region.

Electronic mobility µ can be calculated when the drift velocity is known using the simple
formula µ = vd/F : Figure 5 supports the analogy between our investigation regarding the
effect of miniband gap width on electronic transport and the effect of GNR width on GNR
transport characteristics, as discussed in [19]. Furthermore, a miniband gap can appear in
graphene’s band structure when an electronic defect is present, such as a missing interatomic
bond [24].

In summary we have described a class of superlattices which, like graphene, have a Dirac
like miniband spectra. Such superlattices with a Dirac-like electronic spectrum can be made
from layers of different semiconductors or graphene with the use of modern technology
methods of band-structure engineering. Such graphene-like superlattice structures may also
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FIG. 5. Corresponding mobility of charge-carriers µ= vd/F for ∆ = ∆max ≈ 50meV (thin, black),

∆ = 10meV (dashed, blue), and ∆ = 5meV (dot-dashed, black). It is clear that mobility reaches

its maximum for at zero field, and that the mobility depends very strongly on the miniband gap

width. This implies that the ability of an electronic device constructed from graphene to exhibit a

huge electronic mobility is very quickly reduced in the presence of disorder.

be created in supercooled gases. This was discussed in great detail in a recent paper [25].
Due to the linear energy-momentum relation there exists a high electronic mobility, arises
absolute negative conductivity in a very broad range of applied voltage bias and in some cases
there may arise a spontaneous persistent current as the one discussed in recent work[26, 27].
We suggest that our phenomenological approach creates a framework under which it is
possible to estimate the size of a miniband gap within the energy-momentum spectrum of
a GSL, or GNR, by examining the drift velocity dependence on an applied static bias. All
these properties can make such graphene-like superlattice to be an outstanding candidate
for a development of new devices, the graphene-like technology, which can be built up with
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the use of conventional semiconductors as well as from graphene.
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APPENDIX

Parabolic approximation mathematics

Recall that the dispersion relation for graphene in the proximity of the Dirac points, to
first order, is given by E(k) = ~vF |k|, and the maxima (and minima) in the spectrum occur at
|k|= nk0/2, n ∈ N0. This means that the amplitude of the spectrum is Emax(k) = ~vFk0/2.
Now, equate the derivatives of equation (1) at a point where they meet, bearing in mind the
relevant term in the summation, say at n= 0 ⇒ k = ε/2. This leaves us with

ε= 2m∗vF
~

(9)

Now equate equations (1) on the same boundary, and substitute (9) into the result to find
α:

α = 1
2m∗v

2
F (10)

The piecewise representation for E(k) is now fully known, and it is expressed as follows:

E(k) =





∞∑

n=0

[
~2k2

2m∗
+ 1

2mv
2
F

]
(−1)n+ 1− (−1)n

2
~vFk0

2
∞∑

n=0

[
~vFk−

~k0n

2

]
(−1)n+ 1− (−1)n

2
~vFk0

2

(11)

∂2E

∂k2 =





∞∑

n=0

~2

m
(−1)n

0
(12)

Inside the regions defined by nk0− ε
2 ≤ k ≤ nk0 + ε

2 and nk0 + ε
2 ≤ k ≤ (n+1)k0− ε

2 , respec-
tively.

vd = eF

~2

∞∫

0

∂2E

∂k2 e
− t
τ dt (13)

= eF

~2

∞∫

0

{ ∞∑

n=0

~2

m
(−1)n

}
e−

t
τ dt (14)

Equation (14) above is simply the equation for drift velocity, with the non-zero part of
∂2E
∂k2 from equation (12) substituted in. However, it isn’t correct, because the limits must
be changed to reflect the piecewise behaviour of the integrand. In actuality, there are an
infinite series of integrals, because the function ∂2E

∂k2 is periodically non-zero in the intervals

13



defined in equation (11). We can incorporate the summation outside the brackets into the
integration summation - either by alternating +1 and −1 coefficients between each successive
term, or perhaps more pragmatically, by switching the limits of every 2nd term (i.e. each
term that would have had a −1 coefficient).

vd = eF

m∗





ε
2∫

0
e−

t
τ dt+

k0− ε2∫

k0+ ε
2

e−
t
τ dt+ . . .





Computing the integral gives us

vd =−eFτ
m∗

{
e−

t
τ

∣∣∣∣
ε
2

0
+ e−

t
τ

∣∣∣∣
k0− ε2

k0+ ε
2

+ . . .

}

Upon extracting the first term in the curly brackets above, what remains inside the brackets
is an infinite series, which converges to the following result for the drift velocity:

vd = eFτ

m∗


1− e −ε~

2eFτ −
2sinh

{
ε~

2eFτ
}

e
~k0

2eFτ + 1


 (15)

= eFτ

m∗


1−2e

−ε~
2eFτ +

4sinh
{

ε~
2eFτ

}

e
~k0
eFτ −1


 (16)

The former (15) becomes the latter (16) after some algebraic rearrangment. Recalling how
the effective mass m∗ is related to the interval width ε in equation (9), figure 3 displays what
effect the value of ε has on the relationship between the drift velocity vd and the applied
field strength F . In the limit of zero ε:

lim
ε→0

2eFvF τ
~ε


1− e −ε~

2eFτ −
2sinh

{
ε~

2eFτ
}

e
~k0

2eFτ + 1




= vF




e

~k0
2eFτ −1
e

~k0
2eFτ + 1





vd = vF tanh ~k0
4eFτ (17)

Heaviside function representation

The linear, periodic energy-momentum relation of the first miniband may also be de-
scribed by the following equation:

E(k) =
∞∑

n=−∞
Ψ(n)Θ1(n)Θ0(n) (18)

14



where

Ψ(n) = (−1)n
(
~vFk−

~vFk0n

2

)
+ ~vFk0

2

(
1− (−1)n

2

)

Θ1(n) = Θ
(

(n+ 1)~vFk0
2 −~vFk

)

Θ0(n) = Θ
(
~vFk−

~vFk0n

2

)

This equation generates the linear miniband piece by piece for increasing n. The two Heav-
iside functions “section” the equation, that is, divide it into sections corresponding to the
terms in the summation. Ψ(n) generates either a positive slope or negative slope in the
relevant section, and also shifts the line up by a value equal to Emax if the slope is nega-
tive (since it originates from the x axis and decreases from there). Equation (18) is to be
differentiated, substituted into equation (13), and integrated using the relevant delta and
delta-prime function properties, to get

vd = eF

~2

∞∑

n=−∞

{
~2

τe2|F |2
([

1− (−1)n
2

]
~vFk0

2 − τ(−1)nevFF
)](

e−
~k0n
2eFτ + e−

~k0(n+1)
2eFτ

)

+ (−1)n~2vF
e|F |

[
Θ
(
~k0n

2eF

)
e−

~k0n
2eFτ −Θ

(
~k0(n+ 1)

2eF

)
e−

~k0(n+1)
2eFτ

}

This summation is convergent, and yields the equation

vd = vF tanh ~k0
4eFτ

Consolidating the previous result calculated in the limit of zero ε in equation (17).
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