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Abstract. We study different possibilities of combining the concept of
homomorphic replacement with regular expressions in order to investi-
gate the class of languages given by extended regular expressions with
backreferences (REGEX). It is shown in which regard existing and nat-
ural ways to do this fail to reach the expressive power of REGEX. Fur-
thermore, the complexity of the membership problem for REGEX with
a bounded number of backreferences is considered.
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1 Introduction

Since their introduction by Kleene in 1956 [13], regular expressions have not only
constantly challenged researchers in formal language theory, they also attracted
pioneers of applied computer science as, e. g., Thompson [17], who developed one
of the first implementations of regular expressions, marking the beginning of a
long and successful tradition of their practical application (see Friedl [10] for
an overview). In order to suit practical requirements, regular expressions have
undergone various modifications and extensions which lead to so-called extended
regular expressions with backreferences (REGEX for short), nowadays a standard
element of most text editors and programming languages (cf. Friedl [10]). The
introduction of these new features of extended regular expressions has frequently
not been guided by theoretically sound analyses and only recent studies have led
to a deeper understanding of their properties (see, e. g., Câmpeanu et al. [5]).

The main difference between REGEX and classical regular expressions is the
concept of backreferences. Intuitively speaking, a backreference points back to an
earlier subexpression, meaning that it has to be matched to the same word the
earlier subexpression has been matched to. For example, r := (1 (a | b)∗ )1 ·c · \1
is a REGEX, where \1 is a backreference to the referenced subexpression in
between the parentheses (1 and )1. The language described by r, denoted by
L(r), is the set of all words wcw, w ∈ {a, b}∗; a non-regular language. Two
aspects of REGEX deserve to be discussed in a bit more detail.

For the REGEX ((1 a+ )1 | b) · c · \1, if we choose the option b in the
alternation, then \1 points to a subexpression that has not been “initialised”.
Normally, such a backreference is then interpreted as the empty word, which
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seems to be the only reasonable way to handle this situation, but, on the other
hand, conflicts with the intended semantics of backreferences, particularly in the
above example, since it actually means that \1 can be the empty word, whereas
the referenced subexpression (1 a+ )1 does not match the empty word.

Another particularity appears whenever a backreference points to a subex-
pression under a star, e. g., s := ((1 a∗ )1 · b · \1)∗ · c · \1. One might expect s to
define the set of all words of form (anban)mcan, n,m ≥ 0, but s really describes
the set {an1ban1 ·an2ban2 ·· · ··anmbanm ·c·anm | m ≥ 1, ni ≥ 0, 1 ≤ i ≤ m}∪{c}.
This is due to the fact that the star operation repeats a subexpression several
times without imposing any dependencies between the single iterations. Conse-
quently, in every iteration of the second star in s, the referenced subexpression
(1 a∗ )1 is treated as an individual instance and its scope is restricted to the
current iteration. Only the factor that (1 a∗ )1 matches in the very last iteration
is then referenced by any backreference \1 outside the star. A way to see that
this behaviour, which is called late binding of backreferences, is reasonable, is
to observe that if we require (1 a∗ )1 to take exactly the same value in every
iteration of the star, then, for some REGEX r, this may lead to L(r∗) 6= (L(r))∗.

A suitable language theoretical approach to these backreferences is the con-
cept of homomorphic replacement. For example, the REGEX r can also be given
as a string xbx, where the symbol x can be homomorphically replaced by words
from {a, b}∗, i. e., both occurrences of x must be replaced by the same word.
Numerous language generating devices can be found that use various kinds of
homomorphic replacement. The most prominent example are probably the well-
known L systems (see Kari et al. [12] for a survey), but also many types of
grammars as, e. g., Wijngaarden grammars, macro grammars, Indian parallel
grammars or deterministic iteration grammars, use homomorphic replacement
as a central concept (cf. Albert and Wegner [2] and Bordihn et al. [4] and the
references therein). Albert and Wegner [2] and Angluin [3] introduced H-systems
and pattern languages, respectively, which both use homomorphic replacement in
a more puristic way, without any grammar like mechanisms. More recent models
like pattern expressions (Câmpeanu and Yu [7]), synchronized regular expres-
sions (Della Penna et al. [15]) and EH-expressions (Bordihn et al. [4]) are mainly
inspired directly by REGEX. While all these models have been introduced and
analysed in the context of formal language theory, REGEX have mainly been
formed by applications and especially cater for practical requirements. Hence,
there is the need in formal language theory to catch up on these practical de-
velopments concerning REGEX and we can note that recent work is concerned
with exactly that task (see, e. g., [5–9,14]).

