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Abstract

In systems with the spin-charge separation, the period of

the Aharonov-Bohm (AB) oscillation becomes half of the flux

quantum. This effect is at least related to the fact that for the

creation of the holons (spinons) are needed two electrons. The

effect is illustrated on the example of the Hubbard Hamiltonian

with the aid of the bosonization including topological numbers

and exists also in the Luttinger liquid on two chains. The

relation to a fractional 1/N AB effect, which can be associated

with a modified Luttinger liquid, is discussed.

In practically all 1D strongly-correlated electron systems there ex-

ists the phenomenon known as ”spin-charge” separation [1]. It was

also recently argued[2] that the spin charge separation is not only in-

herent to 1D, but also occurs in the two-dimensional systems related

to HTSC. The degrees of freedom associated with the single electron

are split into two independent spin and charge degrees of freedom as-

sociated with single particle gapless excitations: spinons and holons

as in 1D Luttinger liquid[3].

We show [4]that the properties of strongly-correlated systems are

associated with a new type of AB effect, namely, the period of the

AB effect decreases and becomes half of the period of the AB oscilla-

tions for the free electrons[5]. This is valid for all systems where the

spin-charge separation exists. The spinon, as well as the holon exci-
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tation, is created by two single electron operators associated with the

spin and charge density fluctuations, which is also the reason why the

period of the AB oscillation becomes halves. With holons as well as

with spinons two types of topological numbers are associated bound

with some selection rules defined by the parity of the total number of

electrons[3]. As a result all properties are parity dependent and the

parity effect exists in the Luttinger liquid of spinful electrons. How-

ever, the period of the oscillation for the Hubbard ring in the limit

of U → ∞ decreases Ne times, where Ne is the number of electrons

on the ring [6][7]. The other important feature of this effect is the

absence of the parity effect, which exists for free electrons [5] [8] as

well as for interacting fermions [5] [9] [10]. The absence of the parity

effect is also connected with the 1/Ne decrease of the AB period. The

system in the strong-coupling regime can be described by a modified

Luttinger liquid.

To illustrate the decrease of the AB period we consider the Hub-

bard Hamiltonian:

H = t
∑
i,σ

(a+
iσa(i+1)σ + h.c.) + U

∑
i

ni↑ni↓ (1)

where t and U are hopping integral and the constant of the on-site

Coulomb interaction between electrons, respectively. First, we go to

the continuum limit and then apply the bosonization [11], where the

Hamiltonian is [11]

He = it sin kF

∑
s

∫ L

0
dx(Ψs−(x)∂xΨs−(x) − Ψs+(x)∂xΨs+(x)) +

U
∫ L

0
dx[: j0↑ :: j0↓ : +Ψ+

↑+(x)Ψ+
↑−(x)Ψ↓+(x)Ψ↓−(x) + h.c.] (2)

where Ψs± are left and right movers and j0↑ = Ψ+
↑+(x)Ψ↑+(x) +
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Ψ+
↑−(x)Ψ↑−(x). The analogous expression is written for the current

j0↓ of down-spin fermions.

We take into account the periodical boundary (PB), and twisted

boundary (TB) conditions, when the Hubbard ring is located in a

transverse magnetic field. In both cases the fermion field Ψβα(x) can

be represented as:Ψβ±(x) = 1√
2πα

exp(±i
√

4πΦβ±(x)), where α is the

cut parameter and the boson fields Φβ± for PB conditions can be

represented as : Φβ±(x) = Φβ(x) ± ∫ x
−∞ πβ(x′)dx′. Here πβ(x) is the

conjugate variables to Φβ . In terms of these fields the Hubbard Hamil-

tonian takes the form:

H =
∫ L

0
dx(

t sin kF

2
[π2

↑ + (∂xΦ↑)
2 + (↑→↓)] +

U [
∂xΦ↑∂xΦ↓

π
+

1

2π2α2
cos[

√
4π(Φ↑ − Φ↓)]] (3)

On the ring the variables πβ and Φβ are multi-valued. It is, there-

fore, convenient to decompose them into the single valued variables

and topological quantum numbers, related to the winding numbers on

the ring:

Φβ±(x) = Φβ(x) ±
∫ x

−∞
πβ(x′)dx′ + (Nβ ± Jβ)

√
πx

2L
(4)

where the new variables πβ(x) and Φβ are single valued and Nβ, Jβ

are topological numbers associated with the charge and current on the

ring. These numbers are connected by the selection rules. These rules

depend on the parity of the total number of electrons Ne. Impos-

ing the periodical boundary conditions we get the following selection

rules:(−1)(Nβ±Jβ) = (−1)(Ne−1), which is a simple generalization of the

selection rule for the Luttinger liquid of spinless fermions[10]. Implic-

itly, these selection rules dictate that if the number of electrons is odd,
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then the number Nβ is even and the number Jβ is odd, or the number

Nβ is odd and the number Jβ is even. On the other hand if the number

of electrons is even, then the number Nβ is even and the number Jβ

is even, or the number Nβ is odd and the number Jβ is odd.

