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Abstract 
A completely analytical theory is developed for the mixed mode partition of one-dimensional 
fracture in laminated composite beams and plates. Two sets of orthogonal pure modes are 
determined first. It is found that they are distinct from each other in Euler beam or plate theory 
and coincide at the Wang-Harvey set in Timoshenko beam or plate theory. After the Wang-
Harvey set is proved to form a unique complete orthogonal pure mode basis within the contexts 
of both Euler and Timoshenko beam or plate theories, it is used to partition a mixed mode. 
Stealthy interactions are found between the Wang-Harvey pure mode I modes and mode II 
modes in Euler beam or plate theory, which alter the partitions of a mixed mode. The finite 
element method is developed to validate the analytical theories. 

Keywords: Composite beams and plates, Energy release rate, Fracture, Mixed mode partition, 
Orthogonal pure modes  

1. Introduction 

 Some typical examples of one-dimensional cracks in isotropic materials or one-dimensional 
delamination in laminated composite materials are shown in Fig. 1. For the sake of convenience, 
one-dimensional cracks and delamination are both called one-dimensional fracture in this work. 
Although fracture of engineering materials or structures is in general a three-dimensional 
mechanical problem, study of one-dimensional fracture still has great importance due to several 
reasons. One-dimensional fracture is often used in experimental tests, such as double cantilever 
beam (DCB) and end-notched flexure (ENF) tests, to obtain critical energy release rate or 
toughness of a material in either pure mode I or mode II fracture. In the case of a mixed mode, it 
is often used to investigate fracture propagation criteria. Moreover, many practical fractures in 
materials can be approximated as one-dimensional fracture. The most common ones are through-
width fracture in straight or curved beams as shown in Fig. 1, circular ring-type fracture in plates 
and shells in a drilling process (also shown), separation of two material layers in a bio-cell under 
a needle puncture, separation of stiffeners and skins in stiffened plate or shell panels, etc. 

The study in this paper focuses on brittle one-dimensional fracture. That is, the materials in 
consideration are assumed to be linearly elastic. The primary goal is to develop theories to find 
pure fracture modes and partition a mixed mode into pure modes. By achieving this goal, the aim 
is to provide academic researchers with theoretical tools for determining critical energy release 
rates of pure modes and developing fracture propagation criterion, and industrial engineers with 
design guidelines. 
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An important pioneering work on the topic [1] was given by Williams for isotropic DCBs 
based on Euler beam theory. A pair of pure modes I and II were correctly given. However, the 
partition of a mixed mode was in error. Another piece of pioneering work [2] was given by 
Schapery and Davidson, which was also for DCBs based on Euler beam theory. The work [2] 
was not able to give the Williams pair of pure modes [1] and claimed that Euler beam theory did 
not provide quite enough information to obtain a decomposition of energy release rate into 
opening and shearing mode components. Hutchinson and Suo [3] and Suo and Hutchinson [4] 
reported their work on isotropic DCBs based on a combined Euler beam theory and 2D elasticity 
with the use of stress intensity factors. The work [3,4] gave a combined numerical and analytical 
approach and was also unable to reproduce the Williams pair of pure modes [1]. The work [3] 
claimed the work [1] contained conceptual errors. Some other earlier works are given in Refs. 
[5,6]. Several recent research works on the topic are quoted here among many others. These are 
Chen et al. [7], Chen [8], Zou et al. [9], Wang and Qiao [10], Li et al. [11], Nguyen and Levy 
[12], Yan and Shang [13] and Ouyang and Li [14].  

Recently, the authors have developed completely analytical theories for one-dimensional 
fractures in straight beams and axisymmetric plates made of either isotropic or laminated 
composite materials. Both classical and first order shear deformable beam or plate theories are 
used. The work has been reported on several occasions [15-19]. In this paper the essential 
theories for isotropic DCBs [20] and laminated composite DCBs [21] are derived first and 
extensions are then made to beams and axisymmetric plates with central fractures. The developed 
theories are validated using the finite element method (FEM) with Timoshenko beam and four-
node plane-stress quadrilateral (QUAD4) elements. 

