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ABSTRACT 

Recent years have seen a growth in the use of 

evolutionary algorithms to optimize multi-objective 

building design problems. The aim is to find the 

Pareto optimal trade-off between conflicting design 

objectives such as capital cost and operational energy 

use. Analysis of the resulting set of solutions can be 

difficult, particularly where there are a large number 

(possibly hundreds) of design variables to consider. 

This paper reviews existing approaches to analysis of 

the Pareto front. It then introduces new approach to 

the analysis of the trade-off, based on a simple rank-

ordering of the objectives, together with the 

correlation between objectives and problem 

variables. This allows analysis of the trade-off 

between the design objectives and variables. The 

approach is demonstrated for an example building, 

covering the different relationships that can exist 

between variables and the objectives. 

INTRODUCTION 

Building design is an inherently multi-objective 

process, there being a trade-off to be made between 

two or more conflicting design objectives (such as 

between minimising both operating and capital cost). 

This has led to research into the application of 

simulation-based multi-objective optimization 

methods that identify the Pareto optimum trade-off 

between conflicting design objectives (Caldas, 2008; 

Flager et al., 2008; Geyer, 2009; Perfumo et al., 

2010, Hamdy et al., 2011a; Villa and Labayrade, 

2011). In this approach, the trade-off is represented 

by a set of equally optimal solutions, from which a 

single design solution must be selected for 

construction. Therefore, the benefit of the 

optimization process can only be realised if the 

results of the optimization can be analysed in a way 

that aids the decision-making process and the 

selection of the final design solution. 

The analysis of multi-objective optimization results 

is non-trivial, in that the problem is multi-

dimensional with several interacting relationships 

being of interest, particularly: 

1. the trade-off between the design objectives; 

2. the extent to which the problem variables 

drive the trade-off; 

3. and the extent to which elements of building 

performance change along a trade-off and are 

influenced by the problem variables.  

This paper focuses on the first two of these points. 

The difficulty of such an analysis is apparent when 

compared to the complexity of analysing the 

simulation results for a single design solution alone. 

Not only are there multiple simulation results to 

analyse, but also multiple design solutions consisting 

of many design variables (perhaps as many as 100 or 

more variables).  Given the scale of the task, in terms 

of the number of design objectives, variables, and 

solutions to be analysed, it is probable that any 

approach to the analysis will be based on both 

quantitative metrics, and qualitative graphical 

procedures. The decision-making workflow is also 

likely to be iterative. 

This paper reviews existing approaches to the 

analysis of solutions from multi-objective 

optimization problems, the majority of which use a 

visual plot of the Pareto front or set in the objective 

space to choose solutions for analysis. There are few 

existing approaches that identify systematically the 

impact of variables on the trade-off, particularly for 

problems with more than a few variables. 

The paper then introduces an approach that allows 

analysis of the relationship (trade-off) between the 

design objectives, and also the extent to which the 

trade-off is driven by certain design variables. The 

approach is based on a simple rank-ordering of the 

objectives, together with the correlation between the 

objectives and the problem variables. The correlation 

allows an additional check for variables that do not 

appear to drive the trade-off. In addition, the relative 

impact of driver variables can be determined at a 

glance. This provides useful knowledge of the 

problem to inform the decision making process when 

selecting a final design from the trade-off. This is 

demonstrated for a two-objective optimization 

problem formulated for a five zone building. 
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Conclusions are drawn about the practicability of the 

approach, as well as observation being drawn about 

the types of problem variables and the characteristic 

relationships that can exist between the variables and 

the objective functions in building optimization 

problems.  

A REVIEW OF EXISTING 

APPROACHES TO MULTI-OBJECTIVE 

ANALYSIS  

There are two broad approaches to analysis of results 

from a multi-objective parameter optimization; 

quantitative metrics for comparison of the Pareto 

fronts or sets, and qualitative analysis based on 

observation of trends among the solutions in the 

fronts. There exist a large number of quantitative 

metrics designed for comparing Pareto fronts in the 

objective space. These measure three different 

aspects of the sets: the distance of the set from the 

“true” Pareto-optimal set, how uniformly distributed 

the members of the set are, and the extent of the set 

(that is, how wide a range of values in each objective 

is covered by the set). Such metrics include the 

commonly used hypervolume, generational distance 

and spread metrics – and there are several 

comparative surveys of these in the evolutionary 

computing literature including (Knowles and Corne 

2002; Zitzler et al., 2003). Hypervolume is used to 

choose one front for analysis from those found by 

multiple runs in (Perfumo et al., 2010). Beyond this, 

while such metrics are useful for comparing the 

relative performance of different algorithms (or 

configurations of the same algorithm) on a problem, 

they are of limited use for decision-making or 

analysis of the trends in a particular front. Here, it is 

important to relate trends in the variables to the trade-

off in the objectives. 

