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Radiative corrections to the long-wavelength optical-mode spectrum of the electron-phonon
model: Absence of mode-splitting effects and hardening of the mode
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Renormalization of the phonon spectrum of the Einstein form due to a weak coupling with electrons is
calculated. No splitting of the phonon mode is found.gAlependent hardening of the long-wave optical
phonons contrasts with the softening of acoustic phonons in a weakly coupled electron-phonon system and
with the softening of all phonons in the strong-coupling polaronic reg[i86163-182@07)02646-3

The problem of coupled electrons and phonons was forfinite |g|.? Later on, several authofs discussed the vertex
mulated by Migddi and by Engelsberg and Schriefidbr  corrections in connection with the superconductifhg In
the Debye(acousti¢ and Einstein(moleculay phonons, re- particular, Grimaldiet al.” obtained a strong enhancement of
spectively. As Migdal showed, one can omit the vertex cor-T, from the first-order vertex correction for a long-range
rections for Debye phonons arriving at the renormalizedelectron-phonon interaction.
sound velocitys=s(1—2\)*2, wherex is the coupling con- In this paper we recalculate the irreducible polarizability
stant. However, in many doped semiconductors, there arand show that the pole &(q) in Eq. (1) is an artifact of the
optical phonons which are practically dispersionless in theexpansion in powers dfj| of the vertex function prior to the
long-wave limit, o(g)=w. In this case the vertex correc- integration over the frequency and momentum of the polar-
tions appear to be important when the phonon’s phase velo@zation loop. As a result, there is only a hardening of the
ity is of the order or greater than the Fermi velocity, i@., Einstein phonon mode without any splitting in the weak-
=|q|ve,? so that Migdal's theorem does not hold even for coupling regime contrasting with the softening in the strong-
weak coupling\ < 1. Adopting the ladder approximation for coupling polaronic regime)>128 Thus the vertex correc-
the vertex function and expanding it for smgj| as a power tions play no qualitative role in the renormalization of the
series in|q|?, it was found that the irreducible polarizability Einstein phonons.

P(q) has a pole atjy=w:? To illustrate the point, it is sufficient to calculate the
) . . zeroth- and first-order diagrams in powers\ods shown in
_ N [vg[g]|? 2+39°N/ 0~ g°N/ (w0 —qp) Figs. Xa) and 1b), respectively, in a weak-coupling regime,
P(9)= 31 q (1+9°N/w?)? + (D \<1. The zeroth-order electronic propagator is determined
with N=mpe/272 the density of states at the Fermi level,
pe=mvg, and g the electron-phonon coupling constant. P . _ .
Here and belowg=(q,q,) and z=c=1. This expression G (p)=po—&+idsgn§)=po—&+id sgnpo), (5
can be simplified near the polg=w and \=g?N/w?<1.
Keeping first order terms i, one obtains where£=vg(|p| - pr) andp=(p.po). The zeroth-order po-
larizability, Fig. 1(a), is
oy 2N [velal)?( \ )
@=31" 4(1—qolw))’ @
which yields two poles of the dressed phonon propagator
D~ a)=d5~ 0~ g?P(q)=0. ) .
The two branch splittings as one increases the momentum
transfer to the lattice are + @ + @
=0t [¢] 4) A@) Aa) B(a)
W=wWXZT——V E
2v3 UF i ) i
for |g|<w/ve. Therefore, if an Einstein spectrum is a rea-
sonable choice for the noninteracting phonons, from (Bp. FIG. 1. Zeroth(a) and first orde«b) in \ irreducible polarizabil-

one would expect to observe the two branches splitting aities.
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P<°>(q)=—2ifdA—pG<p+q>G<p>=—i o [ ox[ | 0edPy
(2m)* 2m )4 [Po+do—&—velalx+i8 sgnpo+do) I Po— £+18 sgripg)]’
(6)
|
with 6=+ 0. The result depends on the order of integrations g°N? ,[ dotvelq| w?
if the limits for ¢ are extended up ta-o. Therefore the B(q)=— 2(0r]q))? n (q _— |q|) n .
frequency p,) integral should be calculated first. Fiu] F o °F 0
<qo/vg, we obtain do . |o+qq . |q0|—w®
o |w_qo| I w (|q0| o) |.
do QO+UF|Q|) } (13
PO(g)=N n( -2|, 7
(D=Noefal " do=oelal 7

