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Abstract  

A comparative study between fibre and Nd:YAG (neodymium, yttrium, aluminium, garnet) 

laser surface treatment on a cold isostatic pressed (CIP) ZrO2 engineering ceramic was 

conducted to investigate the individual differences of laser brightness (radiance) produced by 

the two laser sources. The effects of brightness exhibited by the two lasers were investigated 

in respect to the change in the hardness, dimensional size of the laser radiated zones and the 

microstructure of the ZrO2 engineering ceramic. The results showed that the hardness of the 

ZrO2 engineering ceramic was reduced by 36% for the Nd:YAG laser in comparison to the 

as-received surface. However, only 4% reduction in the surface hardness was found from 

employing the fibre laser surface treatment which was not significant as much as the results 

of the Nd:YAG laser radiation. The change in hardness occurred due to softening of the laser 

radiated surface of the ZrO2 with a changed composition which was softer than the laser 

unaffected surface. The dimensional size of the fibre laser radiated track was also found to 

produce broader surface profiles in comparison to that of the Nd:YAG laser. The fibre laser 

radiated surface track was 32% larger in width and 51.5% longer in depth of penetration in 

comparison to that of the Nd:YAG laser. Change in microstructure of the ZrO2 engineering 

ceramic radiated by both lasers was found as opposed to the ground and polished untreated 

surface with the fibre laser affecting the grain morphology to a greater extent in comparison 

to that of the Nd:YAG laser radiation. The physical and micro-structural effects from 

applying the two laser types to the ZrO2 engineering ceramic differed as deep penetration and 

broader laser radiated track as well as larger grains were produced by the fibre laser, despite 

using identical laser processing parameters such as spot size, power density, traverse speed, 

gas flow rate, wavelength and the Gaussian beam profile. This occurred due to the high 

brightness exhibited by the fibre laser radiation which generated larger power per unit area 

which in turn induced into the ZrO2 engineering ceramic and resulted to producing high 

processing temperature, larger fibre laser-ceramic-interaction zone and melt-pool at the laser-

ZrO2 interface in comparison to that of the Nd:YAG laser which intrinsically resulted to a 

change in physical attributes of the ceramic.   

 

Keywords: Nd:YAG laser; Fibre laser; Brightness; ZrO2 engineering ceramic.  
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1. Introduction 

Brightness is a very important characteristic of a light source. It is defined as the amount of 

light delivered from a surface per unit of area [1, 2]. The term brightness is mainly used when 

the visual quality of a light source in relation to contrast and glare is being expressed. 

However, brightness in turn does not only relate to a light source such as a lamp or a candle 

as light can be found through reflection and transmission also. For instance, a bright surface 

will have high reflections and a dull surface will have low reflection [1, 2]. The use of the 

term brightness in some way or another is a comparison of two light sources which are 

judged by the human eye as it creates variation in the intensities on the surface of the retina 

[3].  

Brightness in general terms is defined as candles per square meter of light being emitted on a 

surface and is classified as “luminance” or “radiance” depending its application [2, 4]. When 

the brightness is mentioned as a photometric quantity the term luminance is usually used. 

However, the term radiance is mentioned when describing radiometric quantity [4]. 

Luminance can be expressed as the direction of light emission. This means that the brightness 

of an object is dependent on the direction or the angle which one can look from [1, 2]. 

Luminance is also the intensity of light that is emitted from the surface whereas the intensity 

of light that is directed on a surface is classified as illuminance which is the opposite of 

luminance. In some instance, radiometric term radiance of a light source is used in literatures 

for the sake of simplicity particularly when expressing laser beam brightness which is the 

power per unit area per solid angle of divergence [1, 2]. 