NOMENCLATURE 

 length of fracture 
 cross-sectional area or extensional stiffness of upper, lower and intact beams 

 beam width 
 coupling stiffness of upper, lower and intact beams 

 bending stiffness of upper, lower and intact beams 

 crack tip relative opening and shearing displacements 

opPD  crack tip relative opening displacement due to through-thickness shearing 
 Young’s modulus 

 crack tip normal and shear forces 

 crack tip normal force due to through-thickness shearing 

 total, mode I and mode II energy release rates 

PG  mode I energy release rate due to through-thickness shearing 

 through-thickness shearing modulus 

βθ GG  ,  energy release rates due to θ  mode  and 
 
mode  

 thicknesses of upper, lower and intact beams 

 through-thickness shearing stiffness of upper, lower and intact beams 

 second moments of area of upper, lower and intact beams 
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 through-thickness shear correction factor 
 lengths of left and right intact parts of beam 

 bending moments on upper, lower and intact beams at crack tip  

 axial forces on upper, lower and intact beams at crack tip 

 shear loads acting on upper and lower beams 

 shear forces on upper, lower and intact beams at crack tip  

 axial displacements of the upper and lower beams 

 deflections of upper and lower beams 

 distance from left crack tip to loading location 
 

 mixed mode partition coefficients 
 pure mode II 

 thickness ratio  
 interaction between pure modes 

 pure mode I 
 modal vectors for pure modes I and II 

 
Abbreviations 
CLT classical lamination theory 
DCB double cantilever beam 
ENF end-notched flexure 
FEM finite element method 
QUAD4 four-node plane-stress quadrilateral element 

2. Fundamental theory 

2.1. Isotropic double cantilever beams 
Fig. 2 shows a DCB with its associated geometry, two tip bending moments and two tip axial 

forces. By considering the strain energy , the energy release rate  at the crack tip point B is 
obtained as 

  (1) 

where  is the thickness ratio,  is the effective axial force and 

 is the coefficient matrix and positive definite. By using the virtual crack closure technique 

the energy release rate  in a mixed mode can be decomposed into pure mode I and mode II 
energy release rates as  with 
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  (2) 

where  and  are the respective crack tip normal and shear forces, and  and  are the 
respective relative opening and shearing displacements between the cracked two interfaces just 
behind the crack tip. The  in Eq. (2) represents an infinitesimal distance between the crack tip 
B and the point where  and  are calculated. The pure mode I fracture is obtained when 

 requiring either  or  or . Similarly, the pure mode II 

fracture is obtained when  requiring either  or  or . 

It is not a straightforward matter to calculate  and . However  and  can be 
easily obtained. 

  (3) 

  (4) 

The cross-sectional rotations  and  in Eq. (4) are the crack tip rotations of beam 1 and 2, 

respectively.  yields 

  (5) 

From this condition two independent pure mode I modes are obtained. 

 

 (6) 

Two independent pure mode II modes can be obtained by using orthogonal conditions. 

 (7a)  

When 21 hh =  

  (7b) 

Note that by ‘orthogonal condition’ it is meant that  and . 

Moreover, it is also easy to show that  and  as pure mode II must be 
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orthogonal to pure mode I. Moreover, both and are pure mode II modes corresponding to 

 which is the orthogonal condition of . This set of pure mode pairs is called the 
Wang-Harvey pair. Details of this pair can be found in [20]. Therefore, a mixed mode can be 
decomposed into any three of the four pure modes given in Eqs. (6) and (7). In this work , 

 and  are used. That is, 

  (8) 

where  are mode partition coefficients and can be easily determined for a given left hand side 
of Eq. (8), i.e. a mixed mode. Substituting Eq. (8) into Eq. (1) gives 

   (9) 

The first three terms in the right hand side of Eq. (9) come from the three pure modes ,  

and , respectively. The last term is from the coupling of  and  modes. Since the first 

term is from the pure mode I mode and the other three terms are from pure mode II modes, it 
may easily be concluded that 

  (10) 

where 

  (11) 

However, extra care has to be taken. So far, there has been no difference in the development 
between Euler beam and Timoshenko beam theories. It will be shown now that the difference in 
two beam theories has a vital influence on mixed mode partition. A detailed rigorous treatment is 
given in [20]. 

A rigid un-cracked interface is assumed ahead of the crack tip B. Euler beam theory is 
considered first. Since the theory is of  continuity, both deflection and rotation at the crack tip 
B are continuous and single valued. That is,  and 

. The  in Eq. (4) therefore 
becomes 

  (12) 

in Euler beam theory. Letting  equal to zero gives another pure mode II. 

