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Abstract 

The development of conceptual understanding in arithmetic is a gradual process and 

children may make use of a concept in some situations before others. Previous 

research has demonstrated that when children are given arithmetic problems with an 

inverse relationship they can infer that the initial and final quantities are the same (e.g. 

15 + 8 – 8 = ) .  However we don’t know whether children can perform the 

complementary inference that if the initial and final quantities are the same there must 

be an inverse relationship (i.e. 15 + – 8 = 15 or 15 + 8 – =15). This paper reports 

two experiments that presented inverse problems in a missing number paradigm to 

test whether children (aged 8 – 9) could perform both these types of inferences. 

Children were more accurate on standard inverse problems (a + b – b = a) than on 

control problems (a + b – c = d), and their performance was best of all on rearranged 

inverse problems (b – b + a = a). The children’s performance on inverse problems was 

affected by the position of the missing number and also by the order of elements 

within the problem. This may be due to the different types of inferences that children 

must make to solve these kinds of inverse problems.   

 

Keywords: Arithmetic, concepts, problem solving. 
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Investigating children’s understanding of inversion using the missing number 

paradigm 

Understanding of arithmetic essentially involves understanding of 

relationships – relationships among sets of numbers and relationships between 

operators. Thus, the development of arithmetical expertise involves not only learning 

to perform procedures accurately but also understanding the key concepts and 

principles that underlie these procedures. Early theories of arithmetic development 

suggested that understanding of arithmetic concepts may develop independently from 

learning arithmetic procedures and debated which developed first (e.g. Briars & 

Siegler, 1984; Riley, Greeno, & Heller, 1983). This led to attempts to establish the 

ages at which children understood particular concepts and could use certain 

procedures (e.g. Baroody & Gannon, 1984).  More recently there has been an 

acknowledgement that the development of conceptual understanding may be more 

gradual and closely related to advances in procedural skill.  

The iterative model of arithmetic development (Byrnes, 1992; Byrnes & 

Wasik, 1991; Hiebert & Wearne, 1996; Rittle-Johnson & Alibali, 1999; Rittle-

Johnson & Siegler, 1998; Rittle-Johnson, Siegler, & Alibali, 2001) proposes that 

conceptual knowledge and procedural knowledge of arithmetic develop together. 

Advances in one type of knowledge can lead to advances in the other, which may then 

allow further development of the first. Thus, there is a bidirectional, causal 

relationship between the developments of each type of knowledge (Rittle-Johnson et 

al., 2001). As a result, children may have partial knowledge of concepts and 

procedures, which at first may not be integrated (Bisanz & LeFevre, 1992; Carpenter, 

1986). Therefore, at any point in time it will be inappropriate to attempt to judge 
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whether children do or do not ‘have’ conceptual or procedural knowledge of a 

domain. 

In keeping with this model, two theories of conceptual development have 

emphasized the gradual development in understanding of arithmetic concepts. 

Vergnaud (1982, 1990, 1997, 1998) introduced the idea of conceptual fields as a 

means to describe the nature of conceptual knowledge and how it drives problem 

solving in mathematics. When learning mathematics, children acquire different 

properties of the same concept, or apply the same concept in different situations, over 

a long period of time. Some aspects of a concept may be mastered many years before 

others. He proposed that it is therefore important to consider the range of situations to 

which mathematical concepts are relevant. By examining these situations and the 

different knowledge that is required, we can explain why children find certain 

problems more difficult than others.  

Baroody (Baroody & Ginsburg, 1986; Baroody & Tiilikainen, 2003) draws on 

the concept of a schema as an important knowledge structure. Children’s schemata for 

different concepts develop from being example-driven and context-bound to being 

principle-driven, generalized and abstract. This series of weak and progressively 

stronger schemata mean that at any stage children’s understanding of arithmetic 

principles is not all-or-none. Some aspects of a concept may be developed but not 

others. Both these theoretical approaches consider conceptual knowledge to play an 

integral role in driving problem solving. Furthermore, children acquire understanding 

of concepts in a piecemeal fashion and they may be able to make use of certain 

aspects before others.  

This leads to the question of what it means to ‘understand’ a concept. Bisanz 

and LeFevre (1992) propose a framework that emphasizes the need to consider the 
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situation in which understanding is assessed. Children may show understanding of a 

concept in one context but not another and these discrepancies can reflect potentially 

important differences in processes or representations. If children only demonstrate 

application of a procedure for one situation then this may possibly reflect rote 

learning, however successful performance on a range of problems indicates greater 

generality and possibly greater understanding. Within this framework, understanding 

is considered in terms of a profile of performance across a range of contexts, rather 

than performance on a single type of problem. Development can be represented as a 

sequence of profiles or spread of understanding across contextual space. This 

framework can be useful in capturing the subtle changes in children’s understanding 

of a concept over development.  

One of the most important concepts that children must grasp as they learn 

arithmetic is the inverse relationship between addition and subtraction. This is a key 

principle in arithmetic and underlies a number of other concepts and procedures. For 

example, the inverse relationship between addition and subtraction is a key aspect of 

additive composition. Also, understanding this relationship lessens the task of 

learning addition and subtraction number combination facts as children need only 

learn half of them and then can use their understanding of inverse relations to infer 

subtraction facts from addition, or vice-versa. It has thus been proposed that until 

children understand this relationship they cannot be said to fully comprehend addition 

or subtraction (Bryant, Christie, & Rendu, 1999; Piaget, 1952; Piaget & Moreau, 

1977/2001; Vilette, 2002).  

