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ABSTRACT
The present paper describes the results of the investigation of low and medium
frequency vehicle interior noise carried out using simplified structural-acoustic
models. Analytical, finite element (FE) and experimental studies are presented
and compared. In particular, the analytical approach is based on the formula
representing the interior acoustic pressure in terms of structural and acoustic
normal modes. This procedure does not take into account the effect of the
enclosed air on structural vibrations. The FE analysis considers structural
vibration modes, interior acoustic modes, full structural-acoustic interaction and
the resulting structure-borne noise. The above-mentioned analytical and
numerical results are compared with each other, and both of them are compared
with the experimental results obtained for the simplified reduced-scale vehicle
model “QUASICAR” developed in Loughborough University. The comparisons
demonstrate some specific features of the analytical and numerical approaches
and outline the acceptable limits of simplification in modelling vehicle interior
noise. Although this study is concerned with structure-borne vehicle interior
noise, its results and conclusions could be of interest for a wider range of
engineering problems, such as building acoustics and dynamics of thin shell
structures.

1. INTRODUCTION
Interior noise is an important issue for many industries, including the automotive
and aeronautical ones. To reduce time and effort required for analyzing and
mitigating vehicle interior noise it is preferable to undertake most of the associated
work at the design stage. Thus, virtual simulations and predictive methods become
increasingly attractive in studying interior noise. They form an integral part of the
design and development process as mitigation of intrusive noise leads directly to the
enhancement of consumers’ perception of product quality [1]. In particular, for the
automotive industry, the tuning of vehicles’ acoustical properties to convey distinct
characteristics of the brand, especially in the low-frequency range, should be
considered as an additional motivation for analysing interior noise at this stage [2].

The mechanisms and sources of vehicle interior noise can be different. In the low
and medium frequency range, the most important contribution comes from
structure-borne noise. If a structure of a vehicle vibrates, then its vibration radiates
sound into the interior as well as into the exterior. In turn, the vibrations of vehicle
structures can be caused by different sources, including engine and transmission
systems, tyre/road interaction, and aerodynamic forces, the latter being important at
high vehicle speeds and at higher frequencies [3]. Obviously, the generated interior
noise is dependent not only on the above-mentioned sources of structural vibrations,
but also on the vibration characteristics of car body structures and on the acoustic
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properties of the passenger compartments.
The coupling between structural vibrations and air pressure fluctuations in the

interior is a distinctive attribute of interior noise. Because of the energy exchange
between the acoustic and structural sub-systems of a fully coupled model, the
dynamic behaviour of each of these sub-systems is influenced by the behaviour of
the other [4-7]. In other words, the interaction or coupling between air and body
structure alters their dynamic characteristics, and thus determines the complexity of
interior noise analysis in some particular cases. However, in many practical
situations the effect of the enclosed air on structural vibrations can be disregarded
and the structural-acoustic analysis can be simplified very substantially [8-9].

The analysis of structure-borne interior noise can be carried out using different
approaches. For a limited number of structures with simple geometry, one can use
analytical solutions to structural-acoustic problems. This provides a great
opportunity for an explicit physical interpretation and understanding of the cases
considered. The most popular analytical model considered so far represents a rigid
rectangular box with one flexible wall. Lyon was the first to have used this model
for calculating noise reduction in low- and high-frequency ranges using energy
methods [10]. Later, Pretlove has obtained the exact solution for acoustic velocity
potential in terms of infinite Fourier series for free [8] and forced [9] vibrations of
the flexible wall. For estimating the coupling between the acoustic modes of an
enclosure and the vibratory motion of the surrounding structure a dimensionless
quantity called joint acceptance function was established [11,12].

In contrast to the above-mentioned case of a rigid box structure with one flexible
wall, the analysis of irregular cavities, such as real car compartments, still
challenges researchers and requires specific investigations. Moreover, there are in
general around 700 structural and 25 acoustic modes in the range 0 - 300 Hz for a
typical passenger car structure and compartment respectively [13]. Thus, a full
treatment of the problem analytically is an extremely cumbersome if not impossible
task.

The inability of obtaining reliable analytical solutions for complex vehicle
structures leads to alternative either experimental or numerical approaches in the
treatment of the problem. The conventional numerical approach for predicting
interior noise across the entire frequency range relies upon the synthesis of different
modelling techniques. In the low frequency range, 10-250 Hz, the most common
techniques are the Finite Element Method (FEM) and the Boundary Element
Method (BEM), as the upper limit reported in literature is about 500 Hz [14]. In the
high frequency range, above 500 Hz, Statistical Energy Analysis (SEA) is used
widely. The application of FEM to vehicle interior noise problems can be traced
back to the 1970’s when Petyt at al. [15] proposed a twenty-node iso-parametric
finite element for analysing irregular shaped cavities. The limited computational
resources at that time induced the use of a two-dimensional formulation of FEM
also called simplified FEM [16].

