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MAGLEV suspensions - A sensor optimisation framework

Konstantinos Michail Argyrios Zolotas Roger Goodall John Pearson

Abstract— In this paper, a systematic framework for op-
timised sensor configurations is implemented viaH∞ Loop
Shaping Procedure. The optimisation framework, gives the
sensor sets that satisfy predefined user criteria and the preset
constraints required for the MAGnetic LEVitated suspension
performance via evolutionary algorithms. The scheme is as-
sessed via appropriate simulations for its efficacy.

I. INTRODUCTION

During the last years, MAGnetic LEVitation (MAGLEV)
systems offer a number of advantages over the conventional
trains therefore is a developing area that is attractive to
transport industry. Particularly, the MAGLEV train does
not have mechanical contact with the rails and therefore,
friction, mechanical losses, vibration and noise are reduced
significantly. Two types of electromagnetic suspensions are
used: The Electromagnetic suspension (EMS) that is levi-
tated by producing an attractive force to the rail, and the
Electrodynamic suspension (EDS) which is levitated via a
repulsive force to the rail. A useful overview for MAGLEV
technologies is given in [12].

The proposed framework utilises the loop-shaping design
procedure (LSDP) of MacFarlane and Glover for the design
of robust multiple input - multiple output (MIMO) systems
based on shaping the open loop transfer function using a se-
ries appropriately chosen weighting functions [13]. Note that
a scheme on LSDP on a MAGLEV suspension application
was presented in [2], however on the control system design
rather than the optimisation of sensor configurations.

In this paper, the linearised model of an EMS suspen-
sion is considered with five possible output measurements
(one of which is a primary measurement, that of airgap
measurement, explained in more details in the main body
of the work). The LSDP method is applied for each given
sensor set. To optimise each sensor set, and in particular
tuning all weighting functions required is a difficult and time-
consuming task. Thus, a heuristics approach is followed,
based on [5], able to search randomly in a predefined search
space and find the optimum weighting functions which result
to a Pareto optimal controller solution for the correspond-
ing sensor set. In fact, evolutionary algorithms have been
and are now commonly used in engineering problems and
more importantly are proved to perform satisfactory in the
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case of hard engineering optimisation problems [6]. Differ-
ent evolutionary algorithms are presented in [11] that are
implemented in practical applications. TheNon-dominated
Sorting GeneticAlgorithms II (NSGAII ) introduced in [4]
as a powerful optimisations tool, and is implemented in
the proposed framework. The paper is organised as follows:
Section II discusses the linearised model of the MAGLEV
suspension and the input disturbances to the system. Section
III presents the requirements of the suspension, the objective
functions to minimise, the overall problem formulation, and
the genetic algorithm parameter adjustment. Simulations and
data analysis of the scheme are given in section IV with para-
metric uncertainty considerations in section V. Conclusions
with future work are given in section VI.

II. L INEARISED MAGLEV SUSPENSIONMODEL

The diagram of a one degree-of-freedom,quarter-car
electromagnetic suspension system is shown in Fig.1. The
suspension consists of an electromagnet with a ferromagnetic
core and a coil ofN turns which is attracted to the rail that
is made out of ferromagnetic material. The carriage mass is
attached on the electromagnet, withzt being the rail position
and z the electromagnet position. The airgap (zt − z) is to
be maintained close to the operating condition required. The
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Fig. 1. Suspension system for MAGLEV

LTI state space model is derived by considering the operating
point (nominal) values of the coil currentI0, flux B0, force
F0 and airgapG0. The following relationships hold

F = f + F0, B = b+B0

G = (zt − z) +G0, I = i+ I0

(1)

where,f, b, (zt − z) and i are small variations around their
nominal values. The fundamental magnetic relationships are
F ∝ B2 andB ∝ I/G, thus, the linearised expressions for



the magnet are [9]

b = Kii−K(zt−z)(zt − z) (2)

f = Kbb (3)

whereKi = B0/I0, K(zt−z) = B0/G0 andKb = 2F0/B0.
The voltagev, applied to the coil is given by:

v = Ri+ L
di

dt
+NA

db

dt
(4)

whereN is the number of coil turns,R the coil resistance,A
is the pole face area andL the coil inductance. Moreover, the
forcef depends on the massM and the vertical acceleration
z̈.

f = Mz̈ and f = Kbb (5)

therefore, from (5) and (2) the equation forz̈ is

z̈ =
KbKi

M
i−

KbK(zt−z)

