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ABSTRACT 

The electronic calculator is now invariably the device used by 

people in employment and everyday life to deal with complicated 

and tedious calculations. The aim of this dissertation is to 

examine the effect it may have on the secondary school mathe

matics curriculum and, especially, to examine its potential as 

a powerful teaching aid which can be used to help pupils to 

acquire understanding of mathematical concepts. 

Chapter 1 investigates the contribution the basic calculator 

makes as a calculating aid which should cause the teacher to 

reassess the place of the standard pencil and paper algorithms 

in the curriculum. Some of the fears associated with this 

innovation are also discussed. The final section emphasises 

the importance of knowing the idiosyncrasies of different 

calculators. 

Chapter 2 suggests, in some detail, ways in which the teacher 

may use the calculator to enhance the understanding of certain 

topics such as fractions and place value. Applications of the 

calculator to everyday life problems, such as compound interest, 

are also included as well as the possibility of more interesting 

and enjoyable topics being introduced into the syllabus. New 

methods, such as iterative procedures, are discussed and the 

potential of the calculator as an aid to investigations is 

ascerted. 

Chapter 3 looks at the beneficial influence of the calculator 

on the mathematics curriculum generally and the possible effect 

on the mathematical content in particular with further suggestions 

following on from Chapter 2. Some contentious issues are 

considered and it is emphasised that more must be done to encourage 

the effective use of the calculator and not allow it to be over

shadowed by its more 'glamorous' counterpart - the microcomputer. 
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Chapter 1 : THE CALCULATOR AS A CALCULATING AID 

1) Historical Background 

2) Attitudes Towards the Calculator 

3) Numeracy and the Standard Written Algorithms 

4) Getting to Know Your Calculator 

It is generally accepted that the man who designed 

and produced the first calculating machine was 

Blaise Pascal (1623-62), a Frenchman whose father 

was a government official. The father always 

seemed to be weighed down with tedious calculations, 

so Blaise at the age of 19 years produced his 

first machine in 1642. 

"by means of which you alone may, without 

any effort, perform all the operations of 

arithmetic and may be relieved of the work which has 

often fatigued your spirit .....•.... " 
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HISTORICAL BACKGROUND 

Most people are aware that there is a great debate going on about 

mathematical education in primary and secondary schools, but most 

people are not aware that it has been going for over 100 years. 

In recent years there has been considerable discussion of the 

nature of mathematical understanding. There is general agreement 

that understanding in mathematics implies an ability to recognise 

and to make use of a mathematical concept in a variety of settings, 

including some which are not immediately familiar. The idea that 

"the ability to solve problems is at the heart of mathematics" 

(Cockcroft, 1982,231) is certainly not a new one. Polya (1961) 

put this well many years ago: "Nathematical know-how is the , 
ability to solve problems - not merely routine problems but 

problems requiring some degree of independence, judgement, origin

ality and creativity". 

The debate has centred mainly on the emphasis that should be put 

on the computational techniques involved in arithmetic and on 

the ability to understand and solve the problem and how this 

understanding may be achieved. 

The following comment was made by an H.M.I. in 1895: "The 

accuracy of the work is all that can be desired, and in many 

cases marvellous: at the same time the oral test shows that the 

children are working in the dark .•.. (This) shows itself in 

the inability .... to solve very simple problems". 

The situation seems to have changed little over the years. The 

first report from the Assessment of Performance Unit based on 

_a 1978 survey, concludes: "Most 11 year olds can do maths 

involving fundamental concepts and skills and do simple applica

tions. There is a fairly sharp decline as understanding is 



------------------------------------------------------------.. --

probed more deeply into more complex settings and unfamiliar 

contexts. I! 

One factor which has contributed to the difficulty in problem

solving is that the standards by which the results of mathematical 

education are judged too often only concern the childrens' 

facility with tools - multiplication, adding fractions and so on. 

The pressure on the teacher is predominantly in these terms. Far 

less external concern is expressed about childrens' problem

solving. The Cockcroft Committee received very many submissions 

which showed concern for the 'basics' usually defined in terms of 

purely arithmetic skills, with stress on the operations of addition, 

subtraction, multiplication and division treated in isolation 

from application to real situations. The skills which are basic 

are presumably needed as a basis either for the mathematics 

required in employment or in adult life or for further study. 

Although many of the requirements may be considered to be 'element

ary' in terms of their position within the hierarchy of learning 

mathematics and the stage of schooling at which they are first 

introduced, it does not follow that they are necessarily either 

simple or straight forward for most pupils to learn, and, more 

importantly, to apply. 

The most significant event in recent times in mathematical 

education has been the introduction of so called 'modern' 

mathematics. A direct outcome of a conference held in South

amption in 1961 was the setting up of the School Mathematics 

Project. A Director of S.M.P. wrote in his report for 1962-63 

that "a major aim of the syllabus is to make school mathematics 

more exciting and more enjoyable, and to impart a knowledge of 

the nature of mathematics and its uses in the modern world". 

The course was designed for those pupils whose mathematical 

attainment was in the top quarter of their age group and the 



classroom materials designed for the course took for granted that 

the teachers using them would possess sufficient mathematical 

insight and experience to enable them to work in the ways intended. 

However, as the movement spread the materials were used by lower 

attaining pupils and by teachers who did not have the necessary 

mathematical background and training to appreciate the intentions 

underlying the new course. The materials were .often presented 

as a collection of disconnected topios whose relevance to the 

mathematics course as a whole did not become apparent to the 

pupils. Many teachers who had previously concentrated all their 

efforts on the basic skills now went to the other extreme and 

neglected them. This led to claims and counter-claims by opponents 

and proponents of the movement and at one stage a teacher claimed 

to be either 'modern' or 'traditional'. Public concern for 

standards grew to such an extent, that pressure was created in 

some quarters for a 'back to the basics' movement which culminated 

in the reknownErlRuskin College speech by James Callaghan in 1976. 

So pity the poor teacher who has been tugged this way and that 

way in a relatively short period of time. It is no wonder that 

the 1979 H.M.I. report on secondary education referred to the 

problem in these terms: "Many schools are not finding it easy 

to strike an appropriate balance between the varied demands which 

are being made on them at the moment .•••• The dilemma 

is accentuated by demands for 'greater numeracy' because the 

notion of numeracy is so often ill-defined. In a great many 

cases the schools are responding by concentrating narrowly on 

computational skills, devoid of context or application, in a 

way which easily becomes counter productive. The notion of 

numeracy should certainly include more than accurate computation 

it should include the ability to apply knowledge in fresh 

circumstances". 

The impuntance of developing the skills of computation for all 

members of society has never been doubted. The problem has been 



that so much time must be devoted to mastering these skills for 
many pupils, that the reason for developing them is too often 

neglected - that is, their use which enables an individual to cope 

with the practical demands of his everyday life. There have been 

times when the educ~tional system has been in danger of producing 

a nation of clerks. Too many children and adults who have been 

quite incapable, for a variety of reasons, of mastering these 

underestimated skills have become disillusioned at best and at 

worst left with "feelings of fear, helplessness, anxiety and 

even guilt" (Cockcroft, 20) 

What joy if somehow these skills could be mastered more quickly 

or their importance nullified to some extent! More avenues would 

then be opened to the really rewarding, enjoyable and even 

exciting aspects of mathematics. 

About 30 years ago the electronic calculator was invented. In 

the mid 1970's their price started to fall so rapidly that education

alists recognised the very great implications for the teaching 

of mathematics in schools. 



ATTITUDES TO,IARDS THE USE OF CALCULATORS IN SCHOOL 

These implications are far reaching and include the ways in which 

calculators can be used to assist and improve the teaching of 

mathematics in the classroom and the extent to which they should 

change the content of what is taught and the relative stress 

which is placed on different topics within the mathematics syllabus. 

However, the real controversy surrounding the introduction of 

calculators is about the use of them by children who have not 

yet mastered the traditional pend.l-and-paper methods of computat

ion. It is feared that children who use them too early will not 

acquire fluency in computation nor confident recall of basic 

number facts. These fears are understandable and may be ill

ustrated by views expressed in submissions to the Cockcroft 

Report (375) For instance: 

"Exercise of the basic skills should not depend upon use of 

calculators: these should be limited to higher education". 

"Mathematics must be a compulsory subject, taught to a reasonable 

standard using one's loaf and not a calculator". 

These views are not just shared by some teachers and parents 

but also by employers. The Bath and Nottingham studies, report-

ing to the Cockcroft Committee, believes that there is an·ambivalent 

attitude to the use of calculators in industry and commerce at 

the present time. In many types of employment which require a 

considerable amount of calculation and analysis of d'!-ta, they 

are regarded as desirable aids to speed and accuracy. However, 

their use.is still viewed with suspicion by some shop floor 

managers and supervisors (especially those who supervise engin

eering and other technical apprentices and craftsmen of various 

kinds) who themselves were trained to use slide rules or logarithm 

tables. However, the majority of young employees who were seen 

to be using calculators at work had not been trained in their 

use either at school or on the job. In consequence, calculators 
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were frequently not being used in the most effective way. On one 

fact, however, there is general agreement - calculators are here 

to stay. They are becoming increasingly available to young and 

old, in all walks of life, and the proper use of them must be 

taught at some stage. Most would also agree that this is best 

accomplished at school. However, questions still surround the 

stage at which they should be introduced in the school life.of 

the student; their use in examinations; which ability groups 

would benefit most from them; and so on. 