After making it possible to simulate the acoustic domain of vehicle
compartments,attention has turned to a complete strategy for interior noise
reduction at a design stage. The first work of this kind carried out by Nefske et al.
[17] presented a model for computing acoustic modes and interior noise levels using
FEM, when structural characteristics and exiting forces were known. At a later
stage, Sung and Nefske [18] predicted vehicle interior noise and identified noise
sources for the coupled system ‘vehicle structure - acoustic interior’. The interior
acoustic response was determined using a modal solution procedure. Moreover, the
analysis was carried out to identify structural and acoustic modal participation as
well as the boundary panel participation in producing the response. These
investigations have become a milestone in vehicle interior noise studies.

The principal drawback associated with finite element modeling of vehicle
interior noise is the necessary compromise between finite element size and
accuracy. The existing full vehicle vibro-acoustic models have more than I million
degrees of freedom [19, 20] and consequentially they take a long time to be
developed and solved. In this regard, BEM can be considered as a useful alternative
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to FEM because it reduces the dimensions of s problem via the boundary surface
integral representation. Thus, the final system of equations is much smaller than an
equivalent FEM model. However, with BEM the coefficient matrix is fully
populated and is non-symmetric [21], and this can result in BEM being slower.
Therefore, the numerical advantage of one of these methods over the other is quite
arguable.

In the high frequency range, SEA is an established technique for interior noise
analysis. The technique was developed in the 1960’s by Lyon [22] for the prediction
of structure-borne noise and vibration of complex space flight structures. SEA
involves the division of a vehicle into various sub-systems from which energy can
be lost through internal dissipation (internal loss factor) and through coupling with
other sub-systems in the assembly (coupling loss factor). SEA is a mature technique
and is applicable to investigating vehicle interior noise abatement during the design
stage. However, a complete structural-acoustic trimmed SEA vehicle model can
include 400-500 sub-systems and full size models can prove to be difficult to
describe [23].

Although the above-mentioned numerical methods have achieved satisfactory
levels of accuracy in predicting interior structural-acoustic response, they are not
very helpful in understanding the physical mechanisms behind the problem that
could assist in predicting the behaviour of similar but slightly modified structures.
Therefore, there remains the scope for further development of the theory to assist in
a better understanding the physics of structure-borne interior noise, especially its
dependence on different parameters of vehicle structures and interior cavities. In this
case, a simplification of structural and acoustic models could be an attractive option
to study the mechanisms of structure-borne interior noise and to assist in better
understanding the results of vibro-acoustic analysis.

Note that the use of simplified and reduced scale models for theoretical and
experimental investigations of structure-borne interior noise has been described in
several papers. As was mentioned above, such models are useful for understanding
the physics of the problem and for simulation of the main features of a structural-
acoustic system responsible for noise generation. In particular, purely acoustic
experiments have been conducted on scale replicas of vehicle interiors with walls
described by rigid boundary conditions [3, 24-27]. In the examples described by Jha
[3] and Lee et. al. [24], the model was a 1:2 scale replica of the passenger
compartment of a saloon car, whereas Nakanishi [25] studied the acoustic properties
of a 1:4.5 scale cavity that simulated a truck  cab. Schroeder [26] and Gorman et. al.
[27] simplified their models to equivalent rectangular cavities having the same
volume as the actual enclosure in order to calculate the acoustic response.
Combined structural-acoustic analysis of 1:2 scale simplified models resembling
real vehicles have been carried out by Kim et. al. [7], Song et. al. [6], and Park et.
al. [28]. Most recently, the well known structural-acoustic model - rectangular
cavity with one vibrating wall was investigated again to demonstrate a new hybrid
method for simulating the so-called ‘boom noise’ and identifying the parameters
that affect its generation [29].

In addition to the above, some types of simplified models could be useful for
studying vehicle interior noise analytically. One of the present authors (Krylov) has
developed such an approach in respect of rather general simplified vehicle structures
[30]. The results of this approach can be expressed in terms of analytical formulae
for sound pressure in the model interior as a function of road irregularity, vehicle
speed, properties of suspension, and the normal modes of structural and acoustic
subsystems. Later on, the above-mentioned analytical results have been compared
with the experimental ones [31] obtained for a reduced-scale physical model called
QUASICAR (QUArter Scale Interior Cavity Acoustic Rig), see Fig. 1.

The present study is the continuation of the above-mentioned papers [30, 31]. It
aims to compare the results of the investigations of structure-borne interior noise in
the QUASICAR model carried out by three different approaches: analytical,
numerical and experimental. The main attention is paid to presenting the details of
the finite element structural-acoustic analysis in the QUASICAR model as well as
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in its modification and to comparison of the obtained results with the analytical and
experimental ones. Moreover, the study endeavours to find out to what extent
physical models can be simplified, so that one could use analytical formula for
vehicle interior noise. Although this study is concerned with structure-borne vehicle
interior noise, its results and conclusions could be of interest for a wider range of
engineering problems, such as building acoustics and dynamics of thin shell
structures.

Figure 1: 3D model of the QUASICAR test rig.

2. THEORETICAL CONSIDERATIONS
It has been shown in the paper [30] that the acoustic pressure of structure-borne
sound in the interior can be expressed in the form: (see list of terms at the end of the
text)

(1)

where

(2)

and

(3)

In what follows we shall apply Eqns. (1)-(3) to the simplified reduced-scale model
QUASICAR mentioned in the Introduction (see Figs. 1 and 2).
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Figure 2: QUASICAR geometry.

