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Applying the canonical transformation with the 1/λ per-
turbation expansion in the nonadiabatic and intermediate
regime and the discrete generalisation of Pekar’s continuous
nonlinear equation in the extreme adiabatic regime we show
that there are no strings in narrow-band ionic insulators due
to the Fröhlich electron-phonon interaction alone. The multi-
polaron system is a homogeneous state in a wide range of
physically interesting parameters, no matter how strong cor-
relations are. At the same time the Fröhlich interaction al-
lows the antiferromagnetic interactions and/or a short-range
electron-phonon interactions to form short strings in doped
antiferromagnetic insulators if the static dielectric constant is
large enough.

The electron-phonon interaction is strong in ionic
cuprates and manganites as established both experimen-
tally [1–4] and theoretically [5–8]. The carriers, doped
into the Mott insulator, are coupled with the antifer-
romagnetic background as well. The antiferromagnetic
interactions are thought to give rise to spin and charge
segregation (stripes) [9,10]. There is growing experimen-
tal evidence [11–13] that stripes occur in slightly doped
insulators. Their theoretical studies were restricted so
far to the repulsive strongly correlated models [9,10], or
to an extreme adiabatic limit of the electron-phonon in-
teraction in narrow [14,15] and wide band [16,17] po-
lar semiconductors and polymers. On the other hand
there is strong evidence that the nonadiabatic electron-
phonon interaction and small polarons are involed in the
physics of stripes [3,12]. Also the role of the long-range
Coulomb and Fröhlich interactions remains to be prop-
erly addressed.

In this letter we prove that the Fröhlich electron-
phonon interaction combined with the direct Coulomb
repulsion does not lead to charge segregation like strings
in doped narrow-band insulators, both in the nonadia-
batic and adiabatic regimes. However, this interaction
significantly reduces the Coulomb repulsion, which might
allow much weaker antiferromagnetic and/or short-range
electron-phonon interactions to segregate charges in
the doped insulators, as suggested by previous studies
[9,10,14].

To begin with, we consider a generic Hamiltonian, in-
cluding, respectively, the kinetic energy of carriers, the
Fröhlich electron-phonon interaction, phonon energy, and
the Coulomb repulsion as

H =
∑

i6=j

t(m − n)δs,s′c†icj +
∑

q,i

ωqni [ui(q)dq +H.c.]

+
∑

q

ωq(d†
q
dq + 1/2) +

1

2

∑

i6=j

V (m − n)ninj (1)

with bare hopping integral t(m), and matrix element of
the electron-phonon interaction

ui(q) =
1√
2N

γ(q)eiq·m. (2)

Here i = (m, s), j = (n, s′) include site m,n and spin

s, s′ quantum numbers, ni = c†ici, ci, dq are the electron
(hole) and phonon operators, respectively, and N is the
number of sites. At large distances ( or small q) one finds

γ(q)2ωq =
4πe2

κq2
, (3)

and

V (m − n) =
e2

ǫ∞|m − n| . (4)

The phonon frequency ωq and the static and high-
frequency dielectric constants in κ−1 = ǫ−1

∞ − ǫ−1

0 are
those of the host insulator (h̄ = c = 1).

One can apply the canonical transformation [18] and
the 1/λ multi-polaron perturbation theory [5] to inte-
grate out phonons,

S =
∑

q,i

ni [ui(q)dq −H.c.] . (5)

The result is [5,18]

H̃ = eSHe−S =
∑

i6=j

σ̂ijc
†
icj − Ep

∑

i

ni

+
∑

q

ωq(d†
q
dq + 1/2) +

1

2

∑

i6=j

vijninj, (6)

where

σ̂ij = t(m − n)δs,s′ exp

(

∑

q

[ui(q) − uj(q)]dq −H.c.

)

(7)

is the renormalised hopping integral depending on the
phonon variables, Ep = ztλ is the polaron level shift and

vij = V (m − n) − 1

N

∑

q

γ(q)2ωq cos[q · (m − n)] (8)
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is the net interaction of polarons comprising the long-
range Coulomb repulsion and the long-range attrac-
tion due to ionic lattice deformations. Here λ =
∑

q
γ(q)2ωq/2Nzt is the dimensionless coupling con-

stant, t is the nearest neighbour hopping integral and
z is the coordination lattice number.

The extention of the deformation surrounding
(Fröhlich) polarons is large, so their deformation fields
overlap at finite density. However, taking into account
both the long-range attraction of polarons due to the lat-
tice deformations and the direct Coulomb repulsion, the
net long-range interaction is repulsive [5]. At distances
larger than the lattice constant, |m − n| ≥ a ≡ 1, this
interaction is significantly reduced to

vij =
e2

ǫ0|m − n| . (9)

Optical phonons nearly nullify the bare Coulomb repul-
sion in ionic solids if ǫ0 >> 1, which is normally the case
in oxides. The kinetic energy term in the exact Hamil-
tonian, Eq.(6) involves multiphonon events generating a
residual polaron-phonon interaction [5]. Below we show
that in the two opposite limits, the nonadiabatic (ωq ≥ t)
and in the extreme adiabatic ( ωq → 0) regimes, there
is no charge segregation or any other instability of the
polaronic liquid due to the Fröhlich interaction in doped
insulators, but only Wigner crystallization at very low
densities.