M
(zt − z) (6)

where (zt − z) is the airgap between the rail and the
electromagnet. Also, from (2) and (6) the current equation
is

di

dt
=

V

L+NAKi
+
NAK(zt−z)

L+NAKi
(żt−ż)−

Ri

L+NAKi
(7)

and from (6) and (7) a state vector can be constructed as
follows

X =
[

i ż (zt − z)
]T

(8)

with the relevant state space expression given by

Ẋ = AgX +Bvv +Bz żt, y = CX (9)

where matrices

Ag =







− R
L+KiNA −

K(zt−z)NA

L+KiNA 0
KbKi

M 0 −
KbK(zt−z)

M
0 −1 0






(10)

(Bv Bz) =





1
L+KiNA

K(zt−z)NA

L+NAKi

0 0
0 1



 (11)

C =













1 0 0
Ki 0 −K(zt−z)

0 0 1
0 1 0

KbKi

M 0 −
KbK(zt−z)

M













(12)

Note that the output matrix in (12) refers to all possible mea-
surements that can be considered(y = [i b (zt − z) ż z̈]T ).
The parameter values for an one tone suspension system are
shown in Table I. Note that ’Var’ is the parameter (’Param.’)
percentage variation - from its nominal (’Nom.’) value - that
is used for the robustness analysis in section V. It is worth
mentioning that the maglev system is open-loop unstable.

A. Rail disturbances to the suspension

Two track input characteristics are considered, i.e. deter-
ministic changes such as gradients or curves and stochastic
(random) changes in the track position due to misalignments.

TABLE I

MAGNETIC SUSPENSION PARAMETERS

Param. Nom. Var.(%) Param. Nom. Var.(%)
M 1000kg 10 R 10Ω 50
G0 0.015m - L 0.1H 50
B0 1T 10 N 2000 -
I0 10A 10 A 0.01m2 -
F0 10000N 10

1) Random input: Random behavior of the rail position
is caused as the vehicle moves along by track-laying inac-
curacies and steel rail discrepancies. Consider the vertical
direction, the velocity variations are quantified by a double-
sided power spectrum density (PSD) which in the frequency
domain is expressed by

Sżt
= πArV (13)

where, V is the vehicle speed (in this work is taken as
15m/s) andAr represents the track roughness equal to1×
10−7m (for a typical high quality track). The corresponding
(one-sided) autocorrelation function is given by

R(τ) = 2π2ArV δ(τ) (14)

2) Deterministic input: The main deterministic inputs to
a suspension for the vertical direction are transitions onto
gradients. In this work, the deterministic input components
utilized are shown in Fig.2 and represent a gradient of5%
at a vehicle speed of15m/s and an allowed acceleration of
0.5m/s2.
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Fig. 2. Deterministic input to the suspension with a vehicle speed of
15ms−1 and 5% gradient.

III. SENSOROPTIMISATION FRAMEWORK

A. MAGLEV suspension requirements

Fundamentally there is a trade off between the determinis-
tic and the ride quality (stochastic response) of the MAGLEV
suspension. In this case, the deterministic characteristics
are limited to the values shown on Table II. based on
the performance requirements described in [7] and [8] for
low speed MAGLEV trains. Stochastic characteristics have
been set as objectives to be minimised. i.e minimise the
vertical acceleration (improve ride) quality and the RMS



current variations, as well as theH∞ performance(γopt)
index.These objectives can be can be formally written as

φ1 = irms, φ2 = z̈rms, φ3 = γopt (15)

At this point some constraint relaxation is allowed to the
vertical acceleration and the robust stability margin (ǫ). The
0.25 robust stability margin that allows 25% coprime factor
uncertainty, is limited to 0.15 and the vertical acceleration to
1m/s2 (although these relaxations do not cause problems in
the optimisation procedure as they are defined to the selection
criteria).

