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Abstract 

Brownian dynamics computer simulations of aggregation in 2D colloidal suspensions 

are discussed. The simulations are based on the Langevin equations, pairwise 

interaction between colloidal particles and take into account Brownian, hydrodynamic 

and colloidal forces. The chosen mathematical model enables to predict the correct 

values of diffusion coefficient of freely moving particle, the mean value of kinetic 

energy for each particle in ensemble of interacting colloidal particles and residence 

times of colloidal particles inside the potential wells of different depths. The 

simulations allows monitoring formation and breakage of clusters in a suspension as 

well as time dependence of the mean cluster size. 
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Introduction 

Stability of colloidal suspension is determined by the balance of  repulsive and 

attractive forces acting between the colloidal particles [1,2]. Suspension remains 

kinetically stable if high enough potential barrier due to electrostatic or steric 

repulsion prevent coagulation in the deep primary potential well. The most interesting 

behaviour is however expected if the coagulation occurs in the relatively shallow 

potential well with depth comparable to the energy of thermal motion. In this case the 

structure of suspension in the simplest case of perikinetic flocculation is determined 

by dynamic equilibrium between aggregation due to attraction between particles and 

disaggregation due to their thermal motion [3,4]. The coagulation in the shallow 

potential well is reversible, and the clusters can be destroyed by an increase of 

temperature (an increase of the energy of thermal motion) or by a decrease of the salt 

concentration (a decrease of the depth of the secondary potential well), what is not the 

case for coagulation in the deep primary potential well. 

  Numerous experimental investigations have shown that the flocculation in 

the shallow potential well often results in formation a phase of stable clusters 

(clusters) of colloidal particles [5-13]. Direct observations by confocal microscope 

confirmed that clusters are at equilibrium with singlets and that their size remains 

stable during the long time [9-12]. The cluster size varies depending on interaction 

forces between particles and solid volume fraction of suspension. Usually clusters are 

observed at relatively small solid volume fractions. Increase of the solid volume 

fraction above certain threshold value can lead to formation of gel-like structure 

[9,10,12].  

It is noteworthy, that depending on the system studied, the mean number 

particles in cluster can vary in wide ranges and sometimes clusters can contain up to 

thousands particles [13]. It is not clear, whether such a large clusters, and even 

smaller, containing several tens of particles can appear as a result of reversible 

coagulation.  That is why there is a number of different approaches explaining the 

existence of stable clusters. In [14] the capillarity approximation is proposed, where 

the clusters are treated as uniform droplets. The driving force for the cluster growth in 

this approach is the decrease of the surface energy of the system whereas the 

stabilising factor is the Coulomb repulsion. Another approach is based on the 

calculation of ground state energy per particle depending on the number of particles in 

the cluster, which according to [15, 16] has a minimum at certain number of particles 
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in cluster. These approaches does not take into account the energy of particles thermal 

motion, but the only interaction energy. 

Often the aggregation in suspension is considered as a phase transition from 

fluid composed of singlets to liquid of clusters. Then the methods of statistical 

thermodynamic, taking into account the contribution of entropy to the free energy of 

system are used to find the phase coexistence region, where the singlets are in 

dynamic equilibrium with clusters [17-20].  

Computer simulations using Monte Carlo methods [21], population balance 

equations [22], Brownian dynamics methods [23,24] are also widely used in 

theoretical treatment of the problem. Nevertheless, despite of large amount 

publications in this field,  the mechanisms responsible for the formation of the phase 

of stable clusters as well as methods to control their appearance and properties are still 

under discussion.  

Below we present results of direct numerical simulation of aggregation in 

colloidal suspension performed using the Brownian Dynamic method. Note, the 

simulations have been performed for the two-dimensional case (monolayer of 

colloidal particles) and extending the results to the three-dimensional system requires 

additional discussion. The mathematical model used in the simulations is based on the 

first principles without any fitting parameters. To prevent the artificial pumping or 

dissipation energy in the considered system due to numerical effects, the mean kinetic 

energy of each particle was monitored through the simulation process. It is expected 

that simulation allows  understanding in more details the mechanisms governing the 

cluster formation due to reversible flocculation in the shallow potential well and to 

determine the system parameters most important for this process. 

