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A Robust Minimum Variance Beamforming Approach for the Removal

of the Eye-Blink Artifacts from EEGs

Kianoush Nazarpour, Yodchanan Wongsawat, Saeid Sanei, Soontorn Oraintara, and Jonathon A. Chambers

Abstract— In this paper a novel scheme for the removal
of eye-blink (EB) artifacts from electroencephalogram (EEG)
signals based on the robust minimum variance beamformer
(RMVB) is proposed. In this method, in order to remove the
artifact, the RMVB is provided with a priori information, i.e.,
an estimation of the steering vector corresponding to the point
source EB artifact. The artifact-removed EEGs are subsequently
reconstructed by deflation. The a priori knowledge, namely the
vector corresponding to the spatial distribution of the EB factor,
is identified using a novel space-time-frequency-time/segment
(STF-TS) model of EEGs, provided by a four-way parallel
factor analysis (PARAFAC) approach. The results demonstrate
that the proposed algorithm effectively identifies and removes
the EB artifact from raw EEG measurements.

I. INTRODUCTION

Electroencephalogram (EEG) is the manifestation of brain

activity recorded as changes in electrical potentials at mul-

tiple locations over the scalp. The electrooculogram (EOG)

generated by eye movements or blinks is found to be the

most significant and common artifact in EEG [1]. The EOG

is of the order of ten times larger in amplitude than average

cortical signals and lasts approximately 300 msec. Due to

the reasonably high magnitude of the blinking artifacts and

the high resistance of the skull and scalp tissues, EOG may

contaminate the majority of the electrode signals, even those

in the occipital area.

In recent years, various methods for EB artifact removal

from EEGs have been proposed which are mainly based on

linear regression [2] and independent component analysis

(ICA) [1]. Approaches such as trial rejection, eye fixation,

EOG subtraction, principal component analysis (PCA) [3],

blind source separation (BSS) using ICA [4], [5], and H∞ [6]

adaptive filters have also been documented as having varying

success. Despite no quantitative comparison for any refer-

ence dataset being available, it has been shown that the

regression- and BSS-based methods are the most reliable

ones [1], [2], [4], and [5]. Although beamforming-based

methods have been recently utilized in the EEG source

localization problem [7], to the authors’ best knowledge,

they have not been considered in removing the EB artifacts

from the EEGs. This is understandable since these schemes
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suffer a significant performance degradation when the array

response vector for the source of interest, i.e. EB, is not

exactly known [8].

Statistically nonstationary EEGs yield information about

active parts of the brain. This spatial knowledge has been

efficiently exploited for localizing the sources of background

EEG using PCA. However, although by using ICA, the

inherent nonuniqueness problem of PCA is resolved, the

statistical independence constraint is imposed. Moreover,

in conventional PCA/ICA, no other prior knowledge, such

as frequency band, is exploited during EEG analysis. A

topographic time-frequency decomposition method is pro-

posed in [9] and followed by [10] where the space-time-

frequency (STF) model of multi-channel EEGs is introduced.

More recently, we have utilized the STF model for the

identification and removal of EB artifacts and brain computer

interfacing [1], [5], [11], and [12]. Although, STF modeling

is effective, it suffers from high computational complexity

when applied to long term data sequences recorded from a

high number of electrodes [12].

In this paper, a novel technique for removing the EOG

artifacts from multi-channel EEGs is presented. Our method

is based on the robust minimum variance beamformer [13],

where the spatial knowledge of the mixing process, obtained

by PARAFAC analysis, is exploited as an estimation of the

steering vector corresponding to the EB source. Aiming at

reducing the computational complexity in the estimation of

the STF model using PARAFAC, the time domain is sub-

divided into a number of segments and a four-way array is

then set to estimate the space-time-frequency-time/segment

(STF-TS) model of the data using the four-way PARAFAC.

Subsequently, the STF-TS model results in the classic STF

model, with significantly lower computational cost.

