

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288383908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automated negotiation for service contracts

Russell Lock

Computing department

 Lancaster University

r.lock@comp.lancs.ac.uk

Abstract

 Automated negotiation draws upon research from a

number of different computing disciplines,

predominantly those of Game Theory, AI, Requirement

specification & Authorisation research. Automated

negotiation allows clients / services to come to

agreements regarding service utilisation. A number of

problems exist within the area, primarily those of

requirement elicitation and trust. These problems can be

minimised through standardisation and careful design;

however, human participation in the process cannot be

completely removed. This paper examines a possible

format, architecture and implementation (TRANSACT)

to aid in the automated negotiation of service contracts

based on exogenously stated requirements / capabilities.

In doing so it explores the issues and areas in which

further developments are required to support future

service developments.

Keywords

Negotiation, Contracts, Authorisation, Quality

Management, SOA, eCommerce, Security

1. Introduction

The ongoing adoption and commercialisation of web

and grid Service Oriented Architectures (SOA) has

increased the pressure to develop new high level service

support. With more business cases for usage being

developed it is becoming clear that it is the higher level

functionality that now needs addressing.

Whilst rudimentary mechanisms exist for dynamic

service discovery in the form of technologies including

UDDI, it is clear that service negotiation and monitoring

have been relatively neglected. It is also clear that the

service vision cannot be implemented satisfactorily if

negotiation for use of a given resource has to occur “out

of bounds”. Given service negotiation, and agreement on

a given contract/SLA it is equally important that some

way of monitoring the adherence to a given

contract/SLA is possible, though this step is outside the

purview of this paper. Research in this area includes that

done by the SECSE consortium(1) who favour a faceted

approach to the service domain.

Previous attempts to translate heavily worded legal

documents into a workable electronic format capable of

adaptation to specific circumstances have met with

limited success. The ALDUS project (1990) ALDUS(2)

was enacted to examine possible areas of automation

specifically with mind to the creation of sales contracts.

It examined the issues present in three key areas;

identification of stakeholders and budgets; the

functionality possible with current and envisaged tools;

and the need of users with regard to contracts. At the

conclusion of the project, however, it was decided that

there was no viable economically feasible products upon

which such tools could be built at the time. Fortunately

this situation is changing and a number of new projects

are starting to address the problem in depth.

The remainder of this paper is as follows; section two

examines service negotiation issues and existing research

in the area. Section three outlines the design and

implementation of a possible solution to the negotiation

problem. Section four provides information regarding the

evaluation of the approach. Finally, sections five and six

provide information on further work and conclusions

respectively.

2. Service Negotiation

The levels of service development / integration seen

presently generalise to two different scenarios:

Not for profit Services – Services available without a

cost specific to their invocation. These are more

commonly seen in scientific collaborations and in the

development and evaluation of new products. This

model is suitable in business situations only where client

membership remains within a single administrative and

organisational boundary; for example, as an internal

service to employees. Quality of Service guarantees for

free services are uncommon, and if they do appear are

unlikely to be backed by financial obligation. Generally

these services are characterised by a best effort level of

service provision, which could prove insufficient for

many envisaged VO collaborations (3).

Economically services – A more feasible business

model but brings with it additional concerns. An

economic model requires attention to the following

infrastructure considerations:

 Service discovery

o The discovery and active differentiation of

services

 Service negotiation

o The requirement specification and capability

specification respectively. The determination of

a compromise situation between the two parties.

 Service Agreement

o The signing of documents to guarantee service

level attributes. This could involve a contract /

SLA

 Service mediation

o The specification of standardised complaint and

renegotiation policy

 Service monitoring

o The monitoring of service use, based on data

provided by a combination of client, service

and possibly trusted 3rd parties (4).

Traditionally service contracts are encountered in two

forms, mainly dependent on the size and cost of a given

contract.

 Standardised contracts based on a service

classification. For example, Gold, Silver, Bronze

etc. In these situations no customisation occurs, the

possibilities for service requirement-capability

matching is severely limited.

 Manual service negotiation, through meetings

between client, service and legal aid. This model is

most applicable to the VO vision(5) as the

negotiation can dynamically determine the most

accurate compromise position possible. However,

such processes clash with the need to maintain

agility in the business process. It is this type of

service negotiation that TRANSACT aims to

emulate.