  (13) 

Its orthogonal pure mode I is found to be 



 

 6 

  (14) 

which corresponds to zero crack tip shear force, i.e. . Note that this pair of pure modes 

happens to be the Williams pair [1]. Now, it is seen that the crack tip shearing force  in pure 

mode I modes  and  is not zero whilst the relative crack opening displacement  in pure 

mode II modes  and  is not zero. Therefore, there exist interactions between the pure 

mode I modes, i.e.  and , and the pure mode II modes, i.e.  and . That is, both the 

crack tip normal force  and shearing force  in  and  will do work on the relative 

crack tip opening displacement opD  and shearing displacement shD  in  and  when fracture 

occurs. Since they are orthogonal to each other, the interactions result in zero net energy release 
rate. They are called stealthy interactions in this work because they alter the energy release rate 
partitions. In conclusion, Eq. (10) is not the correct partition in Euler beam theory and the 
stealthy interactions have to be considered. The crack tip opening force  in  can be 

calculated by using the first equation of Eq. (2) and Eqs. (11) and (12). Thus, the work done by 
 in  on opD  in  and  can be determined and the stealthy interactions are found to be 

  (15) 

  (16) 

When , . Therefore, a mixed mode in Euler beam theory is partitioned as 

  (17) 

Next, Timoshenko beam theory is considered. Since the rotation becomes an independent 
variable of deformation instead of , the two crack tip rotations  and  are 
generally different. Therefore, relative crack tip opening displacement opD  in Eq. (4) becomes 

  (18) 

Mechanically, the difference between  and  is due to the through-thickness shear effect. 

It is expected therefore that  and  will be equal to each other when crack tip normal force 

nBF  disappears eliminating the through-thickness shear effect at the crack tip. A detailed study 
[20] confirms it and shows 

  (19) 
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where  is the through-thickness shear correction factor and is usually taken to be 5/6 for 
isotropic materials,  the though-thickness shear modulus,  and  the cross-sectional areas 

for beam 1 and 2, respectively. It is seen that when , . That is, both  and 

0=opD  in the pure mode II modes  and . Moreover, both 0=sBF  and 0=shD  in the pure 

mode I modes  and . Consequently, there is no interaction between the pure mode I 

modes, i.e.  and , and the pure mode II modes, i.e.  and , in Timoshenko beam 

theory and Eq. (10) is the correct partition for a mixed mode. That is in Timoshenko beam theory 

  (20) 

It is worth noting that crack tip running contact will occur at the pure mode II modes  and  

as 0=opD . Therefore, a pure mode II region is generated beyond  or . 

Now, two crack tip shear forces  and  are included in Timoshenko beam theory. Since 

the through-thickness shear effect does not generate any axial displacement,  and  
produce pure mode I fracture only. Here, it is designated as P mode I. The relative crack tip 
opening displacement  and normal force  are easily obtained. 

  (21) 

  (22) 

The energy release rate PG  in P mode I is then determined by using the crack closure technique. 

   (23)  

It is easy to show that PG  above is equal to 

  (24) 

Similarly, there is no stealthy interaction between the P mode I and the pure mode II modes 
1β

ϕ  
and 

2β
ϕ . However, there is modal coupling between the P mode I and pure mode I 

1θ
ϕ . This 

modal coupling is the sum of work done by the crack tip normal force nBF  in 
1θ

ϕ  mode I on the 
relative crack tip opening displacement opPD  in P mode I and work done by the crack tip normal 
force nBPF  in P mode I on the relative crack tip opening displacement opD  in 

1θ
ϕ  mode I when 

fracture occurs. In the same way as 
11βθG∆  in Eq. (15) and 

21βθG∆  in Eq. (16) were determined, 
the coupling is found to be 
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  (25) 

The total energy release rate becomes 

  (26) 

A mixed mode is partitioned as 

  (27) 

So far, mixed mode partition theories have been developed in both Euler and Timoshenko 
beam theories. It is seen that full stealthy interaction occurs in the former while there is no 
interaction in the latter. An averaged partition theory can be achieved by halving the interactions. 
That is 

 (28) 

It is worth noting that crack tip running contact will occur at locations different from the pure 
mode II modes 

1β
ϕ  or 

2β
ϕ  due to the addition of through-thickness shear opening displacement 

opPD . 