The contribution of this paper is to investigate alternative possibilities to
combine the two most elementary components of REGEX, i. e., regular expres-
sions and homomorphic replacement, with the objective of reaching the expres-
sive power of REGEX as close as possible, without exceeding it. Particularly
challenging about REGEX is that due to the possible nesting of referenced subex-
pression the concepts of regular expressions and homomorphic replacement seem
to be inherently entangled and there is no easy way to treat them separately. We
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illustrate this with the example t := (1 a∗ )1 · (2 (b · \1)∗ )2 · \2 · \1. The language
L(t) := {an(ban)m(ban)man | n,m ≥ 0} cannot that easily be described in terms
of a single string with a homomorphic replacement rule, e. g., by the string xyyx,
where x can be replaced by words from {an | n ≥ 0}, and y by words of form
{(ban)m | n,m ≥ 0}, since then we can obtain words an(ban

′
)m(ban

′
)man with

n 6= n′. In fact, two steps of homomorphic replacement seem necessary, i. e., we
first replace y by words from {(bz)n | n ≥ 0} and after that we replace x and
z by words from {an | n ≥ 0}, with the additional requirement that x and z
are substituted by the same word. More intuitively speaking, the nesting of ref-
erenced subexpressions require iterated homomorphic replacement, but we also
need to carry on information from one step of replacement to the next one.

The concept of homomorphic replacement is covered best by so-called pattern
languages as introduced by Angluin [3]. A pattern is a string containing variables
and terminal symbols and the corresponding pattern language is the set of all
words that can be obtained from the pattern by homomorphically replacing
the variables by terminal words. We combine Angluin’s patterns with regular
expressions by first adding the alternation and star operator to patterns and,
furthermore, by letting their variables be typed by regular languages, i. e., the
words variables are replaced with are from given regular sets. Then we iterate
this step by using this new class of languages again as types for variables and
so on. We also take a closer look at pattern expressions, which were introduced
by Câmpeanu and Yu [7] as a convenient tool to define REGEX languages.
In [7], many examples are provided that show how to translate a REGEX into
an equivalent pattern expression and vice versa. It is also stated that this is
possible in general, but a formal proof for this statement is not provided. In the
present work we show that pattern expressions are in fact much weaker than
REGEX and they describe a proper subset of the class of REGEX languages
(in fact, they are even weaker than REGEX that do not contain referenced
subexpressions under a star). These limits in expressive power are caused by the
above described difficulties due to the nesting of referenced subexpressions.

On the other hand, pattern expressions still describe an important and natu-
ral subclass of REGEX languages, that has been independently defined in terms
of other models and, as shown in this work, also coincides with the class of
languages resulting from the modification of patterns described above. We then
refine the way of how pattern expressions define languages in order to accommo-
date the nesting of referenced subexpressions and we show that the thus obtained
class of languages coincides with the class of languages given by REGEX that
do not contain a referenced subexpression under a star.

Finally, we briefly discuss the membership problem for REGEX with a re-
stricted number of backreferences, which, in the unrestricted case, is NP-complete.
Although it seems trivial that this problem can be solved in polynomial time, the
situation is complicated by subexpressions that occur and are referenced under
a star, which represent arbitrarily many distinct subexpressions with individual
backreferences.