To simplify the analysis of the acoustic modes of the QUASICAR we
approximate its interior acoustic cavity as the equivalent rectangular box having the
same volume V. Thus, the dimensions of the equivalent rectangular box are Lx eq -
along the X-axis, whereas Ly and Lz are the same.

As it has been mentioned in one of our previous papers [32], the structural modes
of the non-circular cylindrical shell representing the QUASICAR flexible structure
are symmetric and anti-symmetric ones, with almost equal resonant frequencies.
This means that, if an external force is applied to top or bottom part of the shell, both
symmetric and anti-symmetric modes are excited with equal amplitudes. Thus, the
combination of these modes results in fact that only the part to which the force is
applied is vibrating, whereas the opposite side has zero amplitude. This can be
interpreted as if only one side of the shell is excited - the one to which the external
force is applied. Also, it has been taken into account that vibrations of
QUASICAR’s curved parts are negligibly small in the frequency range considered
due to the shell’s mode shapes, as it will be shown in more detail in section 5.1.
Therefore, one can approximate the contribution of the whole non-circular shell by
the contribution of its single quasi-flat part to which the external force is applied.

The parameters used in Eqs. (1)-(3) are as follows: P=10 N is the amplitude of a
harmonic force applied to the flexible wall, c = 343m/s and �a = 1.29kg/m3 are the
sound velocity and mass density of air, hs = 0.0012m and �s = 7950 kg/m3 are the
thickness and mass density of the non-circular cylindrical shell, Lx eq = 0.506m, Ly
= 0.3m, and Lz = 0.25m are the geometrical dimensions of the equivalent
QUASICAR interior, Lx1 = 0.425 and LX0 = 0.1m, are the boundary coordinates in
X direction of the vibrating quasi-flat flexible wall, �m and �p are the modal shapes
of acoustic and structural modes respectively, �m = �m /100 and �p = �p3/100 are
their attenuation decrements, and am are the coefficients depending on the acoustic
mode type and on the shape of the enclosure.

Note that Eqn. (1) can be considered as consisting of three important terms which
contribute most to the overall acoustic pressure. The first one is the function before
the summation, which is inversely proportional to the square of driving frequency
�. This function decreases with increasing the frequency and outlines the overall
behaviour of the acoustic response. However, if disturbing forces are dependent on
the second or even on the third power of frequency, such as aerodynamic forces,
then the overall trend of pressure acoustic response might get higher when the
frequency is increased. In case of harmonic external force, as in Eqn. (1), the plate
thickness, hs and the enclosed volume, V can influence the speed of the function’s
diminution. Obviously, the bigger the cavities and the thicker walls, the faster is
function’s diminution.

The non-dimensional function Fmp (�) defined by Eqn. (2) can be called the
‘frequency overlap function’ of the acoustical and structural modes characterised by
overall indexes m and p [30]. It can be considered as a time filtration function - only
those natural structural �p and acoustic �m frequencies which coincide with the
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driving frequency � contribute most to the acoustic pressure response. This can be
seen clearly in Fig. 3 showing the function Fmp(�) calculated for 50 structural and
acoustic natural frequencies in the interval from 1 to 50 rad/s, and for a driving
frequency � equal to 35 rad/s. The maximum peak of the function takes place when
the structural, acoustic and driving frequencies coincide at 35 rad/s. In this case
structural and acoustic parts act as amplifiers, thus increasing the disturbing force.
In vehicles this phenomenon is known as the ‘boom noise effect’. 

Figure 3: Magnitude of the function Fmp.

The non-dimensional factor Smp defined by Eqn. (3) represents the corresponding
coefficients of spatial coupling between acoustic and structural modes. Therefore, it
can be called the ‘coefficient of structural-acoustic coupling’. It can be considered
as a space filtration function - the higher values of the coupling coefficients are
associated with the spatial similarity between structural and acoustic modal shapes.
Note that these coefficients are not directly related either to the driving frequency or
to the acoustic or structural resonant frequencies. They depend only on geometrical
coincidence between acoustic and structural modal shapes on the walls. Figure 4
shows the magnitudes of the coupling coefficients between the first 10 acoustic and
30 structural modes. Some of the coefficients, for example: Sl,3, S4,3, S5,3, S6,3, Sl0,3,
S10,6 or S4,6, show larger values compared to the others. This means that the first,
fourth, fifth, sixth and tenth acoustic modes are geometrically well coupled to the
third and sixth structural modes. Overall, however, because of the double filtration,
over time and space described by the products Fmp(�)Smp, only a few of the
structural and acoustic modes interact effectively and give noticeable contributions
to the acoustic pressure response.