Some would argue that low-attaining pupils shoUd not use them 

at all but should concentrate on mastering the basics, while 

others support the view that it is these pupils who would benefit 

most from the use of a calculator. 

"Calculators have revolutionised computation and barely numerate 

students can overcome their weaknesses with these". (Cockcroft 375) 

Proponents stress that the availability of a calculator in no 

way reduces the need for mathematical understanding on the part 

of the person who is using it. For example, knowing how to 

multiply is a different skill from knowing when to multiply. 

A calculator is useless until the student knows how to solve the 

problem. 

There remains too, some uncertainty about introducing calculators 

in the primary classrooms. Views vary from complete freedom to 

replace pencil and paper calculations to a complete ban on them. 

Their is little evidence about the eventual balance to be obtained 

at the primary stage between calculations carried out mentally, 

on paper, or with a calculator. However, one submission to the 

Cockcroft Committee from a parent may well prove significant: 

"Following professional advice of mathematical colleagues we 

kept calculators away from our children until their late teens. 

But the youngest at age 6 got hold of a calculator to help out 

with his 'tables' and found it such fun that he has been much 
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more mathematically inclined since. So perhaps it would be wise 

to introduce simple calculators at an early age". 

In the secondary school, support for the use of the calculator 

is much more prevalent. 

In their 1981 questionnaire to Heads of Department, the Mathe

matics Advisers of Hertfordshire asked for details of policy 

concerning the use of the calculator. Most replies from schools 

indicated that a policy did exist with only a few making reference 

to a 'flexible policy' or 'at the teacher's discretion'. Most 

schools gave a stage at which its use was first allowed which 

indicated the popular attitude was for mastering basic comput

ational skills with pencil and paper first and that other uses of 

the calculator did not rate highly. The information is:-

Allowed from st Year onwards 6'% 
" " 2 " " ff/o 
" " 3 " " 12% 
" " 4 " " 45% 

" " 5 " " ff/o 

However, the Advisers have reason to believe that this information 

is already out of date. Since the publishing of the Cockcroft 

Report there is evidence that its strong advocacy of the use of 

calculators has slready encourage their greater use in the classroom. 

Two significant events in 1983 provide evidence that the move 

towards accepting the calculator in the classroom is gaining 

momentum. In January 1983, the G.C.E. and C.S.E. Boards Joint 

Council for 16+ National Criteria published its recommendations 

for mathematics. The written submissions from all walks of life 

overwhelmingly demanded that electronic calculators should be used 



in at least part of the assessment. The list of assessment 
objectives includes 'the use of the electronic calculator' 

and the content list includes 'the efficient use of an electronic 

calculator' for all children. Thus if the criteria are approved 

by the Education Secretary, it will be assumed that all children 

from 11 to 16 will use them throughout secondary school and 

will take them into public examinations in their final year. 

An equally significant event will be the introduction of the", 

calculator-based course. In September 1983 the new S.M.P. 

11 - 16 course will be availpble to all schools. At its inception 

5 years ago, the team of teachers who planned the course assumed 

that calculators would be available to all pupils, and devised 

the materials accordingly. The course has been highly acclaimed 

by schools involved in the pilot scheme. Much of the material 

necessitates the use of a calculator and takes advantage of the 

power of the calculator to promote understanding as well as allow 

realistic problems to be introduced. Other material requires 

work to be done without its use. To ensure mental skills are 

not neglected the team is devising oral tests for all pupils when 

they leave school. 



NUMERACY AND THE STANDARD WRITTEN ALGORITHMS 

Numeracy 

The concept of 'numeracy' and the word itself were introduced in 

the Crowther Report published in 1959. The definition is intended 

to imply a quite sophisticated level of mathematical understanding, 

but over the last few years the meaning seems to have changed and 

it is now associated with the ability to perform basic arithmetic 

operations. However, Cockcroft emphasises the wider aspect and 

would wish the word 'numerate' to imply the possession of two 

attributes. The first of these is an 'at-homeness' with numbers 

and an ability to cope with the practical mathematical demands of 

everyday life. The second is an ability to have some appreciation 

and understanding of information which is presented in mathematical 

terms, for instance graphs, charts or tables or by reference to 

percentage increase or decrease. 

"Our concern is that those who set out to make their 

pupils 'numerate' should pay attention to the wider aspects of 

numeracy and not be content merely to develop the skills of 

computation". (39) 

Perhaps the most significant definition of numeracy is the one 

given by Girling (1977) 

"Basic numeracy is the ability to use a 4-function 

electronic calculator sensibly". 

The implications of this definition are more far-reaching than is 

at first apparent. In brief, Girling believes this implies: 

1) the need to be able to check that the user and/or 

calculator have not made a mistake 

2) the need to understand the relative size of numbers 

3) the need to be able to perform mental calculations 

for speed, convenience and for use in the commercial-and industrial 

world. 

10 



The extract below comes from 'Practical Arithmetic' a 
book published in 1884. 
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The Standard Written Algorithms 

If we accept that the calculator will change but by no means 

eliminate the need for reasonable mental and written skills of 

calculation, an important question arises. What is to be regarded 

as appropriate levels of skills in the calculator age? 

Go into any classroom in this country and it is a fair bet that 

the children have been taught the same standard written algortithms 

for the four rules of number. With a few minor variations they will 

probably look like this: 

68 
+~ 

:n. , 

64 
x8 

ill • 

And yet is this the way people really calculate given a free 

choice of method? It may well be an illuminating exercise for the 

experienced, traditional teacher to ask his pupils how they would 

tackle similar calculations mentally given a free choice. It 

may well be an interesting exercise for the same teacher to examine 

how he approached the calculations himself. A fascinating variety 

of methods would probably emerge. 

There are, of course, important reasons why the written algorithms 

have been developed and persevered with over many years. They 

are written, so the calculation is permanent and correctible. 

They are standardised, that is, it is possible to arrange that 

everyone does the same thing. They are general, in the sense 

that they will work for any numbers, large or small, whole or 

decimal. This is possible because the methods require breaking 

a number up into hundreds, tens and units and dealing with these 

as digits separately. However, this process does not correspond 

to the ways in which people tend to think about numbers, and the 

\'1 



methods are usually carried out automatically without a real need 

t~ understand what is going on. Rote learning is, thus, usually 

associated with the teaching of these methods. However, they have 

remained attractive because they are so general and efficient and 

because they are much easier to manage and mark than mental 

techniques. Add to this the fact that they are traditional and we 

see why they remain so sacrosanct in the eyes of the general public. 

Do real alternatives to these methods exist? 

In 1973, D.A. Jones, investigated the methods used by each of 80 

11 year olds to calculate 

67 + 38, 83 - 26, 17 x 6, and 116 742 

The questions were written in this form, and the children were free 

to use written or mental methods. Over half of the 320 calculations 

were successfully completed by non-standard methods despite the 

heavy teaching of standard algorithms. This suggests, at the least, 

that the standard methods are not suitable for mental work. At 

the same time, quite often" they are not understood by children. 

Mathematics teachers will, ho doubt, recognise these errors: 

44 45 43 
+28 -21. --1Q 

81 1£ £Q.1.2. -;:.-

Further, the standard algorithms 

see calculations such as these? 

1003 
---22L 
~ 

36 
x100 
3600 

000 
~ 
3600 

13 

2@ 
1 9 

are misused. 

lOd3~'o 
732 

How often do we 



At least the mental algorithms require understanding, and although 

they are not designed for recor.ding they can be if desired. They 

are also flexible and can be adapted to suit the numbers involved. 

They work with complete numbers rather than separated tens and units 

digits e.g. 

4 x 45 = 2 x 90 = 180; 

6 x 28 = 6 X 30 - 12 = 168 

Unfortunately, they are limited in the sense that they cannot be 

applied to the most difficult calculations, which is why they 

have not been developed further. However, with a greater emphasis 

on understanding predominating these days, it would be sensible 

to develop these mental techniques at the expense of the traditional 

written algorithms for the easier calculations, providing an altern

ative method can be found for the more difficult calculations. 

With the advent of the electronic calculator, Stuart Plunkett 

(1979), believes a real alternative now exists, which may remove 

the necessity of spending an inordinate amount of time teaching 

the standard algorithms. He illustrates his proposals by exam

ining the wide range of calculations we can do with numbers. 

Plunkett, for convenience, divides the range into five rough bands 

Red Orange Yellow Green Blue 

6+9 145+100 148+39 693+387 4974+6872+4567+7928 

13-8 85-20 85-27 682-376 

5x7 5x30 18x3 841x8 891x678 

45-5 60-3 72-4 693-7 8391-57 

They are in order of increasing difficulty and yet probably in 

order of decreasing frequency of use. 

The Red band contains number bonds up to 10+10 and 10xl0 and 

their inverses, and these facts should be available for instant 
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recall. 

The Orange band can be :dbne by one-step mental methods given thor

ough knowledge of the Red band. 

The Yellow band calculations are also appropriate for mental 

methods and the average person in the street should be able to do 

these in his head. 

The Green band could be done mentally but it would probably be more 

appropriate to reach for pencil and paper. 

In a practical situation it would be absurd to use a mental process 

for the Blue band, but if a calculator were available, it would 

be equally absurd to use a written method. 

So Plunkett proposes that there is now a place for mental al

gorithms, the use of the calculator and non-standard written methods. 

He believes that the standard written algorithms are out of date 

because the large amount of time that is at present wasted on 

attempts to teach and learn them so often leads to frustration, 

unhappiness and a deteriorating attitude towards mathematics. 