Laser beams in comparison to other light sources comprise of high brightness energy since a 

laser light exhibits very high power levels in a narrow beam or a spot size [3]. Hence, the spot 

size which the laser beam can be focused to is very important [5]. Brightness of lasers is an 

unchangeable property which means that the brightness is not affected by focusing or 

defocusing a light beam. This is made clear by a primary law of optics which states that the 

brightness of a light source is an unchangeable quantity [2, 6]. The brightness of a Gaussian 

beam does not change as it propagates because the brightness is inversely proportion to the 

solid angle. The solid angle produced by a laser beam is proportional to the square of the 

divergence angle θ; the smaller the divergence the higher the brightness. High brightness 

beams, however, has the most idealised beam profile and tend to have a high beam quality 

factor.  
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Laser power density and laser brightness has close relationship due to their parameters being 

somewhat common: the laser power is input power per spot size which is multiplied by the 

Gaussian beam configuration value whereas the brightness is the input power per unit area 

per solid angle (beam divergence) [7 - 10]. Brightness is important in laser processing 

applications since the intensity obtained within a focusing area within a lens is proportional to 

the brightness of the beam. High brightness laser processing allows fine spot size of the beam 

and allows longer focusing distance so that flexibility is further achieved with material 

processing as more distance is covered during the laser processing. This is particularly 

offered by the fibre laser and are both used for the investigation herein as further presented in 

this study.  

High brightness laser sources such as a fibre laser or a high powered diode laser (HPDL) 

produce high temperature during material interaction [8, 11]. High brightness laser source in 

particular –a fibre laser also offer a longer depth of field (long focal length), small spot sizes 

and beam quality as well as stability during laser execution.  The brightness of a laser is more 

effective in comparison to the laser power intensity. This is because by achieving a high 

brightness would generate high processing temperatures [11]. This is particularly important 

for ceramic processing in order to achieve surface melting, to cover the surface cracks and to 

achieve localized modification and phase transformations within the ceramic. The use of high 

brightness laser for material processing is also advantageous due to its potential of achieving 

low cost per wattage output [4].  

Measuring the brightness of a light source is a difficult practice and requires a complex set-up 

and procedures to follow. This is specially so for measuring the brightness of an industrial 

laser due to the complexity of the machines and the experimental set-up required. The correct 

measuring technique for brightness of a laser beam is strategically documented in the British 

standards [12 - 14]. Forbes et al. [15] modelled the brightness from a cross porro-prism 

resonators and showed that the brightness is significantly influenced by the angle between the 

two prism edges. At higher prism angles the brightness was increased as fewer petals of the 

beam footprint were to be seen, with decreasing angles and increasing the number of petals of 

the beam footprint showed decreasing the prism angles and inherently a reduction in the 

brightness. 

The use of high brightness emitting lasers have made a way forward within the laser aided 

material processing industry in the recent years, which has been reported on by several 
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workers. Wallace [16] described the use of high brightness beam diode lasers which produces 

high efficiencies and lower operating costs. Wnzel et al. [17] modelled features of high 

brightness semiconductor lasers and showed that high reliability and efficiency can be 

obtained from applying high brightness laser beam despite having low beam quality. Brown 

and Frye [18] also showed the use of high brightness cutting and drilling of aerospace 

materials by using a Nd:YAG (neodymium, yttrium, aluminium garnet) laser. The results 

showed improved cutting and also achieved shallow angle holes. Li et al. [19] investigated 

the reliability and efficiency of high brightness lasers of 940 nm wavelength and 

demonstrated the maximum power conversion efficiency of 60% at an output power of 72 W 

with very good beam quality. Treusch et al. [20] studied the use of high-brightness 

semiconductor lasers for material processing and revealed that collimation lenses can be used 

to increase the brightness of the laser by a factor of two as well as the wavelength and 

polarization coupling also contributing to the increased brightness. Leibreich and Treusch 

[21] followed a similar investigation on improving the brightness of a semiconductor diode 

laser by using stacking laser bars (beams) comprising of different wavelength to increase the 

output power as well as the brightness. Their results briefly described that the brightness can 

be enhanced by two without any changes to the beam quality factor (M2) which in turn would 

improve and open a new avenue for the laser materials processing sector. Other investigation 

by Hanna [22, 23] showed that an increase in brightness can be obtained by altering the 

transverse mode. Variation in the transverse mode leads to a change in the beam divergence 

and alters the brightness of the laser source [22].  

