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Abstract

The minimisation of edge crossings in a book drawing of a graph
is one of the important goals for a linear VLSI design, and the 2-page
crossing number of a graph provides an upper bound for the standard
planar crossing number. We design genetic algorithms for the 2-page
drawings, and test them on the benchmark test suits, Rome graphs and
Random Connected Graphs. We also test some circulant graphs, and
get better results than previously presented in the literature. Moreover,
we formalise three conjectures for certain kinds of circulant graphs,
supported by our experimental results.

Keywords: genetic algorithms, 2-page crossing number, Hamilto-
nian cycle, order of vertices, edge distribution, optimal values.

Introduction

The simplest graph drawing method is that of putting the vertices of a
graph on a line and drawing the edges as half-circles. Such drawings are
called ”book drawings”, and they correspond to the linear VLSI design. Edge
crossing minimisation is the most important goal in linear VLSI design, since
a smaller number of crossings means cheaper design. The minimal number
of edge crossings in a book drawing is called the book crossing number
(Shahrokhi et al. 1996).
∗This research was supported by the EPSRC grant GR/S76694/01, accepted by the
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In the 2-page drawing one places the vertices of a graph G along a line
called a ’spine’ and every edge is completely drawn in one of two pages. The
smallest number of crossings in such a drawing of G is called the 2-page
crossing number of G, denoted by ν2(G). Equivalently, the vertices can be
put on a circle and the edges can be drawn as straight lines and coloured
by two colours. The 2-page crossing number is the same as the smallest
number of crossings of edges with the same colour. The problem is NP-hard
(Masuda et al. 1990).

Genetic algorithms (GAs) have shown to be good global optimizers for a
broad range of optimisation problems, and they have been used successfully
for drawing graphs (Barreto & Barbosa 2000, Eloranta & Mäkinen 2001,
Huang & Kang 1998, Radwan & El-Sayed 2004).

In this paper, we design genetic algorithms to find an ordering of vertices
and a distribution of edges in the two pages in order to minimise the 2-
page crossing number. Our experiments are based on the benchmark test
suits: Random Connected Graphs (RCG) (He et al. 2005a, 2005b) and Rome
Graphs (GDToolKit).

The 2-page crossing number of a graph G provides an upper bound for the
standard planar crossing number. Recently, Winterbach (2005) proposed
heuristics for the 2-page crossing numbers and applied them to estimat-
ing the plane crossing number of some small complete multipartite graphs.
Cimikowski (2002) tested eight different heuristic algorithms where the order
of vertices was determined by finding a Hamiltonian cycle. Hence, contrary
to our approach, in his tests the order of vertices was always fixed. We also
give some explorations to circulant graphs, and compare our results with
results of other authors, e.g., Cimikowski (2002), and the theoretical results
published by Lin et al. (2005).

1 Solving the 2-page drawing problem with GA

In genetic algorithms, the first population of solutions is often generated
randomly. Fitness, as a measure of quality of solutions, usually expressed in
the form of one or multiple functions, is used to select the better solutions
from the current population. The selected solutions undergo the operators
of crossover and mutation in order to create a population of new solutions
(the offspring population). The procedure is repeated until the termination
criteria given by the user are met.
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One of the most important questions is that of determining the characteris-
tics of a problem, which makes it well-fitted for the genetic approach. The
2-page drawing problem is to find a good order of vertices and a good dis-
tribution of edges for a graph so that the 2-page crossing number of the
graph is as small as possible. According to the problem we need to solve, we
define four important aspects of genetic algorithms for the 2-page drawing
problem: chromosome, fitness function, genetic operations, and termination
criteria.