One way to test whether children understand the inverse relationship is to 

examine their performance on problems that involve inverse transformations. Some 

children can solve inversion problems (a + b – b = ) by applying a conceptually 
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based shortcut (i.e. responding ‘a’ directly) without performing successive 

computations (Bisanz, LeFevre, & Gilliland, 1989; Bryant et al., 1999; Gilmore & 

Bryant, in press; Rasmussen, Ho, & Bisanz, 2003; Siegler & Stern, 1998; Stern, 

1992). Children who are aware that adding and then subtracting the same number will 

leave the original quantity unchanged, will be able to solve problems like this quickly 

and accurately by responding with a, without the need for computation. Alternatively, 

if children attempt to solve these problems by calculation, they are probably unaware 

of the inverse relationship and unable to use it to solve problems. Thus, if we give 

children problems that are difficult to solve by computation, then accuracy will be low 

and response times long when they solve these by calculation rather than the shortcut 

(Rasmussen et al., 2003).  Therefore, if solutions are faster and more accurate for 

inverse problems (a + b – b = ) than control problems, which must be solved by 

computation (a + b – c = ), this implies that children have made use of the 

conceptually-based shortcut which reveals they must understand the inverse 

relationship between addition and subtraction. Use of the conceptually-based shortcut 

does not, however, necessarily imply conscious awareness of this relationship. 

We know that some children can make use of this principle from an early age. 

Children aged 6 – 11 years were found to be faster at solving inverse problems (e.g. 

4 + 5 – 5 = ) than matched control problems (e.g. 4 + 5 – 7 = ) (Bisanz et al., 1989). 

If problems are presented in a supportive context some children who are even younger 

are able to make use of the inverse principle. Bryant et al. (1999) used blocks to 

present problems and found evidence of children making use of the principle from 

about the age of 5- or 6-years. In this study it was demonstrated that children’s 

understanding of inversion appears to be in the full quantitative sense and not on the 

basis of identity. Children scored higher for inverse than control problems whether 
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they were presented by adding and removing the same blocks or by adding and 

removing the same number of different blocks. 

Children’s understanding of inversion, however, is patchy. In previous studies 

only a subset of children used the inversion shortcut and they did not consistently 

apply the shortcut on all problems in which it would be appropriate. Only a quarter of 

the youngest children (aged 6) in the study by Bisanz et al. (1989) were users of the 

inversion shortcut, and this proportion did not substantially increase until the age of 

11.  Older children used the principle more extensively than younger children did, but 

they still did not do so in all possible situations. In a study by Rasmussen et al. (2003), 

only half the concretely presented inverse problems were solved correctly by pre-

schoolers, and three-quarters by children in Grade one.  

The conditions under which problems are presented (for example in mixed or 

separate blocks) has also been found to affect use of the shortcut, with children aged 8 

to 10 years making more use of the inverse shortcut if inverse and control problems 

were presented in separate blocks (Stern, 1992). Finally, children may initially make 

unconscious use of the principle before being able to verbalize how they are doing so 

(Siegler & Stern, 1998). So, while there is evidence that children do understand this 

principle and can make use of the conceptual shortcut, they do not do so in all 

appropriate situations.  

All of the previous studies of inversion have only assessed children’s 

performance on canonical problems in which the sum was missing (a + b – b = ).  

However, as highlighted above conceptual development is not all-or-none and we 

therefore need to examine children’s understanding of inversion in different situations 

to reveal their profile of performance across a range of problem types. The important 

question is not whether children understand inversion but how well they can use it in 
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various situations.  If children are able to use the inverse principle flexibly across a 

range of situations then this will suggest that their understanding of this concept is 

fully developed and has become abstract and generalisable (Rittle-Johnson et al., 

2001). Alternatively if children are able to recognize and take advantage of the 

inverse relationship more easily for some problem situations than others then this will 

suggest that their understanding of this concept is still developing and may reveal 

which aspects of the concept develop earlier than others. As Vergnaud (1997) 

highlighted, by examining the knowledge required in different problem situations we 

can explain why children find some problems more difficult than others. 

There is a much wider range of problems which involve inverse relations than 

have been previously used and these may pose different challenges to children. In 

particular we can vary the position of the missing number in inverse problems (e.g. 

a + b – b = ; a + b – = a; a + – b = a; + b – b = a). If children have a complete 

understanding of the principle, they should be able to apply it even to problems which 

do not take the standard canonical form. So if children can use the inversion principle 

consistently and flexibly, they should do better on inverse problems such as 15 + 8 –

8 = ; 15 + 8 – = 15; 15 + – 8 = 15; + 8 – 8 = 15 than on equivalent problems 

such as 14 + 9 – 5 = ; 14 + 9 – = 18; 14 + – 5 = 18; + 9 – 5 = 18, to which the 

inversion principle could not be applied and which therefore have to be solved by 

straight computation. 