Val et al. [24] investigated the effects of laser cladding of flat plates of AISI 304 stainless 

steel and Co-based super-alloy powder as a coating material by applying a Nd:YAG laser and 

a Yb: YAG fibre laser. The results from the fibre laser in comparison to that of the Nd:YAG 

showed more versatility with regard to the parameter window as well as enlarged clad track, 

and deeper penetration. However, similar hardness was obtained from applying both laser 

types. Val et al. further concluded that this effect had occurred due to the better beam quality 

and also due to the high brightness on offer by the fibre laser which is ideal for producing 

narrower clad tracks and a Nd:YAG laser – ideal for producing wider clad tracks. The work 

of Val et al. closely relates to the work in this study as the effects of brightness between an 

Nd:YAG laser and a fibre laser are investigated but by using engineering ceramics (in 

particular ZrO2).  
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Although, several investigations have been published in the field of improving the laser 

brightness, there is still limited work that has been published with the use of a fibre laser to 

process materials. This is particularly so for engineering ceramics as up till date, no work has 

been conducted hitherto with employing the fibre laser surface treatment on engineering 

ceramics which considers the laser brightness as an influential feature of laser-ceramic and 

other material processing in general and the physical effect of its surface interaction with 

such materials. Also, brightness is an important parameter of laser material processing rather 

than the input power. It is the brightness that is the driving force rather than the power 

intensity and is very much discarded when it come to laser material processing. Hence, the 

work in this investigation attempts to introduce the likely effects which can occur by the 

different brightness of laser sources as they yet have the same input parameters. Physical 

differences in the effects of the fibre laser and the Nd:YAG laser brightness up on surface 

treatment of the ZrO2 engineering ceramics in particular is discussed after the laser-ceramic 

surface interaction has taken place. 

2. Fundamentals of Laser Brightness 

Theoretical brightness is calculated by means of simplified equations described in numerous 

literatures [2-7]: 

𝐁𝐫 =  𝐏𝐨𝐮𝐭
𝐀Ω

           (1) 

Where Pout is the power over the surface area and AΩ is the solid an gle of divergence of the 

beam. Brightness is inversely equal to the solid angle of divergence. The solid angle of 

divergence created by a laser beam is equal to the square of the divergence angle θ as shown 

in Figure 1. The solid angle of a Gaussian beam equates to:  

Ω = π θ2 = λ2 / π w2 
0           (2) 

and is inversely proportional to (π w2 
0). Where λ is the wavelength of the particular laser 

beam and w0 is the beam radius at the beam waist or divergence. The solid angle of 

divergence is usually small for laser beams in comparison to other light sources due to their 

high directionality and this in turn generates high brightness beams.  
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Figure 1 Schematic diagram illustrating the solid angle of divergence of a laser 

beam. 

For a circular Gaussian laser beam; the beam propagation ratio is illustrated in Equation 3. 

Where M2
y and M2

x are the beam propagation ratio’s in the X and the Y direction. 

Furthermore, brightness can be derived in Equation 4 which comprises of feature in Equation 

1 and 2 3:  

M4 = M2
y . M2

x          (3) 

𝐁𝐫 =  𝐏𝐨𝐮𝐭
𝐌𝟒 𝐱 𝛌𝟐

           (4) 

The solid angle presented in Figure 1 is a unique dimension for all laser beams with different 

beam profile and Gaussian configuration. This solid angle is the divergence of the beam after 

being focused by the optics (focusing lens). The angle of beam divergence the calculated 

brightness values of the fibre laser and the Nd:YAG laser are presented in Table 1, along with 

other beam characteristics and properties as a comparison.  

Table 1 Properties of the fibre and Nd:YAG lasers used for this investigation. 

Laser 
type 

Beam 
divergence 

(m/rad) 

Brightness 

(W/cm2 / sr-1) 

 

Beam 
quality 
factor 
(M2) 

Gaussian beam 
shape 

Gaussian 
mode 

Cross-
sectional 

view 

Plan 
view 

Nd:YAG 

laser 

5.5 609.50 6.8 

 
 

TEM00 

Fibre 
laser 

0.2 1855.37 1.2 

 
 

TEM00 
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3. Experimentation and Analysis 
3.1 Experimental Materials 

The material used for the experimentation was cold isostatic pressed (CIP) ZrO2 with 95 wt% 

ZrO2 and 5 wt% yttria (Tensky International Company, Ltd). Each test piece was obtained in 

a bulk of 10 x 10 x 50 mm3 (see Figure 2) with a surface roughness of 1.58 μm (as-received 

from the manufacturer). This was to reduce the laser beam reflection as the well polished 

shinier surfaces of the ceramic would reduce beam absorption. The experiments were 

conducted in ambient condition at a known temperature (25◦C). All surfaces of the ZrO2 to be 

treated were marked with black ink prior to the laser treatment to enhance the absorption and 

allow the laser beam to further penetrate into the surface. 

