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ABSTRACT 

 
This paper considers PD attitude control of magnetically actuated satellites where one axis of inertia is considerably 

lower than that of the other two. The classic ‘torque-projection’ method of implementing the control is unsuitable for 

this configuration as the nature of the torque projection controller places little significance on the low inertia axis. This 

paper proposes a modification to the PD approach by determining the dipole moments through minimisation of a 

performance index rather than projection onto the magnetic field orthogonal. This allows fairer consideration of the low 

inertia axis and leads to improved performance of the feedback control. This approach is taken further by introducing an 

element of feed-forward control to improve the disturbance rejection properties of the system. In a similar way the 

required feed-forward compensation is determined through minimisation of an appropriate performance index. 

Combination of the feed-forward and feedback control successfully regulates the satellite attitude when assessed using a 

high fidelity simulation model. Overall this paper presents a systematic approach to the design of an effective and easy 

to implement attitude control system for a satellite with an uneven inertia distribution. 

 

INTRODUCTION 

 

The area of spacecraft magnetic attitude control is one that has attracted much recent attention in the research literature. 

Use of magnetic dipoles to control the attitude of a spacecraft offers a lightweight, smooth and cost-effective method of 

control. Although this is the case, the torque generated through use of magnetic dipoles is constrained to lie in the plane 

orthogonal to the local magnetic field vector, with one axis being instantaneously under-actuated. If the satellite is on an 

inclined orbit, suitable variation of the magnetic field allows controllability in the long term, but presents a significant 

challenge from a control perspective. 

 

Within the research literature, authors investigate a number of approaches to the magnetic attitude problem. Perhaps the 

most popular method of control is linear quadratic regulation. By exploiting the pseudo-periodic nature of the Earth’s 

magnetic field several authors form an optimal control problem. This type of approach is proposed in [1] when 

considering lateral attitude control of a momentum biased satellite. This technique is extended to full 3 axis attitude 

regulation in [2] and [3]. 

 

Although many of these studies present good performance, the time-varying nature of the optimal control problem 

requires either online solution of the time-varying Riccati equation or the storage of a large number of periodic 

controller gains. Although possible for satellites with more advanced onboard hardware, magnetic attitude control is 

frequently used for small, low-cost satellites. For these cases onboard resources are very limited and the use of complex 

control laws is often not possible. 

 

For these reasons industrial applications often consider the use of simple PD schemes to regulate the satellite attitude. In 

[4] and [5] a PD controller is designed to calculate an ideal control torque based on the measured spacecraft pointing 

and angular rate. Due to the restrictions imposed by the magnetic field direction the ideal torque is projected onto the 

plane orthogonal to the Earth’s magnetic field for implementation. In [6] and [7] the PD approach is extended to allow 

for time-varying controller gains while also guaranteeing asymptotic stability of the closed-loop. 

 

The specific case of a satellite with a low inertia axis is rarely considered in the research literature. In [8] the authors 

note poor performance achievable using the PD approach in [1] and a modification to the commanded pitch torque is 

applied. This is however very much an ad-hoc approach to the problem and the issue of PD control of a satellite with an 

uneven inertia distribution is not fully tackled.  

 

This paper presents a systematic approach to the design of PD controllers for satellites with an uneven inertia 

distribution. By considering the weaknesses of the torque projection approach, the ideal control calculated through a 

standard PD control is implemented through minimisation of a weighted performance index rather than direct projection 

onto the plane orthogonal to the Earth’s magnetic field. This allows a more suitable treatment of the low inertia roll axis 

seen on the benchmark satellite. This PD controller is also combined with an element of feed-forward control to 

improve the disturbance rejection capabilities of the overall control law. Both feed-forward and feedback controller are 

designed and implemented using simple techniques to minimise the overall computational burden, making the strategy 

suitable for low-cost satellite applications. 
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SPACECRAFT ATTITUDE DYNAMICS 
 

Co-ordinate System 
 

Before introducing the spacecraft attitude dynamics an appropriate set of co-ordinate systems must be introduced. The 

attitude of an Earth pointing spacecraft is traditionally defined relative to a local-level reference frame. In this paper this 

local level reference frame is fixed at the centre of mass of the spacecraft with the z axis pointing towards the nadir, the 

y axis perpendicular to the orbital plane, and the x axis pointing approximately along the velocity vector as defined by 

the right hand rule. The spacecraft reference frame is also fixed at the centre of mass of the spacecraft, with the axes 

aligned with the principal inertia axes of the spacecraft. When the required Earth pointing attitude is achieved the 

spacecraft and local level reference frames are aligned. 