Usually, in multi-objective optimization, we wish to 

make comparisons using more than one objective, 

but it is possible to use quantitative comparisons on 

one objective at a time. For example, in (Hamdy et 

al., 2011b), the optimization algorithm is divided into 

two steps, between which the variable bounds and 

penalties for constraints are adjusted, and 

comparisons of solutions are performed one objective 

at a time. Within this framework, the authors noted 

that some design variables have little or no influence 

on the results in some parts of the solution space. 

This was also previously observed by Wright et al 

(2002). 

Qualitative methods focus on either a visualisation of 

the Pareto set in either the objective or variable 

space, or analysis of the raw variable values among 

the Pareto set. A common approach for 2-objective 

problems is to plot the objective values of the Pareto 

set in 2D, such as in (Farmani et al., 2005; Nassif et 

al., 2005). From such a plot, it is possible to visually 

select one “trade-off” solution for analysis (Perfumo 

et al., 2010). 

A 2D plot of the Pareto set can also be simply 

presented with solutions identified with their variable 

in a table (Shi, 2011) or as rendered images (Caldas, 

2008). 

Similar to the idea of sorting in this paper, in (Hamdy 

et al., 2011a), the Pareto set is sorted by one of the 

objectives, with bar charts given for the values of 

each variable among the set. Coloured bands can be 

used to map between plots of the Pareto set in the 

objective and variable spaces (Villa and Labayrade, 

2011), or groups of solutions in the Pareto set plot 

can be identified to highlight common features 

(Geyer, 2009). Plots showing the relationship of one 

or two variables with an objective are used by (Flager 

et al. (2008), with additional colouring to identify 

trends. A Pareto set plot can also include indicators 

for uncertainty and robustness (Hoes et al., 2011). 

The Phi-array (Mourshed et al., 2011) is used to 

incorporate information from suboptimal solutions in 

the decision-making process. Two variables 

(positions for primary and secondary luminaire) are 

used to plot solutions on a grid; size and colour 

reflect fitness. This means it is possible to show 

multiple solutions in the same position, and identify 

connections between optimality and variable values. 

It is difficult to compare more than two objectives at 

a time; even a 3D surface plot is hard to interpret. In 

(Jin et al., 2011), a 3D plot of the Pareto set has 

projections of points on the three axes to show 

precise locations with respect to the objectives. 

Points are also coloured to show window-to-wall 

ratio (one of the variables) and ranges of objective 

values among the set are given. Further, tables give 

variable values for parts of the Pareto set 

representing trade-offs between pairs of objectives. 

Pairs of objectives are often compared for many-

objective problems, for example (Geyer, 2009). In 

(Kim and Park, 2009), groups of three objectives 

were compared and the authors gave a table of the 

variable values for the whole Pareto set, sorted by 

one of the objectives. In (Suga et al., 2010), four 

objectives were each plotted in histograms, and 

cluster analysis was used to aid trend-finding among 

the variables. Parallel coordinate plots (Flager et al., 

2008) can also help identify broad trends for many-

objective problems; an example is given in Figure 1. 

 

Figure 1. Parallel coordinate plots (left), and the 

Promethee / Gaia Method (right) 

 

Outside of building optimization, there exist a wide 

number of techniques for visualisation and analysis 
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of the Pareto set such as the Gaia/Promethee (Brans 

and Mareschal, 1994) (Figure 1), and summary 

attainment surfaces for comparing multiple Pareto 

sets (Knowles, 2006). Automated approaches to 

learning the trends in variables (“design principles”) 

in the Pareto set are suggested as an area of future 

research in (Deb and Srinivasan 2008); there features 

are identified by visual and statistical comparisons. 