 

Figure 2 Schematic diagram of the experimental work-piece of the Si3N4 engineering 

ceramic.  

3.2 Nd:YAG laser surface treatment 

A 65 W Nd:YAG laser (HK, SL902; Hahn & Kolb Ltd.) emitting a continuous wave (CW) 

mode beam at a wavelength of 1.064 µm was used in this work (see Figure 3). The focal 

position was kept to 210 mm above the work-piece to obtain a 2.2 mm spot size. The 

processing gases used was N2 at a flow rate of 25 l/min. Programming of the laser was 

conducted using a Hahn & Kolb, U3 CAD software which integrated with the laser system as 

a 50 mm line was programmed using numerical control (NC) programming as a potential 

beam path. To obtain an operating window, trials were conducted at the fixed spot size of 2.2 

mm and 65 W by varying the speed between 4 and 100 mm/sec. From these trials it was 

found that 10 mm/sec at 65 W were the ideal laser parameter to use in terms of achieving a 

sufficient footprint on the material to conduct further analysis. 
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Figure 3 Schematic diagram showing the experimental set-up of the fibre laser 

surface treatment of the ZrO2 engineering ceramic. 

3.3 Fibre laser surface treatment 

A 200 W fibre laser (SPI-200c-002; SPI, Ltd.) emitting a continuous wave (CW) mode beam 

at a wavelength of 1.075 µm was used in this work. The focal position was kept to 20 mm 

above the work-piece to obtain a 2.2 mm spot size. The processing gases used were N2 and 

ambient air (no gas) supplied at a flow rate of 25 litres/min. Programming of the laser was 

conducted using an SPI software which integrated with the laser system. A 50 mm line was 

programmed using numerical control (NC) programming as a potential beam path which was 

transferred by .dxf file. The nozzle indicated in Figure 4 was removed for all experiments. To 

obtain an operating window, trials were conducted at the fixed spot size of 2.2 mm 65 W and 

at a traverse speed between 10 mm/sec so that an equal comparative study of the effects of 

the Nd:YAG laser and the fibre laser could be performed.  
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Figure 4 Schematic diagram showing the experimental set-up of the fibre laser 

surface treatment of the ZrO2 engineering ceramic. 

3.4 Hardness measurement  

An indenter of a specific shape made from a diamond material was used to indent the 

Nd:YAG  and the fibre laser radiated surfaces of the ZrO2 engineering ceramics by using the 

Vickers (HVTM); Armstrong Engineering, Ltd. Around 50 indentation tests each were 

performed on all surfaces examined. An indentation load of 49.05 N was used. The indented 

surfaces were measured using the optical microscopy. A standardized technique was adopted 

to ensure that valid indentation tests were performed [25-26]. Thereafter, the surface area of 

the indentation (diamond foot-print) was placed into Equation 5 to calculate the hardness 

value:  

HV= 2P sin [θ/2]/ D2 = 1.8544P/D2                                          (5) 

where, P is the applied load, D is the average length of the diagonal of indentation and θ is 

the angle between the opposite faces of the diamond indenter. 
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3.5 Sample Preparation and Etching 

The as-received and the laser radiated samples were mounted in epoxy resin (Epofix; Struers 

Ltd.) and were finely polished using a semi-automatic polishing machine (TegraPol-25; 

Struers Ltd.) aided by using a successively finer diamond polishing discs. The final polishing 

procedure was conducted by using a 0.04 µm colloidal silica suspension (OP-S; Struers Ltd.). 

The samples were then removed from the epoxy resin. Furthermore, the samples were etched 

using a thermal etching technique in order to expose the grains, to determine the grain size 

and investigate the microstructure. Temperature of 1300 °C was applied in a furnace to 

samples of the as-received, fibre and Nd:YAG laser radiated ZrO2 engineering ceramic. The 

samples were held at 1300 °C for 5 min with a heating/cooling rate of 10 °C /min.  

