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Two-electron elastic tunneling in low-dimensional conductors
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We solve the Lippmann-Schwinger equation describing one-dimensional elastic scattering of preformed
pairs~e.g., bipolarons! off a short-range scattering center, and find the two-particle transmission through a thin
potential barrier. While the pair transmission is smaller than the single-electron transmission in the strong-
coupling limit, it is remarkably larger in the weak-coupling limit. We also calculate current-voltage character-
istics of a molecule-barrier-molecule junction. They show unusual temperature and voltage behaviors which
are experimentally verifiable at low temperatures in bulk and nanoscale molecular conductors.
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Molecular-scale electronics is currently a very active a
of research.1 It is envisaged that linear conjugated molecu
would be used as the ‘‘transmission lines’’ in molecu
circuitry2,3 in addition to active molecular elements di
cussed in the literature.1,4 When a so-called ‘‘molecula
wire’’ is short, the dominant mechanism of transport is m
likely a resonant tunneling through electronic molecu
states~see Refs. 5 and 6, and references therein!. With an
increasing size of the wires one has to take into account
strong interaction between carriers and vibronic excitati
of the molecule. For longer wires containing more than ab
40 atomic sites, the tunneling time is comparable to or lar
than the characteristic phonon times, so that the pola
~and/or bipolaron! can be formed inside the molecular wire7

There is also a wide range of molecular bulk conductors w
~bi!polaronic carriers. The formation of polarons~and
charged solitons! in polyacetylene~PA! was discussed a lon
time ago theoretically in Ref. 8, and the formation of bip
larons~bound states of two polarons! was discussed in Ref
9. Polarons in PA were detected optically in Ref. 10, a
studied since then in great detail. There is an exceed
amount of evidence of polaron and bipolaron formation
conjugated polymers such as polyphenylene, polypyrr
polythiophene, polyphenylene sulfide,11 Cs-doped
biphenyl,12 n-doped bithiophene,13 polyphenylenevinylene
based light-emitting diodes,14 and other molecular system
In many cases the doped polymers have bipolaronlike ch
states, to yield, in particular, enhanced nonlinear opt
properties.15

Many experimental data provide evidence of hopp
transport of~bi!polaronic carriers. However, at sufficient
low temperatures there should be a crossover to the b
motion of polarons, as suggested a long ago,16,17 and
bipolarons.18,19 Indeed, due to recent extraordinary improv
ments in the preparation of organic molecular films, it h
become possible to measure their conductivity in a wide
terval of temperatures, and to observe the crossover in t
dimensional films of organic conjugated molecules.20 In one-
dimensional wires the band motion is expected to be stron
hindered by imperfections, and those imperfections are lik
to be intentionally introduced in the system as functiona
ing units.21 Moreover, polarons in extended molecular wir
or units are expected to be bound into real-space bipola
0163-1829/2002/65~15!/155209~5!/$20.00 65 1552
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with lowering temperature. It is known in the context
oxide semiconductors that the bipolaron formation m
strongly affect transport properties.18,22

In this Brief Report we study the elastic scattering of c
riers bound into real-space pairs in one-dimensional orga
and other conductors. We present an exact analytical solu
in the limit of slow pairs. We also find an unusual tempe
ture and voltage dependence of the tunneling conducta
which may be experimentally verified at low temperatures
organic bulk conductors and long nanowires.

In mathematical terms, the scattering of pairs is a thr
body problem with the scattering potential ascribed to
third particle with an infinite mass. LetÛ(x12x2) be an
attractive potential between two moving particles, a
V̂(x1 ,x2) a repulsive external potential representing the b
rier. The starting point is the Lippmann-Schwing
equation23,24 for the two-particle wave functionC(k1 ,k2) in
a momentum representation, which explicitly takes into
count a boundary condition of the three-body scatter
problem. It can be written as

C52 igĜ~E1 ig!F, ~1!

whereĜ(E1 ig) is the exact two-particle Green’s functio
~GF! in the external potential,F(k1 ,k2) is the wave function
of a free (V̂50) real-space pair in the momentum represe
tation, andF(k1 ,k2)52pd(q2Q)f(k). Hereq5k11k2 is
the center-of-mass momentum,k5(k12k2)/2 is the relative
momentum,E52e1Q2/4,0 is the pair total energy in the
absence of the external potential, ande is its binding energy.
The wave functionf(k) describes the internal structure o
the pair. Hereafter we choose\5kB5m15m251, andg5