Wang et al. (2009) recently reviewed multi-criteria 

decision analysis in sustainable energy decision-

making. Recent reviews of visualisation techniques 

for the Pareto sets found by MOEA include 

(Korhonen and Wallenius, 2008; Lotov and 

Miettinen, 2008), and discussion of uncertainty and 

interactive decision making for MO problems is 

presented in (Bonissone et al. 2009). 

AN APPROACH TO THE ANALYSIS OF 

SOLUTIONS TO BI-OBJECTIVE 

OPTIMIZATION PROBLEMS 

Reviewing the literature, we see that often, once the 

Pareto set is found, the decision making process takes 

place entirely within the objective space. Analysis of 

the front tends to focus on individual solutions rather 

than trends within the front for each of the problem 

variables. We propose an approach which combines a 

table showing the values for each variable, with a 

visual bar showing the relative values, combined 

with the statistical correlation between each variable 

and one of the objectives. The correlation used is 

Spearman’s rank correlation (Lucey, 2002). 

The technique makes use of conditional formatting in 

MS Excel, with the variable values normalised for 

easy comparison. There are two ways to approach the 

normalisation; to the lower and upper bounds of the 

problem variable, and to the minimum and maximum 

values present in the Pareto set. The former allows 

for the user to easily see how much coverage of each 

variable’s range there is, which would be useful if the 

optimization problem is to be revised. The latter can 

highlight trends that only cover a small part of a 

variable’s range but still nonetheless important. 

Before demonstrating the approach, we will discuss 

the broad categories of trends that can be identified 

among the problem variables. 

Variable Types 

In defining a suite of test problems for evolutionary 

multi-objective optimization (EMO) algorithms, 

Huband et al. (2006) identify three categories of 

problem variable. These are defined by the influence 

they have on the position of solutions relative to the 

optimal trade-off (the Pareto front): 

 The values given to distance variables 

determine how close to the Pareto front a 

solution lies (illustrated by “d” in Figure 2). We 

would expect that these would be constant 

along the front – although constant variables 

could simply have no effect (Hamdy et al., 

2011b; Wright et al., 2002). 

 The values given to position variables 

determine where along the Pareto front a 

solution lies (illustrated by “p” in Figure 2). 

 Mixed variables are a combination of both. 

Huband et al. also identify extremal and medial 

variables, for which those in the Pareto front are all at 

the extreme or in the middle of the variable's range 

respectively. In an iterative optimization process, the 

bounds of such variables could be adjusted to allow 

the search to focus on a wider range or more detail. It 

is simple to spot such variables when the values are 

normalised to the lower and upper bounds for the 

visualisation. 

 

Figure 2. The impact of position (p) and distance (d) 

variables. The dotted line represents the Pareto 

front; the axes are the two problem objectives. 

In this paper, we give examples of these for the 

Pareto front found for a building optimization 

problem. We also extend these definitions: 

 Position variables are further categorised into 

primary and secondary position variables. This 

depends on whether they exhibit a single trend 

along the whole Pareto front, or a periodic 

trend, influenced by another variable. 

 Floating variables, the values of which are 

unimportant (the objective functions are 

insensitive to these). 

 Composite variables are a mixture of any of the 

above variable types.  

These definitions are important because, in 

identifying the influence on the objectives that 

variables have relative to each other, we are able to 

better understand the problem, and make informed 

decisions about the final solution to be chosen. 

The picture is further complicated by interactions 

between variables; such as a set-point having no 

effect if the system is not in operation (applies to 

example problem in terms of out-of-hours operation). 

EXAMPLE OPTIMIZATION PROBLEM 

The example optimization problem is based on a 

mid-floor of a commercial office building (Figure 3). 

Although the example has 5 zones, in this study, only 

the design variables associated with the perimeter 

zones are considered and optimized. The two end 
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zones are 24m x 8m, and the three middle zones 30m 

x 8m. The floor to ceiling height of all zones is 2.7m. 

The working hours are 9:00 to 17:00. Each zone has 

typical design conditions of 1 occupant per 10m
2
 

floor area and equipment loads of 11.5 W/m
2
 floor 

area. Maximum lighting loads are set at 11.5 W/m
2
 

floor area, with the lighting output controlled to 

provide an illuminance of 500 lux at two reference 

points located in each of the perimeter zones.  