3.6 Optical Imaging  

The Vickers indentation footprint of the as-received, fibre and the Nd:YAG laser radiated 

zones were all observed by employing the optical microscopy (Optishot; Nikon Ltd.). Further 

analysis was conducted by employing the field emission gun scanning electron microscopy, 

FEGSEM, (Ultra-high-resolution, 1530VP; Leo Ltd.) which investigated the microstructure 

of the laser untreated surface, Nd:YAG and fibre laser radiated surfaces of the ZrO2 

engineering ceramic. 
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4. Results and Discussion 

4.1 Change in the Hardness 

The average hardness was measured for the as-received, fibre and Nd:YAG laser radiated 

surfaces of the ZrO2 engineering ceramic. The average indentation size, hardness readings 

along with its standard deviation (STDEV) and the ranges in the values are presented in 

Table 2. The average indentation size for the as-received surface was 61 µm with an average 

hardness of 1225 HV (12.01 GPa). This in comparison to the Nd:YAG laser radiated surface 

was somewhat smaller, which indicated that the Nd:YAG laser radiated surface had become 

more ductile and softer. The average diamond indentation size of the Nd:YAG laser radiated 

surface was 79 µm with an average hardness of 747 HV (7.32 GPa). A 36 % reduction in the 

hardness and up to 29.5 % increase in the diamond indentation size was obtained by the 

Nd:YAG laser radiated surface.  

However, when comparing the results of the Nd:YAG laser radiated surface with that of the 

fibre laser radiated surface, it was found that the change in hardness was also sufficiently 

large but the fibre laser comprised of much higher hardness in comparison to the Nd:YAG 

laser radiated surface. Sufficiently large surface cracking with the fibre laser radiated sample 

was also found which indicated that the surface was much harder from the result of reaching 

high temperature which would have caused a steeper thermal gradient and rapid cooling 

effect to take place in comparison to the Nd:YAG laser radiation. The average size of the 

diamond indentation was found to be 63 µm. This in comparison to the as-received surface 

was just over 3 % larger but 22 % smaller in comparison to that of the Nd:YAG laser radiated 

surface. The average hardness of the fibre laser radiated surface was 1179 HV (11.56 GPa) 

which was just under 4 % lower than that of the as-received surface and 32 % higher than the 

Nd:YAG laser radiated surface. Figure 5 to 7 illustrates an example of the diamond 

indentation for the as-received surface (Figure 5), the Nd:YAG laser radiated surface (Figure 

6) and the fibre laser radiated surface in Figure 7. 
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Table 2 Hardness values showing average, range and the STDEV found for the as-

received, fibre and Nd:YAG laser radiated surfaces of the ZrO2 engineering ceramic. 

Type of 

Laser 

Average 

indentation 

size (µm) 

Range 

(µm) 

STDEV 

(µm) 

Hardness 

Average  Range STDEV 

HV GPa HV GPa HV GPa 

As-

received 

surface 

61 57 - 

68 

0.00312 1225 12.01 1002 - 

1414 

9.83 -

13.87 

12.01 1.13 

Nd:YAG 

laser 

radiated 

surface 

79 

 

71 - 

88 

0.0055 

 

747 

 

7.32 

 

599 -

920 

 

5.87 -

9.02 

 

104 

 

1.02 

 

Fibre 

laser 

radiated 

surface 

63 59 - 

71 

0.0043 1179 11.56 920 -

1332  

9.01 -

13.06 

149 

 

1.45 
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Figure 5 Optical image of the diamond indentation produced on the as-received surface 

indented by a 2.5 kg (24.51 N) diamond indentation load on the ZrO2 engineering 

ceramic. 

 

Figure 6 Optical images of the diamond indentation produced on the Nd:YAG laser 

radiated surface indented by a 2.5 kg (24.51 N) diamond indentation load on the ZrO2 

engineering ceramic. 
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Figure 7 Optical images of the diamond indentation produced on the fibre laser 

radiated surface indented by a 2.5 kg (24.51 N) diamond indentation load on the ZrO2 

engineering ceramic. 

4.2 Change in Size 

From the topographical observation of both the Nd:YAG and fibre laser radiated track (foot-

print), it was found that 32 % difference in width was to be seen between the footprint created 

by the two lasers. The average width of the Nd:YAG laser radiated track was 632 µm with 

the average length of the HAZ being 72 µm. This in comparison to the track width of the 

fibre laser was much smaller as presented in the example in Figure 8 (a) and (b). The average 

width of the fibre laser radiated surface was 837 µm. The average width of the HAZ was 

found to be 89 µm which was 24 % higher than that of the Nd:YAG laser radiated surface.  
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(a)                                                                (b) 

Figure 8 Optical images of (a) the width of the Nd:YAG laser radiated track and (b) the 

width of the fibre laser radiated track of the ZrO2 engineering ceramic. 