2.2. Laminated composite double cantilever beams 
The DCB in Fig. 2 is now considered to be a composite laminate. Detailed development of 

this section can be found in [21]. Here, the essential part is derived. The use of beam theory 
means that only the ,  and  laminate stiffness coefficients from classical lamination 
theory (CLT) are required. The 11 subscripts are therefore discarded in the present notation. By 
considering the strain energy, the energy release rate  at the crack tip point B is 

  (29) 

where 

 iiiiiiiiiiii ABDDDABBDBAA 222    and      and   −=−=−= ∗∗∗  (30) 

  (31) 

Three independent pure mode I modes 
1θ

ϕ , 
2θ

ϕ  and 
3θ

ϕ  can be obtained from the condition 
0=shD . By using orthogonal condition three independent pure mode II modes 

1β
ϕ , 

2β
ϕ  and 

3β
ϕ  
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can also be achieved which correspond to 0=nBF . By using , ,  and  for the mixed 

mode partition, the mode partition coefficients are found to be 

  (32) 

where 

  (33) 

  (34) 

  (35) 

  (36) 

  (37) 

  (38) 

In the context of Euler beam theory, the mode I energy release rate is then calculated as 

  (39) 

where 
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  (40) 

  (41) 

  (42) 

  (43) 

and 

  (44) 

Within the context of Timoshenko beam theory the last three terms in Eq. (39) disappear. This is 
for the reasons described in Section 2.1. 

Now the through-thickness shearing effect under Timoshenko beam theory is accounted for. 
The only laminate shearing stiffness required for beams is  from CLT. This quantity is 
represented by  in the present notation. By considering the additional opening displacement, 
the normal force at the crack tip due to shear forces and the interaction of these quantities with 
the  mode I, the following is obtained: 

 

 (45) 

  (46) 

where 

  (47) 

  (48) 

Obviously there is no interaction between the P  mode I mode and pure mode II modes in Eq. 
(46). 
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3. Clamped-clamped isotropic beams 

A general clamped-clamped beam with a fracture is shown in Fig. 3. Contact between the 
upper and lower beams is not considered. Crack tip forces and moments can be determined 
analytically in terms of the applied forces 1P  and 2P . A mixed mode can be readily partitioned 
using the theory for isotropic DCB in Section 2.1. As the expressions of the crack tip forces and 
moments are in complex forms, they are not presented here. Fortunately, the pure modes in terms 
of  and  are relatively simple and will be derived below. 

In the same way as in Section 2.1, two sets of pure modes are expected. The first set 
corresponds to zero crack tip relative shearing displacement (pure mode I)  and zero 

crack tip normal force (pure mode II) . The second set corresponds to zero relative 

opening displacement (pure mode II)  and zero crack tip shearing force (pure mode I) 

. 
The study is given in the context of Euler beam theory first. The left crack tip is the one 

considered. The right one has the same set of pure modes as those of the left one in this particular 
case. The relative crack tip shearing displacement shD   is expressed as 

 
 (49) 

where  represents the axial displacement at the interface.  gives 

  (50) 

where 

  (51) 

  (52) 

  (53) 

  (54) 

  (55) 

The orthogonal condition to the zero relative shearing displacement condition  is zero 

crack tip normal force condition . The mode corresponding to this condition could be 
derived by applying the orthogonality condition, however it is more convenient in this instance to 
simply enforce . The crack tip normal force is calculated as 

 
 (56) 
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The mode II condition itself dictates that the contribution to the normal force from modes  

and  is zero. Therefore the requirement is simply  which gives 

  (57) 

where 

  (58) 

  (59) 

  (60) 

It is worth noting that  in Eq. (6) and  in Eq. (7) for a symmetric crack with mid-
span loads. Now considering the second set of pure modes, the pure mode I mode is given by 
zero crack tip shear force .  is given by 

 
 (61) 

The mode partition coefficients and the modal crack tip shear forces are known from previous 
work [20]. Setting  gives 

 1
1

2 −=′=′= EPP
P θθ  (62) 

Finally, for the pure mode II mode from the second set, the relative crack tip opening 
displacement  is zero. This condition gives  

  3

1

2 γββ =′=′= EPP
P  (63) 

That Pθ′  and Pβ′ , relating  and , are the same as  and  given in Eqs. (13) and (14), 

which relate  to , should be no surprise since the axial forces  induced at 

the crack tip by  and  have no effect on the opening displacement. Also, if  and  are 

equal and opposite , then regardless of how beams 1 and 2 deflect, beams 3 and 4 
remain undeflected and the crack tip rotations are zero. Therefore BB NN 21  and  are both zero and 

the two crack tip bending moments are in the ratio of Eθ′ . If  and  are applied in different 
locations then this would not be observed because each load would have a different moment arm 
around the crack tip. 