Infiltration is set at 0.1 air change per hour, and 

ventilation rates at 8 l/s per person. The heating and 

cooling is modelled using an idealized system that 

provides sufficient energy to offset the zone loads 

and meet the zone temperature set-point during hours 

of operation; free-cooling is available through natural 

and mechanical ventilation. Heating and cooling 

operation is restricted to separately identified 

seasons. The internal zone has been treated as a 

passive unconditioned space. The building 

performance has been simulated using EnergyPlus 

(V7). The building is nominally located in 

Birmingham UK, with the CIBSE test reference year 

used in simulating the annual performance (CIBSE, 

2002). 

Table 1 give the optimization variables. The 

building is orientated with the longest façades facing 

north (and south) when the orientation is set at 0
o
. 

The dead band has been optimized instead of the 

cooling set-point to ensure that problem formulation 

does not result in an overlap of the heating and 

cooling set-points. The window-to-wall ratios are 

applied by dividing the total window area across 6 

windows placed in three groups across each façade 

(Figure 3). The names given to the window-to-wall 

ratios in Table 1 reflect the general orientation of the 

façade for the base solution (approximately that 

illustrated in Figure 3). The start and stop times are 

hours of the day. 

The value of the categorical construction variables 

corresponds to a particular type of construction. 

Three construction types are available for the 

external wall construction, a heavy weight, medium 

weight, and light weight. Similarly two floor and 

ceiling constructions (heavy and light weight), and 

three internal wall constructions (heavy, medium, 

and light weight) have been defined. The alternative 

constructions have been taken from the ASHRAE 

handbook (ASHRAE, 2005). Two double glazed 

windows types are available, one having plain glass, 

and the second, low emissivity glass. 

The objective functions, to be minimized by the 

optimization, are: 

 the total annual energy use for heating, cooling, 

extractor fans, and artificial lighting;  

 the capital cost of the building, using a model 

derived from cost estimating data. 

The design constraints on thermal comfort and air 

quality during working hours in each of the perimeter 

zones are as follows. Air temperature must not 

exceed 25
o
C for more than 150 hours per annum, 

more than 28
o
C for more than 30 hours, or less than 

18
o
C for more than 30 hours. CO2 concentration 

should not exceed 1500ppm. 

Table 1 (end of paper) details the 52 optimization 

problem variables, with the lower and upper bounds. 

These include orientation, heating and cooling set-

points (via the dead band), window-to-wall ratios, 

start and stop times, and construction type.  

OPTIMIZATION ALGORITHM 

The optimization run was carried out using the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) 

(Deb et al., 2002). The specific implementation 

details were: 

 Gray-coded bit-string encoding of the problem 

variables (163 bits) 

 Population size 15 

 Binary tournament selection 

 Uniform crossover for every offspring 

 Bit-flip mutation at a rate of 1/163 

 Limit of 5000 unique simulations 

The output set of non-dominated solutions was 

derived from the set of all solutions generated over 

the run, rather than the final population (the latter 

being limited by the population size). For the 

purposes of the analysis presented here, the results 

from a single run of the algorithm are adequate. 

The run found 49 solutions in the trade-off, which are 

plotted in the objective space in Figure 4. 

 

 

Figure 4. The Pareto optimal set found by the 

optimization, plotted in objective space. Figure 3. Example building. 
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EXAMPLE ANALYSIS 

We now look at a sub-set of the problem variables 

which fall in to each of the categories identified 

earlier. For this, we refer to Figure 5 and Figure 6, in 

which we have visualized the values for each 

variable (columns) and each solution (rows) as a bar. 

The normalised numerical values for variables are 

also included, but are of little importance for our 

analysis. The bar lengths are normalised to the lower 

and upper bounds for the optimization problem in 

Figure 5, and to the range of variable values within 

the Pareto set in Figure 6. Normalisation of a specific 

value xi of a variable x is conducted according to:  

 (  )  
       ( )

   ( )      ( )
 

The solutions are sorted in order of ascending energy 

use and hence descending capital cost. From left to 

right, the columns are: 

Energy – the simulated annual energy usage 

CapCost – the modelled capital cost for the design 

A – HVAC heating set point for occupied hours 

B – HVAC cooling set-point for unoccupied hours 

C – min, outdoor temperature for natural ventilation 

D – glazed area for the north upper window 

E – glazed area for the south upper window 

F – mechanical ventilation rate for the interior zone 

G – external wall construction type 

H – ceiling and floor construction type 

I – shading overhang present on south lower window 

The construction types are represented by numbers: 0 

to 1 representing heavy to light weight constructions.  