The Cockcroft Committee will vouch for this. 

Three stages are proposed that children may go through, progressing 

according to ability. 

Stage 1. The acquisition of mental techniques for calculations 

in the red, orange, and yellow bands. 

Stage 2. The use of calculators for green and blue calculations. 

Stage 3. The development of some casual written methods. 

Following on from this stage, an understanding of larger numbers 

should be made easier, and so children will be more likely to make 

sensible use of the calculator for more difficult problems. It 

will be less likely that they will press the wrong button, but 

their understanding of orange band calculations will enable them 

to check the machine's answer for reasonableness. In other words, 

the calculator will make sense. 

IS 



Stage 3 would be necessary when calculators are not available in 

an everyday life situation, especially money problems. Non

standard written methods for dealing with these can be adopted 

by children and teachers from mental algorithms used for more 

manageable numbers. 

The advent of the calculator has, therefore, provided us with 

a great opportunity. We do not need to teach methods of dealing 

with calculations of great complexity for the average citizen 

at least. We can now foster methods more suitable to the minds 

and purposes of the users. People who need complex calculations 

for their jobs will find a calculator a much more valuable aid 

than pencil and paper. 

However, we are expected to be able to calculate, and the standard 

algorithms are the traditional ones. It would be unthinkable for 

many people that other methods and a calculator should be allowed 

to replace them. But the argument that most everyday calculations 

are mental ones and much time is wasted teaching the standard 

written ones is strong. As Plunkett concludes: 

"The calculator should be regarded as a sensible tool for 

difficult calculations, the ideal complement to mental arithmetic". 



GETTING TO KNOW YOUR CALCULATOR 

It is inevitable that pupils will possess different makes and 

models of calculators, with the consequent difficulties of co

ordinating their usage in the classroom. Of immediate concern 

are the problems which will arise when younger secondary pupils, 

particularly, bring to their mathematics lessons calculators 

which operate in the reverse Polish system or those which automat

ically display numbers in exponential form. Clearly the range 

of characteristics of individual makes of calculator is greater 

than the two referred to above, but these are particularly critical 

to the conduct of lessons in which the use of a calculator plays 

a fundamental part. Fortunately, more and more schools, often 

with encouragement from Mathematics Advisers, are able to make 

available a class set of a single model (or at least a half class 

set). Free calculators have been received by all Suffolk schools 

with pupils in the age range 7-16, "sufficient to launch them into 

a new era", while the advisers of Northampton provide a similar 

service after the teachers have attended an in-service course 

run by them on calculators. Further, schools are also advising 

parents as to the type of calculator used by the school and 

encouraging them to buy the recommended model. The problems of 

differences between calculators will gradually recede and this 

chapter will be more concerned with fundamental differences 

between basic calcUlators. (Green and Lewis, 1978, provide a 

very full account of all the differences the teacher may encounter 

and also look at the inside of the calcUlator). 

Alan Graham, Centre for Mathematics Education, Open University, 

identifies three important aspects in which basic calculators 

differ: 

1. logic - arithmetic or algebraic 

2. methods of correcting keying-in errors 

3. operation of the constant function - K or automatic 
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As an introduction a class, who have been requested to bring in 

their own calculators where available, may be given a set of 

calculator sequences to predict the answer and then to find the 

actual calculator answer: 

this 

be C 

CE 0 

(a) 

(b) 

~ 

may) (c) 

or 

n your< (d) 
t-.... 

ulator~ (e) 

(f) 

On the Texas 

(c) Cd) 1 

GUESS 

2~3~4c:J 

2~304GJ 

4~E)c:J 

3 [JEJ28 
2 tJ3 lON/CJ 4 EJ 
3 tJ2GEl 

TI 30 

(e) 6 

the answers were as follows; 

ANSWER 

(a) 10 (b) 14 

It is important that the inconsistencies that are likely to crop 

up be dealt with before any further work is done. A few simple 

tips will be of help to the pupils. 

1. Type of Logic - Algebraic or Arithmetic 

This is perhaps the most basic difference between calculators. 

At the cheap end of the calculator market, most machines are 

programmed to carry out the operations arithmetically i.e. 

in the order in which they are fed into the machine. Thus, for 

sequence (b) 

28 3 0 4 8 

I'Z 



a calculator with arithmetic logic will perform the addition of 

2 and 3 before multiplying the result by 4. A machine with 

algebraic logic, however, obeys the conventions of precedence in 

algebra, where multiplication and division must be carried out 

before addition and subtraction. The pupils may discover ways of 

coaxing an 'algebraic' calculator to calculate 'arithmetically' 

(1) 2E13G[Xl4G 
(2) [IJ 2 0 3 QJ0 4 G 

2. Key stroke errors and how to correct them 

A-later chapter emphasises the importance of estimating an answer 

to a problem so that a ridiculous answer cannot be accepted. 

However, quite often we make mistakes in pressing the wrong 

button part of the way through a problem and realise the error 

at the time. Do we start again? 

Sequences (c) and (d) show what course to take if we press the 

wrong operation by mistake. On many machines, including the 

TI 30, all but the last of a sequence of operations will be 

ignored. So if you accidently press 0 instead of EJ, this 

will be corrected by pressingl + t next time. This does not work 

for some calculators. preSSing_6~r:=lmay confuse some machines 

into displaying 12, while 6 G~y give 0 

Sequence (e) should confirm how the calculator copes with pressing 

the wrong number. What happens with this sequence: 

20 3 IONic IION/c I 4 ~ ? 

3. The constant key - [KJ 

A constant facility enables the user to set the calculator up 

to perform the same 'sum' repeatedly at the touch of the/ ~/ key; 

If the machine has a key marked ~, then this can be done directly. 
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For example, the TI 30 requires 5 G~ to add on 5 to any 

number chosen followed byl = I Thus: 

4 I = I gives 9 

10 I = I gives 1 5 

and sO on. 

If the machine does not have a K key, it is likely that the 

constant facility comes on automatically after a suitable cal

cUlation is keyed in. 

For example, if the following sum is keyed in: 

38 4 GJ 
Now press 

1[;] 
108 
100 1 = I 

With many calculators the addition sum ( ~ 4 ) is carried over 

as a constant addition and so 4 will be added to 1, 10, 100, 

giving 5, 14, 104. Other models take the 3 ~ part of the original 

sum as its constant function. A few models bring in their constant 

function when an operation is pressed twice in succession and 

kills it when any key other than a number or I = I is pressed. 

After practice with an exercise of 'Guess and Press', for example, 

2 0~ 1 I = I I = I I = I ; further practice may be 
given in the form of a game: 

Guess the Number 

Player A chooses any number between 1 and 100 

(say 40) and, unseen by B presses 40[I][IJO 

(zero wipes 40 from display) 

Player B has then to guess which number 

(denominator) A has chosen by trying different 

numbers (numerators) and pressing I = I 
B's aim is to guess A's number as quickly as 

possible, B then chooses a number for A to 

guess. 
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Sample Play: B's attempts: 

B Presses Display Comment 

1 • 5GJ 0.125 5 is too small 

2. 24[:] 0.6 24 is too small 

3. 500 1.25 50 is too big 

4. 40[:] 1 40 is the denominator 

B's score is 4 

The game can be adapted if a calculator's constant is set up in 

a different way. 

These three important features, i.d. logic, keying-in errors, 

constant facility should be checked systematically by the pupils 

as described previously, before the calculator can be used effect

ively. 

Accuracy and Overflow 

Another problem which arises in the use of different calculators 

is why, for example, t x 3 appears on some as 0.999 999 9, on 

others as 1.0000002 and on others simply as 1; ( h\2)1-or why' ,,"-I 
may turn out to be 1.999 9998. The answer is connected entirely 

with the conventions which have been built into the machine. 

Some 'round off', i.e. give the number corrected to the number of 

figures on display, some truncate, i.e. cut the end off the 

number, some round up, some hold more figures than they display, 

some work in scientific (exponent) form, even when they display 

in index-free form. There are those machines which convert to 

exponent form as soon as numbers become to large or too small 

for display and others merely display 'E' when this happens 
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successfully eradicating all trace of your calculations so far~ 

The subject can become confusing but can also be an interesting 

source of investigation. One useful quick test enabling the 

teacher to diagnose the accuracy to which any particular machine 

works, when dividing, is to perform: 

9) 0.777 777 7 

Some calculators are designed particularly for use in scientific 

problems and can work in exponential notation. Such a calculator 

will usually display an answer, of say, 38000000 as 3.8 07, 

meaning 3.8 x 10~ or will display 0.000 000 76 as 7.6 -07. 
-7 

meaning 7.6 x 10. However, calculators which do not work in 

this way, do not h~ve enough room to display a very large or 

very small number, and usually have special symbols to indicate 

overflow or underflow. If this is the case, matters may be im

proved by using standard form. :;'or example: 

5 180 x 69 5000 = 5.18 x 103 x 6.95 x 10~ 
= (5.18 x 6.95) xl0' 

= 36.001 xl0
g 

or 360 010 000 

More able pupils may be asked to investigate the problem 

0.00086 

1162 
x 438 

by comparing and discussing answers to each of the following 

methods: 

(0.00086 ~ 1162) x 438; 

(0.00086 x 438) 7 1162; 

(438 7 1162) x 0.00086; 
-It 1. 