Within the context of Timoshenko beam theory, the expressions for  pure mode I 

and  pure mode II are not as simple as those in Eqs. (50) and (57). However when the 
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through-thickness shear effect is not excessively large, Eqs. (50) and (57) are good 
approximations.  A region of pure mode II fracture occurs beyond . 

4. Clamped-clamped composite laminated beams 

A clamped-clamped composite laminated beam with a symmetric delamination is considered. 
The loads  and  are applied at the mid-span. Again, contact is not considered. The study is 
again carried out using Euler beam theory first. In the same way as in the study in Section 3, 

 gives pure mode I condition 

  (64) 

Pure mode II  arising from  is too complex to be presented here 

algebraically.  gives pure mode II. 

 *
1

*
2

1

2

D
D

P
P

EP =′=′= ββ  (65) 

As expected its orthogonal pure mode I is easily obtained as 

 1
1

2 −=′=′= EPP
P θθ  (66) 

Similarly, within the context of Timoshenko beam theory, the expressions for  

pure mode I and  pure mode II are too complex to be presented here algebraically. 
However, when the through-thickness shear effect is not excessively large, they are very close to 
those in Euler beam theory. 

5. Clamped circular isotropic plate 

A clamped circular plate with a central delamination and loads is shown in Fig. 4. By using 
the theory in the previous sections, the first set of pure modes in Euler beam theory are found to 
be 

  (67) 

and 

  (68) 

where  and  are given in Eqs. (6) and (7), respectively. The corresponding energy release 
rates are given by Eqs. (69) and (70). 
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  (69) 

   (70) 

The second set of pure mode I and II modes are the same as those in Eqs. (62) and (63). In 
Timoshenko beam theory, the first set of pure modes is approximately pure and the second set 
disappears. 

6. Numerical investigations 

To validate the theory, an FEM simulation capability was developed based on Euler and 
Timoshenko beam theory and 2D elasticity. Normal and shear point interface springs with very 
high stiffness were used. The energy release rate partition was calculated using the virtual crack 
closure technique in conjunction with these interface springs [22, 23]. A contact algorithm was 
also implemented to deal with any possible contact in loading. 

6.1. Tests with double cantilever beams 
Two DCB cases were investigated. The first case is an isotropic one, the data for which is 

given in Table 1. Since normalised data is used in this case, an interface spring stiffness of 106 
was sufficient to model perfectly bonded plies. The second case is an orthotropic laminated 
composite one with real data. The material properties are for a T300/976 graphite/epoxy ply [23]. 
It has a cross-ply lay-up with 24 plies. In this case, an interface spring stiffness of 1014 N/m was 
required. There is a delamination between the 16th and 17th plies. The data for this case is given 
in Table 2. Present theoretical and numerical results are presented in Fig. 5 and Table 3 for the 
isotropic DCB and in Fig. 6 and Table 4 for the composite DCB.   

Three sets of numerical simulations were run using FEM. The first set, which used linear 
Timoshenko beam elements, is for comparison with the present Euler partition rule. Very large 

out-of-plane shear moduli (  and  for the isotropic and 
laminated composite case respectively) were used to simulate Euler beam theory. Two layers of 
elements were used to represent the beams with one on either side of the fracture. The elements 
were distributed uniformly. To avoid shear locking, reduced integration was applied. Use of 
linear Timoshenko beams correctly enforces continuity along the interface ahead of the crack tip. 
A very good agreement is observed between present theoretical and numerical predictions for 
both DCBs. 

The second set of simulations, which was the same as the first set but which instead used the 
normal out-of-plane shear moduli (those given in Tables 1 and 2) and a shear correction factor of 

, is compared against the present Timoshenko partition rule. Again, a very good 
agreement is observed.  

The final simulations used QUAD4 elements with the normal out-of-plane shear moduli. In 
the isotropic case, two and four layers of QUAD4 elements were needed in the top and bottom 
beams respectively for sufficient convergence. In the composite case, a layer of QUAD4 
elements was used for each individual ply. This was found to be necessary to obtain converged 
results. The elements were distributed uniformly along the length and thickness. The results from 
these simulations are compared against the present Euler, Timoshenko and averaged partition 
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rules. In general, QUAD4 results agree well with the averaged partition rule. Note that a pure 
mode II region starts around  in Fig. 6 for the composite DCB due to crack tip 
running contact. 