 

Linearized Attitude Dynamics 
 

The attitude dynamics of a satellite are fully described by a series of non-linear differential equations. Under certain 

assumptions these equations can be linearized with minimal loss of accuracy. If linearization is carried out about the 

Earth pointing attitude, assuming a circular orbit, small Euler angles and deviation of body rates from nominal values, 

the following model can be produced
[9]

. 
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ψθφ ,, are the roll, pitch and yaw angles of the spacecraft reference frame with respect to the local level reference 

frame, 

zyx ωωω ,, are the roll, pitch and yaw angular rates of the spacecraft reference frame about the local level reference 

frame, 

0ω is the orbital frequency, 

zyx JJJ ,, are the principal inertia values about roll, pitch and yaw axes respectively, 

T  is the control torque applied to the satellite expressed in the spacecraft reference frame, 
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Magnetic Torque Rods 
 

The use of magnetic torque rods to regulate the attitude of a satellite introduces a time-varying component to the 

dynamic equations. Magnetic dipole moments interact with the Earth’s magnetic field to create a control torque 

according to (2). Note that the cross product of these two vectors produces a torque perpendicular to the Earth’s 

magnetic field vector, with the axis parallel to the Earth’s magnetic field instantaneously under-actuated. 

 

 

 magBMT ×=  (2) 

 

where Bmag is the Earth’s magnetic field vector expressed in the spacecraft reference frame and M is the vector of 

magnetic dipole moments also expressed in the spacecraft reference frame. 
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The GOCE Satellite 
 

The benchmark used throughout this investigation is the Gravity Field and Steady State Ocean Circulation Explorer 

(GOCE) satellite. Set for launch in 2008 GOCE is part of the ESA living planet programme. Due to its low orbit altitude 

of just 250km, the GOCE satellite is subject to significant external disturbances and provides an excellent benchmark 

for the proposed control strategy. GOCE operates at an orbital inclination of 96° and has an inertia matrix 

( )26522690152diagJ = . For further information regarding GOCE the interested reader may consult [8]. 

 

PD ATTITUDE CONTROL 

 

Torque Projection PD Control 
 

A simple yet effective technique of implementing a magnetic control law is through the so called torque projection 

approach. Originally proposed in [1] a PD controller is used to calculate a required control torque through equation (3). 

 

 KxTideal −=  (3) 

 

where , 

[ ]T
zyxx ωωωψθφ= , 

K  is a feedback gain matrix. 

 

Due to the magnetic field constraints this torque cannot be implemented directly and is projected onto the plane 

orthogonal to the Earth’s magnetic field vector for implementation. The resulting torque and magnetic dipole vector are 

defined in (4) and (5) 
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where 3I  represents the 3x3 identity matrix. 

 

 
Fig. 1 – The torque projection approach 

 

 

Although usually considered as a geometric approximation, the torque projection controller is in fact an implementation 

of a simple optimization problem. Consider minimizing the following cost function 

 

Bmag 

Tideal 

Ttrue 
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 min ( ) ( )trueideal

T

trueideal TTTT −−  (6) 

 

subject to the constraint  

 

 0=⋅ magtrue BT  (7) 

 

The solution of (6) subject to the constraint in (7) provides the same torque as calculated by the torque projection 

control and effectively minimizes the Euclidean norm of the error between the ideal and true control torques. For many 

configurations this is a sensible approach to the problem and yields acceptable results. When considering attitude 

regulation of satellites with an uneven inertia distribution the success of the torque projection controller diminishes.  