For the case of TB conditions one can introduce different flux values

for up and down- spin electrons fβ, where the shift will have the form:

Φβ±(x) ⇒ Φβ±(x)±√
πfβx/L. We separate the theory into two parts,

introducing spin and charge fields ϕs = (Φ↑ − Φ↓)/2 and ϕc = (Φ↑ +

Φ↓)/2, the fluxes of the electrical and magnetic field: fs = (f↑ − f↓)/2

and fc = (f↑+f↓)/2 and the topological numbers: Ns = N↑−N↓, Js =

J↑−J↓, Nc = N↑+N↓, Jc = J↑+J↓. In terms of the topological numbers

and the single valued variables πβ and Φβ the Hamiltonian can be split

into two parts H = Hc +Hs, where

Hc = Ac

∫ L

0
dx[π2

c + (∂xϕc)
2] +

Acπ

16L
[(Jc + 4fc)

2 +N2
c ], (5)

Hs = As

∫ L

0
dx[π2

s + (∂xϕs)
2] +

Asπ

16L
[(Js + 4fs)

2 +N2
s ] +

U

2π2α2

∫ L

0
dx cos[

√
16π(

ϕs

As

+

√
πNsx

4AsL
)] (6)

associated with the charge and spin degrees of freedom, respectively

and A2
c/s = t sin kF ± U/π. The choice of integer numbers Jc, Nc, Js

and Ns is dictated by the selection rules described above. For example,

if the number of electrons Ne is odd, then this means that the numbers

N↑ and N↓ have different parity, i.e. one of this numbers is odd the

other is even, since Nc = Ne = N↑ + N↓. This will mean that the

numbers J↑ and J↓ have different parity, too and the number Jc is

odd. The fact that the Hamiltonian for charge degrees of freedom

is split into two parts and the number Jc consists of the sum of the

two topological numbers J↑ and J↓ is the reason why the ”holon”
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Hamiltonian has the flux period fT = 1
2

and not conventional fT = 1.

In the case when Ne is even, the selection rules give that the num-

bers N↑ and N↓ have the same parity. This means that the AB effect

is half-flux quantum periodic and the energy-flux dependence is de-

scribed by parabolic segments with the minima located at the flux

equal to integers and half-odd integers ( see, eq.(5)). Thus, there oc-

curs a new parity effect, where there is a difference in the behavior for

the odd and the even numbers of electrons, i.e. there is a shift in the

energy-flux dependence by a quarter of the elementary flux quantum.

This is in contrast with the parity effect for spinless fermions [5],[8],[9],

where the shift is by a half of the flux quantum. A similar situation

occurs for an Aharonov-Cashier effect.

To proceed with the calculation of the current of the Hubbard ring

we transfer our problem into the Lagrangian formalism. We drop the

irrelevant spin degrees of the freedom and consider only the holon

Lagrangian Lc and the action Sc. In the Lagrangian formalism our

fields ϕc will depend on space and time variables ϕc = ϕc(x, t) and

will satisfy PB conditions for both variables. The multi-valued field

ϕc(x, t) can be split into single valued field ϕ̃c(x, t) and terms related to

the winding numbers n and m with the aid of the relation: ϕc(x, t) =

ϕ̃c(x, t)+
√
πxn/(2L)+

√
πtm/(2L). Therefore, in the Lagrangian for

the charge degrees of the freedom

Lc = −
∫ L

0
dx[ϕ̇2

c/(4Ac) + Ac(∂xϕc)
2] + i

√
π

4L
(J0 + 4f)

∫ L

0
ϕ̇dx, (7)

the single valued field ϕ̃c(x, t) can be separated. The contribution of

the orbital motion into the partition function Z of the ring can be

calculated with the aid of the continual integral over the single valued
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field ϕ̃c(x, t) and sums over the winding numbers n and m [12][13]:

Zc =
∫
Dϕ̃c

∑
n,m

exp[−Sc(ϕ̃c, J0, n,m)] (8)

where the action has the form:

Sc =
∫ L

0

∫ β

0
dxdt[ϕ̇2

c/(4Ac) + Ac(∂xϕc)
2 − i

√
π
ϕ̇c(J0 + 4f)

4L
] (9)

After the summation over the winding numbers the partition function

Zc takes the form: Zc = Z0Θ3(zJ , qJ)Θ3(zm, qm) where Θ3(x, y) is

the theta function and Z0 is the partition function, associated with

the single valued field ϕ̃c; zJ = (J0+4f)π
16

, qJ = exp(− πL
16Acβ

), zm = 0,

qm = exp(−πAcβ
4L

)

One can derive the low and high temperature asymptotic of the

free energy F = −T logZc. In the case of the low temperature limit

β → ∞ we have

∆F =
πAc(J0 + 4f)2

16L
(10)

which is a flux dependent term of eq.(5), where J0 is even or odd,

which corresponds to even or odd number of particles on the ring

respectively. In the case when πL/(16Acβ) >> 1 or β → 0, the

contribution of the orbital motion is:

∆F = −2T exp(−πLT

16Ac
) cos(

π(J0 + 4f)

8
) (11)

Recently, after several beautiful experimental works[14] an enor-

mous theoretical attention has been devoted to the problem of the

persistent current( see, Refs.[7][15] and references there). The prob-

lem was stimulated by the discrepancy between the amplitude of the

current estimated theoretically and experimental observations. The
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experiments indicate that this amplitude is about several orders larger

than the theories predict.