 

Mathematical model 

The model system is composed of N identical spherical colloidal particles 

moving in two dimensions. The particles motion is governed by Langevin equations 

[25]:  
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where i,j=1…2N, ( )lpam ρρπ 5.0
3
4 3 +=  is the mass of the particle (including the 

added mass), V is the particle velocity, t is the time, a  is the radius of the particle, ρp  
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is the density of the particle material, ρl  is the density of the suspending liquid, ςij is 

the element of the hydrodynamic resistance matrix, fα̂ represents the Brownian 

forces, with fi being a random quantity, normally distributed, with  

0=if ,         (2) 

( ) ( ) ( )'2' tttftf ijji −= δδ ,      (3) 

F represents the colloidal forces.  

The hydrodynamic resistance coefficients, ijς , and ijα  detrmining the value of 

Brownian forces , are related according to the fluctuation-dissipation theorem [26]: 

∑=
l

ljilij kT
αας 1 ,       (4) 

where k is the Boltzmann constant, T is the absolute temperature.  

All considered forces are assumed to be pairwise additive. Particles rotation is 

neglected. As interactions at small distances are the most crucial for 

aggregation/disaggregation processes, the lubrication approximation was used for 

calculation of the hydrodynamic interactions. Therefore it was assumed that 

hydrodynamic interaction between two particles depends only on distance between 

them and their relative velocities:  

( )3113 VVF xH −−= ς ,       (5) 

( )4224 VVF yH −−= ς ,       (6) 

where FH13, FH24 are the hydrodynamic force components acting on the particle 1 due 

to its interaction with particle 2 in the particle pair local co-ordinate, where axis x is 

parallel to the line connecting the particle centres, y is in the tangential direction.  V1 

and V2  are x and y velocity components of particle 1, V3 and V4  are x and y velocity 

components of particle 2.  

At the small separation between the particles surfaces h≤0.1a the coefficients 

ςx and ςy are calculated according to the equations proposed in [27]: 

h
a

x

2

2
3πµς = ,    at h≤0.1a,    (7) 







=

h
aay lnπµς ,  at h≤0.1a.    (8) 

As the numerical calculation of a logarithmic function is time consuming, the 

following approximation of Eq. (9) is used in the simulations:  
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The hydrodynamic interactions at separations h>2.5a are neglected and the 

hydrodynamic force in this case is determined by the Stokes law: 

iHii aVF πµ6= ,        (9) 

where μ is the dynamic viscosity of the suspending liquid.   

The interaction forces for  0.1a≤h≤2.5a are fitted providing a smooth 

transition  between forces at h≤0.1a and 0 at h=2.5a. 

Taking into account Eqs. (5), (6) and (9) the matrix of hydrodynamic 

resistance for two interacting particles can be written as follows: 
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i.e. it contains the only 4 different elements xς , yς , xςς +  and yςς + . The matrix of 

Brownian coefficients has the same form as the matrix of hydrodynamic coefficients:  
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The coefficients αij are found by solving the set of Eqs (4) for elements of matrices 

(10) and (11): 
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The components of random forces fi obeying Eq. (2,3) were modelled in 

numerical simulations as [28, 29]: 

NDi R
dt

f 2
=  ,       (13) 
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where dt is the time step used in computer simulations, RND is a random number from 

a normal distribution with the mean value equal to zero and standard deviation equal 

to 1.  

The simplified expression has been adopted for the dependency of normal 

force per unit area between two parallel flat surfaces, Φ(h), to model the colloidal 

interaction between particles (Fig. 1a). However, the adopted expression represents 

the main features of the real force: the presence of both a repulsion and an attraction 

as well as the presence of a potential well. The separations between particles 

corresponding to the zeros of Φ(h), h1 and h2, the separation corresponding to the 

minimum of Φ(h), h0, and the depth of the potential well, Umin, have been selected as 

parameters to describe the colloidal interactions.  

The colloidal force acting along the centre line between particles was 

calculated according to the Derjaguin’s approximation [1, 2]:  

( ) ( )∫
∞

Φ=
h

dhhahF π ,      (14) 

Eq. (14) is valid if h2<<a, which is the case because a=1µm used below.  

The interaction energy (Fig. 1c) was calculated as: 

( ) ( )∫
∞

=
h

dhhFhU       (15) 

The governing equations (1) were solved by the finite difference Euler’s 

method taking into account the interaction of a particle with nearest neighbours. 

Periodic boundary conditions were imposed on the whole system to simulate the 

behaviour of an unbounded colloidal suspension. A random as well as uniform initial 

distribution of particles over the 2-D lattice was used. The initial particles velocities, 

Vi, were generated according to the Maxwell distribution.  