Crucially, varying the position of the missing number in inverse problems 

allows us to distinguish two different classes of inverse problems. For problems with 

either the ‘a’ term or the sum missing (e.g. standard canonical problems a+ b – b = ; 

or those with the missing number in the first position + b – b = a) children are given 

the information that the ‘b’ terms cancel each other out (i.e. the inverse relationship) 
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and they have to infer that the unknown is therefore equal to ‘a’. In contrast for 

problems where the missing number is either the ‘+b’ or ‘-b’ term (a+ b – = a; 

a+ – b = a) children are given the information that the final sum is equal to ‘a’ and 

they have to infer that the remaining elements cancel each other out and therefore that 

the unknown is equal to ‘b’ (i.e. infer the inverse relationship). Thus the premise of 

one type of problem is the inference in the other and vice-versa. 

Previous work considering children’s performance on canonical problems has 

only tested children’s ability to perform the first type of inference. We need to present 

inverse problems within a missing number paradigm in order to test children’s ability 

to perform the second type of inference. These two inferences are related but different 

aspects of the concept of inversion. If children have reasonably thorough 

understanding of the inverse relationship between addition and subtraction then we 

would expect that they would be able to perform both these types of inference. 

However, the second type of inference is a potentially more complex aspect of the 

concept. Children might quite often experience situations where an addend and 

subtrahend cancel each other out and the result is no change. They should, as a result, 

be reasonably able to infer that there is no change when they are given the information 

that the addend and subtrahend have the same number. However, it is unlikely that 

they often have to infer that the addend and subtrahend must have been the same 

when the starting point and the final sum are equal. Thus a tentative prediction is that 

children will find the second type of inference more difficult than the first. Previous 

work has not presented children with problem situations requiring both types of 

inferences and so children’s ability to perform this second type of inference has never 

been tested.   
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A further manipulation that will allow us to test children’s ability to use the 

concept of inversion in different situations is to vary the way that problems are 

presented. Arithmetic problems may be framed in abstract digit format (e.g. 5 + 9 =) or 

a more context-rich story format (e.g. John had 5 marbles, then he was given 9 more 

marbles, how many marbles does he have now?). It is possible that children will be 

more likely to recognize and take advantage of inverse relationships when more 

context is provided. This effect may furthermore interact with the type of inverse 

situation determined by the position of the missing number. The advantage of added 

context may be greater for inverse situations that children find more difficult to 

recognize.  

We know from previous work that the position of the missing number is one 

factor that affects children’s performance in standard arithmetic problems (Carpenter 

& Moser, 1982; de Corte & Verschaffel, 1987; Grouws, 1972; Lindvall & Ibarra, 

1980; Nesher, 1982; Riley, et al., 1983; Verschaffel & de Corte, 1997; Weaver, 1971). 

Children find problems with the missing number in the first position (e.g. + 2 = 11) 

more difficult than those with the missing number in the second position (e.g. 

7 + = 13), which are more difficult than standard canonical problems with the 

answer missing (e.g. 5 + 9 = ).  We do not know whether the effects of varying the 

position of the missing number will be an important factor in determining children’s 

success on arithmetic problems that can be solved using a conceptually-based 

shortcut.  

This paper presents the results of two studies that were carried out to examine 

the effect of varying the missing number on children’s performance on inverse 

problems. The missing number paradigm has never been applied to the study of 

children’s use of the inversion principle. Children aged 8 – 9 were given inverse and 
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control problems within a missing number paradigm. In the first study the effect of the 

missing number was examined in standard and inverse problems and for problems 

presented in digit or word form. In the second study the effect of varying both the 

order of elements in the problem, and the position of the missing number, was 

examined in more detail for digit problems.   

Experiment 1 

Method 

Participants. Forty-nine children (20 boys and 29 girls) from a state primary 

school took part in the study. They were from two parallel Year 4 classes with mean 

age 9 years 1 month and SD 3.3 months. All participants spoke English as their first 

language and no child had a statement of special educational needs. 

Design and materials. A within-subject design with three factors was used. 

The first factor was the type of problem (inversion or control); the second factor was 

the type of presentation (word or digit); and the final factor was the position of the 

missing number (first, second, third or fourth).  

Children were presented with 64 four-element problems (a + b – c = d) on a 

laptop computer. There were 32 different mathematical problems, each presented in 

both digit and word format. In each problem, one of the numbers was missing and the 

child was asked to supply it (e.g. digit problem with missing number in position 2: 

13 + – 9 = 13; word problem with missing number in position 1: ‘Daniel had some 

cards, he found 7 more and then lost 7. At the end he had 13. How many did he have 

to start with?’). All of the word problems were from the semantic category of Change 

problems (Carpenter & Moser, 1982). This ensured that children’s performance would 

not be affected by the semantic structure of the problems.   
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 Half of the questions were inversion problems (where b = c and a = d; e.g. 

16 + 14 – = 16) and these were matched with a control problem that had the same 

missing number (e.g. 18 + 9 – = 13). A subset of eight control problems had a 

repeated number in the problem (i.e. a = b or c = d; e.g. 16 + 16 – = 24). This was to 

check whether the children had adopted a response strategy of responding with the un-

repeated number on inversion problems (e.g. responding ‘9’ for 13 + – 9 = 13) 

without fully understanding inversion. If this were the case, then it could artificially 

inflate the inversion effect. This strategy could be identified, however, because it 

would also lead to characteristic errors on this sub-set of control problems (e.g. 

responding ‘7’ for 11 + 11 – 7 = ). 