1.1 The chromosome

TimGA (Eloranta & Mäkinen 2001) drew graphs in an N ×N matrix, and
the authors presented a graph with n vertices and m edges by using a 2×n
matrix to indicate the positions of vertices, and a 2×m matrix to indicate
the edges by storing pairs of vertices. We use a list of edges, e(u, v), to
present a graph G = (V,E), where u, v ∈ V and e(u, v) ∈ E. For a 2-
page drawing, the vertices of a graph are placed along a spine and edges are
allocated in two pages. The key point of the 2-page drawing problem is to
find an ordering of vertices and a distribution of edges minimising the 2-page
crossing number. So, a chromosome should include two parts, a permutation
of all vertices, π = (v0, v1, . . . , vn−1), and a string, S = (b0, b1, . . . , bm−1),
where bi ∈ {1, 2}. Each bit corresponds to one edge, i.e. bi=1 indicates the
corresponding edge is in page 1, and bi=2 indicates the corresponding edge
is in page 2. If we consider a κ page drawing, it is easy to extend our genetic
algorithms by setting bi ∈ {1, 2, . . . , κ}.
The size of population, popSize, is an important parameter. A small pop-
ulation indicates that the variation of chromosomes is small, and that the
search time is short, but it may lead to a premature convergence of solutions.
A large population indicates that the variation of chromosomes is large, and
that the search time is longer, but it may get better solutions. Since the
rate of the number of individuals searched and the search space is larger,
the chance of getting the best solution is larger. A larger graph has a larger
search space. During the procedure, the total number of individuals that
GA generates is popSize × generations. Considering the chance of getting
the best solution for each graph to be as equal as possible, we fix a small
size of population, and set popSize=16 in our experiments. The number of
generations is decided by the termination criteria, which are related to the
size of graphs as described in Section 1.4.
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1.2 The fitness function

Fitness functions are used to evaluate the quality of solutions. Our goal is to
minimise the 2-page crossing number, so we can directly define the 2-page
crossing number ν2 as the objective function (to be minimised) and the in-
verse of one plus the square of the 2-page crossing number as the fitness
function (to be maximised). The reason for using the square of crossing
number is to enlarge the difference of fitness values for similar crossing num-
bers. Our preliminary experiments showed that the results with squared
crossing numbers were better than those with linear crossing numbers. The
fitness function, f(G, π, S), depends on the vertex order, π, and the edge
distribution, S, in the current layout of a graph G. We use a table, adj,
as an adjacent matrix in the current drawing D(π, S) of G. If an element
of S, which corresponds to an edge e(u, v), has the value x (i.e. the edge
e(u, v) is drawn in page x, with x = 1, . . . , κ), and the vertex u is in position
i and the vertex v in position j in the current permutation π, then we set
adj[i][j] = adj[j][i] = x. Otherwise, we set adj[i][j] = adj[j][i] = 0. We
can calculate the number of crossings in a κ-page drawing of G with the
following formula (He et al. 2005b):

vκ(G) =
n−4∑

i=0

n−2∑

j=i+2

j∑

k=i+1

n−1∑

l=j+1

adj[i][j]
⊙

adj[k][l] (1)

where

adj[i][j]
⊙

adj[k][l] =
{

1 if adj[i][k] = adj[j][l] 6= 0
0 if otherwise.

(2)

The calculation takes time O(n2).

1.3 The genetic operators

Selection

Various selection criteria can be used so that sufficiently good individuals
are picked for mating (and subsequent crossover). In our problem, we set
a probability, prob, to decide the selection operator, and the probability
of each individual in the current population is in proportion to the fitness
value, which is defined as 1

1+ν2
2 (D)

. The smaller the crossing number is, the
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larger is the probability. The probability can be calculated by the following
formula, where Di is the i-th drawing corresponding to the i-th individual
in a population:

prob(Di) =
1

ν2
2 (Di)+1∑popSize−1

k=0
1

ν2
2 (Dk)+1

× 100%. (3)

When a random number is produced, and it is located in the probability
range of a chromosome, the chromosome will be selected. The selection
operator is similar with the one used by He et al. (2005a) for the outerplanar
drawing problem (Algorithm 1). The running time is O(popSize).

Algorithm 1 Select(pops)
1: r=random() mod 100;
2: lastprob = pops[0].prob;
3: i =0;
4: while (r > lastprob) do
5: i = i+ 1;
6: lastprob = lastprob+ pops[i].prob;
7: end while
8: return i;

Crossover

The purpose of crossover is to create new solutions by combining previ-
ous solutions that have shown to be good temporary solutions. Depend-
ing on the presentation of chromosomes, different crossover operators are
used. Eloranta and Mäkinen (2001) used two types of crossover operators,
RectCrossover and ThreeNodeCrossover. For the 2-page drawing prob-
lem, the chromosome includes two parts, permutation of vertices and distri-
bution of edges, so the crossover will act on both parts. Our preliminary tests
showed that the following crossover types for the two parts of a chromosome
are adequate. In the implementation, we use two circle queues to maintain
the permutation and edge distribution, respectively, so that the variation of
permutation and edge distribution by crossover operators is double as that
by using normal queues. Indeed, no matter what the presentation of chro-
mosome, if a circle queue is used, then any segment in the circle queue can
be chosen randomly for crossover, including the connection of head and tail
of the circle queue.
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Crossover on permutation, π