TABLE II

CONSTRAINTS FOR THE MAGNETIC SUSPENSION PERFORMANCE.

suspension limitations Value
RMS acceleration(≃ 5%′g′),(z̈rms) < 0.5ms−2

RMS airgap variation,((zt − z)rms) < 5mm
Maximum airgap deviation,((zt − z)p) < 7.5mm

Control effort,(Vp) < 300V (3I0R0)
Settling time,(ts) < 3s

Air gap Steady state error,((zt − z)ess ) = 0
Robust stability marginǫ > 0.25

B. H∞ loop-shaping design

The design of the optimised controller is based on the
normalised coprime-factor plant description, proposed by
McFarlane and Glover [13], which incorporates the simple
performance/robustness tradeoff obtained in loop shaping,
with the normalised Left Coprime (LCF) robust stabilization
method as a means of guaranteeing closed-loop stability.
The design technique forms a two stage process. The design
method proceeds by shaping the open-loop characteristics
of the plant by means of the weighting functionsW1 and
W2 (see Fig. 3(a)). The plant is temporarily redefined as
Ĝ(s) = W2GW1 and theH∞ optimal controllerK̂(s) is
calculated. In the final stage, the weighting functions are
merged with the controller by defining the overall controller
K(s)=W1K̂sW2 as shown in Fig. 3(b). The size of model
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Fig. 3. H∞ loop-shaping design.

uncertainty is quantified by the stability radiusǫ (refer to [13]
and [14] for more details), i.e. the stability margin. For values
of ǫ > 0.25, 25% coprime factor uncertainty is allowable.

We aim to keep the filter functions and thus the controller
as simple as possible. Thus, theW1 pre-compensator, is
chosen as a single scalar weighting function set to unity. For
theW2 post-compensators there can be five weighting func-
tions that are used depending on the selected sensor set. The

airgap(zt − z) measurement is a compulsory measurement
required for proper maglev control of the magnet distance
from the rail and thus a low pass filter(W(zt−z)) is chosen
with integral action allowing zero steady state airgap error.
The weighting functions are given as

W1 = 1; W2 = diag(Wi,Wb,W(zt−z),Wż,Wz̈) (16)

with,

W(zt−z) =





s

M
1/np
p

+ ωb

s+ ωbA
1/np
p





np

(17)

. The above results to a minimum phase and stable weighting
filter with roll-off rate np. The filter structure for (zt − z) is
shown in Fig. 4. Note that there exist24 available sensor
setcombinations (recall that the airgap sensor is always
required).
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Fig. 4. Air gap weighting filter structure.

C. NSGAII implementation

The parameters used are shown in Table III. The crossover
probability is generally selected to be large in order to have
a good mixing of genetic material. The mutation probability
is defined as1/nv, wherenv is the number of variables.
This is appropriate in order to give a mutation probability
that mutates an average of one parameter from each indi-
vidual. Mutation parameter changes dynamically during the
optimisation as it depends on the number of sensor sets
used (for each sensor a scalar weighting function is assigned
which requires one variable each). For the simulated binary
crossover parameter (SBX) and the mutations parameter it
was decided to use the default value of 10 and 50 since
they provide good distribution of solutions for the algorithm
operations. The number of population is set as 50 and the
generations number is been set to depend on the sensor set
size. The total number of variables is eight using the full
sensor set. The generation number (Gennum) is set to 150
for sensor sets with 1, 2 or 3 sensors. For more sensors
in a set,Gennum=200 (however this can be a designer
choice as it can reduce or increase time consumption).
To achieve the required constraints, different ways exist in
genetic algorithms [1]. The penalty function approach [3] is



TABLE III

NSGA-II PARAMETERS USED FOR THE EVOLUTION PROCEDURE.

Parameter setting
Crossover probability 0.9
Mutation probability 1/nu

SBX parameter 10
Mutation parameter 50

Rigid bounds 1(yes)
Population 50
Generations Gennum

used to achieve the constraint within limits. The constraint
violation for each constraint,ki, defined in Table II, is given
as

ωj(k
j) = {

|gj(k
j)|, if gj(k

j)<0
0 otherwise (18)

Each soft constraint is normalised as in (19) for values less
than the predefined levelgjlow is used andgjhigh is used for
values higher than the predefined.

gjlow = −
kj

kj
des

+ 1 ≥ 0 gjhigh = kj

kj
des

− 1 ≥ 0 (19)

Where,kj
des is the predefined constraint value andkj is the

measured value. The hard constraint violation is given as

ψi(f
i) = {

0, if hi(f
i)=0

|hi(fi)| otherwise (20)

This is transformed into a soft constraint, allowing a small
tolerance valueσ. Therefore, the steady state error for the
airgap is given as

hi =| f i | −σ < 0 (21)

Wheref i is the steady state error of the control effort that
eventually controls the steady state error for the airgap.

