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Polaron dynamics and bipolaron condensation in cuprates
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Based on the exact cluster diagonalization and recent Quantum Monte Carlo simulations we analyze dy-
namic properties of small polarons and bipolarons formed by short-range~Holstein! and long-range~Fröhlich!
electron-phonon interactions. We show that the exact results agree well with canonical Holstein theory for a
cluster and with Lang-Firsov theory for a lattice. Lang-Firsov theory of a single polaron and our 1/l pertur-
bation expansion for a multipolaron system are practically exact in a wide range of the adiabatic parameterv/t
and the electron-phonon couplingl for a long-range interaction.~Bi!polarons exist in the itinerant Bloch states
at temperatures below the characteristic phonon frequency no matter which values the parameters of the system
take. We show that recent claims by several authors with regards to a breakdown of Holstein-Lang-Firsov
theory of a small polaron and the ‘‘impossibility’’ of bipolaronic superconductivity are the result of an
erroneous interpretation of the electronic energy levels of the two-site Holstein model and a misunderstanding
of the electron-phonon interaction in ionic solids with polaronic carriers. A ‘‘phase’’ diagram int/v2l space
is proposed to elucidate the BCS and~bi!polaronic domains. Bipolaron theory provides a parameter-free
expression for the superconducting critical temperature of layered cuprates. Crystallization of the~bi!polaronic
liquid is shown to be impossible in the range of the parameters typical for cuprates. The small Fro¨hlich polaron
has spectral features compatible with single-particle tunneling and photoemission in cuprates.
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I. INTRODUCTION

The basic features of small polarons were well recogni
a long time ago by Tjablikov1 Yamashita and Kurosava,2

Sewell,3 Holstein,4 Lang and Firsov,5 Kudinov and Firsov,6

and others, and described in several review papers
textbooks.7–13 The main feature is the exponential reducti
of the bandwidth at intermediate and large values of
electron-phonon couplingl, resulting in a coherent sma
polaron tunneling at low temperatures and a thermally a
vated hopping at high temperatures. The polaronic ba
width decreases with increasing temperature. A crosso
from the polaronic Bloch states to incoherent hopping ta
place at temperaturesT.v/2 or even higher, wherev is the
characteristic phonon frequency,\5c5kB51. The numeri-
cal solution for several vibrating molecules coupled with o
or two electrons14 revealed an agreement of the numeric
bandwidth with the analytical Holstein results at largel both
in the nonadiabatic,v>t, and adiabatic,v<t, regimes~t is
the hopping integral!. For a multipolaron system a 1/l per-
turbation theory has been developed15,16, which allowed us
to extend the BCS theory to the strong-coupling regimel
.1 and predict the transition to a Bose liquid of 2e charged
bipolarons in the crossover region of intermediate values
the BCS coupling constantl.15 The renormalized phonon
frequencies were obtained17,16 in agreement with the numeri
cal results.14 The theory has been applied to cuprates18,9,19

and more recently to manganites,20 providing a description
of many unusual properties of these materials ranging fr
high-Tc superconductivity in cuprates to colossal magneto
sistance~CMR! and ferromagnetism in doped manganite
At the same time a few objections21–25have been raised with
respect to the Holstein-Lang-Firsov theory of small polaro
and the bipolaron theory of superconductivity.

In this paper the polaron dynamics and damping are
PRB 610163-1829/2000/61~18!/12315~13!/$15.00
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cussed in more detail to show that small polarons~and bipo-
larons! exist in the itinerant~Bloch! states at zero tempera
ture no matter which values the parameters of
translationally invariant electron-phonon system take. W
analyze the opposite claims,21,22,24elucidating the origin of
the controversy. Screening in a multipolaron system is d
cussed to show that the long-range Fro¨hlich interaction can-
not be reduced to a short-range one, and~bi!polarons exist in
a liquid state. The Fro¨hlich interaction leads to relatively
light polarons with the atomic size of the wave function a
a large size of the phonon cloud. We suggest thet/v-l
‘‘phase’’ diagram with polaronic and bipolaronic domain
and show that the effective mass of~bi!polaronic carriers in
cuprates fits well the values of their superconducting criti
temperature and the London penetration depth. The pola
spectral features are shown to be compatible with the sin
particle tunneling and photoemission in cuprates.

II. POLARON BAND

The classical approach to the small-polaron problem
based on the canonical displacement~Lang-Firsov! transfor-
mation of the electron-phonon Hamiltonian,5 allowing for
the summation of all diagrams including the vertex corre
tions,

H5(
i , j

t~m2n!ds,s8ci
†cj1(

q,i
vqn̂i@ui~q!dq1H.c.#

1(
q

vq~dq
†dq11/2!, ~1!

with the bare hopping integralt(m) and the matrix elemen
of the electron-phonon interaction:
12 315 ©2000 The American Physical Society
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ui~q!5
1

A2N
g~q!eiq•m. ~2!

Herei 5(m,s), j 5(n,s8), n̂i5ci
†ci , andci ,dq are the elec-

tron ~hole! and phonon operators, respectively, andN is the
number of sites.

As long asl.1, the kinetic energy remains smaller tha
the interaction energy and a self-consistent treatment of
many-electron system strongly coupled with phonons is p
sible with the ‘‘1/l’’ expansion technique.16 This possibility
stems from the fact, known for a long time, that there is
exact solution for a single electron in the strong-coupl
limit l→`. Following Lang and Firsov,5 one can apply the
canonical transformationeS to diagonalize the Hamiltonian
The diagonalization is exact ift(m)50 ~or l5`!:

H̃5eSHe2S, ~3!

where

S5(
q,i

n̂i@ui~q!dq2H.c.#. ~4!

The electron operator transforms as

c̃i5ci expS 2(
q

ui~q!dq2H.c.D ~5!

and the phonon one as

d̃q5dq1(
i

n̂iui* ~q!. ~6!

It follows from Eq. ~6! that the Lang-Firsov canonical tran
formation shifts ions to new equilibrium positions. In a mo
general sense it changes the boson vacuum. As a result

H̃5(
i , j

ŝ i j ci
†cj2Ep(

i
n̂i1(

q
vq~dq

†dq11/2!

1
1

2 (
iÞ j

v i j n̂i n̂ j , ~7!

where

ŝ i j 5t~m2n!ds,s8 expS (
q

@ui~q!2uj~q!#dq2H.c.D
~8!

is a renormalized hopping integral depending on the pho
variables and

v i j 52
1

N (
q

ug~q!u2vq cos@q•~m2n!# ~9!

is the the attractive interaction of polarons owing to the lo
lattice deformation.