 

Results and discussions 

To validate the mathematical model and numerical scheme used, the value of  

diffusion coefficient of single particle, the mean value of kinetic energy of each 

particle in ensemble and mean residence time of particle in potential well were found 

from the results of numerical simulations and compared with corresponding 

theoretical values.  
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The diffusion coefficient of a single freely moving particle was calculated as 

[22]: 

( ) ( )
t

yyxx
D

4

2
0

2
0 −+−

= ,      (16) 

where x0 and y0 are the initial co-ordinates of the particle, x and y its co-ordinates at 

time t>>tp, 
ς
mtp =  is the velocity relaxation time, averaging is performed over the 

ensemble of particles. The value of diffusion coefficient obtained from simulation 

results was in the very good agreement with the theoretical value 

a
kTD
πµ60 = .        (17)   

The mean value of kinetic energy per particle remained in the interval 0.98-

1.2kT during all simulations performed.  

The residence time of particle in potential well was obtained in the following 

way. Two particles were placed initially at the distance corresponding to the 

minimum of the potential well and simulation of their relative motion was performed 

until the instant, when the distance between particles exceeded the range of colloidal 

interaction, h2. The mean value of residence time was obtained by averaging over the 

results of 20 independent simulations. This mean value was then compared with the 

mean time of escape of particle from corresponding potential well calculated on the 

base of Smoluchowski equation [30] as (see Appendix): 
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Comparison was performed for the values Umin=1, 3, 5 and 7 kT and have 

shown good agreement between the theory predictions and the simulations results 

(Table 1).  

 

Table 1  

The potential well depth, kT 1 3 5 7 
The mean residence time calculated 
according to Eq.(18), s 

0.044 0.12 0.50 2.7 

The mean residence time obtained 
by direct computer simulations, s 

0.024 0.11 0.46 2.4 

The mean doublet life time, s 0.36 0.65 4.0 13.9 
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 This value of the mean residence time of particle in potential well of course 

differs from the life time of doublet which could be observed in experiment, because 

particle can return back into the potential well several times until the separation 

becomes large enough to be detectable in experiment (Fig. 2). The last line in Table 1 

shows for comparison the mean doublet life time, which is calculated as 

corresponding to the separation between particles 0.2 µm. After that particle can be 

considered as free moving particle according to our simulation results. Such a choice 

of doublet life time is an arbitrary one, however, it shows that the doublet life time is 

about one order of magnitude larger, than the residence time of a particle in the 

potential well.   

For further verification of the model used let us consider the aggregation 

process in the deep enough potential well with Umin=10 kT. In this case the mean 

residence time determined according to Eq. (18) is about 38 s. The latter means that 

we should expect situation close to the irreversible coagulation, especially in 

concentrated enough suspension, where the probability of interparticles collision is 

high and taking into account, that each particle in cluster is usually bounded to more 

than one particle.  

Considered system is composed of 9 particles with radius 1 µm placed in box 

of 5x5 mesh providing the solid 2D fraction of about 0.27. To decrease the simulation 

time, the particles are placed close to each other, but still at the separations exceeding 

the range of colloidal forces. Only one particle is placed separately. The initial 

particles distribution is given in Fig. 3a. In Fig. 3 particles are shown in the box of 

7x7 mesh. Additional meshes are added for convenience of presentation. 

After the simulation started, some particles were separated due to action of 

Brownian forces: after 0.5 s of simulation there were two singlets, one doublet and 

one cluster with 5 particles. As colloidal interactions between particles in clusters are 

strong enough. Particles remained inside the clusters but they were moving inside 

clusters during the further evolution of the system changing the shape of the clusters. 

Further, the doublet aggregated with the bigger cluster building a large cluster with 7 

particles. However, 2 singlets still remained free (Fig. 3c).  

After 8 s one of the remaining singlets joined the cluster (Fig. 3d). Fig. 3d 

shows that last singlet was still in a free motion. Only after 18 s the last singlet joined 
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the big cluster (Fig. 3e). After that particles were moving inside the cluster changing 

its shape. It seems that rod-like structure, presented in Fig. 3f is the most stable cluster 

shape in the case under consideration, however the question about preferable shape of 

clusters requires, of course more comprehensive study.  