Note that, due to space constraints, all proofs are omitted.
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2 General Definitions

Let N := {1, 2, 3, . . .} and let N0 := N ∪ {0}. For an arbitrary alphabet A, a
word (over A) is a finite sequence of symbols from A, and ε stands for the
empty word. The notation A+ denotes the set of all nonempty words over A,
and A∗ := A+ ∪{ε}. For the concatenation of two words w1, w2 we write w1 ·w2

or simply w1w2. We say that a word v ∈ A∗ is a factor of a word w ∈ A∗ if there
are u1, u2 ∈ A∗ such that w = u1 · v · u2. The notation |K| stands for the size of
a set K or the length of a word K.

We use regular expression as they are commonly defined (see, e. g., Yu [18]).
For the alternation operations we use the symbol “|” and in an alternation (s | t),
we call the subexpressions s and t options. For any regular expression r, L(r) de-
notes the language described by r and REG denotes the set of regular languages.
Let Σ be a finite alphabet of terminal symbols and let X := {x1, x2, x3, . . .} be a
countably infinite set of variables with Σ ∩X = ∅. For any word w ∈ (Σ ∪X)∗,
var(w) denotes the set of variables that occur in w.

3 Patterns with Regular Operators and Types

In this section, we combine the pattern languages mentioned in Section 1 with
regular languages and regular expressions. more precisely, we first define pattern
languages, the variables of which are typed by regular languages and after that
we add the regular operators of alternation and star.

Let PAT := {α | α ∈ (Σ ∪X)+} and every α ∈ PAT is called a pattern. We
always assume that, for every i ∈ N, xi ∈ var(α) implies {x1, x2, . . . , xi−1} ⊆
var(α). For any alphabets A,B, a morphism is a function h : A∗ → B∗ that
satisfies h(vw) = h(v)h(w) for all v, w ∈ A∗. A morphism h : (Σ ∪X)

∗ → Σ∗

is called a substitution if h(a) = a for every a ∈ Σ. For an arbitrary class of
languages L and a pattern α with | var(α)| = m, an L-type for α is a tuple
T := (Tx1 , Tx2 , . . . , Txm), where, for every i, 1 ≤ i ≤ m, Txi ∈ L and Txi is
called the type language of (variable) xi. A substitution h satisfies T if and only
if, for every i, 1 ≤ i ≤ m, h(xi) ∈ Txi

.
We recall that in Section 1, the mapping that is done by a substitution has

been called a homomorphic replacement. However, here we prefer to use the
terminology that is common in the context of Angluin’s pattern languages.

Definition 1. Let α ∈ PAT, let L be a class of languages and let T be an L-
type for α. The T -typed pattern language of α is defined by LT (α) := {h(α) |
h is a substitution that satisfies T }. For any class of languages L, LL(PAT) :=
{LT (α) | α ∈ PAT, T is an L-type for α} is the class of L-typed pattern lan-
guages.

We note that {Σ∗}-typed and {Σ+}-typed pattern languages correspond to
the classes of E-pattern languages and NE-pattern languages, respectively, as
defined by Angluin [3] and Shinohara [16]. It is easy to see that LREG(PAT) is
contained in the class of REGEX languages. The substantial difference between



Inside the Class of REGEX Languages 5

these two classes is that the backreferences of a REGEX can refer to subexpres-
sions that are not classical regular expressions, but REGEX. Hence, in order
to describe larger classes of REGEX languages by means of the pattern-based
formalism given in Definition 1, the next step could be to type the variables
of patterns with languages from LREG(PAT) instead of REG and then using
the thus obtained languages again as type languages and so on. However, this
approach leads to a dead end:

Proposition 1. For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Proposition 1 demonstrates that typed pattern languages are invariant with
respect to iteratively typing the variables of the patterns. This suggests that if
we want to extend pattern languages in such a way that they can describe larger
subclasses of the class of REGEX languages, then the regular aspect cannot
completely be limited to the type languages of the variables. This observation
brings us to the definition of PATro := {α | α is a regular expression over (Σ ∪
X ′), where X ′ is a finite subset of X}, the set of patterns with regular operators.
For the sake of convenience, in the remainder of this paper, whenever we use
a regular expression over the alphabet (Σ ∪ X), we actually mean a regular
expression over (Σ ∪X ′), for some finite subset X ′ of X. In order to define the
language given by a pattern with regular operators, we extend the definition of
types to patterns with regular operators in the obvious way.