In a strong-coupling limitl→`, one can neglect the hop
ping term of the transformed Hamiltonian. The rest has a
lytically determined eigenstates and eigenvalues. The eig
statesuÑ&5uni ,nq& are classified with the polaronnm,s and
phononnq occupation numbers, and the energy levels ar
e
s-

n

n

l

a-
n-

E52Ep(
i

ni1
1

2 (
iÞ j

v i j ninj1(
q

vq~nq11/2!,

~10!

with ni50,1 andnq50,1,2,3, . . . ,̀ .
Hence, the Hamiltonian, Eq.~7!, in zero order with re-

spect to the hopping describes localized polarons and in
pendent phonons which are vibrations of ions relative to n
equilibrium positions depending on the polaron occupat
numbers. The phonon frequencies remain unchanged in
limit. The middle of the electronic band falls by the po
laronic level shiftEp as a result of a potential well created b
the lattice deformation:

Ep5
1

2N (
q

ug~q!u2vq . ~11!

First, we limit our discussion to a single-polaron proble
with no polaron-polaron interaction. The effects of the inte
action~including also the direct Coulomb repulsion! such as
the bipolaron formation and screening are discussed in
final sections of this paper.

With the finite hopping term polarons tunnel in a narro
band owing to the degeneracy of the zero-order Hamilton
with respect to the site position of a single polaron in
regular lattice. To see it one can apply perturbation the
using 1/l as a small parameter withl[Ep /zt ~z is the co-
ordination lattice number andt the nearest-neighbor hoppin
integral!. The proper~Bloch! set ofN degenerate zero-orde
eigenstates of the lowest-energy level (2Ep) of the unper-
turbed Hamiltonian is

uk,0&5
1

AN
(
m

cm
† exp~ ik•m!u0&, ~12!

whereu0& is the vacuum. By applying textbook perturbatio
theory, one readily calculates the lowest-energy levels of
polaron in a crystal. Up to second order in the hopping in
gral, the result is

E~k!52Ep1ek2 (
k8,nq

u^k,0u( i , j ŝ i , j ci
†cj uk8,nq&)u2

( qvqnq

,

~13!

with uk8,nq& the exited states of the unperturbed Hamiltoni
with one electron and at least one real phonon. The sec
term in Eqs.~13!, which is linear with respect to the bar
hoppingt, determines the small polaron band dispersion

ek5(
m

t~m!e2g2~m! exp~2 ik•m!, ~14!

with the band-narrowing factor~at zero temperature!

g2~m!5
1

2N (
q

ug~q!u2@12cos~q•m!#. ~15!

The third term in Eq.~13!, quadratic int, yields a negative
k-independentcorrection to the polaron level shift of th
order of 1/l2. The origin of this correction, which is muc
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PRB 61 12 317POLARON DYNAMICS AND BIPOLARON CONDENSATION . . .
larger than the first order int contribution~containing a small
exponent!, is understood from Fig. 1. The polaron localize
in the potential well of the depthEp on the sitem hops onto
a neighboring siten with no deformation around and come
back. As any second order correction, this transition sh
the energy down by an amount;2t2/Ep . It has little to do
with the polaron effective mass and the polaron tunnel
mobility because the lattice deformation aroundm does not
follow the electron. The electron hops ‘‘back and forth
many times~about eg2

! ‘‘waiting’’ for a sufficient lattice
deformation to appear around the siten. Only after it ‘‘cre-
ates’’ the deformation aroundn, the electron tunnels onto th
next site together with the deformation.

III. DAMPING OF THE POLARON BAND

The polaron band is exponentially narrow, Eq.~14!.
Hence one can raise a question concerning its existenc
real solids. At zero temperature the perturbation term of
transformed Hamiltonian conserves momentum because
off-diagonal matrix elements vanish,

K k,0U(
i , j

ŝ i , j ci
†cjUk8,0L 50, ~16!

if kÞk8. The absorption or emission of a single hig
frequency phonon is forbidden by energy conservation
cause the polaron half-bandwidthw<v. Hence there is no
damping of the polaron band atT50 no matter how strong
the interactionl and how small the adiabatic ratiov/t are.
However, the polaron bandwidth depends on temperat
For high temperaturesT@v/2 the band shrinks exponen
tially with increasing temperature,7,8,13

w.zt expS 2
2EpT

v2 D . ~17!

On the other hand, the scattering of polarons within th
narrow band becomes more important with increasing te

FIG. 1. ‘‘Back-forth’’ virtual transitions of the polaron withou
any transfer of the lattice deformation from the sitem to the neigh-
boring siten. These transitions shift the middle of the polaron ba
but they do not produce any real charge delocalization.

FIG. 2. Two-phonon incoherent scattering responsible fo
damping of polaron Bloch states at finite temperatures.
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perature owing to the simultaneous emission and absorp
of phonons, Fig. 2. These incoherent events tend to des
the coherent polaron tunneling within the band. The cor
sponding scattering rate is given by the Fermi golden rule

1

t
52pK (

q,q8
U K k1q2q8,nq21,nq8

11U(
i , j

ŝ i , j ci
†cjUk,nq ,nq8L U2

d~ek2ek1q2q8!L .

~18!

Expandingŝ i j operators in the powers of the phonon cr
ation and annihilation operators, one estimates the ma
element of the two-phonon scattering as

U ^k1q2q8,nq21,nq811uU(
i , j

ŝ i , j ci
†cj uk,nq ,nq8&U

;
1

N
wg0

2AnqAnq811. ~19!

Substituting this estimate into Eq.~18! and using the defini-
tion of the density of states in the polaron band,

Np~j![
1

N (
k

d~j2ek!.
1

2w
, ~20!

one obtains

1

t
.wg0

4nv~11nv!, ~21!

with the momentum-independentg(q)5g0 and the phonon
distribution function nv5@exp(v/T)21#21. The polaron
band is well defined if

1

t
,w, ~22!

which is satisfied for a wide temperature range

T<
v

ln g0
4 ~23!

below about half of the characteristic phonon frequency
the relevant values ofg0

2. The incoherent thermally activate
hopping dominates in the polaron motion at higher tempe
tures where the polaronic states cannot be classified by
momenta.

IV. TWO-SITE HOLSTEIN MODEL: EXACT VERSUS
ANALYTICAL SOLUTION

The major polaronic features described above have b
known for a long time starting from the pioneering works
Tjablikov,1 Holstein,4 and Lang and Firsov~LF!.5 During the
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12 318 PRB 61A. S. ALEXANDROV
last decade, the small polaron problem has gained fur
attention as relevant to high-Tc and other oxides~for recent
publications, see Refs. 13 and 26–38 and references ther!.
The efforts were mainly directed towards extension of
theory to the intermediate region of the coupling,l;1, and
the adiabatic ratiov/t;1, and a study of the polaron-polaro
correlations. It has been shown39,16that the expansion param
eter is actually 1/2zl2, so the analytical perturbation theor
has a wider region of applicability than one can expect us
simple physical arguments. However, it is not clear how f
the expansion converges. While the ground-state ene
~about2Ep! is not very sensitive to the parameters, the
fective mass and bandwidth strongly depend on the pola
size and adiabatic ratio.

