
 
 
 

This item was submitted to Loughborough’s Institutional Repository by the 
author and is made available under the following Creative Commons Licence 

conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288383611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PVM Algorithms for Some Problems in
Bioinformatics

Hongmei He, Xuan Liu, Matthew Newton, Ondrej Sýkora
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Abstract. We design and analyze implementation aspects of a PVM
version of the well known Smith-Waterman algorithm, and then we con-
sider other problems important for bioinformatics, such as finding longest
common substring, finding repeated substrings and finding palindromes.
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1 Introduction

String database searching is one of the most important and challenging tasks in
bioinformatics. It is necessary to find the best match between two given DNA or
protein strings. In the match, we have a penalty for opening gaps or extending
gaps for each of the strings. The best match is the one with the minimum sum of
such penalties. Pairwise comparison provides computer tools to directly compare
two strings. They are the starting points for all kinds of string analysis. These
tools can be very useful in string analysis, cloning projects, PCR analysis, and
many more.

The developers of hardware and software database searching and handling
are facing a great challenge from the genetic-string information that rises quickly
to large amounts. Although the computing resources have increased exponen-
tially for decades, the genetic string information maybe has extended beyond
the growth speed of the computing power. If the above facts keep on going,
it will be necessary to use more expensive supercomputers to search existing
databases.

Cluster computing is a relatively new field of research in parallel computing.
A cluster computer typically exists as a set of pcs or workstations interconnected
by a switch or a fast ethernet network. In a certain sense a cluster is just a
parallel computer with a, possibly, slower interconnection network. Clusters offer
incredible computing power at a fraction of the cost of parallel supercomputers.
In comparison, their communication power is modest, and no dedicated software
is provided. For communication one mostly relies on the concepts of pvm [12]
or the mpi library of communication routines [10], which provides a reasonably
efficient set of primitives.



2 Smith-Waterman Algorithm

When looking for strings in a database similar to a given query string, the
search programs compute an alignment score for every string in the database.
This score represents the degree of similarity between the query and database
string. The score is calculated from the alignment of the two strings, and is
based on a substitution score matrix and a gap-penalty function. A dynamic
programming algorithm computing the optimal local-alignment score was first
described by Waterman and Smith [17]. Later Gotoh [4] reduced the complexity
of the algorithm. Both versions have been implemented many times.

Database searches using the algorithm are unfortunately quite slow on ordi-
nary computers, so many heuristics have been developed, such as FASTA and
BLAST. These methods have greatly reduced the running time , however, at the
expense of sensitivity. As a result, a distantly related string may not be found
in a search by using these heuristic algorithms.
To get faster, but optimal solutions, one should use parallel computing. For
example the authors of [18] used a 64 processor system to align 324 protein
strings in 13 hours instead of single processor machine running 29 days to execute
the same work.

One of the first parallel implementations of Smith-Waterman algorithm or
Gotoh’s version of it due to Sitting et al. [15] and by [6]. In [7] a cluster imple-
mentation of Gotoh’s version [4] of the Smith-Waterman algorithm was designed
and run on a cluster of workstations using the PVM paradigm. They claimed
to achieve similar performance to a massively parallel computer Intel iPSC/860
hypercube.

Special parallel hardware to implement the Smith-Waterman algorithm was
developed by more researchers e.g. [3, 11, 8, 13]. Systolic algorithms to implement
the Smith-Waterman algorithm were also created [14].

Our PVM implementation of the Smith-Waterman Algorithm has been run
on a cluster of 20 Sun ULTRAsparc 5 workstations running Debian GNU/Linux.
They are connected with 100Mbit Ethernet using Cisco 2950 switches. We tested
it for different sizes of strings and for different relative sizes and for different
numbers of workers.

We used PVM, because it is standard and it frees the algorithm designer
from load balancing, resource control, fault tolerance and other problems with
parallel software and it is still quite popular as well.