The word problems were presented with images illustrating an aspect of the 

question with the word problem written underneath. The digit problems appeared in 

the center of the screen with an empty box in place of the missing number. Table 1 

shows a set of matched inverse and control problems in word and digit format with 

the missing number in each position. 

Insert Table 1 About Here 

 Procedure. The participants were tested individually in three sessions. The 

questions were split into three groups and ordered randomly with the following 

restrictions: half of the problems in each session were word and half digit 

presentation; half of the problems in each session were inverse and half control 

problems; there was a maximum of three consecutive inverse or control problems; 

there was a maximum of three consecutive word or digit problems. The order in 

which the sessions were completed was counterbalanced across participants in a Latin 

square. 
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The task was introduced as a numbers game in which the participants had to 

work out the missing number. At the beginning of each session there were four 

familiarization / practice trials which were all control problems. Half of these 

involved word presentation and half digit presentation. In each trial the experimenter 

read the question aloud twice before the child responded. The children were given 

positive encouragement without any specific feedback throughout. 

Results 

The aim was to discover the effect of problem type, position of the missing 

number and presentation format on the accuracy of participants’ responses. Initial 

analyses revealed that there was no effect of either session order or sex and so these 

factors were removed from the analysis. A three-way repeated-measures analysis of 

variance was used to compare performance across the conditions. The three factors 

were problem type (inverse, control), presentation (digit, word) and position of the 

missing number (1, 2, 3, 4). The measure of performance was the proportion of 

correct responses to each problem type. 

There was a highly significant problem type effect (F(1,48) = 150.011, p < 

0.001, ηp
2 = 0.758): accuracy was higher for inverse than for control problems. This 

effect was constant across both types of presentation and for all problems regardless 

of the position of the missing number. So the children used the inversion principle in 

non-canonical as well as in canonical problems.  

A subset of control problems were included that involved a repeated digit (e.g. 

11 + 11 – 7 = ) to test whether children were using a superficial strategy of 

responding with the unrepeated digit. There was only a very low level of this 

characteristic type of error: only 0.8% of responses on this set of problems were errors 

of responding with the unrepeated number. This suggests that the more accurate 
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performance on inverse problems was not due to children employing this superficial 

strategy. 

There was an effect of the position of the missing number on children’s 

performance (F(3,46) = 79.848, p < 0.001, ηp
2 = 0.839).  This effect was qualified by 

an interaction between the position of the missing number and problem type (F(3,46) 

= 8.909, p < 0.001, ηp
2 = 0.367). This interaction is demonstrated in Figure 1. There 

was a significant advantage for inverse problems over control problems with the 

missing number in each position, but the effects of the missing number were slightly 

different for inverse and control problems. Post-hoc comparisons with Bonferroni 

correction (all at p < 0.001) revealed that for inverse problems accuracy was 

significantly lower for problems with the missing number in Position 1 (mean = 

0.513) than in Position 2 (mean = 0.691) and accuracy was significantly lower for 

problems with the missing number in Position 2 than in Position 3 (mean = 0.806). 

There was no difference in accuracy for problems with the missing number in Position 

3 or in Position 4 (mean = 0.870). In contrast, for control problems accuracy was 

lower for problems with the missing number in Position 1 (mean = 0.153) and in 

Position 2 (mean = 0.189) than for problems with the missing number in Position 3 

(mean = 0.482) and in Position 4 (mean = 0.518). But there was no difference in 

accuracy between problems with the missing number in Position 1 or in Position 2 or 

between problems with the missing number in Position 3 or in Position 4.   

Insert Figure 1 About Here 

There was no significant difference between word and digit presentation 

overall (F(1,48) < 1). However there was an interaction between presentation format 

and the position of the missing number (F(3,46) = 5.566, p = 0.002, ηp
2 = 0.266). 

There was no difference in performance between digit and word problems with the 
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missing number in Position 1 (F(1,48) < 1), Position 3  (F(1,48) = 1.427, n.s.) or 

Position 4 (F(1,48) < 1). On the other hand, for problems with the missing number in 

Position 2, performance was better with word presentation (mean = 0.487) than digit 

presentation (mean = 0.393; F(1,48) = 7.326, p = 0.009, ηp
2 = 0.132).  

Discussion 

 Children’s responses were more accurate for inverse than control problems 

regardless of the position of the missing number. This reveals that children were 

making use of the inverse shortcut to solve inverse problems with the missing number 

in different positions. The children were more accurate on inverse than control 

problems both when they were given information about the inverse relationship (+b-

b) and they had to infer that the unknown was equal to ‘a’ and when they were given 

the information that the sum and ‘a’ term were equal and they had to infer the inverse 

relationship. Thus it appears that children are able to perform both these types of 

inferences. The relative difficulty of performing these two types of inferences 

interacted with the position of the missing number. Children were better at the first 

type of inference than the second with the sum missing but worse with the ‘a’ term 

missing. 