 

Consider a simple numerical example. The GOCE satellite is controlled using a torque projection PD approach.  The 

ideal feedback gain in (3) is chosen through pole placement technique, with the nominal closed-loop poles placed with 

damping ratio of 0.7 and natural frequencies 053 ω. , 050 ω. , 0250 ω. . The resulting gain matrix is 

 

 

















−−−−−

−

−−−−

=

610680330884

0615002550

170009409720471

...

..

....

ee

e

ee

K  (8) 

 

Initial pointing angles of 1° are assumed about the roll and yaw axes, with angular rates of 0.001 deg/s. For the pitch 

axis a typical value of 0.01° pointing is assumed with 0.0001 deg/s angular rate. Applying the control law in (3)-(5), the 

commanded and implemented torques are summarized in Table 1. The first thing to note from Table 1 is that the 

commanded pitch torque is fully implemented by the torque projection controller. As the pitch axis is always 

controllable through one of the lateral dipole moments, control about this axis can always be implemented and 

demonstrates the torque projection control to be very suitable for regulation of the pitch axis. 

 

Turning attention to the roll and yaw axes it is clear that the commanded torque about each of these axes is not 

successfully implemented. This is not a surprising result, as the restrictions due to the use of magnetic control will 

obviously limit authority of the controller. The main concern comes when analyzing the numerical values of the 

commanded and implemented torques and the resulting angular accelerations imparted about the roll and yaw axes. 

 

A control torque of 36µNm is commanded about the yaw axis which, when normalizing with respect to the yaw 

inertia, gives a commanded angular acceleration of 
81031 −×. m/s

2
. Once the torque projection has been carried out the 

implemented torque is reduced to just 2 µNm, with corresponding angular acceleration of 
101057 −×. m/s

2
. For the roll 

axis a torque of 51.− µNm is commanded which, when normalizing with respect to the roll inertia, gives a commanded 

angular acceleration of 
81001 −×. m/s

2
. Note that this acceleration is similar in magnitude to that commanded about 

the yaw axis even though the commanded control torque is much smaller. Once the torque projection has been carried 

out the commanded torque is 8+ µNm. This corresponds to an angular acceleration of 
81025 −×. m/s2 in the opposite 

direction to that commanded. Although the controller is minimizing the overall torque error, no consideration is placed 

on the fact that torque errors in the roll axis induce much larger acceleration errors due to the lower satellite inertia. This 

numerical problem leads to poor performance about the low inertia axis and needs to be addressed when considering 

control of satellites with uneven inertia distribution. 

 

 

Table 1 – Comparison of Commanded and Implemented  

Torques for Torque Projection Approach 

 

 Commanded Torque 

µNm 

Implemented Torque 

µNm 

Roll axis -1.64 8.16 

Pitch axis -36.83 -36.83 

Yaw axis 36.30 2.36 
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Weighted PD Approach 
 

The example in the previous section shows that when minimizing the Euclidean norm of the torque error, the low inertia 

axis is given very low priority within this minimization process. The overall torque error may be minimized, however 

the effect of the error about the roll axis can be significant due to the lower inertia about this axis. In order to tackle this 

weakness a modification to the standard PD controller is proposed. 

 

Derivation of Weighted PD Controller 

 

Consider minimization of the following weighted performance index 

 

 min ( ) ( )trueideal

T

trueideal TTQTT −−
2
1  (9) 

 

subject to the constraint 

 

 0=⋅ magtrue BT  (10) 

 

where [ ]( )321 qqqdiagQ = . 

 

As the term ideal

T

ideal QTT
2
1  is a constant, the optimization problem in (9) and (10) can be simplified to the following 

form. 

