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Uncertainty in Through-Life Costing—Review
and Perspectives
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Abstract—Estimating through-life cost (TLC) is an area that is
critical to many industrial sectors, and in particular, within the
defense and aerospace where products are complex and have ex-
tended life cycles. One of the key problems in modeling the cost
of these products is the limited life-cycle information at the early
stage. This leads to epistemic and aleatory uncertainty within the
estimation process in terms of data, estimation techniques, and
scenarios analysis. This paper presents a review of the uncertainty
classification in engineering literature and the nature of uncer-
tainty in TLC estimation. Based on the review, the paper then
presents a critique of the current uncertainty modeling approaches
in cost estimation and concludes with suggestion for the require-
ment of a different approach to handling uncertainty in TLC. The
potential value of imprecise probability should be explored within
the domain of TLC to assist cost estimators and decision makers
in understanding and assessing the uncertainty. The implication of
such a representation in terms of decision making under risk and
decision making under uncertainty is also discussed.

Index Terms—Cost estimation, decisions under risks and uncer-
tainty, through-life cost (TLC), uncertainty.

I. INTRODUCTION

THROUGH-LIFE cost (TLC) is a term used in cost estima-
tion of a product from an early conceptual phase in the

product life cycle through to the reuse/disposal phase. There are
many acronyms that are used to mean TLC, such as whole-life
costing (WLC), life-cycle costing (LCC), total cost, total life
costing, total cost of ownership, cradle-to-grave costs, costs in
use, and ultimate life cost [1]. This variation in terminology
arises due to slight differences in definition and emphasis of the
approach by different researchers, for instance, LCC is defined
as “a set of methods that consider not only product life cycle
costs but also the environmental and social aspects in the life
cycle” [2]. This definition emphasizes environmental and social
costs because much of the incentives come from the need for
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environmentally sustainable designs, bridging the link to life cy-
cle analysis (LCA) [3]. According to the American Institute of
Chemical Engineers (AIChE) total cost assessment methodol-
ogy [4], five categories of costs are distinguished, with the trend
of each category being increasingly more difficult to quantify:

Type 1: direct (capital investment, recurring and nonrecur-
ring);

Type 2: indirect (operating and maintenance, recurring and
nonrecurring);

Type 3: contingent (future scenarios, accidental);
Type 4: Intangible (customer loyalty, worker morale);
Type 5: External costs (societal costs).

The emphasis in this paper is on the tangible costs (types 1–3)
in the AIChE classification.

Defense acquisition strategies such as the U.S. Department
of Defense (DoD) performance-based logistics (PBL) and the
U.K. Ministry of Defence (MoD) through life capability man-
agement are contracting the original equipment manufacturers
(OEMs) to provide long-term support, taking into account the
financial implications of equipment through life [5], [6]. For
large engineering systems with extended life, costs of operating
and support may exceed initial costs. For instance, it is often
said that for complex and long-lived systems, such as weapon
systems, buildings, and aircraft fleets, the operation and support
cost accounted for as much as 75% of the total cost [7], [8].
Under the availability contracting arrangements, the responsi-
bilities for the operational phase are transferred from the cus-
tomer to the supplier (the OEMs), where associated technical,
commercial, financial, and behavioral risks and uncertainties in
the life cycle need to be considered as early as possible [9].
One of the primary aims of TLC is intended to make effective
choices between alternatives based on a view of the long-term
costs associated with each alternative. For instance, decisions
can be based on tradeoffs between high capital cost investment
for lower operation and maintenance costs [10]. Critically, the
decisions made in the early concept stages before large capi-
tal acquisitions are committed will have the greatest impacts.
For example, it is also commonly suggested in the literature
that about 70%–80% of the cost of a product is committed in
the early stages, although it may vary depending on the type
of system [11]. Therefore, it will be a business advantage if
costs associated with maintainability, supportability, and dis-
posal can be taken into consideration earlier. The ability to un-
derstand uncertainty in the service costs is vital to the success of
availability contracting [9]. Paradoxically, these early decisions
also have to be made when uncertainty is greatest.

Uncertainty can be defined as “a potential deficiency in any
phase or activity of the modeling process that is due to lack of
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Fig. 1. LCC breakdown structure, adapted from [6] and [8].

knowledge which causes model-based predictions to differ from
reality” [12], [13]. For example, an aircraft due for manufacture
in 10–15 years can include uncertainty about new manufactur-
ing processes, materials, and requirement changes. In particular,
the operation and support costs related to such systems are very
difficult to predict [8]. A number of large-scale and complex
projects have been subjected to overexpenditure. Typical exam-
ples of cost overrun include the 2012 Olympics and the Airbus
A380 [14], [15]. Much of the research to date has illustrated that
this can be attributed to decisions made within the early design
stages of a project. As a result, transparent and quantitative de-
cisions based on costs are being encouraged throughout, both in
the governmental and defense sectors. There is also the view that
some estimates are deliberately low in domains such as large
public infrastructure projects and aerospace/defense [14], [16].
Despite this view, the overriding concern is that estimates are
extremely difficult and uncertainties within the estimates are not
always clear [17].

