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Abstract: This paper discusses research carried-out on the development and validation (on real plant) of 

a parity-equation based fault detection and isolation (FDI) system for a pneumatic actuator. A 

mechanistic model of the system is developed and validated in order to derive suitable parity equations 

for the pneumatic actuation system.  The parity equations are then formulated and used to generate 

residuals that, in turn, are analysed to determine whether faults are present in the system.  Details of the 

design process are given and the experimental results demonstrate that the approach can successfully 

detect and isolate faults associated with the sensors, actuators (servo-valves and piping) and the 

pneumatic cylinder itself.  The work is part of a BAE SYSTEMS’ sponsored project to demonstrate 

advanced control and diagnosis concepts on a Stewart-Gough platform. 
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1. INTRODUCTION 

The design of schemes for the detection and diagnosis of 

faults is becoming increasingly important in engineering due 

to the complexity of modern industrial systems and growing 

demands for quality, cost efficiency, reliability, and more 

importantly the safety issue (Al-Najjar, 1996). In industrial 

plant, early detection of developing faults can allow planned 

maintenance work to take place before a system 

malfunctions, possibly causing damage, or complete shut-

down of the system/plant.  This improves the level of plant 

safety, and increases the plant availability and profitability.  

In safety/mission critical applications, fault detection can be 

combined with reconfiguration (after a fault) to achieve fault 

tolerant control - allowing the system to complete its function 

in a way that is sub-optimal but does achieve the design 

objective.   

There two principal approaches to detection and isolation of 

faults:  

� Hardware redundancy - this involves comparing the 

outputs of identical hardware (sensors/actuators) and 

performing consistency cross-checks.  

� Analytical redundancy – combining sensor signals, 

control signals and models to arrive at estimates of 

unmeasured/immeasurable variables. 

Model-based Fault Detection and Isolation (FDI) uses the 

principles of analytical redundancy to first detect deviations 

from normal behaviour in a system, and then to isolate the 

particular component that has a fault. Typically, model-based 

analytical estimates are compared with measured variables to 

generate residuals.  The residuals will be zero when the 

system is operating normally and will be non-zero when a 

fault arises.  There are a number of approaches to model- 

based residual generation. For example, observer-based 

approaches including Kalman Filters (Frank, 1990), parity 

 

relations approaches (Gertler and Singer, 1990) and 

parameter estimation (Patton et al 2000), Isermann, (1997).  

Useful surveys of these and other useful FDI methods can be 

found in Patton (1997), Iserman (1984), Willsky (1976), and 

Venkatasubramaniam et al (2003). However, most of the 

fault tolerant literature available deals with systems in a 

purely theoretical way or uses simulations to demonstrate the 

methods. Although many of the concepts work well in 

theory, it is clear that there have been limited real industrial 

applications particularly of the more advanced techniques. 

 

Fig. 1. Single pneumatic actuator test-rig 

The work described in this paper is part of an on going 

project which aims to demonstrate FDI as part of a fault 

tolerant control system on a Stewart-Gough platform 

comprising six pneumatic actuators.  The first phase of the 

work has focussed on modelling, control and FDI applied to a 

single actuator (see figure 1).   

This paper reports results obtained from experiments on the 

rig using the parity equation approach to FDI.  The paper is 

organised as follows, in section 2 the experimental set-up is 



 

 

     

 

described; section 3 summarises the mathematical model of 

the pneumatic system (including validation results), which is 

used as the foundation of the control and FDI design; section 

4 describes the FDI approach and how the parity equations 

are applied to the pneumatic system; section 5 presents and 

discusses the results for the four different fault cases; finally, 

conclusions are drawn and future work is discussed in section 

6.       

2. EXPERIMENTAL SET-UP 

The experimental set-up is illustrated in Figure 2. The set-up 

shows the xPC Target coupled with Matlab/Simulink®, 

which provides a real-time environment. A host and a target 

computer are connected using a TCP/IP network. 