First we consider the nonadiabtic and intermediate
regime. The properties of a single small polaron with
the Fröhlich electron-phonon interaction were discussed
a long time ago [19,20]. Exact Quantum Monte-Carlo
simulations [21] showed that the first order 1/λ pertur-
bation theory is numerically accurate for any coupling
if the phonon frequency is sufficiently large, ωq > t/2.
The characteristic frequency of phonons strongly coupled
with carriers is about ωq = 75 meV [2] in cuprates, so
cuprates are in this regime. Hence, one can replace the
hopping operator in Eq.(6) for its phonon average, reduc-
ing the problem to narrow-band fermions with the weak
repulsive interaction, Eq.(9). Next order corrections in
1/λ increase the polaron binding energy with little ef-
fect on the bandwidth [22]. Because the net long-range
repulsion is relatively weak, the relevant dimensionless
parameter rs = m∗e2/ǫ0(4πn/3)1/3 is not very large in
doped cuprates. Wigner crystallization appears around
rs ≃ 100 or larger, which corresponds to the atomic den-
sity of polarons n ≤ 10−6 with ǫ0 = 30 and the polaronic
mass m∗ = 5me typical for cuprates and manganites.
This estimate shows that small polarons in cuprates and
manganites are in the homogeneous state at physically
interesting densities.

In the opposite adiabatic limit one can apply a discrete
version of the continuos nonlinear equation [23] proposed
in Ref. [24] for the Holstein (molecular) model of the

electron-phonon interaction and extended to the case of
the deformation and Fröhlich interactions in Ref. [14,15].
Applying the Hartree approximation for the Coulomb re-
pulsion, the single-particle wave-function, ψn (the ampli-
tude of the Wannier state |n〉) obeys the following equa-
tion

−
∑

m6=0

t(m)[ψn − ψn+m] − eφnψn = Eψn. (10)

The potential φn,k acting on a fermion k at the site n

is created by the polarization of the lattice φl
n,k and by

the Coulomb repulsion with the other M − 1 fermions,
φc
n,k,

φn,k = φl
n,k + φc

n,k. (11)

Both potentials satisfy the descrete Poisson equation as

κ∆φl
n,k = 4πe

M
∑

p=1

|ψn,p|2, (12)

and

ǫ∞∆φc
n,k = −4πe

M
∑

p=1,p6=k

|ψn,p|2, (13)

with ∆φn =
∑

m
(φn − φn+m). Differently from Ref.

[15] we include the Coulomb interaction in Pekar’s func-
tional J [23], describing the total energy, in a selfconsis-
tent manner using the Hartree approximation, so that

J = −
∑

n,p,m6=0

ψ∗
n,pt(m)[ψn,p − ψn+m,p]

− 2πe2

κ

∑

n,p,m,q

|ψn,p|2∆−1|ψm,q|2

+
2πe2

ǫ∞

∑

n,p,m,q 6=p

|ψn,p|2∆−1|ψm,q|2. (14)

If we assume, following Ref. [14] that the single-particle
function of a fermion trapped in a string of the length
N is a simple exponent, ψn = N−1/2 exp(ikn) with
the periodic boundary conditions, then the functional
J is expressed as J = T + U , where T = −2t(N −
1) sin(πM/N)/[N sin(π/N)] is the kinetic energy (for an
odd number M of spinless fermions) [26], proportional to
t, and

U = −e
2

κ
M2IN +

e2

ǫ∞
M(M − 1)IN , (15)

corresponds to the polarisation and the Coulomb ener-
gies. Here the integral IN is given by

IN =
π

(2π)3

∫ π

−π

dx

∫ π

−π

dy

∫ π

−π

dz
sin(Nx/2)2

N2 sin(x/2)2
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× (3 − cosx− cos y − cos z)−1. (16)

It has the following asymptotics, Fig.1,

IN =
1.31 + lnN

N
, (17)

which is also derived analyticially at large N by the use
of the fact that sin(Nx/2)2/(2πN sin(x/2)2) can be re-
placed by a δ- function. If we split the first (attrac-
tive) term in Eq.(15) into two parts by replacing M2

for M + M(M − 1), then it becomes clear that the
net interaction between polarons remains repulsive in
the adiabatic regime as well because κ > ǫ∞. Hence,
there are no strings within the Hartree approximation
for the Coulomb interaction. Strong correlations do not
change this conclusion. Indeed, if we take the Coulomb
energy of spinless one-dimensional fermions comprising
both Hartree and exchange terms as [25]

EC =
e2M(M − 1)

Nǫ∞
[0.916 + lnM ], (18)

the polarisation and Coulomb energy per particle be-
comes (for large M >> 1)

U/M =
e2M

Nǫ∞
[0.916 + lnM − α(1.31 + lnN)], (19)

where α = 1 − ǫ∞/ǫ0 < 1. Minimising this energy with
respect to the length of the string N we find

N = M1/α exp(−0.31 + 0.916/α), (20)

and

(U/M)min = −e
2

κ
M1−1/α exp(0.31 − 0.916/α). (21)

Hence, the potential energy per particle increases with
the number of particles so that the energy of M well
separated polarons is lower than the energy of polarons
trapped in a string no matter correlated or not. The
opposite conclusion of Ref. [15] originates in an incor-
rect approximation of the integral IN ∝ N0.15/N . The
correct asymptotic result is IN = ln(N)/N .

