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Two-electron elastic tunneling in low-dimensional conductors
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We solve the Lippmann-Schwinger equation describing one-dimensional elastic scattering of preformed
pairs(e.g., bipolaronsoff a short-range scattering center, and find the two-particle transmission through a thin
potential barrier. While the pair transmission is smaller than the single-electron transmission in the strong-
coupling limit, it is remarkably larger in the weak-coupling limit. We also calculate current-voltage character-
istics of a molecule-barrier-molecule junction. They show unusual temperature and voltage behaviors which
are experimentally verifiable at low temperatures in bulk and nanoscale molecular conductors.
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Molecular-scale electronics is currently a very active areavith lowering temperature. It is known in the context of
of research. It is envisaged that linear conjugated moleculesoxide semiconductors that the bipolaron formation may
would be used as the “transmission lines” in molecular strongly affect transport propertié$?*
circuitry’® in addition to active molecular elements dis- In this Brief Report we study the elastic scattering of car-
cussed in the literature* When a so-called “molecular fiers bound into real-space pairs in one-dimensional organic
wire” is short, the dominant mechanism of transport is mostand other conductors. We present an exact analytical solution
likely a resonant tunneling through electronic molecularin the limit of slow pairs. We also find an unusual tempera-
states(see Refs. 5 and 6, and references theraiith an  ture and voltage dependence of the tunneling conductance
increasing size of the wires one has to take into account thwhich may be experimentally verified at low temperatures in
strong interaction between carriers and vibronic excitation®rganic bulk conductors and long nanowires.
of the molecule. For longer wires containing more than about In mathematical terms, the scattering of pairs is a three-
40 atomic sites, the tunneling time is comparable to or largePody problem with the scattering potential ascribed to the
than the characteristic phonon times, so that the polarothird particle with an infinite mass. Ldl(x;—X,) be an
(and/or bipolaroncan be formed inside the molecular wire. attractive potential between two moving particles, and

There is also a wide range of molecular bulk conductors Wlth:/(xl 1X2) a repu|5ive external potentia| representing the bar-
(bi)polaronic carriers. The formation of polaron@nd rier. The starting point is the Lippmann-Schwinger
charged solitonsin polyacetylengPA) was discussed a long  equatiod®?*for the two-particle wave functio (k; ,k,) in
time ago theoretically in Ref. 8, and the formation of bipo- 3 momentum representation, which explicitly takes into ac-

larons (bound states of two polaronwas discussed in Ref. count a boundary condition of the three-body scattering
9. Polarons in PA were detected optically in Ref. 10, andproblem. It can be written as

studied since then in great detail. There is an exceeding

amount of evidence of polaron and bipolaron formation in W= —iyG(E+iy)d 1)
conjugated polymers such as polyphenylene, polypyrrole, ’

polythiophene,  polyphenylene sulfide, ~Cs-doped whereG(E+ivy) is the exact two-particle Green’s function
biphenyl;* n-doped bithiophen&, polyphenylenevinylene (GF) in the external potentiafp (k; ,k,) is the wave function
based light-emitting diode’$,and other molecular systems. %f a free (\7:0) reak-space pair in the momentum represen-

In many cases the doped polymers have bipolaronlike char Ction, andd (K, .k,) = 278(q— Q) (K). Hereq=ky+K, is

states, to vyield, in particular, enhanced nonlinear optical . .
propertie§5y P P the center-of-mass momentuii (k,—k,)/2 is the relative

- _ 2 ; ; ;
Many experimental data provide evidence of hoppingmomentumE_ €+Q%/4<0 is the pair total energy in the

transport of(bi)polaronic carriers. However, at sufficiently 2Psence of the external potential, ants its binding energy.
low temperatures there should be a crossover to the banf'® Wave functiong(k) describes the internal structure of
motion of polarons, as suggested a long 40, and (€ pair. Hereafter we chooge=kg=m;=m,=1, andy=
bipolaronst®*° Indeed, due to recent extraordinary improve- +0, and define5(E+iy)® as

ments in the preparation of organic molecular films, it has

become possible to measure their conductivity in a wide in- . dkidk;