2.1 PVM Smith-Waterman algorithm

{y is the pattern array, x is the text array, y[u, v] is the substring of y from index
u to v, and p is the number of workers in the cluster, g and t are the pattern
and text lengths respectively, worker(0) means master} (see Algorithm 1)



Algorithm 1 Parallel Smith-Waterman Algorithm
MASTER :

1: Send (y, all); k= 0;
2: while (k < t) do
3: Send (x[k, k + (g/p) –1],all);
4: k = k + g/p
5: end while

Worker(r) :

1: while (k < t) do
2: if data from worker(r-1) was received then
3: WS(y[r(g/p),(r+1)(g/p)–1],x[k, k+(g/p)–1]}
4: Send (Return data of WS(y[r(g/p),(r+1)(g/p)–1],x[k, k+(g/p)–1]},
5: worker(r + 1));
6: end if
7: if r = p then
8: worker(r) returns Best
9: end if

10: end while

Smith-Waterman Algorithm :

1: WS(string1,string2)
2: {Define f [i, j] as maximal similarity score, d as the cost of deletion and sim[i, j]

as the similarity of the i-th character of the pattern and the j−th character of
the text}

3: Best = 0; f [0, 0] = 0;
4: for (0 < i ≤ string1 length) do
5: for (0 < j ≤ string2 length) do
6: {f [i, j]=max{f [i−1, j]−d, f [i, j−1]−d,f [i-1, j-1]+sim[i, j]};
7: Best = max ( f [i, j],Best)
8: end for
9: end for



2.2 Test Results

In the first experiment, we used pattern and text of six different lengths, from
0.5K to 16K. We measured the running time for each pair of a text and a pattern.
We also tested different numbers of workers (see Fig. 1). In another experiment,
we used the same texts and patterns and worker numbers, but ran only 8 ma-
chines. In Fig. 2 both cases are compared.

Fig. 1

Fig. 2



2.3 Analysis

The Running time of the Gotoh’s version of the Smith-Waterman algorithm
is O(pattern length × text length). From our experiments, the PVM algorithm
running time is: O((text length)2/p), where p is the number of processors. Test
results show that the number of processors plays a role, if the total length of
input becomes larger. The results showed that the relative length of the pattern
and text does not matter too much. If the total length of input exceeds a limit,
it matters if we use more virtual processors than the real number of processors.

3 PVM algorithm for finding repeated strings

An important and very usual activity in bioinformatics is detection of repeated
patterns in strings.

A repeated substring is one having at least two matching occurrences at
distinct positions within the string, with the possibility that such occurrences
may overlap. A repeated substring may be said to be maximal if the match of a
pair of its instances cannot be extended further in either direction : Given string
y, with length n > 0, identify and locate the longest substring |x| occurring at
one or more distinct string overlapping positions in y.

There are many sequential methods for finding repeated substrings [16]. Our
PVM algorithms are efficient, especially in the case of finding all repeated sub-
strings.

First we discuss a general problem of finding a non-empty substring x of
a string y which repeats in a non-overlapping position in the string y, i.e. the
substring x of length m repeats in y, so that there are two positions k < l in
the string y such that x[i] = y(k + i − 1) = y(l + i − 1) for 1 ≤ i ≤ m and
k + m < l. A special subproblem of this problem is to find the longest tandem
substring in a string. When looking for the longest tandem substrings we want
to find concatenated two longest repeated substrings. It means the first element
of the second longest substring is next to the the final element of the first longest
substring.

What follows is the PVM algorithm for both non-overlapping and overlapping
cases.(see Algorithm 2)

3.1 Test Results

The following Fig. 3 shows testing results for searching longest repeated sub-
string.

3.2 Analysis

Work (we count the number of comparisons executed) of this PVM algorithm is
m2 and the running time is: O(m2/p), where p is the number of workers, m is



Algorithm 2 Parallel Longest Repeated Substring Algorithm
MASTER :

1: {x is the text array, p is the number of workers in the cluster, g is the text
lengths.}

2: Initialisation
3: Send the x to all workers.
4: Receive the Longest Repeated Substring,maxRepeatedStr from all workers.
5: Compare each result from workers and output the Longest Repeated Substring.