6.2. Tests with clamped-clamped beams 
Two clamped-clamped beam cases were investigated. The first case is an asymmetric, 

isotropic one as shown in Fig. 3, the data for which is given in Table 5. The second case is a 
symmetric laminated composite one. It has a quasi-isotropic lay-up with 16 plies. There is a 
delamination between the 12th and 13th plies, which gives a thickness ratio of . The data 
for this case is given in Table 6 with the material properties given in Table 2. The material 
properties are for a T300/976 graphite/epoxy ply [23]. In both cases an interface spring stiffness 
of 1014 N/m was used. Present theoretical and numerical results are presented in Fig. 7 and Table 
7 for the isotropic beam and in Fig. 8 and Table 8 for the composite beam. 

The test procedure is identical to that for DCBs in Section 6.1. One set of simulations, which 
used linear Timoshenko beam elements, is compared against the present Euler rule. Very large 

out-of-plane shear moduli  were used to simulate Euler beam 
theory. An excellent agreement is observed. Another set of simulations, which was the same as 
the first set but which instead used the normal out-of-plane shear moduli (those given in Tables 5 
for isotropic beam and Table 2 for composite beam) and a shear correction factor of , is 
compared against the present Timoshenko rule. Again, the agreement is good. The final 
simulations used QUAD4 elements with the normal out-of-plane shear moduli. In the composite 
case, a layer of QUAD4 elements was used for each individual ply. In the isotropic case, two and 
four layers of QUAD4 elements were needed in the top and bottom beams respectively. In 
general, QUAD4 results agree well with the averaged partition rule. Note that pure mode II 
region starts beyond pure mode II  for the isotropic beam and  for the 
composite beam due to crack tip running contact. 

6.3. Tests with clamped circular isotropic plates 

Table 9 gives the data of a circular plate shown in Fig. 4. The loads are set to be  and 

 for  mode I and  for  mode II. Table 10 records 

the results from Eqs. (69) and (70) and circular ring FEM simulations with 216 mN10=xzG  and 
mN1014=sk . Excellent agreement is again observed between the analytical and numerical 

results. 

7. Conclusions 

Completely analytical theories are developed for the mixed mode partition of one-dimensional 
fracture in layered isotropic and laminated composite DCBs. The theories are readily extended to 
general composite beams and circular plates. Two sets of orthogonal pure fracture modes are 
discovered which are distinct from each other in Euler beam or plate theory and coincide at the 
Wang-Harvey set in Timoshenko beam or plate theory. The Wang-Harvey set forms a unique 
complete orthogonal pure mode basis within the contexts of both Euler and Timoshenko beam or 
plate theories. A mixed mode is successfully partitioned by using Wang-Harvey set. Stealthy 
interactions are revealed between the Wang-Harvey pure mode I modes and mode II modes in 
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Euler beam theory. Although the stealthy interactions do not generate any net amount of energy 
release rate, they do cause energy flow between pure modes and alter the partitions of a mixed 
mode. The present Euler rule and Timoshenko rule agree very well with the respective beam 
FEM predictions. The present averaged rule agrees well with the 2D FEM predictions. 

The developed theories can provide academic researchers with theoretical tools for 
determining critical energy release rates of pure modes and developing fracture propagation 
criteria. Moreover, they can provide industrial engineers with analytical guidelines for design 
against fracture. 
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Figure captions 

Figure 1: Some engineering structures exhibiting one-dimensional fracture. 
Figure 2: A DCB with two tip bending moments and two tip axial forces. 
Figure 3: A clamped-clamped beam with a fracture and its loading conditions. 
Figure 4: A circular plate with a central delamination. 
Figure 5: Comparison between various theories for isotropic DCB energy release rate partitions 
with varying  ( , , , , ). 
Figure 6: Comparison between various theories for laminated composite DCB energy release rate 
partitions with varying  ( , , , , ). 
Figure 7: Comparison between various theories for clamped-clamped isotropic beam energy 
release rate partitions with varying  and . 
Figure 8: Comparison between various theories for clamped-clamped composite laminated beam 
energy release rate partitions with varying  and . 
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Table 1: Data for numerical simulations of an isotropic DCB. 
Table 2: Data for numerical simulations of a laminated composite DCB. 
Table 3: Comparison between various theories for isotropic DCB energy release rate partitions 
with varying  ( , , , , ). 
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partitions with varying  ( , , , , ). 
Table 5: Data for numerical simulations of a clamped-clamped isotropic beam 
Table 6: Data for numerical simulations of a clamped-clamped composite laminated beam 
Table 7: Comparison between various theories for clamped-clamped isotropic beam energy 
release rate partitions with varying  and . 
Table 8: Comparison between various theories for clamped-clamped composite laminated beam 
energy release rate partitions with varying  and . 
Table 9: Data of a clamped circular plate with a central fracture. 
Table 10: Energy release rates ( ) for  and  modes of the circular plate with a central 
crack. 
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Figure 1: Some engineering structures exhibiting one-dimensional fracture. 
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Figure 2: A DCB with two tip bending moments and two tip axial forces. 
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Figure 3: A clamped-clamped beam with a fracture and its loading conditions. 
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Figure 4: A circular plate with a central delamination. 
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Figure 5: Comparison between various theories for isotropic DCB energy release rate partitions 
with varying  ( , , , , ). 
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Figure 6: Comparison between various theories for laminated composite DCB energy release rate 
partitions with varying  ( , , , , ). 
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Figure 7: Comparison between various theories for clamped-clamped isotropic beam energy 
release rate partitions with varying  and . 
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Figure 8: Comparison between various theories for clamped-clamped composite laminated beam 
energy release rate partitions with varying  and . 
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Table 1: Data for numerical simulations of an isotropic DCB. 