The final row in both figures is the statistical rank 

correlation between that variable and energy use. 

Figures over a magnitude of 0.7 (a strong correlation 

according to Moore (2010)) are in bold. 

Primary position variables 

The glazed area for the south upper window  (E), 

HVAC heating set-point (A),  and external wall 

construction (G) may all be regarded as primary 

position variables. In Figure 6, we can see that all 

three show broad trends in line with increasing 

energy usage. A lower window area, lower heating 

set-point, and a light-weight wall all lead to lower 

energy use for the building. In making an analysis of 

the trends, it is important to note that only the south 

upper window glazing area is easily identified as a 

position variable by both normalisation approaches. 

In Figure 5, the HVAC heating set-point (A) appears 

to vary very little because the Pareto set has 

converged to a small set of the allowed range of 

values for this variable. Only when normalised 

among the Pareto set (Figure 6) is it clear that this 

Energy CapCost A B C D E F G H I

0.00 1.00 1 0.2 1 1.00 1.00 0.11 0 0.5 1

0.01 0.90 1 0.2 1 1.00 0.88 0.11 0 0.5 1

0.03 0.82 1 0.2 1 0.81 0.88 0.11 0 0.5 1

0.04 0.76 1 0.2 1 0.62 0.88 0.11 0 0.5 0

0.07 0.74 1 0.2 1 0.62 0.88 0.11 0 0.5 0

0.07 0.70 1 0.2 1 0.62 0.88 0.22 0 0.5 0

0.10 0.66 1 0.2 1 0.43 0.88 0.11 0 0.5 0

0.10 0.62 1 0.2 0.75 1.00 1.00 1.00 1 0.5 1

0.10 0.61 1 0.2 0.75 1.00 1.00 0.11 1 0.5 1

0.10 0.61 1 0.2 0.75 1.00 1.00 1.00 1 0.5 1

0.12 0.59 1 0.8 0.5 1.00 1.00 0.67 1 0.5 1

0.14 0.57 1 0 0 0.62 0.88 0.11 1 0.5 0

0.15 0.54 0 0.2 0.25 0.81 0.88 0.67 1 0.5 0

0.17 0.53 0 0.2 0.25 0.81 0.88 0.67 1 0.5 0

0.18 0.52 1 0.2 0.5 0.62 0.88 0.11 1 0.5 0

0.18 0.49 0 0.2 0.25 0.81 0.88 0.67 1 0.5 0

0.21 0.45 0 0.2 0.5 0.43 0.50 0.11 0.5 0.5 0

0.21 0.43 1 0.2 0 0.81 0.50 0.67 1 0.5 0

0.21 0.37 0 0.2 0 0.62 0.50 0.67 1 0.5 0

0.24 0.35 0 0.2 0 0.62 0.50 0.67 1 0.5 0

0.27 0.32 0 0.2 0.25 0.43 0.50 0.11 1 0.5 0

0.32 0.30 0 0.2 0.25 0.24 0.50 0.67 1 0.5 0

0.33 0.29 0 0.2 0.25 0.24 0.50 0.11 1 0.5 0

0.35 0.27 0 0.8 0.25 0.29 0.50 0.11 1 0.5 0

0.35 0.26 0 0.8 0.25 0.00 0.50 0.11 1 0.5 0

0.36 0.25 0 0.2 0.25 0.14 0.50 0.11 1 0.5 0

0.38 0.25 0 0.8 0.25 0.24 0.38 0.11 1 0.5 0

0.39 0.25 0 0.8 0.25 0.24 0.38 0.11 1 0.5 0

0.39 0.24 0 0.8 0.25 0.24 0.38 0.11 1 0.5 0

0.41 0.20 0 0.8 0.25 0.24 0.38 0.67 1 0.5 0

0.46 0.20 0 0.8 0.25 0.24 0.38 0.11 1 0.5 0

0.46 0.20 0 0.8 0.25 0.24 0.38 0.11 1 0.5 0

0.47 0.19 0 1 0.25 0.00 0.38 0.11 1 0.5 0

0.49 0.18 0 0.8 0.25 0.00 0.38 1.00 1 0.5 0

0.54 0.16 0 0 0.25 0.00 0.38 0.11 1 0.5 0

0.55 0.14 0 0.8 0.25 0.00 0.38 0.67 1 0.5 0

0.57 0.12 0 0.8 0.25 0.00 0.38 0.11 1 0.5 0

0.64 0.11 0 1 0.25 0.00 0.50 0.11 1 0.5 0

0.64 0.11 0 1 0.25 0.24 0.38 0.00 1 0.5 0

0.65 0.09 0 0.8 0.25 0.00 0.38 0.11 1 0.5 0

0.66 0.08 0 1 0.25 0.00 0.38 0.11 1 0.5 0

0.67 0.08 0 1 0.25 0.00 0.38 0.11 1 0.5 0

0.67 0.07 0 1 0.25 0.00 0.38 0.11 1 0.5 0

0.70 0.07 0 1 0.25 0.00 0.38 0.11 1 0.5 0

0.91 0.05 0 1 0.25 0.24 0.00 0.11 1 0.5 0

0.92 0.04 0 0.8 0.25 0.24 0.00 0.11 1 0.5 0

0.93 0.01 0 0.8 0.25 0.14 0.00 0.11 1 0.5 0

0.97 0.01 0 1 0.25 0.00 0.00 0.11 1 0.5 0

1.00 0.00 0 1 0.25 0.00 0.00 0.11 1 0.5 0

Corr. with energy: -0.76 0.79 -0.57 -0.86 -0.93 -0.31 0.61 0.00 -0.54

Figure 6. Selected variables for the Pareto front, 

normalised to the minimum and maximum values 

present in the Pareto front itself. 