2.1 Automated Negotiation Types

Automated negotiation for the purposes of this paper

refers to an aid to decision making, rather than entirely

autonomic service utilisation. Automation in this domain

is generally split into two types:

EBA (Electronic Bargaining Agents)

Agents which attempt to develop compromise

positions for services and clients autonomously.

NSS (Negotiation Support Systems)

Support systems which provide information regarding

the negotiation process, but which do not act in an

autonomous manner on behalf of a client.

TRANSACT aims to provide more than an NSS by

automating the majority of the negotiating process; the

client however, retains the final decision on service

choice. Compromise seeking programs come in two

flavours:

 Distributive, where values are negotiated within

a fixed cost boundary;

 Integrative where the price can also expand or

contract throughout the negotiation process.

TRANSACT follows an integrative path, which is

more difficult to control, but is considerably more

flexible as it allows the two parties to explore a larger

proportion of the problem space whilst negotiating.

2.2 External Issues

The scope of this particular project cannot hope to

provide solutions to all steps of the service cycle outlined

in section 2. Fortunately, research in certain areas by

others is already well advanced. Dynamic binding to

services in a VO (Virtual Organisation) context requires

careful consideration of service monitoring. Beyond

simple provisioning of service monitoring using either

centralised third party monitors or decentralised p2p

technologies, a number of more complex monitoring

issues remain. For example, services cannot be assumed

atomic, and the assumption that composite services may

make use of sub-services, not necessarily within the same

geographic or organisational boundary, entails a number

of problems and issues relating to trust management and

monitoring. This piece of research however, has put aside

this particular issue in order to make more progress in the

core areas of service negotiation.

There is also an ongoing issue relating to the

standardisation of terms for use in contracts, and web

services in general. Contributions toward greater levels

of standardisation with regard to service orientated

architectures can be seen in the works of a number of

organisations and standards bodies including Oasis, the

IETF, RosettaNet & UN/CEFACT(6). Ontologies provide

one possible underlying structure for standardisation, as

they provide the means to both classify and infer about

data held, leading to the creation of structures capable of

dealing with different formats and unit types. However,

the role of ontologies in general can be overestimated,

and it is possible that simpler data structures, closer in

stature to standard taxonomies may prove highly

beneficial to the standardisation process. The methods by

which standardisation could occur, is outside the scope

of this document, however work in this area has been

completed by a number of projects, including DIRC(7).

2.3 Existing Negotiation Projects / Products

A number of projects have attempted to address the

problems associated with this area of research; the

following, looks at one successful product in the area,

followed by an existing research project examining part

of the problem TRANSACT is addressing.

E-mediator

One of the more notable negotiation products is

eMediator(8), which allows multiple constraints to be

specified exogenously. However, the model it uses to

specify requirements is based purely on the specification

of options for a given price (distributive); rather than a

more flexible model where different values for given

attributes could affect each other in different ways. As

with many other projects of its type, it relies heavily on

reasonable behaviour of opposing parties, which can

never be guaranteed.

SNAP

SNAP(9) is a protocol under development at Argonne

Laboratories, the home of the Globus toolkit, to address

some of the issues left by the ongoing development of

their CAS (Community Access Server). It primarily

addresses the lack of a standardised agreement and

structure for contracting of agreements. SNAP uses

XML to create SLA’s between users etc. The developers

recognise the need to negotiate SLA’s at multiple points

in the process, but stop short of providing an actual

negotiation tool; instead concentrating on the

standardised nature of the agreement specification. In

doing so SNAP takes a hierarchical view of the

agreement structure, allowing the linking of lower level

agreements to form part of higher level agreements

through the aggregation of SLA’s. This approach allows

flexibility in some respects but also raises issues of

verbosity.

CNP (Contract Net Protocol)

CNP was first deployed in 1980 as part of a Distributed

Acoustic Sensor Network simulation. It uses two types of

agent, a participant and an initiator to find and supply

user requirements. It follows a standard RFQ style

process, with an initial call for proposals (CFP). This

sends the request information to a number of potential

services. Those services then bid on those options. The

user then selects a supplier, rejecting all other offers.

Research on CNP led to a number of other more advanced

systems including TRACONET(10). The simple method of

specifying standardised requests, and weighing responses

for the best solution has allowed CNP to be used in a

number of interesting places. Indeed, TRACONET

(TRAnsportation COoperation NET) was designed to

route delivery trucks through road networks more

efficiently. In conclusion CNP is a popular style of agent

negotiation tool, hampered to some extents by the need

for honest users, and the lack of a synchronisation

architecture which is essential for all time based requests.