8.6 x 10 x 4.38 x 10 

1 .162 x 103 

Recommended Calculators 

A5ensible question would seem to be "why can't calculators be 
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standardised?" It is likely that all L.E.A.'s hbve set up 

working parties to discuss and recommend essential and desirable 

features of a calculator and then try to find one on the market 

that best fits these features. The Hertfordshire Calculator 

1;[orking Party meets regularly to revise its recommendations 

according to availability of new models. Liquid Crystal Display 

is high on its list, together with an automatic 'power off' 

device, a posi ti ve 'feel' or 'click' when a key is depressed, 

as well as strength and a reasonable size. 

Algebraic logic, is regarded as essential and for lower 

seconday classes the following factors, together with those 

above, are thought to be particularly important: 

Keyboard: Facility to include the following: 

(a) 

(c) 

Arithmetic Keys I+1r-lEJGJI = I 
Sign change key ~ 
Reciprocal key ~ 
Square Root key IFI 
Power key ~ 

Clear and entry 

Memory 

(may be combined as 

a single key) 
~@] 

EJElEJEJ 
(d) Keys for percentage,$1uares and 'pi' were felt 

to be useful but less important. 

Display: No more than eight digits should appear in 

the display. 

For sixth form (or equivalent) use, a scientific calculator 

should incorporate the following additional facilities: 



Keyboard 

Ari thmetic keys nfh root I xi' I 
factorial@] 

Trigonometric functions ISin I Icos 1I tan/ 

with both degrees and radians. Inverse 

and trigonometric functions should be 

available by means of the same keys 

in conjunction with the inverse 

INV key. 

Logarithmic functions 0/1 o~ IllollllnX I 

Brackets; facility for at least three levels of brackets 

Statistics IEl~ 
meanB 

standard deviation ~ 

Display 

(a) A high degree of accuracy is required. The 

calculator should work with at least three digits 

more than are displayed. 

(b) When the answer to a calculation exceeds normal 

display capacity. the machine should automatically 

switch to scientific notation. 



Chapter 2 : THE CALCULATOR AS A TEACHING AID 

1) Estimation, Errors and Accuracy 

2) Fractions 

3) A Classroom Investigation into Recurring 
Decimals 

4) Place Value and Decimals 

5) The Ordering of Operations 

6) Growth and Decay 

7) Sequence, Series and Limits 

8) The Fibonacci Sequence 

9) Iterative Methods 
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ESTIMATION, ERRORS AND ACCURACY 

Whenever a computation is performed, whether mentally, pencil 

and paper or with a calculator, due consideration must be given 

to whether the answer is a 'reasonable' one. A 'reasonable' 

answer may be considered from two important aspects. One, 

we should first estimate the answer and consider whether the 

estimate is sensible in terms of size, and two, after being 

satisfied that it is a sensible estimate, is the answer given 

to reasonable degree of accuracy in the context of the question? 

Estimation of answers 

Estimation is already part of today's curriculum but with the 

availability of calculators, the skill of estimation is even 

more important. However, we no longer need the precision in 

our estimates which was often demanded for checking hand 

calculation, and, in fact, to check a calculator result, one 

is primarily concerned with order of magnitude and hence the 

only real need is the ability to do single digit arithmetic 

and work with powers of 10. For example, to estimate 

358 x 7 294 we may think of this as 300 x 7 000, that is we 

need only consider the leading digit rather than round. Thus, 

our estimate is 3 x 100 x 7 x 1 000 = 2 100 000. More 

ambitious students may prefer a better estimate and so rounding 

off may be introduced together with some number relationship 

notions and some common-sense. 

There are no fixed rules for estimating answers and different 

procedures can result in somewhat different answers. The main 

point to keep in mind is that we want to get an estimate that 

will tell us whether or not we have made any major error in 

the use of the calculator. Some more difficult examples may 

help to illustrate the points made. 



Example 1 ) 

0.024 3 x 11 .92 + 14.07 x 0.003 9 
<:! 0.02 x 12 + 14 x 0.004 

= 0.24 + 0.056 of 0.2 + 0.1 = 0.3 

Notice that we have alternated a round off down with a round off 

up and our estimate compares quite closely to the calculator 

answer of 3.445 29 

Example 2) 

14.87 x 9.25 x 0.002 7 - 0.144 3 

"" 14 x 10 x 0.003 - 0.14 

= 140 x 0.003 - 0.14 = 0.42 - 0.14 = 0.28 

Here we have not obeyed the accepted rule for rounding off 

when giving an answer to the required degree of accuracy. In 

fact, we round up 9.25 because multiplying by 10 is easy and 

rounded down 14.87 and 0.002 7 to compensate. The estimated 

answer is close enough to the calculator answer of 2.270 782 5 

to indicate that no major error has been made by the user. 

In estimating the answer to a multiplication or an addition 

we try to alternate up and down roundings since questions may 

arise where obeying the usual rules would result in an estimate 

which is realiy too big or too small. In estimating the answer 

to a division or subtraction problem, however, both of the 

numbers involved should be rounded up or both rounded down in 

order to balance the approximation. 

Example 3) 

(655.45 ~ 3.22) - (27.655 x 5.87) 

(600 3) (27 x 6) 

= 200 - 162-

= 38 

Calculator answer = 41.221 05 



Other forms of practice would include those such as given by 

S.M.P. Book 4 (1968): 

'Say which answers you consider are reasonable estimates, and 

in the case of the others, put down what you think would be 

better' 

1 ) 12.3 x 2.9 = 36 approx. 2) 0.105 x 0.1 = 0.1 approx. 

3) 9.6 x 26.2 = 250 approx. 4) 1 023 x 19 = 2 000 approx. 

5) (20.2)2 = 400 approx. 6) ~ = 13 approx. 

7) )0.08 = 0.2 approx. 8) 16 x 1.1 = 5 approx. 
3.4 

9) J(3.1 2 + 6.9
2

) =10 approx. 

10) 62.9 x 0.9 x 0.49 = 3 approx. 

Cockcroft (257) makes it clear that "the ability to estimate is " 

important not only in many kinds of employment but in the 

ordinary activities of adult life". Industry and co~~erce rely 

extensively on the ability to estimate but although these skills 

develop on the job, employers often complain that young entrants 

to industry and commerce lack a 'feel' for both number and 

measurement. Cockcroft has observed that although estimation is 

included in most schemes of work, it is not practiced in many 

classrooms. It is felt that teachers do not appreciate how much 

is implied by the words 'ability to estimate' and how long it 

takes to develop this ability. The conceptual difficulty of 

realising whether an answer is reasonable in the context of a 

question, however, must have been experienced by most mathematics 

teachers. For instance, we can take those children who have been 

quite happy to accept their answer for the area of a desk top 

even though that answer is close the the area of a football 

pitch or a postage stamp. 

There are, therefore, other aspects of estimation besides that 

required for computational work on a calculator. Children need 



to estimate lengths, areas, capacities, and weights. They should 

be able to estimate the amount of wallpaper needed fora room, 

the amount of petrol needed for a journey and sO on. 

Limits of Accuracy and Errors 

When we have made our estimation of a given computation we then 

perform the computation on the calculator. We now have to 

satisfy ourselves that the answer shown on the calculator, say 

7.382 0748, is close enough to our estimation to feel confident 

that we have not made any najor error in pushing the calculator 

buttons. Do we then write down 7.382 074 8 as our answer and 

feel pleased with ourselves? Many children are perfectly 

happy to do this or just forget a few figures on the end and 

write down, say 7.38. Just as bad, perhaps, is that many 

textbooks tell them to round off the answer to 3 significant 

figures or 2 decimal places without explanation or without 

challenging the pupils to round off to a sensible answer in the 

context of the question. 

Much of our calculation depends on measurement and all measure

ments are approximate. We must, therefore, think very carefully 

about the data being fed into the calculator and relate our 

answer to these data. For example, with an eight-digit display 

calculator and an ordinary ruler, is there much point in saying 

that the anSWer to a particular problem based on measurement 

with the ruler is 7.382 074 8? 

The topic of limits of accuracy and errors takes even greater 

importance now that we are getting our answers from the calculator. 

The concept of the reasonableness of answers in terms of physical 

reality and a feel for errors may be introduced before the child 

reaches secondary school and then the mathematics of errors 

may be taught at various levels. 
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In any measurement, we speak of the GREATEST POSSIBLE ERROR 

which is always one-half of the unit of measure used in making 

the measurement, and the child should appreciate that when two 

measurements are compared for their PRECISION, the more precise 

of the two measurements is the one for which the greatest 

possible error is smaller. It is important that measurements 

be stated in a way which shows clearly how precise they are. One 

way of doing this is to make certain agreements about what is 

meant when we write the number for a measure in decimal form. 

For example, when We write 4.52 cm. for a certain measurement, 

We understand that the measurement has been made correct to the 

nearest 0.01 cm. and that the greatest possible error is 

t(0.01 cm.) or 0.005 cm. This is equivalent to writing 

(4.52 : .005 cm.) for the measurement. By this agreement each 

of the digits in 4.52 is SIGNIFICANT. 

Non-zero digits in a measure are always significant, but 

zeros mayor may not be. The child should appreciate and under

stand the rules for zeros in a measure. He should appreciate, 

for example, that 4.80 cm. is a more precise measurement than 

4.8 cm. and that the zero here is significant, while the zeros 

in 0.003 4 are not. Further, that if the distance between two 

objects is given as 470 cm, we usually assume that the zero is 

not significant 

nearest 10 cm. 

and that the measurement is precise to the 
'+ (470- 10 cm.) 

is significant (for example, as 

If we indicate that the zero 

47Q cm.) then the greatest 

possible error is 0.5cm. Similarly, if the measurement of 

93 000 000 miles is precise to the nearest 100 000 miles we 

may indicate this as 93 QOO 000 but then tie this in with a 

more familiar way of expressing very large or very small numbers, 

that is, by scientific notation. For example, 9.3 x 107 miles 

has two significant digits, while 9.30 x 107 miles has three. 

