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Hall-Lorenz number paradox in cuprate superconductors

A. S. Alexandrov
Department of Physics, Loughborough University, Loughborough, United Kingdom

Significantly different normal state Lorenz numbers have been found in two independent direct
measurements based on the Righi-Leduc effect, one about 6 times smaller and the other one about 2
times larger than the Sommerfeld value in single cuprate crystals of the same chemical composition.
The controversy is resolved in the model where charge carriers are mobile lattice bipolarons and
thermally activated nondegenerate polarons. The model numerically fits several longitudinal and
transverse kinetic coefficients providing a unique explanation of a sharp maximum in the temperature
dependence of the normal state Hall number in underdoped cuprates.

PACS numbers: 74.25.Fy,74.20.-z,72.15.Eb,74.72.-h

Particular interest in studies of high-temperature
superconductors lies in a possible violation of the
Wiedemann-Franz (WF) law in doped cuprates. A de-
parture from the Fermi/BCS liquid picture is seen in both
the superconducting and normal state thermal conduc-
tivities and might be related by a common mechanism[1,
2]. Takenaka et al.[1] systematically studied the oxygen-
content dependence of the insulating state thermal con-
ductivity enabling them to estimate the phononic con-
tribution, κph(T ) for the metallic state to some extent.
Their analysis led to the conclusion that the electronic
term, κ is only weakly T -dependent. This approximately
T -independent κ in the underdoped region therefore im-
plies the violation of the WF law since the resistivity
is found to be a non-linear function of temperature in
this regime. A breakdown of the WF law has been seen
in other cuprates such as Pr2−xCexCuO4 at very low
temperatures[2]. On the other hand measurements by
Proust et al.[3] on T l2Ba2Cu06+δ have suggested that
the Wiedemann-Franz law holds perfectly well in the
overdoped region. However in any case the extraction
of the electronic thermal conductivity has proven diffi-
cult and inconclusive as κ and κph are comparable at
elevated temperatures, or there is a thermal decoupling
of phonons and electrons at ultra-low temperatures[4].

This uncertainty has been avoided in measurements of
the Righi-Leduc effect. The effect describes transverse
heat flow resulting from a perpendicular temperature
gradient in an external magnetic field, which is a ther-
mal analog of the Hall effect. Using the effect the ”Hall-
Lorenz” electronic number, LH = (e/kB)

2
κxy/(Tσxy)

has been directly measured[5] in Y Ba2Cu3O6.95 and
Y Ba2Cu3O6.6 since transverse thermal κxy and electri-
cal σxy conductivities involve presumably only electrons.
The experimental LH(T ) showed a quasi-linear temper-
ature dependence above the resistive Tc, which strongly
violates the WF law. Remarkably, the measured value
of LH just above Tc turned out precisely the same as
predicted by the bipolaron theory[6], L = 0.15L0, where
L0 = π2/3 is the conventional Sommerfeld value. The
breakdown of the WF law revealed in the Righi-Leduc
effect[5] has been explained by a temperature-dependent
contribution of thermally excited single polarons to the

transverse magneto-transport[7].
Surprisingly more recent measurements of the Hall-

Lorenz number in single crystals of optimally doped
Y Ba2Cu3O6.95 and optimally doped and underdoped
EuBa2Cu3Oy led to an opposite conclusion[8]. The ex-
perimental LH for these samples has turned out only
weakly temperature dependent and exceeding the Som-
merfeld value by more than 2 times in the whole temper-
ature range from Tc up to the room temperature. Fol-
lowing an earlier claim[9] Matusiak and Wolf[8] have ar-
gued that a possible reason for such significant difference
might be that Zhang et al.[5] used different samples, one
for κxy and another one for σxy measurements, which
makes their results for LH inconsistent.

Here I argue that there is no inconsistency in both
LH determinations. One order of magnitude difference
in two independent direct measurements of the normal-
state Hall-Lorenz number is consistently explained by the
bipolaron theory[10]. The theory explains the huge dif-
ference in the Hall-Lorenz numbers by taking into ac-
count the difference between the in-plane resistivity of
detwinned[5] and twinned[8] single crystals. The the-
ory fits well the observed LH(T )s and explains a sharp
Hall-number maximum[8] observed in the normal state
of underdoped cuprates.