Before carrying out the above-mentioned analytical calculations for the
QUASICAR model, which will be discussed in section 5.5, it is instructive for
validating purposes to compare the analytical and numerical procedures used herein
for the simplest structural acoustic model - a rigid rectangular box with one flexible
wall (see Fig. 5) having the following dimensions: Lx = 1.0 m, Ly = 0.6 m and Lz =
0.5 m. Two pressure frequency response functions (FRF’s) have been calculated for
such a model. The first FRF has been calculated analytically using Eqn. (1), where
integration over x in Eqn. (3) took place from 0 to Lx. The second FRF has been
calculated using finite element simulation of the same model. An external force was
applied at a point on the flexible panel with coordinates xp = 0.3m and yp = 0.2m
and a receiver point for acoustic pressure has been chosen randomly, with the
coordinates xr = 0.7 m, Yr = 0.4m and Zr = 0.4m.

Simplified Modelling of Vehicle Interior Noise:
Comparison of Analytical, Numerical and Experimental Approaches

JOURNAL OF LOW FREQUENCY NOISE, VIBRATION AND ACTIVE CONTROL74

LF 25-2  18/08/06  3:46 pm  Page 74



Figure 4: Magnitude of the coupling coefficients Smp.

One can see that the analytical and numerical curves shown in Fig. 5 agree very
well with each other. The coincidence of these two curves thus validates the
analytical and numerical approaches used in the present study. Note that Eqn. (1)
does not take into account the effect of the enclosed air on vibrations of the
surrounding structure, whereas finite element simulations automatically take into
account the full coupling between the air and the structure. The observed good
agreement of these results shows that the air loading can be neglected in the case
considered because the values of air’s and steel’s stiffness in this particular case are
considerably dissimilar, as it was pointed out in [8]. A noticeable disagreement can
be observed in the area of the first resonant peak, due to a strong coupling of the
structural modes and the first (zero-order) acoustic mode which has been neglected
in the analytical formula, as was mentioned above.

Figure 5: Comparison of the analytical (solid curve) and numerical (dash-dotted curve) results for the
frequency response function (FRF) of the rigid rectangular box with one flexible wall.

3. NUMERICAL SIMULATIONS
The numerical part of this investigation includes an independent finite element (FE)
analysis of the structural and acoustic parts of the simplified model, and a coupled
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structural-acoustic analysis with and without external disturbing force, respectively.
Moreover, additional calculations have been carried out to consider a slightly
modified vehicle model characterised by a different thickness of the bottom plate.
As in the previous section, the basic model represents a non-circular cylindrical
shell made of a single curved steel plate of 1.2 mm thickness, as shown in Fig. 6,
whereas in the modified model the bottom part (plate A) has a thickness of 6 mm.
The above-mentioned QUASICAR’s shell was attached to massive wooden
sidewalls (see Fig. 1) supplied with beads implementing simply supported boundary
conditions [31].

Figure 6: Structural finite element model.

FE analysis of the independent structural part has been performed for the first 30
natural frequencies of the model under consideration. For validation purposes, FE
calculations have been carried out also for a simply supported rectangular plate with
the same dimensions like plate A (see Fig. 6). The FE model of the curved plate had
in total 68101 nodes and 67500 isomesh CQUAD4 surface elements, and the FE
model of the rectangular plate consisted of 12221 nodes and 12000 isomesh
CQUAD4 surface elements.

Similarly to the structural part, FE analysis of the independent acoustic interior
has been performed for the first 30 normal modes. The acoustic cavity was modelled
by 1970 CHEXA acoustic elements (Fig. 7) and 2464 acoustic nodes, with pressure
as a degree of freedom. For the FE calculations the following physical parameters
of the air have been used: �=1.2 kgm-3 and c=343 ms-1, and the mesh size was
consistent with the wavelength �=c/fij,k =0.343 m at the highest frequency of
interest.

Figure 7: Acoustic finite element model.

In the case of coupling between acoustic and structural part being taken into
account, the discretisation of the acoustic field in finite elements leads to the
following equations for sound pressure [17]:
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(4)

Here {p} is vector of the m nodal sound pressure at each air point; [Ma] and [Ka]
are the mxm acoustic mass and stiffness matrices, and {I} is the vector of
normalised forces induced by structural displacements [kg2/(m s4)], i.e. time
derivatives of actual forces multiplied by �c. In the absence of external forces, the
structural equation of motion taking into account structural-acoustic interaction can
be written as follows:

(5)

where {v} is vector of the n structural displacements, [Ms] and [Ks] are the nxn
structural mass and stiffness matrices, {pb} is vector of sound pressures at the
boundary grid points, and [S] is a sparse nxm structural-acoustic coupling matrix
which elements are determined from the surface area Sij for the boundary grid point
corresponding to the structural displacement vi and the associated sound pressure at
that point pj. For the sake of simplicity, the governing equations of the acoustic and
structural parts, respectively, Eqs. (4) and (5), have been written with the damping
matrix being ignored.

If external disturbing forces are applied to the structure then the whole set of the
governing equations of the structural-acoustic coupling model can be written in the
following form:

(6)

where [Mas] = �2c2[S]T, [Ksa] = - [S], and {F} is the vector of disturbing dynamic
forces. Solving this equation, one can obtain the structural displacements and the
interior sound pressure due to a certain disturbance in a coupled structural-acoustic
model. For free vibration analysis the vector of disturbing forces should be
equalised to zero.

