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Coherent ‘ab’ and ‘c’ transport theory of high-Tc cuprates
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We propose a microscopic theory of the ‘c’-axis and in-plane transport of cop-

per oxides based on the bipolaron theory and the Boltzmann kinetics. The funda-

mental relationship between the anisotropy and the spin susceptibility is derived,

ρc(T, x)/ρab(T, x) ∼ x/
√

Tχs(T, x). The temperature (T ) and doping (x) depen-

dence of the in-plane, ρab and out-of-plane, ρc resistivity and the spin susceptibility,

χs are found in a remarkable agreement with the experimental data in underdoped,

optimally and overdoped La2−xSrxCuO4 for the entire temperature regime from Tc

up to 800K. The normal state gap is explained and its doping and temperature

dependence is clarified.

The absolute value and qualitatively different temperature dependence of the in-plane

and c -axis resistivity [1] as well as the normal state gap observed with NMR, neutron

scattering, thermodynamic and kinetic measurements in copper based high-Tc oxides are

recognised now as the key to our understanding of the high-Tc phenomenon [2,3]. By the

use of the room-temperature values of the ab and c -axis conductivities of the prototypical

cuprate La2−xSrxCuO4 at the optimal doping, σab ≃ 2 × 105Ω−1m−1 and σc ≃ 103Ω−1m−1,

x = 0.15, [4] one obtains

EF τ

h̄
=

πh̄dσab

e2
≃ 1 (1)
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and the ratio of the mean-free path lc to the inter-plane distance d as

lc
d

=
2πh̄σc

e2k2
Fd

< 0.01 (2)

where EF and h̄kF are the Fermi energy and 2D Fermi momentum, respectively, and τ is

the transport relaxation time. This estimate as well as the semiconductor-like behavior of

ρc(T ) contrasting with the linear ρab(T ) do not agree with any Fermi-liquid description [2].

Another challenging problem is a three-dimensional coherent superconducting state of these

quasi-two dimensional conductors which is hardly compatible with several phenomenological

models [1,5], based on the assumption that the c-axis transport is incoherent. To meet this

challenge some authors [2] alleged the spin-charge separation abandoning the Fermi-liquid

and Boltzmann approach.

At the same time the results of the kinetic [6,7,8,9] and the heat capacity [10] measure-

ments led us [11] to the conclusion that the so-called spin-gap observed previously in the

magnetic susceptibility [12,13,14] (in the spin channel) belongs in fact to the charge carriers,

which are inter-site bipolarons. In particular, the quantitative explanations of the tempera-

ture dependence of the NMR line-width and the linear in-plane resistivity [15] as well as of

the Hall effect [16] were proposed. Several authors [7,4,5] attributed the ‘semiconducting’

temperature dependence ρc(T ) to the ‘normal state gap’ in the density of states. The com-

prehensive analysis by Batlogg and co-workers [17] revealed transport features incompatible

with the spin-charge separation and the doping dependence of the normal state gap as well

the semiconducting-like doping dependence of resistivity. It became clear that high-Tc oxides

are doped semiconductors rather than metals, irrespective to the level of doping [18].

In this letter the coherent theory of ρc(T, x), χs(T, x) and of the normal state gap,

∆(T, x) is developed based on the bipolaron theory of high-temperature superconductiv-

ity by Alexandrov and Mott [11].

We expect that small polarons are paired above Tc in strongly correlated Mott-Hubbard

insulators with the electron-phonon coupling constant above an intermediate value λ ≥ 0.5

[19]. The ground and low-energy states are well described by the mixture of the intersite in-
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plane singlet pairs (small bipolarons) and thermally excited polarons. Above Tc, which is the

condensation temperature of the charged Bose-gas, all carriers are nondegenerate. Singlets

tunnel along the plane with an effective mass m∗∗ of the order of a single-polaron mass m∗ as

shown by one of us [18]. However, their c-axis tunneling can be only Josephson -like involving

simultaneous hopping of two holes. Therefore the singlet c -axis mass is strongly enhanced,

m∗∗
c >> m∗∗ ∼ m∗. In that way we explain a large transport anisotropy of copper oxides

at low temperatures when polarons are frozen out which is difficult to understand from the

band-structure calculations alone. The crucial point of our theory is that polarons dominate

in the c-axis transport at intermediate and high temperatures because they are much lighter

in the c-direction than bipolarons (see below). Along the planes they propagate with about

the same effective mass as singlets. Therefore their contribution to the ab transport is small

at any temperature due to their low density compared with the density of bipolarons. As a

result we have a mixture of the nondegenerate quasi-two dimensional spinless bosons and the

thermally excited fermions, which are capable of propagating along the c -axis. Because only

polarons contribute to the spin susceptibility there is a fundamental relationship between

the anisotropy and the magnetic susceptibility.