The procedures for estimating TLC may include deciding on
the cost elements of interest or, considered important, defining
the cost breakdown structure (components of each element),
developing cost estimation methodology (establish how costs
for each component is to be estimated), and reviewing the re-
sults (validation and documentation of the analysis). The ac-
tual elements, structure of the model, and the methodology
vary depending on the needs and scope of the analysis. For
instance, a typical TLC breakdown for engineered products is
shown in Fig. 1. Furthermore, TLC analysis can be performed
at various levels depending on the information available and
the type of analysis used [18]. For example, a generic frame-
work for collecting WLC data at five levels for the building
industry based on project, phase, category, element, and task is
described [19]. Tools for estimating TLC ranges from bespoke
spreadsheets to commercial-off-the-shelf (COTS) software such
as SEER [20], PRICE [21], and Relex [22]. A more comprehen-

sive review of software and TLC modeling approaches can be
found in [23]. The U.S. DoD developed the cost analysis strategy
assessment (CASA) as a software implementation to model the
total costs from initial research to maintenance and in-service
expenses [24]. These tools generally provide capability of mod-
eling uncertainty but lack emphasis on how best to represent or
manage the uncertainty. This paper provides a critical review
of uncertainty in TLC estimation and discusses the requirement
of a different approach for characterizing uncertainty in TLC to
improve the decision making under conditions of uncertainty.

II. LITERATURE REVIEW

Uncertainty has been studied in a wide range of applications
and domains. The emphasis given in this literature review is
on those papers that address uncertainty understanding for the
purpose of improving confidence in the modeling activities.

A. Terminology and Classification

Uncertainty may result due to various reasons, which
Zimmermann [25] recognized as lack or abundance of informa-
tion, conflicting evidence, measurement uncertainty, ambiguity,
and belief (or subjectiveness). Uncertainty is affected by the
quality and quantity of information. Various classifications of
uncertainty have been proposed [26], but very little consensus
has been achieved. Where consensus is achieved, it tends to be
specific to certain domains or communities.

Isukapalli [27] and Du and Chen [28] distinguish between the
parameter and model uncertainty, which is relevant in modeling
activities. Model uncertainty is generally implied to be epis-
temic, mainly due to the lack of knowledge, complexity, and
imprecision [12], [29]. Nilsen and Aven [30] further distinguish
between model uncertainties as a result of lack of knowledge
and deliberate simplifications due to economy and convenience.
The selected model is generally a tradeoff between accuracy and



GOH et al.: UNCERTAINTY IN THROUGH-LIFE COSTING—REVIEW AND PERSPECTIVES 691

detail, so that only that model needs to be developed that per-
forms its required function. Parameter uncertainty may be intro-
duced in the description of the parameters, such as in the physical
or the properties parameters in engineering analysis [31]. The
sources of parameter uncertainty are typically due to limited
datasets, and empirical, subjective, and qualitative information.

Another useful classification of uncertainty that is widely
accepted in engineering verification and validation (V&V) is
the aleatory and epistemic uncertainty. Aleatory uncertainty is
inherent variability that cannot be reduced by further measure-
ment, although better sampling can improve knowledge about
the variability. Epistemic uncertainty is caused by the lack of
knowledge about the true value of a parameter or the behavior of
a system and can be reduced by more accurate measurements or
expert judgment. This distinction is useful in terms of selecting
the suitable modeling methods, although some researchers ar-
gue that their separation may not be possible in reality [32]. Earl
et al. [33] made a similar distinction, but referred to aleatory un-
certainty as the known uncertainty (based on variability in past
cases characterized as probability distributions) and epistemic
uncertainty as the unknown uncertainty. Unknown uncertainties
are those where the specific event or type of event could not have
been foreseen. Others [34], [35] further distinguish between the
internal and external uncertainties, stating that external uncer-
tainties such as those driven by market and political variables
are more difficult for a company to predict.