In the presence of the electric field E, the temperature
gradient ∇T and a weak magnetic field B‖ z ⊥ E and
∇T , the electrical currents in x, y directions are given by

jx=axx∇x(µ − 2eφ) + axy∇y(µ − 2eφ)

+bxx∇xT + bxy∇yT,

jy=ayy∇y(µ − 2eφ) + ayx∇x(µ − 2eφ)

+byy∇yT + byx∇xT,

(1)

and the thermal currents are:

wx=cxx∇x(µ − 2eφ) + cxy∇y(µ − 2eφ)

+dxx∇xT + dxy∇yT

wy=cyy∇y(µ − 2eφ) + cyx∇x(µ − 2eφ)

+dyy∇yT + dyx∇xT.

(2)
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Here µ and φ are the chemical and electric potentials.
Real phonons and (bi)polarons are well decoupled

in the strong-coupling regime of the electron-phonon
interaction[10] so the standard Boltzmann equation for
the kinetics of renormalised carriers is applied. If we
make use of the τ(E)−approximation[11] the kinetic co-
efficients of bipolarons are found as[7] (kB = ~ = c = 1)

ab
xx = ab

yy =
2enb

mb
〈τb〉,

ab
yx = −ab

xy =
2egbBnb

mb
〈τ2

b 〉,

bb
xx = bb

yy =
2enb

Tmb
〈(E − µ)τb〉,

bb
yx = −bb

xy =
2egbBnb

Tmb
〈(E − µ)τ2

b 〉,

and

cb
xx = cb

yy =
nb

mb
〈(E + 2eφ)τb〉,

cb
yx = cb

xy

gbBnb

mb
〈(E + 2eφ)τ2

b 〉,

db
xx = db

yy =
nb

Tmb
〈(E + 2eφ)(E − µ)τb〉,

db
yx = −db

xy =
gbBnb

Tmb
〈(E + 2eφ)(E − µ)τ2

b 〉,

where

〈Q(E)〉 =

∫
∞

0
dEQ(E)EDb(E)∂fb/∂E

∫
∞

0
dEEDb(E)∂fb/∂E

, (3)

Db(E) ∝ Ed/2−1 is the density of states of a d-
dimensional bipolaron spectrum, E = K2/(2mb), gb =
2e/mb, and fb(E) is the equilibrium distribution func-
tion. Polaronic coefficients are obtained by replacing su-
per/subscripts b for p, double elementary charge 2e for
e and µ for µ/2 in all kinetic coefficients, and mb for
2mp in aij and cij . The kinetic energy of bipolarons, E
should be replaced by E + T ∗, where E = k2/(2mp) is
the polaron kinetic energy, and T ∗ is half of the bipo-
laron binding energy (i.e. the pseudogap temperature in
the theory[10]).

The in-plane resistivity, ρ, the Hall number, RH , and
the Hall-Lorenz number, LH are expressed in terms
of the kinetic coefficients as ρ−1 = 2eaxx, RH =
ayx/2eB(axx)2, and

LH =
e [(dyxaxx − cyxbxx)axx − cxx(bxxayx − byxaxx)]

2Tayxa2
xx

,

(4)
respectively, where a, b, c, d = ap +ab, bp +bb, cp +cb, dp +
db.

The in-plane resistivity, the temperature-dependent
paramagnetic susceptibility, and the Hall ratio have al-
ready been described by the bipolaron model taking
into account thermally activated single polarons[12, 13,

14, 15]. The bipolaron model has also offered a sim-
ple explanation of c-axis transport and the anisotropy
of cuprates[14, 16, 17, 18]. The crucial point is that
single polarons dominate in c-axis transport at finite
temperatures because they are much lighter than bipo-
larons in c-direction. Bipolarons can propagate across
the planes only via a simultaneous two-particle tun-
nelling, which is much less probable than a single po-
laron tunnelling. However, along the planes polarons and
inter-site bipolarons propagate with comparable effective
masses[10]. Hence in the mixture of nondegenerate quasi-
two-dimensional (2D) bosons and thermally excited 3D
fermions, only fermions contribute to c -axis transport,
if the temperature is not very low, which leads to the
thermally activated c -axis transport and to the huge
anisotropy of cuprates[16].

We have also shown[7] that by the necessary inclusion
of thermally activated polarons, the model, Eq.(4) pre-
dicts a breakdown of the WF law with the small near-
linear in temperature Hall-Lorenz number, as observed
experimentally by Zhang et al.[5] (see Fig.1). Let us now
show that the bipolaron model describes the contrasting
observations of Ref.[8] as well, if the ratio of bipolaron
and polaron mobilities, α = 2τbmp/τpmb becomes rela-
tively small.

