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Symbolic arithmetic is fundamental to science, technology, and economics, but its 

acquisition by children typically requires years of effort, instruction, and drill1 2. 

When adults perform mental arithmetic, they activate nonsymbolic, approximate 

number representations,3 4 and their performance suffers if this nonsymbolic 

system is impaired5.  Nonsymbolic number representations also allow adults, 

children, and even infants to add or subtract pairs of dot arrays and to compare 

the resulting sum or difference to a third array, provided that only approximate 

accuracy is required6-10.  Here we report that young children, who have mastered 

verbal counting and are on the threshold of arithmetic instruction, can build on 

their nonsymbolic number system to perform symbolic addition and subtraction11 -

15.  Children across a broad socio-economic spectrum solved symbolic problems 

involving approximate addition or subtraction of large numbers, both in a 

laboratory test and in a school setting.  Aspects of symbolic arithmetic therefore lie 

within the reach of children who have learned no algorithms for manipulating 

numerical symbols.  Our findings help to delimit the sources of children’s 

difficulties learning symbolic arithmetic, and they suggest ways to enhance 

children’s engagement with formal mathematics. 

We presented children with approximate symbolic arithmetic problems in a 

format that parallels previous tests of non-symbolic arithmetic in preschool children8 9.  

In the first experiment, five- to six-year-old children were given problems such as “If 

you had twenty-four stickers and I gave you twenty-seven more, would you have more 
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or less than thirty-five stickers?”.  Children performed well above chance (65.0%, t19  = 

2.77, P = .012) without resorting to guessing or comparison strategies that could serve 

as alternatives to arithmetic.  Children who have been taught no symbolic arithmetic 

therefore have some ability to perform symbolic addition problems.   

Children’s performance nevertheless fell short of performance on non-symbolic 

arithmetic tasks using equivalent addition problems with numbers presented as arrays of 

dots and with the addition operation conveyed by successive motions of the dots into a 

box (71.3% correct, F1,34 = 4.26, P = .047).8  Some children appeared to be confused by 

the wording of the problems; earlier experiments using even more complex wording had 

yielded chance performance in children of this age8.  Accordingly, a second experiment 

tested children’s understanding of symbolic addition with simpler questions 

accompanied by visual displays (Figure 1a). Children answered questions of the form 

“Sarah has fifteen candies and she gets nineteen more, John has fifty-one candies. Who 

has more?” Children’s performance was as accurate (73.3%, t19 = 6.40, P = 4x10-6) as 

the performance of children in past research given such problems in nonsymbolic form8 

(Figure 2a), and again did not depend on guessing strategies involving comparisons 

between pairs of arrays.   

The above experiments were conducted in a quiet laboratory setting and focused 

on children living in a relatively wealthy and highly educated community.  To 

investigate their generality, we used the method of the preceding experiment to assess 

the symbolic arithmetic performance of children from a low- to middle-socioeconomic 

community, tested in their kindergarten classrooms.  These 5- to 6-year-old children 

also performed well above chance (63.9%, t36 = 6.273, P = 3x10-7) and without resort to 

guessing strategies, although performance was lower overall when children were tested 

in the more distracting classroom environment (F1,55 = 5.56, P = .022, Figure 2b).  

Children’s performance of approximate symbolic arithmetic in this experiment was 
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correlated with their performance on a test of mastery of the school’s curriculum, 

although the specificity and the causal nature of this relationship remain to be 

established.    Capacities for symbolic arithmetic evidently are available to children 

across a range of social and economic backgrounds, and they can be elicited in 

classroom as well as laboratory settings.  

What processes underlie children’s symbolic approximate arithmetic?  We first 

considered whether children might have learned some symbolic addition facts and used 

their fact knowledge to solve the present problems.  Contrary to this possibility, children 

failed to provide the exact solution to the present problems, to solve those problems 

when the comparison quantity was altered so as to require an exact representation of 

number, or to solve the problems through rounding strategies allowing for single-digit 

addition or comparison. Children’s approximate arithmetic performance evidently does 

not depend on knowledge of exact number. 

We therefore considered whether children draw on nonsymbolic, approximate 

number representations in solving these symbolic problems.  Nonsymbolic number 

representations show three signature properties in human adults, children, infants, and 

non-human animals.  First, comparison, addition and subtraction are subject to a ratio 

limit:  accuracy falls as the ratio of the numbers to be compared approaches 14 8 9 16.  