Further simulations were performed for an ensemble of 170 particles located 

in the simulation box of 20x20 mesh, solid 2D fraction around 0.31. The mesh size 

was chosen in such a way that separation between two particles situated in the centres 

of adjacent mesh boxes was larger than range of colloidal forces. Two initial 

configuration of particles were used in simulations: (i) particles randomly distributed 

over the simulation box (Fig. 4a), (ii) particles (in this case 169 instead of 170) 

uniformly distributed over the simulation box (Fig. 5a). Simulations were performed 

with h1=1.6·10-6 cm, h2=3.0·10-6 cm, h0=2.0·10-6 cm for the configuration (i), and 

with h1=1.6·10-6 cm, h2=1.0·10-5 cm, h0=2.0·10-6 cm for the configuration (ii). The 

mesh size was chosen slightly smaller for configuration (ii), to keep nearly the same 

solid 2D fraction for both cases. Simulations were performed for Umin=3, 6 and 20 kT, 

what corresponds to mean residence time of particle in the potential well (i) of 0.12, 

1.14 and 4.5·105 s and in potential well (ii) of 0.50, 3.95 and 1.03·106 s according to 

Eq. (18). The mean separation between particles in the both model suspensions was 

around l=1.6·10-4 cm. The mean diffusion coefficient of free particle according to Eq. 

(17) is about D=2.2·10-9 cm2/s. The latter allows calculating the mean time between 

particles collision τ=l2/4D, which is about 2.6 s. Note, hydrodynamic interaction as 

well as accounting for efficiency of collisions should result in an increase of this time. 

Therefore,  the time required for doublet formation is substantially larger than life 

time of doublets at Umin=3kT. Those times are of the same order of magnitude at 

Umin=6kT. However,  the time required for doublet formation is much smallet than 

doublet life time at Umin=20kT. Hence, it can be expected that a suspension with 

Umin=3kT at equilibrium will be composed by small amount of doublets at the 

equilibrium with singlets. The probability the formation of larger clusters in this 

suspension is small. In a suspension with Umin=6kT the formation of triplets and even 

larger clusters can be expected but again at the equilibrium with singlets. In 

suspension with Umin=20kT the singlets should be absent at the equilibrium, whereas 

formation of rather large clusters is expected. Suspension considered in the case (ii) is 
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expected to be less stable than suspension (i) because the residence time of particle in 

potential well is much larger for suspension (ii).  

At the initial random particles distribution (Fig. 4a) the local solid volume 

fraction varies over the simulation box. Inside the areas with higher particles 

concentration the particles will coagulated faster than in other areas. Note, the depth 

of the potential well is crucial for the size of clusters formed (see Fig. 4). At 

Umin=20kT  the large clusters are formed, the largest of them include 18 particles (Fig. 

4b). The clustering process occurs very quickly at the beginning of the process but 

then it slows down (Fig. 6, curve 1), because still remaining singlets are at large 

separations from the clusters (Fig. 4b). At Umin=6kT  the clusters are smaller (Fig. 4c) 

and the mean cluster size increases more slowly (Fig. 6. curve 2). At Umin=3kT  the 

clusters are mainly doublets and triplets (Fig. 4d), the mean cluster size even 

decreases with time (Fig. 6, curve3). The last is because the initially more intensive 

clustering occurred in the parts of the simulation box with larger local solid fraction.  

The same trends are observed for the uniform initial distribution of particles 

(Fig. 5, Fig. 7). In this case, however, aggregation begins after an induction period, as 

particles initial separations in this case are larger, than separation in regions with 

larger local solid fraction in the case of the random distribution. The dependencies of 

mean number of particles in cluster on time (Fig. 7) at Umin=6kT  and Umin=20kT 

almost coincide in the case of random initial distribution. The latter is because the 

time of simulations in the case of uniform initial distribution is essentially smaller as 

compared with the doublet lifetime estimated above.  

 

Conclusions 

The computer simulations based on the Langevin equation with colloidal 

interactions between particles and lubrication approximation for hydrodynamic 

interactions is used to perform the direct computer simulation of the processes of 

reversible aggregation of colloidal suspensions. Simulations allow predicting the 

correct value of diffusion coefficient of freely moving particle, the mean value of 

kinetic energy for each particle in ensemble of interacting colloidal particles and the 

residence times of colloidal particles inside the potential wells of different depths.  