10, and defineĜ(E1 ig)F as

ĜF[E E dk18dk28

~2p!2
G~k1 ,k2uk18 ,k28 ;E!F~k18 ,k28! ~2!

for any Ĝ andF. Using the two identitiesĜ5Ĝ32Ĝ3ÛĜ

and Ĝ5Ĝ122Ĝ12V̂Ĝ and the Lippmann-Schwinger equa
tion, one readily derives the equation for the Fourier com
nentT(k1 ,k2) of the productÛC,24
©2002 The American Physical Society09-1
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T~k1 ,k2!5~E2k22q2/4!F2T̂12DĜ3T, ~3!

whereDĜ35Ĝ32Ĝ0 , Ĝ0 is the two-particle GF in the ab
sence of any interaction (Û5V̂50), Ĝ3 is the GF of nonin-
teracting particles in the external fieldV̂ ~for Û50), andĜ12
is the GF of two interacting particles with no external fie
(V̂50). Here the scattering operatorT̂12, defined by the
relation T̂12Ĝ0[ÛĜ12, is expressed via the particle-partic
scatteringt matrix as

T12~k1 ,k2uk18 ,k28 ;E!52pt~k,k8;E2q2/4!d~q2q8!.
~4!

The t matrix satisfies the equation

t~k,k8;E!5u~k2k8!2E dp

2p

u~k2p!t~p,k8;E!

p22E2 ig
, ~5!

whereu(p) is the Fourier component of the attractive pote
tial Û(x12x2).

In many~in!organic semiconductors, the long-range Co
lomb repulsion is usually significantly reduced by the stro
Fröhlich interaction with optical phonons,25 so that a net~at-
tractive! potential between carriers is a short-range o
Û(x12x2)52ad(x12x2), a.0. Then Eq.~5! is readily
solved, resulting in the momenta-independentt matrix

t~k,k8,E!52
aA2E

A2E2a/2
, ~6!

which is valid for all energies provided that the square roo
understood as its principal value. The binding energy ie
5a2/4, and the normalized ground-state wave function
f(k)5221/2a3/2/(k21e). It is known that for a short-range
inter particle interactionT(k1 ,k2), Eq. ~3! is proportional to
the Fourier component of the center-of-mass wave func
V(q), T(k1 ,k2)52221/2a3/2V(q). Then the problem of
elastic pair scattering is reduced to a single integral equa
for the center-of-mass scattering amplitudeY(q). Substitut-
ing F and T̂12 in Eq. ~3!, one obtains

V~q!52pd~q2Q!2
Y~q!

q2/42Q2/42 ig
, ~7!

whereY(q) satisfies

Y~q!5W~q,Q!2E dq8

2p

W~q,q8!Y~q8!

q82/42Q2/42 ig
. ~8!

The effective center-of-mass scattering potentialW(q,q8) is
determined using the GF of two noninteracting particles
the external potential (Û50 but V̂Þ0) as

W~q,q8!5ax~q!EE dk2dk28

~2p!2
DG3~q2k2 ,k2uq82k28 ,k28 ;E!,

~9!
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wherex(q)5E2q2/41(a/4)(q224E)1/2. In the following
we restrict our consideration to the scattering of slow pa
with Q2!4e. This condition allows us to replaceW(q,q8)
with W(0,0)[W in all equations, because the characteris
momentaq,q8.Q are much smaller thanA2E. Then the
solution of Eq.~8! is given by Y(q)5WQ/(Q12iW), so
that the pair transmission probability is

T2~Q!512U2Y~2Q!

Q U2

5
Q2

Q214W2
. ~10!

In general,G3 , W, and T2 can be found only numerically
However, in many applications the scattering potential is a
a short-range one,V̂(x1 ,x2)5b@d(x1)1d(x2)#, so that the
full Hamiltonian takes the form

H52
1

2

]2

]x1
2

2
1

2

]2

]x2
2

2ad~x12x2!1b@d~x1!1d~x2!#.

~11!