The way that problems were presented did not have a great effect on children’s 

performance. There was an advantage of using word problems but only when the 

missing number was in Position 2. The mixed effect of word problem format may be 

due to an interaction between positive and negative effects. Children may be aided by 

word problems as they provide more contextual information. However, at the same 

time these problems make more verbal and semantic demands than numerical formats. 

Thus the combined effect of these two factors may lead to no overall advantage of 

word over digit format. The relative costs and benefits of using word problems may 
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differ across the different problem situations (i.e. with the missing number in different 

positions) and thus the interaction between missing number and presentation may 

occur because the benefits outweigh the costs only for the situation where the missing 

number is in Position 2. 

The relatively slight benefit of the addend context inherent in word problems 

may be in part due to the use of change word problems (e.g. Joe had 3 marbles. Then 

Tom gave him 5 more marbles. How many marbles does Joe have now?). Word 

problems with this structure are psychologically non-commutative (de Corte & 

Verschaffel, 1987). Children may therefore be reluctant to change the order of 

elements in these problems and thus may not use their understanding of inversion. On 

the other hand, combine word problems (e.g. Joe has 3 marbles. Tom has 5 marbles. 

How many marbles do they have altogether?) are psychologically commutative and so 

children may be more prepared to change the order of the elements. Therefore greater 

benefits of using word problems may be found if the problems have a combine rather 

than change structure.  

The position of the missing number affected performance for both inverse and 

control problems. Children were more hampered in using the inverse shortcut to solve 

problems with the missing number towards the start of the sum. The position of the 

missing number had a similar effect for both inverse and control problems. For both 

types of problem, accuracy was higher with the missing number closer to the end of 

the sum. Although there were slight differences in where the significant differences 

lay, the pattern of means were the same. Thus, although the children were using 

different processes to solve the inverse and control problems (namely the inverse 

shortcut and computation respectively) these processes were similarly interrupted 

when the missing number was in a non-canonical position. 
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 There are two factors that may lead to children’s difficulties on inverse 

problems with the missing number towards the start of the sum. It may be the position 

of the missing number that causes these difficulties or alternatively the status of the 

missing number may be the important factor.  

Each element in inverse problems (a + b – b = a) plays a different role. When 

the unknown element is varied for inverse problems, it is not only the position of the 

missing number that changes but also the status of the missing number. In the 

problems used so far, these factors have been confounded. For example, if we 

compare children’s performance on inverse problems with the missing number in 

Position 1 or 2, then we are actually comparing a problem with the ‘a’ term missing in 

Position 1 to a problem with the ‘+b’ term missing in Position 2. We need to use a 

wider variety of inverse problems to separate these effects. Experiment 2 was carried 

out to examine children’s performance on problems that allow the effects of these 

factors to be separated.    

Experiment 2 

 Experiment 2 was carried out to investigate whether the position of the 

missing number or the status of the missing number in an inverse problem was 

important in determining its difficulty. The type of inversion problems used in 

Experiment 1 and all previous studies (i.e. a + b – b = a) is not the only type of problem 

to which the inversion shortcut is applicable. The order of elements in the problem 

can be rearranged (e.g. b – b + a = a). These problems can also be solved either by 

repeated computation, or by applying a shortcut based on the inverse principle.  

 We can use these two types of inverse problem to discover whether the effects 

of the unknown are due to the position or the status of the missing number. If the 

effects were due to the position of the missing number then we would expect children 
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to find the problems with the first element missing the most difficult for both original 

and rearranged problems (i.e. + b – b = a and – b + a = a). If, however, the effects 

were due to the status of the missing number, then we would expect children to have 

the most difficulties when the ‘a’ term was missing, regardless of its position (i.e. 

+ b – b = a and b – b + = a).  

 Children’s use of the inversion shortcut on problems with the order b –

b + a = a  has not been previously examined. This experiment will also demonstrate 

whether children can apply the shortcut to the same extent on this new type of 

inversion problem as on inversion problems that have been previously used (a + b –

b = a).  

Method 

Participants. Fifty-one children (26 boys and 25 girls) took part in the study. 

They were from Year 4 classes with mean age 9 years 5 months and SD 3.5 months. 

All participants spoke English as their first language and no child had a statement of 

special educational needs. 

Design and materials. A within-subject design with three factors was used. 

The first factor was the type of problem (inversion or control); the second factor was 

the order of elements (standard or rearranged); and the final factor was the position of 

the missing number (1, 2, 3, 4).  

Children were presented with 48 four-element problems on a laptop computer. 

All the problems were in digit format and appeared in the center of the screen with an 

empty box in place of the missing number. Half of the problems were inverse and half 

were control problems. Of these, half were in standard order (a + b – b = a and a + b –

c = d) and half were in the rearranged order (b – b + a = a and b – c + a = d). There were 

equal numbers of problems with the missing number in the first, second, third and 
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fourth position. Thus the children completed three examples of each problem type. 

Examples of the different problem types can be found in Table 2. 

Insert Table 2 About Here 

Procedure. The participants were tested individually in two sessions. The 

questions were split into two groups so that there were equal numbers of inverse and 

control problems, standard and rearranged problems, and problems with the missing 

number in each position in each set. The order in which the sessions were completed 

was counterbalanced across participants. The problems were presented in a different 

random order for each participant. 