Second, addition is as accurate as comparison:  when adults or children sum two arrays 

and compare the result to a third array, they perform as accurately as when they 

compare the third array to a single array with the numerosity of the sum9.  Third, 

subtraction is less accurate than comparison9.  If children use nonsymbolic number 

representations to perform symbolic arithmetic, their performance should show the 

same signatures. 
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To test for the ratio signature, we compared children’s performance at each of the 

three ratios. Children’s accuracy decreased as the ratio of the sum of the addends to the 

comparison set approached 1 (for laboratory-tested children, F1,19 = 14.92, P = 2x10-5, 

Figure 2a; for school-tested children, F1,36 = 5.32, P = .027, Figure 2b).  The effect of 

ratio was the same for these symbolic problems as for problems presented non-

symbolically,8 and it did not depend on the differential use or effectiveness of strategies 

that serve as an alternatives to addition.  

To test for the other two signatures, we presented a new group of children from 

the same population as those in the previous laboratory experiments with symbolic 

subtraction and comparison tasks (Figure 1b and 1c).  Children solved subtraction 

problems (67.7% correct, t19 = 5.55, P = 7x10-6; Figure 2c) without basing their answers 

on exact number knowledge or on a range of alternative strategies and with a ratio limit 

on subtraction performance (Figure 2b).  Performance on the comparison problems 

(80.4% correct, t19 = 9.82, P = 1x10-10) did not differ from performance on the symbolic 

addition problems (F1,47 = 2.20, P = .145) but was higher than performance on the 

symbolic subtraction problems (F1,27 = 16.58, P = .0004). Nevertheless, a direct 

comparison of performance on the symbolic addition and subtraction problems revealed 

no significant advantage for addition (F1,46 = 1.36, P = .250).   

 We have shown that children with no formal arithmetic instruction perform 

symbolic addition and subtraction with limits that reveal three signatures of the non-

symbolic arithmetic system:  a ratio effect on accuracy, addition performance that is as 

accurate as direct comparison, and subtraction performance that is less accurate than 

comparison. These common signatures suggest that children recruit their nonsymbolic 

number knowledge when they confront new problems of approximate symbolic 

arithmetic.  Once children have learnt the verbal counting system and mapped number 

words onto nonsymbolic representations of number, they spontaneously use 
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nonsymbolic system processes to manipulate quantities presented symbolically.  

Recruitment of the nonsymbolic system therefore does not depend on instruction in 

arithmetic.  

Arithmetic instruction in most elementary school curricula focuses primarily or 

exclusively on exact operations on small numbers.  Most children take years to master 

the set of exact, single-digit addition and multiplication facts17, and mastery of these 

facts is vulnerable to fatigue or interference even in adults18.  For this reason, the 

teachers in our school-based study were sceptical about our experiments and surprised 

both by their students' success and by their enjoyment of the tasks.  Our findings suggest 

that the difficulty of learning and performing arithmetic stems from the demands of 

constructing and operating on representations of exact number:  representations beyond 

the limits of precision of nonsymbolic number representations19.  When the requirement 

for exact precision is removed, children are able to solve symbolic addition and 

subtraction problems even in the absence of relevant instruction.  A wide socio-

economic range of children, tested in varying settings, used nonsymbolic number 

representations to solve symbolic problems involving quantities that fell within the 

scope of those preexisting representations. Arithmetic instruction may be enriched by 

building on this competence.  

Methods summary 

In the first addition experiment, five-year-old children (n = 20) were given verbal 

problems with no visual accompaniment in which the comparison quantity differed 

from the sum by a 2:3 ratio. In the remaining addition experiments, children were 

presented with verbal problems accompanied by images of characters with sets labelled 

by Arabic numerals (Figure 1a).  The comparison numbers were varied to present 

problems at 3 ratios:  4:7, 4:6, and 4:5. Children in the second experiment (n = 20) were 
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drawn from a highly educated community and tested in the laboratory; those in the third 

experiment (n = 37) were drawn from a lower middle-class community and tested in 

school.  In the final experiment, children (n = 29) were given tests of symbolic 

subtraction and comparison, using verbal problems and images (Figures 1b and 1c). All 

types of problems used the same comparison quantities as the problems in past studies 

of nonsymbolic addition8.  The problems were designed either to prevent or to allow 

tests for guessing strategies.   

For each experiment, one-sample two-tailed t-tests compared performance to 

chance (50%) and one-way linear-trend analysis of variance tested for the effect of ratio 

on performance.  Performance on experiment 1 was compared to performance on a 

nonsymbolic addition task8 by a one-way (Experiment) between groups analysis of 

variance with age as covariate. Performance across experiments was compared by 2 

(Experiment) by 3 (Ratio) mixed-factor analyses of variance. Subtraction and 

comparison performance were compared by a 2 (Condition) by 3 (Ratio) repeated 

measures analysis of variance. 

A list of problems used in the experiments, a description of the tests of school 

achievement and their relation to performance of symbolic approximate arithmetic, and 

a description of all the tests for guessing strategies is given in the Supplementary 

Information at www.nature.com/nature).   