 

 

 
true

T

truetrue

T

ideal QTTQTT
2
1+−  (11) 

 

subject to the constraint 

 

 0=⋅ magtrue BT  (12) 

 

 

As (11) and (12) are now in the form of a general quadratic programming problem subject to an equality constraint, it is 

possible to derive an explicit solution through the use of Lagrange multipliers. The necessary Lagrange conditions for 

this problem are 

 

 0=−+ idealmagtrue QTBQT λ  (13) 

 

 0=true

T

magTB  (14) 

where λ  is the Lagrange multiplier (see [10]). 

 

From (13) 

 

 idealmagtrue TBQT +−= − λ1
 (15) 

 

Substitute (15) into (14) 

 

 01 =+− −
ideal

T

magmag

T

mag TBBQB λ  (16) 

 

Solving for the Lagrange multiplier leads to 

 

 ( )
ideal

T

magmag

T

mag TBBQB
11 −−=λ  (17) 

 

Finally, substitution of (17) into (15) yields the final solution 
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 ( )
ideal

T

magmag

T

magmagidealtrue TBBQBBQTT
111 −−−−=   (18) 

 

For many optimization problems the matrix inverse in (18) makes the problem not numerically attractive, as the matrix 

( )
mag

T

mag BQB 1−
 is often ill-conditioned. For this specific optimization problem this issue is removed as the 

aforementioned matrix is a scalar value such that 
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As the Earth’s magnetic field vector will never be zero in all three directions ( ) 01 >−

mag

T

mag BQB  if 0321 >qqq ,, . 

Equation (18) can therefore be written in the more compact form 
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The equivalent dipole moment required to implement the torque is determined by (20), which can be calculated in the 

same way as the torque projection controller using (4). The tuning procedure itself can be simplified by considering the 

more specific case of a satellite with one inertia significantly lower than the other two. For the case of GOCE it is the 

weighting of the roll axis relative to the pitch and yaw axes that is of importance and the Q matrix is specified as 
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where 0>q  is the roll weighting factor. 

 

Numerical Example 

 

The benefits of adopting this approach can now be demonstrated by revisiting the numerical example in the previous 

section. The same magnetic field, state vector and ideal feedback gain are chosen, but the control signal is now 

implemented through (20). The roll weighting factor is chosen as 8=q   and the commanded and implemented torques 

are illustrated in Table 2. 

 

This control approach does not miraculously allow control of both axes, but does provide a more intelligent method of 

implementing the control signal. Consider once again the torque about the yaw and roll axes; the implemented torque 

about the yaw axis is now slightly degraded from the torque projection approach, but this degradation is relatively 

insignificant when considering the large inertia of this axis. The control input applied about the roll axis is now much 

more sensible. The commanded value of -1.64 µNm cannot be achieved due to the magnetic field constraints however, 

due to the increased weighting within the optimization process, the controller avoids applying a large acceleration in the 

opposite direction to that commanded. At this particular orbit location and state vector, implementation of the desired 

control signal is not possible regardless of how the torque is selected. Use of the weighted PD approach avoids inducing 

large unwanted accelerations about the low inertia axis and is done at relatively small penalty to the yaw axis.  

 

 

Table 2 – Comparison of weighted and torque projection PD control 

 
 Commanded Torque 

µNm 

Torque Projection 

µNm 

Weighted PD 

µNm 

Roll axis -1.64 8.16 -0.33 

Pitch axis -36.83 -36.83 -36.83 

Yaw axis 36.3 2.36 -0.09 
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The numerical example in Table 2 illustrates the motivation for the weighted PD approach. The true benefits of 

adopting a weighted PD controller are best demonstrated through a simulation study. The GOCE satellite is initialized 

at 1° pointing about each satellite axis and is considered under both torque projection PD control and the newly 

proposed weighted PD control. The ideal feedback gain is as defined in (8) and the roll weighting factor is chosen to be 

8. 

 

Fig. 2 – Comparison of weighted and torque projection PD controllers 

 

 

The results shown in Fig. 2 support the numerical example detailed in Table 2. When both the roll and yaw errors are 

large, the torque projection controller places more emphasis on removal of the yaw error. This is at significant detriment 

to the roll axis, which at worst reaches 9° pointing error from an initial value of just 1°. As the yaw error reduces, the 

controller is able to restore the roll attitude, but this is clearly unacceptable performance. When the newly proposed 

weighted PD controller is used, the performance about the two axes is more comparable. The yaw performance is 

degraded (as would be expected), but this is far outweighed by the significant improvement in performance about the 

roll axis. 