Uncertainties have been extensively considered within the
context of LCA where uncertainty sources, types, and the mod-
eling approaches have been studied in great detail by many
authors [36]–[38]. Various classification schemes to describe
uncertainty within LCA have also been proposed depending on
the viewpoints of the researchers [36]. For instance, Huijbregts
et al. [39] defined uncertainty in input data as parameter un-
certainty, in normative choices as scenario uncertainty, and in
mathematical relationships as model uncertainty. Heijungs and
Huijbregts [36], [40] suggested that there are three broad types
of uncertainties associated with each of the categories, i.e., no
value, inappropriate value is available, and more than one value
is available. Lloyd and Ries [41] adopted the same categoriza-
tion and found from a survey that the parameter uncertainty was
the type of uncertainty most frequently addressed in LCA. How-
ever, they cautioned that it was impossible to establish whether
it was generally considered the most important. The Society of
Environmental Toxicology and Chemist (SETAC) published a
full report on data availability and quality issues in LCA [42].
These issues were considered to be important qualitative indi-
cation of uncertainty to the LCA decision makers.

B. Uncertainty in Cost Estimation

There are significant sources of uncertainties associated with
the activities of cost estimation in general. At the time of esti-
mation, the costing information available usually takes the form
of historic product costs, and at times, there is a high degree of
uncertainty [43], for instance, with regards to the form of the at-
tributes (architecture, dimensions, and geometry) of the product
and the knowledge concerning manufacturing processes [17].

Fig. 2. Cone of uncertainty in software engineering projects [46], [47].

Creese and Moore [44] indicated that the cost estimates at the
conceptual design stage are in the range of −30% to +50%,
which reduces to between −5% and +15% when the detailed
design phase is entered. The uncertainty in cost estimation re-
duces, as more complete design information becomes available,
including product design and manufacturing details, product
support, reliability, and the disposal requirements [45]. In soft-
ware engineering (see Fig. 2), the cone of uncertainty is typically
used to illustrate variation in costs from the initial project phase
of as much as a ±400% error margin in the feasibility phase
that gradually converges to the actual cost when software is
released [46], [47].

Accurate cost estimation plays a significant role in the per-
formance and effectiveness of a company as overestimation can
result in loss of business and goodwill, whereas underestimation
may also lead to financial loss to the company [8], [48]. In view
of the significant uncertainty in costing of complex projects, the
ability to estimate the costs with known uncertainty will pro-
vide grounds for making better decisions, and therefore, offer
distinct engineering and business advantages [8], [49]. Although
the need to understand uncertainty associated with cost estima-
tion has been well articulated, cost estimation is still, in general,
an open-loop process with limited efforts in providing corre-
lation between the estimated and actual costs except perhaps
for the overall value. The Research and Development (RAND)
Corporation uses a cost-growth-factor (CGF) metric to relate
the ratio of the final costs to the estimated costs at the Milestone
II, engineering and manufacturing development (EMD) stage
for DoD projects (see Fig. 3). From 44 projects, they found a
systematic bias toward underestimating the costs (projects with
CGF > 1) and a substantial variation in estimating the final cost,
suggesting low confidence in cost estimation [50].

V&V is a systematic process used in computational analysis
to provide evidence that predictions are credible and scientifi-
cally defendable. Uncertainty quantification is a significant part
of the V&V process. However, V&V in cost estimation meth-
ods have not received a great deal of attention to date. In the
same report by RAND Corporation, it is stated that there is
little documentation in the open literature about what methods
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Fig. 3. Distribution of CGF [50].

have been used in specific cases, how accurate the methods have
been overall, and for what different phases of the life cycle of
completed projects where actual costs could be compared to
predicted costs.

III. UNCERTAINTY IN THROUGH-LIFE COSTING

As opposed to traditional product costing, TLC encompasses
a much greater scope, and therefore, uncertainty too. In par-
ticular, the nature of estimation deals with the future that is
unknown, including costs associated with future scenarios such
as the maintenance and operating regimes, technology obsoles-
cence, or changes in legislation. It is, therefore, not surprising
that the longer the life, the greater the uncertainty and the lower
the validity of the WLC estimates [51]. The reasons for the
lack of V&V effort in TLC could include economic or practi-
cal difficulties in collecting the data required [52]. In particular,
operating cost data for current equipment are not readily avail-
able, and if available, the data may not be accurate, complete,
or representative [53]. Also, cost data may not be retained in
useful and suitable formats to allow for a detailed and step-
wise comparison between the estimated and actual costs. This
is despite many researchers emphasizing the importance of a
feedback loop [10], [54]. Furthermore, TLC typically involves
large and extended models (several thousands of equations) em-
bedded in spreadsheets. The use of spreadsheets means that
the models are difficult to trace and manage, and are therefore,
more susceptible to errors [17]. The widespread industrial use of
spreadsheet-based costing is evident in European Life Perfor-
mance (EUROLIFEFORM), a European collaborative project
started in April 2001 [55]. Although software such as @Risk
and Crystal Ball are used to provide probabilistic modeling of
TLC and performance, these approaches do not readily lend
themselves to validation.