Applying the Boltzmann theory we obtain the following kinetic coefficients (h̄ = kB = 1)

σab(T, x) = −
∫ ∞

0
dEσb(E)

∂fb

∂E
, (3)

σc(T, x) = −
∫ ∞

0
dEσpc(E)

∂fp

∂E
, (4)

and

χs(T, x) = −2µ2
B

∫ ∞

0
dENp(E)

∂fp

∂E
. (5)

where fb = [y−1exp(E/T )− 1]−1 and fp = [y−1/2exp(E/T + ∆/2T ) + 1]−1 are the bipolaron

and polaron distribution functions, respectively, with y = exp[µ(T, x)/T ], µ(T, x) the chem-

ical potential, and µB the Bohr magneton. The bipolaron binding energy ∆ is expected

to be of the order of a few hundred K [11]. Therefore polarons are not degenerate at any

temperatures. Above Tc bipolarons are also not degenerate, so that
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fb ≃ yexp
(

−
E

T

)

, (6)

and

fp ≃
√

yexp

(

−
E + ∆/2

T

)

. (7)

If the scattering mechanism is the same for polarons and bipolarons the ratio of the differ-

ential conductivities is independent of the energy and doping

σb(E)

σpc(E)
≡ A = constant. (8)

There is a large difference in the values of the ppσ and ppπ hopping integrals between different

oxygen sites. Therefore we expect a highly anisotropic polaron energy spectrum [18] with

a quasi one -dimensional polaron density of states as observed with the high resolution

ARPES [20]

Np(E) ≃
1

2π

√

m∗

2E
. (9)

Then the c-axis resistivity as well as the spin susceptibility is expressed as

ρc(T, x)

ρab(T, x)
= A

√
yexp

(

∆

2T

)

(10)

and

χs(T, x) = µ2
B

√

ym∗

2πT
exp

(

−
∆

2T

)

. (11)

The chemical potential, y = 2πnb(T, x)/Tm∗∗, is calculated by taking into account the An-

derson localisation of bipolarons in a random potential. Within a ‘single well-single particle’

approximation [16] the bipolaron density nb(T, x) appears to be linear in temperature and

doping , nb(T, x) ∼ nLT , with the total number of impurity levels nL proportional to the

doping x. That fits very well the temperature and doping dependence of the Hall effect

RH = 1/2enb(T, x) as well as the linear ab-resistivity in a wide temperature and doping

range as shown in ref. [16]. As a result we find the temperature independent y ∼ x and
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ρc(T, x)

ρab(T, x)
= constant ×

x

T 1/2χs(T, x)
, (12)

χs(T, x) = constant′ ×
√

x

T
exp

(

−
∆(T, x)

2T

)

. (13)

We expect a strong dependence of the binding energy on the doping due to screening,

∆ = ∆(T, x). Bipolarons are heavy nondegenerate particles which screen very well the

electron-phonon interaction. In fact, by the use of the classical expression for the inverse

screening radius

qs =

√

16πe2nb(T, x)

ǫ0T
(14)

and the static dielectric constant of LSCO, ǫ0 ≃ 30 one obtains the value of qs about 3Å−1 at

room temperature with nb = 1021cm−3 which is about three times larger than the reciprocal

lattice vector qd. The polaron (Franck-Condon) level shift Ep is suppressed by the screening

as (qd/qs)
2 at large qs [19]. Consequently, the normal state gap, ∆ ≃ 2Ep , depends on the

doping and temperature as

∆(T, x) ∼
T

nb(T, x)
. (15)

Taking nb(T, x) ∼ Tx we arrive with the temperature independent gap,

∆ =
∆0

x
, (16)

where ∆0 is doping independent. By the use of Eq.(12), Eq.(13) and Eq.(16) one can

describe all qualitative features of the c-axis resistivity and the magnetic susceptibility of

LSCO without any fitting parameters as the comparison of Fig.1 and Fig.2 shows. The

linear temperature dependence of the ab resistivity was explained within the same approach

[15,16]. Thus the c- axis resistivity is now understood as well. For a quantitative fit one

has to solve the Bethe-Salpeter equation for ∆(T, x) with the realistic interaction between

polarons taking into account the polarisation of the bipolaronic liquid partly localised by

disorder. At temperatures close to the transition the Bose statistics becomes important. At
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large temperatures the finite polaron and bipolaron bandwidth (about 1000K) plays some

role. Therefore it is not surprising that the experimental dependence of χs(T, x) shifts from

the theoretical one, Fig.1b. At the same time the anisotropy is quantitatively described by