Matlab/Simulink® is run on the host computer, this is where 

the control and FDI system is designed using xPC target I/O 

blocks. Using external mode the system file is built and 

compiled within the host computer. Then downloaded to the 

target computer where it is executed using the real-time 

kernel. The position signal is measured via a Linear Resistive 

Transducer (LRT) mounted in the cylinder rear section. The 

acceleration signal is acquired using an accelerometer 

mounted on the end of the piston rod. 

Fig. 2. Schematic of experimental set-up 

3. MODELLING OF PNUEMATIC SYSTEM 

 

An early attempt to analyse pneumatic control systems was 

reported by Shearer (1956). This was further extended by 

Burrows (1969), and Scavarda et al (1987). One of the main 

problems in pneumatic actuator position control is the highly 

non-linear equations that model the system. This means that 

classical linear controller synthesis methods difficult to 

apply. Moreover, due to the non-linearity, the parameters of 

these equations are usually very difficult to identify. 

However, using approximation of the model, allows the use 

of a restricted range of the optimum parameters that are 

selected with classical methods (Chillari et al, 2001). For a 

detailed description of the mathematical model of the 

pneumatic system see Grewal et al (2008). The pneumatic 

circuit to be modelled is depicted in Figure 3. 

 

3.1. Pneumatic Model 

The relationship between the air mass flow and the pressure 

 
Fig. 3.  Schematic of the double acting cylinder. 

 

changes in the chambers is obtained using energy 

conservation laws (first law of thermodynamics), and the 

force equilibrium is given by Newton’s second law. Where M 

is the piston mass, A is the bore area, Pp is the pressure in 

chamber p, Pn is the pressure in chamber n, Vp is the air 

volume in chamber p, Vn is the air volume in chamber in n, Ts 

is the operating temperature, 
pm& is the mass flow rate into 

chamber p, and 
nm& is the mass flow rate into chamber n. The 

relationship between the mass flow rate of air and the change 

of both pressure and volume in chambers can be written as: 

                                     

                                                                          

(1) 

                                     

                                     

                (2) 

 

Where, γ is the ratio of specific heat, R is the universal gas 

constant. The dynamics of the cylinder motion can be 

described by: 

                    ( ) PAPPAxFxM npf ∆=−=+ &&&                    (3) 

Where x is the position of the piston, Ff represents the viscous 

friction coefficient and coulomb friction force. The mass flow 

rate is identical (in magnitude) for both chambers and is 

proportional to the valve input voltage (v). Hence 

 

                         (4) 

                 

Where K is the servo valve constant (Kg.s-1.v-1) determined 

from the valve's data-sheet. With the assumption of 

incompressibility the rate of change of volumes can be 

written as 

       xAVandxAV np
&&&& −==                             (5) 

Substituting equation (4) and (5) into equations (1) and (2), 

then rearranging the equations for chambers p and n gives:          
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Then rearranging equation (3) gives: 
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The overall model makes use of equations (6), (7), and (8) 

implemented either in state-space or block diagram form (in, 

e.g. Matlab/Simulink).  
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3.2. Model validation 

 

In order to validate the model a number of experiments were 

carried out on the open-loop actuator and the results 

compared with those from simulation. A typical set of results 

for a square wave input is shown in Figure 4.  Here, the 

square wave input is set at 0.6 volts and the frequency set at 

0.5Hz, and the position and the pressure output responses are 

plotted alongside those predicted by the model. The periodic 

step input is used because a step has all frequencies of 

interest present (so should excite all the key dynamics). The 

simulation results show reasonable agreement with those 

from the experiment. The position results show a particularly 

good match, whilst those for the two cylinders pressures 

capture the dominant response, though there is clearly some 

longer-term mode that is not represented in the model. These 

differences are thought to be due to non-linearities associated 

with pneumatic systems that are not captured in the model. 
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Fig. 4. The comparisons between the system and model outputs 

for a square wave input. 

