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Semi-classical theory of magnetic quantum oscillations in a two-dimensional
multiband canonical Fermi liquid.
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The semi-classical Lifshitz-Kosevich (LK) description of quantum oscillations is extended to a
multiband two-dimensional Fermi liquid with a constant number of electrons. The amplitudes of
novel oscillations with combination frequencies, recently predicted and observed experimentally, are
analytically derived and compared with the single-band amplitudes. The combination amplitudes
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It has been shown [[]] that the magnetic quantum os-
L() cillations in a multiband 2D metal with a fixed electron
QN density (canonical ensemble (CE)) are qualitatively dif-
ferent from those in an open system where the chemi-
] cal potential is fixed (grand canonical ensemble (GCE)).
= There is a mechanism for different bands to ’talk’ to each
€O other in CE producing a dHvA signal with the combina-
= tion frequencies, f = fi+ fo [l and f = f1 — f- B in
addition to the ordinary dHvA frequencies, fi 2, of the
individual bands in GC'E. Numerical studies of novel os-
cillations showed that their amplitudes are comparable
O with the standard components, and they are robust with

% respect to a background (non-quantized) density of states

E The novel frequencies have been recently observed
L ] in quantum well structures.  These additional
C components in the dHvA frequency spectrum of low-
O dimensional metals may provide a unique information on
O the Fermi surface and carrier density if detailed analyt-
S ical theory is available. In this paper we develop such a
=== theory in the framework of the semiclassical LK approach
[B]. The equations ([.J) and ([L3) are the main results of
the present paper.
We first derive a convenient expression for a multiband
two-dimensional thermodynamic potential in an external
magnetic field H,

Q= —T/deN(e, B)In [1 +exp <%)} (1)

where

N(e,B) = Z Z Pawad(€ — €an) (2)

a n=0

is the quantized density of states, p, is the zero-field
density of states in the band a, €0, = Ago+wa(n+1/2)+
JaolB B, w, = eB/m, the cyclotron frequency with the
cyclotron mass my, B = H + 47 M the magnetic field,

71.25.He, 71.18.+y, 71.10.Ay, 71.70.Di, 71.10.Pm

decay with temperature exponentially faster than the standard harmonics, and this provides a
valuable tool for their experimental identification.

Ao the band edge in zero magnetic field, p the chemical
potential, g, the electron g-factor, o = +1/2, up the
Bohr magneton, and 7 = ¢ = kp = 1. The band index
a includes the electron spin. In actual experiments on
2DEG B ~ H and magnetic coupling between subbands
was negligible [H].

By applying the Poisson formula [E] to the sum over n
in the thermodynamic potential

o _szawafjln [1 e <ua —wa;n+ 1/2))}
(3)

with pe = p— Ay and A, = Ayo + gaopp B, we obtain

Q=0Q0+Q, (4)

where

Qp = —T/Ooo deza:paln [1 + exp <“°“T_€)] (5)

is the ’classical’ part. In GCFE it does not oscillate as
a function of 1/B, and contains the contribution due to
spin susceptibility (Pauli paramagnetism). The second
part is

0 — 21_4;%1“)2""222142“)8 <%+¢Z>a (6)

a r=1

where the first term produces the Landau diamagnetism
and the second oscillatory term is responsible for the de
Haas-van Alphen effect. It is small compared with the
classical’ part as Q/Q ~ (w/p)?. The Fourier com-
ponents appear with frequencies rf, = rS,/e, where
S = 2mma (11— Ayp) is the Fermi surface zero-field cross-
section. The amplitudes of the Fourier harmonics are

Tpawa
Al = 7
¢ 2rsinh(272rT /wy)’ @



https://core.ac.uk/display/288383633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and the phase ¢!, = r7(1 + g0).

Differently from GCFE, the chemical potential oscillates
in C'E. Hence, the ’classical’ part of €2 contributes to os-
cillations as well. The relevant thermodynamic potential
of C'E is the free energy F' = Q + uN, with a fixed num-
ber of electrons, N = —9§2/0u. At low temperatures we
find

_Zpaﬂi/z (8)

so that

(N + ZpaA + —~> (9)

where p = )" pao is the total density of states. Substi-
tuting this expression into Qg, Eq.(8), we obtain

F=Fy+F, (10)

where the smooth non-oscillatory part of the free energy
is given by

2
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while the most essential oscillatory part is
1 (o0 ’
= — ( ) . (12)
o
In a more explicit form we obtain
24Zpaw Y, cos (22 4.1
/
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It is the last term, which yields combination Fourier har-
monics with the combination frequencies f = 7 fo 27/ for.
Their amplitudes,
/ T
orr = 02T Aa A (14)
PWala!
are comparable with the standard single-band harmonics
at low temperatures, T < w,/2m2r, as also found in the
numerical analysis [[J] and in the experiment [ff]. For
example, the ratio of the combination amplitude to a
single-band one for r = ' = 1 and T = 0 in a metal with
two parabolic bands (p, = me/27) is

Cll

aal Mea
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(15)

Differentiating Q in GCE and F in CE with respect to
H one obtains the ratio of the combination and single
band amplitudes of magnetization as

M11/ , o
aal Caa f _ m i (16)

Mé A}x fa_ma+ma/ fa7

Differentiating twice the ratio in susceptibility is (T' = 0)

w200 (L)' _me (1) gy
Xa AL Ja Mo + Mar \ fa '

Last two ratios may be even larger than unity for the
'plus’ combination harmonic (f = fo 4+ fa) while the
‘minus’ one (f = fo — fa) is suppressed in magnetiza-
tion and susceptibility, Fig.1. At higher temperatures
the combination harmonics are exponentially small com-
pared with the single-band ones, as shown in Fig.1.

We note that according to Eq.([lJ) the difference be-
tween the second (and higher) Fourier amplitudes for
open and closed systems should be seen even in a sim-
plest single-band metal. On the other hand in three (and
higher)- band metals a mixture of more than two dif-
ferent frequencies can be observed due to non-parabolic
band dispersion giving rise to cubic and higher powers of
the chemical potential in the expression for Qg, Eq.(8).
In very high magnetic fields the usual magnetic break-
down and the non-linear field dependence of magnetic
subbands due to non-parabolicity of the band dispersion
could also lead to combination frequencies [ff].

In conclusion we have developed the analytical semi-
classical theory of magnetic quantum oscillations in
multi-band two-dimensional metals. We have found the
amplitudes of the novel combination Fourier harmonics,
which are comparable with the single-band harmonics at
low temperatures and exponentially small at higher tem-
peratures. Their frequencies and the temperature de-
pendence of amplitudes provide additional information
on the band structure and carrier densities of a multi-

(13) band canonical Fermi liquid. Essentially different tem-

perature dependence of the combination amplitudes com-
pared with the standard harmonics, Fig.1, should allow
to distinguish them experimentally.

We thank A.P. Levanyuk for enlightening comments on
the relationship between different statistical ensembles.
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