Eq.(12) with the experimental values of χs(T, x), Fig.2a allowing small sample variations

of constant in Eq.(12) within less than 15%. A smaller anisotropy of a heavily overdoped

sample (x = 0.3) in Fig.2a is due to the fact that polarons contribute to the ab transport

when the binding energy is below 100K. Alternatively, the normal state gap ∆(T, x) can

be determined by the use of Eq.(11) and the experimental values of χs(T, x), Fig.2b. With

the temperature independent y(x) (in the agreement with a flat temperature dependence of

the thermoelectric power of LSCO) one obtains

∆(T, x) = 2T ln
B∞√

Tχs(T, x)
, (17)

where B∞ = lim
√

Tχs(T, x) for T → ∞ is independent of the doping, B∞ ≃ 5.46 ×

10−6EmuK1/2/g. The values of ∆(T, x), determined with Eq.(17), Fig.3, are about the same

as Batlogg’s normal- state- gap temperature T ∗(x) [17]. Therefore we conclude that T ∗ is the

bipolaron binding energy. A temperature dependence of ∆(T, x) of the underdoped sample

in Fig.3 is explained by the temperature dependence of the screening radius. From the Hall

effect [17] one can observe that the bipolaron density is approximately constant below 200K

for x = 0.1 in the agreement with our previous calculations [16]. Then, according to Eq.(15)

the normal state gap is proportional to the temperature, ∆ ∼ T at low temperatures.

The proposed kinetics of high-Tc cuprates is derived from the generic Hamiltonian

H =
∑

<ij>

T (m− n)c†icj +
∑

q

ω(q)(d†
q
dq + 1/2) +

∑

q,i

ω(q)ni[ui(q)dq + H.c.] +
∑

ij

Vijninj,

(18)

where T (m) is the bare hopping integral, i = (m, s), j = (n, s) (m,n, s stands for sites and

spin, respectively), ni = c†ici, ui(q) = gexp(iq ·m)/
√

N , ω(q) are the coupling constant and

the phonon frequency, and Vij is the direct (density-density) Coulomb repulsion. It can be

diagonalised exactly if T (m) = 0 (or λ = ∞). The ground state bipolaron configuration
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is found by the use of the lattice minimisation technique [21] fully taking into account the

direct Coulomb repulsion. Then applying 1/λ perturbation expansion the bipolaron effective

mass tensor is readily derived. In perovskite structures the in-plane oxygen-oxygen pairs

appears to be the ground state. Therefore the in-plane bipolaron tunneling is essentially

one-particle and the in-plane effective mass appears to be of the order of the small polaron

mass about 10me [18]. On the other hand, the c-axis tunneling of the bipolaron is only

possible via a Josephson-like hopping. In that case one derives [22,19]

1

m∗∗
c

≃ 4t2d2

√

2π

ω∆
exp

[

−
∆

ω

(

1 + ln
2g2ω

∆

)]

. (19)

Here t = T (d)e−g2

is the inter-plane polaron hopping integral. Then the ratio of the c -axis

singlet mass to that of the polaron one is given by

m∗∗
c

m∗
c

≃
1

2

√

ω∆

2πT 2(d)
exp(3g2) ≫ 1, (20)

which justifies the proposed kinetics described by Eqs(3-5). The isotope effect on both

Tc [23] and on the Néel temperature TN [24] favors the electron-phonon coupling as the

origin of the polaron and bipolaron formation in LSCO. The pair-distribution analysis of

neutron scattering [25] also suggests that the ‘spin-gap’ is consistent with the formation of

a bipolaronic local singlet state.

In conclusion, we have developed a coherent transport theory of copper based high-Tc

oxides, which describes the doping and temperature dependence of the resistivity and the

magnetic susceptibility of LSCO as well as the normal state gap. Our theory is selfconsistent

in the sense that the mean-free path for bipolarons remains larger than the lattice constant.

The large resistivity values are due to a strongly enhanced effective mass and a small polaron

density rather than to a short mean-free path. Thus the Boltzmann kinetics is applied.

No question arises with the three-dimensional superconductivity either. The Bose-Einstein

condensation of bipolarons explains the high value of Tc because its dependence on a huge

c- axis singlet mass is only logarithmic [11]. At very low temperatures polarons are frozen

out, so we expect the temperature independent anisotropy ρc/ρab when T is low. In the
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magnetic field the normal state gap becomes smaller due to the spin splitting of the polaron

level, so a negative c-axis magnetoresistance is expected. Both features have been recently

observed [26].

We highly appreciate the enlightening discussions with Y. Ando, P. Edwards, J. Cooper,

N. Hussey, W. Liang, J. Loram, A. Mackenzie, and K. Ziebeck and the Royal Society financial

support of one of us (VVK).
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FIGURES

FIG. 1. Theoretical anisotropy (a) and the magnetic susceptibility (b) with ∆0 = 55K.

FIG. 2. Experimental anisotropy [4] (a) compared with the theoretical one by the use of Eq.(12)

with the experimental [9] χ(T, x) = χs(T, x) + 0.4 × 10−7emu/g (b).

FIG. 3. Normal state gap as a function of temperature and doping.
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