The task was introduced as a numbers game and participants were asked to try 

to work out the missing number. At the beginning of each session there were two 

familiarization / practice trials to introduce children to the problem format. The 

experimenter read the question aloud twice before the child responded. The children 

were given encouragement without any specific feedback throughout. 

Results 

Different analyses were carried out to investigate the effects of (a) the position 

and (b) the status of the missing number.  

Performance compared by the position of the missing number.  

The accuracy of children’s solutions was examined by comparing performance 

on standard and rearranged inverse problems and control problems according to the 

position of the missing number. This analysis is demonstrated in Figure 2. A three-

way repeated-measures analysis of variance was used to compare performance across 

the conditions. The three factors were problem type (inverse, control), element order 

(standard, rearranged) and position of the missing number (1, 2, 3, 4). Initial analyses 

revealed that there was no effect of either session order or sex and so these factors 
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were removed from the analysis. The measure of performance was the proportion of 

correct responses to each problem type.  

Insert Figure 2 About Here 

There was a main effect of problem type (F(1,50) = 140.388, p < 0.001, ηp
2 = 

0.737) with higher accuracy for inverse (mean = 0.675) than control (mean = 0.354) 

problems. The children were again more accurate for inverse than control problems 

regardless of the missing number and the element order. This indicates that they were 

able to make use of the inverse shortcut to solve all of the different inverse problem 

types.  

There was also a main effect of element order (F(1,50) = 11.045, p = 0.002, 

ηp
2 = 0.181) with higher accuracy for rearranged (mean = 0.549) than standard (mean 

= 0.480) problems. This main effect was qualified by a significant interaction between 

problem type and element order (F(1,50) = 11.737, p = 0.001, ηp
2 = 0.190). Analysis 

of this interaction revealed that accuracy was significantly higher on rearranged (mean 

= 0.737) than on standard (mean = 0.613) inverse problems (F(1,50) = 26.126, p < 

0.001, ηp
2 = 0.343). However there was no effect of element order on control 

problems (F < 1). Thus, it seems that children were able to apply the inverse shortcut 

more effectively for inverse problems in rearranged order (b – b + a = a) than for 

standard inverse problems (a + b – b = a).   

Finally, there was a main effect of the position of the missing number (F(3,48) 

= 62.163 p < 0.001, ηp
2 = 0.795). Post hoc comparisons with a Bonferroni correction 

(all at p < 0.001) revealed that there was no difference in accuracy between problems 

with the missing number in Position 1 (mean = 0.333) and in Position 2 (mean = 

0.361). Accuracy was significantly lower for problems with the missing number in 

Position 2 than in Position 3 (mean = 0.626) and significantly lower for problems with 
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the missing number in Position 3 than in Position 4 (mean = 0.737). Importantly, the 

effects of the missing number were the same for standard and rearranged inverse 

problems. For both types of problem, children found those with the missing number in 

the first position the most difficult (i.e. + b – b = a and – b + a = a).  

In contrast to Experiment 1, the effects of the missing number were the same 

for inverse and control problems, and there was no difference in accuracy whether the 

missing number was in Position 1 or in Position 2, but there was a difference in 

accuracy between problems with the missing number in Position 3 and Position 4. 

Although the significant effects of the position of the missing number were not the 

same in Experiment 1 and 2, the same trend is shown in the pattern of means.   

This analysis revealed that the position of the missing number plays a role in 

determining the difficulty of inverse problems. This factor can account for children’s 

performance more consistently than the status of the missing number. The position of 

the missing number is not, however, sufficient to predict the difficulty of inverse 

problems. There was an unexpected effect of the order of elements in the inverse 

problems. Children were more successful on inverse problems in rearranged order 

(b – b + a = a) than standard inverse problems (a + b – b = a).   

Performance compared by status of the missing number.  

The next analysis examined the children’s performance on inverse problems 

compared by the status of the missing number. This compared inverse problems with 

both standard and rearranged element order according to whether the ‘a’, ‘+b’, ‘-b’ or 

sum term was missing. This analysis was performed only for performance on inverse 

problems, because the terms in the control problems do not have such clearly defined 

roles (a + b – c = d or b – c + a = d). 
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We carried out a two-way, 2x4, repeated measures analysis of variance in 

which the first factor was the order of elements in the problem (standard, rearranged) 

and the second factor the status of the missing number (a, +b, -b, sum). Figure 3 

shows the effects of these factors.  

Insert Figure 3 About Here 

There was a significant main effect of element order (F(1,50) = 26.126, p < 

0.001, ηp
2 = 0.343): accuracy was higher for problems in rearranged order (mean = 

0.549) than for problems in standard order (mean = 0.480). There was also a 

significant main effect of the status of the missing number (F(3, 48) = 29.323, p < 

0.001, ηp
2 = 0.647). Post-hoc tests with Bonferroni corrections show that the 

children’s scores were significantly higher for problems with the sum (mean = 0.876) 

missing than for problems with the ‘a’ term (mean = 0.637), the ‘+b’ (mean = 0.533) 

term or the ‘-b’ term (mean = 0.654) missing (all p < 0.001). The children’s scores 

were significantly lower in problems with the ‘+b’ term missing in comparison both 

to problems with the ‘a’ term missing (p = 0.038) and also to problems with the ‘-b’ 

term missing (p < 0.001).  