 

Effect of Roll Weighting Factor 

 

The introduction of the weighted PD controller provides an additional tuning parameter to the control engineer. 

Selection of an appropriate weighting value is dependent on several factors. 

 

� The ideal feedback gain: Selection of the ideal feedback gain determines the magnitude of the commanded 

control torques. As already discussed, it is the difference in the magnitude of the commanded torques that 

causes the numerical problems that bias the controller in favour of the higher inertia axes. The manner in 

which this feedback gain is chosen affects the control torques, and hence the weighting required to obtain 

acceptable performance about the low inertia axis. 

 

� The level of performance required about the low inertia axis: If the pointing accuracy about the low inertia 

axis is of low importance, a low q value may be suitable to place more emphasis on performance about the 

other axes. If more accurate pointing is required about the low inertia axis the q value may need to be much 

higher for optimal performance. 

 

� External disturbances:  The level of external disturbance is very much dependent on the satellite configuration 

and orbit height. As well as providing suitable nominal response the feedback control must provide sufficient 
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disturbance rejection. If too much weighting is placed on a given axis this will reduce the disturbance rejection 

capabilities of the other axes and can degrade performance of the overall system. 

 

The effect of varying the weighting is demonstrated in Fig. 3. The satellite is initially at pointing angles of 1° about each 

axis and is controlled using a weighted PD strategy with varying q value. 

 
Fig. 3 – Effect of varying roll waiting factor 

 

Selection of a low weighting factor 1=q  places more significance on the higher inertia axes within the optimisation. 

As already discussed this can lead to poor performance about the low inertia axis. Increasing the weighting factor 

8=q significantly improves performance about the low inertia axis at a cost of slight degradation to the yaw axis. 

Increasing the roll weighting further 50>q places further emphasis on the low inertia axis and degrades the 

performance about the yaw axis. 

 

The most important point to highlight here is that each response shown in Fig. 3 is achieved at the same ideal feedback 

gain. Once the ideal feedback gain has been selected, addition of the roll feedback weighting introduces a very intuitive 

tuning parameter that can be used to improve performance about the low inertia axis. 

 

 

FEEDFORWARD DISTURBANCE COMPENSATION 

 

For low Earth orbiting satellites, the disturbances due to the external environment can be very significant and often 

dominate the time response of the attitude dynamics. The feedback control proposed in the previous section can be 

supplemented with an element of feedforward compensation to attempt to reduce the effects of these external 

disturbances. Clearly the disturbances cannot be measured directly and must be estimated using a Kalman filter. As the 

GOCE satellite is also without rate gyros, the angular rate must also be estimated for use within the feedback controller. 

 

Kalman Filter Design 

 

In order to provide estimates of the external disturbances, a mathematical model of these disturbances is required. The 

external disturbances acting on the satellite are complex and can only be fully described by a high order Fourier 

decomposition. For the purpose of a state estimator this is obviously restrictive. Fortunately, analysis of the external 

environment shows that the primary disturbance torques occur at the frequencies 0,ω0 and 2ω0
[1]

. As a result it is these 

frequencies that should be considered when deriving a disturbance model. Investigations show that sufficient accuracy 

can even be achieved by just considering the disturbances to be constant with time. 
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The constant disturbance model can be defined in a discrete-time formulation as follows 

 

 ( ) ( ) ( )kvkdkd +=+1  (22) 

 

where ( )kd is the external disturbance torque and ( )kv  is white noise. 

 

The continuous time dynamics in (1) can be also discretized to provide the following discrete state space model. 