Both polaronic and bipolaronic carriers are not degen-
erate above Tc, so the classical distribution functions,
fb = y exp(−E/T ) and fp = y1/2 exp[−(E + T ∗)/T ] are
applied with y = exp(µ/T ). The chemical potential is
evaluated using 2nb+np = x/v0, where x is the number of
itinerant holes in the unit cell volume v0 not localised by
disorder. The bipolaron density remains large compared
with the polaron density in a wide temperature range, so
that nbv0 ≈ x/2 and y ≈ πx/(mba

2T ) for quasi-2D bipo-
larons. Then the atomic density of 3D polarons is npv0 =

Tmpa
2 exp(−T ∗/T )(xmp/2π2mb)

1/2 (a is the lattice
constant). The ratio β = np/2nb remains small at any
pseudogap temperature T ∗ and any relevant doping level
x > 0.05, β ≈ Texp(−T ∗/T )(18mp/π2xmb)

1/2/W ≪ 1,
if the temperature T is small compared with the polaron
bandwidth W = 6/mpa

2. Hence, if the mobility ratio α
is of the order of unity, both longitudinal and transverse
in-plane magnetotransport is dominated by bipolarons,
which explains a remarkably low LH in high-quality de-
twinned crystals used in Ref.[5], Fig.1.

On the other hand, twinned crystals used in Ref.[8] had
the in-plane resistivity several times larger than those of
Ref.[5] presumably resulting from twin boundaries and
long term aging. The twin boundaries and other defects
are strong scatterers for slow 2D bipolarons (see below),
while lighter quasi-3D polarons are mainly scattered by
real optical phonons, which are similar in all crystals.
Hence one can expect that α becomes small in twinned
crystals of Ref.[8]. If the condition α2 ≪ β is met, then
only polarons contribute to the transverse electric and
thermal magnetotransport. It explains about the same
thermal Hall conductivities (κxy ≈ 2.5 × 10−3B W/Km
at T=100K) dominated by polarons in both crystals of
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FIG. 1: The Hall-Lorenz number LH in underdoped twinned
EuBa2Cu3O6.65 (circles)[8] compared with the theory, Eq.(7)
when α ≪ 1(upper line), and the significantly different Hall-
Lorenz number in detwinned Y Ba2Cu3O6.95 (triangles)[5]
described by the same theory[7] with a moderate value of
α = 0.44 (lower line).

Y Ba2Cu3O6.95 used in Ref.[5] and in Ref.[8], and at the
same time a substantial difference of their electrical Hall
conductivities, σxy, as bipolarons virtually do not con-
tribute to σxy in the twinned samples.

To arrive at simple analytical results and illustrate
their quantitative agreement with the experiment[8] let
us assume that α2 ≪ β, but α & β, and neglect an en-
ergy dependence of the transport relaxation rates of all
carriers. In such conditions bipolarons do not contribute
to transverse heat and electric flows, but determine the
in-plane conductivity. Kinetic responses are grossly sim-
plified as

ρ =
mbv0

2e2xτb
(5)

RH =
v0β

exα2
=

e3npτ
2
p

m2
p

ρ2, (6)

LH = 4.75 + 3T ∗/T + (T ∗/T )2. (7)

As in the case of α2 & β, discussed in Ref.[7], the re-
combination of a pair of polarons into bipolaronic bound
states at the cold end of the sample results in the break-
down of the WF law, as described by two temperature-
dependent terms in Eq.(7). The breakdown is reminis-
cent of the one in conventional semiconductors caused
by the recombination of electron-hole pairs at the cold
end[11]. However, the temperature dependence and the
value of LH(T ) turn out remarkably different. When
α2 ≪ β, The Hall-Lorenz number is more than by an or-
der of magnitude larger than in the opposite regime, α2 &
β. It increases with temperature lowering rather than

decreases fitting well the experimental observation[8] in
twinned underdoped single crystals of EuBa2Cu3O6.65

with T ∗ = 100K, Fig.1. Hence by varying the bipolaron
to polaron mobility ratio, α, the model accounts for quali-
tatively different behaviours of LH(T ) in twinned and de-
twinned cuprates. The energy dependence of relaxation
rates might somewhat change numerical coefficients in
Eq.(7), but it does not qualitatively change the temper-
ature dependence and the value of LH(T ).

The Hall-Lorenz number is the ratio of different ki-
netic coefficients rather than a proper kinetic response
function. However, its significant departure from the
Sommerfeld value L0 ≈ 3.3 clearly indicates a non-Fermi
liquid behaviour since the relaxation mechanism virtu-
ally cancels in the ratio. The partially gapped Fermi-
liquid model used to explain large LH in Ref.[8] predicts
a quadratic decrease of LH(T ) with temperature lower-
ing, rather than a steep increase as observed, Fig.1. To
account for an unexpected rise of LH(T ) below T ≈ 160K
in underdoped samples, Matusiak et al.[8] suggested an
opening of another narrower gap. However the gapped
Fermi liquid model is clearly incompatible with the near
temperature-independent resistivity and with the sharp
maximum of the normal state Hall ratio at 100K, as mea-
sured in Ref.[8], Fig.2. It is also hard to accept the claim
of Refs.[8, 9] that the research team of Ref.[5] could so
badly manipulate their data to arrive at an erroneous
LH more than one order of magnitude smaller in identi-
cal cuprates.