terval of temperatures, and to observe the crossover in two- G‘DEI f ——— G(ky kalky k3, E)D (ki kp)  (2)
dimensional films of organic conjugated molecui2t one- (2m)

dimensional wires the band motion is expected to be strongl - . . oA A A A
hindered by imperfections, and those imperfections are Iikelﬂ/{Or anyG and®. Using the tW0.|dent|t|e§—Gg.— GsUG

to be intentionally introduced in the system as functionaliz-2nd G=G1,—G1,VG and the Lippmann-Schwinger equa-
ing units?* Moreover, polarons in extended molecular wirestion, one readily derives the equation for the Fourier compo-
or units are expected to be bound into real-space bipolarorgent T(k; ,k,) of the productU¥ ,2*
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T(ky ky) = (E— K2~ q2/4)d — T LA GST, 3  Wherex(q)= E—q%/4+ (al4)(g?>—4E)Y2 In the following
we restrict our consideration to the scattering of slow pairs
whereAG,=G,— Gy, G, is the two-particle GF in the ab- With Q*<4e. This condition allows us to replad&(q,q’)
sence of any interactioril{=V=0), G5 is the GF of nonin- with W(0,0)=W in all equations, because the characteristic
teracting particles in the external field(for U=0), andG, ;no?mii?]tiqf'% z(g) ?Sre ir\?:ﬁhb s$alle£ U\\/a /_ EJ; ;’ik\}sn t:oe
is the GF of two interacting particles with no external field g Y yY(a)=WQ/(Q ).

-~ : - i that the pair transmission probability is
(V=0). Here the scattering operatdr,, defined by the

relationT,,Go=UG;,, is expressed via the particle-particle - 2Y(-Q)|? Q2
i i =1- = : 10
scatteringt matrix as 2(Q) Q| 0w (10
Tio(KyKolkg k5 E)=27t(k,k";E—q%4) 8(q—q’). In general,Gz, W, and 7, can be found only numerically.
(4) However, in many applications the scattering potential is also
Thet matrix satisfies the equation a short-range one/(xy,Xz) = B[ (x1) + (Xz) ], so that the
full Hamiltonian takes the form
dp u(tk—p)t(p,k";E
t(k,k';E):u(k—k')—Jz—p ( Zp)(p, ), (5) 19 14°
T p’-E-iy He =5 5= 55— ad(a—xg)+ BLa(xy) + 8(x) .
2 ox2 2 9x3
whereu(p) is the Fourier component of the attractive poten- (11

tial U(Xl_x?)' . icond he | The approximation of the interaction between the particles
In many (in)organic semiconductors, the long-range Cou'by the § function is justified if the size of the pair is large

Ilgr'g]bl_rﬁpultsmn tl's usu_?rllly s[{gnn;lcar\]ntly rr%ducfﬁ ?y the Sttrongcompared with the range of the attractive potential. This is
rohlich interaction with optical phonorfs,so that a netat- g for bipolarons, if their size is larger than the lattice
tractive potential between carriers is a short-range ONecronstant, and for the deuteron in nuclear physics. Analo-

U(x—x) = —ad(x,—X,), @>0. Then Eq.(5) is readily  gously, approximating the barrier with thzfunction is ap-

solved, resulting in the momenta-independentatrix propriate if the range of the scattering potential is small com-
pared with the size of the pair. This three-body problem

, a\/—_E (with the infinite mass of a third partiglavas considered
kK" ,E)=~ J-E-al2’ 6) before in Refs. 26 and 27 but no general analytical solution

was found. Here we present an analytical solution in the limit
which is valid for all energies provided that the square root isof slow pairs. Consider the equation for the two-particle
understood as its principal value. The binding energy is Green’s functionGs,
=a?/4, and the normalized ground-state wave function is
B(K)=2"2a3%(k2+ €). It is known that for a short-range (K5/2+k5/2—E)G3(Ky K|k} k3 ;E)
inter particle interactior (k4 ,k»), Eq. (3) is proportional to dp
the Fourier componepg/zofstlge center-of-mass wave function ;g 2—163(p1,k2|k1,k§;E)+ﬂ
Q(q), T(ky,ky)=—-2""a>(q). Then the problem of ™
elastic pair scattering is reduced to a single integral equation
for the center-of-mass scattering amplitidéq). Substitut-

ing ® andT,, in Eq. (3), one obtains which has a formal solution

G3(kl,k2|k1,ké,E):Go(kl,k2|ki,ké,E)

dp,
27 08

X (Kq,palKy Ky E)=(2m)28(ky—K]) 8(ky—K3),  (12)