Elastic modulus,  1 

Shear modulus,  1 

Poisson’s ratio,  0.3 

Laminate thicknesses,  and  1 and 2 

Intact length of beam,  100 

Length of delamination,  10 

Width of beam,  1 

Table 2: Data for numerical simulations of a laminated composite DCB. 

Ply longitudinal modulus,  139.3 GPa 

Ply transverse modulus,  9.72 GPa 

Out−of−plane modulus,  9.72 GPa 

In−plane shear modulus,  5.58 GPa 

Out−of−plane shear moduli,   5.58 GPa 

Out−of−plane shear moduli,   3.45 GPa 

In−plane Poisson’s ratio,  0.29 

Out−of−plane Poisson’s ratio,  0.29 

Out−of−plane Poisson’s ratio,  0.4 

Ply thickness,  0.125 mm 

Sub−laminate lay-up 1 (top)  

Sub−laminate lay-up 2 (bottom)  

Laminate thicknesses,  and  1 mm and 2 mm 

Intact lengths of beam,  100 mm 

Length of delamination,  10 mm 

Width of beam,  10 mm 
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Table 3: Comparison between various theories for isotropic DCB energy release rate partitions 
with varying  ( , , , , ). 

 Left crack tip  

 Analytical 
Euler 

Numerical 
Euler (220×2 
Timo. beams) 

Analytical 
Timo. 

Numerical 
Timo. (880×2 
Timo. beams) 

Averaged 
Analytical 
(Euler & 
Timo.) 

2D FEM 
(330×6 

QUAD4s) 

-10 50.00 53.17 70.75 68.07 55.73 57.42 

-8 87.38 89.21 96.71 95.83 91.22 90.48 

-6 103.50 104.28 99.49 99.85 101.63 99.85 

-4 107.59 107.77 94.73 95.81 101.32 99.10 

-2 107.14 106.99 89.12 90.62 98.19 95.83 

0 105.26 104.94 84.21 85.98 94.74 92.38 

2 103.08 102.65 80.19 82.15 91.62 89.31 

4 100.98 100.50 76.93 79.03 88.95 86.71 

6 99.07 98.56 74.27 76.46 86.69 84.52 

8 97.39 96.85 72.08 74.34 84.77 82.67 

10 95.90 95.35 70.24 72.57 83.14 81.10 

Table 4: Comparison between various theories for laminated composite DCB energy release rate 
partitions with varying  ( , , , , ). 

 Left crack tip  

 Analytical 
Euler 

Numerical 
Euler (44×2 

Timo. beams) 

Analytical 
Timo. 

Numerical 
Timo. (880×2 
Timo. beams) 

Averaged 
Analytical 
(Euler & 
Timo.) 