What about computations with numbers involving measurements? 



If we are given two measurements of, say, 2.63 cm. and 6.8 cm., 

is it significant to give their sum as 9.43 cm.? The child 

should appreciate that, by considering the sum of the smallest 

possible measure and the sum of the largest possible measure, 

the sum of the two measures is somewhere between 9.375 and 9.485 

and that it is only reasonable to give an answer with the same 

precision as the least precise measurement. Thus, we round 

each measure to the same precision as the least precise measure 

involved and then perform the addition (or subtraction). 

Similarly, a rule frequently used when multiplying numbers 

obtained from measurements or from approximations of any kind 

('keep as many significant digits in the product as there are 

in the factor with the fewest significant digits') may be 

illustrated by considering the difference between the smallest 

possible area of a rectangle and the largest possible area. 

For example, the approximate area of a rectangle whose dimensions 

are 72 cm. by 42 cm. may be written as 3024! 57 cm. 2, and we 

see that the computed area cannot be more accurate than two 

significant digits and may not even be that accurate. 

The mathematical notion of RELATIVE AND ABSOLUTE errors 

should probably be introduced after pupils have more facility 

with fractions. Pupils should have an idea of the importance of 

the concepts and how to actually calCUlate them numerically. 

That is, the pupil should be able to tell you that dropping 

the 8 in 0.700 8 is a small relative error, while dropping the 

8 in 0.007 8 is a large relative error. The absolute error for 

both, however, is the same. 

The discussion about data will, no doubt, lead on to the 

implications of interpreting calculator answers when the initial 

data is known to be EXACT. An example is money. An amount such 

as £3.27 is exact and may be written with as many zeros after 

it as you wish i.e. £3.270000 •••• Suppose we found the 
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simple interest on this amount for one year at 1~ per annum. 

The interest would be 0.057 225 0, that is 5.722 5 pence. 

This is an exact answer and in the circumstances is quite correct. 

How you pay it is another matter! However, since this interest 

is payable yearly, the decimal parts of a penny can make a 

difference over a number of years. 

However, the situation is potentially confusing to the child. 

Science teachers tend to use theoretical models in their 

everyday problems. A physics teacher asking 

the density of a 3 kg. mass, having volume 4 

anticipates the answer 0.75 kg.m.-3 , not 0.8 

a child to find 

m. 3 , probably 
-3 kg.m. . Here he 

is more interested in checking understanding and/or knowledge 

of the definition of density, than awareness of accuracy. 

Mathematics teachers (and examiners) are often thoroughly 

careless ahout making it clear whether a problem, apparently 

involving measurements, is intended to be regarded as a 

description of a real model situation or a model. In 'A circle 

of 1.5 cm .......... I, is 1.5 a number x such that 1.45~x <1.55 

or is it an exact pure number? 

Nigel Webb (1980) suggests simplified versions of some rules 

of accuracy already discussed. They are intended as rules of 

thumb for everyday use, but he emphasises the need for the 

teacher to discuss problems of accuracy and the anomalies 

arising. In brief, he suggests that: 

1) Where specific units of measurement are involved, 

the number of significant figures given in the measurement 

will be assumed to indicate the accuracy of the measurement. 

In this case the result of a calculatiOll..m.ould be given to the 

same number of significant figures as the least accurate item 

of data. However, care must be taken in formulating questions 

otherwise the following may result: 



The two sides of a rectangle are of length 3 cm. and 

4 cm. respectively. 

The Area 3 x 4 cm 2 
= 

12 2 
= cm 

10 
2 

(to 1 sig. fig. ) = cm 

2) Where specific units of measurement are not 

involved, numbers given as data for calculation will be assumed 

to be exact, pure numbers unless otherwise described. Then 

the result of a calculation should be given to the maximum 

accuracy of the calculator. 

However, John Hersee (1981) argues that measurements are implicit 

wherever any real situation is being modelled. "We want to 

develop and encourage a critical Sense in~ung people, an 

attitude which assesses the reasonableness of any result 

achieved in the light of the original situation from which it 

arose. In the classroom, this critical attitude will be devel

oped only through constant attention; it must be part and parcel 

of any 'modelling' of any attempt to apply mathematics to a problem". 

Hersee adds that it is for this reason that the S.N.P. take 

the view that arbitrary, or apparently arbitrary rules should 

be avoided. Each situation should be assessed as it arises, 

unless a rule does exist. However, simplifying rules may be 

used for the time being, if a new topic is being introduced 

and the pupil needs to concentrate on the new idea and not 

be distracted by worries about accuracy. It is also probable 

that some simplifying implication of exactness may be required 

in the artificial environment of examining. 

All this is not new, calculators have helped to draw it to 

our attention afresh. 
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FRACTIONS 

The mathematics curriculum has always placed great emphasis 

on the skills of computations involving fractions, and the 

experienced mathematics teacher will tell you that it is one 

of the most difficult and frustrating topics to teach. Most 

adults will remember with trepidation the seemingly endless 

( 3 5). (1 2) exercises involving computations such as 24 + 47 ~ 12 x 23 ' 
but how many could remember how to do them now? And, indeed, 

why should they? How often are they used in eve~ay life or 

even industry? 

The Bath and Nottingham study (Cockcroft, 75-6) reports that 

although fractions are still widely used within engineering 

and some other craft work these are almost always fractions 

whose denominators are included in the sequence 2, 4, 8, ..•. 64. 

'The need to perform operations such as ~ + ~ does not normally 

arise, and the manipulation of fractions of the kind which 

is commonly practiced in the classroom is hardly ever carried 

out. In the rare instances in which it is necessary to multiply 

or divide, it is usual to convert each to a decimal before 

performing the operation, if necessary with the help of a 

calculator". Further, "the notation of fractions appears in 

some clerical and retail jobs, for instance 4~ to represent 

4 weeks and 3 days or 2f2 to represent 2 dozens and 5 singles. 

However, school-type manipulation is rarely found and then 

only in very simple cases; for instance, the calculation 

required to find the charge for 3 days based on a weekly 

rate, is division by 7, followed by multiplication by 3". 

It would seem therefore, that the calculator has enabled us 

to shift the emphasis from fraction notation and manipulation 

to decimal notation and manipulation in order to describe 

the world around us when whole numbers are not adequate. 



In any case, the advisability of introducing fraction manipulation 

before secondary school age has been reassessed, and even new 

research has concluded that for many the abstraction of fraction 

manipulation is entirely inappropriate for many children who 

leave school still at Piaget's concrete stage. 

The Concept in Secondary Mathematics and Science project (1979) 

concludes that many children do not feel confident with the 

use of fractions and try whenever possible to apply the rules 

of whole numbers to operations on fractions. Most children 

avoided the use of the addition and subtraction algorithms 

when another ~ethod was available. When the addition rule 

was used the younger children were more successful than the 

older ones because the rules were fresh in their memories. 

Other common difficulties found, which any mathematics teacher 

must be only too familiar with. include; 

2 10 
finding equivalent fractions such as 7 = * 
comparing the sizes of fractions which do not 

have the same denominator; 

e.g. 3~ x 
4 

adding fractions using 'add tops add bottoms'; 

multiplying 
2 6 

23 = 612 ; 

the whole numbers and fractions separately 

their own concept that 'multiplying only makes it bigger'; 

application of fractions to problems. 

What skills should be taught then to secondary school children? 

Cockcroft's list (455-8) suggests that all pupils should be 

able to: 

"Perform calculations involving the word 'of' such 
1 

as 3 of f,4.50. 

Be able to add and subtract fractions with denominators 

2, 4, 8, or 16 in the qontext of measurement. 
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Know the decimal equivalents of 1 3 1 and 4' 2' 4' To' 100 1 also that 3 is about 0.33. 

Be able to convert fractions to decimals with the 

help of a calculator". 

However, the higher attaining pupils should not be limited 

to these concepts but should be introduced to the whole range 

of fractions especially those who would be studying higher 

mathematics. Some of the ideas that follow therefore, are 

mainly aimed at this ability group. While the emphasis for 

the average and below average ability group is on understanding 

the concepts behind easier fractions. Hopefully, some of the 

examples are interesting and worthwhile in their own right. 

After the idea of EQUIVALENCE has been introduced, it may be 

verified by using the calculator. Once pupils are convinced 

that a principle is true, and a calculator is a powerful tool 

to this end, they are more inclined to try to understand and 

learn the principle. Thus, 

15 1 .875 and 8 = 

1 5 x 7 105 
- = 1.875 

8 x 7 56 

and the pupils are convinced that the two 

same size. Conversely, they may be asked 

and to find a rule for themselves. 

fractions are the 
2 10 14 

to check 5' 25' 35 etc. 

Equivalence is fundamental to comparing sizes of fractions with 

unequal denominators and addition of fractions. The following 

questions may be set and verified with the calculator: 



'Using the four numbers 2, 5, 7, 9 

(a) Write as many fractions as you can (you may use 

a number more than once) 

(b) Which fraction is the smallest? The largest? 

(c) Which fractions are less than 1? Greater than 1? 