It does however provide a simple integrative protocol. It

is not a adequate solution to the problems this project

aims to solve however, as it relies on a one shot approach

to negotiation, without the intensive bartering style

required to choose between multiple options from a single

service.

2.4 Securing Contracts using PKI

The negotiation process needs to produce secure

contracts in order to ensure non-repudiation, without

which negotiation is meaningless.

PKIs(11) secure information based on mathematical

formula that allow easy conversion into a form which

can only be converted back using a different key, and

vice versa. This allows a person to encrypt documents

using a person’s public key knowing it can only be

decrypted using that person’s private key. Reverse this

approach and you can prove a person encrypted a file

using the private key by decrypting using the public one.

Presuming the private key is kept private this can be

used to prove persons credentials. The basic structure of

this is illustrated below in Fig 1.

Fig 1: Encryption utilising PKI

If both contracts match when decoded, they both

agreed to the same contract. These can be authenticated

by anyone with the public keys of both parties.

This model of authorisation requires a considerably

more lightweight server end authorisation mechanism to

process incoming requests due to its reliance on the

actual information received (the contract) rather than a

database of individual permissions stored locally. This

allows for easier replication of authorising mechanisms

without the need to control multiple copies of databases.

The provision of secure communication is essential to

underpin the development of higher level functionality

including that of automating the negotiation cycle.

Encrypted using user Private

XML

Contract

Encrypted using Server Private

XML

Contract

3 Automating the Negotiation process

The negotiation process is based around the XML

encrypted contract instances outlined above. The

contract model operates on a request / reply basis with

the client making demands, and the service counter

offers. The received demands / counter demands are

then taken into account for the next round. Fig 2

illustrates this model:

Fig 2: Negotiation model

Individual contract iterations are split into two

sections, a header and main section. The header contains

compulsory information regarding the basic needs of a

contract. For example, the names of the parties, the

validity and expiration date of the agreement etc. The

main section contains the contract clauses that are being

negotiated upon, for example Auto_Resubmission (on

failure). These clauses can contain either a numerical or

textual description of the values being negotiated. The

user can extend the main section to include any contract

clauses they wish, providing they are supported by the

service they wish to negotiate with. The provided clauses

a given service provides can be retrieved from within the

negotiation tool environment either from the service

directly or via a standard UDDI registry.

Each clause has a name, value, description and

definition component. The latter two are used to ensure

the clause can be linked to a textual description of its

meaning and a statement of where that description was

defined respectively. These could be obtained through

the use of a QoS ontology(12), however this is currently

classed as an area of future work. The description helps

reduce the ambiguity factor in human understanding,

whereas the definition helps avoid clashes of clause

names between institutions. An example of this is shown

below:

Contract Clause:

Name: Payment

Value: 50

Description: In £. "Payment" means the price for the

goods excluding carriage, packing,

insurance and VAT.

Definition: Standard_Contracting_Ontology.OWL

TRANSACT includes the description itself rather

than merely relying on the use of a URI etc for clause

location & definition, in order to maintain the self-

contained, human readable nature of the contracts

themselves. This also ensures that contracts can be

pinned to a specific version of the QoS definitions.

3.1 User Controls

Two specific models of interaction are defined: A

visual environment to allow users to directly negotiate

contracts, and an API to enable negotiation to act as part

of a wider workflow control process. For brevity this

paper will concentrate on the GUI side of the

development.

The negotiation process operates under the premise

that users should be removed from the negotiation itself

as far as possible. For the client this entails requirement

specification and to accept or decline a contract at the

end of the process. For the service side this entails

capability specification, and the honouring of contracts

agreed by the negotiating clients with its negotiation

service.

The following sub sections are split into the different

types of contract manipulation mechanisms, complete

with explanations on use.

Bound Specification for numerical clauses

 A numerical type clause must range between an upper

and a lower bound.

Option Specification for Textual clauses

 The textual clauses operate on a simple pop up list from

which a user can select a given option.

Bias

Bias can be entered into the system by a series of

interlinked slider bars attached to each clause. The

values on the sliders individually add up to 100%, giving

each of the sliders a percentage of importance in

calculations. The sliders can be locked in place to avoid

movement allowing a user to easily manipulate the levels

of importance ascribed to the individual clauses.

The primary purpose of the sliders is to allow the

negotiator to rank clauses in relation to the need for

change in the next iteration cycle. The way in which this

information is taken into account is covered in section

3.3.