The overall constraint violation is given in (22) is to be
used as a metric for the controllers performance towards the
given constraints.

Ω(k(j), f (i)) =

j
∑

j=1

ωj(k
(i)) +

i
∑

i=1

ψi(f
(i)) (22)

This constraint violation is then added to each of the objec-
tive functions values

Φm = φm +RmΩ(k(i), f (i)) (23)

whereRm is the penalty parameter andΦm the objective
function value. In this case, a dynamically updated penalty
parameter is required. This is useful, in order to avoid
infeasible solutions and the penalty parameter is set to
be a function of the generation number [10]. The penalty
parameters are finalized as follows:

Rirms
= C ∗ 1, Rz̈rms

= C ∗ 0.5, Rγopt
= C ∗ 1 (24)

With, C being the generation number for the current sensor
set.

IV. SIMULATIONS AND DATA ANALYSIS

The flow chart of the framework is depicted in Fig. 5,
showing how NSGAII is merged to the sensor selection
framework efficiently, producing sensor sets with the re-
quired criteria. First, the user defines the selection criteria for
the controllers, i.e. ride quality, stability margin, RMS current
or any other properties required based on the measurements
(a total of 14 from stochastic and deterministic simulations).
Then, one sensor set is selected and the optimisation com-
mences with the NSGAII randomly generating parameters
for the weighting functions. When the generations reach
Genmax, the controllers that do not satisfy the constraints
are rejected based on (22). Then the optimised controllers
that satisfy the input criteria are selected and the algorithm
proceeds to the next sensor set until the overall optimisation
is over. The overall algorithm was tested using a Pentium
4, Dual core processor running at 2GHz with 4GB DDR
memory and without the Java tool of MATLAB 7.2. The
average simulation time per sensor set with all tasks is
about 1.5 hours. The optimisation for all possible sensor
sets required approximately 26 hours resulting in a total of
800 optimised controllers to choose from (at this stage the
simulations run on the nominal system). The results show

Set selection
    criteria

Select sensor
        set

More
sensor
sets?

yes

STOP

Select optimized 
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controllers based
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Optimization (NSGAII)

REPORT

Fig. 5. Sensor optimisation flow chart.

that all sensor sets meet the assigned constraints including the
relaxations. A sample from the results obtained is shown in
Table IV. ColumnΩ indicates the overall constraint violation
that is satisfied for all sensor sets. Columnn[K(s)] is the
number of controllers that satisfy the input criteria from each
sensor set. To illustrate, we introduce the following input
criteria:

γ < 4 z̈ < 0.5m/s2 (25)

Those two criteria ensure that the selected optimised con-
trollers will result in a MAGLEV performance that is work-
ing within the normal constraints mentioned in Table II.
With the proposed filters, i.e the simplified filter structures,
with only the primary airgap filter being dynamic, the airgap
sensor and any double sensor combination do not satisfy the
strict robust stability radius and ride quality in (25). However,



TABLE IV

SENSOR COMBINATIONS RELATING TO CRITERIA IN(25)

Sensor set Ω n[K(s)]
1 (zt − z)

√
0

2 (zt − z),ż
√

0
3 (zt − z),z̈

√
0

4 i,b,(zt − z)
√

32
5 i,b,(zt − z),z̈

√
35

6 i,(zt − z),ż,z̈
√

41
7 b,(zt − z),ż,z̈

√
50

8 i,b,(zt − z),ż,z̈
√

50

they do satisfy the related criteria as set in the framework
originally. This is expected because with simple filter struc-
tures, i.e to illustrate the concept rather than introducing
complexity at this stage, more sensor information is needed.
This can be clearly seen in the three sensor measurement
sets that provide feasible controllers. However, any single
or double measurements could be used for a fault tolerant
framework under given system requirements. In particular,
these could be utilised in the Fault tolerant structure for
graceful degradation of performance before reconfiguration.