In North Atlantic Treaty Organization’s (NATO) 2007 report
on methods and models for LCC, practical guidelines for vali-
dating cost models are provided [56]. The report suggests using
more than one method of estimation, if possible, and the desir-
able criteria of model attributes should include the following,
based on best practice recommended by the Society of Cost
Estimating and Analysis (SCEA).

TABLE I
SUMMARY OF DATA UNCERTAINTY IN TLC

1) Accuracy: This includes good curve fits and minimal error
bands, based on an assessment of the most likely costs.

2) Comprehensiveness: Level of detail, ground rules, and
assumptions must be detailed in the documentation.

3) Replicability and auditability: References to source data,
significance, and goodness-of-fit statistics for cost estima-
tion relationships (CERs) clearly detailed calculations and
results and rationale for method or reference chosen.

4) Traceability: This means traceable to source documenta-
tion.

The U.S. Government Accountability Office (GAO) has
adopted similar criteria for validating cost estimates [57]. This
development is an indication of the importance industries are
placing on validation of TLC estimates to improve the use
and understanding of uncertainty in the TLC decision-making
process.

A. Data Uncertainty

The robustness of a cost estimate improves with the volume
of information available [45], [58]. However, all the required
data for conducting TLC may not be available at the estima-
tion stage where decisions that influence TLC are taken and
before commitment to significant capital expenditures is made.
The three main types of data required are cost data, schedule or
program data, and technical data [57]. In addition to data col-
lection and assurance issues such as completeness, provenance,
and reliability (internal or external databases), there is uncer-
tainty in the data that are related to the levels of the available
knowledge. Table I summarizes the typical sources and types
of uncertainty in data for estimating TLC. The aleatory uncer-
tainty mainly describes the inherent randomness. The epistemic
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Fig. 4. Classification of cost estimation methods [63].

uncertainty can arise because of linguistic vagueness, ambiguity
due to multiple sources of data, optimism bias [16], [50], [59],
and imprecision associated with future decision. An example of
imprecision could be the lack of knowledge about the manufac-
turing process to be used where the cost will be dependent on
that decision (which may be influenced by technical constraints).
The lack of statistical data can result in epistemic uncertainty
about the underlying statistics. The standard error is related to
sample size n and probability p by

standard error =

√
p(1 − p)

n
. (1)

It is apparent that both types of epistemic and aleatory uncertain-
ties are present in the data, and in particular, there is significant
epistemic uncertainty.

B. Model Uncertainty

As with any modeling process, the estimation of TLC is based
on the development of models that relate costs to certain input
parameters. The input parameters may contain data uncertainty,
as described earlier. The model, in turn, may also contain uncer-
tainty, for example, due to the lack of definition, assumptions, or
approximation (sometimes due to time pressure [57]), selection
of cost estimation methods [57], level of detail [60], and com-
plexity and correlation between cost elements [61]. Epistemic
uncertainty may arise if there is a lack of definition for the pur-
pose of developing the cost breakdown structure, or when the
analysts have to make simplifying assumptions in the model to
exclude elements deemed less important.

There are different methods for evaluating the TLC of a prod-
uct or a system. The application of the appropriate technique
is an important factor for the quality of the estimate. Some re-
searchers have attempted to classify the various methods, but the
categorization is not consistent [8], [62]. One of the more ex-
tensive classifications was proposed in [63], as shown in Fig. 4.
According to the authors, cost estimation can be categorized
as having qualitative and quantitative approaches, which can

be further subdivided into two categories each. The resulting
four categories, intuitive, analogical, parametric, and analytical
(often referred to as the engineering approach [62]), are con-
sistent with that proposed in [64] and [65]. This classification
is based on similar characteristics of the methods and is used
here to discuss uncertainty in the cost estimation methods. For
supporting early cost estimation, Niazi et al. [63] suggested
that fuzzy logic systems and neural network models inherently
include uncertainty in them. Many researchers have also re-
ported on the suitability of these techniques to different life
cycle phases [64], [66], but only Chen et al. [67] have attempted
to subjectively assign the uncertainty in cost estimation methods
using three levels: low, medium, and high. However, they did
not provide details on how these levels were established.

1) Intuitive Techniques: The intuitive technique is some-
times referred to as an expert opinion approach. As a quali-
tative method, the technique significantly relies on the knowl-
edge and experience of the experts to estimate probable costs.
Therefore, approaches for increasing reliability of estimation
from experts must be considered [68]. The major form of
uncertainty is epistemic, in the experts’ formulation of rules
of thumb and qualitative evaluation of similarities between
systems.