4. DESIGN OF THE FDI SCHEME 

 

4.1 FDI Approach 

 

Figure 5 shows the generic structure of the model-based fault 

detection scheme. The method consists of detecting faults on 

the process, which includes actuators, components and 

sensors, based on measuring the input signal U(t) and the 

output signal Y(t). The detection method uses models to 

generate residuals R(t). The residual evaluation examines the 

residuals for the likehood of faults and a decision rule is 

applied to determine if faults have occurred. Referring to the 

pneumatic system depicted in Figure 1 (and with reference to 

Figure 5) the proportional valve would be described as the 

actuator and the pneumatic cylinder would be described as 

the plant. The sensors are self-evident.  

 

4.2. The Parity Equation Method 
 

The parity equation method was proposed by Chow and 

Willsky, (1984) using the redundancy relations of the 

dynamic system. The basic idea is to provide a proper check 

of the parity (consistency) of the measurements for the  

 

 
 

Fig. 5. Conceptual structure of FDI scheme 

 

monitored system. Parity equations are rearranged and 

usually transformed variants of the input-output or space-

state models of the system (Venkatasubramaniam et al 2003). 

In effect this means making use of known mathematical 

models that describe the relationships between system 

variables.  In theory, under normal operating conditions, the 

residual or value of the parity equations is zero. However, in 

real situations the residuals will be nonzero. This is due to 

measurement and process noise, model inaccuracies, errors in 

sensors and actuators, including faults in plants. The idea of 

the parity approach is to rearrange the model structure to 

achieve the best fault isolation (i.e. so that the effect of faults 

is far greater than that of the other uncertainties). The residual 

generator scheme used hereafter is based on a classical 

model-based methodology using the parity space approach. 

The desired properties for the residual signal r(t) are r(t) ≠ 0 

if f  f(t) ≠ 0.Where r is the residual and f is the fault. The 

residual is generated based on the information provided by 

the system input and output signals using a residual 

generation (Patton and Chen, 1997). Figure 6 shows the 

pneumatic control loop scheme, which contains the following 

elements: The controller C(s), the proportional valve GA(s), 

the pneumatic actuator GP(s), and the sensor GS(s). 

 

 
Fig. 6. Pneumatic closed loop scheme with additive faults 

 

The actuator fault Fa(s) and the sensor fault FS(s) can have 

dynamics which are modelled by the transfer functions Ha(s), 

and HS(s). In addition to the position (feedback) sensor, 

pressure sensors are included in the system to read pressure 

from each chamber of the actuator. These are not included in 

the closed loop control system, but may be used for fault 

detection, and are shown as Pp(s) and Pn(s) respectively. 

With the pressure sensor faults shown as FPp(s) and FPn(s). 

The pressure sensor faults are modelled by the transfer 



 

 

     

 

functions HPp(s) and HPn(s). Using the description of the 

system shown in Figure 6 the following relationships can be 

derived. This method of parity equations is taken from 

Biakeche et al (1994). 

 

XS(s)=[GS(s)+HS(s)FS(s)][GP(s)GA(s)U(s)+Ha(s)Fa(s)](9)               

                         

Pnact=[U(s)GP(s)+Ha(s)Fa(s)][Pn(s)+HPn(s)FPn(s)]    (10)  

                                        

Ppact=[U(s)GP(s)+Ha(s)Fa(s)][Pp(s)+HPp(s)FPp(s)]    (11) 

 

                                U(s)=C(s)(V(s)-XS(s))                        (12) 

Equation (12) is an analytical redundancy relation and 

implies the assumption that all signals are available for 

measurement. However, in reality for an industrial 

application the controller signal U(s) is not usually measured. 