The i, b, (zt − z) sensor set pareto optimum consisting
of 50 optimised controllers is shown in Fig. 6. It can be
seen that the robust stability marginǫ is within 0.25 and the
vertical acceleration is less than1m/s2 and in many cases,
less that0.5m/s2. The trade-off between the ride quality and
the RMS current is also shown although is rather difficult to
see the figure due to the 3D nature. Fig. 7 illustrates the
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deterministic airgap for each optimised controller and the
corresponding control effort for thei, b, (zt − z) sensor set.
Clearly, the airgap deflection is within the required limits
with the settling time constraint satisfied. The corresponding
control effort follows a similar behaviour settling at a peak
value of about 50V. The pareto front of the optimised
controllers from the sensor seti, b, (zt − z), z̈ is depicted
in Fig. 8. From the plot, it can be seen that the pareto front
is successfully recovered from the NSGAII. Its clear that all
optimised controllers meet the required robustness criteria
with a ride quality lying within the preset limits. The airgap
deflection for the sensor set as well as the resulting control
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Fig. 7. Air gap deflections and control effort with i,b,(zt − z).

effort from the optimised controllers is shown in Fig. 9.
The maximum airgap deflection is within limits and both the
settling time and steady state error are satisfied. The control
effort reaches a maximum peak value of about 50V. This
indicates, that regardless the fact that more information is
used (4 sensors) the optimised controllers do not change the
performance significantly compared to that of the previous
case of three sensors (i.e. three sensor could be implemented
rather than four).
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Fig. 9. Air gap deflections and control effort withi, b, (zt − z), z̈ set.

V. ROBUSTNESS ANALYSIS

In this section, the parametric uncertainty for the MA-
GLEV suspension is considered for robust stability and



robust performance of the optimised controllers. The para-
metric nominal values of the MAGLEV are varied as shown
in Table I. Note that the LSDP design procedure considers
the model uncertainty in the coprime factor description. In
this section, we consider the performance of the scheme
under parametric uncertainty and how this could be extended
for future work perhaps including fault tolerance system.
Thus, a randomly picked-up optimised controller is selected
from each sensor set in order to investigate the effect of
parametric uncertainty on stability and performance. The
stability is found from the eigenvalues and the performance
to parametric uncertainties is reflected on the constraint
violation. For example, if the nominal controller selected
has an overall constraintΩn, then the model perturbations,
will result in a range of overall constraints values that have
minimum and maximum values(Ωmin,Ωmax). Therefore,
20 perturbed samples will be noted to check for robustness.
The results are presented in Table V. All optimised sensor
configurations are stable under the tested perturbed plants. 11

TABLE V

ROBUSTNESS FORSENSOR CONFIGURATIONS.

id Sensor set Ωn Ωmin Ωmax stable
1 (zt − z) 1.26 1.2 8 × 108

√

2 (zt − z),ż 1.22 0.68 8.99
√

3 i,(zt − z),z̈ 0.14 0.14 0.14
√

4 i,b,(zt − z) 3.65 0 0.08
√

5 b,(zt − z),z̈ 0 0 0
√

6 i,b,(zt − z),z̈ 0 0 0
√

7 b,(zt − z),ż,z̈ 0 0 0
√

8 i,b,(zt − z),ż,z̈ 0 0 0
√

out of 16 sensor sets do not satisfy, the robust performance
as the overall constraint changes in some cases significantly,
e.g. in sensor set id:1. In some cases as in sensor set id:2,
the performance does not change significantly therefore it
could be used, for a fault tolerant controller scheme. This
is expected, as the optimised configurations are designed
under the relaxed condition of theǫ > 0.15. Sensor sets
id: 3,4,5,6,7,8 perform rather well, as the nominal constraint
violation remains constant. The perturbed airgap deflections
of sensor sets id:4 and id:6 is depicted in Fig. 10. It can be
seen that the airgap deflection remains almost unchanged un-
der parametric changes for sensor set id:6; slightly pertubed
responses appear in the smaller sensor set id:4 but within the
required constraint. Hence, the overall constraint violation
value could be used to indicate the performance of the
closed loop response and could be used in the optimisation
framework to select a robust performance response.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a framework for the sensor optimisation
for a MAGLEV suspension is presented. MacFarlane’s and
Glover’s H∞ loop-shaping design along with the genetic
algorithm perfoms well, producing optimised controllers for
each sensor set that can satisfy the designer’s predefined
limitations. Robustness on parametric uncertainties was also
investigated with the controller performing appropriately.
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Fig. 10. Air gap deflections with 20 perturbed samples using 2 sensor sets.

The overall procedure could assist towards the development
of a fault tolerance control system that is able to utilize bank
of controllers and replace the appropriate ones depending on
the sensor fault. Thus, keeping the suspension running within
appropriate performance limits. Current work is considering
dynamic filters for all measurements, aiming to reduce the
sensor number in a set and quantify the resulting complexity
of the overall controllers.
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