The most reliable results for the intermediate region h
been obtained with the exact numerical diagonalization
vibrating clusters40,14,41,29 and quantum Monte Carlo
simulations.42,37,43Numerical diagonalization of the two-sit
one-electron Holstein model in the adiabaticv/t,1 and in
the nonadiabaticv/t.1 regimes shows that perturbatio
theory is almost exact in the nonadiabatic regimefor all
valuesof the coupling constant, Fig. 3~a!. There is no agree
ment in the adiabatic region, where the first-order pertur
tion expressionoverestimatesthe polaron mass by a few or
ders of magnitude. A much lower effective mass of t
adiabatic small polaron in the intermediate-coupling reg
compared with that estimated by the first-order perturba
theory is revealed in Fig. 3~b!. A poor convergence of the
perturbation expansion is explained by the appearance o

FIG. 3. Exact ~cluster diagonalization! ‘‘bandwidths’’ of the
two-site Holstein model compared with the analytical nonadiaba
Eq. ~14!, and adiabatic, Eq.~24!, bandwidths.
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familiar double-well potential4 in the adiabatic limit. The
tunneling probability is extremely sensitive to the shape
this potential. The splitting of levels for the two-site clust
is well described by the Holstein quasiclassical formula g
eralized for the intermediate coupling in Ref. 14:

DE5S 16Epv

p D 1/2

b5/2l12b@2~11b!#2be2g̃2
, ~24!

where g̃25g2
„b2$ ln@2l(11b)#%/4l2

…. This generalization
takes into account the phonon frequency renormalizatiob
[ṽ/v5(121/4l2)1/2 ~Ref. 17! and the anharmonic correc
tions of the order of 1/l2 to the turning points. While the
small Holstein polaron is only a few times heavier than t
bare~unrenormalized! electron in a wide range of couplin
for a moderate adiabatic ratiov/t;1, Fig. 3~a!, it becomes
quite heavy in the adiabatic regime and for the strong c
pling, Fig. 3~b!. Thus the numerical results confirm all majo
polaronic features well understood by Holstein4 and others
both in the nonadiabatic and adiabatic regimes.

However, analyzing the same numerical problem,
Mello and Ranninger21 have recently arrived at the opposi
conclusion that ‘‘the LF approach, which is generally b
lieved to become exact in the limit of antiadiabaticity and
electron-phonon coupling going to infinity, actually diverg
~the! most from the exact results precisely in this limit . . . .’’
These authors have not provided any physical explana
for their disagreement with all earlier results starting fro
the pioneering work by Holstein and including the kine
theory of strongly coupled electron-phonon systems.8 It has
become clear that the conclusion of Ref. 21 is an artifac
an erroneous identification of the polaron kinetic energy.26,44

de Mello and Ranninger45 subsequently claimed that the
definition of the polaron kinetic energy should be attribut
to Holstein rather than to themselves and that their interp
tation of the dynamic correlation functions of the Holste
model remains valid. We disagree with these claims.

Holstein4 distinguished perfectly well the nonadiabat
and adiabatic small polarons as well as the tunneling pr
ability and the corrections to the ground-state energy du
the ‘‘back-forth’’ virtual transitions. The polaronic correla
tion functions were well established later on in the fram
work of the theory of optical conductivity.8 Recently, Firsov
and Kudinov26 developed an analytical approach to the tw
site model by the use of the expansion technique, wh
provides the electronic and vibronic terms as well as
wave functions and all correlation functions in any order
powers oft. They have found the exponential reduction fa
tor in all orders of the 1/l perturbation expansion, in agree
ment with the canonical result, Eq.~14!. On the other hand
the corrections to the atomic level were found to be as sm
as 1/l2 rather than exponential.

The fundamental error of Ref. 21 originates from a failu
to apply properly perturbation theory and to notice the d
ferent origins of two terms in Eq.~13!. As a measure of the
kinetic polaron energy, the authors of Ref. 21 take the c
relation function

teff5^2t~c1
†c21c2

†c1!&, ~25!

where c1,2 are annihilation operators on the ‘‘left’’ and
‘‘right’’ molecule ~site!. Up to second order int, one obtains

,
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teff.tLF[2t expS 2
lt

v D2
t

l
, ~26!

with l[2Ep /t. Only the first exponential term in Eq.~26!
corresponds to the polaron kinetic energy, while the sec
describes the corrections to the middle of the ‘‘band’’ owi
to the virtual transitions to the neighboring site as descri
in Sec. II. Comparing the analytical expression, Eq.~26!,
with the numerically calculatedteff , one confirms46 that the
Holstein-Lang-Firsov approach is asymptotically exact, c
trary to Ref. 21. The ratio of this correlation function to th
exact one is unity in the large-l limit, Fig. 4, in both the
nonadiabatic and adiabatic regimes. The theory of Ref.
does not recognize that the main contribution toteff comes
from thek-independentsecond-order lowering of the polaro
level. The numerically calculated value ofteff was compared
with the first exponentially small term in Eq.~26! alone,
ignoring the dominating second term~see the lower curve in
Fig. 4!. Actually, teff does notrepresent the polaron kineti
energy at all. It includes a large contribution from the virtu
‘‘back-forth’’ transitions to the neighboring site, Fig. 1
which have nothing to do with any real charge delocali
tion. The misinterpretation of this term led to an incorre
interpretation of the dynamic properties of polarons21 and
bipolarons22 including their correlation functions and dam
ing.

In particular, it was claimed21 that ‘‘the exact result for
the occupation numbern(k)5^ck

†ck& differs from that of the
LF approach qualitatively, and the dynamical coherence
the polaron increases with increasing temperature . . . so
they expect for an infinite lattice a mobility which increas
with increasing temperature, while the opposite behavio
found in the classical works4,5 on that issue and being base
on the LF 1/l perturbative approach.’’ In arriving at thes
conclusions the authors did not take into account 1/l correc-
tions to the occupation numbers. Byincluding the first-order
correction, we obtain for the two-site model

FIG. 4. The ratio of the perturbatively calculated correlatortLF

including the second-order term (;1/l2) to the exact one~Ref. 46!,
teff , for different values of the adiabatic ratiov/t. The lowest curve
represents an incorrect result of Ref. 21 with missing second-o
term.
d

d

-

1

l

-
t

f

is

n~k50!5
1

2 F11expS 2
lt

v D G1
1

2l
, ~27!

n~k5p!5
1

2 F12expS 2
lt

v D G2
1

2l
. ~28!

The function 2l@n(0)21/2#52l@1/22n(p)#, numerically
calculated by Kabanov,46 is shown in Fig. 5. It goes to unity
at a largel for any value of adiabaticityv/t in agreement
with Eqs. ~27! and ~28!. It should be pointed out that a de
viation from 1 in Fig. 5 is due to the exponential term in E
~27!, so that 2l@n(0)21/2#215l exp(2lt/v). This expo-
nent is smaller in the adiabatic case (v,t) than in the nona-
diabatic one (v.t) for a fixed value ofl, which explains
why in Fig. 5 the results in the adiabatic regime conver
more rapidly to 1 than the results for largev/t. Hence the
electronic occupation numbers for the ground state of
two-site model are in excellent quantitative agreement w
Holstein-Lang-Firsov theory contrary to the conclusion
Ref. 21. We also notice that the temperature dependenc
teff should not be identified with that of the mobility becau
teff has little to do with the tunneling under the deformati
barrier and with the polaron kinetics.