Using FEM, a frequency response analysis for sound pressure was performed in
the range from 0 to 500 Hz. On the bottom flat part of the simplified model -
QUASICAR and of the modified model Ml a harmonic force was applied. The
interior sound pressure at the driver’s ear location (acoustic node 400) and at the
place corresponding to the passenger’s (seating behind the driver) ear location
(acoustic node 409) were calculated. Only structural damping has been taken into
account in these computations. The acoustic medium was considered as ideal.

4. EXPERIMENTAL TESTING
All experimental measurements of structural vibrations, acoustic modes and
structure-borne interior noise have been carried out in the Noise and Vibration
Laboratory at the Department of Aeronautical and Automotive Engineering at
Loughborough University. The measurement data were recorded using a HP 3566
FFT analyzer. For measurements of structural frequency responses a Bruel&Kjaer
Type 4347 accelerometer was used, and for measurements of modal spatial patterns
a pair of PCB Piezotronics Type 352M24 ICP accelerometers was employed. The
excitation signal, a continuous white noise, was generated by the HP 3566 FFT
analyzer and transmitted to a Ling Dynamic Systems 200 series electromagnet
shaker. For acoustic frequency response measurements both a Bruel&Kjaer Type
2230 SPL meter and a Bruel&Kjaer 1/2 inch condenser microphone were used. And
for measurements of acoustic modal patterns a small 1/4 inch G.R.A.S. Type 40BD
Prepolarised Pressure Microphone was employed. The excitation signal, a
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continuous white noise generated by the HP 3566 FFT analyzer, was applied to a
miniature Visaton medium range loudspeaker.

5. RESULTS AND DISCUSSIONS
5.1 Independent structural analysis of QUASICAR
First of all, let us note that QUASICAR structure can be considered as a
combination of simple structures: plates A and shells B and C (see Fig. 6). Table I
shows the natural frequencies of the simply supported rectangular plate having the
same dimensions as the QUASICAR flat sides A (Columns 1, 2) and of the whole
QUASICAR model (Columns 4, 5). The corresponding spatial patterns are shown
in Fig. 8. Obviously, the two plates A of the QUASICAR have the lowest stiffness
and consequently the lowest fundamental frequency in the whole combination. The
analysis shows that the first resonant peak of the two plates A is at 67.035 Hz
(67.039 Hz- for anti-symmetric mode, see Fig. 9), the half of a circular shell B
906.04 Hz, and the two quarters of a circular shell C - 1271.40 Hz. Bearing in mind
the low-frequency range of interest for this research (up to 1000 Hz - corresponding
to 250 Hz for a real vehicle) and noticing that resonant frequencies of curved parts
are above 900 Hz, it is reasonable to approximate the normal modes of QUASICAR
by the normal modes of a simply supported rectangular plate having the dimensions
of the QUASICAR flat sides (see Fig. 8).

Figure 8: Higher-order structural modes of QUASICAR: a) 364.4 Hz, c) 521.45 Hz, e) 691.68 Hz, and of a
simply supported rectangular plate: b) 372.62 Hz, d) 531.95 Hz and f) 721.99 Hz.
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Figure 9: Lowest-order symmetric (a) and anti-symmetric (b) normal modes of QUASICAR

Resonant frequencies of the QUASICAR structure and of the uncoupled flat
plates A agree well in the frequency range considered. The results show that the
natural frequencies of the coupled model (QUASICAR structure) are higher for the
first four normal modes and lower for the rest of the modes, as compared to the
resonant peaks of the uncoupled simply supported plate. In the first case the
influence of the shells B and C on the plates A can be likened to attached springs,
which increase the natural frequencies in comparison with a simply supported plate.
In the second case their influence can be likened to attached masses, which decrease
the natural frequencies. These results demonstrate that in the frequency range below
900 Hz, the predominant influence of the flat plates A makes it possible to
approximate the modal characteristics of QUASICAR by those for a simply
supported flat plate having the dimensions of the flat sides. The above conclusion is
confirmed also by the analytical derivations based on the coupled-wave theory
approach [32].

The analysis of the experimental data (Table I, Column 4) shows some
disagreements with the numerical results (Table I, Column 3). The experimental
tests covered the frequency spectrum from 231 to 700 Hz. In the low-frequency
range, between 230 and 350 Hz, it can be noticed that there is a large number of
natural frequencies that do not correspond to those obtained from the numerical and
analytical calculations. As a reason for the disagreement between experimental and
numerical data in the whole range of frequencies one can point out the differences
between the FE model and the real test rig, e.g. the unaccounted influence of masses
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of the accelerometers, imperfections in the boundary conditions, etc. In spite of
these disagreements, the experimental analysis validates to some extent the
numerical and analytical results and brings new ideas for further improvements of
the experimental tests.

Table I Natural frequencies of the QUASICAR of the rectangular simply
supported plate, and of the equivalent rectangular enclosure.