This paper is organized as follows. In Section II, we briefly

review the RMVB and introduce the spatial signature of the

STF-TS model as an estimation of the array response vector

following by the proposed STF-TS based STF model estima-

tion methodology. The results are subsequently reported in

Section III, followed by concluding remarks in Section IV.

II. ALGORITHM DEVELOPMENT

Assume N zero-mean real mutually uncorrelated point ge-

ometrically stationary sources s(t) = [s1(t),s2(t), · · · ,sN(t)]′,
where [·]′ denotes the vector transpose, are mixed by an

N×N full column rank matrix A = [a1,a2, · · · ,aN ] where ai

is the ith column of A. The vector of time mixture samples

x(t) = [x1(t),x2(t), · · · ,xN(t)]′ is given as

x(t) = As(t)+v(t) (1)
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where v(t) = [v1(t),v2(t), · · · ,vN(t)]′ is the additive white

Gaussian zero-mean noise which is assumed to be spatially

uncorrelated with the sensor data and temporally uncorre-

lated. The sources are presumed to be uncorrelated, therefore,

the time lagged symmetrized autocorrelation matrix Rk
xx can

be calculated as Rk
xx = E[x(t)x′(t − τk)] for k = 1,2, · · · ,K,

where K is the maximum number of time lags τK and E[·]
denotes the statistical expectation operator. The vector x(t)
in (1) is a linear combination of the columns of the mixing

matrix, i.e., the ais, weighted by the associated source and

contaminated by the noise v(t).

A. Robust Minimum Variance Beamformer

The most straightforward way to extract the jth source

is to project x(t) onto the space orthogonal to, de-

noted by ⊥, all of the columns of A except a j, i.e.,

{a1, · · · ,a j−1,a j+1, · · · ,aN}. Since a j performs as the steer-

ing vector of the jth source, by defining a vector, a spatial

filter, w j, we may write y(t) = w′
jx(t) where y(t) is an

estimation of the source s j(t) corresponding to a j. The

spatial filter can be determined by applying the unit-gain

constraint, w′
ja j = 1 and by minimizing the variance of the

filter output, i.e., y(t) [7]. However, in practice, the steering

vector a j is not always known. Hence, theoretically rigorous

worst-case performance optimization-based approaches have

been recently developed in [8] in order to compensate the

deviation vector, δ of the â j from the actual steering vector

a j, i.e., δ = a j − â j. Note that δ is l2−, denoted by ‖.‖,

norm-bounded by some known constant ε . As outlined

in [13], the beamformer is obtained by minimizing Jc =

∑K
k=1 w′

jR
k
xxw j subject to min‖δ‖≤ε |w

′
jâ j + w′

jδ | = 1 where

|ς | denotes the absolute value of ς . Equivalently [13], we

may rewrite Jc as Jc = ∑K
k=1 w′

jR
k
xxw j s.t. |w′

jâ j−ε‖w j‖|=
1. Using the Lagrange multiplier method, differentiating Jc

with respect to w j, and setting to zero, we have Rw j +
λε

w j

‖w j‖
= λ â j where R = 1

K ∑K
k=1 Rk

xx. After dropping the

unimportant constant λ , and considering the reasoning pro-

vided in [13], the spatial filter can be computed using

w j =

[

R+
ε

ρ
I

]−1

â j (2)

where ρ , ‖w j‖ and I denotes the identity matrix. In (2), the

main concern in estimating w j is to have an estimation of ρ
which may be determined by using the following procedure.

Eigenvalue decomposition of R, i.e., R = UΞU′ results

in the N × N unitary matrix U whose columns are the

eigenvectors of R, and Ξ, the diagonal matrix of the real

positive eigenvalues of R, i.e., ξ1 ≥ ξ2 ≥ ·· · ≥ ξN > 0.