There was also a significant interaction between element order and status of 

the missing number (F(3,48) = 10.734, p < 0.001, ηp
2 = 0.402). For problems with the 

‘a’ term missing (F(1,50) = 44.678, p < 0.001, ηp
2 =0.472) or the sum missing 

(F(1,50) = 5.626, p = 0.022, ηp
2 = 0.101) scores were significantly higher for 

problems with the elements in rearranged than in standard order. In contrast, for 

problems with the ‘+b’ or ‘-b’ terms missing the order of elements in the problems 

had no effect on children’s performance (F(1,50) = 2.249, n.s.; F(1,50) = 1.540, n.s.). 

Thus, if either of the inverse elements was missing, their position in the problem was 
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not important. The order of elements within the sum was only important if one of the 

constants - the ‘a’ term or the sum - was missing. 

Discussion 

Experiment 2 examined children’s performance on two types of inverse 

problems (a + b – b = a and b – b + a = a) and control problems (a + b – c = d and b –

c + a = d). For each type of problem we varied the identity of the unknown quantity. 

When children’s performance was compared according to the position of the missing 

number, this was found to significantly affect scores on the different types of problem 

in similar ways. The children’s scores were lowest for problems with the first number 

missing for both types of inverse problem and control problem. Thus, the position of 

the missing number rather than the status appears to be the important factor in causing 

children’s difficulties. 

 Nevertheless, this factor alone cannot fully account for children’s 

performance on the inverse problems. The children were more successful for inverse 

problems in rearranged order than standard order regardless of the position of the 

missing number. When children’s performance on inverse problems was considered 

according to the status of the missing number, it was revealed that the order of the 

elements did not have an effect for problems with ‘+b’ or ‘-b’ missing, but it did have 

a small effect if the ‘sum’ term was missing and a large effect if the ‘a’ term was 

missing. So the difficulties that children have with inverse problems, when the 

unknown quantity is varied, stem largely from the position of the missing number, but 

the order of elements in the problem is also an important factor.  

General Discussion 

Generally, the results of these experiments provide further evidence that 

children aged 8 – 9 are reasonably competent in using the inverse principle to solve 
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problems. This study also demonstrated for the first time that children can use the 

inverse principle on problems where they are given the information that the initial and 

final quantities are equal and they have to infer the inverse relationship. However, as 

with previous studies (Rasmussen et al., 2003; Stern, 1992) this work has shown that 

children’s ability to use this concept is not complete. In Experiment 1 we showed that 

children were able to perform two types of inversion inference but the relative 

difficulty of these interacted with the identity of the missing number. In Experiment 2 

we demonstrated that both the position of the missing number and the order of 

elements in the problem are important determinants of children’s success on inverse 

problems.  

For problems that required children to infer the inverse relationship (i.e. with 

one of the ‘b’ terms missing) the order of elements did not affect children’s 

performance and they generally found this type of inference the more difficult. In 

contrast for problems that provided children with information about the inverse 

relationship and that required them to infer that the initial and final quantities were 

equal (i.e. with the ‘a’ term or sum missing), the order of elements did have an effect 

on children’s accuracy. There are four problem types that require this type of 

inference and Table 3 summarizes the differences between them. By examining the 

differences between these problem situations in terms of the nature of the required 

inference we can reveal what factors affect the efficiency of children’s reasoning. 

Insert Table 3 About Here 

Of the four problem types that require this type of inference, children find b –

b + a =  the simplest. For these problems a forward inference is needed, since the 

inference is about the final sum and is based on the information that precedes it. The 

unknown quantity and the ‘a’ term are adjacent (i.e. 0 + a = ). For a + b – b =  
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problems, a forward inference is also required but the inverse elements intervene 

between the ‘a’ term and the unknown quantity (i.e. a + 0 = ). Children found this 

type of problem somewhat more difficult. Problems like b – b + = a were also more 

difficult. In these problems the unknown quantity and the ‘sum’ term were adjacent, 

but a backward inference was required because children had to work backwards from 

the sum to the unknown quantity in the preceding part of the equation (i.e. 0 + = a). 

The children found problems like + b – b = a the most difficult. In these problems, it 

is necessary to make a backwards inference and the inverse elements intervene 

between the unknown quantity and the ‘sum’ term (i.e. + 0 = a).  

So, it appears that children find it more difficult to make this type of inference 

in a backward than a forward direction, and they find it more difficult to make this 

type of inference when the inverse elements intervene between the ‘a’ or ‘sum’ term 

and the unknown quantity. These effects appear to be additive, so that children have 

particular difficulties on problems where a backward inference is required with a gap 

between the unknown and ‘sum’ term (i.e. + b – b = a). 

The effects of directionality on inference making found in this study are in line 

with findings from other domains. When making causal inferences about the physical 

properties of objects, children find it easier to make cause-effect inferences than 

effect-cause inferences (Li, Zheng, Gao, Gao, & Lin, 2005) and adults take less time 

to verify forward than backward inferences about conditional reasoning (Barrouillet, 

Grosset, & Lecas, 2000). 