Energy CapCost A B C D E F G H I

0.00 1.00 0.5 0.564516 0.98 0.65 0.82 0.11 0 1 1

0.01 0.90 0.5 0.564516 0.98 0.65 0.73 0.11 0 1 1

0.03 0.82 0.5 0.580645 0.98 0.57 0.73 0.11 0 1 1

0.04 0.76 0.5 0.580645 0.98 0.49 0.73 0.11 0 1 0

0.07 0.74 0.5 0.564516 0.98 0.49 0.73 0.11 0 1 0

0.07 0.70 0.5 0.564516 0.98 0.49 0.73 0.22 0 1 0

0.10 0.66 0.5 0.580645 0.98 0.41 0.73 0.11 0 1 0

0.10 0.62 0.5 0.564516 0.98 0.65 0.82 1.00 1 1 1

0.10 0.61 0.5 0.564516 0.98 0.65 0.82 0.11 1 1 1

0.10 0.61 0.5 0.564516 0.98 0.65 0.82 1.00 1 1 1

0.12 0.59 0.5 0.612903 0.98 0.65 0.82 0.67 1 1 1

0.14 0.57 0.5 0.548387 0.98 0.49 0.73 0.11 1 1 0

0.15 0.54 0.4 0.548387 0.98 0.57 0.73 0.67 1 1 0

0.17 0.53 0.4 0.548387 0.98 0.57 0.73 0.67 1 1 0

0.18 0.52 0.5 0.564516 0.98 0.49 0.73 0.11 1 1 0

0.18 0.49 0.4 0.548387 0.98 0.57 0.73 0.67 1 1 0

0.21 0.45 0.4 0.564516 0.98 0.41 0.43 0.11 0.5 1 0

0.21 0.43 0.5 0.564516 0.98 0.57 0.43 0.67 1 1 0

0.21 0.37 0.4 0.548387 0.98 0.49 0.43 0.67 1 1 0

0.24 0.35 0.4 0.548387 0.98 0.49 0.43 0.67 1 1 0

0.27 0.32 0.4 0.548387 0.98 0.41 0.43 0.11 1 1 0

0.32 0.30 0.4 0.548387 0.98 0.33 0.43 0.67 1 1 0

0.33 0.29 0.4 0.548387 0.98 0.33 0.43 0.11 1 1 0

0.35 0.27 0.4 0.580645 0.98 0.35 0.43 0.11 1 1 0

0.35 0.26 0.4 0.596774 0.98 0.24 0.43 0.11 1 1 0

0.36 0.25 0.4 0.548387 0.98 0.29 0.43 0.11 1 1 0

0.38 0.25 0.4 0.596774 0.98 0.33 0.33 0.11 1 1 0

0.39 0.25 0.4 0.596774 0.98 0.33 0.33 0.11 1 1 0

0.39 0.24 0.4 0.596774 0.98 0.33 0.33 0.11 1 1 0

0.41 0.20 0.4 0.596774 0.98 0.33 0.33 0.67 1 1 0

0.46 0.20 0.4 0.596774 0.98 0.33 0.33 0.11 1 1 0

0.46 0.20 0.4 0.596774 0.98 0.33 0.33 0.11 1 1 0

0.47 0.19 0.4 0.564516 0.98 0.24 0.33 0.11 1 1 0

0.49 0.18 0.4 0.596774 0.98 0.24 0.33 1.00 1 1 0

0.54 0.16 0.4 0.532258 1.00 0.24 0.33 0.11 1 1 0

0.55 0.14 0.4 0.596774 0.98 0.24 0.33 0.67 1 1 0

0.57 0.12 0.4 0.596774 0.98 0.24 0.33 0.11 1 1 0

0.64 0.11 0.4 0.612903 0.98 0.24 0.43 0.11 1 1 0

0.64 0.11 0.4 0.612903 0.98 0.33 0.33 0.00 1 1 0

0.65 0.09 0.4 0.596774 0.98 0.24 0.33 0.11 1 1 0

0.66 0.08 0.4 0.612903 0.98 0.24 0.33 0.11 1 1 0

0.67 0.08 0.4 0.612903 0.98 0.24 0.33 0.11 1 1 0

0.67 0.07 0.4 0.612903 0.98 0.24 0.33 0.11 1 1 0

0.70 0.07 0.4 0.612903 1.00 0.24 0.33 0.11 1 1 0

0.91 0.05 0.4 0.612903 0.98 0.33 0.04 0.11 1 1 0

0.92 0.04 0.4 0.596774 0.98 0.33 0.04 0.11 1 1 0

0.93 0.01 0.4 0.596774 0.98 0.29 0.04 0.11 1 1 0

0.97 0.01 0.4 0.612903 0.98 0.24 0.04 0.11 1 1 0

1.00 0.00 0.4 0.612903 1.00 0.24 0.04 0.11 1 1 0

Corr. with energy: -0.76 0.63 0.32 -0.86 -0.93 -0.31 0.61 0.00 -0.54