Reference 21 also concluded that ‘‘the dynamical beh
ior of the polaronic charge carriers alternate between s
trapped polarons and almost free-carrier behavior, and
general effects of dynamical delocalization of the electr
cannot be obtained by perturbative expansions in terms
1/l around the LF-approximated oscillator wave functio
even in the extreme antiadiabatic limit.’’ On the contrar
our Fourier analysis44 of the numerically calculated time
dependent correlation function for the charge fluctuatio
xnn and molecular deformationsxxx revealed a Fourier com
ponent corresponding to coherent polaron tunneling. Its
quencyn agrees well with that predicted by Holstein theor
n52t exp(2lt/v). The frequency is found in bothxnn and
xxx correlation functions as expected for the tunneling of
electron accompanied by lattice deformation. The Fou
components ofxnn have a well-defined maximum in th

er

FIG. 5. The exact polaron occupation number~Ref. 46! as a
function of l for different values of the adiabatic ratiov/t. It ap-
proaches1

2 (111/l) for largel, in agreement with Holstein-Lang
Firsov theory, Eqs.~27!.
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12 320 PRB 61A. S. ALEXANDROV
high-frequency region. The maximum corresponds to tw
the polaronic level shift as it should be for the spectral fu
tion of small polarons.13

The two-site model does not allow for a self-consiste
analysis of the polaron damping, conductivity, or photoem
sion. They strongly depend on the phonon dispersion
relaxation which are beyond the two-site quantum mech
cal problem. Within this model one can easily mistake v
tual ‘‘back-forth’’ transitions, Fig. 1, for real charge fluctua
tions. In Ref. 22 this mistake led to the conclusion that ‘‘t
residual interaction with the lattice deformations surround
~bi!polarons leads to a dynamical dephasing between
charge carriers and the local lattice deformations surround
them and hence destroys any itinerant quasiparticle
tures.’’ As we have discussed in Sec. III, there is no damp
~or dephasing! of small ~bi!polarons at low temperatures n
matter what the parameters of the system are. Other inde
dent variational and cluster diagonalization studies33,34 con-
firmed that ‘‘by the use of the Holstein approximation a
the canonical Lang-Firsov approach with appropriate corr
tions, one obtains an excellent estimate of the coherent b
width in both adiabatic and non-adiabatic regimes.’’33

V. SMALL HOLSTEIN POLARON AND ‘‘SMALL
FRÖHLICH POLARON’’

The analytical 1/l expansion allows us to analyze both
small Holstein polaron~SHP! with a short-range interaction
and a lighter small polaron with a long-range Fro¨hlich inter-
action, i.e., mobile small Fro¨hlich polaron~SFP!.47,43 To il-
lustrate this point we express the electron-phonon interac
in terms of real displacementsjn as43

He-ph52(
n,i

f ~m2n!jnn̂i . ~29!

Here jn5Sq(2NMvq)
21/2exp(iq•n)dq

†1H.c. is a
normal coordinate at site n, and f (m2n)
5N21Sqg(q)(Mvq

3)1/2exp@iq•(n2m)# is the force be-
tween the electron at sitem and the normal coordinatejn .

In general, there is no simple relation between the
laronic shift Ep and the exponentg2 of the mass enhance
ment. This relation depends on the form of the electr
phonon interaction. Indeed, for dispersionless phononsvq
5v, one obtains

Ep5
1

2Mv2 (
m

f 2~m!, ~30!

while

g25
1

2Mv3 (
m

@ f 2~m!2 f ~m! f ~m1a!#, ~31!

wherea is the lattice vector. The effective mass renormaliz
tion is m* /m5eg2

, where m is the bare band mass an
1/m* 5]2E(k)/]k2 with k→0. If the interaction is local,
f (m)5kdm,0 ~Holstein model!, theng25Ep /v. In general,
one hasg25gEp /v with a numerical coefficientg51
2Smf (m) f (m1a)/Snf 2(n) less than unity.47 HereM is the
ion mass.
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To calculateg one can introduce a one-dimensional latti
model with a long-range Coulomb interaction between
electron and ions, Fig. 6.43 The electron in a Wannier stat
on a sitem of the infinite chain~3! interacts with the vibra-
tions of all ions of another chain~s! polarized in the direc-
tion perpendicular to the chains. The corresponding forc
given by

f ~m2n!5
k

~ um2nu211!3/2. ~32!

The distance along the chainsum2nu is measured in units o
the lattice constanta; the interchain distance is alsoa. Here
and further on we takea51. For this long-range interaction
one obtainsEp51.27k2/(2Mv2), g250.49k2/(2Mv3), and
g250.39Ep /v. The effective mass renormalization is muc
smaller than in the dispersionless Holstein model, roughly
mSFP* }(mSHP* )1/2.

Not only does the small polaron mass strongly depend
the radius of the electron-phonon interaction, but also
range of applicability of the analytical Lang-Firsov theor
While in the case of a short-range~Holstein! interaction this
approach is applied only ifv>t and l@1, the theory ap-
pears almost exact in a substantially wider region of para
eters for the Fro¨hlich interaction. The polaron mass in a wid
region of the adiabatic parameter and coupling has been
cently calculated43 with the continuous-time path-integra
quantum Monte Carlo~QMC! algorithm, developed by
Kornilovich.37 This method is free from any systemat
finite-size, finite-time-step, and finite-temperature errors a
allows for anexact ~in the QMC sense! calculation of the
ground-state energy and the effective mass of the lattice
laron for any electron-phonon interaction.

At large l ~.1.5! we found the SFP to be much lighte
than the SHP, while the large Fro¨hlich polaron ~i.e., at l
,1! is heavierthan the large Holstein polaron with the sam
binding energy, Fig. 7. The mass ratiomFP* /mHP* is a non-
monotonic function ofl. The effective mass of smalland
large Fröhlich polarons,mFP* (l), is well fitted by a single
exponent, which ise0.73l for v5t and e1.4l for v50.5t,
which is not the case for the Holstein polaron~see Sec. IV!.
The exponents are remarkably close to those obtained
the Lang-Firsov transformation,e0.78l and e1.56l, respec-
tively. Hence, in the case of the Fro¨hlich interaction, the
transformation is perfectly accurate even in the adiabatic
gime v/t<1 for any coupling strength.