Definition 2. Let α ∈ PATro and let T be a type for α. The T -typed pattern
language of α is defined by LT (α) :=

⋃
β∈L(α) LT (β). For any class of languages

L, we define LL(PATro) := {LT (α) | α ∈ PATro, T is an L-type for α}.

Patterns with regular operators are also used in the definition of pattern
expressions (see [7] and Section 4) and have been called regular patterns in [4]. As
an example, we define α := (x1ax1 | x2bx2)∗ ∈ PATro and T := (L(c∗),L(d∗)).
The language LT (α) can be generated in two steps. We first construct L(α) =
{β1 · β2 · · · · · βn | n ∈ N0, βi ∈ {x1ax1, x2bx2}, 1 ≤ i ≤ n} and then LT (α) is the
union of all typed pattern languages LT (β), where β ∈ L(α). Thus, LT (α) =
{w1 · w2 · · · · · wn | n ∈ N0, wi ∈ {cmacm, dmbdm | m ∈ N0}, 1 ≤ i ≤ n}.

It seems reasonable to assume that REG-typed patterns with regular op-
erators are strictly more powerful than REG-typed patterns without regular
operators. In the following proposition, we formally prove this intuition.

Proposition 2. L{Σ∗}(PAT) ⊂ LREG(PAT) ⊂ LREG(PATro).

The invariance of typed patterns – represented by Proposition 1 – does not
hold anymore with respect to patterns with regular operators. Before we formally
prove this claim, we shall define an infinite hierarchy of classes of languages given
by typed patterns with regular operators. The bottom of this hierarchy are the
REG-typed pattern languages with regular operators. Each level of the hierarchy
is then given by patterns with regular operators that are typed by languages from
the previous level of the hierarchy and so on.
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Definition 3. Let Lro,0 := REG and, for every i ∈ N, we define Lro,i :=
LLro,i−1

(PATro). Furthermore, we define Lro,∞ =
⋃∞
i=0 Lro,i.

It follows by definition, that the classes Lro,i, i ∈ N0, form a hierarchy and
we strongly conjecture that it is proper. However, here we only separate the first
three levels of that hierarchy.

Theorem 1. Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆ . . . .

In the following section, we take a closer look at the class Lro,∞. We shall
show that it coincides with the class of languages that are defined by the already
mentioned pattern expressions and we formally prove it to be a proper subset of
the class of REGEX languages.

4 Pattern Expressions

We define pattern expressions as introduced by Câmpeanu and Yu [7], but we
use a slightly different notation.

Definition 4. A pattern expression is a tuple (x1 → r1, x2 → r2, . . . , xn → rn),
where, for every i, 1 ≤ i ≤ n, ri ∈ PATro and var(ri) ⊆ {x1, x2, . . . , xi−1}. The
set of all pattern expressions is denoted by PE.

In [7], the language of a pattern expression p := (x1 → r1, x2 → r2, . . . , xn →
rn) is defined in the following way. Since, by definition, r1 is a classical regular
expression, it describes a regular language L. The language L is then interpreted
as a type for variable x1 in every ri, 2 ≤ i ≤ n. This step is then repeated, i. e.,
L(L)(r2) is the type for x2 in every rj , 3 ≤ j ≤ n, and so on.

Definition 5. Let p := (x1 → r1, x2 → r2, . . . , xn → rn) be a pattern expres-
sion. We define Lp,x1

:= L(r1) and, for every i, 2 ≤ i ≤ n, Lp,xi
:= LTi(ri),

where Ti := (Lp,x1
, Lp,x2

, . . . , Lp,xi−1
) is a type for ri. The language generated

by p with respect to iterated substitution is defined by Lit(p) := Lp,xn
and

Lit(PE) := {Lit(p) | p ∈ PE}.