Figure 5. Selected variables for the Pareto front, 

normalised to the lower and upper bounds in the 

definition of the optimization problem. 
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variable still has an impact; this can also be seen in 

the strong statistical correlation (-0.76) between the 

variable and energy. In contrast, while the external 

wall construction appears to have an impact on 

energy use, it does not have a strong statistical 

correlation with energy (0.61), and may be filtered 

out by an approach that relies on this metric alone. In 

both cases, it could be that the comfort constraints 

have forced these variables to take on values within a 

narrow range, but the variable still has an impact on 

energy use, that is revealed by the trend. This 

emphasises the need for both visual and metric 

analysis of the set. 

Secondary position variables 

The glazed area for the north upper window (D), and 

south lower window overhang (I) can be regarded as 

secondary position variables. These have less impact 

on the energy use than the primary position variables, 

so appear to vary periodically, in line with changes in 

those. For the glazed area variable, there are three 

trends within the Pareto set: two in which the energy 

use increases with increasing glazed area, and a third 

in which the glazed area floats around a low value, 

while energy use continues to increase (affected by 

changes in other variables). Horizontal lines on both 

tables indicate the divisions between these regions. 

The first line clearly falls on the point where 

solutions change from having heavy weight external 

construction to light weight. The second falls at the 

point where the unoccupied cooling set-point 

changes from low to high. 

The window overhang variable has two regions, with 

an overhang present for lower energy use buildings. 

The division between these regions also lies at the 

point where the external construction switches from 

heavy to light weight. As this point represents a large 

change in the makeup of the buildings, for robustness 

during final decision making it may be better to avoid 

solutions around this point in favour of those further 

from the transition. 

As both variables exhibit a periodic trend along the 

Pareto front, rather than a single linear trend, the 

correlation coefficients show only a weak correlation 

with energy, when clearly they do have an impact 

which should be considered when decision making. 