 

 ( ) ( ) ( ) ( )[ ]kdkuBkAxkx ++=+1  (23) 

 

These two models can now be augmented to provide the following model 
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An estimate of the augmented state can then be provided through (26) 

 

 ( ) ( ) ( ) ( ) ( ) ( )( )[ ]kuDkxCkyLkuBkxAkx eeeeeeee +−++=+ ˆˆˆ 1  (26) 

 

eL  is the Kalman filter gain matrix and is chosen to minimize the covariance of the estimation error in the usual way. 

( )ky is the vector of measured pointing angle and acceleration and is taken directly from star sensor and accelerometer 

data. 

 

Feed-Forward Compensator 
 

Ideally the feed-forward compensator will obtain an estimate of the external disturbance using (26) and then apply an 

equal and opposite control torque to remove the effect of this disturbance. Unfortunately due to the reduced 

controllability associated with magnetic actuation this is not possible and a strategy must be derived to reduce the 

effects of the disturbance as much as possible. As with the feedback control, the traditional approach would be to obtain 

an estimate of the disturbance and then project the ideal opposing torque onto the plane orthogonal to the magnetic field 

vector. In a similar manner to the weighted PD controller, this approach is modified to account for the reduced inertia 

about the roll axis. 

 

The ideal torque is computed from the state estimate as follows 

 

 [ ] eideal xIT
FF

ˆ
, 3630−=  (27) 

 

The true feedforward torque to be implemented, FFT , is then determined through minimization of the following 

performance index 

 

 ( ) ( )FFidealFF

T

FFideal TTQTT
FFFF

−−
2
1  (28) 

 

subject to the constraint 
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 0=⋅ FFmag TB  (29)  

 

Through an identical procedure to that carried out for the feedback control, the feedforward torque is determined 

through (30). 
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Unlike the feedback control, more analytical guidance can be given for the choice of FFQ . The effect of the external 

disturbance is to impart unwanted angular accelerations about each spacecraft axis. The resulting accelerations are 

related to the torque and inertia through ( )FFideal TTJa
FF

−= −1
. For the case of a low roll inertia, the FFQ  matrix 

can be chosen to minimize the norm of these angular accelerations through (31). 
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This approach to selection of the weighting matrix is not used for the feedback portion of the control due to the differing 

aims of the two control components. As the aim of the feedback control is to provide suitable closed-loop dynamics, 

minimisation of acceleration errors between the true and ideal case is not a meaningful design approach (minimising the 

acceleration error does not guarantee any particular expected closed-loop behaviour). For the feed-forward case, 

minimisation of accelerations is a sensible measure and hence the proposed method of selecting the FFQ  matrix. 

 

 

Once again the motivation for this weighted minimisation can be illustrated with a very simple example. Consider the 

satellite at the same orbit location as described in the previous example, subject to a disturbance of 
5101 −×  Nm about 

the pitch and yaw axes and 
6101 −×  Nm about the roll axis. 

 

Table 3 – Comparison of feed-forward strategies 

 

 Disturbance torque after feed-forward compensation (Nm) 

Strategy Uncompensated Torque Projection Weighted 

Roll axis  1.0e-6  -2.6e-6  -1e-8 

Pitch axis  1.0e-5  0  0 

Yaw axis  1.0e-5  9.0e-6  9.7e-6 

 

Table 3 illustrates the problems associated when the feed-forward compensation is not correctly designed. In attempting 

to minimise the disturbance torque about the yaw axis the torque-projection control increases the disturbance acting on 

the low inertia axis. This imparts large accelerations about the low inertia axis and can actually degrade the performance 

of the controller. The weighted feed-forward controller penalises the accelerations on each axis rather than the control 

torque, so ensures the low inertia axis is more appropriately dealt with. The disturbance about this axis is almost 

completely removed, while still removing the pitch disturbance and part of the yaw disturbance. 

 

The numerical example in Table 3 can be reinforced with a simple simulation study. The GOCE satellite is initially at 

1° pointing about each axis and is regulated using the weighted PD feedback control proposed in the previous section. 