 

1. Baroody, A.J. & Dowker, A. The Development of Arithmetic Concepts and Skills: 

Constructing Adaptive Expertise (Erlbaum, Mahwah, NJ, 2003). 

2. Geary, D. From infancy to adulthood: the development of numerical abilities. Eur. 

Child Adoles. Psy. 9, 11-16 (2000).  



. 

3. Gallistel, C.R. & Gelman, R. Preverbal and verbal counting and computation. 

Cognition 44, 43-74 (1992). 

4.  Dehaene, S. The Number Sense (Oxford Univ. Press, Oxford, UK,1997). 

5. Lemer, C., Dehaene, S., Spelke, E. & Cohen, L. Approximate quantities and exact 

number words: dissociable systems. Neuropsychologia 41, 1942-1958 (2003). 

6. Hauser, M.D. & Spelke, E.S. Evolutionary and developmental foundations of human 

knowledge: A case study of mathematics. in The Cognitive Neurosciences (ed 

Gazzaniga, M.), 3rd vol,853-864 (MIT Press, Cambridge, MA, 2004). 

7. McCrink, K. & Wynn, K. Large number addition and subtraction by 9-month-old 

infants. Psychol. Sci. 15, 776-781 (2004). 

8. Barth, H., La Mont, K., Lipton, J. & Spelke, E.S. Abstract number and arithmetic in 

preschool children. Proc. Natl. Acad. Sci. USA 102, 14116-14121 (2005). 

9. Barth, H., et al. Non-symbolic arithmetic in adults and young children. Cognition 98, 

199-222 (2006). 

10. Pica, P., Lemer, C., Izard, V. & Dehaene, S. Exact and approximate arithmetic in an 

Amazonian indigene group. Science 306, 499-503 (2004). 

11. Zur, O. & Gelman, R. (2004). Young children can add and subtract by predicting 

and checking. Early Child. Res. Q. 19, 121-137 (2004). 

12. Griffin, S. & Case, R. Evaluating the breadth and depth of training effects when 

central conceptual structures are taught. Monogr. Soc. Res. Child.61, 83-102 (1996).  

13. Lipton. J.S. & Spelke, E.S. Preschool children’s mapping of number words to 

nonsymbolic numerosities. Child Dev. 76, 978-988 (2005). 

14. Le Corre, M., Van de Walle, G., Brannon, E.M. & Carey, S. Re-visiting the 

competence/performance debate in the acquisition of the counting principles. Cognitive 

Psychol. 52, 130-169 (2006). 



. 

15. Temple, E. & Posner, M.I. Brain mechanisms of quantity are similar in 5-year-old 

children and adults. Proc. Natl. Acad. Sci. USA 95, 7836-7841 (1998). 

16. van Oeffelen, M.P. & Vos, P.G. A probabilistic model for the discrimination of 

visual number. Percept. Psychophys. 32, 163-170 (1982). 

17. Ashcraft, M.H. & Fierman, B.A. Mental addition in 3rd, 4th, and 6th graders. J. Exp. 

Child Psychol. 33, 216-234 (1982). 

18. LeFervre, J.-A., Smith-Chant, B.L., Hiscock, K., Daley, K.E. & Morris, J. Young 

adults’ strategic choice in simple arithmetic: Implications for the development of 

mathematical representations. in The Development of Arithmetic Concepts and Skills: 

Constructing Adaptive Expertise (eds. Baroody, A.J. & Dowker, A.) 203-228 (Erlbaum, 

Mahwah, NJ, 2003). 

19. Feigenson, L., Dehaene, S. & Spelke, E.S. Core systems of number. Trends Cogn. 

Sci. 8, 307 (2004). 

Supplementary Information is linked to the online version of the paper at www.nature.com/nature. 

Acknowledgements We thank Curren Katz and Raphael Lizcano for help with data collection. This work 

was supported by a ROLE grant from the National Science Foundation (to E.S.). 

Author Information Reprints and permissions information is available at 

npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests. 

Correspondence and requests for materials should be addressed to C.K.G. 

(camilla.gilmore@nottingham.ac.uk) or E.S.S. (spelke@wjh.harvard.edu).  



. 

Figure 1. Example problems of symbolic, approximate arithmetic testing (a) 

addition, (b) subtraction, and (c) comparison.  

Figure 2. Five-year-old children’s performance on approximate addition, 

subtraction, and comparison problems. (a) Children’s performance of addition 

problems in which the sum differed from the comparison number at three ratios. 