We illustrate the above definition with an example. Let

q := (x1 → a∗, x2 → x1(c | d)x1, x3 → x1cx2)

be a pattern expression. According to the above definition, Lit(q) = {akcamuam |
k,m ∈ N0, u ∈ {c, d}}. We note that in a word akcamuam ∈ Lit(q), both ak and
am are substitution words for the same variable x1 from the type language Lq,x1

.
However, k 6= m is possible, since, intuitively speaking, ak is picked first from
Lq,x1 as the substitution word for x1 in x1cx2 and then am is picked from Lq,x1

as substitution word for x1 in x1(c | d)x1 in order to construct the substitution
word amuam for x2 in x1cx2. Consequently, occurrences of the same variable
in different elements of the pattern expression do not need to be substituted
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by the same word. We shall later see that this behaviour essentially limits the
expressive power of pattern expressions.

As mentioned before, the class of languages described by pattern expres-
sions with respect to iterated substitution coincides with the class Lro,∞ of the
previous section.

Theorem 2. Lro,∞ = Lit(PE).

In the following, we define an alternative way of how pattern expressions
can describe languages, i. e., instead of substituting the variables by words in an
iterative way, we substitute them uniformly.

Definition 6. Let p := (x1 → r1, x2 → r2, . . . , xn → rn) ∈ PE. A word w ∈ Σ∗
is in the language generated by p with respect to uniform substitution (Luni(p),
for short) if and only if there exists a substitution h such that h(xn) = w and,
for every i, 1 ≤ i ≤ n, there exists an αi ∈ L(ri) with h(xi) = h(αi).

For the pattern expression q from above, a word w is in Luni(q) if there is a
substitution h with h(x3) = w and there exist α1 ∈ L(a∗), α2 ∈ L(x1(c | d)x1)
and α3 ∈ L(x1cx2), such that h(x1) = h(α1), h(x2) = h(α2) and h(x3) = h(α3).
Since α1 = an, n ∈ N0, α2 = x1ux1, u ∈ {c, d}, and α3 = x1cx2, this implies that
w is in Luni(q) if there is a substitution h and an α := x1cx1ux1, u ∈ {c, d}, such
that w = h(α) and h satisfies the type (L(a∗)). Thus, Luni(q) = {ancanuan |
n ∈ N0, u ∈ {c, d}}, which is a proper subset of Lit(q).

For an arbitrary pattern expression p := (x1 → r1, x2 → r2, . . . , xn → rn),
the language Luni(p) can also be defined in a more constructive way. We first
choose a word u ∈ L(r1) and, for all i, 1 ≤ i ≤ n, if variable x1 occurs in ri, then
we substitute all occurrences of x1 in ri by u. Then we delete the element x1 → r1

from the pattern expression. If we repeat this step with respect to variables
x2, x3, . . . , xn−1, then we obtain a pattern expression of form (xn → r′n), where
r′n is a regular expression over Σ. The language Luni(p) is the union of the
languages given by all these regular expression.

The language Lit(q) can be defined similarly. We first choose a word u1 ∈
L(r1) and then we substitute all occurrences of x1 in r2 by u1. After that, we
choose a new word u2 ∈ L(r1) and substitute all occurrences of x1 in r3 by u2 and
so on until there are no more occurrences of variable x1 in q and then we delete
the element x1 → r1. Then this step is repeated with respect to x2, x3, . . . , xn−1.

The above considerations yield the following proposition:

Proposition 3. Let p := (x1 → r1, x2 → r2, . . . , xm → rm) be a pattern
expression. Then Luni(p) ⊆ Lit(p) and if, for every i, j, 1 ≤ i < j ≤ m,
var(ri) ∩ var(rj) = ∅, then also Lit(p) ⊆ Luni(p).