Using equations (9) to (12) the following residuals can be 

formulated: 

R1=XS(s)-GS(s)GP(s)GA(s)U(s)=HS(s)FS(s)+HaFa(s)    (14)       

                                                                                                    

R2= Pnact - U(s)GA(s)Pn(s)=Ha(s)Fa(s)+HPn(s)FPn(s)  (15)  

               

R3= Ppact - U(s)GA(s)Pp(s)=Ha(s)Fa(s)+HPp(s)FPp(s)  (16) 

 

4.3. Residual Evaluation and Thresholds 

 

The purpose of residual evaluation is to generate a fault 

decision by processing the residuals. A fault decision is the 

result of all the tasks fault detection, isolation, and 

identification (Kiencke and Nielsen, 2005). Residual 

evaluation is essentially to check if the residual is responding 

to a fault. The residual evaluation can in its simplest form be 

a thresholding of the residual, i.e. a fault is assumed present if 

| Ri(t) | > Ji(t) where J(t) is the threshold, or moving averages 

of the residuals. Another method may consist of statistical 

sequential probability ratio testing (Patton et al, 2000). In the 

present case the residuals are processed to acquire the root 

mean square (RMS) of the value over a moving window of N 

samples (Dixon, 2004) as shown: 
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Where Ri(k) is the value of the residual at the kth sample. 

Subsequently, the residual RMS value is compared with a 

predetermined fault detection threshold. The thresholds for 

the system have been set such that if the fault applied causes 

a decrease in performance of 20% then a fault flag is fired. 

Table 1 shows the fault signatures of the pneumatic system 

for different single faults. These are identified by inspection 

from Figure 6 and the combination of faults flags can be used 

to isolate faults. 

 

5. EXPERIMENTAL RESULTS 

 

In order to demonstrate the FDI scheme using parity 

equations a number of experiments were carried out on the 

pneumatic system (Figures 1 and 2). The considered faults  

Table 1.  Fault signatures with additive faults 

 

 

for this study are nonparametric faults or additive faults and a 

drift fault. These are unknown inputs acting on the plant. The 

occurrence of a fault is modelled by a nonzero output. This 

affect causes a change in the plant outputs independent of the 

known inputs. The pneumatic process GA(s) and GP(s) is 

modelled by the equations (6), (7) and (8). The sensor 

dynamics are assumed to be instantaneous i.e. Ha(s), HS(s), 

HPn(s), HPp(s), Pn(s), Pp(s), and GS(s) =1. The system is 

operated under position control with a PI controller designed 

to give appropriate closed-loop performance. The fault 

scenarios considered are summarized in Table 2.  

 

Table 2. Fault characteristics 

 

 

5.1. Actuator fault 

 

An additive fault Fa(s) (see Fig.6) is applied to the 

proportional valve. A step reduction on Fa(s) simulates a 

fault in the proportional control valve. This could be due to a 

fault in the power supply, amplifier or the connection 

between the control signal and the valve. Figure 8 shows the 

time history of this experiment. Where plot (8a) shows the 

actual system output (with fault); plots 8b, 8c, and 8d show 

the RMS values of the actuator residuals R1, R2, and R3 

respectively. The state of the actuator fault flag is shown in 

the lower plot (8e). At 30s the fault occurs, for a period of 

0.5s then clears. The fault is detected within 0.5ms. The fault 

flag is fired within 1.5ms and remains fired until the fault is 

removed from the system and subsequently, at 30.86s the 

fault flag returns to the false state when the RMS value falls 

below the threshold. These results concur with the fault 

signatures detailed in Table 1. 

 

5.2. Pressure sensor (Pn) fault 

 
For an additive fault (FPn) applied to the pressure sensor of 

chamber n. Figure 9 shows the time history of this 

experiment. The applied fault emulates that there is a 

decrease of pressure in the pressure signal from the sensor; in 

practice this could be due to a faulty connection or a faulty 

sensor. The upper plot shows the actual pressure sensor 

output (with fault); the middle plot shows the state of the 

plant fault flag; and the RMS value of the pressure sensor 

residual R2 is shown in the lower plot. At 25s the fault occurs, 

for a period of 2.5s then clears. The fault is detected within 

Residual Actuator  Pressure 

sensor Pn  

Pressure 

sensor Pp 

Position 

sensor  

     R1 1 0 0 1 

     R2 1 1 0 0 

     R3 1 0 1 0 

Test Fault Time of  

appearance 

Duration Magnitude 

1 Actuator Fa(s) 30 sec 0.5 sec -5v 

2 Pressure sensor  FPn(s) 25 sec 2.5 sec -0.5bar 

3 Pressure sensor  FPp(s) 20 sec 2.5 sec -0.5bar 

4 Position sensor   FS(s) 17 sec 10 sec 2 (slope)  



 

