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ON INTUITIONISTIC FUZZY NEGATIONS
AND INTUITIONISTIC FUZZY EXTENDED
MODAL OPERATORS. Part 2.

Chris Hinde and Krassimir T. Atanassov

Abstract—Some relations between intuitionistic fuzzy nega-
tions and intuitionistic fuzzy extended modal operations £, g and
Ga,p are studied.

I. On some previous results

The concept of the Intuitionistic Fuzzy Set (IFS, see
[1]) was introduced in 1983 as an extension of Zadeh'’s
fuzzy set. All operations, defined over fuzzy sets were
transformed for the IFS case. One of them - operartion
“negation” now there is 27 different forms (see [2]). In [1]
the relations between the “classical” negation and the two
standard modal operators “necessity” and “possibility”
are given. Here, we shall study the relations between the
intuitionistic fuzzy negations and the intuitionistic fuzzy
extended modal operations Fy, g and G, g.

In some definitions we shall use functions sg and sg:

1 ifz>0
sg(z) = ;
0 ifxz<0

0
1

For any two IFSs A and B the following relations are
valid:

ACBiff (Vz € E)(ua

ifx>0

ifz<0

() < pp(x)va(z) = vp(x)),
ADBIiff BCA,

A=Biff (Vz € E)(ua(z) = pp(x)&va(z) = vp(x)).

Let A be a fixed IF'S. In [1] definitions of standard modal

operators are given:

0A = {2, pa(@),1 — pa(@))e € B},
QA ={(z,1 —va(x),va(z))|z € E}.
The first extended modal operator is
Da(A) = {(z, pa(@) + a.ma(),
va(@) + (1 - a).ma(z))|z € B},
where a € [0,1]. It is extended to
Fop(A) = {(z, pa(@)+ama(z),valz)+B.ma(x))|x € E},
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where «, 8 € [0,1] and o + 8 < 1. Another non-standard
modal operator is

Gap(A) = {{z,a.pa(z), Brva(x))|x € E},

where «, 8 € [0, 1].
Obviously,

0OA= Do(A) = FO,I(A)7
OA = Di(A) = Fi(A),
Da(A) = Fa,lfoé(A)'

In [2], [3], [4], [5], [6] the following 27 different negations
are described.

A = {{va(z), pa(z))|z € £},

A = {(88(1a(z)),sg(na(z)))|z € E},
—3A = {(va(x), pa(x).va(z) + pa(z)?)|e € E},
A ={(va(z),1 —va(z))|z € E},

A= {(sg(l —va(z)),sg(l —va(2))))|z € E},
64 = {(sg(1 — va(x)), sg(ua(@))))|z € E},
—7A = {(58(1 —va(z)), pa(z)))|z € £},

34 ={(1 —pa(@), palz))|z € £},
A = {(88(pa(2)), na(z))lx € £},
104 = {(sg(1 —va(2)),1 —va(2)))lz € E},
~114 = {(sg(va(z)),58(va(2))))|z € £},
124 = {(va(@).(pa(z) + va(@)),
pa(x).(pa(x) + va(x)®)|e € B},

134 = {(1 = 5g(1 — pa(2)),58(1 — pa(@))))|z € E},
144 = {(sg(va(z)),58(1 — pa(2)))z € E},
154 = {(58(1 — va(2)),58(1 — pa(x)))lx € E},
—164 = {(8(na(2)),58(1 — pa(x))))lr € E},
—17A = {(sg(1 —va(2)),58(va(2)))) |z € EY,
—18A = {(z,va(2)sg(pa(r)), pa(z) sgva(@)))|e € E},
104 = {(z,va(2).sg(pa(z)),0)|z € EY,

—50A = {(z,v4(x),0)|z € E},
1A = {{z,va(2), pa(x).va(z) + pa(z)")|z € E},
where real number n € [2, 00),

_‘22A = {<f£, VA(x)J
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pa(x).va(z) +5g(1 — pa(z)))|e € E},
—23A = {(z, (1 — pa(2)) sg(pa(z)),
pra(z).sg(l — va(z)))l € B},

24 A = {(z, (1 = pa(z)).sg(pa(z)),0)|z € E},
—95A = {{z,1 —va(z),0)|z € £},

A = {{x,min(1,va(z) + &), max(0, pa(x) —e))|x € E},

)-
)

where ¢ € [0,1],
="A = {{x,min(1,va(z)+¢), max(0, pa(z)
where 0 <e <n < 1.