Y(q)
Qq)=2789-Q) — 5——y——, 7
()=2m8q-Q) q%4—Q%4—ivy . D(ky|K] ,k5;E)+D(Kq|K) K1 E)
whereY (q) satisfies K312+ k5/2—E .
(13
dg’ W(dq.9")Y(q")
Y (q)=W(q,Q)— 5 (8)  Here
T 44— Q¥a—iy
Go(ky,kalkg k35 E)
The effective center-of-mass scattering potenfigb,q’) is , , _
determined using the GF of two noninteracting particles in = (2m)28(ky—ky) 8(ko—kp) (Kif2+ k3/2—E) ™,
the external potential (=0 butV+0) as and
dk dk, ! ! . . - ! ! .
wig.a)=ax(@ | [ Gkl k), DUl k)= 8 kGt kolki KB
aa

(9)  satisfies the integral equation
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that their center-of-mass motion obeys Bose-Einstein statis-

D(kq|k5,ki;E)| 1+ le/z tics. Hence tunneling conductance should be temperature de-
(ki—2E) pendent even at low temperatufgsas already established in
, L bipolaron tunneling to a normal metal with a decay of the
_ 2mBo(ki—ky) dk; D(kalky k3;E) bound staté® Here we calculate the current-voltage charac-

B k2/2+ky2/2—E 2m K212+ k32— E ' teristics of a molecule-barrier-molecul@®BM) junction,
i.e., the current through a thin potential barrier between two
(14 bulk molecular conductors with preformed pairs. For sim-
We are interested iW=a>(27) [ fdkdpD(k| — p,p;E) plicity, we restrict our calculations to the strong-coupling
X(k2—E) L. Integrating Eq/(14) with respect tok,=—k|  regime,a>g,T"2 In this regime, single carriers are frozen
=—p, for B(k;E)=(27) " 1/dpD(k|—p,p;E) one obtains Out, and the transmission is due to the pairs alone, which are
the following equation: scattered off a double-strength barridf~2p3 [Eq. (17)],
similar to single particles with a double-carrier mass. Then,
B dk’ B(k';E) in the presence of a voltage drop at the junctioaVZfor a
T2 ocan D 2k 2 e pair), the conductance can be readily found by matching the
(k*~2E) kK*/2+k"*/2—E center-of-mass wave function and its derivativ@s, on the
left side, and(),, on the right side, of thé-function barrier.
= B ) (15) In the coordinate representation one HagX<0)=e'*
k?—E +Re 9% and Q,(X>0)=CéeP+* with 1+R=C, CP,
—(1-R)Q=8iB(1+R), and P,=(Q*+8eV)2 The
transmission is given by

B(k:E)| 1+

It has the solution

B
B(k;E)= , 16
B R TQP)=1-[RP=——2 (g
which is verified by direct substitution into E(L5). Finally, (Q+P.)"+64p

we obtain forrealP, , and is zero otherwise. Multiplying the transmis-
sion byeQ and integrating with the Bose-Einstein distribu-

5[ dk B(KE)  2aB tion function f(Q)=[expQ%4T—u/T)—1]"? yields the

-« fﬂ K_E a+2B 17 current as

This result, together with Eq10), solves the problem of the »dQ

elastic scattering of slow bound pairs for any strength of the I(V)=ef 5 QIQITA(Q,P)~T(Q,P)], (2D
short-range attractive, potentialand scattering potentig. 07

The “slow-particle” approximation used hereq@'=Q  whereP_=(Q?-8eV)"2 and u is the chemical potential
< a) restricts only the temperature and/or the voltage rangegetermined by the number ofpairs n using

It is instructive to compare the pair transmissify{Q) [Eq. I7 (dQ/2m)f(Q)=n.