Equal to 1? 

(d) Which fractions are equivalent? 

(e) Write down the fractions in order of size.' 

After ADDITION of fractions has been introduced with the aid 

of equivalence, practice with more interesting problems may 

be achieved by posing problems of the following type: 

(1) Arrange the numbers 5, 6, 7, and 8 into two fractions 

that will give 

(a) the largest sum 

(b) the smallest sum (Do not use any number 

more than once) 

(2) Consider the following sequence of numbers 
1 1 1 1 

1'2'4'8'16' etc. 
(a) Add the first two numbers in the sequence 

(b) Add the first three numbers in the sequence 

(c) Add the first four numbers in the sequence 

Do you begin to see a pattern? . 

(d) Predict the sum of the first ten numbers in 

the sequence. 

Dubisch/Hood (1979) provide many similar exercises. 

By considering the area of a rectangle, the rule for MULTIPLICATION 

of fractions can be developed, that is, 

a c 
b x d 

again, we can use a calculator to check this rule. For example, 
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to check that 

~ x § = ~ ~ ~, check on the calculator 

that ~ = 1.1666667 and § = 1.6666667 

so ~ x § = 1.666667 x 1.6666667 = 1.9444445 

on the other hand, 

7 5 
6 x 3 

7 x 5 35 
= bx3 = 18 = 1.9444444 

The small difference in the answer may provoke some discussion, 

another desirable feature of calculator usage. 

After the procedure for MULTIPLICATION OF MIXED NUMBERS has been 

explained and verified on the calculator, the more-able pupil 

may be able to discover a method of multiplying without recourse 

to changing to improper fractions first. For example, 

22 x 14 8 x 9 44 or 4.8 (on the calculator) 35= 3 5 = 5 

alternatively, 

2 
23 x 

4 
15 = (2 + 3)x (1 + ~) 

= (2 x 1) + (2 x ~) + (3 + 1) + (3 x ~) 

= 2 + 8 
5 + 

2 8 
3 + 15 

= 4.7999999 (on the calculator) 

Again, the small difference in answers should provoke the 

question: Is 4.8 the same as 4.7999999? 



The usual rule for division of fractions, ~ ~ ~ 

may also be easily checked on the calculator. 

To check, 

28 17 28 27 
93 27 = 93 x 17 

= 0.47817836 

a d 
= b x c 

For example, 

28 . 17 
93 ~ 27 = .30107526 .62962962 = .47817836 

It may be shown also that 

a c a .;. c 
b Cl = b.,. d 

with the above question, although it does not usually tell 

us what the answer is as a fraction. 

Similarly, it may be shown, for example, that 

rather than 

2~ is equal to 
5 

( 3 !. 2~) + (~ . 5 3 

(a) (3.;. 2) + <; .;. ~) or 

(b) (3; ~ 2) + (3; .,.~) or 

(c) (3;'; 2) + ~ 

In the C.S.M.S. tests 35% of pupils opted for (a) and only 

5.1% of 15 year olds chose the correct anSWer. Although it 



was recognised that if they had been asked to do the computation, 

the children may have used an algorithm which gave a correct 

answer, but the 35~ certainly did not check the correspondence 

between this verson and the rule. 

To test the ingenuity of the pupils, they may be asked to find 

the value of ~ + ~ on the calculator without using the memory 

or writing down an intermediate value. Of course, a simple 

calculator cannot cope with the task as it stands but if it 

is rearranged as 

it can be dealt with, usually with the key sequence 

Can the method be extended to a sequence of fractions, involving 

either addition or subtraction i.e. 

ace + etc? b :!: d :!: f -

Careful thought will show that it can. For example, 

8 
§ + 

9 

x 9 

9 

2 
3 

+ 

Possible with key sequence 

may be rearranged as 

2 
'3 

+ 3 

5D709~8G9D3G2QJ3G 

4-0 



A more interesting exercise involves manipulation with CONTINUED 

FRACTIONS. The child gains practice with several skills of 

fractions and is also required to predict a pattern from the 

results. The calculator becomes useful for converting the 

fractions to decimals so that the child may concentrate on 

the manipulation and predictions themselves. 

An example of a continued fraction is 

1 + 2 

+ 2 

+ 2 

1 + 

The exercise,illustrated by Green (1981), is to calculate 

each stage as follows: 

( 1 ) 

(2) + 2 = 3 
1 

(3) 1 + 2 = 1 + 

+ 2 

+ 2 = 

+ 2 

+ 2 

(5) + 2 = 

+ 2 

+ 2. 

+ 2 

4-1 

2 
'3 

+ 2 

+ 2 

3 

11 

= 1.0000 

= 3.0000 

.". 1 • 667 

= + 2 = + 6 = 2.2000 

,5 

3 

5 



(6) + 22 '>< 2.048 

21 

+ 42 '>! 1.977 

43 

(8) + 86 '>! 2.012 

85 

The children may then be asked to PREDICT the next few results 

by spotting a pattern in the fractional part: 

Double previous denominator + 2 THEN Double - 2 

Double previous numerator - 1 Double + 

A check may be desirable. 

Some may also spot that the decimal answers are getting closer 

and closer to 2 and a reasonable conclusion is that: 

+ 2 = 2 eventually if enough stages are taken. 

1 + 2 

+ •.•• 

Further investigations for rules or patterns may be carried out 

such as: 

(2) 3 + 4 

2 + 3 3 + 4 

2 + 3 3 + 4 

2 + .... 3 + ..•. 



+ 1 

+ 1 2 + 1 

+ 1 2 + 

1 + .... 2 + .... 

It is surprising how much interest is generated by this type 

of investigation, and the next section will illustrate how 

the pupils' enthusiasm and energies may be nurtured by an 

experienced and sympathetic teacher. 



A CLASSROOM INVESTIGATION INTO RECURRING DECIMALS 

Most mathematics teachers would agree that some of the most 

successful lessons spring up from unexpected questions (and 

sometimes unexpected interest) during routine lessons. It 

can be most rewarding if the teacher allows a particular line 

of enquiry to continue and even branch out as long as interest 

is maintained. This was the particular experience of David 

Wiseman, Head of Mathematics at a Hertfordshire secondary school, 

during a routine fractions lesson with an average ability third 

year form. He gives a full account of how the topic developed 

and the questions and reactions of his pupils in a series of 

articles for Hertsmaths (1981-2). The initial work can be 

done without a calculator, but a calculator allows the lesson 

to proceed more fluently and quickly. This is particularly 

important with a low ability class who are more likely to make 

computational mistakes and so miss the main point of the 

exercise. BoredJm and frustration are likely to follow unless 

a calculator is used at an early stage. 

In short,it all began when he was discussing the decimal 
112 122. 1. 

equivalence of 2' 4' 4' and subsequently 8' 8' 8' and 8 w~th 

3rd year set 4. 

They worked out i and ~ by "dividing the bottom into the top", 

but one boy, of his own accord, decided to try t and with a 

mixture of worry and excitement exclaimed "it keeps going on". 

This all too rare opportunity in the class for child-initiated 

discussion led to other children trying other f~actions and 

resulted in: 

J. = 0.3333 
3 

~ = 0.6666 
3 

J. = 0.1666 
6 

2. = 0.8333 
6 



The word 'RECURRENCE' was then introduced, and although they 

surprisingly refused the aid that, for example, 

_
2 = 1 2 x - = 2 x 0.3333 = 0.6666 
3 3 

all members of the class found decimal equivalents of each 

member of the 'ninths family': 

1 
9 = 

£ = 
9 

.2 = 
9 

0.1-111 

9) 1 .0101010 

0.2 2 2 2 

9 ) 2.0202020 

A reinforcement of fractional 

when a few realised that ~ = 

equivalence was experienced 
1 
3 . 

Some children noticed the pattern in the remainders, and as 

this particular class had already done some work on "Clock" or 

"Modular" Arithmetic, the explanation for the increasing size 

of the remainder was given by reference to the module NINE clock: 

10 (mod 9) 

20 2 (mod 9) 

30 3 (mod 9) 

etc. 

A homework assignment on the elevenths family resulted in 

excited discussion during the following lesson: 

4S 



~ .1. = 11 = 11 1.0010010 
11 

0.1 8 1 8 1 
.f. = 2 .:.. 
11 

11 = 11 2.090209020 

2. = 3 11 
11 = 11 

.1 = 4 11 = 11 
11 etc. 

Again patterns were observed in the remainders and relationships 

between digits in the quotients and remainders. These observations 

may be explained through knowledge of Modular Arithmetic. 

It was during the following term that David Wiseman was asked 

the question "When can we do some more of those divides that 

go on, Sir?" 

After a rapid revision of the previous lessons, a discussion 

arose as to a suitable notation to save both time and space. 

Several ideas were put forward by the pupils, but finally 

they agreed to adopt the familiar "dot" above the recurring 

number, or numbers, symbol: 

e.g. 0.1666 ••.• = 0.16 and 0.272727 ...• = 0.27 

This invitation to the children to devise their own shorthand 

helps them to recognize the importance of a clear unambiguous 

but concise notation. One pupil coined the phrase "dotty 

number" and another pupil asked whether it was possible to 

get a "dotty number", in which more than two digits recurred. 

It was decided to investigate the family of sevenths. Although 

it takes longer, it is again more fruitful to find each recurring 

decimal by division (and leave the calculator for checking) as 



there is an additional pattern in 

also worthy of analysis. 