Worker(r) :

1: define maxRepeatedStr with three elements, the length of
string,maxRepeatedStr.len,the first start position in x, maxRepeatedStr.x1,
and the second start position in x, maxRepeatedStr.x2

2: Initialize maxRepeatedStr with the element, len=0;
3: step=g/(2× p) + 1;
4: frontPart=WorkerID × step;
5: rearPart=(2(p− 1)−WorkerID)× step;
6: for (k = frontpart; k < frontPart + step; k + +) do
7: { substring=searchSubstr(x, g, k) }
8: if(substring.len>maxRepeatedStr.len) maxRepeatedStr=substring;
9: end for

10: if (frontPart! = rearPart) then
11: for ( k=rear; k<rearPart+step & k<g; k++) do
12: substring=searchSubstr(x, g, k)
13: if(substring.len>maxRepeatedStr.len) maxRepeatedStr=substring;
14: end for
15: end if
16: send the maxRepeatedStr to Master.

Search Longest Repeated Substring :

1: SearchSubstr(X,g, k )
2: {
3: define maxZeroString.
4: Initialise maxZeroString with the element len = 0;
5: i = 0
6: while (i < g − k) do
7: val[i] = X[i]−X[i + k]
8: i++;
9: end while

10: set variable, len to record the length of current 0 string
11: while (i < g − k) do
12: i=the start position of the next 0 string in array,val
13: counter = thelengthofthe0string
14: i=i+counter
15: if (k < counter) len = k; (overlap)
16: else len = counter; (k ≥ counter, no overlap )
17: if (len>maxZeroString.len) {
18: maxZeroString.len=len;
19: maxZeroString.x1 = i− counter;
20: maxZeroString.x2 = i + k− counter;
21: }
22: end while
23: Return maxZeroString;
24: }



Fig. 3

the string size. The parallel algorithm decreases the running time for searching
longest repeated substring, but, if we used too many workers to find the longest
repeat string in small string, the running time would increase.

3.3 Discussion of the overlapping case

The Fig. 4 shows the procedure of searching longest substring.

Fig. 4

We use k for the number of how many times the string is shifted. We calculate
the difference of the common part of the two strings, count the size of the longest
matching substring, and get the corresponding start positions of the longest
repeating substrings. We use a variable, counter, to record the length of the
matching substring, and we consider overlapping of repeated substrings too.



In the non-overlapping case, for example, using a string, ”AAAAAAA”, we
can say the longest repeating substring is ”AAA”, whose first start position is 0,
and second start position is 3. In another example, a string: ”AGTCAGTCA”,
the longest repeating substring is ”AGTC”and rather than ”AGTCA”. However,
in the PVM algorithm, if there are overlapping substrings in the string, the
value of counter could be more than the real value of length. Fig. 6 describes
the procedure of finding an overlapping substring. For the example (Fig. 5a) of
”AAAAAAA”, we have k = 1, counter = 6, and obviously, it is not correct to
record the value of counter. For the example (Fig. 5b) of ”AGTCAGTCA”, we
have k = 4, counter = 5 and we also cannot record the current value of counter.
Actually, k is the real length of repeating substrings instead of counter. So we
just need to record the value of k as it is largest, when k < counter.

Fig. 5(a)

3.4 Load balancing - onion peeling principle

To keep the workload balanced equally over processes, we suggest using the so
called onion peeling principle which ensures almost equal distribution of work-
load. In Fig. 6 we show an example with 4 workers and computation of 8 blocks
of different size. The size of neighbouring blocks differs by 1. Computation of
the 8 blocks will be distributed over these 4 workers as follows. Like peeling an
onion skin, the first worker computes the outside layer, which are the first and
the eighth blocks. The second worker will execute the computation of the next
layer, which are the second and the seventh blocks, and so on.