(10)], with the single-electron transmissidfi(p) = p*/(p It is easy to calculate the integrals in the linear voltage
+ %) for equal kinetic energies®/2=Q*/4=K. If the bind-  cjassical limit of 2V, T-<T, by expanding the transmission
ing potential is strong compared with the scattering potentiajn powers ofeV and replacing the Bose-Einstein distribution
(a>2p), the pair transmission is just the single-particle yith the Boltzmann onef(Q)~ (2T /= T) Y2exp(—Q¥AT)
transmission of a particle with a double mass and double(TFEWan/z is the Fermi temperature of single carrjeit/e
barrier strength, 7,(Q) = Q?/(Q*+168%), in accordance pejieve that this limit is also applied to sufficiently long mo-
with a naive expectation. In the general case the ratio is  |ecylar wires, where bipolarons have sufficient time to form.
The result for the conductance=(d1/dV)yg, is

T(Q) K+ %2 18)
Ti(p)  K+4B%1+2Bla)" 2 22 2T 48 .,
o o , o=—\ —| 1+ —e**TE(—-48%T)|, (22
When the binding potential is weaker than the scattering po- m Vol T
tential (@<<f), the ratio is where Eik) is the exponential integral function. The con-
T,(Q) 1(B\? ductance behaves as=(e?/ 7%\ TeT/2m at T<4pB2, and
o) 2la >1. (190 aso=(2e% 7) 2T /=T atT>4p2. In the latter case it has

a universal magnitude independent of the barrier strength.
Quite remarkably, a weak attraction between carriers helpfpart from numerical coefficients, the conductance of tightly
the first transmitted particle to “pull” its partner through a bound pairs is, of course, the same as the conductance of
strong potential barrier. single electrons in the classical limit. This is not the case,
Another important difference between pair and single-however, in a degenerate system, wieaTg. A numerical
electron tunneling occurs due to their different statisticsintegration of Eq(21) at a fixed density reveals a tempera-
While electrons are fermions, preformed pairs are bosons, soire dependence in this limitFig. 1), in comparison with the
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FIG. 1. Zero-voltage conductance of the MBM as a function of  FIG. 2. Differential conductance of the MBM as a function of
temperaturdin units of Tg) for different relative strengths of the voltage for different temperatures an@4 T-=0.5. The thin solid
barrier 48%/Tg. Go=(2€?)/h. lines is the conductance of fermionsTat 0.1T .

temperature, independent conductance of fermionic nonintepentacene, tetracene, rubrene, quaterthiophanéT), and
acting carriers at low temperatures. This remarkable differsexithiophene ¢-8T), where coherent polaron tunneling
ence is entirely due to the bosonic nature of pairs that is awas recently observed below room temperatire.

effect of quantum statistics. The conductance is proportional In conclusion, we have solved the Lippmann-Schwinger
to the mean velocity of carriers which in the case of bosongquation in the effective-mass approximation for preformed
grows as\T (while it is temperature independent for fermi- pairs in 1D conductorémolecular wire, which is valid for
ons. This explains the low-temperature behavior of the con<bi)polarons, if their size is larger than the lattice constant.
ductance. Interpair correlations may reduce the difference iVe have calculated the amplitude of elastic scattering of
1D wires. However, higher-dimension corrections readily re-slow bipolarons and the conductance of a MBM junction
store it. There is also a breakdown of Ohm’s law whenwith preformed real-space pairs. While the pair transmission
2eV=T, as shown in Fig. 2 at low temperatures, again inis smaller than the single-electron transmission in the strong-
contrast with the Fermi statistics, where a nonlinearity apcoupling regime, it is unexpectedly larger in the weak-
pears only aeV=Tg>T. We suggest that the most appro- coupling regime. The current-voltage characteristics of the
priate materials for experimental observation of the unusuaMBM junction show unusual temperature and nonlinear volt-
current-voltage characteristi¢Bigs. 1 and 2are doped mo- age behavior; see Figs. 1 and 2.

lecular semiconductors such as Cs-doped biphEnyhere

bipolarons were explicitly detected by photoelectron and We acknowledge interesting discussions with J. P. Keat-
electron-energy-loss spectroscopies, and single crystals @fg, V. V. Osipov, and R. S. Williams.
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