By defining Ψ(ρ) , Ξ + ε
ρ I and following the procedure

suggested in [13], we may write

‖UΨ−1(ρ)U′â j‖
2 −ρ2 = ‖Ψ−1(ρ)g′‖−ρ2 = 0 (3)

where g = [g1,g2, · · · ,gM]′ = U′â j. Introducing

f (ρ) , ‖Ψ−1(ρ)g′‖−ρ2 =
M

∑
i=1

[

|gi|

ε +ρξi

]2

−1 = 0, (4)

in [13], it is shown than that the necessary and sufficient

condition for (4) to have a unique real positive solution for

ρ is that the norm of the mismatch vector is upper bounded

by the norm of estimated signal steering vector, i.e., ‖δ‖ =
ε < ‖â j‖. Considering ‖g‖ = ‖â j‖ and (4), the upper bound

of f (ρ) is achieved as

f (ρ) <
∑M

i=1 |gi|
2

(ε +ρξM)2
−1 =

‖â j‖
2

(ε +ρξM)2
−1 , fmax(ρ). (5)

Note that f (ρ) and fmax(ρ) are both decreasing functions

of ρ and the root of f (ρ), say ρ0, is positive. Hence, we

have 0 < ρ0 < ρmax =
‖â j‖−ε

ξM
[13]. Therefore, the problem of

estimating ρ and consequently the spatial filter, w j, can be

solved within an iterative scheme as in [13].

B. STF and SFT-TS Modeling

In this work, by exploiting PARAFAC, we extract the

factor relevant to the EB artifact to be used within the

beamforming procedure. The resulting spatial signature of

the EB-related factor is exploited to formulate (2). Impor-

tantly, we have considered that the spatial signature of this

factor is directly related to the level of EB contamination

for each electrode. This assumption is rational since the EB

can be considered as a strong point source which is just

attenuated while propagating from the frontal area to the

central and occipital parts of the brain. Hence, the column

of the mixing matrix A, i.e., â j corresponding to the EB

source, is estimated by PARAFAC and used in (2).

Here, we briefly review the adopted approach from [5]

and [12]. Note that the MATLAB matrix notation has been

utilized. In order to decompose the EEGs into spatial, tem-

poral, and spectral signatures, the three-way PARAFAC is

applied to the three-way EEG data Y̌
N×T×F

, Y̌(1 : N,1 :

T,1 : F) where N, T , and F are respectively the number of

EEG channels, time instants, and frequency bins. Therefore,

as in sequel, ǍN×M , ČF×M , and ĎT×M are respectively the

spatial, spectral, and temporal signatures of Y̌
N×F×T

where

their elements are denoted as ǎ(t,m), č(n,m), and ď( f ,m).
While retaining the consistency of formulation, we occasion-

ally drop the superscripts to simplify the presentation.

The STF model is presented as Y̌
N×F×T

= ˆ̌Y + Ě
N×F×T

where ˆ̌Y = ∑M
m=1 ǎ(n,m)č( f ,m)ď(t,m) is an estimation, de-

noted by ˆ, of Y̌, M is the maximum possible number of

factors, and Ě is the three-way array of the residue of the

model which is mostly omitted for brevity.

In order to find M, we utilize the known core consistency

diagnostic (CORCONDIA) measure [14]. The signatures

Ǎ, Č, and Ď can be estimated by using the alternating

least squares (ALS) algorithm where the cost function is

[ ˆ̌
A,

ˆ̌
C,

ˆ̌D] = argminǎ,č,ď ‖Y̌− ˆ̌Y‖2.

Intuitively, the spatial signature Ǎ obtained from the STF

model represents the weighting parameters of the inter-

channel correlation among time-frequency representations

of each channel. However, in order to surpass the high

computational cost occurring in using STF with three-way

PARAFAC [14], in the sequel, we introduce a novel method
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for estimating the STF model. The strategy is based on the

divide and conquer philosophy where as will be detailed in

sequel, instead of calculating the model signatures from the

original data, we estimate these signatures by joining the

weighted versions of their local temporal signatures.