Here we use Multi-point Order crossover(MOX) (Michalewicz 1994): two
parental permutations, π1 and π2, are chosen randomly depending on the
probability of being chosen. A continuous interval of the permutation π1 is
chosen, and also an interval starting at the same position and of the same
length from π2. Two new permutations, π′1 and π′2, are created such that π′1
contains the interval from π2 with the rest being the other elements of π1 in
the order as they were in π1. π′2 contains the interval from π1 with the rest
being the other elements of π2 in the order as they were in π2. The crossover
operator on π is similar with the one of He et al. (2005a) (Algorithm 2). An
example is given in Fig. 1.

Algorithm 2 Crossover(π1,π2)
1: start = random() mod n;
2: len = random() mod n;
3: Swap parts from start to (start+ len) mod n in π1 and π2;
4: Complete the permutation with the rest of the original permutation

(i.e. the other elements are put into the unused space according to the
original ordering);

Figure 1: An example of the crossover operation

Crossover on page distribution of edges, S

We use Multi-Point crossover (MPX) (Michalewicz 1994) on two parental
strings, s1 and s2. A continuous interval of the string s1 is chosen, and
also an interval starting at the same position and of the same length from
s2. Two parents, s1 and s2, swap the two selected intervals to get two new
distributions of edges, s1’ and s2’ (see Algorithm 3).
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Algorithm 3 Crossover(s1,s2)
1: start = random() mod m;
2: len = random() mod m;
3: Swap the parts from start to ((start+ len) mod m) in s1 and s2;

Mutation

After creating popSize children by crossover operator, the step of mutation
is executed. The mutation is done with some probability on each child
in the population. Actually, there is a small chance that the crossover on
π gets synchronous performance as the crossover on S. Our preliminary
experiments show that a large probability of mutation is needed. Good
results are achieved where the probability of mutation is as high as 40%. The
mutation operator acts on both parts of the chromosome, π and S. On π,
the mutation is the swap of two randomly picked elements in a permutation.
On S, the mutation is the change of a randomly picked element in a string,
which indicates that the corresponding edge is changed to the opposite page
from its current page. Finally, the historically best individual will replace
the worst one in the new generation.

1.4 The terminate criteria

The termination criteria are important parameters, which determine the
running time and the final result of the algorithm. For the 2-page drawing
problem, one of the termination criteria is usually related to the number
of edges and vertices. We terminate the GA procedure when the chance of
improvement is close to 0. In the implementation, we define: duration =
min(3n+ 3m+ 100, 1000).

The evolution procedure will be repeated until the best solution shows no
improvement up to duration generations or the minimal crossing number
is 0. In this way, if the duration is large, the evolution will run for a long
time, but might get better solutions. The duration parameter is fixed for a
graph, but the exact number of generations is not only related to evolution
procedure, but also related to the randomness of evolution in each run. Our
preliminary tests showed that this termination criterion allows sufficiently
long running time for obtaining good solutions.
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2 Different Implementations of GA

2.1 GA with SLOPE 2-page strategy

The SLOPE 2-page strategy (He et al. 2005b) distributes the edges between
pages according to their slopes. If the angle between an edge and the hori-
zontal axis is larger than 90̊, the edge is put on page 2 (solid edges in Fig.2),
otherwise the edge is put on page 1 (broken edges in Fig. 2).

Figure 2: SLOPE distribution strategy

We can divide a circle into four sections as in Fig. 3. Suppose a vertex’s
position on the circle is i, Table 1 describes how the positions of vertices are
related to the four sections.