Fig. 5(b)

Fig. 6



4 PVM algorithm for the longest common substring

The problem of finding the longest common substring is an important problem
too. E.g. in the DNA sequencing shotguns[2] are used, one should find pairs of
shotguns with the longest common prefix from one shotgun matching a suffix of
the other shotgun .

4.1 Longest Common Substring Algorithm

A longest common substring of two strings is a substring common to both,
having maximal length, i.e. it is at least as long as any other common substring
of the strings. Given two strings x and y, with lengths |x| = m, |y| = n, where
0 < m <= n, find lcs(x, y), where lcs(x, y) is a longest common substring of x
and y. We could also be interested in f longest common substrings where f is a
constant.

There are many sequential methods to solve this problem (see e.g. [16, 1]).
We suggest a relatively simple parallel algorithm with a load balancing idea
described in the following subsection.

In the following pseudocode the ID of a worker is denoted by ”WorkerID”.(see
Algorithm 3)

4.2 Test result

We used 20 machines in the cluster to run the PVM algorithm. Different length
text strings and pattern strings were applied to the PVM algorithm. We also
tested different numbers of workers.(see Fig.7)

Fig. 7



Algorithm 3 Parallel Longest Common Substring Algorithm
MASTER :

1: {y is the pattern array, x is the text array,p is the number of workers in the
cluster, g and t are the pattern and text lengths respectively}

Initialization :
3: Send the y to all workers.
4: Send the x to all workers.
5: Receive the Longest Common Substring from all workers.
6: Compare each result from workers and output the Longest Common Substring.

Worker(r) :

1: define maxCommonString with three elements, the length of
string,maxCommonString.len, the start position in y, maxCommonString.y,
and the start position in x, maxCommonString.x

2: Initialize maxCommonString with the element, len=0;
3: Step=g + t/(2p) + 1;
4: FrontPart = WorkerID × step;
5: According to the distribution of machines, each worker in the cluster includes

two parts, front part and rear part.
6: RearPart = (p + WorkerID)× step;
7: for (frontpart < k< frontPart + step) do
8: substring=LCS(y, x, g, t, k)
9: if (substring.len > maxCommonString.len)

10: maxCommonString = substring;
11: end for
12: for ( k=rear; k<rearPart+Step & k<g+t; k++) do
13: substring=LCS(y, x, g, t, k)
14: if (substring.len > maxCommonString.len)
15: maxCommonString = substring;
16: end for
17: send the maxCommonString to Master.

Search Longest Common Substring :

1: LCS(Y,X,g,t,k)
2: define maxZeroString.
3: Initialise maxZeroString with the element len = 0;
4: if (g-k-1>0){Start1=g-k-1; Start2=0}
5: else { Start1=0; Start2=k-g+1;}
6: if (g-Start1)<(t-Start2)
7: L = g − Start1
8: else L = t− Start2
9: set m=0; maxLen=0;

10: set i=Start1;j=Start2;
11: while (m < L) do
12: val[m + +] = Y [i + +]−X[j + +]
13: end while
14: set i = 0; set maxlen=0;
15: while (i < L) do
16: i=the start position of next 0 string in array, val;
17: counter=the length of the 0 string
18: i=i+counter;
19: if (counter > maxZeroString.len)
20: {maxZeroString.len = counter;
21: maxZeroString.y = Start1 + i− counter;
22: maxZeroString.x = Start2 + i− counter; }
23: end while
24: return maxZeroString;



4.3 Analysis

Work (we count the number of comparisons to be executed) of this PVM al-
gorithm is min2(|x|, |y|) = m2 and the running time is: O(min2(|x|, |y|)/p) =
O(m2/p), where p is the number of processors.