The approximation of the interaction between the partic
by the d function is justified if the size of the pair is larg
compared with the range of the attractive potential. This
valid for bipolarons, if their size is larger than the lattic
constant, and for the deuteron in nuclear physics. Ana
gously, approximating the barrier with thed function is ap-
propriate if the range of the scattering potential is small co
pared with the size of the pair. This three-body proble
~with the infinite mass of a third particle! was considered
before in Refs. 26 and 27 but no general analytical solut
was found. Here we present an analytical solution in the li
of slow pairs. Consider the equation for the two-partic
Green’s functionG3,

~k1
2/21k2

2/22E!G3~k1 ,k2uk18 ,k28 ;E!

1bE dp1

2p
G3~p1 ,k2uk18 ,k28 ;E!1bE dp2

2p
G3

3~k1 ,p2uk18 ,k28 ;E!5~2p!2d~k12k18!d~k22k28!, ~12!

which has a formal solution

G3~k1 ,k2uk18 ,k28 ;E!5G0~k1 ,k2uk18 ,k28 ;E!

2
D~k2uk18 ,k28 ;E!1D~k1uk28 ,k18 ;E!

k1
2/21k2

2/22E
.

~13!

Here

G0~k1 ,k2uk18 ,k28 ;E!

5~2p!2d~k12k18!d~k22k28!~k1
2/21k2

2/22E!21,

and

D~k1uk28 ,k18 ;E![~2p!21bE dk2G3~k1 ,k2uk18 ,k28 ;E!

satisfies the integral equation
9-2
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D~k1uk28 ,k18 ;E!F11
b

~k1
222E!1/2G

5
2pbd~k12k18!

k1
2/21k28

2/22E
2bE dk2

2p

D~k2uk18 ,k28 ;E!

k1
2/21k2

2/22E
.

~14!

We are interested inW5a3(2p)22**dkdpD(ku2p,p;E)
3(k22E)21. Integrating Eq.~14! with respect tok2852k18
[2p, for B(k;E)[(2p)21*dpD(ku2p,p;E) one obtains
the following equation:

B~k;E!F11
b

~k222E!1/2G1bE dk8

2p

B~k8;E!

k2/21k82/22E

5
b

k22E
. ~15!

It has the solution

B~k;E!5
b

~k22E!@11b~2E!21/2#
, ~16!

which is verified by direct substitution into Eq.~15!. Finally,
we obtain

W5a3E dk

2p

B~k;E!

k22E
5

2ab

a12b
. ~17!

This result, together with Eq.~10!, solves the problem of the
elastic scattering of slow bound pairs for any strength of
short-range attractive, potentiala and scattering potentialb.
The ‘‘slow-particle’’ approximation used here (q,q8.Q
!a) restricts only the temperature and/or the voltage ran
It is instructive to compare the pair transmissionT2(Q) @Eq.
~10!#, with the single-electron transmissionT1(p)5p2/(p2

1b2) for equal kinetic energiesp2/25Q2/4[K. If the bind-
ing potential is strong compared with the scattering poten
(a@2b), the pair transmission is just the single-partic
transmission of a particle with a double mass and dou
barrier strength,T2(Q)5Q2/(Q2116b2), in accordance
with a naive expectation. In the general case the ratio is

T2~Q!

T1~p!
5

K1b2/2

K14b2~112b/a!22
. ~18!

When the binding potential is weaker than the scattering
tential (a!b), the ratio is

T2~Q!

T1~p!
5

1

2 S b

a D 2

@1. ~19!

Quite remarkably, a weak attraction between carriers he
the first transmitted particle to ‘‘pull’’ its partner through
strong potential barrier.

Another important difference between pair and sing
electron tunneling occurs due to their different statisti
While electrons are fermions, preformed pairs are bosons
15520
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that their center-of-mass motion obeys Bose-Einstein sta
tics. Hence tunneling conductance should be temperature
pendent even at low temperaturesT, as already established i
bipolaron tunneling to a normal metal with a decay of t
bound state.28 Here we calculate the current-voltage chara
teristics of a molecule-barrier-molecule~MBM ! junction,
i.e., the current through a thin potential barrier between t
bulk molecular conductors with preformed pairs. For si
plicity, we restrict our calculations to the strong-couplin
regime,a@b,T1/2. In this regime, single carriers are froze
out, and the transmission is due to the pairs alone, which
scattered off a double-strength barrierW'2b @Eq. ~17!#,
similar to single particles with a double-carrier mass. Th
in the presence of a voltage drop at the junction, 2eV ~for a
pair!, the conductance can be readily found by matching
center-of-mass wave function and its derivatives,V l , on the
left side, andV r , on the right side, of thed-function barrier.
In the coordinate representation one hasV l(X,0)5eiQX