3

4 1

2

Figure 3: Dividing a circle into 4 sections

Considering an edge e(u, v), u’s position is i and v’s position is j, if i and
j are both located in the section 1, then 0 < i + j < 1

2n. If i and j are
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Table 1: Vertex positions on each section of a circle

Section Positions
1 0 ≤ i < n

4
2 n

4
≤ i < n

2

3 n
2
≤ i < 3

4
n

4 3
4
n ≤ i < n

both located in the section 3, then n ≤ i+ j < 3
2n. If i and j are located in

section 2 and section 4, respectively, then n ≤ i + j < 3
2n. In these cases,

we roughly say the angle between the edge and horizontal axis is larger than
90̊. Therefore, according to the positions of vertices incident to the edge,
we obtain the rough relationship between the slope value and the positions
of two ends of the edge, if (0 < i + j < 1

2n or n ≤ i + j < 3
2n) the angle

between the edge and horizontal axis is larger than 90̊. This resembles the
GA for outerplanar drawings defined by He et al. (2005a). The chromosome
includes only one part, permutation π. Crossover and mutation operators
only act on π. Just before the fitness calculation for each individual, edges
will be arranged with the SLOPE strategy. We denote this as GA-2Ptg.

2.2 GA operators run in different ways

Normally in the GA for the 2-page drawing problem, the search space is
implicitly defined by the order of vertices and the distribution of edges. We
assume that the search space related to the ordering of vertices is SPv =
{0..n − 1}n, where n = |V |, and that the search space related to the edges
is SPe = {1, 2}m, where m = |E|. |SPv| = n!, |SPe| = 2m. If the degree
of a vertex is d, then the change of one vertex position, is equivalent to the
possible change of 2d edge distributions. So the vertex order evolution has
more effect on the crossings than the edge distribution does. We use four
models, in which the GA operators run in different ways.

Crossover and mutation on π and S in each generation

For this model, in every generation, the crossover operator includes two sub-
crossovers, operating on π and S, respectively. The crossover operator and
mutation run on both π and S. We denote this as GA 2P. Obviously, the
crossover and mutation run on the space SPv × SPe.
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Algorithm 4 Slope(pops[k])
1: {
2: define a 2-dim array, adj
3: for (i=0 to |V |) do
4: for (j=0 to |V |) do
5: u = pops[k].order[i]; v = pops[k].order[j];
6: if e(u, v) ∈ E then
7: if (i+ j < 1

2 |V |) or (|V | ≤ i+ j < 3
2 |V |) then

8: adj[i][j] = adj[j][i] = 2;
9: else

10: adj[i][j] = adj[j][i] = 1;
11: end if
12: else
13: adj[i][j] = adj[j][i] = 0;
14: end if
15: end for
16: end for
17: return adj;
18: }

Crossover and mutation on π and S alternatively

In this model, the crossover and mutation run on π and S alternately.
Namely, first crossover and mutation operate on π until the best solution
shows no improvement up to L generations, which is an experimental pa-
rameter (L = 20), and then crossover and mutation operate on S until the
best solution shows no improvement up to L generations. The whole proce-
dure will be repeated until the termination criteria are met, the search space
alternating between SPv and SPe. We denote this as GA 2Px.

π has priority over S

In this model, the crossover and mutation mainly run on π, and the search
space is decided by the order of vertices. When the best solution shows no
improvement up to L generations, the crossover and mutation operate on S
once, so that the search jumps out of the local SPv space. The procedure is
repeated until the termination criteria are met. We denote this as GA 2Pxv.

S has priority over π

This model is reverse as the model above, crossover and mutation mainly
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run on S, and the search space is decided by the distribution of edges. When
the best solution shows no improvement up to L generations, the crossover
and mutation are done on π once, so that the search jumps out of the local
SPe space. The procedure is repeated until the termination criteria are met.
We denote this as GA 2Pxe.

3 Experimental Results

3.1 Rome Graphs and RCGs

We use two sets of undirected graphs from Rome graphs (GDToolKit):

* RND BUP: this graph set contains about 200 graphs generated ran-
domly. Each graph in the set is biconnected, undirected and planar.

* ALF CU: this graph set contains about 10,000 connected and undirected
graphs.

RCGs is a library of undirected random connected graphs with different sizes
and different densities. In Table 2, the number of times that each GA model
achieves the best results on the benchmark graph libraries are listed, and in
Table 3, the numbers of sample graphs for which each GA model runs the
smallest number of generations on the benchmark graph libraries are listed.

Table 2: The number of times that each GA model achieves the best results on benchmark
graph libraries

Graphs 2P 2Ptg 2Px 2Pxe 2Pxv
ALF CU (268) 147 134 127 20 137
RND BUP(169) 74 63 65 13 78
RCG(360) 67 171 26 0 133
total 288 368 218 33 348

For Rome graphs, models GA 2P, GA 2Ptg, GA 2Px, and GA 2Pxv have
similar performance both in results and in the number of generations. Our
other tests indicate that for RCG graphs, GA 2Ptg gets the best results,
and for all graphs, GA 2Pxe gets the worst results. We can conclude that
GA 2Pxe converges prematurely, and we exclude it from our further tests.