2) Analogical Techniques: The analogical method adjusts
the cost of a similar existing program/system to estimate for a
new program/system. Cost data are subjectively adjusted based
on judgment of how similar or different the new system is to the
existing one in terms of complexity, size and scope, technology,
system architecture, socioeconomic situation, etc. Although the
method may utilize quantitative analysis such as regression, it
involves subjective evaluation of the factors that have an impact
on cost. The approach can be used at different levels of the
system such as comparing between subsystems. For this method,
uncertainty reduces if there is high similarity between the two
systems. An example using historical cost growth of projects to
estimate a growth rate for current similar projects is illustrated
by RAND Corporation [50]. The CGF is analyzed by taking
the ratio of final cost to initial cost estimate and then applying
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simple linear regression. In constructive systems engineering
cost model (COSYSMO), cost multipliers are used to scale
the system engineering effort to reflect technological maturity,
readiness, and obsolescence relative to that of nominal systems
[69]. Again, the major type of uncertainty in using this method
is the epistemic uncertainty.

3) Parametric Cost Estimation: Parametric techniques ap-
ply statistical methods such as regression analysis to relate cost
to a number of constituent variables called cost drivers using
historical data and mathematical expressions. The cost drivers
could be any parameters that are key determinants of cost, such
as weight and volume. The mathematical expressions are also
known as CERs and can take various forms depending on the
characteristics of the relationship. The most usual mathematical
forms are the linear form and the power form [70]. A number
of statistical properties of the regression equation can be used
to indicate the quality of the CER, including the confidence
interval and normalized sum of residual error [70]. The main
indicator of uncertainty in CERs is often based on the square
of the correlation coefficient, r2 , which denotes the strength of
correlation between the independent and dependent variables.
The value of r2 ranges from 0 to 1, with 0 indicating no corre-
lation and 1 indicating a perfect correlation. Farineau et al. [71]
proposed an extensive selection method based on statistical re-
gression quality and technical coherence that are weighted and
then combined.

Uncertainty in parametric cost estimation is dependent on
the uncertainty in the historical data and the CER used. The
values of the cost drivers may be difficult to define accurately
and might evolve due to changing requirements over the pro-
gram’s life [50]. Thus, the estimator must make some judgments
about which parameters are relevant and should be included,
and which values to use. For instance, the data used to derive
the CER often need to be adjusted against inflation, economic
conditions, and technological differences [60], [72]. Also, the
CERs are valid only for a limited range; extrapolation outside
the validity range may cause serious errors in the estimate. The
choice of CER is very important because there may be step
changes in the relationship such that different functions may be
required for the range considered. For example, the fabrication
cost for aircraft T-stringers in Fig. 5 is shown to vary linearly
with the stringer length. However, if there is a step change in
the costs associated with longer stringers (more than 5000 mm)
compared with shorter ones (below 2000 mm), the effect may
not have been captured effectively by a single CER. Mileham
et al. [73] used three CERs to capture the cost–weight relation-
ships of acrylonitrile butadiene (ABS) injection moldings for
different weight bands. In addition, the CERs do not capture
the uncertainties in the values of the cost drivers, which can
have an important effect on the final cost. All of these cause
uncertainties in the estimation from parametric methods.

4) Analytical Techniques: The analytical techniques are
sometimes referred to as the engineering approach or “bottom-
up” method. The work breakdown structure (WBS) is usually
used to provide a detailed hierarchical decomposition of cost
elements, which are evaluated analytically. A WBS is a hierar-
chical list of all items that must be paid for to bring a system to

Fig. 5. Fabrication cost for aircraft stringers [74].

its full operational capability, such as for a space system shown
in Fig. 6.

Various WBS can be used depending on the problem in hand,
including operation-based, feature-based, and activity-based.
The analytical methods require significantly more development
effort and data to populate, and hence, are seldom practical in
early life cycle phases. The uncertainty in analytical methods
depends on the scope and the level of details considered in the
WBS. The greater the scope of the model, the more uncertainty
is anticipated as the uncertainty is aggregated from each of
the elements. It is also possible that data may not be available
to characterize all elements of the WBS to the same level of
fidelity. Generally, the more details considered, the more ac-
curate the model becomes, but any simplification may cause
epistemic uncertainty in the cost estimation. One of the main
sources of uncertainty in the analytical methods is the consider-
ation of dependency between elements in the WBS [75]. Failure
to characterize the dependency will introduce significant uncer-
tainty to the cost estimate [61]. Also, uncertainty may result
from complexity; therefore, system engineering and integration
efforts need to be accounted for separately.