Another interesting point is that the size of the SFP a
the length over which the distortion spreads aredifferent. In
the extreme strong-coupling limit, the Lang-Firsov transfo
mation is exact, and the polaron is entirely localized on o
sitem. Hence the size of its wave function is the atomic si
On the other hand, the ion displacements, proportional to

FIG. 6. One-dimensional model of the small Fro¨hlich polaron
on the chain3 interacting with all ions of another chains ~Ref.
43!.
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displacement forcef (m2n), spread over a large distanc
Their amplitude at a siten falls with the distance as 1/um
2nu3 in our one-dimensional model. The polaron cloud~i.e.,
lattice distortion! can be more extended than the polar
itself ~see, also, Refs. 2, 50, and 47!. Such a polaron tunnel
with a larger probability than the nondispersive Holstein p
laron due to a smallerrelative lattice distortion around two
neighboring sites. It can be equally called a ‘‘large discr
strong-coupling Fro¨hlich’’ polaron, if the lattice distortion is
included in the definition of its size. On the other hand, h
torically one referes to a ‘‘small’’ polaron, as a quasipartic
well described by the 1/l expansion technique. With thi
definition polarons on a lattice are small for any value of
long-range electron-phonon interaction.

The model, Eq.~32!, contains only one phonon mode p
larized along thec axis, so that thec component of the field
from a c-polarized dipole falls off with distance as 1/r 3. An
isotropic Fröhlich interaction might be longer ranged tha
ours, giving rise to a 1/r 2 law. Consequently, it should yield
even lighter polaron mass. This is confirmed numerically51

as shown in Fig. 7 for the one-dimensional model with t
force f (m)5k/(m211). The fact that the Lang-Firso
transformation is perfectly accurate for the long-range in
action in a wide region of the parameters allows us to g
eralize this result. Including all phonon polarizations in
three-dimensional lattice, we obtainmSFP* ;(mSHP* )g, with
the constantg5Sqg

2(q)@12cos(q•m)#/Sqg
2(q). Calcu-

lating the constant with the Fro¨hlich matrix element@g(q)
;1/q#, we find g50.57 in the cubic lattice andg50.44,
g50.255 in the cuprate lattice for the apex and in-pla
oxygen hole, respectively, in fair agreement with the num
cal result.

A lighter mass of the SFP compared with the nondisp
sive SHP is a generic feature of any dispersive electr
phonon interaction. As an example, a short-range interac
with dispersive acoustic phonons@g(q);1/q1/2,vq;q# also
leads to a lighter polaron in the strong-coupling regime co
pared with the nondispersive SHP. Actually, Holste4

pointed out in his original paper that the dispersion is a v
ingredient of the theory. If one takes into account the int
molecular interaction in the Holstein model48 one can get
much lighter polarons in this model as well.48,49

FIG. 7. The ratio of the band mass to the polaron mass a
function of the coupling constant. Polarons become lighter w
increasing radius of the electron-phonon interaction, as shown
triangles.
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VI. POLARON-POLARON INTERACTION AND
SCREENING

Polarons interact not only with phonons, but also w
each other. The range of the deformation surrounding~Fröh-
lich! polarons is quite large~Sec. V!, so the polaron defor-
mation fields overlap at finite density. Hence one can wo
about the effect of the overlap on their stability.25 Actually,
the long-range polaron-polaron interaction has been
cussed in our original papers16,47,19and books.13 Taking into
account both the long-range attraction of polarons owing
their lattice deformationsand the direct Coulomb repulsion
the residual long-range interaction has been found to
rather weak and repulsive. The Fourier component of
residual polaron-polaron interaction,v(q), comprising the
direct Coulomb repulsion and the attraction mediated
phonons, is given by

v~q!5
4pe2

eq2 2ug~q!u2vq . ~33!

In the long-wave limit (q!p), the Fröhlich interaction
dominates in the attractive part, so we have

ug~q!u2v5
4pe2~e212e0

21!

q2 , ~34!

wheree and e0 are the high-frequency and static dielectr
constants of the host ionic insulator. Hence, at large d
tances the polaron-polaron interaction is repulsive:

v i j 5
e2

e0um2nu
. ~35!

Optical phonons nearly nullify the bare Coulomb repulsi
in ionic solids ife0@1, which is normally the case in oxides
Hence there is no effect of the overlapping deformations
the small polaron stability.

In the absence of bipolarons~see below!, one can apply
the canonical random phase approximation to calculate
dielectric response function of polarons:

e~q,V!5122v~q!(
k

nk1q2nk

V2ek1ek1q
. ~36!

This expression describes the response of small polarons
perturbation of a frequencyV<v, when phonons in the po
laronic cloud are not excited. In the static limit at large d
tances~or q→0!, we obtain the usual Debye screening wi
a rather small Debye radius owing to a heavy mass. Actua
for a temperature larger than the polaronic half-bandwid
one can expand the polaron distribution function as

nk.
n

2 S 12
~22n!ek

2T D , ~37!

with n the density of polarons, to get

e~q,0!511
qs

2

q2 , ~38!

a
h
th
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where qs5@2pe2n(22n)/Te0#1/2. However, already for a
finite but rather low-frequencyV>w the polaron respons
becomes dynamic,

e~q,V!512
vp

2~q!

V2 , ~39!

with the temperature-dependent polaron plasma frequen

vp
2~q!52v~q!(

k
nk~ek1q2ek!, ~40!

proportional to the inverse temperature atT@w.
Considering the electron-phonon interaction in a multip

laron system, one has to take into account the dynamic p
erties of the response function. One can believe24,25 that the
long-range Fro¨hlich interaction becomes short range~Hol-
stein! due to screening. This is not true. Replacing the b
electron-phonon interactiong(q) by a screened one
gsc(q,v) as shown in Fig. 8, we obtain

gsc~q,v!5
g~q!

e~q,v!
. ~41!

In the long-wave limit the response of polarons at the opt
phonon frequency is dynamic, becausev@qv (v is the char-
acteristic group velocity of polarons!. Also, their ~renormal-
ized! plasma frequencyvp(q) is lower than the optical pho
non frequency due to the large static dielectric consta
enhanced effective mass, and relatively low density of
larons. Therefore, the singular behavior ofg(q);1/q is un-
affected by the screening. The optical phonon frequency
mains almost unchanged as well.52 Polarons are slow enoug
and cannot screen the high-frequency crystal field oscill
tions. As a result, the interaction with the high-frequen
optical phonons in ionic polaron solids remains long ran
Chakravertyet al.24,25 failed to understand that the mobilit
of carriers determines the screening rather than their num

Another important point is the possibility of the Wigne
crystallization of the~bi!polaronic liquid.13 Because the re
sidual long-range repulsion is relatively weak, the relev
dimensionless parameterr s5m* e2/e0(4pn/3)1/3 is not very
large in doped cuprates. Wigner crystallization appe
aroundr s.100 or larger, which corresponds to the atom
density of polarons,n<1026, with e0530 andm* 55me .
This estimate tells us that the carriers in superconduc
cuprates are in a liquid state.

VII. BIPOLARON CONDENSATION AND
SUPERCONDUCTING Tc IN CUPRATES

The Fröhlich interaction together with a short-range d
formation potential can easily overcome the Coulomb rep
sion at a distance about the lattice constant. Then~owing to a
narrow band! polarons form real space small bipolaro

FIG. 8. Electron-phonon vertex~dark circle! screened by the
Coulomb interaction~dashed line!.
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rather than the Cooper pairs. We can estimate the chara
istic parametersl andt/v of the bipolaronic instability. The
characteristic attractive potential isV5zt(l2m), wherem
is the dimensionless Coulomb pseudopotential. A bou
state of two polarons appears if53

V>
p2

8m*
. ~42!