11



Table 3: The numbers of sample graphs for which each GA model runs the smallest number of
generations on benchmark graph libraries

Graphs 2P 2Ptg 2Px 2Pxe 2Pxv
ALF CU 37 58 32 116 43
RND BUP 25 26 21 80 22
RCG 13 19 9 300 19
total 75 103 62 496 84

3.2 Test on RCGs with different densities and sizes

Next we examine the effect and efficiency of all GA models by statistical
results of crossing number and number of generations on RCGs with different
sizes and different densities, where density of a graph G with n vertices and
m edges is m/|E(Kn)|, and Kn is the n-vertex complete graph. We use
three densities: 1%, 2%, and 5%. For each density, 12 groups of graphs
with different number of vertices are tested, and for every group 10 different
graphs are generated and average number of generations and average number
of crossings are calculated.

As shown in Figs. 4, 5 and 6, for all densities, model GA 2Ptg always gets
the best results. Usually, from the best to the worst, we find the order:
GA 2Ptg � GA 2Px � GA 2P � GA 2Pxv. With the rise of density, the
results become closer, but the numbers of generations needed differ substan-
tially:

• When density is 1%, the numbers of generations of the four models
are quite similar. But occasionally, GA 2Ptg has the largest number
of generations, and GA 2Pxv has the smallest number of generations.

• When density is 2%, GA 2P and GA 2Ptg have the smallest numbers
of generations. GA 2Px and GA 2Pxv have about the same numbers
of generations, but occasionally, they have about the same number of
generations as GA 2Ptg and GA 2P do.

• When density is 5%, GA 2P and GA 2Ptg remain similar and have
the smallest number of generations. With the rise of vertex number,
GA 2Px has a much larger number of generations than the others.
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Figure 4: Average numbers of 2-page crossings and numbers of generations
on RCG(1%)

Figure 5: Average numbers of 2-page crossings and numbers of generations
on RCG(2%)

3.3 Test on circulant graphs

Circulant graphs with the form, Cn(a1, a2, ..., ak), where 0 < a1 < a2 < ... <
ak < (n + 1)/2, are regular Hamiltonian graphs with n vertices, and with
vertices i± ak( mod n) adjacent to each i (Fig. 7).
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Figure 6: Average numbers of 2-page crossings and numbers of generations
on RCG(5%)

(b) C24(1, 3)
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(a) C20(1, 2, 3)

Figure 7: Two circulant graphs

The experiments of Cimikowski (2002) were done based on a fixed Hamilto-
nian cycle for some special structural graphs. However, not every Hamilto-
nian cycle corresponds to an optimal vertex order, and an optimal drawing
might not correspond to a Hamiltonian cycle. Moreover, for an arbitrary
graph, a Hamiltonian cycle might not exist, or even if it exists, we might
not be able to find it. Our experiments aim at finding a 2-page drawing
with 2-page crossings as small as possible for a graph. We test the circulant
graphs used by Cimikowski (2002) with the four GA models.

According to the percentage of the results, which are the same as or better
than the best results listed by Cimikowski (2002), accounting for all test
results, we get the order of the four models: GA 2Ptg(94%) � GA 2P(91%)
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.= GA 2Px(91%) � GA 2Pxv(26%). According to the number of times that
each model gets the best results, we get the same order: GA 2Ptg(21) �
GA 2P(18) � GA 2Px(8) � GA 2Pxv(0). In the second rightmost column
of Table 4, there are listed either the optimal values related to the fixed
order of vertices based on the Hamiltonian cycles (Cimikowski 2002), or
theoretical lower and upper bounds, if the branch-and-bound algorithm of
Cimikowski (2002) was not applicable. The rightmost column contains the
best results obtained by Cimikowski. According to the data, we get the
chart shown in Fig. 8. All of our best results are better than the best
results of Cimikowski related to the fixed orders of vertices. Fig. 9 and Fig.
10 show the best solutions for Fig. 7 (a) and (b), respectively, both crossing
numbers of which are better than the optimal values related to fixed orders
of vertices (Cimikowski 2002). In the drawing of Fig. 9, the order of vertices
is a Hamiltonian cycle, but in Fig. 10 is not.