5) Extrapolation From Actual Costs: Extrapolation can be
performed on cost data that are collected from prototype sys-
tems and the previous life cycle phases. As opposed to analogical
and parametric approaches that are based on costs of previous
systems, the extrapolation is done on actual cost of the cur-
rent system. This method will generally be preferred over other
methods because it provides the most reliable cost estimation,
provided the actual cost incurred is known [76]. For instance,
quotation from the suppliers can be used to estimate the final
costs of the whole system. The main source of uncertainty in
this method arises from any changes in the conditions during the
extrapolation process. For instance, if the supplier changes for
an unforeseen reason or the production process changes from
the prototype system, then these may have significant effects on
the estimated costs. The main drawback of this technique is the
late availability of actual cost data, and is therefore, difficult to
accomplish in the early acquisition or design phase.

The methods for estimating costs are not mutually exclusive
and more than one approach is usually adopted at any given
time to establish the cost of a system. Some hybrid approaches
have also been proposed (for example, see [77]). In these hybrid
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Fig. 6. WBS for a space system launch vehicle [75].

TABLE II
SUMMARY OF UNCERTAINTY ASSOCIATED WITH COST ESTIMATION

TECHNIQUES

approaches, the characteristics of uncertainty are similar to the
individual methods used. A summary of the main sources and
types of uncertainty associated with cost estimation techniques
is given in Table II.

C. Scenario Uncertainty

As TLC estimation inherently deals with events and condi-
tions that are long-term, scenario uncertainty is one of the main
sources of uncertainty. Scenario-based approaches involve pre-
dicting a series of decisions and events that might occur in the
future, which will affect the TLC, such as the introduction of
new technologies, changes in technical requirements, introduc-
tion of new legislations, and supply chain disruption. Typically,
these events affect both external and internal business mod-
els and conditions, and it is difficult to accurately forecast the

magnitude of these changes because they are influenced by, for
example, the economic conditions, labor relations, and inflation
(external uncertainty). These changes in the external conditions
make a direct comparison of estimated costs and the actual costs
incurred through life more difficult.

A related and commonly used concept is risk, where market-
related, technical and operational, as well as institutional uncer-
tainties [78] may ultimately result in additional costs in the life
cycle. Changes in technical specifications such as the perfor-
mance levels and life expectancy often have significant impacts
on the actual TLC of a system. An example is the changes
in requirements for the Royal Australian Air Force (RAAF)
F-111 program, leading to significantly higher costs to the
Australian Government. The SA80-A1 weapon systems devel-
oped based on fighting in the temperate climates of northwest
Europe needed an upgrade when deployed in the Gulf War [79].
These changes are particularly difficult to forecast at the early
life cycle stages given the lack of knowledge, and hence, sce-
nario uncertainty is mainly epistemic in nature. Scenario un-
certainty can be associated with situations where the different
alternatives are predicted under the fact that which alternative
will be realized in practice is not known. Nonetheless, some
techniques have been developed to forecast technology obso-
lescence and design refresh, and can be used to reduce the
associated uncertainty [80]. At present, scenario uncertainty is
dealt with by modeling a single event/episode from a given set
of inputs multiple times to assess uncertainty deterministically.
The scenarios may correspond to pessimistic, anticipated, and
optimistic estimates [50]. Alternatively, each scenario may be
assigned probability (e.g., 1 in 10 years) to reflect experts’ belief
of the likelihood of each scenario.

Table III presents some common uncertainties encountered
throughout the life cycle phases.

IV. UNCERTAINTY REPRESENTATION AND MODELING

Uncertainty representation and modeling are methods for in-
corporating quantitative uncertainty into the cost estimates.
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TABLE III
UNCERTAINTIES IN THE LIFE CYCLE PHASES

A. Approaches for Modeling Uncertainty

Various methods have been proposed for characterizing un-
certainty in cost estimation. Many of the methods are based
on probability theory [50], [81]. Two fundamentally different
approaches in probability theory have been employed for this
purpose. In cases where historical data are available, the analysts
will derive suitable probability density functions (pdfs) to char-
acterize the cost parameters. Historical data can be derived from
various information sources, e.g., heuristics, internal, or external
databases (supplier and industrial). The Monte Carlo simulation
is a popular computational method to propagate variability in the
input parameters to estimate variability in the output parameters.
Analytical methods such as sensitivity analysis and method of
moments are also typically employed [50]. Although the proba-
bilistic methods deal very well with variability (aleatory uncer-
tainty), large amounts of data are usually required to derive the
pdfs that may not be available at the estimation stage and early
in the life cycle. For example, accurate and dependable cost data
for new equipment are often difficult to acquire, especially for
new technologies [53].