Solid bars indicate performance in the present experiment with numbers 

presented as words and symbols (n = 20); dotted bars indicate performance in a 

previous study with the same numerical values presented nonsymbolically as 

dot arrays.8 (b) Children’s performance of the same symbolic addition problems, 

administered in a classroom setting (n = 37). (c) Children’s performance of 

equivalent symbolic subtraction and comparison problems (n = 29). Error bars 

give s.e.m. 
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Methods  

Verbal addition experiment. Twenty children (9 male, mean age 5 years 10 

months, range 5:5 to 6:6) were asked questions of the form “If you had twenty-four 

stickers and I gave you twenty-seven more, would you have more or less than thirty-five 

stickers?”  Eight questions involved large numbers (in the range 5 to 98) selected so that 

the sum was larger on half the trials and differed from the comparison number by a ratio 

of 2:3.  Two control questions (not analysed) involving small numbers and familiar 

sums (2 + 2 vs. 20; 10 + 10 vs. 5) were included to maintain motivation and assure 

children were on task. The children received no feedback but general encouragement 

throughout.   

Computer-based symbolic addition.  Twenty children (11 male, mean age 5:10, 

range 5:4 to 6:1) were given arithmetical problems presented both visually on a 

computer screen (see Figure 1a) and verbally by the experimenter.  Initially two 

characters appeared and were named on screen.  On one example trial, the experimenter 

stated “Sarah has fifteen candies” as a bag displaying the appropriate Arabic numeral 

appeared above the character on the left.   Next, a second bag displaying an Arabic 

numeral appeared above the same character and the experimenter stated “and she gets 

nineteen more”.  Finally, a different-coloured bag displaying an Arabic numeral 

appeared above the other character and the experimenter stated “John has fifty-one 

candies” and asked “Who has more?”.  Twenty-four problems presented large numbers 

in the range 5 to 58, selected such that the sum was greater than the comparison number 

on half the trials and differed from it by one of three ratios--4:7, 4:6, and 4:5--on 8 trials 

each. Three control problems (not analysed) involved small numbers and familiar sums. 

The session was split into three blocks and the characters and items (candies, toys, 

cookies) changed between blocks to maintain the children’s interest in the task. 

Children were encouraged to guess, were given no feedback, and received stickers after 
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each block of trials.  Following the completion of the task 12 children were asked two 

probe exact questions. They were shown again the stimuli for two questions which they 

had solved correctly and were asked “If Sarah has fifteen candies, and she gets nineteen 

more, how many does she have altogether?”. The sessions were videotaped to allow 

children’s response times to be measured.  

Computer-based addition in a school setting.  Thirty-seven children (15 male, 

mean age 5:11, range 5:5 to 6:5) were recruited from a public kindergarten in an area of 

mid- to low- socioeconomic status; 37.6% of the students in the school lived in families 

whose income level met the state’s qualifications for free or reduced-price lunch. 

Children were tested during school hours, in the kindergarten hallway. The procedure 

was otherwise the same as the computer-based addition in the laboratory.  

 Computer-based subtraction and comparison.  Twenty-nine children (9 male, 

mean age 5:11, range 5:4 to 6:4) completed first a subtraction task followed by a 

comparison task.  The tasks were the same as in the preceding addition experiments 

except as follows.  For the subtraction task, the experimenter said “Sarah has fifty-five 

candies” as the bag bearing an Arabic numeral appeared above the left-most character.  

Then a second bag then moved into view from behind the first and moved to the side as 

the experimenter said “and she gives twenty-one of the candies away”. Animations were 

used because pilot-testing revealed that children had difficulty understanding a 

subtraction transformation when the operands were presented statically. The children 

were given 4 small-number practice trials (not analysed) followed by 24 experimental 

trials, matched to the addition trials of the computer-based addition studies so that the 

comparison values were the same and the difference in the computer-based subtraction 

was equal to the sum in the computer-based addition. Because the quantities involved in 

a subtraction problem are necessarily larger than those of an equivalent addition 

problem with the same result, a subset of the addition and subtraction problems were 
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also matched for the numbers involved in the operation.  Half the addition and 

subtraction problems used smaller vs. larger numbers, and the small subtraction 

problems were matched with the large addition problems for the size of the initial 

quantity (e.g. addition 20 + 16; subtraction 20 – 8). Trials were split into blocks as in 

the previous studies. After the last trial, 20 children were asked two exact subtraction 

questions “If Sarah has A candies and she gives B of them away, how many does she 

have left?”.    

 For the comparison task, a red bag appeared above the first character and the 

children were told “Sarah has fifty-one candies”, then a blue jar appeared above the 

second character and the children were told “Paul has thirty cookies”, finally a red bag 

appeared above the third character and the children were told “John has thirty-four 

candies” and were asked “who has more candies, Sarah or John?”. An irrelevant 

numerical quantity was presented between the numbers to be compared in order to 

equalize the presentation of number words across tasks. The children were asked 4 

small-number practice trials (not analysed) followed by 12 experimental trials in which 

the two values to be compared matched the sums/differences and comparison numbers 

for 4 of the 8 problems at each ratio in the previous experiments.  These trials were split 

into two blocks. 
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