The children in this study were able to apply the inverse shortcut to a different 

extent in different situations. This suggests that their understanding of inversion was 

still developing even at the age of 9 years-old. Thus, although some understanding of 

inversion has been demonstrated by children of 4-years-old (Rasmussen et al., 2003), 
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this understanding may not be fully developed and applicable to all situations for 

many years. This emphasises that it is inappropriate to think of children ‘having’ or 

‘not having’ a concept or to try to determine the specific age at which children acquire 

different concepts  

Furthermore, these findings support the theories of arithmetical conceptual 

development of Vergnaud (1982, 1990, 1997, 1998) and Baroody (Baroody & 

Ginsburg, 1986; Baroody & Tiilikainen, 2003). Initially children may have limited 

understanding of arithmetic concepts, which they can only apply in a restricted range 

of situations. For example, they may only be able to use the inverse shortcut on 

canonical problems or only for problems presented in a certain way. Later, their 

understanding of the concept can be used more flexibly. This development takes place 

through a process in which localized knowledge structures (e.g. schemata for 

Baroody) become increasingly interconnected and the essential properties and 

relations are abstracted. Thus knowledge is a structural framework that guides the 

acquisition of new information. This process of conceptual development does not only 

apply to arithmetic but also in other domains where it is important to acquire 

conceptual understanding rather than simply rote procedural skills (e.g. science, 

engineering, geography, economics). The idea that children start with relatively non-

generalised, restricted contexts in which they can operate, and then develop a more 

generalised flexible understanding is also central to developmental theories more 

widely (e.g. Karmiloff-Smith, 1992). 

This pattern of conceptual development has implications for education. 

Children’s early conceptual knowledge in a domain will not be abstract but rather tied 

to specific problem situations. Thus, to help children develop sophisticated conceptual 

understanding it is important to ensure that they are exposed to different situations in 
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which to apply their understanding in order for their limited local level concepts to 

develop into generalised abstract understanding. Indeed Vergnaud (1990) proposed 

that one important role of a teacher should be to provide a variety of situations in 

which children can apply their understanding.  

Furthermore, when assessing children’s conceptual understanding it is 

important that a range of different problem situations are included. Performance on a 

single task can only assess one aspect of children’s understanding of a concept. The 

framework proposed by Bisanz and LeFevre (1992), which describes understanding as 

a profile of performance across conceptual space defined by different situations and 

activities, may be useful for this.  
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Table 1 

Example word and digit problems for Experiment 1. 

 
Problem type Word presentation Digit presentation 

Position 1 

Inverse 

Daniel had some cards, he found 7 more 

and then lost 7. At the end he had 13. 

How many did he have to start with 

+ 7 – 7 = 13 

Control Julia had some balls, she won 14 more 

and then lost 9. At the end she had 18. 

How many did she have to start with? 

+ 14 – 9 = 18 

Position 2 

Inverse 

There are 21 children in the classroom, 

some more arrive and then 11 leave. At 

the end there are still 21 children. How 

many children arrived? 

21 + – 11 = 21 

Control Melissa had 15 sweets, she found some 

more and then ate 5. At the end she had 

19. How many did she find? 

15 + – 5 = 19 

Position 3 

Inverse 

There are 22 biscuits in the tin, 7 more 

are added and then some are eaten. At 

the end there are still 22 biscuits in the 

tin. How many were eaten? 

22 + 7 – = 22 

Control There are 13 children in the pool, 13 

more jump in and then some get out. At 

the end there are 20 children in the pool. 

How many got out? 

13 + 13 – = 20 
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Position 4 

Inverse 

Jamie had 15 balls, he found 12 more 

and then lost 12. At the end, how many 

balls did he have? 

15 + 12 – 12 =  

Control There are 16 cars in the car park, 16 

more arrive and then 7 leave. At the 

end, how many cars are in the car park? 

16 + 16 – 7 =  
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 Table 2  

Example inverse and control problems for Experiment 2 

Standard order Rearranged order Missing 

number Inverse  Control  Inverse  Control  

1 + 7 – 7 = 13 + 14 – 9 = 18 – 9 + 16 = 16 – 3 + 7 = 13 

2 13 + – 9 = 13 15 + – 5 = 19 14 – + 22 = 22 18 – + 11 = 15 

3 16 + 14 – = 16 18 + 9 – = 13 9 – 9 + = 13 11 – 6 + = 18 

4 15 + 12 – 12 =  11 + 11 – 7 =  8 – 8 + 15 =  8 – 5 + 12 =  
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Table 3 

Types of inference needed to solve inverse problems with the ‘a’ or ‘sum’ term 

missing 

Problem Difficulty Inference required 

b – b + a =  Easiest Forward inference with elements adjacent (0 + a = ) 

a + b – b =  Intermediate Forward inference across a gap (a + 0 = ) 

b – b + = a  Intermediate Backward inference with elements adjacent (0 + = a ) 

+ b – b = a  Hardest Backward inference across a gap ( + 0 = a ) 
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Figure Captions 

Figure 1. Accuracy for inverse and control problems compared by position of the 

missing number from Experiment 1 (error bars show sem). 

Figure 2. Accuracy for inverse and control problems in standard and rearranged order 

compared by position of the missing number from Experiment 2 (error bars show 

sem). 

Figure 3. Accuracy for inverse problems in standard and rearranged order compared 

by status of the missing number from Experiment 2 (error bars show sem). 
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