Table 4 shows that our heuristics overcome the fundamental problem of
Cimikow-ski’s method: a heuristic based on a fixed vertex order seems
to be too restrictive for the present problem. The circulant graphs that
Cimikowski used were relatively small, and since the termination criterion
of the genetic algorithm is directly proportional to the graph size, the run-
ning time of the genetic algorithm is quite short on a high-speed computer.

Figure 8: Our best results and Cimikowski’s best results
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Table 4: 2-page crossings for circulants used by Cimikowski (2002). The column C-opt contains
the optimal values (if available) related to a fixed order of vertices or theoretical lower and upper
bounds, and the column C-best contains the best values obtained by Cimikowski (2002)

No. Graphs GA 2P GA 2Px GA 2Pxv GA 2Ptg C-opt. C-best
1 C20(1, 2) 2 0 2 0 0 0
2 C20(1, 2, 3) 18 18 31 18 22 22
3 C20(1, 2, 3, 4) 68 70 102 68 26 : 870 70
4 C22(1, 2) 0 0 2 0 0 0
5 C22(1, 2, 3) 22 20 35 20 24 24
6 C22(1, 3, 5, 7) 166 199 252 172 28 : 1056 200
7 C24(1, 3) 9 9 10 9 12 12
8 C24(1, 3, 5) 60 64 83 62 72 76
9 C24(1, 3, 5, 7) 219 204 255 193 30 : 1260 216
10 C26(1, 3) 10 10 12 10 14 14
11 C26(1, 3, 5) 63 68 92 64 6 : 650 82
12 C26(1, 4, 7, 9) 316 319 391 290 32 : 1482 364
13 C28(1, 3) 12 12 13 11 14 16
14 C28(1, 3, 5) 79 77 97 75 6 : 756 86
15 C28(1, 2, 3, 4) 97 103 140 103 34 : 1722 98
16 C28(1, 3, 5, 7, 9) 524 555 746 508 62 : 3080 560
17 C30(1, 3, 5) 84 84 109 83 6 : 870 96
18 C30(1, 3, 5, 8) 252 254 332 226 36 : 1980 302
19 C30(1, 2, 4, 5, 7) 352 361 492 346 66 : 3540 392
20 C32(1, 2, 4, 6) 124 129 234 134 38 : 2256 160
21 C34(1, 3, 5) 96 98 122 96 6 : 1122 106
22 C34(1, 4, 8, 12) 286 314 394 302 40 : 2550 574
23 C36(1, 2, 4) 36 42 67 42 6 : 1260 36
24 C36(1, 3, 5, 7) 317 320 406 301 42 : 2862 328
25 C38(1, 7) 36 42 54 37 84 86
26 C38(1, 4, 7) 149 157 221 155 6 : 1406 190
27 C40(1, 5) 32 29 42 36 56 58
28 C42(1, 4) 24 25 31 28 42 42
29 C42(1, 3, 6) 109 113 174 106 6 : 1722 158
30 C42(1, 2, 4, 6) 168 215 334 174 48 : 3906 210
31 C44(1, 4, 5) 99 118 141 112 6 : 1892 180
32 C44(1, 4, 7, 10) 505 514 762 491 50 : 4290 632
33 C46(1, 4) 31 29 45 29 46 46
34 C46(1, 5, 8) 268 274 303 246 6 : 2070 296
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Figure 9: The best solution of C20(1, 2, 3) (Fig. 7 (a)), ν2 = 18

14 15 16 10 8 9 0 6 3 2 4 5 7 1 23 1922 21 20 18 17 12 11 13

Figure 10: The best solution of C24(1, 3) (Fig. 7 (b)), ν2 = 9
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3.4 Three conjectures

Winterbach (2005) proposed heuristics for the 2-page crossing number and
applied them to estimate the planar crossing number of some small complete
multipartite graphs. In contrast, we use the standard crossing number of
some graphs with our experimental results to conjecture the optimal 2-page
crossing number of the graphs.

Winterbach’s test was based on the complete multipartite graphs with |V | =
6 ∼ 13, except for the complete multipartite graphs that were isomorphic
to the corresponding complete graphs with the same vertex number. A
tabu algorithm was used to produce a good arrangement of vertices, and
then either GreedySide algorithm or the neural network of Cimikowski and
Shope (1996) was used to find a good distribution of edges. Our experiments
use the genetic algorithm to find a good vertex order and edge distribution
directly, and we get exactly the same results for those complete multipartite
graphs tested by Winterbach with the genetic algorithm GA 2Ptg, except
for the graph K11(2, 2, 2, 2, 2, 1), for which we obtained 61 and not 60.