The interesting question is whether or not there exists a language L ∈
Luni(PE) with L /∈ Lit(PE) or vice versa. Intuitively, for any pattern expres-
sion p, it seems obvious that it is not essential for the language Lit(p) that
there exist occurrences of the same variable in different elements of p and it
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should be possible to transform p into an equivalent pattern expression p′, the
elements of which have disjoint sets of variables and, thus, by Proposition 3,
Lit(p) = Luni(p

′). Hence, for the language generated by a pattern expression
with respect to iterated substitution, the possibility of using the same variables
in different elements of a pattern expression can be considered as mere syntactic
sugar that keeps pattern expressions concise. On the other hand, the question of
whether or not, for every pattern expression p, we can find a pattern expression
p′ with Luni(p) = Lit(p

′), is not that easy to answer. The following lemma states
that there are in fact languages that can be expressed by some pattern expres-
sion with respect to uniform substitution, but not by any pattern expression
with respect to iterated substitution.

Lemma 1. There exists a language L ∈ Luni(PE) with L /∈ Lit(PE).

From Lemma 1 we can conclude the main result of this section, i. e., the class
of languages given by pattern expressions with respect to iterated substitution
is a proper subset of the class of languages given by pattern expressions with
respect to uniform substitution.

Theorem 3. Lit(PE) ⊂ Luni(PE).

We conclude this section by mentioning that in Bordihn et al. [4], it has been
shown that H∗(REG,REG), a class of languages given by an iterated version
of H-systems (see Albert and Wegner [2] and Bordihn et al. [4]), also coincides
with Lit(PE), which implies Lro,∞ = Lit(PE) = H∗(REG,REG) ⊂ Luni(PE).

In the following section, we take a closer look at the larger class Luni(PE)
and compare it to the class of REGEX languages.

5 REGEX

We use a slightly different notation for REGEX compared to the one used in [5].
A REGEX is a regular expression, the subexpressions of which can be num-

bered by adding an integer index to the parentheses delimiting the subexpression
(i. e., (n . . . )n, n ∈ N). This is done in such a way that there are no two differ-
ent subexpressions with the same number. The subexpression that is numbered
by n ∈ N, which is called the nth referenced subexpression, can be followed by
arbitrarily many backreferences to that subexpression, denoted by \n.

For example, (1 a | b )1 · (2 (c | a)∗ )2 · (\1)∗ · \2 is a REGEX, whereas r1 :=
(1 a | b )1 · (1 (c | a)∗ )1 · (\1)∗ · \2 and r2 := (1 a | b )1 · \2 · (2 (c | a)∗ )2 · (\1)∗ · \2
is not a REGEX, since in r1 there are two different subexpressions numbered
by 1 and in r2 there is an occurrence of a backreference \2 before the second
referenced subexpression.

A formal definition of the language described by a REGEX can be found
in [5]. Here, we stick to the more informal definition which has already been
briefly outlined in Section 1 and that we now recall in a bit more detail.

For a REGEX r, the language described by r is denoted by L(r). A word
w is in L(r) if and only if we can obtain it from r in the following way. We
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move over r from left two right. We treat alternations and stars as it is done
for classical regular expressions and we note down every terminal symbol that
we read. When we encounter the ith referenced subexpression, then we store the
factor ui that is matched to it and from now on we treat every occurrence of
\i as ui. However, there are two special cases we need to take care of. Firstly,
when we encounter the ith referenced subexpression for a second time, which
is possible since the ith referenced subexpression may occur under a star, then
we overwrite ui with the possible new factor that is now matched to the ith

referenced subexpression. This entails the late binding of backreferences, which
has been described in Section 1. Secondly, if a backreference \i occurs and there
is no factor ui stored that has been matched to the ith referenced subexpression,
then \i is interpreted as the empty word.