Fixed variables 

Along the Pareto set, values for the floor and ceiling 

construction have become fixed on light-weight 

construction. As the variable has only one value for 

the whole set, correlation with energy is zero. 

This implies that to reach the region of the Pareto 

front, solutions must have light-weight construction. 

If this applies only because of energy and cost 

considerations, then this is what Huband et all refer 

to as a distance variable; however it may also be that 

a lightweight construction means that the building is 

more easily able to meet the comfort constraints than 

with a heavyweight construction. An alternative 

explanation can be a phenomenon known as hitch-

hiking (Schraudolph and Belew, 1992), where a 

genetic algorithm assigns a value to an unimportant 

variable simply because it shared a solution with 

another variable value which was important. To be 

certain of the explanation, further exploration such as 

a formal sensitivity analysis around the points 

represented by the Pareto set would be required.  

Floating variables 

Our model deliberately includes one variable which 

has no impact on energy use or cost.  The ventilation 

fan to the internal zone is switched off, so changing 

the flow rate for this fan has no effect on energy use. 

This can be seen in the values for the variable among 

the Pareto set – it “floats” around the whole range of 

possible values, and has a weak correlation with 

energy (-0.31). Note that this is greater than the 

correlation for the floor and ceiling construction 

(which was zero), despite these having an influence 

on the energy and cost of the building. Variables 

determined to be floating can be set to any value for 

the final design solution. 

Composite variables 

In practice, many variables will be a mixture of 

different types. A clear example is the minimum 

outdoor temperature for natural ventilation (C). 

Divided into the same three sections described earlier 

under “secondary position variables”, there are two 

constant regions and region where the variable floats. 

DISCUSSION AND CONCLUSIONS 

There are a large number of variables to consider, 

and it is difficult to analyse their characteristics over 

all 49 solutions in the Pareto front together. A typical 

approach may be to use a quantitative metric such as 

the correlation coefficient to filter out the solutions 

that show a lower correlation with the objectives for 

more detailed analysis. 

A problem with this is that it fails to distinguish 

between distance variables (which tend to have fixed 

values in the front) and floating variables. The former 

are important as they have an impact on the 

objectives and constraints (energy, cost and comfort 

in this case). In contrast, floating variables do not and 

can have one of many values assigned to them at the 

final stage of the decision making process. A formal 

sensitivity analysis may provide a solution to this 

problem, filtering out variables found to be 

insensitive. 

The correlation coefficient between objectives and 

variables should also be used with care as it fails to 

detect periodic trends such as that exhibited by 

composite and secondary position variables, as well 

as possibly failing to detect some of the primary 

position variables. 

In this context, the graphical approach is useful. 

While for space reasons we cannot show all of the 

optimization variables here, it was possible at a 
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glance to see the fixed (distance) and position 

variables, and select a subset for closer analysis. 

Normalising to the values present in the Pareto set 

rather than the variable bounds made this process 

simpler, although the latter approach is still useful to 

see where variables cover the whole or a small part 

of their range. This would allow for improvement of 

the problem definition in subsequent optimization 

runs if the ranges initially chosen were inadequate. 

In our example, we identified the categories of 

variable and how these appear as trends in the 

visualisation. Knowing which variables drive the 

trade-off between the objectives (both primary and 

secondary) is useful both in deciding on the values 

for the final chosen design, and understanding the 

characteristics of the model. Floating variables can 

be confidently set to any convenient value, whereas 

primary and secondary position variables may be set 

to mutually compatible values. The range of 

solutions found may increase confidence in the 

optimality, or at least the improvement gained 

through optimization. Further, if a variable which 

should be of little importance appears to be a primary 

position or a distance variable, there may be an issue 

with the model worth further investigation.  

Further work is needed to extend this approach to 

three or more objectives, and to obtain better 

understanding of the influence of the variables on the 

optimization constraints. The optimization algorithm 

used here retained only “feasible” solutions (those 

meeting the constraints) for the final Pareto set. 

Analysis of “infeasible” solutions could be useful in 

providing information on areas of the solution space 

to avoid – this requires an approach in which 

infeasible solutions are allowed to be generated (such 

as a three objective approach), or via post processing. 
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