Furthermore, the optical images in Figure 9 presents of the cross-sectional view in (a) the 

Nd:YAG laser radiated surface and (b) the schematic of the Nd:YAG laser radiated surface 

with its dimensional sizes (c) fibre laser radiated surface and (d) the dimensional size of the 

ZrO2 ceramic. It can be seen from the cross-sectional analysis that that the fibre laser radiated 

surface has produced a larger penetration depth and broader profile in comparison to that of 

the Nd:YAG laser. In average, the depth of penetration for the fibre laser was 447 µm as 

oppose to the depth of penetration of the Nd:YAG laser being 295 µm which was up to 51.5 

% lower. The Nd:YAG laser had produced a partial amorphous glassy zone which was a 

mixture of zirconia carbon dioxide as can be seen in the image in Figure 9(a). This meant that 

melting did occur with the Nd:YAG laser radiated surface however, it was not as remarkable 

as the fibre laser radiated surface of the ZrO2 as the whole cross-section was found to be of 

the amorphous glass layer. This intrinsically indicated that more melting and new formation 

of the surface layer had occurred with the fibre laser surface treatment despite using the same 

laser parameters. The increased melting and the glassy layer within the fibre laser radiated 

surface had occurred from the difference in temperature between the two laser as the fibre 

laser with a higher brightness had created much higher temperature which characteristically 

had melted the surface and generated a larger melt pool. The surface and the cross-sectional 

cracking of the ZrO2 ceramic particularly after the fibre laser surface treatment compliments 

the high temperature gradients generated at the fibre laser-ZrO2-interaction. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 9 Optical images of the cross-sectional view of (a) the Nd:YAG laser radiated 

surface (b) the schematic diagram of the Nd:YAG laser radiated surface (c) the fibre 

laser radiated surfaces and (d) the schematic diagram of the fibre laser radiated 

surfaces of the ZrO2 engineering ceramic. 
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4.3 Microstructural Change within the ZrO2 engineering ceramic 

4.3.1 As-received surface  

The micro-structural evaluation by using the FEGSEM of the ground and polished surface of 
the untreated sample in Figure 10 presents the surface morphology, showing the grain 
boundaries along with the grain sizes. The grain size ranged between 0.7 to 0.9 µm and showed 
some porosity was also evident.  
 

 

Figure 10 FEGSEM image of the as-received surface of the ZrO2 engineering ceramic. 

4.3.2. Fibre laser radiated surface  

From observing the fibre laser radiated surface in Figure 11; it can be observed that the grain 

boundaries have enlarged and elongated on comparison to the ground and polished untreated 

surface. However, there is also an increase in the porosity and surface flaws in some of the 

regions of the fibre laser radiated surface which would have resulted from the escaping of 

entrapped porosity during the event of the laser interaction with the surface of the ZrO2. 

Moreover, the sizes of the grains vary from 3 to 10 µm from the top (near) surface layer and 

through the sub-surface and the bulk of the ceramic. This is because the processing 

temperature at the top (near) surface layer was much higher than the sub-surface and the bulk 

which would have produced growth of the grains. Figure 12 presents the cross-sectional 

microstructure showing the increase in the grain size from the bulk of the ZrO2 to the sub-

surface and the top surface layer of the fibre laser radiated zone. The microstructure at the top 
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surface layer (see Figure 13 and Figure 14) is somewhat different as significant grain growth 

has occurred due to the high temperature gradient existing at the laser-ZrO2-interface.  

 

 

Figure 11 FEGSEM image of the cross-section sub-surface layer of the fibre laser 

surface treated ZrO2 engineering ceramic. 
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Figure 12 FEGSEM image of the cross-section of the fibre laser radiated surface of the 

ZrO2 engineering ceramic showing variation in the grain sizes within the sub-surface, 

towards the bulk and the top surface layer.  