5.2 Independent acoustic analysis of QUASICAR
The analysis of the acoustic data (see Table I, Columns 5, 6, 7 and Fig. 10) shows a
good agreement between analytical, numerical and experimental results in the
frequency range up to 1000 Hz. This implies that the use of the well known
analytical formulae for the equivalent rectangular enclosure is the easiest way for a
quick verification of numerical or experimental results. Above 1000 Hz the
precision of the numerically determined natural frequencies is reduced, which is due
to a smaller number of finite elements per wavelength. The differences between
measured and numerically calculated acoustic natural frequencies may be partly
explained by the unaccounted rectangular gap in the left-hand side part of
QUASICAR’s shell test rig.    

5.3 Independent structural analysis of the modified model M1
The geometry and the boundary conditions of the model M1 are the same as those
shown in Fig. 6. As was mentioned above, the only difference is the higher thickness
of the bottom flat part of the shell that has been increased to 6.0 mm. In this way the
symmetry in respect of the central horizontal plane of QUASICAR has been broken,
which corresponds more realistically to the case of real vehicles having higher
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stiffness of the floor area. A normal mode FE analysis was performed for the first
20 normal modes, and the FE model employed in total 10287 nodes and 10000
isomesh CQUAD4 surface elements.

Figure 10: QUASlCAR’s first acoustic modes: a) (1,0,0)-338.26 Hz, b) (0,0,1)-574.02 Hz, c) (2,0,0)-668.84
Hz and d) (1,0,1)-666.27 Hz.

Comparing the normal modes of the modified model M1 (Fig. 11) and its natural
frequencies (Table II, Column 1) with those of QUASICAR (Table II Column 4),
one can notice some interesting facts. First of all, the predominant locations of
vibrations in different modes are in one of the main parts of the model: the bottom
flat part, the top flat part or the curved side parts. Only in a few modes, in the
considered frequency range 0 - 1000 Hz, all three parts are involved. The distinctive
normal modes are associated with the different stiffness of the parts, while their
geometrical forms remain the same. Secondly, in spite of the change of the model
from QUASICAR to M1 (increase in mass and stiffness of the bottom part), the
fundamental natural frequencies remain unchanged. Indeed, they are defined by the
top plate, which has the lowest stiffness and was unchanged after the modification.
Except for the first three natural frequencies, the resonances do not match well and
go down compared with the QUASICAR natural frequencies. The difference
between both sets of resonant frequencies for higher-order modes, of course, was
expected and reflects the influence of the additional mass and stiffness of the bottom
plate. Suppressing of the participation of the bottom part of the shell in the
formation of normal modes is another important feature demonstrated here. In the
frequency range between 0 and 1000 Hz the bottom part is involved only in the five
normal modes: at 224.37 Hz, 391.51 Hz, 653.34 Hz, 682.27 Hz, and 844.27 Hz,
whereas in QUASICAR model the bottom plate always plays the same role as the
top one. Thus, the modified model Ml, which is closer to real road vehicles than the
QUASlCAR model, demonstrates some useful ideas for controlling the vibration
behaviour of car body structures and in the same time keeps me calculations simple.

5.4 Coupled structural-acoustic analysis
5.4.1 Free vibration analysis (normal mode analysis)
Interaction or coupling between the enclosed air and the structure means their
mutual influence on the dynamic behaviour of each other. The air acts via its
pressure on the structural surface, and at the same time it is influenced by the normal
displacements of the structure [4, 5]. Thus, the air pressure on the surface is
considered as a disturbing force in the governing equations of motion of the
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structure and the normal accelerations of the structural surface enter into the
Helmholtz equation via ‘flexible wall’ boundary conditions. Coupling of these
equations leads to a single governing matrix equation for the whole system air-
structure (see Eqn.(6)) .

Figure 11: Structural modes of the modified model M1: a) 67.242 Hz, b) 239.17 Hz, c) 391.51 Hz and d)
930.46 Hz

In the coupled structural-acoustic analysis we have considered in detail the
coupling of the first rigid-wall acoustic mode at 338.26 Hz with different structural
modes ‘in vacuo’. The energy of the coupled mode is divided between structural
vibrations and air motions. In this respect, from the results shown in Table II, one
cam distinguish “acoustic” and “structural” modes of the coupled QUASICAR
model (Column 5) and of the coupled modified model M1 (Column 2). The
coupling between acoustic and structural modes depends on their spatial similarity
and frequency closeness, as shown in section 2. The structural spatial patterns of
QUASICAR and modified model M1 are two-dimensional; this means that
structural modes will correspond best to the acoustic modes in the area of the
relevant two-dimensional acoustic spatial patterns.

Figure 12 and Fig. 13 show the normal modes of the coupled QUASICAR and
M1 models affected by the first rigid-wall acoustic mode. The acoustic uncoupled
mode at 338.26 Hz and with (1,0,0) spatial pattern influences some QUASICAR
structural modes with spatial patterns (2,3) at 394.69 Hz, and (4,1) at 415.33 Hz and
some structural modes of modified model M1 with spatial patterns (2,1) at 396.25
Hz, and (4,1) at 421.58 Hz. Comparing the coupled QUASICAR modes at 394.69
Hz and at 421.90 Hz, one can notice that the better matching of the structural and
acoustic spatial patterns in the latter mode, in spite of its remoteness from the rigid-
wall frequency, leads to a more distinctive picture of the coupling rather than for the
previous normal mode.