For long-term EEG measurements, the calculations of

both the time-frequency transform and STF modeling are

computationally intensive. Therefore, aiming to reduce this

computational complexity, we divide the time domain into

a number of segments. Thereafter, the time-frequency trans-

form is applied [5] individually to each segment forming a

four-way array. We set up the four-way array YN×S×Fs×Ts ,

Y(1 : N,1 : S,1 : Fs,1 : Ts) where N is the channel index

and S is the maximum time/segment index, and compute the

energy of the time-frequency transform for Ts time instants

and Fs frequency bins. The four-way PARAFAC model of

the four-way array Y may be formulated the same way

as in [14] where A N×M is the spatial signature, BS×M

is the temporal/segment signature, C Fs×M is the spectral

signature, and DTs×M is the temporal signature with matrix

elements denoted respectively as a(n,m), b(s,m), c( fs,m),
and d(ts,m). Hence,

YN×S×Fs×Ts = Ŷ+E
N×S×Fs×Ts (6)

where Ŷ = ∑M
m=1 a(n,m)b(s,m)c( fs,m)d(ts,m) and

E
N×S×Fs×Ts is the negligible four-way residual of the model

array. In order to find the model we have used the following

cost function [ ˆA ,B̂, Ĉ ,D̂ ] = argmina,b,c,d ‖Y− Ŷ‖2.

By decomposing the multi-channel EEGs using the STF-

TS model, the number of free parameters P4, i.e., the number

of elements that has to be estimated by PARAFAC, is M(N +
S+Fs +Ts), while the number of free parameters of the STF

model P3 is as high as M(N + F + T ). Evidently, when T

is large, P4 << P3. This means that less parameters need to

be estimated and therefore the computational complexity of

the PARAFAC algorithm is reduced. According to (6), the

temporal signatures of the long-term EEGs are estimated by

joining all S segments of the temporal signatures D which

are weighted by their corresponding time/segment signatures

B. In order to effectively estimate the STF model from

the STF-TS model, the suggested number of segments S

and the number of components M should maximize the

CORCONDIA value as

[S,M] = argmax
S

{

max
M

{CORCONDIA(Y,A ,B,C ,D)}
}

.

(7)

The concept behind (7) is that by decomposing Y to as many

as M possible factors for the STF model, we firstly guarantee

that the correct number of factors for STF-TS is achieved and

then, we progress to the process of temporal segmentation.

In other words, since the ultimate goal of the STF-TS model

is to approximate the STF model, M should be identified

for the STF model using the conventional approach of [14]

before adjusting S to maximize the CORCONDIA criterion

for STF-TS. When the residual is considered negligible, the

STF model can be written in a matrix form as Y̌ N×F×T =
ĎΣ

Ǎn
Č′, where Σ

Ǎn
is the diagonal matrix with the n-th row

of Ǎ as its diagonal elements, n = 1,2, · · · ,N. Similarly, the

STF-TS model (6) is written in matrix form as

Y N×S×Fs×Ts = DΣBs
ΣAn

C
′
, (8)

where ΣAn
is a diagonal matrix with the n-th row of A

as its diagonal elements, n = 1,2, · · · ,N. Similarly, ΣBs
is

a diagonal matrix with the s-th row of B as its diagonal

elements for s = 1,2, · · · ,S. Hence, Ď for the STF can be

estimated by the scaled version of D from the STF-TS as

Ď ≈ [DΣB1
, · · · ,DΣBS

]′ (9)

The spectral signature Č is well approximated by C , while

the spatial signature Ǎ is approximately equal to A .

III. SIMULATION RESULTS

We applied our algorithm to real EEG measurements.

The database was provided by the School of Psychology,

Cardiff University, UK, and represent a wide range of EBs,

i.e. more than 500 EB contaminated EEG recordings. The

scalp EEG was obtained using 25 Silver/Silver-Chloride

electrodes placed at locations defined by the conventional

10-20 system [1]. The data were sampled at 200 Hz, and

bandpass filtered with cut-off frequencies of 1 Hz and 30

Hz. The performance of the algorithm can be observed by

comparing the EEGs obtained at the electrodes in the left

subplot of Fig. 1 and the same segment of data after being

processed by the proposed algorithm in the right subplot of

Fig. 1.