An alternative interpretation of probability is to use subjective
probability that is popular for characterizing uncertainty using
the experts’ opinion. The RAND Corporation reports on meth-
ods to model cost uncertainties and interpreting risk (should not
be confused with technical risk) from it [68]. The approach usu-
ally focuses on using single and ranges of values, for example,
three point estimates to construct the pdfs so that the probabilis-
tic methods can be used. For instance, triangular distributions
are commonly used to characterize the minimum, most likely,
and maximum points. Subjective estimates may introduce bias
and imprecision, including, e.g., overoptimism in expert judg-
ment and the representativeness of historical data resulting in

estimation error. As a result, elicitation of subjective probability
from experts is often a lengthy and intensive process to improve
the robustness of estimates obtained in this manner. For instance,
the Delphi technique is typically used to iteratively converge the
experts’ opinion [68], [82].

Due to a lack of statistical cost data and the existence of epis-
temic uncertainty, it is suggested that alternative uncertainty
theories and models may be more suitable than the probability
theory for handling uncertainty. For instance, Kishk [83] sug-
gested the different types of uncertainties in WLC modeling
(see Fig. 7) and proposed a transformation approach to com-
bine the probability and fuzzy set descriptions of uncertainties.
Fuzzy sets have been used to represent the concept of plausibil-
ity in possibility theory, where fuzzy measures provide the upper
bounds on probability [84]. Generally, uncertainty theories such
as probability and fuzzy set theories are based on different terms
of reference [25], and therefore, the combination will result in
changes in information content [85].

From the previous sections, it is apparent that both epistemic
and aleatory uncertainties may exist in the cost data, model, and
scenario description; therefore, methods for dealing with both
types of uncertainties in cost estimation will be useful. Some
researchers have suggested that the representation of possibility
and fuzzy set appears to be more pragmatic and intuitive to elicit
from experts when judgment is required [86]. Interval numbers
have also been used to characterize uncertainty when the un-
derlying pdf is unknown within range values [87]. The interval
numbers represent the range of parameter values by the lower
and upper bounds and have been used to model epistemic un-
certainty in engineering design [88]. In LCC analysis, Kang and
Brissaud [89] used intervals to represent imprecise end-of-life
data. Due to lower information requirement, interval and fuzzy
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Fig. 7. Handling uncertainties in WLC modeling [83].

methods are often useful in estimation where data are limited,
vague, ambiguous, or imprecise [41], [90]. Others have defended
the probability approach as the most suitable representation for
both aleatory and epistemic uncertainties [91]. However, they
admitted that the elicitation process is critical because of im-
precision in probability judgments. Hence, the choice of proba-
bility or alternative representations using interval and fuzzy set
should depend on whether reliable and defendable pdfs can be
elicited from the experts and whether the resource commitment
is justifiable. In the authors’ opinion, the methods suitable to
characterize different types of cost uncertainties have not been
rigorously investigated and warrant further research. This view
will allow distinguishing between information that is knowable
in the future and those that are inherently variable in the system.

B. Discussion and Perspectives

In estimating TLC, analysts often need to translate subjec-
tive uncertainty into objective measures in order to arrive at
quantitative measures of cost uncertainty. This process is in-
herently uncertain. Examples include using risk scores to relate
risk of technology, software maturity, etc., to cost estimation
uncertainty [57], [69]. As mentioned previously, most of the
modeling approaches are based on probability theory and focus
on the representation of uncertainty using pdfs. Some heuristics
have also been developed to augment the pdf to account for
imprecision (see [75]). Most of the commercial cost modeling
tools also include an uncertainty modeling capability such as
sensitivity analysis and Monte Carlo simulation exclusively for

Fig. 8. Imprecise probability representation.

modeling variability by allowing for the input parameters to be
defined as pdfs.

Uncertainty in TLC may be aleatory or epistemic in nature,
in many aspects dominated by lack of knowledge in the data,
model, and scenario description. It may be required that both
aleatory and epistemic uncertainties are considered simultane-
ously, for example, where the input parameter uncertainty is
aleatory but model uncertainty is epistemic. The separation of
epistemic and aleatory uncertainties is important in terms of
modeling because different theories and representation are suit-
able for different kinds of uncertainty [92], [93]. It is suggested
that a different approach will be required to characterize them
separately because in principle, the portion of the uncertainty in
the models’ outputs that is due to epistemic sources of uncer-
tainty is reducible, whereas the portion due to aleatory uncer-
tainties is irreducible [91].