We also define an alternative way of how a REGEX describes a language,
that shall be useful for our proofs. The language with necessarily initialised subex-
pressions of a REGEX r, denoted by Lnis(r), is defined in a similar way as L(r)
above, but if a backreference \i occurs and there is currently no factor ui stored
that has been matched to the ith referenced subexpression, then instead of treat-
ing \i as the empty word, we interpret it as the ith referenced subexpression,
we store the factor ui that is matched to it and from now on every occurrence
of \i is treated as ui. For example, let r := ((1 a∗ )1 | ε) · b · \1 · b · \1. Then
L(r) := {anbanban | n ∈ N0} and Lnis(r) := L(r) ∪ {banban | n ∈ N0}.

We can note that the late binding of backreferences as well as non-initialised
referenced subexpressions is caused by referenced subexpression under a star or
in an alternation. Next, we define REGEX that are restricted in this regard.

Definition 7. A REGEX r is alternation confined if and only if the existence
of a referenced subexpression in the option of an alternation implies that all the
corresponding backreferences occur in the same option of the same alternation.
A REGEX r is star-free initialised if and only if every referenced subexpression
does not occur under a star. Let REGEXac and REGEXsfi be the sets of REGEX
that are alternation confined and star-free initialised, respectively. Furthermore,
let REGEXsfi,ac := REGEXac ∩REGEXsfi.

We can show that the condition of being alternation confined does not impose
a restriction on the expressive power of a star-free initialised REGEX. The same
holds with respect to their languages with necessarily initialised subexpressions.
Furthermore, for every star-free initialised REGEX r, the language L(r) can also
be given as the language with necessarily initialised subexpressions of a star-free
initialised REGEX and vice versa. This is formally stated in the next lemma,
which shall be useful for proving the main result of this section.

Lemma 2.

L(REGEXsfi) = L(REGEXsfi,ac) = Lnis(REGEXsfi) = Lnis(REGEXsfi,ac) .

In the following, we take a closer look at the task of transforming a pattern
expression p into a REGEX r, such that Luni(p) = L(r). Although, this is
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possible in general, a few difficulties arise, that have already been pointed out
by Câmpeanu and Yu in [7] (with respect to Lit(p)).

The natural way to transform a pattern expression into an equivalent REGEX
is to successively substitute the occurrences of variables by referenced subex-
pressions and appropriate backreferences. However, this is not always possi-
ble. For example, consider the pattern expression q := (x1 → (a | b)∗, x2 →
x∗1 · c · x1 · d · x1). If we simply transform q into rq := (1 (a | b)∗ )∗1 · c · \1 · d · \1,
then we obtain an incorrect REGEX, since Luni(q) 6= L(rq). This is due to the
fact that the referenced subexpression is under a star. To avoid this, we can first
rewrite q to q′ := (x1 → (a | b)∗, x2 → (x1 · x∗1 | ε) · c · x1 · d · x1), which leads
to rq′ := ((1 (a | b)∗ )1 · (\1)∗ | ε) · c · \1 · d · \1. Now we encounter a different
problem: Luni(q

′) contains the word cabadaba, but in L(rq′) the only word that
starts with c is cd. This is due to the fact that if we choose the second option
of ((1 (a | b)∗ )1 · (\1)∗ | ε), then all \1 are set to the empty word. However, we
note that the language with necessarily initialised subexpressions of rq′ is exactly
what we want, since Lnis(rq′) = Luni(q). Hence, we can transform any pattern
expression p to a REGEX rp that is star-free initialised and Luni(p) = Lnis(rp).

Lemma 3. For every pattern expression p, there exists a star-free initialised
REGEX r with Luni(p) = Lnis(r).

We recall that Lemma 2 states that every star-free initialised REGEX r
can be transformed into a star-free initialised REGEX r′ with Lnis(r) = L(r′).
Consequently, Lemmas 2 and 3 imply that every pattern expression p can be
transformed into a star-free initialised REGEX r with Luni(p) = L(r). For ex-
ample, the pattern expression q introduced on page 10 can be transformed into
the REGEX tq := ((1 (a | b)∗ )1 · (\1)∗ · c · \1 · d · \1 | c · (2 (a | b)∗ )2 · d · \2),
which finally satisfies Luni(q) = L(tq).