Substituting the polaron massm* 5exp(glzt/v)/2t, we find

t

v
>~gzl!21 lnF p2

4z~l2m!G . ~43!

The corresponding ‘‘phase’’ diagram is shown in Fig. 9. B
polarons are formed about atl>m1p2/4z in the nonadia-
batic and intermediate regimet/v.1. In the case of the
Fröhlich interaction, there is no sharp transition betwe
small and large polarons as one can see in Fig. 7. Howe
due to the fact that the Lang-Firsov transformation is pra
cally exact in the whole region of coupling for the nonad
batic and intermediate regime~up to t/v52!, the carriers are
small polaronsindependentof the value ofl in this regime.
It means that the radius of their wave function is abo
atomic size and they tunnel together with the entire phon
cloud no matter how ‘‘thin’’ the cloud is. Our estimates a
fully confirmed by the numerical simulations of ionic pero
skite lattices31 which established the existence of stablein-
tersitebipolarons in doped cuprates.

In contrast with BCS theory, the bipolaron theory allow
us54,55 to ‘‘integrate out’’ the interaction and expressTc via
the static response functions. In the framework of BC
theory ~largely independent of the nature of coupling!, the
critical temperature is fairly well approximated by McMill
an’s formula~see Ref. 56!,

Tc5
v

1.45
expF2

1.04~11l!

l2mc* ~110.62l!G , ~44!

which works well for simple metals and their alloys. The
are no general restrictions on the BCS value ofTc if the
dielectric function formalism is properly applied.57 Allen and
Dynes58 found that in the strong-coupling limitl@1 the
critical temperature might be as high asTc.vl1/2/2p. Nev-

FIG. 9. ‘‘t/v-l phase’’ diagram with a small-bipolaron~Bose-
Einstein condensation! domain, a large-polaron~BCS! domain, and
a region of unbound small polarons forz56, g50.4, and Coulomb
pseudopotentialm50.5.
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ertheless, applying this kind of theory to high-Tc cuprates is
problematic. Since the bare electron bands are narrow, st
correlations are important, giving rise to a doped Mott ins
lator. As a result, the Coulomb pseudopotential andl are ill
defined and polaronic effects are important as in many do
semiconductors.13 Taking the ‘‘magic’’ numbersl50.5,
m* 50.14 and the experimental Debye temperaturev
5400 K one obtainsTc.2 K with Eq. ~44!—clearly too low
to explain the highTc . One could hardly expect that th
Coulomb pseudopotential is lower than 0.1 because
Tolmachev-Morel-Anderson logarithm cannot be large
narrow bands. In fact,m* is of the order of the bare Coulom
repulsion,m* .m.1. Hence, an estimate ofTc in cuprates
within BCS theory appears to be an exercise in calcula
m* rather thanTc itself. Nor can one increasel without
accounting for a polaron collapse of the band and bipola
formation. As discussed above, this appears atl.0.5 for
uncorrelated polarons, Fig. 9, and even for a smaller valu
the bare electron-phonon coupling in strongly correla
models.28,29 Of course, one can argue59 that a renormalized
value of the couplingl̃;l/(122l) appears in Eq.~44!,
rather than a barel because of the familiar Migdal’s soften
ing of the phonon spectrum. That leaves some space for
Tc in the region of the applicability of the Eliashberg theo
~i.e., l<0.5! where nonadiabatic~vertex! corrections may
play a role.60,61 The final answer rests with experimen
which has already shown a non-Fermi-liquid normal an
non-BCS superconducting state of doped cuprates~see, for
example, Ref. 13!. As has been experimentally established62

there is a strong coupling of carriers withc-axis-polarized
optical phonons in high-Tc cuprates (v.75 meV, which is
aboutt/2 in YBa2Cu3O61x!. Due to a lowc-axis conductivity
and a high phonon frequency, this coupling is not scree
representing a long-range Fro¨hlich interaction withl.1,63

which provides mobile small~bi!polarons.47

In the framework of bipolaron theory, the critical tem
perature is determined by the bipolaron energy spectr
Quite generally, the bipolaron energy spectrum is a dege
ate doublet due to two~x and y! oxygen orbitals elongated
along the CuO2 planes.47 The energy band minima are foun
at the Brillouin zone boundary~6p, 0! and ~0, 6p! rather
than at theG point owing to the opposite sign of thepps and
ppp oxygen hopping integrals. Near these points the eff
tive mass approximation is applied with the following res
for the x andy bipolaron bands:47

Ek
x,y5

\2kx,y
2

2mx
1

\2ky,x
2

2my
12t'@12cos~kzd!#, ~45!

wherekx,y are taken relative~6p, 0! @or ~0, 6p!# points,d is
the interplane distance, andt' is the interplane bipolaron
hopping integral. The bipolaron is about 4 times heavier th
the SFP. Two different bands are not mixed because
nearest-neighbor hopping integrals betweenx andy p orbit-
als are zero. While each of them is not invariant under cry
symmetry, the degenerate doublet represents an irredu
representation. Under ap/2 rotation thex band transforms
into y and vice versa.

The condensation temperature of these bipolarons
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been recently calculated and compared with
experiment.54,55 Substituting the spectrum, Eq.~45!, into the
density sum rule,

(
k,i 5~x,y!

@exp~Ek
i /Tc!21#215nB , ~46!

one readily obtainsTc as

Tc5 f
3.31~nB/2!2/3

~mxmymc!
1/3 , ~47!

where the coefficientf is almost unity in a wide range of th
anisotropyt' /Tc ,55 and mc51/2ut'ud2. This expression is
rather ambiguous so far because the effective mass tens
well as the bipolaron densitynB is unknown and doping
dependent. Fortunately, one can express the band-stru
parameters through the in-plane,lab5@mxmy/8pnBe2(mx
1my)#1/2, and out-of-planelc5@mc/16pnBe2#1/2, penetra-
tion depth. The bipolaron density is expressed through
in-plane Hall constant~just above the transition! as47

RH5
1

2enB

4mxmy

~mx1my!2 . ~48!

As a result, one obtains

Tc51.64S eRH

lab
4 lc

2D 1/3

, ~49!

with Tc measured in kelvin,eRH in cm3, andl in cm. Hence
our theory yields a parameter-free expression, which un
biguously tells us how close cuprates are to the Bo
Einstein condensation regime. This expression has b
compared with the experimentalTc of more than 30 different
cuprates, for which bothlab andlc are measured along with
RH .55 The theoreticalTc coincides with the experimenta
one within the experimental error bar for the penetrat
depth~about610%! no matter what the doping level is. A
few examples are La1.8Sr0.2CuO4 @lab52000 Å, lc

525 400 Å, RH50.831023(1/C cm3)], Tc
exp536.2 K, and

our theoretical value, Eq.~49!, is Tc538 K; YBa2Cu3O7
@lab51400 Å, lc512 600 Å, RH51.231023(1/C cm3)],
Tc

exp592.5 K, and the theoretical value isTc5111 K;
YBa2Cu3O6.84 @lab51771 Å, lc515 570 Å, RH51.9
31023(1/C cm3)], Tc

exp583.7 K, and the theoretical value i
Tc583 K.