—n))lx € EY,

II. Main results

Now, following and extending the idea from [7], [8] we
shall prove following assertions.
Theorem 1: For every IFS A and for every «, 5 € [0, 1] so
that a + 6 < 1, the following properties are valid:

(1) m1Fa,p(A) = Fga(m14),
(2) 72Fa,(A) C Fop(—24),
(3) maFa,5(A) D Fop(mad),
(4) =5Fa,8(A) D Fop(m54),
(5) ~8Fu,8(A) C Fy p(—sA).

(6) 711F0 5(A) D Fu p(—11A).

Proof: Let a, 8 € [0,1] be given so that a + 8 < 1, and
let A be an IFS. Then we obtain directly that:

~1Fa,5(A)
= 1{{z, pa(@) + ama(z),va(2) + B.wa(z))|e € E}
= {{z,va(z) + B.ma(z),palz) + ara(z))|z € E}
= Fp.o({(z,va(z), pa(z))|z € E})
= Fp.a(—1A4).

Therefore equality (1) is valid.
The rest of the assertions can be proved by another
manner. Let us prove, for example (5).
Let a, 8 € [0,1] be given so that a+ 5 <1, and let A
be an IFS. Then:
—sFa,p(A)

= —s{(z, pa(z) + a.ma(z), va(z) + f.ra(2))|z € E}
={{z,1 —pa(x) — ama(x),pa(x) + ama(x))|z € E}
and
Fop(msA) = Fog({{z,1 — pa(z), pa(z))|z € E})
={{z,1 - pa(z), pa(z))|z € E}.
Now, we see easily that
1= pa(z) = (1 - pa(z) — ara(z)) = ama(z)) = 0

and
pa(z) +oma(z) — pa(z) = 0.

Therefore inclusion (5) is valid.
Theorem 2: For every IFS A and for every «, € [0, 1]
the following properties are valid:
(1) 71Gap(A) = Gpa(14),
(2) 7Gas(A) C Gpa(—74),
(3) 715Ga,p(A4) C Gpa(-154),
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(4) 719Ga,5(A) C Gga(T194),

(5) 720Ga,8(A) = Gg.a(7204),

(6) 725Ga,5(A) D Gpa(m254).

Theorem 3: For every IFS A and for every «,( € [0,1]
the following properties are valid:

(1) =°Gap(A) D G a(—°A), where 0 < e <1,

(2) =°"Go,p(A) D Ggo(—"A), where 0 <e <n < 1.
Proof: Let a, 8 € [0,1] be given so that a + 3 <1, let A
be an IFS and let €, be given so that 0 < e <n < 1.
Then

G ap(A) = =22, apalx), Bral))|e € E}
= {{z,min(1, B.va(z) + ¢), max(0, a.pa(z) — n))|z € E}
and
Gpa(27"A)
= Ggo({(z,min(1,va(z) +¢), max(0, pa(x) —n))|z € E})
= {(z, 8. min(l,va(z) + ), . max(0, ua(x) — n))|x € E}.

Now, we obtain:

min(1, B.va(x) +¢€) — f.min(1, v (x) + ¢€)

=min(1, B.va(z) + ) — min(G, B.va(x) + f.e) >0
and
a.max(0, pa(x) —n) — max(0, a.pua(x) — n)
= max(0,a.pa(x) — a.n) — max(0, a.pa(x) —n) > 0.

Therefore, inclusion (2) is vaild.
There are other, more complex relations, e.g.,
a < 8 <1, then for the IFS A the inclusions:

—3Ga,5(A) D Gga(-sA),
719G a,5(A) D Gpa(m94),

are valid, but an open problem is to find all similar
inclusions.

if 0 <

III. Conclusion

In a next research authors will study the above prop-
erties for the case of other extended intuitionistic fuzzy
modal operators and for the intuitionistic fuzzy topological
operators.
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