The computer simulations performed using the proposed model enabled the 

monitoring of formation and breakage of clusters in a suspension caused by 

competing colloidal interactions and thermal particle motion. It was shown, that at 
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small depth of potential well (3 kT) the mean cluster size is less than 2, i.e. in this 

case small clusters coexist with singlets. An increase of the depth of the potential well  

results in the increase of the cluster size.  
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Appendix  

Let us consider one particle in the potential well. Then according to the 

Smoluchowski equation the flux of particles in the field of force F(x)=-dU/dx is [30]:   

   

dx
dwkTw

dx
dU

dx
dwDFwj

111111

11
ςςς

−−=−= ,    (A1)   

where j is the particles steady state flux, s-1, w(x) is the probability to find particle in 

the position x, cm-1, D is the particles diffusion coefficient, ς11 is the hydrodynamic 

resistance coefficient (see Eq (7) and (9)). 

Rewriting the latter equation results in   

kT
jw
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kTdx
dw ς

−=+
1 .      (A2) 

The solution of Eq. (A2) is tried in the following form: 

( ) 
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kT
UxAw exp  ,     (A3) 

where A(X) is a new unknown function. After substitution of expression (A3) into Eq. 

(A2) we obtain at steady state (j=const) 
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We are looking for a flux of a particle from the potential well in statistical sense, 

supposing that there is 1 particle in the potential well and no particles outside the well. 

The latter means that the following boundary conditions should be imposed 

http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/C528557/1�
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( ) 02 =hw ,        (A6) 
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Using the condition (A6) we find  
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Substituting Eq. (A9) into Eq. (A7) we obtain 
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U(x) is given by :  
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and  

( )( )1210 hhhhS −−=  .      (A14) 

See Figs. 1a and 1b for definitions of h0, h1, h2 and Umin . 
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Figure legends  

Fig. 1. Colloidal interaction between particles used in the computer simulations: a – 

the normal force per unit area between two parallel flat surfaces, b – energy of 

interaction between particles: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=3.0·10-6 cm, 1 – 

Umin=3 kT, 2 – Umin=20 kT.  

 

Fig. 2 Time dependence of distance between particles in doublet at Umin=5 kT.  

 

Fig. 3. Aggregation of colloidal particles in potential well with h1=1.6·10-6 cm, 

h0=2.0·10-6 cm, h2=3.0·10-6 cm,Umin=10 kT. Solid 2D fraction 0.27. 

 

Fig. 4. Time evolution of ensemble of particles with initial random distribution. 

Parameters of potential well: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=3.0·10-6 cm, a – 

initial distribution, b – Umin=20 kT, c – Umin=6 kT, d – Umin=3 kT. 

 

Fig. 5. Time evolution of ensemble of particles with initial uniform distribution. 

Parameters of potential well: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=1.0·10-5 cm, a – 

initial distribution, b – Umin=20 kT, c – Umin=6 kT, d – Umin=3 kT. 

 

Fig. 6. Time dependence of the mean number of particles in cluster for the random 

initial distribution: 1 – Umin=20 kT, 2 – Umin=6 kT, 3 – Umin=3 kT.   

 

Fig. 7. Time dependence of the mean number of particles in cluster for the uniform 

initial distribution: 1 – Umin=20 kT, 2 – Umin=6 kT, 3 – Umin=3 kT. 
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Fig. 1a 

 
 
Fig. 1. Colloidal interaction between particles used in the computer simulations:  

a – the normal force per unit area between two parallel flat surfaces,  

b – energy of interaction between particles: h1=1.6·10-6 cm, h0=2.0·10-6 cm, 

h2=3.0·10-6 cm, 1 – Umin=3 kT, 2 – Umin=20 kT. 
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Fig. 1. Colloidal interaction between particles used in the computer simulations:  

a – the normal force per unit area between two parallel flat surfaces,,  

b – energy of interaction between particles: h1=1.6·10-6 cm, h0=2.0·10-6 cm, 

h2=3.0·10-6 cm, 1 – Umin=3 kT, 2 – Umin=20 kT. 
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Fig. 2 Time dependence of distance between particles in doublet at Umin=5 kT. 
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Fig. 3a 

 

Fig. 3. Aggregation of colloidal particles in potential well with h1=1.6·10-6 cm, 

h0=2.0·10-6 cm, h2=3.0·10-6 cm, Umin=10 kT. Solid 2D fraction 0.27. Initial particle 

distribution. 
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Fig. 3b 
 
 

Fig. 3. Aggregation of colloidal particles in potential well with h1=1.6·10-6 cm, 

h0=2.0·10-6 cm, h2=3.0·10-6 cm, Umin=10 kT. Solid 2D fraction 0.27. particle 

distribution after 0.5 sec. 
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Fig. 3c 
 