As a result, the first-order polarizability, E(), is given by

which is the same as Eqg$l) and (2) with A\=0 in the
long-wave limit,|g|<qq/ve. However, the straightforward
calculation of the first-order polarizability, Fig(d), leads us
to a qualitatively different result compared with E@) or

P<1>(q)=292N2[ —(2vglg)) 2

1
a5— (velal)?

(2). There are two contributions of the first order from the 2 qot+velq| w? Jo
self-energy effect A) and one from the vertex correction xIn do—veld| |w2—q(2,|_ o
(B):
J’_ J—
xIn :2_20: iw|q0|w 2 0(qo|~ ) |.
PU(a)=A(q)+A(—q)+B(q), ® °
(14
where Near o= w we obtain in the long-wave limit
[ d'p 2N [velql)?
A(q)=—2|f 2n7 G*(p)G(p+a)2(p) 9 P(q)=P(°)(q)+P(1)(q)z? ( Ful)q|) (1—2\ In2),
(15
and L . . .
which is drastically different from Eq2). There is no pole
in the polarizability, and consequently there is no splitting of
d*pd*p’ the Einstein phonon. There are no poles in higher orders
B(q)=Zng’ J’ 2m)® G(p+q)G(p)G(p") either. The absence of any extra branches of collective exci-
& tations is a consequence of the conservation of the number of
XG(p'+q)D(p—p"), (10) degrees of freedom in a coupled electron-phonon system.

Because the Coulomb repulsion is absent from our consider-

with the bare phonon propagadr 1(q) =g2— w?+is. The  ation, there is no otherollective excitation except the

electron self-energ¥ (p) was calculated in Ref. 2 as dressed Einstein mode. The vertex and self-energy correc-
tions are negligible as one can see from Etp) if N<<1.

There is only a hardening of the renormalized optical

g°N lpot+o| phonons depending on the momentum @$:
E(p)f%(' |po—w|+I7ngr(po)@(|po|_w))(,ll) 2
N
?Dzw-i-—(vFIqD . (16
3 ®

where®(x)=1 for x>0 and zero otherwise. The remaining
integrals in Eq(9) lead to The hardening, Eq16), contrasts with Migdal's softening of
acoustic phonorisand with the softening of all phonons in

2 the strong-coupling polaronic regirfieThis contrasting be-

2N|12
A(q) = g°N n @ Y n | @+ dol havior is the result of the familiar repulsion of energy levels
a5~ (velal)? |w?—qfl ©  Jo—q under any perturbation. The acoustic phonon energys
well below the characteristic energyq of the electron-hole
i |Gol — @ ® _ 12 continuum, so that if these two excitations are coupled, the
I (|dol — @) |. (12 . .
lowest acoustic phonon level shifts downwards. On the con-

trary, the energy of the long-wave optical phonon is well
By integrating in Eq(10) first over momenta and then over above the electron-hole continuum>vgq, and so the up-
frequencies, we obtain per optical phonon level shifts upwards. In the polaronic
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regime the spectral width of the polaron spectral function isno role to play whilex<1. We have found a&-dependent
aboutg?/ w?. It plays the role of an electron-hole continuum hardening of the Einstein phonons rather than their splitting.
being much wider than the width of the phonon spectraiThe hardening in the weak-coupling regime and the soften-
function. This is why in the strong-coupling polaronic re- ing in the strong-coupling polaronic regime of optical
gime the lowest phonon level is shifted down by the phononphonons would allow one to distinguish these two regimes

polaron coup!ingg. _ ~ experimentally in doped semiconductors.

In conclusion, we have calculated the electronic polariz-
ability of a coupled electron-phonon system including the J.R.S. acknowledges support of this work by DOE Grant
first-order corrections in powers af These corrections have No. DE-FG05-94ER45518.
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