The CORCONDIA value has been computed for the

methods of STF and STF-TS modeling. In Fig. 2, the number

of components M is selected as M = 2 according to the

CORCONDIA value, i.e, 84.425% whereas the CORCON-

DIA value for the proposed STF-TS model was 32.339%

when the number of segments was S = 10. Figs. 3 (a) to (d)

illustrate respectively the estimated spectral, temporal, and

spatial signatures of the under-studied EEGs. The results

of the STF-TS model in comparison to that of the STF

model, i.e., Fig. 2, demonstrates the reliability of the STF-

TS modeling, since both methods result in approximately the

same signatures, except, as expected, the STS-TS method is

a faster algorithm.

By using the STF model, we have to calculate the parallel

factors of the three-way array of size N×F×T . This process

takes a longer period of time due to the calculations of

more free parameters P3 compared to that of the STF-TS

model P4. The number of free parameters is greatly reduced

by using the STF-TS model, where the size of the three-

way Y̌N×F×T for the STF model is 25× 1800× 180, i.e.,

4,010 parameters to be estimated, and the size of the four-

way YN×S×Fs×Ts
for the STF-TS model is 25× 10× 180×

180, i.e., 790 parameters to be estimated. Consequently, the

relative calculation time of the STF-TS model, presuming

that the calculation time of the STF model is 1, is 0.197.

We are only interested in the spatial signature of the EB

artifact relevant factor to be used in the RMVB algorithm

as an approximation to a j. Note that the first component

(Factor 1) of both the STF and STF-TS models demonstrates
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Fig. 1. The results of the proposed EB artifact removal method for a set of
real EEGs. The left subplot depicts highly EB contaminated EEGs before
artifact removal while in the right subplot the segment of EEGs after being
corrected for EB artifact is illustrated.
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Fig. 2. The extracted factor by using STF modeling; (a) and (b) illustrate
respectively the spectral and temporal signatures of the extracted factors.
(c) and (d) represent the spatial distribution of the factors, respectively.
Evidently, Factor 1 demonstrates the EB phenomenon since it occurs in
frequency band of around 5 Hz (a), it is indeed transient in the time domain
(b) and it is confined to the frontal area.

the eye-blink-relevant factor, since they mainly occur in the

frequency band of around 5 Hz, while the other factors exist

in the entire band and represent the ongoing activity of the

brain or perhaps a broadband white noise-like component.

The temporal signature of the first factor definitely shows a

transient phenomenon such as eye-blink while that of Factor

2 consistently exists during the course of the EEG segment.

Unlike Fig. 2- and Fig. 3-(d), in Fig. 2- and Fig. 3-(c), the

spatial distribution of the extracted factor, to be used as â j, is

confined to the frontal area, which clearly demonstrates the

effect of eye-blink. The other factor shows the background

activity of the brain as it almost spreads over the scalp. Using

â j in (2), we find the beamformer w j and extract the EB

source. The artifact removed EEGs are then reconstructed

by using the batch deflation method [1].

IV. CONCLUDING REMARKS

We have presented a method for removing EOG from

EEG recordings by employing the robust minimum variance

beamforming method to estimate the steering vector corre-

sponding to the EB source. The vector of spatial distribution

of the EB factor has been identified using the proposed STF-

TS model which enjoys much less computational complexity
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Fig. 3. The extracted factor by using STF-TS modeling; (a) and (b)
illustrate respectively the spectral and temporal signatures of the extracted
factors and (c) and (d) represents the spatial distributions of those extracted
factors. Interestingly, as expected, the spectral and spatial signatures of
the extracted components are similar to those of Fig. 2 and the temporal
signatures effectively track the transient EBs of the ongoing EEGs.

in comparison to the conventional STF model [5]. For the

first time in this work, we have utilized the vector of spatial

signature of the EB factor as the estimation of the steering

vector that introduces the EB source to the EEGs. Probable

deviations of the â j from the actual steering vector a j are

compensated by exploiting the robustness of the RMVB.
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