On the contrary our model explains the near
temperature-independent resistivity and the unusual Hall
ratio, Fig.2. If we assume that in EuBa2Cu3O6.65 slow
bipolarons are mainly scattered by neutral defects and
twin boundaries, their relaxation rate depends on the
temperature as τb0/τb = 1+(T/T0)

1/2, where τb0 is a con-
stant. The temperature independent contribution comes
from the scattering rate off neutral impurities with the
carrier exchange[11] similar to the scattering of slow elec-
trons by hydrogen atoms. The square-root term origi-
nates in the scattering of slow bipolarons by point de-
fects and twin boundaries with a temperature indepen-
dent mean-free pass. The scale T0 thus depends on the
relative strength of two scattering mechanisms. The the-
oretical resistivity

ρ(T )

ρ0

= 1 + (T/T0)
1/2 (8)

fits well the experimental ρ(T ) in the entire normal-
state region with ρ0 = mbv0/(2e2xτb0) = 1.3×
10−5Ωm and T0=321 K, Fig.2. Lighter 3D polarons
are scattered by defects and optical phonons, so that
τp0/τp = (T/W )1/2 + B exp(−ω/T ) with a temperature-
independent τp0. Then, using np ∝ Texp(−T ∗/T ),
Eq.(6) yields

RH(T ) = ρ2(T )
AT exp(−T ∗/T )

[T 1/2 + b exp(−ω/T )]2
. (9)

This expression fits extremely well the experimental
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FIG. 2: The in-plane resistivity ρ (triangles) and the Hall
ratio RH (circles) of underdoped twinned EuBa2Cu3O6.65,
Ref.[8], compared with the theory (lines).

RH(T ) with temperature independent constants A =
e3τ2

p0(18xmp/π2mb)
1/2/(v0m

2
p)=275 m/Ω2C and b =

BW 1/2 =122K1/2, the reasonable value of the character-
istic optical phonon frequency ω = 470K, and the same
pseudogap T ∗ = 100K as in the Hall-Lorenz number in
Fig.1. It appears almost perfect even in the critical re-
gion very close to Tc, Fig.2, if one uses the experimental
ρ(T ) in Eq.(9). However the maximum of the Hall ratio
is a normal state feature lying well above the critical re-

gion by about 30K, Fig.2, as in underdoped Y Ba2Cu3Oy,
Ref.[15]. At temperatures below T ∗ the Hall ratio drops
as the number of thermally activated polarons decreases,
and at temperatures above T ∗ it drops since the polaron
relaxation time decreases.

To verify the self-consistency of the model let us esti-
mate α and β. In the optimally doped samples one ex-
pects α2 of the order of β, so the Hall ratio approximately
measures the itinerant carrier density, Ropt

H ≈ v0/exopt.
Then using the experimental values[8] of RH in optimally
doped EuBa2Cu3O7 and underdoped EuBa2Cu3O6.65

one estimates α2/β ≈ Ropt
H xopt/xRH . 0.1 in under-

doped EuBa2Cu3O6.65, which justifies one of our as-
sumptions. To get α & β we have to assume that β . 0.1,
which is indeed the case in the whole temperature range,
if the polaron band is wide enough, W & 5000K. Fi-
nally using the values of ρ0 and A and taking x = 0.1,
mp = 5me, v0 = 0.2 nm3 and mb = 2mp the polaron and
bipolaron mean-free pass is estimated as lp ≈ 4 nm and

lb ≈ 0.3(mb/me)
1/2nm, respectively (here me is the free

electron mass). Their values are large compared with the
lattice constant justifying the Boltzmann approximation
for all carriers.

To sum up, the bipolaron theory resolves the paradox
of very different Hall-Lorenz numbers found in two inde-
pendent measurements[5, 8] in cuprate single crystals. It
explains a flat temperature dependence of the in-plane
resistivity and the sharp maximum in the normal-state
Hall number of underdoped cuprates as well.
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SRC (UK) (grant EP/C518365/1) and enlightening dis-
cussions with Nigel Hussey of thermal conductivity mea-
surements.
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