4.4 Load balancing–Tandem Cascade

In parallel Longest Common Substring Algorithm, we use a kind of load balanc-
ing implementation method,which is similar to the onion peeling principle. As
Fig. 8 shows, the computation between two strings contains two parts,which are
the upper string sliding from the right end to the central of the lower string and
going on to slide from the central to the left end. The longest computing time
will happen when the upper string on the central position of the lower string.We
arrange these computation to each worker in tandem, which means any PVM
worker will be arranged some of easy computations(like 1st Computation and
2nd Computation)and some of hard computations(like 10th Computation and
11th Computation).Other PVM workers may be arranged the 3rd,4th,12th and
13th computation for keeping the load balance,and so on.

5 PVM algorithm for the Longest palindrome substring

A string x of length n such that: x(i) = x(n − i + 1), 1 ≤ i ≤ n, is called a
palindrome. We design a PVM algorithm to find the longest palindrome and
it can be easily and efficiently applied for finding f longest palindromes, or for
finding all palindromes of at least some constant length.(see Algorithm 4)

5.1 Test results

In our experiment, we run our PVM algorithm on a 20 machine cluster. We
tested different string sizes from 0.5kb to 10kb. We also used different numbers
of workers.(see Fig.9)

5.2 Analysis

This PVM algorithm does m2 comparisons and the running time is: O(m2/p),
where p is the number of processors, m is the string size. From the Fig. 9, we can
see that the best running time would be achieved (obviously) if we applied more
workers. But, if the longest palindromes are ”tiny”, the quickest running time is
achieved if ”less” workers is applied. This is due to the fact that there is ”larger”
number of palindromes and reporting them to the master increases transmission
time.



Fig. 8



Algorithm 4 Parallel Longest Palindrome Substring Algorithm
MASTER :

1: {X is the text array,p is the number of workers in the cluster, g is the text
lengths.}

2: Initialisation
3: Send X to all workers.
4: Receive the Longest Palindrome Substring from all workers.
5: Compare each result from workers and output the Longest Palindrome Sub-

string.

Worker(r) :

1: define maxPalindrome with two elements, the length of
string,maxPalindrome.len,the start position in x, maxPalindrome.x

2: Initialize maxPalindrome with the element, len=0;
3: step=g/p + 1;
4: FrontPart=WorkerID × step;
5: RearPart=(p+WorkerID)×step
6: for (frontpart<i<frontPart + step) do
7: substring=searchPLD(x, g, i)
8: if(substring.len>maxPalindrome.len) maxPalindrome=substring;
9: end for

10: for ( i=rear; i<rearPart+step & i<2×g; i++) do
11: substring=searchPLD(x, g, i)
12: if(substring.len>maxPalindrome.len) maxPalindrome=substring;
13: end for
14: send the maxPalindrome to Master.

Search Longest Palindrome :

1: SearchPLD(X,g, k )
2: {
3: define maxZeroString.
4: Initialise maxZeroString with the element len = 0;
5: if (g-k-1)>0 {start1 = g − k − 1; start2 = (g − 1)}
6: else start1= 0 {start1 = 0;start2 = 2× (g − k − 1)}
7: if (i > 0) L = StringLength− i
8: else L = j + 1
9: set m = 0; i = start1; j = start2;

10: while (m < L) do
11: val[m + +] = X[i + +]−X[j −−]
12: end while
13: while (i < L) do
14: i=the start position of the next 0 string in array,val
15: counter = thelengthofthe0string
16: i = i + counter
17: if (counter > maxZeroString.len) {
18: maxZeroString.len = counter;
19: maxZeroString.x = start1 + i− counter;
20: }
21: end while
22: Return maxZeroString;
23: }



Fig.9

6 Conclusions

In this article we designed and tested PVM algorithms to compute some impor-
tant problems in bio-informatics.

Among those we designed and analyzed implementation aspects of a PVM
version of the well known Smith-Waterman algorithm and PVM algorithms for
finding the longest common substring, finding repeated substrings and finding
palindromes.

We used the so called onion peeling principle to evenly distribute the work-
load.

We observed some interesting facts: e.g. increase of transmission time causing
slowdown if larger number of workers was used.
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