 

Fig. 3. Aggregation of colloidal particles in potential well with h1=1.6·10-6 cm, 

h0=2.0·10-6 cm, h2=3.0·10-6 cm,Umin=10 kT. Solid 2D fraction 0.27. Particle 

distribution after 6 sec. 
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Fig. 3d 
 

Fig. 3. Aggregation of colloidal particles in potential well with h1=1.6·10-6 cm, 

h0=2.0·10-6 cm, h2=3.0·10-6 cm,Umin=10 kT. Solid 2D fraction 0.27. Particle 

distribution after 8 sec. 
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Fig. 3e 
 
Fig. 3. Aggregation of colloidal particles in potential well with h1=1.6·10-6 cm, 

h0=2.0·10-6 cm, h2=3.0·10-6 cm,Umin=10 kT. Solid 2D fraction 0.27. Particle 

distribution after 18 sec. 
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Fig. 3f 
 
 

Fig. 3. Aggregation of colloidal particles in potential well with h1=1.6·10-6 cm, 

h0=2.0·10-6 cm, h2=3.0·10-6 cm,Umin=10 kT. Solid 2D fraction 0.27. Particle 

distribution after 43 sec. 
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Fig. 4a 
 

Fig. 4. Time evolution of ensemble of particles with initial random distribution. 

Parameters of potential well: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=3.0·10-6 cm, a – 

initial distribution, b – Umin=20 kT, c – Umin=6 kT, d – Umin=3 kT. Initial particle 

distribution.  
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Fig. 4b 
 
Fig. 4. Time evolution of ensemble of particles with initial random distribution. 

Parameters of potential well: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=3.0·10-6 cm, a – 

initial distribution, b – Umin=20 kT, c – Umin=6 kT, d – Umin=3 kT. Particle distribution 

after 4 sec.  
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Fig. 4c 
 
Fig. 4. Time evolution of ensemble of particles with initial random distribution. 

Parameters of potential well: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=3.0·10-6 cm, a – 

initial distribution, b – Umin=20 kT, c – Umin=6 kT, d – Umin=3 kT. Particle distribution 

after 3.4 sec. 
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Fig. 4d 
 
Fig. 4. Time evolution of ensemble of particles with initial random distribution. 

Parameters of potential well: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=3.0·10-6 cm, a – 

initial distribution, b – Umin=20 kT, c – Umin=6 kT, d – Umin=3 kT. Particle distribution 

after 2.7 sec. 
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Fig. 5a 
 
Fig. 5. Time evolution of ensemble of particles with initial uniform distribution. 

Parameters of potential well: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=1.0·10-5 cm, a – 

initial distribution, b – Umin=20 kT, c – Umin=6 kT, d – Umin=3 kT. Initial particle 

distribution.  
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Fig. 5b 
 
 
Fig. 5. Time evolution of ensemble of particles with initial uniform distribution. 

Parameters of potential well: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=1.0·10-5 cm, a – 

initial distribution, b – Umin=20 kT, c – Umin=6 kT, d – Umin=3 kT. Particle distribution 

after 4 sec. 
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Fig. 5c 
 
 
Fig. 5. Time evolution of ensemble of particles with initial uniform distribution. 

Parameters of potential well: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=1.0·10-5 cm, a – 

initial distribution, b – Umin=20 kT, c – Umin=6 kT, d – Umin=3 kT. Particle distribution 

after 3.7 sec. 
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Fig. 5d 
 
 
Fig. 5. Time evolution of ensemble of particles with initial uniform distribution. 

Parameters of potential well: h1=1.6·10-6 cm, h0=2.0·10-6 cm, h2=1.0·10-5 cm, a – 

initial distribution, b – Umin=20 kT, c – Umin=6 kT, d – Umin=3 kT. Particle distribution 

after 4.3 sec. 
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Fig. 6 
 
 
Fig. 6. Time dependence of the mean number of particles in cluster for the random 

initial distribution: 1 – Umin=20 kT, 2 – Umin=6 kT, 3 – Umin=3 kT.   
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Fig. 7 
 
 
Fig. 7. Time dependence of the mean number of particles in cluster for the uniform 

initial distribution: 1 – Umin=20 kT, 2 – Umin=6 kT, 3 – Umin=3 kT.   

 
 
 
 
 
 
 