 

     

 

Time (s) 

0.5 ms. The fault flag is fired within 1.5ms and remains fired 

until the fault is removed from the system and subsequently, 

at 27.65s the fault flag returns to the false state when the 

RMS value falls below the threshold. 
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Fig. 8. Actuator fault Fa (s) results- actual plant output (8a), 

the residual evaluation function outputs (8b, 8c, and 8d), 

actuator fault flag (8e)   

 

5.3. Pressure sensor (Pp) fault 

 
Figure 10 shows the time history of this experiment for an 

additive fault (FPp) applied to the pressure sensor of chamber 

n. The applied fault emulates there is a decrease of pressure 

in the pressure signal (faulty sensor). The upper plot shows 

the actual pressure sensor output (with fault); the middle plot 

shows the state of the plant fault flag; and the RMS value of 

the pressure sensor residual R3 is shown in the lower plot. At 

20s the fault occurs, for a period of 2.5s then clears. The fault 

is detected within 0.5ms. The fault flag is fired within 1.5ms 

and remains fired until the fault is removed from the system 

and subsequently, at 22.65s the fault flag returns to the false 

state when the RMS value falls below the threshold.  
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Fig. 9. Pressure sensor Pn fault FPn (s) results- showing time 

history of pressure sensor output (top), sensor fault flag 

(middle), the residual evaluation function output (lower)  
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Fig. 10. Pressure sensor Pp fault FPp (s) results- showing 

time history of pressure sensor output (top), sensor fault flag 

(middle), the residual evaluation function output (lower). 

 

5.4. Position sensor (GS) drift fault 

 

Harsh working conditions along with the gradual build up of 

dirt on the sensor and faulty circuitry can cause the effect of 

sensor output drift. From Figure 11, at 17s a drift bias (FS) is 

added to the position signal. Although sensor drift can be a 

slow process i.e. possibly over a period of hours, for this 

work adding a drift bias within a period of approximately 10s 

has accelerated the effect of sensor drift. This is so the fault 
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can be detected and isolated without running the experiment 

for long periods. From the RMS residual R1 the drift fault is 

detected at 17.5s and the fault flag is raised within 0.6ms. 

The RMS residuals R2 and R3 do not activate/cross their 

respective thresholds. Again, these results concur with the 

fault signatures detailed in Table 1. 
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Fig. 11. Position sensor fault - actual plant output-position 

sensor R1 (top), Pressure sensor (Pn) R2 (middle), Pressure 

sensor (Pp) R3 (lower)   

 

6. CONCLUSIONS 

 

The paper has described application of a parity equation 

approach to fault detection in a closed loop pneumatic 

positioning system. The pneumatic system model has been 

formulated and typical validation results have been presented. 

Parity equations have been used to generate residuals and 

these have been compared to suitable thresholds in order to 

check the parity (consistency) of the measurements for the 

monitored system. Nonparametric (additive) faults have been 

assumed in formulating the equations and have then been 

applied experimentally to test the efficacy of the detection 

system.  

The results show that, using the described parity equation 

method, fault detection was possible from the available 

measurements. Faults in the actuator can be isolated along 

with the various sensor faults, with position and pressure 

sensor faults being successfully detected. The test results 

agree with the fault signatures detailed in Table 1.   

An important reason for selecting the parity equation residual 

generation method was the relative simplicity of the layout 

and application of the model equations.  It has been shown 

that despite this simplicity the approach can be used 

effectively for a real plant with non-linear behaviour.  Future 

work will be focussed on other model-based residual 

generation schemes. 
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