 

 

Figure 13 FEGSEM image of the cross-section of the top layer of the fibre laser radiated 

surface ZrO2 engineering ceramic at x 25 K magnification. 
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 Figure 14 FEGSEM image of the cross-section of the fibre laser radiated  ZrO2 

engineering ceramic illustrating the top surface layer at x 2.5 k magnification. 

4.3.3 Nd:YAG laser radiated surface 

The microstructure of the Nd:YAG laser radiated surface in comparison to that of the as 

received surface has been reasonably modified as presented in Figure 15 to Figure 17. The 

grain sizes herein range from about 3.5 to 7 µm with an average grain size of about 5 µm. 

This in comparison to the laser untreated surface was considerably large. However, when 

compared to the fibre laser radiated surfaces, the grain boundaries were somewhat smaller. 

Similar effect which occurred with the ZrO2 samples radiated by the fibre laser also occurred 

with the Nd:YAG laser, although, it was slightly less significant. The sample observed at the 

cross-section comprised of larger grains at the top near surface layer which further reduced as 

it was observed at the sub-surface and the bulk of the ZrO2 engineering ceramic as presented 

in Figure 15, however, this type of grain growth was slightly abnormal as elongation of the 

grain growth was seen in few areas. Figure 16 showed the very top surface layer of the ZrO2 

which was radiated by the Nd:YAG laser. The microstructure in this area was reasonably 

modified in comparison to the microstructure in where the laser interaction-ZrO2 did not 

occur. Evidence of surface melting which then re-flowed and solidified can be seen 

particularly in Figure 16 where the laser- ZrO2 interaction had taken place.  
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Figure 15 FEGSEM image of the cross-section of the Nd:YAG laser radiated sample of 

the ZrO2 engineering ceramic within the sub-surface region. 

 

 

Figure 16 FEGSEM image of the cross-section of the Nd:YAG laser radiated surface of 

the ZrO2 engineering ceramic illustrating the surface and the sub-surface layer.  
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Figure 17 FEGSEM image of the cross-section of the Nd:YAG laser radiated surface of 

the ZrO2 engineering ceramic illustrating the top surface layer.  

4.4 Rationale and the differences between the effects produced by the two lasers 

sources. 

From the difference in the hardness values found by the results of the two laser types it can be 

summarized that the Nd:YAG laser radiation was producing a much softer and ductile surface 

to that of the fibre laser radiation. From comparing the effects of the fibre laser surface 

treatment and that of the Nd:YAG laser surface treatment, it is postulated that the high 

brightness of the fibre laser in comparison to the Nd:YAG laser would generate high 

temperature at the surface of the laser-ZrO2-interface which was also supported by previous 

workers [16, 19]. The higher temperature has allowed the fibre laser radiated ZrO2 ceramic to 

generate more melting and produced a thicker and a broader glassy layer which in turn had 

shown high hardness in comparison to the Nd:YAG laser radiated surface.  

The change in the dimensional size was produced by the high brightness beam of the fibre 

laser interacting more with the ZrO2 ceramic which in turn had generated higher processing 

temperatures than of the Nd:YAG laser, where as the Nd:YAG laser radiation only generated 

lower interaction zone as well as lower depth of penetration of the beam as seen in Figure 

9(a) and (b) in comparison to Figure 9(b) and (c). This was shown by the difference in size 

between the footprint of the fibre and the Nd:YAG laser radiated beams (see Figure 8(a) and 
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(b)) and the cross-sectional images in Figure 8(a) to (d) of the Nd:YAG and the fibre laser 

radiated samples. As well as the depth of penetration being larger for the fibre laser in 

comparison to the Nd:YAG laser; the high temperature produced by the high brightness of 

the fibre laser had also created a larger melt zone (see section 4.2) and the amorphous glassy 

phase which indicated that the grain refining for both types of lasers were different as the 

surface of the fibre laser with larger melt-pool was producing bigger grain sizes than that of 

the Nd:YAG laser. This in turn generated a harder surface of the fibre laser radiated sample 

which was fully melted to the amorphous glassy phase as to the Nd:YAG laser which was a 

mixture of the amorphous glass and the zirconia oxide + carbon dioxide which on the other 

hand had created a softer surface as the hardness was significantly reduced.     