Starting conditions

The client / service are also given control over the

starting stance taken for negotiation. For example, does

Input (exogenous)

Input (exogenous)

Offer
Counter

offer

Analysis

Analysis

Service

Client

the client start with a request for everything it requires,

or work towards this, analysing the cost implications

from a less demanding starting position. In addition,

control over the aggressiveness of the negotiating client

with regard to the negotiating itself is provided.

An indication of the importance of clauses in relation

to each other is a powerful tool, sufficient for simple

negotiations. However, further user input is required to

indicate the relative importance of individual values

within the clauses of a negotiation. Take, for example,

the following simplistic scenario:

Clause required between 0 – 100

A priority slider bar can indicate the importance of

this clause to the negotiating client; however, it cannot

give an indication of whether the user treats all

possibilities within that clause range with equal

acceptance. Is a 0 better than a 100, or vice versa etc.

This type of information could be implemented by users

merely indicating their range boundaries from least to

most acceptable at all times; thereby giving coarse

grained information regarding the acceptability flow.

However this simplistic solution still does not address

the issue of acceptability of values within a given range.

In many real world situations the levels of acceptability

would not necessarily follow a linear flow, but perhaps a

curved one. Below are examples of curves that could

represent a user’s wishes; to the left a situation where

acceptability increases exponentially across a range; to

the right, the opposite:

Fig 3: Curved acceptability ranges

There are effectively an infinite number of basic

curves that may represent user’s preferences. It is also

possible users preferences will follow a normal curve

like the one shown below in fig 4:

A normal curve would represent a common situation

in the negotiation of a product. The user has a preference

for a specific subset of values within a wider range of

possibilities, in line with the economic theory of

satiation.

Preset acceptability curves that the user can select, are

a useful facility to enable the user to make a quick

decision. A number of basic types can be defined,

borrowing from the linear, quadratic curve and normal

distributions. However, it is also important that any

given acceptability distribution be inputted if that were

the users wish. This could be achieved by allowing the

user four basic controls in the creation of their own

customisable acceptability curve.

TRANSACT has implemented a user definable

graphical representation of acceptability over a range

allowing the reproduction of any single oscillatory

acceptability graph through the manipulation of four

controls (Left edge, Right edge, Protrusion vertical

height and Protrusion horizontal orientation). Fig 5

shows a screen shot of the tool:

Fig 5: Acceptability rating manipulation

3.2 Trade-off support

The input mechanisms above are adequate for the

inclusion of basic user requirements. However, they

cannot capture more complex domain specific

information, which the user may wish to express. This

input can be provided through the implementation of

logic rules / production rules.

Tradeoff rule input is used to enter any specific

interdependencies into the system prior to negotiation.

The format uses keywords, values and numbers,

structured to avoid ambiguity in the processing of user

instructions. TRANSACT makes use of the rules to

dynamically change the base values for clauses,

importance etc, during negotiation. The list of currently

supported keywords is listed below.

Acceptability

100%

Value of factor

Lower bound Upper bound

Acceptability

Value range

Acceptability

Value range

Fig 4: Normal acceptability ranges

IF Test whether something has occurred

THEN Do something specific based on IF

> To specify something should be greater

than a given value

< To specify something should be less

than a given value

= To specify something should be a

certain value

AND Link between two arguments

UpperBound By changing the upper bound of a

numerical clause the negotiation

strategy can be changed dynamically

LowerBound See above.

Weight Used to raise and lower the

importance of the given clause in

calculations

In many production rule systems brackets are used to

avoid ambiguity caused by statements like:

IF A > B OR B < C AND E > F THEN…

Thus:

IF (A > B OR B < C) AND E > F THEN …

However by restricting the user to AND statements

only, ambiguity can be avoided. It is possible to

approximate most rules using AND / OR with one of

more rules using AND. This also has the advantage of

making the format of the logic rules considerably easier

to learn. The number of different permutations for

bracketing also makes the creation of a recursive parser

highly complex. To ensure rules can still be implemented

without the OR keyword it is necessary to make sure that

all rules can only be applied once. For example:

If A > B THEN A.Weight +40%

The above example appears relatively innocuous,

however, if applied iteratively, for example several times

during a single negotiation, problems would emerge.

