

This item was submitted to Loughborough's Institutional Repository (<u>https://dspace.lboro.ac.uk/</u>) by the author and is made available under the following Creative Commons Licence conditions.

COMMONS DEED
Attribution-NonCommercial-NoDerivs 2.5
You are free:
 to copy, distribute, display, and perform the work
Under the following conditions:
BY: Attribution. You must attribute the work in the manner specified by the author or licensor.
Noncommercial. You may not use this work for commercial purposes.
No Derivative Works. You may not alter, transform, or build upon this work.
 For any reuse or distribution, you must make clear to others the license terms of this work.
 Any of these conditions can be waived if you get permission from the copyright holder.
Your fair use and other rights are in no way affected by the above.
This is a human-readable summary of the Legal Code (the full license).
Disclaimer 🖵

For the full text of this licence, please go to: <u>http://creativecommons.org/licenses/by-nc-nd/2.5/</u>

Erratum: Effects of lattice geometry and interaction range on polaron dynamics [Phys. Rev. B 73, 054303 (2006)]

J. P. Hague, P. E. Kornilovitch, A. S. Alexandrov, and J. H. Samson (Received 5 December 2006; published 2 February 2007)

DOI: 10.1103/PhysRevB.75.059901 PACS number(s): 71.38.-k, 02.70.Ss, 74.20.-z, 99.10.Cd

We have recently discovered a mistake in the strong coupling, long-range interaction results in this paper, changing Figs. 9–12. The corrected figures are shown below. We also note that γ computed by Eq. (23) should read 0.32(0) for the triangular lattice and 0.33(4) for the square lattice with Fröhlich interaction. We note that the Lang-Firsov limit and spectra now agree even better with our numerical results at large λ (>5) and ω , Fig. 10. Numerical masses of lattice Fröhlich polarons (Fig. 9) in the intermediate coupling and adiabicity regimes are instrumental for better understanding of transport properties and angle-resolved photo-emission spectra of cuprate superconductors, where the finite-range Fröhlich interaction with *c*-axis polarized optical phonons is important.^{1,2} The conclusions of the paper are unchanged.

FIG. 9. Inverse mass of the Fröhlich polaron on the square and triangular lattices when $\bar{\omega}=1$. Inset: approaching the strong coupling limit at large λ .

FIG. 10. Dispersion for a screened Fröhlich polaron with $R_{sc}=1$, $\lambda=8$, and $\bar{\omega}=8$, compared with the Lang-Firsov (LF) result to first order in $1/\lambda$.

FIG. 11. DOS for a screened Fröhlich polaron with $R_{sc}=1$, $\lambda=8$, and $\bar{\omega}=8$, compared with the Lang-Firsov result to first order in $1/\lambda$.

FIG. 12. Ratio of the effective bandwidths of the screened Fröhlich polaron on square and triangular lattices. $\lambda = 1.4$ and $\bar{\omega} = 1$.

¹A. S. Alexandrov, Phys. Rev. B 53, 2863 (1996); Phys. Rev. Lett. 82, 2620 (1999).

²W. Meevasana, N. J. C. Ingle, D. H. Lu, J. R. Shi, F. Baumberger, K. M. Shen, W. S. Lee, T. Cuk, H. Eisaki, T. P. Devereaux, N. Nagaosa, J. Zaanen, and Z.-X. Shen, Phys. Rev. Lett. **96**, 157003 (2006).