The satellite is subject to a constant disturbance of 
5101 −× Nm about the pitch and yaw axes and 

6101 −× Nm about 

the roll axis. In order to improve the disturbance rejection properties the feedback control is augmented with a torque-

projection feed-forward controller and the newly proposed weighted feed-forward controller. The combined weighted 

feedback and feedforward controller can be written in the closed-form shown in (32) 

 

 
exKT ˆ−=  (32) 
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where 
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Fig. 4 now shows the response under the control law in (32). 

 
Fig. 4– Performance under varying feed-forward strategies 

 

With feedback only control the external disturbance causes a large steady state error about the roll axis, while 

performance about the yaw axis is much better due to its higher inertia. The addition of the torque-projection feed-

forward controller improves performance about the yaw axis however this is at the expense of the low inertia roll axis. 

Use of the weighted feed-forward control allows for slight improvement about the yaw axis but significantly improves 

the roll performance. The steady state error is removed and the nadir pointing attitude is regulated more successfully. 

When adopting torque projection feed-forward control, the (already well regulated) yaw axis is given high priority. The 

addition of the weighted feed-forward control penalises the accelerations due to the external disturbances and thus 

allows fairer consideration of the low inertia roll axis. 

 

SIMULATION 

 

Simulation Environment 
 

To fully validate the control approach, the GOCE satellite is simulated using a high fidelity simulation model. Although 

the linear model in (1) has been used for controller design, a full non-linear description of the satellite dynamics is 

adopted for numerical simulation. The Earth’s magnetic field is modelled using an 8
th

 order IGRF model to achieve 

suitably high accuracy. 

 

Due to its low Earth orbit GOCE is subject to aerodynamic drag from the upper atmosphere. This causes a perturbing 

torque within the attitude dynamics as the drag line is offset from the spacecraft centre of mass. This also leads to the 

need for an ion thruster assembly (ITA) to counteract this drag force and maintain orbital speed. This in turn further 

disturbs the attitude dynamics. Ideal measurements of acceleration and pointing angle are corrupted with sensor noise, 

while the lack of rate gyros is represented and any rate information used within the control law is obtained from the 

Kalman filter in (26) 
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Simulation Results 
 

The GOCE satellite is simulated assuming the full disturbance and dynamics model described in the previous section. 

The satellite is initialised at 1° pointing about each axis at angular rate of 0.001 deg/s. To achieve best performance the 

roll weighting is chosen as 8=q  and the ideal feedback gain matrix is chosen as 
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Figures 5-7 show the pointing angle, magnetic dipole and Kalman filter estimate time histories. 

 
 

Fig. 5 – Controller performance under full disturbance model 
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Fig. 6 – Magnetic dipole moments 

 

 
Fig. 7 – Kalman filter estimates of external disturbances 

 

The results show the proposed strategy can effectively regulate the attitude of the GOCE satellite. Even under 

significant external disturbance, the attitude is regulated within 5° of the nadir. In addition Fig. 6 shows this is achieved 

with relatively small dipole moments. Fig. 7 also highlights the effectiveness of the simple Kalman filter design, with 

quite adequate results produced even with such a simple disturbance model. In the context of maintaining controller 

simplicity this is an interesting finding.  
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CONCLUSIONS 
 

The use of PD control for the magnetic attitude control problem provides a simple and effective method of control. The 

classical torque projection approach is successful when applied to satellites with evenly distributed inertia, but the 

approach breaks down if one axis has an inertia significantly lower than that of the other two. By considering the 

torque-projection controller as a simple optimisation problem, an extension to this traditional control is proposed that 

considers minimisation of a weighted performance index to determine the true control torque to apply. This approach is 

taken further by adding an element of feedforward control to reduce the effect of external disturbances. The 

feedforward control is based on minimising the accelerations produced by the disturbance rather than the magnitude of 

the remaining torque. The proposed control law has been validated using a high fidelity simulation model. Even under 

significant external disturbance the proposed controller regulates the satellites attitude within 5° of the required value. 

This is done with a control approach that is very easy to implement, with even the state estimator providing suitable 

accuracy at minimal complexity. 
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