1 
7 = 7 

1. = 7 
7 

.2. = 7 
7 

.1 = 7 
'7 

.2 = 7 
7 

.§. = 7 
7 

0.1 428 7 1 
1.0302060405010 

0.2 8 1 4 2 
.0604050103020 

0.8 1 2 8 
.0405010302060 

the remainders which is 

= 0.142857 

= 0.285714 

= 0.428571 

= 0.571428 

= 0.714285 

0.857142 

Nearly all pupils discovered that each fraction recurred in 

a cycle of six, and that each decimal equivalent used the same 

digit; 1,4,2,8,5,7 and in that order. Only a few discovered 

a similar recurring decimal in the remainders; 4,5,1,3,2,6. 

An explanation may be given to the pupils in terms of "modular" 

arithmetic. 

For example, the cycle of six can be explained in terms of 

the set of possible remainders 1,2,3,4,5,6 when we divide 

unity by seven. At each stage of the division one of these 

elements is the remainder. Once all the members of this 

set have appeared as the remainder, then one of them appears 

again. 
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MODULO SEVEN REMAINDERS 

10 "" 3 (mod 7) 
• • 

(mod 7) 30 - 2 
+ . 

20 - 6 (mod 7) 
6t 

, 
~ 4 (mod 7) 

5 1 .. , 
40 - 5 (mod 7) 

Ij. 3 
50 - (mod 7) 
10 - 3 (mod 7) etc 

COUNT ROUND 1 0 

Further, this suggests that if the remainders are re-arranged 

they will form an arithmetic sequence in modulo seven: 

o 

3,6,2,5,1,4 ------...."--
+3 +3 +3 +3 +3 

What number completes the cyclic 

sequence? Why? 

Does the recurring cycle 1, 4, 2, 8, 5, 7 .... form an arithmetic 

sequence? If so, in which modulo? 

OR 

x 7 ; 7 (mod 10) 
7...!--4~1.!..-80!..3 2 x 70=4 (mod 10) 

+7 +7 +7 +7 +7 3 x 7 = 1 (mod 10) 

4 x 7 = 8 (mod 10) 
5 x 7 ~ 5 (mod 10) 

6 x 7 0= 2 (mod 10) 



How does this sequence continue? Why do only the first six 

members of the sequence occur in the recurring cycle? 

Finally, one observant pupil noticed that with ~ there is a 

connection between the first four digits: 

Le. 0.1428 

28 = 2 x 14 

Is there any interest in this? 

.14 
28 

56 
112 

224 
ADD 448 etc • 

• 1428571428 .•....•. 

And so the decimal equivalent of ~ is obtained another way. 



"What about the twelths?" asked Nigel. 

Wiseman was able to show the class, through a question and 

answer exchange, that each member of the twelths was in fact 

related to families already considered. 

.1. _1_ 
12 = 2 x 6 

.!. of.1. = 
= 2 6 2 

0.0833 
0.1666 

1. .1. 
12 = 6 = 0.1666 ... = 0.16 

.2 
12 

.1. 
4 = 0.25 

f2 = -3- = 0.3333... = 0.3 

.2 = 
12 

1 
5 xi2 = '5 x 0.0833 ... = 

= 0.083 

0.416, etc. 

It was established that the thirteenths was the next family 

unrelated to any previous as were the thirds, fifths, sevenths, 

elevenths. So a valuable reinforcement of the concept of 

PRIME NUMBERS developed. 

The class then began to find the decimal equivalent of the 

thirteenths family, and it is at this stage that a calculator 

would prove invaluable. However, the divisions still had to 

be done by long hand because the remainders were required, 

but with the assistance of the calculator. 

13 

Notice the cycle of six in the decimal equivalent: 

ro, 7, 6, 9, 2, 3} 

5"0 



and, as you would expect, a matching cycle of six in the 

remainders: 

19, 12, 3, 4, 1, 10} 

£ 
13 

0.1 8 6 1 

13 2.07050110608020 

with cycle {1' 5, 3, 8, 4, 6} 

= 0.153846 

Discussion followed about other possible cycles for 

.2 = 
13 

0.2 0 7 6 2 

13 3.040101009012030 = 0.230769 

1 Which has the same cycle and remainder cycle as 13 

What about r:? Would this have the same cycle as ~ ? 

After only 3 steps: 

14 

an excited voice rang out "It's part of the first cycle. It's 

like 0 
The class Were then able to write in the remaining figures 

with further division from: 

{0~7~6, 9, 2, 3} 
~ 

so ± = 0.307692 
13 

"I wonder whether any other members of the thirteenth family 

have a decimal equivalence belonging to the second cycle, 

1, 5, 3, 8, 4, 6? 11 

51 



The investigation continued and pupils' answers pooled to discover: 

1 .2 .! .!L1Q 
1313131313 

and 1£ had cycle pattern 
13 

!--*----Il 

with remainder cycle 

while 

£ 2 £ ~ § and 
1313131313 

11 had cycle pattern 
13 

!-_*_--I S 

with remainder cycle 

Other questions which may be investigated: 

Why are there two and only two cycles? 

Can you detect any syrnmetries in the 'bicycle' pattern? 

Explanations can be given again in terms of modular arithmetic. 



Further, it is interesting to note that the decimal equivalence 

of ~ can be obtained in a similar kind of way to t 

7 

7 x 9 

7 x 92 

7 x 93 

7 x 94 

7 x 95 

= .07 

= 
= 
= 
= 
= 

63 

567 

5103 

45927 

413343 

.0769230 .... 

It was at this stage that the classroom investigation was 

curtailed. However, there is usually one enthusiastic pupil 

who has become gripped with the work and he may be encouraged 

to continue with the 'seventeenths' and 'nineteenths' families 

on his own. 

~ = 0.0588235 2941176470 

but as there is no special merit in continuing a study of 

remainders by long division, the work may proceed much more 

quickly with the calculator doing all the computation. 

The result raises interesting questions such as: 

Why do you get a sixteen digit cycle? 
2 

Would 17 reproduce the same cycle, or would a 

second cycle appear on the scene as is the case of the thirteenths 

family? 

For t7 the Texas T. I. 30 calculator displays 

0.1176471 I ' 



and predictiong and checking for ~ and ~ would continue 

until the sixteen members of the cycle are confirmed. 

It is then easy to write down the decimal equivalents of the 

other members of the family of seventeenths without doing any 

more working: 

f7 = • 2352942276470588 

~ = • 2941176470588235 

~~ = .9411764705882352 

These results could be summarised in a table and this is 

illustrated with the family of nineteenths working on the 

assumption that there is only one cycle and this has 18 digits 



CALCULATOR DISPLAY 

1~ = 1.1052631 

.2 
19 = 1. 15789471 

i = .2105263\ 19 

OBSERVATIONS 

052631 belongs to 
the cycle. The 
ini tial "1" may be 
final digit of 
cycle 

.. 15 .• could 
belong to the 
cycle 

Since the cycle 
begins 05263 
it must end 
wi th 21 

T 

CUMULATIVE DEDUCTIONS 

.052631 .•. 

.052631578947 ••. 1 

.052631578947 •.• 21 

To find these four digits 

0.9 was tried next. 

j§ 
19 

which is approximately equal to 

j§ 
19 = 1 .94736841 947 must be 

followed by 3684. 
Since there are 
18 digits in the 
cycle it suggests 

1. = 
19 

.052631578947368421 

To check ~~ = 1.84210521 and the result Was confirmed. 

Other members of the family could now be written out without 

difficulty. 

Finally, in a similar way the calculator, rather than long 

division, can be profitably used to find the two cycles of 

the family of thirteenths. 



The topic of recurring decimals has long fascinated teachers 

and pupils alike and many interesting accounts 

such as Beldon 

of their exper

(1975, pp 38), iences may be 

Hewi tt (1982, 

pp 54). 

found in articles 

pp 48), Pallister (1978, pp 53), Ounsted (1978, 

The calculator, therefore, has enabled this type of investigation 

to become accessible to many more pupils than otherwise would 

have been possible. In return, it gives useful calculator 

practice and provides one of the many different opportunities 

for children to appreciate the power and limitations of this 

computational device; reinforcing, for example, the fact that 

many of its answers are approximate rather than exact. 

To conclude with a quote from F.R. Watson (1979) 

" ..... most pupils can be lead to an interest in 

the properties of numbers, provided the associated computational 

effort involved is not excessive. An important aspect of 

mathematics, and one the pupils find attractive, is the 

search for pattern and regularity". 



PLACE VALUE AND DECIMALS 

The aims of this area of the C.S.M.S work was to find whether 

children could meaningfully use the base-ten place-value 

notation for both whole numbers and decimals, in the sense 

of both understanding how it worked and applying it to appropriate 

situations. The study concentrated on the area of decimals since 

most children in the 11 - 15 year age group were expected to 

have a reasonably sound basic knowledge of whole numbers. 

There was a major problem in trying to differentiate between 

the relati.onal' understanding of properties of number, and a 

mere 'instrumental' ability to carry out a technique. 

An important conclusion arrived at by the team was that the 

learning of whole numbers and decimals is not just a matter 

of recalling some place-names and a few rules of computation. 

Indeed the children who did rely blindly on the rules more 

often misapplied them than not. 

Instead it involves internalising a whole chain of relation

ships and connections, some with place-structure itself (e.g. 0.9 
is equivalent to 0.90); some linking to other concepts like 

those of fractions (e.g. the notion of one hundreth and its 

relationship to one tenth); some visual correspondences and 

some connecting to applications in the 'real' world. 

