
 
 
 

This item was submitted to Loughborough’s Institutional Repository by the author 
and is made available under the following Creative Commons Licence conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288383904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A formal development framework and its use to manage software production 
Cooke, J.; Stone, R. 
Tools and Techniques for Maintaining Traceability During Design, IEE Colloquium on 
Volume , Issue , 2 Dec 1991 Page(s):10/1 - 

 
 

A Formal Development Framework and its use to Manage Software Production 
 

John Cooke and Roger Stone 
 
Summary 
 
Within an ESPRIT project called FORMAST the authors devised the concept of a ƒorm to 
bring together all aspects of the development of a 'module' (i.e. specification, design and 
verification) within a distributed asynchronous system. The use of ƒorms can be extended 
to other compositional system development scenarios. Using ƒorms in a top-down fashion 
means that the logical interaction between the modules already designed and the formal 
specifications of modules required to complete the implementation can readily be 
ascertained. Moreover, this can be done at any stage of development. Thus one can 
maintain an overall view of the entire system design and use this to monitor the progress 
of program construction. This then provides a notion of traceability from a management 
standpoint. 

___ 
 

 
The development of software by the use of formal methods guarantees traceability of 
(functional) requirements from the original specification through refinement to the final 
acceptable executable code. This is achieved either by the use of transformations, or by 
'invention' and the discharge of appropriate proof obligations. Although formal methods 
do not dictate a particular strategy, it is natural to proceed in a hierarchical fashion and 
typically there is no executable code produced until a significant fraction of the project 
period has elapsed. This is of concern to management because traditional programming 
productivity has often been measured by the number of lines of code produced each day 
and, once under way, the rate of production is expected to be more or less linear. 
 
Within an ESPRIT project called FORMAST we devised the concept of a ƒorm to bring 
together all aspects of the development of a module (i.e. specification, design and 
verification) within a distributed asynchronous system. The use of ƒorms can be extended 
to other compositional system development scenarios. 
 
Using ƒorms in a top-down fashion means that the logical interaction between the 
modules already designed and the formal specifications of modules required to complete 
the implementation can readily be ascertained. Moreover, this can be done at any stage of 
development. Thus we can maintain an overall view of the entire system design and use 
this to monitor the progress of program construction. This then provides a notion of 
traceability from a management standpoint. 
 



The hierarchical development of software can be viewed as a tree, growing from the root, 
the original - high-level and non-algorithmic - specification by means of refinement steps 
to final code at the leaves of the tree. Essentially a ƒorm documents the development that 
takes place at the internal nodes of the tree. A ƒorm begins with a statement of the 
requirements of the associated sub system/program. Until a suitable design idea has been 
supplied, all we can do is use this specification as a logical 'stub' which can be used in 
prototyping and as a measure of 'work still to be done'. A completed ƒorm includes a 
design for the sub-system, its formal justification and, where appropriate, the 
specifications of any smaller components needed for its completion. 
 
To support such development there is a suite of CASE tools called ƒorm-tool. While 
these have been designed specifically for use by software engineering students, all the 
necessary management information is inherent within the system and the construction of 
a suitable interface would provide a simple and accurate monitoring tool for tracing 
(tracking) progress of software/system development. 
 
Department of Computer Studies, Loughborough University of Technology, 
Loughborough, Leics LE11 3TU 