To this end, a more generalized form of probability theory is
identified as a potentially useful representation for expressing
combined uncertainties as imprecise probability [94]. The im-
precise probability provides information about the probability
bounds or a set of probabilities in a single construct. In probabil-
ity bounds analysis [95], an interval-type bounds on cumulative
density functions (cdfs), also called the probability or p-boxes,
are defined for nondecreasing functions F(x), with x being from
� into [0, 1] such that F (x) ≤ F (x) ≤ F (x), as

F box(x) =
[
F (x), F (x)

]
(2)

where F (x) ≤ F (x) for all x in � and

F (x) = lower cdf

F (x) = upper cdf.

A simple p-box is a region bounded by two cdfs, as illustrated
in Fig. 8; the p-box will degenerate to a precise cdf when the
information is detailed enough to specify a distribution com-
pletely. A more detailed explanation of the characteristics of
p-box can be found in [95] and [96].

Some researchers have used this representation to incorporate
the uncertainty caused by lack of knowledge and variability in
engineering design and risk analysis [96], [97]. The epistemic
uncertainty is characterized by the interval bounds/sets of cdf
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and variability is characterized by the cdf. The p-box representa-
tion provides means to include conservatism (through the lower
and upper bounds) without having to make assumptions about
the statistical independence and the actual distributions within
the bounds [94], [96]. The imprecise probability appears to be a
reasonable representation when both epistemic and aleatory un-
certainties are present in TLC, for instance, alternative life cycle
scenarios can be modeled as sets or ambiguous expert opinions
as intervals of probabilities. However, their values will need to
be investigated in terms of enhancing TLC decision making and
also in terms of their ability to explicitly quantify uncertainties
in costing problems.

Distinguishing between epistemic and aleatory uncertainties
is also important in the context of decision making, often recog-
nized as decision under risk and decision under uncertainty in
decision theory [98]. The former is a situation dealing with de-
cision making where the probabilities of the possible outcomes
are known, whereas the latter with situations when it may be
inappropriate or impossible to assign probabilities to the out-
comes. Typical decisions informed by the LCC analysis include
the evaluation of different investment scenarios or choice be-
tween alternative designs for the whole or part of a constructed
asset [18]. Decisions associated with TLC are also often compli-
cated by competing requirements; therefore, methods for deal-
ing with multicriteria decision making under uncertainty will
be required [59]. If uncertainty associated with each outcome
can be precisely described using probability representation, then
the expected utility for that decision can be maximized. Under
the conditions of uncertainty (lack of knowledge), because of
imprecision, the desired optimal outcome may not always be de-
terminate [99]. Several methods for dealing with this situation
have been proposed, e.g., maximin–maximax rule, Hurwicz cri-
terion [100], and information gap decision theory [101]. These
methods have also been applied where both risk and uncertainty
are present (for example, see [102] and [103]).

It is argued that although the current probabilistic cost risk
analysis approach may implicitly incorporate the lack of knowl-
edge in the construct of pdf, the construct does not allow for the
risk and uncertainty components to be separated easily, thus con-
volving the ability to make informed judgments. Furthermore,
understanding the types of uncertainty can more effectively fo-
cus efforts on V&V. For example, the maintenance and service
life is inherently probabilistic in nature and can be related to
factors such as the mean time between failures (MTBF), cost of
warranty, and reliability and repairs [49], [53]. Therefore, char-
acterization of statistical confidence and data collection should
be expanded in this area. If epistemic uncertainty in the cost
estimation methods is high, then efforts should be expanded to
enhance accuracy (add details, cross validation), improve expert
judgment, etc.

V. CONCLUSION

This paper has reviewed uncertainty in TLC and concluded
that epistemic uncertainty is an important component of cost
estimation uncertainty. The present approach to TLC under un-
certainty is to quantify the uncertainty in the probabilistic sense,

using pdfs as the representation of uncertainty. It is suggested
that the separation of aleatory and epistemic uncertainty should
be made such that suitable representation and methods can be
used to model the uncertainties faithfully. This distinction also
allows for anticipation of information that is knowable in the fu-
ture to update the estimates. It has been identified that a generic
approach that can handle a combination of aleatory and epis-
temic uncertainties will be useful. The imprecise probability
may be a suitable representation for such purpose; however, the
ability in quantifying aspects of the epistemic and aleatory un-
certainties in TLC needs to be further investigated. This will
include prioritization of areas where each type of uncertainty
is critical so that suitable actions for improving the uncertainty
quantification and modeling can be taken. The resulting uncer-
tainty representation will need to be interpreted in the context
of decision making associated with TLC, for instance, in terms
of decision under risk and uncertainty and deriving strategies to
deal with them. Informed by this review, the research aims to
provide a framework to manage uncertainties in TLC decision
making.
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