 

4.5 Contribution of Laser-Beam Brightness as a Parameter to Effect Laser Surface 

Treatment  

The brightness of a laser beam is dependent on the output power, the solid angle of 

divergence and the M2 factor which are all parameters of the brightness equation as shown in 

section 2 in this investigation. However, laser brightness is primarily dependant on the 

transverse mode as well as the beam quality factor M2. The better the beam quality of the 

laser, the higher the brightness exhibited. In this case, despite the transverse mode being the 

same region for both the Nd:YAG and the fibre laser, the beam quality factor was a lot better 

for the fibre laser as there was over 5 ½ folds of difference between the beam quality factors 

of the Nd:YAG laser where the M2 = 6.8 and the fibre laser where M2 = 1.2 which showed 

that the fibre laser is able to produce a brighter beam. Also, the beam divergence would play 

a big role in increasing the brightness value as small beam divergence produces smaller solid 

angle of divergence (Ω = π θ2). The beam quality factor therefore, allows higher brightness to 

be exhibited which in result had affected the change in the hardness, dimensional size and the 

microstructure of the ZrO2 engineering ceramic.  

The difference in the two brightness values for the Nd:YAG and the fibre laser was over 3 

folds with the fibre laser comprised of high brightness but did not produce the same 

difference with the physical effects which took place as result of the Nd:YAG and fibre laser 

surface treatment. Moreover, to suggest a consistent relationship between the difference in 

the brightness value and the effects which take place as a result of the laser surface treatment 

as a quantitative value would further require experimental work. It is also suggested that the 
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relationship between the brightness value for two laser sources and its relative effects are 

unique for each ceramic as factors such as the material property as well as the absorption of 

the laser wavelength is considered.       

As shown, that high laser-beam brightness can exhibit longer depth of penetration and bigger 

footprint by using identical laser power. Furthermore, it is therefore possible to operate the 

high brightness laser at much lower powers which in turn exhibit a surface treatment with the 

same dimensional size to take effect. This in the long run would help to achieve low cost per 

wattage laser surface treatment which is just as effective as the surface treatment applied by 

using a low brightness beam at higher cost per wattage. In terms of laser processing of 

ceramics where high powers are required for surface modification and micro-structural 

changes as well as phase modification where obtaining elevated processing temperature are 

important to create a phase change then high brightness laser such as the fibre laser is ideal.    
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5. Conclusions 

It was found from this work that the hardness of the ZrO2 engineering ceramic was reduced 

by 36 % for the Nd:YAG laser in comparison to the as-received surface - larger diamond 

indentation foot-prints were found which indicated that the Nd:YAG laser radiated surface 

had become ductile. However, only a 4 % reduction in the surface hardness was found from 

employing the fibre laser for surface treatment the diamond foot-prints were reduced which 

indicated that the fibre laser radiated surface had also become somewhat softer, although, it 

was not significant as much as the results of the Nd:YAG laser. The width of the fibre laser 

irradiated zone was also broader in comparison to the Nd:YAG laser radiated zone by 32% as 

well as the depth of penetration being up to 48.5 % higher for the fibre laser surface 

treatment. The microstructural changes also showed that the fibre laser radiated surface was 

producing large grains in comparison to the Nd:YAG laser radiated surface by over 20% 

difference in size.  

The physical and micro-structural effects by applying the two laser types differed despite 

using identical laser processing parameters such as spot size power density, traverse speed, 

gas flow rate and laser wavelength. This resulted from the high brightness generated from the 

fibre laser radiation in comparison to the Nd:YAG laser radiation which in turn produced 

higher processing temperatures causing larger thermal gradient which characteristically 

produced a bigger melt pool. This in turn produced a harder surface in comparison to the 

Nd:YAG laser and caused, the increase in the width and the depth of penetration, as well as 

the change in the microstructure. 

It can be concluded that high brightness lasers require lower powers to penetrate at equivalent 

dimensions to that of the low brightness lasers. This would be more cost effective since less 

cost per wattage is utilized. Processing of engineering ceramics is feasible and more ideal 

with high brightness lasers as high power densities are required, which could inherently 

produce a significantly modified surfaces. Experimental investigation of the effects of 

brightness up on laser processing is rather limited. This work is first step demonstration of 

what the effective results of laser brightness has up on the engineering ceramics, therefore, 

further work in this field would be considerably fruitful for better understanding and possibly 

an effective and an efficient laser surface treatment of ceramics. 
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