Rather than using a relative increase as the basis for a

rule of this type, the rule can be rewritten to restrict it to

only apply a single time; see below:

IF A > B THEN A.Weight = 40%

No matter how many times this rule is executed its

effect is predictable and constrained. Though it can be

argued that the rule is less powerful in this form, it is still

likely to be sufficient for the types of rules input by the

user. The use of rules that are unaffected by multiple

implementations also allow the elimination of the OR

statement thus:

IF (A>B OR B<C) AND E > F THEN A.Weight= 40%

Thus:

IF A > B AND E > F THEN A.Weight = 40%

IF B > C AND E > F THEN A.Weight = 40%

The down side of this type of rule creation is the use

of multiple rule lines, but in doing so makes them

considerably easier to learn, validate for acceptability,

and parse internally.

A further example of rule construction can be seen

below:

IF Downtime > 10 AND User_Notification_Fail = “No”

THEN Cost UpperBound = 55

If the downtime is greater than 10% of the contract

time, and the user is not informed directly of system

failure, then the upper boundary for the contract cost

could be reduced to £55, presumably from some greater

figure. Notice that denominations (£, $ etc) are not

specifically used within the rules to avoid processing

problems, but are instead made clear in the clause

description.

3.3 Decision making

Each contract offer consists of a number of clauses

and values. For each round of the iterative negotiation

cycle these clauses need to be individually analysed for

acceptability, to determine the extent to which changes

may be required in future iterations. A given number of

them can then be changed for the next iteration. Firstly

the logic rules are applied, which can have considerable

effects on the negotiation strategy taken for the next

iteration. The analysis of clause values then occurs, as a

three stage process, described in detail below; following

this is an explanation of how cost can be associated with

the clause values, and finally how the compromise

position evolves:

Stage 1 – Determination of a clauses current

percentage

 For textual clauses there is a simple rating of

either 100% if matched to what the user

specified or 0% if it didn’t

 For numeric clauses, the value depends on the

position of the value within the range following

a simple formula for calculation of position

within a given range:

 (Value – Lower Range)

(Upper Range - Lower Range)

* 100

For example:

Upper Range = 120

Lower Range = 40

Value = 80

Stage 2 – Acceptability adjustment: Model

Given the acceptability graphs the user defined prior

to the start of negotiation, the acceptability of a given

value within a bounded range can be extracted by

calculating the intersection of a value with the curve. For

example:

User bounds 20 – 80

Value 50

In this simple case, the intersection of the value 50

and the curve would be 100% acceptability. A value like

40 would probably be around the 75% mark and so on.

Stage 3 – Prioritisation & ranking

The values determined in the previous section have

now been adjusted for their formula model. At this point,

it is necessary to take into account the priorities that have

been attributed to the different clauses by the user

(through use of the slider bars). Once this has been

achieved, decisions as to the urgency for change in each

clause for the next negotiation iteration can be made

from the current clause rankings. The priority data is

applied through the following formula:

The formula was developed largely through

experimentation, and is designed to provide a suitable

ranking, where a higher value elicits greater importance

for change; effectively adjusting the acceptability value

for priority. For example:

Clause A 40% stage 2 Bias 20% = 12

Clause B 40% stage 2 Bias 30% = 18

Clause C 20% stage 2 Bias 5% = 4

Clause D 80% stage 2 Bias 45% = 9

Notice that clause B is more important than clause A.

Therefore, it proves more important to modify next time

around. Clause D is the most important of all, but may

not be changed next time around due to the very high

level of acceptability in the current offer. The results

therefore show that in the next iteration of negotiation

changes should be made reflecting the fact that the rank

of acceptability is: B-A-D-C.

Defining cost

As the reader may have gathered from the previous

sections, TRANSACT is built upon an economic model

of service interaction for grid resources. This means that

a given contract offer is made up of a number of distinct

clauses which have an associated cost. The cost clause

itself is generic and could be represented in a number of

different ways from euros to usage quotas. Cost is only

bartered indirectly in the TRANSACT model. It is

calculated from the values of the clauses in the

negotiation. For example, given:

Clause A = 40 elicits 50% acceptability

Clause B = “yes” elicits 100% acceptability

Given a cost clause ranging from 0 – 100 the input

above would set the price at:

 50 + 100 = 75 (Simple average calculation)

Thus, the negotiator recognises the concept of value

for money. The actual calculation is slightly more

complex than this as it has to take into account the

importance of the given clauses, and the way in which

the clauses are combined to provide an associated cost.