2D FEM 
(330×6 

QUAD4s) 

-25 -8.86 -8.79 5.06 4.58 -1.90 -0.09 

-20 -7.08 -7.03 2.16 1.84 -2.46 -0.38 

-15 -2.15 -2.14 0.13 0.05 -1.01 1.28 

-10 9.69 9.65 1.63 1.92 5.66 8.03 

-5 34.91 34.80 13.32 14.07 24.11 26.39 

0 75.08 74.93 43.59 44.68 59.34 61.33 

5 106.08 105.95 81.33 82.19 93.70 94.00 

10 105.22 105.19 99.04 99.26 102.13 99.38 

15 88.47 88.52 97.80 97.47 93.14 88.56 

20 71.80 71.89 90.46 89.81 81.13 76.09 

25 58.97 59.09 82.89 82.06 70.93 66.01 
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Table 5: Data for numerical simulations of a clamped-clamped isotropic beam 

Elastic modulus,  70 GPa 

Shear modulus,  26 GPa 

Poisson’s ratio,  0.35 

Laminate thicknesses,  and  1 mm and 2 mm 

Intact lengths of beam,  and  10 mm and 25 mm 

Length of delamination,  65 mm 

Width of beam,  10 mm 

Loading location,  20 mm 

Mode  (zero opening displacement) -3.9169 

Mode  (zero normal stress) 2.8106 

Mode Pθ′  (zero shear displacement) -1 

Mode Pβ′  (zero shear stress) 8 

Table 6: Data for numerical simulations of a clamped-clamped composite laminated beam 

Sub−laminate lay-up 1 (top)  

Sub−laminate lay-up 2 (bottom) ( ) 45/0/45/90/90/45/0/45 2 −−  

Laminate thicknesses,  and  0.5 mm and 1.5 mm 

Intact lengths of beam,  25 mm 

Length of delamination,  50 mm 

Width of beam,  10 mm 

Loading location,  25 mm 

Mode  (zero opening displacement) -26.3501 

Mode  (zero normal stress) 4.9836 

Mode Pθ′  (zero shear displacement) -1 

Mode Pβ′  (zero shear stress) 66.9002 
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 Table 7: Comparison between various theories for clamped-clamped isotropic beam energy 
release rate partitions with varying  and . 

 Left crack tip  

 Analytical 
Euler 

Numerical 
Euler (100×2 
Timo. beams) 

Analytical 
Timo. 

Numerical 
Timo. (800×2 
Timo. beams) 

Averaged 
Analytical 
(Euler & 
Timo.) 

2D FEM 
(400×6 

QUAD4s) 

-10 70.30 70.30 89.83 87.39 81.64 80.23 

-8 77.28 77.27 93.31 91.38 86.53 85.05 

-6 86.94 86.93 97.26 96.09 92.83 91.28 

-4 99.46 99.45 99.99 99.92 99.76 98.13 

-2 107.63 107.62 92.53 93.60 99.70 97.69 

0 76.34 76.34 49.91 51.43 63.66 60.69 

2 13.35 13.36 3.19 4.24 8.26 8.07 

4 -7.25 -7.23 4.70 3.05 -0.78 0.91 

6 -5.45 -5.44 17.66 14.24 7.53 9.10 

8 0.00 0.01 27.98 23.76 15.98 17.14 

10 5.01 5.02 35.22 30.65 22.42 23.25 

Table 8: Comparison between various theories for clamped-clamped composite laminated beam 
energy release rate partitions with varying  and . 

 Left crack tip  

 Analytical 
Euler 

Numerical 
Euler (100×2 
Timo. beams) 

Analytical 
Timo. 

Numerical 
Timo. (800×2 
Timo. beams) 

Averaged 
Analytical 
(Euler & 
Timo.) 

2D FEM 
(200×16 

QUAD4s) 

-10 145.33 145.33 85.89 89.20 113.28 101.99 

-8 147.63 147.62 78.35 82.13 110.80 100.40 

-6 145.01 145.00 67.71 71.93 104.63 95.65 

-4 134.61 134.60 53.62 58.15 93.11 86.17 

-2 114.10 114.09 36.84 41.43 75.21 70.87 

0 83.82 83.81 19.96 24.13 52.03 50.73 

2 48.24 48.24 6.91 9.90 27.66 29.71 

4 14.30 14.30 0.57 1.65 7.40 12.78 

6 -12.60 -12.61 0.96 -0.24 -5.64 2.50 

8 -30.77 -30.77 5.90 2.59 -11.60 -1.66 

10 -41.30 -41.29 12.98 7.99 -12.46 -1.69 
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Table 9: Data of a clamped circular plate with a central fracture. 

         

140 GPa 0.3 100 mm 20 mm 1 mm 2 mm 2 20/7 -4 

Table 10: Energy release rates ( ) for  and  modes of the circular plate with a central 
crack. 

 40 elements  200 elements  Analytical 

            

 740.9 0 740.9  675.2 0 675.2  658.6 0 658.6 

 0 408.3 408.3  0 372.0 372.0  0 362.9 362.9 
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