Theorem 4. Luni(PE) ⊆ L(REGEXsfi).

In the remainder of this section, we show the converse of Theorem 4, i. e.,
every star-free initialised REGEX r can be transformed into a pattern expression
that describes the language L(r) with respect to uniform substitution. However,
this cannot be done directly if r is not alternation confined. As an example,
we consider r := ((1 (a | b)∗ )1 | (2 c∗ )2) · (\1)∗ · \2. Now the natural way
to transform r into a pattern expression is to substitute the first and second
referenced subexpression and the corresponding backreferences by variables x1

and x2, respectively, and to introduce elements x1 → (a | b) and x2 → c∗, i. e.,
pr := (x1 → (a | b), x2 → c∗, x3 → (x1 | x2) · (x1)∗ · x2). Now Luni(pr) contains
the word cccabababccc, whereas every word in L(r) that starts with c does not
contain any occurrence of a or b, thus, Luni(pr) 6= L(r). So in order to transform
star-free initialised REGEX into equivalent pattern expressions, again Lemma 2
is very helpful, which states that we can transform every star-free initialised
REGEX into an equivalent one that is also alternation confined.

Theorem 5. L(REGEXsfi) ⊆ Luni(PE).
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From Theorems 4 and 5, we can conclude that the class of languages described
by pattern expressions with respect to uniform substitution coincides with the
class of languages given by regular expressions that are star-free initialised.

Corollary 1. L(REGEXsfi) = Luni(PE).

In Sections 3 and 4 and in the present section, we have investigated several
proper subclasses of the class of REGEX languages and their mutual relations.
We conclude this section, by summarising these results:

L{Σ∗}(PAT) ⊂ LREG(PAT) ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ . . . ⊆ Lro,∞ =

H∗(REG,REG) = Lit(PE) ⊂ Luni(PE) = L(REGEXsfi) ⊆ L(REGEX) .

6 REGEX with a Bounded Number of Backreferences

It is a well known fact that the membership problem for REGEX languages is
NP-complete (cf. Aho [1] and Angluin [3]). Furthermore, Aho states that it can
be solved in time that is exponential only in the number of backreferences in the
following way. Let k be the number of referenced subexpressions in a REGEX r
and let w be an input word. We first choose k factors u1, u2, . . . , uk of w and then
try to match r to w in such a way that, for every i, 1 ≤ i ≤ k, the ith referenced
subexpression is matched to ui. This is done with respect to all possible k factors
of w. For this procedure we only need to keep track of the k possible factors of
w, thus, time O(|w|2k) is sufficient. However, this approach is incorrect, since it
ignores the possibility that the referenced subexpressions under a star (and their
backreferences) can be matched to a different factor in every individual iteration
of the star. On the other hand, if we first iterate every expression under a star
that contains a referenced subexpression an arbitrary number of times, then,
due to the late binding of backreferences, we introduce arbitrarily many new
referenced subexpressions and backreferences, so there is an arbitrary number
of factors to keep track of.

The question whether the membership problem for REGEX can be solved
in time that is exponential only in the number of backreferences is not a sec-
ondary one, since a positive answer yields the polynomial time solvability of the
membership problem for languages given by REGEX with a bounded number
of backreferences.

We give a positive answer to that question, by showing that for any REGEX
r, a nondeterministic two-way multi-head automaton (see Holzer et al. [11] for
a survey) can be constructed that accepts exactly L(r) with a number of input
heads that is bounded by the number of referenced subexpressions in r and a
number of states that is bounded by the length of r.

Lemma 4. Let r be a REGEX with k referenced subexpressions. There exists a
nondeterministic two-way (3k+2)-head automaton with O(|r|) states that accepts
L(r).
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Since we can solve the acceptance problem of a given two-way multi-head
automaton M and a given word w in time that is exponential only in the number
of input heads, we can conclude the following result:

Theorem 6. Let k ∈ N. The membership problem for REGEX with at most k
referenced subexpressions can be solved in polynomial time.
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