One can argue [27] that a finite kinetic energy (t) can
stabilise a string of a finite length. Unfortunately, this
is not correct either. We performed exact (numerical)
calculations of the total energy E(M,N) of M spinless
fermions in a string of the lengthN including both kinetic
and potential energy with the typical values of ǫ∞ = 5
and ǫ0 = 30. The local energy minima (per particle) in
the string of the length 1 ≤ N ≤ 69 containing M ≤ N/2
particles are presented in the Table. Strings with the
even fermion numbers carry a finite current and hence the
local minima are found for odd M . In the extreme wide
band regime with t as large as 1 eV the global string en-
ergy minimum is found at M = 3, N = 25 (E = −2.1167

eV), and at M = 3, N = 13 for t = 0.5 eV (E = −1.2138
eV). However, this is not the ground state energy in both
cases. The energy of well separated d ≥ 2-dimensional
polarons is well below, less than −2dt per particle (i.e.
−6 eV in the first case and −3 eV in the second one in the
three dimensional cubic lattice, and −4 eV and −2 eV,
respectively, in the two-dimensional square lattice). This
argument is applied for any values of ǫ0, ǫ∞ and t. As
a result we have proved that strings are impossible with
the Fröhlich interaction alone contrary to the erroneous
Ref. [15,27].

The Fröhlich interaction is, of course, not the only
electron-phonon interaction in ionic solids. As discussed
in Ref. [5], any short range electron-phonon interac-
tion, like, for example, the Jahn-Teller (JT) distortion
can overcome the residual weak repulsion of Fröhlich
polarons to form small bipolarons. At large distances
small nonadibatic bipolarons weakly repel each other
due to the long-range Coulomb interaction, four times
of that of polarons, Eq.(9). Hence, they form a liq-
uid state [5], or bipolaronic-polaronic crystal-like struc-
tures [28] depending on their effective mass and den-
sity. The fact, that the Fröhlich interaction almost nul-
lifies the Coulomb repulsion in oxides justifies the use
of the Holstein-Hubbard model [6,29]. The ground state
of the 1D Holstein-Hubbard model is a liquid of inter-
site bipolarons with a significantly reduced mass (com-
pared with the on-site bipolaron) as shown recently [30].
The bound states of three or more polarons are not
stable in this model, thus ruling out phase separation.
However, the situation might be different if the antifer-
romagnetic [9,10] and JT interaction [31] or any short
(but finite)-range electron-phonon interaction are strong
enough. Due to long-range nature of the Coulomb re-
pulsion the length of a string should be finite (see, also
Ref. [12,14]). One can readely estimate its length by the
use of Eq.(8) for any type of the short-range electron-
phonon interaction. If, for example, we take dispersive
phonons, ωq = ω0 + δω(cos qx + cos qy + cos qz) with a q-
independent matrix element γ(q) = γ, we obtain a short-
range polaron-polaron attraction as

vatt(n − m) = −Eatt(δω/ω)δ|n−m|,1, (22)

where Eatt = γ2ω0/2. Taking into account the long-
range repulsion as well, Eq.(9), the potential energy of
the string with M = N polarons becomes

U =
e2

ǫ0
N2IN − NEattδω

ω
. (23)

Minimization of this energy yields the length of the string
as

N = exp

(

ǫ0Eattδω

e2ω
− 2.31

)

. (24)

Actually, this expression provides a fair estimate of the
string length for any kind of attraction (not only gen-

3



erated by phonon dispersion), but also for the antifer-
romagnetic exchange and/or Jahn-Teller type of interac-
tions [32]. Due to the numerical coefficient in the expo-
nent in Eq.(24) one can expect only short strings (if any)
with the realistic values of Eatt (about a few hundreds
millivolts), and the static dielectric constant ǫ0 ≤ 100.

We conclude that there are no strings in ionic doped
insulators with the Fröhlich interaction alone. Depend-
ing on their density and mass polarons remain in a liquid
state or Wigner crystal. On the other hand the short-
range electron-phonon and/or antiferromagnetic inter-
actions might provide a liquid bipolaronic state and/or
charge segregation (strings of a finite length) because the
long-range Fröhlich interaction significantly reduces the
Coulomb repulsion in highly polarizable ionic insulators.
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Figure captions

Fig.1. The polarisation energy of small Fröhlich po-
larons trapped in a string depends on its length as
ln(N)/N .
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