Changes for the next iteration

TRANSACT attempts to improve the compromise

position by improving a number of clauses each iteration

based on the urgency for change, calculated using the

three stage process above. The size of change for a given

field depends upon how far from optimum a given clause

is, and also on the aggressiveness of the negotiating

client.

4 Evaluation

 Other research completed in this area has so far

concentrated on the theoretical possibilities of automation

in negotiating systems rather than the construction of

prototypes, which has made evaluation a non-trivial

problem. In order to gauge opinion, and to gain

80 - 40

120 - 40
* 100 = 50 %

((100 - Stage 2)* Priority) /100

200

Acceptability

Value range 20 80

Height indicates

acceptability

Fig 6: Acceptability calculation

information regarding possible improvements to the

prototype, a number of real world scenarios have been

constructed. These stem from real problems and have

been gathered from, amongst others Epidemiological

studies, through consultation with members of the

statistical departments of Lancaster and Manchester

universities. The results of these scenarios are too

complex for inclusion in this paper; however, a number of

general observations could be drawn. The evaluation

showed that the sensitivity of the controls on the

prototype was too high; something which has now been

addressed. Also, more importantly, that further research

is required to develop more advanced honing algorithms

and techniques for examining the negotiation problem

space more effectively in the search for pareto-optimal

solutions.

5 Future work

Future work on TRANSACT will look at the

constructs necessary to provide standardised term

definition including the possibilities for ontology

creation. Examining the possibilities for participation in

future standardisation processes for QoS is an objective

of the project at this time. There is also still a

considerable amount of testing required to balance the

various controls and formulas used to enable automated

negotiation.

6 Conclusions

In conclusion this paper has provided an overview of

the automated negotiation domain. In doing so it has

outlined a possible design for a solution based on

standardised core web technologies including XML and

SOAP. In addition, preliminary overviews of the

implementation are provided in order to give some

flavour of the interactions seen when utilising the

prototype, and in turn, the actions it takes in negotiation.

The paper has also provided information regarding

future work, and evaluation of the prototype.

Acknowledgements

I would like to thank the UK Engineering and

Physical Sciences Research Council, grant number

GR/M52786 and the Dependability Interdisciplinary

Research Collaboration (DIRC).

References

[1] SECSE consortium

Project Webpage: http://secse.eng.it
[2] Aldus

ALDUS (1992). The ALDUS project: Artificial

Legal Draftsman for Use in Sales, ESPRIT

Commission

[3] VO development

Katzy R. Bernhard D. Design and Implementation of

Virtual Organizations.

http://portal.cetim.org/file/1/67/Katzy-1998-Design-

and-Implementation-of-Virtual-Organizations.pdf

[4] 3rd Party Monitoring

D. Xu, K. Nahrstedt, and D. Wichadakul. Qos-aware

discovery of wide-area distributed services.

Proceedings of the First IEEE/ACM CCGrid2001,

2001. http://citeseer.ist.psu.edu/xu01qosaware.html

[5] VO Vision

Cueni T. Virtual Organizations - the next Economic

Revolution. http://www.nubix.ch/vo/virtual.pdf

[6] UN/CEFACT

UN/CEFACT Applied Technology Group (ATG)

http://www.disa.org/cefact-groups/atg/index.cfm

[7] DIRC

DIRC, QoSOnt development

http://digs.sourceforge.net/

[8] eMediator

Sandholm T. eMediator. A Next Generation

Electronic Commerce Server. Conf proceedings,

International conference on autonomous agents.
http://citeseer.ist.psu.edu/60365.html

 [9] SNAP

Czajkowski K, Foster I, Kesselman C, Volker S,

Tuecke S. SNAP: A protocol for negotiating service

level agreements and co-ordinating resource

management in distributed systems.

http://www.isi.edu/~karlcz/papers/snap-lncs-

25370153.pdf

[10] CNP

 Sandholm T. An implementation of the Contract

Net Protocol based on marginal cost calculations.

In Proceedings of the National Conference on

Artificial Intelligence (AAAI), Washington, D.C.,

July 1993.
[11] PKI

RFC 2459 Internet X.509 Public Key Infrastructure

http://www.ietf.org/rfc/rfc2459.txt

[12] QoSOnt

EuroMicro2005 Lock R, Dobson G, Sommerville I.

QoSOnt: A QoS Ontology for

Service-Centric Systems. Conference Proceedings,

Porto, Portugal, 31st August - 3rd September 2005.

ISBN: 0-7695-2431-1