Another interesting point is a great alteration of the fundamental frequency of the
coupled models. As was pointed out by Fahy [5], this phenomenon is due to a strong
coupling of the first structural mode with the zero-order acoustic mode (0,0,0)
having zero natural frequency, as was mentioned also in section 2. Usually, the first
cavity resonance frequency is above the fundamental structural frequency and
coupling effects occur at frequencies above the first acoustic resonance, except for
this case when the coupling occurs at frequency lower than the first acoustic peak.
In this connection, one can recall that QUASICAR model has two groups of natural
frequencies: symmetric and anti-symmetric. Finite element analysis shows that only
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symmetric modes can couple efficiently with the acoustic modes. This might be
because in anti-symmetric structural modes the air inside the cavity moves as a rigid
body and does not exhibit acoustic behaviour. The influence of the air on structural
vibrations in anti-symmetric modes is also less pronounced than in the case of
symmetric modes. This is why the natural frequencies of symmetric and anti-
symmetric structural modes in a coupled model have greater differences than in the
case of the same structural modes in an uncoupled model, particularly for the
fundamental modes.

Table II Numerical results for the modified model Ml and for structural-
acoustic interaction in me QUASICAR model.
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Figure 12: QUASlCAR’s coupled modes: structural modes (left) and acoustic modes (right): a, b) 338.59 Hz,
c, d) 386.83 Hz and e, f) 421.90 Hz.

Figure 13: Coupled modes of the modified model M1: strucural modes (left) and acoustic modes (right): a,
b) 338.09 Hz, c, d) 396.25 Hz and e, f) 421.58 Hz.

5.4.2 Forced vibration analysis (frequency response analysis)
In the previous sections free vibrations of the uncoupled and coupled simplified
vehicle models were considered as their modal parameters were determined.
However, to estimate the interior noise due to external or internal disturbing
dynamic forces, it is necessary to carry out a forced vibration analysis. In Fig. 14
and Fig. 15 one can see the results of numerical calculations for magnitudes and
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phases of the FRF’s of the QUASICAR model and of the modified model M1
respectively. The solutions are rather typical for forced dynamic systems, with the
presence of resonant peaks at different frequencies. Note that in the case under
consideration the resonance peaks appear at the natural frequencies of the coupled
modes. The phases of the FRFs show regions of positive and negative values
corresponding to the interior sound pressure and the disturbing force being in phase
and out of phase. Comparing the resulting interior noise for these two models
calculated for the same disturbing force one can notice the reduction of the interior
sound pressure levels in the modified model M1, which  apparently is due to the
higher thickness of its bottom part.  

Figure 14: Numerically calculated amplitude and phase frequency response functions at nodes 400 (solid)
and 409 (dash-dotted) in QUASICAR model.

Figure 15: Numerically calculated amplitude and phase frequency response functions at nodes 400 (solid)
and 409 (dash-dotted) m the modified model Ml .

Experimental measurements of amplitudes and phases of FRFs have been carried
out for the QUASICAR model only. The results can be seen in Fig. 16 and Fig. 17
for the locations corresponding to the above-mentioned nodes 400 and 409
respectively. It can be seen that there is a certain agreement between the two sets of
data for QUASICAR, the predicted and measured. All numerically calculated
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resonant peaks are visible in the measured FRF’s, thus confirming that the
numerical results obtained are reliable.

Figure 16: Measured amplitude and phase frequency response functions at node 400 in QUASICAR model.

Figure 17: Measured amplitude and phase frequency response functions at node 409 in QUASICAR model.

Some discrepancies between the numerical and experimental data can be partly
explained by high sensitivity of FRF’s to the exact location of the response point.
Therefore, unavoidable errors in the placement of the microphone at locations
corresponding to the nodes 400 and 409 might have resulted in changes in the
measured FRFs.

5.5 Comparison between analytical and numerical acoustic pressure
responses
Figures 18 and 19 show the comparison between the acoustic pressure responses at
nodes 400 and 409 respectively for the QUASICAR model calculated numerically
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and using the analytical approach (Eqns. (1)-(3)). Both figures demonstrate a
relatively good coincidence between analytical and numerical results. The observed
areas of disagreement apparently reflect the consequences of the applied
approximation of the QUASICAR acoustic cavity by the equivalent rectangular
box. It is more interesting and useful, however, to discuss the areas of the observed
agreement between the results of the two approaches.

Figure 18: Comparison of the analytically (solid curve) and numerically (dash-dotted curve) calculated FRF’s
of me QUASICAR at node 400.

Figure 19: Comparison of the analytically (solid curve) and numerically (dash-dotted curve) calculated FRF’s
of the QUASICAR at node 409.