We also tested another family of circulant graphs Cmk(1, k)(see Fig. 11),
which are regular Hamiltonian graphs with n = km vertices, V −→ {0, 1, 2, ..., km−
1}, where E −→ {(i, i + 1), (i, (i + k) mod n)|i ∈ V }. Table 5 shows the
results of our experiments.
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Figure 11: C4×5(1, 5)

We know the crossing number of circulant graphs, cr(Cn(1, bn/2c)) = 1
(Yang & Zhao 2001). Therefore, for this family of circulant graphs, C2k(1, k)(see
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Fig. 12), the 2-page crossing number is at least 1. From our experimental
results in Table 5, we obtain the following conjecture:

Conjecture 3.1 ν2(C2k(1, k)) = 1.

Similarly, we know the crossing number of circulant graphs, cr(C3k(1, k)) =
k, for k > 3 (Lin et al. 2005). So we have ν2(C3k(1, k)) ≥ k, for k > 3
(see Fig. 13). And from our experimental results in Table 5, we have the
following conjecture:

Conjecture 3.2 ν2(C3k(1, k)) = k.

Moreover, from our experimental results, we have a conjecture for C4k(1, k),
k > 4, as follows (see Fig. 14):

Conjecture 3.3 ν2(C4k(1, k)) = 2k + 1.

Table 5: 2-page crossing number of Cmk(1, k) by all GAs

No. Graphs GA 2P GA 2Px GA 2Pxv GA 2Ptg
1 C2×3(1, 3) 1 1 1 1
2 C2×4(1, 4) 1 1 1 1
3 C2×5(1, 5) 1 1 1 1
4 C2×6(1, 6) 1 1 1 1
5 C2×7(1, 7) 1 1 1 1
6 C2×8(1, 8) 1 1 1 1
7 C2×9(1, 9) 1 1 1 1
8 C3×3(1, 3) 3 3 3 3
9 C3×4(1, 4) 4 4 4 4
10 C3×5(1, 5) 5 5 5 5
11 C3×6(1, 6) 6 6 6 6
12 C3×7(1, 7) 7 7 7 7
13 C3×8(1, 8) 8 8 8 8
14 C3×9(1, 9) 9 9 10 9
15 C4×3(1, 3) 4 4 5 4
16 C4×4(1, 4) 9 9 9 8
17 C4×5(1, 5) 11 11 14 11
18 C4×6(1, 6) 13 13 14 13
19 C4×7(1, 7) 17 15 18 15
20 C4×8(1, 8) 17 17 24 18
21 C4×9(1, 9) 19 21 24 19
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Figure 12: Drawings of C2×5(1, 5), ν2 = 1
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Figure 13: Drawings of C3×4(1, 4), ν2 = 4

4 Conclusions

Models GA 2P, GA 2Pxv, and GA 2Ptg are the best for the graph sets
ALF CU, RND BUP, and RCG, respectively. When the density of graphs
increases from 1 % to 5 %, the difference between the results remains quite
modest for RCGs. However, the numbers of generations needed are much
more unbalanced when the density of graphs varies. For sparse graphs (den-
sity 1 %), the number of generations needed by GA 2Ptg has the largest
fluctuation. With denser graphs (density 5 %), GA 2Px needs considerably
more generations than the other models. The fluctuation on sparse graphs
might indicate that the edge distribution limits the possible vertex orders
very little, and that the evolution process is more random than with denser
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Figure 14: A drawing of C4×5(1, 5), ν2 = 11

graphs. It is also worth noticing that GA 2P is stable on all RCG graphs. In
most cases, GA 2Ptg has as many generations as GA 2P, and when density
is 2% and 5%, their numbers of generations needed are smaller than with
the other models.

For circulant graphs, from the best to the worst, there is the relationship:
GA 2Ptg � GA 2P � GA 2Px � GA 2Pxv. Moreover, our experiments of
GAs even improve optimal values based on fixed orders of vertices of some
circulant graphs used by Cimikowski (2002). We have three conjectures for
C2k(1, k), C3k(1, k) and C4k(1, k), supported by our experimental results.
We will give proofs for the conjectures in our further work.
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