1Re2 iQX, and V r(X.0)5CeiP1X with 11R5C, CP1

2(12R)Q58ib(11R), and P15(Q218eV)1/2. The
transmission is given by

T2~Q,P1![12uRu25
4QP1

~Q1P1!2164b2
~20!

for realP1 , and is zero otherwise. Multiplying the transmi
sion byeQ and integrating with the Bose-Einstein distrib
tion function f (Q)5@exp(Q2/4T2m/T)21#21 yields the
current as

I ~V!5eE
0

`dQ

2p
Q f~Q!@T2~Q,P1!2T2~Q,P2!#, ~21!

where P25(Q228eV)1/2, and m is the chemical potentia
determined by the number of pairs n using
*2`

` (dQ/2p) f (Q)5n.
It is easy to calculate the integrals in the linear volta

classical limit of 2eV,TF!T, by expanding the transmissio
in powers ofeV and replacing the Bose-Einstein distributio
with the Boltzmann one:f (Q)'(2TF /pT)1/2exp(2Q2/4T)
(TF[p2n2/2 is the Fermi temperature of single carriers!. We
believe that this limit is also applied to sufficiently long m
lecular wires, where bipolarons have sufficient time to for
The result for the conductance,s[(dI/dV)V50, is

s5
2e2

p
A2TF

pT F11
4b2

T
e4b2/TEi~24b2/T!G , ~22!

where Ei(x) is the exponential integral function. The con
ductance behaves ass5(e2/pb2)ATFT/2p at T!4b2, and
ass5(2e2/p)A2TF /pT at T@4b2. In the latter case it has
a universal magnitude independent of the barrier stren
Apart from numerical coefficients, the conductance of tigh
bound pairs is, of course, the same as the conductanc
single electrons in the classical limit. This is not the ca
however, in a degenerate system, whenT<TF . A numerical
integration of Eq.~21! at a fixed densityn reveals a tempera
ture dependence in this limit,~Fig. 1!, in comparison with the
9-3
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temperature, independent conductance of fermionic nonin
acting carriers at low temperatures. This remarkable dif
ence is entirely due to the bosonic nature of pairs that is
effect of quantum statistics. The conductance is proportio
to the mean velocity of carriers which in the case of bos
grows asAT ~while it is temperature independent for ferm
ons!. This explains the low-temperature behavior of the co
ductance. Interpair correlations may reduce the differenc
1D wires. However, higher-dimension corrections readily
store it. There is also a breakdown of Ohm’s law wh
2eV>T, as shown in Fig. 2 at low temperatures, again
contrast with the Fermi statistics, where a nonlinearity
pears only ateV>TF@T. We suggest that the most appr
priate materials for experimental observation of the unus
current-voltage characteristics~Figs. 1 and 2! are doped mo-
lecular semiconductors such as Cs-doped biphenyl,12 where
bipolarons were explicitly detected by photoelectron a
electron-energy-loss spectroscopies, and single crystal

FIG. 1. Zero-voltage conductance of the MBM as a function
temperature~in units of TF) for different relative strengths of the
barrier 4b2/TF . G05(2e2)/h.
.L

d

r,

on

15520
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pentacene, tetracene, rubrene, quaterthiophene (a-4T), and
sexithiophene (a-8T), where coherent polaron tunnelin
was recently observed below room temperature.20

In conclusion, we have solved the Lippmann-Schwing
equation in the effective-mass approximation for preform
pairs in 1D conductors~molecular wires!, which is valid for
~bi!polarons, if their size is larger than the lattice consta
We have calculated the amplitude of elastic scattering
slow bipolarons and the conductance of a MBM juncti
with preformed real-space pairs. While the pair transmiss
is smaller than the single-electron transmission in the stro
coupling regime, it is unexpectedly larger in the wea
coupling regime. The current-voltage characteristics of
MBM junction show unusual temperature and nonlinear vo
age behavior; see Figs. 1 and 2.

We acknowledge interesting discussions with J. P. Ke
ing, V. V. Osipov, and R. S. Williams.

f FIG. 2. Differential conductance of the MBM as a function
voltage for different temperatures and 4b2/TF50.5. The thin solid
lines is the conductance of fermions atT50.1TF .
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