First of all, we recall that the vibrating structure used in the analytical formula is
a plate having the same dimensions as the top and bottom quasi-flat parts in the
QUASICAR structure. As was shown in section 5.1, the predominant vibrations of
QUASICAR model are concentrated on the flat plates in the range from 0 to around
700 Hz. This is why most of the structural resonances coincide well for both figures.
The discrepancies can be partly explained by the difference in boundary conditions
for the vibrating plates. Therefore, one can conclude that for simplification of a
complex model in a certain frequency range it is enough to construct only its main
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structural panel which contributes most to the total vibration response in this range.
Although the locations of the resonant frequencies show a good agreement, the

amplitudes of the resonant peaks are comparatively different. The same parameters
were used in the calculations of both pressure responses: attenuation factors,
disturbing forces, positions of the disturbing force, and positions of the receiver
point. The most likely reason for the discrepancies in the peak amplitudes could be
uncertainty in the location of the receiver point. In spite of the fact that this position
has the same coordinates, its distances from the real models’ walls appear to be
different because of the above-mentioned approximation of the QUASICAR interior
by the equivalent rectangular enclosure. Therefore, although the approximation of
the model’s acoustic cavity by a rectangular enclosure with the same volume is
possible and yields relatively good results, it can not guarantee the exact position of
the receiver point and consequently the same amplitudes for these observed resonant
peaks.

6. CONCLUSIONS
In the present paper the results of analytical, numerical and experimental
approaches to modelling structure-borne interior noise in the simplified vehicle
model QUASICAR and its modification have been reported. The study began with
a discussion and validation of the analytical expressions using the simplest model of
a rigid box with one flexible wall. The numerical calculations have been carried out
for free vibrations and forced structural-acoustic responses of the simplified model.
Initially, the structural and acoustic parts have been considered separately and then
as a fully coupled model. Along with the analytical and numerical studies, a number
of experimental FRF’s have been obtained.

In the uncoupled model, the normal modes of me structure and the acoustic
modes of the enclosure have been calculated. It has been found that in the low
frequency range the structural vibrations of the QUASICAR can be approximated
by those of simply supported plates corresponding to the flat parts of the structure.
The analysis of the modified model M1 has provided useful information on the
effect of the thickness of the bottom part of the structure on the normal mode
distribution.

In the coupled models QUASICAR and modified model M1 the interaction
between structures and the enclosed air has been studied. It has been found that
spatial similarity between structural and acoustic normal modes is a prerequisite for
a better coupling even if the structural and acoustic natural frequencies do not match
well. This was also clearly shown in the analysis of the analytical formula for
acoustic pressure response.

The pressure frequency responses to a forced structural excitation in the coupled
models QUASICAR and M1 have been calculated as well. It has been shown that
the level of structure-borne interior noise in the model M1 is lower than in the
QUASICAR due to the increased thickness of the bottom part of the structure. The
FE resonant peaks were visible in the experimental FRF’s for the same response
points.

Lastly, analytical and numerical FRF’s have been compared for the QUASICAR
model. The results have shown a reasonably good agreement. This proves the
possibility of using analytical approaches for analysis of rather complex structures,
in comparison with the simplest classical model comprising a rigid rectangular box
with one flexible wall. In this regard, the present paper represents a step forward in
understanding physical mechanisms of structure-borne vehicle interior noise. It is
anticipated that the introduction of more complex but still manageable structural
models reflecting the complexity of real vehicles will lead to the development of
efficient analytical and experimental tools that could be suitable for quick prediction
of vehicle interior noise at a design stage. The key issue here is to find a compromise
between the minimum degree of complexity of a model and the required accuracy
of description of frequency contents and noise levels in a vehicle.
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LIST OF ABBREVIATIONS
am coefficients depending on shape of the enclosure and on mode type

c speed of sound

{F} vector of disturbing dynamic forces

Fmp (�) frequency overlap function

hs thickness of a flexible plate

{I} vector of normalised forces applied to the fluid over am element surface

i imaginary unit

[Ka] acoustic stiffness matrix

[Ks] structural stiftness matrix

[Ksa] structural-acoustic coupling stiffness matrix

Lx,eq, Ly, Lzdimensions of me equivalent rectangular box having the same volume
as that of the QUASICAR enclosure

Lx, Ly, Lz overall dimensions of the QUASICAR model

Lx0, Lx1 boundary coordinates in X direction of the vibrating quasi-flat flexible
wall of the QUASICAR model

m index of structural modes (2 dimensional)

[Ma] acoustic mass matrix

[Mas] structural-acoustic coupling mass matrix

[Ms] structural mass matrix

P amplitude of a driving harmonic force

{p} vector of nodal sound pressures

p index of acoustic modes (3 dimensional)

{pb} vector of nodal sound pressures at boundary surface

p(r) acoustic pressure inside the enclosure at a point r

[S] structural-acoustic coupling matrix

Smp coefficients of structural-acoustic coupling

V volume of the enclosure

{v} vector of structural displacements

�m, �p structural and acoustic attenuation factors, respectively
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�a, �s mass densities of fluid and structure, respectively

�m(r) acoustic modal shapes for a rectangular enclosure

�p (�) structural modal shapes for a rectangular plate

� driving frequency

�m, �p structural and acoustic natural frequencies, respectively
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