The persistent current at zero temperature is equal to

Jp = −∂F/∂f = −2π
VF

L
(f +

J0

4
) (12)

where −1
4
− J

4
≤ f ≤ −J

4
+ 1

4
and VF = Ac which increases with

U . This means the enhancement of the current with electron-electron

interaction. At high temperatures this enhancement even larger:

Jp = −πT exp(− πLT

16VF

) sin[
π

2
(f +

J0

4
)] (13)

Because of the exponential prefactor the current is strongly reduced

with the temperature but increases exponentially with U . The char-

acteristic temperature, where the current is still visible is about Tc ∼
VF/L, which is nothing but the inter-level distance of the size quanti-

zation. The described enhancement is not consistent with arguments

of the Ref.[16] but agrees with numerical simulations [17].

In the strong-coupling limit U → ∞ the problem can be diagonal-

ized with the aid of the Bethe ansatz the spectrum obtained originally

by the author [6] has the form:

Kn =
2πIn
L

+
2π

L

∑
Jα

N
+

2πf

L
(14)

The (half) integers In and Jα are holon and spinon quantum numbers,

respectively. If we introduce the notations φ =
∑
Jα/N then this

equation looks like the spectrum of spinless fermions in the flux f +φ.

In the continuum limit for this spectrum one can write an effective

Hamiltonian of spinless fermions:

H =
∫ L

0
[ψ+(x)(K2

fφ − k2
F )ψ(x)]dx (15)
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where kF = πN/L, and Kfφ = K + 2πφ
L

+ 2πf
L

and K is a momentum

operator.

For the comparison of the weak and strong-coupling cases we rep-

resent the holon Hamiltonian (15) in the bosonized form. With the aid

of Loss result[10], the Hamiltonian of the charge degrees of freedom

takes the form

H = VF

∫ L

0
[π2 + (∂xϕ)2]dx+

VFπ

L
[N2 + (J + 2φ+ 2f)2] (16)

In comparison with eq.(5), there appears the fictitious flux φ, having

fractional values φ = p/N . Without external magnetic field the selec-

tion rules have the form: (−1)N+J = (−1)Ne+1+φ, where the value φ

can be equal to 0 or 1. The latter means that the topological num-

bers N and J , which are in the Luttinger liquid coupled, now become

decoupled. The latter came from the fact that the parity of Ne plays

no role, since we can change the value φ from 0 to 1 and the value J

by 2 without change of the energy. This indicates the violation of the

conventional Luttinger liquid where the topological numbers N and J

are coupled by the parity of Ne.

The parity effect appears at a finite U . Then the solution has a

structure similar to eq.(14) plus the energy of the spin-wave excita-

tions. Therefore, for an odd number of particles in the bosonized form

the Hamiltonian is

H = VF

∫ L

0
[π2+(∂xϕ)2]dx+

VFπ

L
[N2+(J+2φ+2f)2]+

V 2
F

LU
| sin 2πφ | .

(17)

One sees that in addition to N and J the topological quantum num-

bers, there appears a new term, which is an internal energy of the field

φ and the energy of the spin-wave excitations. Now the value of the
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field φ can not take any rational number, i.e. the finite U lifts the

degeneracy and the parity effect appears.

For an even number of particles we must change in eq.(17) the

sin 2πφ to cos 2πφ. At zero external magnetic flux the selection rules

take the conventional form (−1)N+J = (−1)Ne−1, which dictates that

φ = 0. This corresponds to the maximum of the spin-wave excitation

spectrum, i.e. with the external magnetic flux f there appears the

spin-wave excitations (nonzero φ, compensating the f), which again

indicates a violation of the conventional Luttinger liquid properties,

where the field φ does not exist. This question needs special attention.

Thus, in weak coupling the magnetization is a half flux periodical

function. The amplitude of the oscillations increases with U . When-

ever the spin and charge degrees of freedom are separated and com-

posite particles (they are the ”holons and spinons” in the considered

case ) are created, half-flux periodical oscillations of the AB type oc-

cur (see, for comparison, Ref. [18]). Therefore, the period of the AB

oscillations in any strongly correlated systems will always decrease.

This effect does not exist for interacting spinless fermions on a

single channel ring[5][19]. But the effect arises when the ring consists

of two or many chains[20]. The reason for the effect is similar to that

for the Hubbard ring. One can prove exactly that the AB effect will

have here the period of the half- flux quantum for any interactions

which are no larger than the Fermi energy. When the interaction

is comparable with the Fermi energy the continuum approach is not

applicable and there can occur the fractional 1/Ne AB effect[6] or a

fractional M/Ne AB effect[21]. Thus, if in the real HTSC materials

in a normal state there occurs spin-charge separation , the AB effect

must have a half-flux quantum period in the units of the elementary
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flux quantum. To observe such predictions in HTSC might be a good

challenge for experimentalists.
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