One can argue that cuprates belong to a two-dimensio
~2D! XYuniversality class with the Kosterlitz-Thouless crit
cal temperatureTKT due to a large anisotropy.64–66 If this is
the case, then one could not discriminate the Cooper p
with respect to bipolarons. The Kosterlitz-Thouless tempe
ture, expressed through the in-plane penetration depth, i66

TKT.
0.9d

16pe2lab
2 . ~50!

It appears significantly~about twice! higher than the experi-
mental value in most cases. Also, many cuprates do not s
the critical behavior of the BCS superfluids or the univer
~3D! x-y properties of neutral superfluids like4He,67,68 but
exhibit the critical behavior of charged bosons. These ob
vations favor the 3D Bose-Einstein condensation of char
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bosons as the mechanism of highTc rather than any low-
dimensional phase-fluctuation scenario. The fascinating
perimental results by Franck,69 Zhao et al.,70 and Zhao
et al.,71 who measured the oxygen isotope effect on the c
cal temperatureand the carrier mass in many oxides, lead
the conclusion that charged bosons are bipolarons.

The size of the intersite bipolaron has been well est
lished in numerical studies by Catlowet al.31 This bipolaron
occupies a volume, which is 5 times smaller than the u
cell volume in YBa2Cu3O7. There is about one bipolaron pe
unit ~chemical! cell, which includes 13 ions. As a resul
there is no overcrowding problem, and hole carriers can
treated as charged bosons. Nevertheless, the boson-bos
teraction might lead to self-energy effects and to some re
malization of the effective mass tensor. It is important th
Eq. ~49! does not contain the mass and, hence, is not affe
by the interaction. The theoretical value of theab bipolaron
mass,.(10– 20)me @i.e., about (3 – 5)me for a polaron, Fig.
7#, fits well the experimental values oflab . The careful
exploration of the discrete nondispersive Holstein-Hubb
model by La Magna and Pucci35 and more recently by
Bonca, Katrasnik, and Trugman72 showed that due to ex
change and nonadiabaticity effects an intersite bipola
with a relativelysmall effective mass is stable and mobi
even in this model, which is generally unfavorable for tu
neling.

It becomes clear that bipolaron theory describes rem
ably well the experimental critical temperature and the Lo
don penetration depth of superconducting cuprates with
parameters to fit contrary to conclusions by Chakrave
et al.,24 which originate in the use of an incorrect bipolaro
energy spectrum.54 In particular, Ref. 24 used ournonadia-
batic expression for the mass of the on-site bipolaron w
adiabatic parameters. As we have shown in Sec. IV,
results in an overestimation of the mass by a few orders
magnitude, Fig. 3~b!. They also used our expression for th
intersite bipolaron hopping by leaving out the numerical c
efficient g which lowers the~bi!polaron mass by abouttwo
orders of magnitude as discussed in Sec. V. Their conclu
that the Holstein model represents well the electron-pho
interaction in ionic polaronic solids is disputed. The Fro¨hlich
interaction cannot be reduced to a short-range one in
multipolaron system~Sec. VI!. As we have shown above
~bi!polarons exist in the Bloch states at low temperatur
and the bipolaronic liquid cannot be crystallized at any r
evant level of doping. The correct phase diagram of el
trons, coupled with phonons~see Ref. 15 and Fig. 9!, in-
cludes the BCS ground state in the weak-coupling reg
and high-Tc bipolaronic superconductor for the strong co
pling contrary to the diagram by Chakraverty,73 where
~bi!polarons are completely localized.

VIII. COHERENT AND INCOHERENT SPECTRAL
WEIGHT AND POLARONIC ARPES

A number of thermodynamic, magnetic and kinetic pro
erties of cuprates have been understood in the framewor
the bipolaron theory~for a review, see Refs. 13, 10, and 19!.
On the other hand, the single-particle spectral function s
by angle-resolved photoemission spectroscopy~ARPES!
~Ref. 74! was interpreted by several authors as a Fermi-liq
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feature of the normal state incompatible with bipolaron
Most ~but not all! of these measurements produced a la
Fermi surface. This should evolve with doping as (12x) in
a clear contradiction with low-frequency kinetics and the
modynamics, which show an evolution proportional tox ~x is
the number of holes introduced by doping!. Recently, it has
been established, however, that there is a normal state g
ARPES and superconducting-insulating-normal~SIN! tun-
neling, existing well aboveTc irrespective of the doping
level.74–76 The ‘‘Fermi surface’’ showed missing segment
A plausible explanation is that there are two liquids in t
cuprates, the normal Fermi liquid and the charged Bose
uid, as suggested by several independent experiments77–80

~this mixture was theoretically discussed a while ago81!.
The single-particle spectral function of a bipolaronic sy

tem has been recently derived.82,19 It describes the spectra
features of tunneling and photoemission in cuprates, in p
ticular, the temperature-independent gap and the anoma
gap/Tc ratio, injection and emission asymmetry both in ma
nitude and shape, zero-bias conductance at zero tempera
the spectral shape inside and outside the gap region,
perature and doping dependence and dip-hump structur
the tunneling conductance, and photoemission. In the follo
ing we briefly analyze some essential SHP and SFP spe
features.

Bipolarons pin the chemical potential inside the char
transfer gap, half the bipolaron binding energy above
oxygen band edge. This binding energy as well as
singlet-triplet bipolaron exchange energy is thought to be
origin of the normal-state pseudogaps, as first proposed b
in Ref. 83. In overdoped samples the bipolaron and pola
bands might overlap because the bipolaron binding ene
becomes small, so the chemical potential might enter
oxygen band, as mentioned above. The strong coupling w
high-frequency phonons, experimentally established
many oxides, leads to the high-energy spectral features
single-particle~oxygen hole! spectral function in an energ
window about twice the Franck-Condon~polaronic! level
shift, 2Ep;0.5– 1 eV, and to the band-narrowing effect. A
major features of the polaronic spectral function can be
rived by applying the Lang-Firsov canonical transformatio
Eq. ~4!. With this transformation the hole Matsubara Green
function ~GF! is expressed as a convolution of the coher
polaron GF and the multiphonon correlation functio
s(m,Vn),19

G~k,vn!5
T

N (
vn8 ,m,k8

s~m,vn82vn!ei ~k2k8!•m

ivn82jk8
~51!

where the multiphonon correlation functions(m,t)
5TSne2 iVnts(m,Vn) is found as

s~m,t!5expS 1

2N (
q

ug~q!u2f q~m,t! D . ~52!

Here

f q~m,t!5@cos~q•m!cosh~vqutu!21#coth
vq

2T

1cos~q•m!sinh~vqutu!,
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with m the lattice vector, vn5pT(2n11), n50,61,
62. . . . , andVn52pTn.

In the case of dispersionless phonons and the short-ra
~Holstein! interaction with aq-independent matrix elemen
@vq5v, ug(q)u252g2], one can readily calculate the Fou
rier component ofs(m,t) to obtain19

G~k,vn!5
Z

ivn2jk
1

Z

N (
l 51

`
g2l

l !

3(
k8

S nk8
ivn2jk81 lv

1
12nk8

ivn2jk82 lv D .

~53!

The Green function of a polaronic carrier comprises two d
ferent contributions. The first coherentk-dependent term
arises from the polaron band tunneling. The spectral we
of the coherent part is strongly~exponentially! suppressed a
Z5exp(2g2), in agreement with cluster numerica
studies,14,84 and the effective mass is strongly enhanced,jk
5ZEk2m ~we include the polaronic level shift into th
chemical potential,m!. HereE(k) is the bare@local density
approximation~LDA !# hole band dispersion in a rigid lattice
The secondk-independent contribution describes the exci
tions accompanied by the emission and absorption
phonons. We believe that this termI incoh(E) is responsible
for the asymmetric background in the optical conductiv
and in the photoemission spectra of cuprates and mangan
Its spectral density spreads over a wide energy range
about twice the polaron level shift,Ep5g2v. On the con-
trary, the coherent term shows an angular dependence in
energy range of the order of the polaron bandwidthw
[ZD, whereD.2zt is the bare~LDA ! bandwidth.

It is remarkable that for any finite-radius interaction wi
a q-dependent matrix element thecoherentpart of the GF
takes the same form as Eq.~53!, but with adifferentspectral
weight ~Z! and effective mass (Z8) renormalization
exponents.85 Also, somek dependence of theincoherent
background,I incoh(k,E), appears if the matrix element of th
electron-phonon interaction depends onq.86 Hence, in gen-
eral, the polaron spectral function is given by

A~k,E!}Zd~E1jk!1I incoh~k,E!, ~54!

with the sameZ5exp(2Ep /v) as in the case of the Holstei
polaron, but with the SFP bandwidth much less reducedjk
5Z8E(k)2m, whereZ85exp(2gEp /v). These SFP spec
tral features could explain the apparent discrepancy betw
a small coherent spectral weight and a relatively mode
mass enhancement,m* ;3me– 10me ~depending on doping!,
of carriers in oxides, as measured optically and thermo
namically, respectively.87,88 It is important to emphasize tha
the small coherent weightZ in Eq. ~53! does not affect the
thermodynamic~or low-frequency! response of polarons
This response depends onZ8 in the polaron kinetic energy
2w5Z8D, as discussed in Sec. V. Compared with the H
stein polaron, the maximum of the infrared optical condu
tivity of the SFP is shifted to lower frequencies of the ord
of 2gEp ,8,12 in agreement with those optical experiments89

which distinguish between incoherent and Drude contri
tions. The low-energy spectral function also depends on
ge
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ht
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es.
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the
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te
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r

-
e

low-frequency thermal lattice, spin, and random fluctuatio
The latter can be described as the ‘‘Gaussian white nois
As a result, one can quantitatively describe the experime
ARPES in a few cuprates.90 The approach is clearly compa
ible with the doping evolution of thermodynamic and kine
properties because holes introduced by doping into the o
gen band are the only carriers in the theory. Moreover,
bipolaron energy dispersion with the minima at the Brillou
zone boundaries, Eq.~45!, provides ad-wave symmetry of
the Bose-Einstein condensate in cuprates82 as observed in
phase-sensitive experiments.91

IX. CONCLUSIONS

Based on the well-established 1/l perturbation theory, ex-
act cluster diagonalization, and quantum Monte Carlo cal
lations, I conclude that small polarons and small bipolaro
are itinerant quasiparticles existing in the Bloch states
temperatures below the characteristic phonon frequency
any strength of the electron-phonon coupling. This result w
analytically established a long time ago.4,5,8,39,15There are a
few additional results which can help to resolve some c
fusion in the polaron literature.

~i! Numerically calculated correlation functions of th
two-site Holstein model agree perfectly well with the an
lytical results based on the Lang-Firsov transformation a
1/l perturbation expansion~Sec. IV!.

~ii ! The long-range Fro¨hlich interaction leads to relatively
light small polarons with atomic size of the wave functio
and a large size of the phonon cloud in all dimensions. T
effective mass of this polaron is smaller by a few orders
magnitude than the mass of the nondispersive Hols
model in the strong-coupling region. At a weak coupling t
Fröhlich polaron is heavier than the Holstein polaron w
the same binding energy. These SFP features have bee
cently found in Ref. 43. Here I have generalized these res
for the isotropic three-dimensional Fro¨hlich interaction un-
derlying the fact that the first-order 1/l expansion is per-
fectly accurate even in the adiabatic regimev/t<1 for any
coupling strength in the case of the Fro¨hlich interaction~Sec.
V!.

~iii ! Screening in the multipolaron system has been a
lyzed to show that polaronscannot screen the high-
frequency crystal field oscillations because they are s
enough. As a result, the interaction with the high-frequen
optical phonons in ionic polaron solids remains long rang
~Sec. VI!.

~iv! At large distances the~bi!polaron-~bi!polaron interac-
tion is shown to be repulsive and weak. Optical phono
nearly nullify the bare Coulomb repulsion in ionic solids
e0@1, which is normally the case in oxides. Hence there
no effect of the overlapping deformations on the small p
laron stability. If small bipolarons are formed, they cannot
crystallized in the range of parameters typical for cupra
~Sec. VII!.

~v! Small mobile bipolarons are formed at the moder
coupling constantl>0.5, almost independent of the adi
batic ratio~Fig. 9!.

~vi! Bipolaron theory provides a parameter-free expr
sion for Tc , describingTc of many cuprates without any
fitting parameters, as has been shown recently.54,55 Here I
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argue that the small Fro¨hlich polaron has the spectral prop
erties compatible with the single-particle tunneling a
ARPES measurements in cuprates. The important findin
that thecoherentpart of its Green’s function has a spectr
weightZ different from the bandwidth renormalization exp
nent Z8 with Z8@Z. This SFP spectral feature can expla
the apparent discrepancy between a small coherent spe
weight and a relatively moderate mass enhancement in
prates and manganites.

The objections21,22,24,25recently raised against Holstein
Lang-Firsov polaron theory and our theory of bipolaron
superconductivity are shown~see also Refs. 26 and 44! to be
the result of an erroneous definition of the polaron kine
,

-

B

n-

e
r,
is

tral
u-

c

energy,21 an incorrect interpretation of the dynamic correl
tion functions of the Holstein model,21,22,45and a misuse24,25

of our expressions for the bipolaron effective mass.
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