In the interviews, the weakest group of children displayed only 

a tenuous grasp of place value when asked questions involving 

adding one to 161319191 (with answers such as 10161311 p 01 
and 10\6\419\91 ) and to adding ten to 3597. Writing and 

verbalising large numbers also caused problems with some children. 

and although the calculator's visual display can help with 

these concepts, these children still need other visual models 

to bring out the relationships in a more concrete way. 
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More problems were found with the concept of decimals and some 

children had difficulty in understanding that the figures 

after the point indicated the part of the number which was 

less than one unit. This came out with answers to the questions 

Ring the BIGGER of the two numbers: 

0.75 or 0.8. 

Why is it bigger? 

Ring the BIGGER number: 

4.06 or 4.5 

Ring the number NEAREST IN SIZE to 

0.18 iY 0.1 / 10/0.2/ 20/ .01 / 2 

The interviews revealed some weaknesses in comparing the sizes 

of 4·9 and 4.90, adding one-tenth to 2.9 (typical 

answers 2.19, 2.10), and multiplying 5.13 by 10. In 

the latter case, the rule for whole numbers was usually known 

(add a nought) but wrongly applied to decimals resulting in 

answers such as 5.130, 50.130. 

There seemed to be a marked reluctance to admit that the answer 

to the division of one whole number by another might be 

expressible as a number containing decimals, or even one 

containing fractions. This difficulty surfaced in the responses 

to questions such as: 

"Divide by twenty the number 24", and dividing a 

smaller number by a larger one caused even more problems: 

"Divide by twenty the number 16" 

Over 5<:% of 12 year olds responded "there is no answer" to 

the latter question, although this reduced to 23% for 15 year 

olds. This may arise because you cannot share fairly 16 

sweets among 20 people. 



It was also clear that the idea that "multiplication always 

makes it bigger, division always makes it smaller" was very 

much entrenched. The question below illustrated this: 

Ring the one which gives the BIGGER answer 

(a) 8 x 4 or 8 4 

(b) 8 x 0.4 or 8 0.4 

(c) 0.8 x 0.4 or 0.8 .;. 0.4 

A reasonable response was given to the question: 

"Write down any number between 0.41 and 0.42" 

(37% correct from 12 year olds to 71% for 15 year olds), 

but the poorest response of all items resulted from the 

question: 

"How many different numbers could you write down 

which lie between 0.41 and 0.42? 

It is important that all mathematics teachers should be familiar 

with the misconceptions and mistakes that children make which 

have been highlighted here. The advent of the calculator will 

obviously make children more familiar with decimal represent

ation, but without careful structuring of the work it may just 

be used to produce meaningless answers which can be copied 

down faithfully to eight decimal places. The calculator 

may be used effectively by allowing the pupil to use it to 

generate output, with the purpose that the output will demonstrate 

a concept or relationship, or with the actual generation of 

the output serving to help reinforce a concept which has been 

taught previously. 

Several of the problems encountered in the C.S.M.S. tests 

might be overcome by using the calculator for concept

reinforcement. At a very basic level after the number system 

has been introduced by using a concrete method such as Dienes 

base 10 blocks or even just squared paper divided, the relation

ships between adjacent columns could be reinforced by successive 



division by 10. For example, 

1000 10 = 100 

100 . 10 = 10 

10 10 = 

10 = • 1 

• 1 10 = .10 etc. 

or by multiplying by 10 

The number 273.4894 may be written in expanded notation as 

200 + 70 + 3 + 0.4 + 0.08 + 0.009 + 0.0004 

and then actually performed on the calculator. 

Other difficulties which arose may be approached in a similar 

way or by carefully guiding the pupil to a desired result using 

the technique of concept-demonstration: 

What happens if you multiply 8 by 3, then 8 by 1, 

8 by .2, 8 by .06 etc? 

Then concept-reinforcement may be used to check other numbers 

multiplied by a number less than 1. This concept may be illus

trated by WHIRLPOOLS. 

What happens to the answers? 

Go round the whirlpool on your 

calculator. Multiply the numbers 

together: 

1.7 x 0.8 x 1.1 x 0.3 x 1.7 x 0.8 x 

and so on. 

Sometimes the answer increases and sometimes decreases, but 

the answer shrinks eventually. 

Follow the whirlpools: 

0) O.q~ h) H 
c) (~'l '\ r~ ~ ,·1 o·q o·!; 

l'~ /·7 

V ~O'I~ O'7~ 
For each, say whether the answers grow or shrink eventually. 

~o 



First estimate whether the answers will grow or shrink and then 

check using your calculator 

0'& ,.\ 

Similarly for dividing by a number less than one; dividing a 

number by a larger number; and developing rules for multiplying 

and dividing by powers of 10. 

The calculator may also be of some help when comparing the 

size of numbers involving decimals, for example, 4.75 and 4.8, 

by subtracting the chosen smaller from the chosen larger. 

A plus sign shows a correct answer and a negative sign an 

incorrect answer. If the answer is incorrect, interest may 

be stimulated in the pupil to discover why. 

At a higher level, the traditional approach to decimal multi

plication is to show how the multiplication is done by a 

number of examples in which the decimal fraction is first 

converted to the standard fraction representation with den

ominators of ten, hundred etc. The examples are used to justify 

the rule regarding the placement of the decimal point. Thus, 

the usual pedagogical se~uence is first to justify the new 

rule and then actually to implement it in practice with decimals. 

Some pupils overlook the justification stage and tend to 

concentrate on memorizing the rule often with disasterous 

effects. An alternative approach could be to first ask the 

pupils to look for a pattern when the calculator is used to do 

some calculations (discover a rule), then justify the result 

with a few, well-chosen examples, and then practice. In other 

words, using the calculator for concept-demonstration -

Johnson (1978), particularly illustrates this approach. 



The emphasis is on finding the pattern and then asking why it 

works. 

Use your calculator to find the products: 

84 x 0.2 

0.9 x 0.7 

4.5 x 0.8 

4.3 x 2.7 

0.04 x 0.35 

1.33 x 4.75 etc. 

None of the items should have a zero in the trailing digit 

in one of the factors, or a 5 as a trailing digit when the 

other factor has an even number as the trailing digit. 

The class may then arrive at, or be guided to, a generalisation 

about the placement of the decimal point, further ~xamples 

given as a check and then the justification given. For example: 

Now try the following with your calculator: 

3.54 x 0.45 

146 x 0.35 

4.70 x 0.60 

Does your rule still work? What's wrong? 

This is used to help reinforce the idea that the rule still 

holds as the calculator suppresses the trailing zeros in the 

result. Also this reinforces the idea that two-tenths is 

twenty-hundreths (further reinforced by converting fo' 1~~ , 
200 ) 1000' etc. on the calculator • 

Some calculator games have the potential for a very real 

contribution to the learning of mathematics, especially for 

concept-reinforcement in the field of decimals. One such 

game is Wipeout. 

The game involves entering a given number, with all digits 

different, and then asking the pupils to use subtraction to 

remove the specified digit (i.e. replace it with a zero) 



without changing any other digit in the number. For example, 

if the game is used to reinforce concepts of place-value, one 

might start with something like 749.65128 and ask pupils to 

remove the 2 and then the 5 and so on. This reinforces place

values, since to remove the 2 requires the subtraction of .0002. 

It is important that the game is complemented by other forms 

of place-value practices as it could become a rote activity. 

Other calculator games will be demonstrated and discussed in 

a later chapter. 

The C.S.M.S. Project team conclude that pencil and paper 

computation techniques with complicated whole numbers or 

decimals are no longer essential, but anyone who understands 

enough about decimals to be able to use a calculator sensibly 

should be able, given time, to work out most of the 'rules' 

from first principles anyway, as a number of children managed 

to do during the interviews. 

"It is certainly to be hoped that the presence of 

calculators will shift the emphasis from routine techniques, 

which did not seem to be performed very reliably, to the 

understanding of the principles, especially since this latter 

aspect seems to have been neglected at secondary school level 

in this particular area" (Hart, 1981 pp. 65) 
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------------------------------------------------------------~ 

THE ORDERING OF OPERATIONS 

The suggestion has been made by Booth (1981) and by Hart (1981) 

that part of the difficulty which some people experience in 

mathematics is due to their use of intuitive "child-methods" 

which, while being adequate for the "easy" questions, do not 

generalize to the "hard" ones. One of the consequences of 

the intuitive approach is that you do not have to be so 

rigorous in what you write down, since this is always to be 

interpreted in terms of 'common-sense', or in terms of the 

context of the question. Consequently, as Brown (1981) points 

out, in answer to the question: 

A bar of chocolate can be broken into 12 squares 

There are 3 squares in a row 

How do you work out how many rows there are? 

12 + 3 

6 + 6 

3 x 4 
12 - 3 

12 x 3 

12 - 3 

3 - 12 

3 - 12 

for children operating in this way, there is no ambiguity 

between 12 7 3 and 3 7 12 since the context has determined 

the meaning of the expression. Either way meanS "the number 

of 3's in 12". (However, entering both expressions in the 

written order on a calculator will, of course, produce differ

ent answers.) 

Further, Kiernan (1979) remarks that such an approach also 

eliminates the need for such rules as "order of operations" 

and "use of brackets", since the obvious thing to do with 

3 x 2 + 4, for example, is to work it out the way it comes, 

unless, of course, the context requires that the addition be 

done first, in which case the expression means 3 x (2 + 4) 

and not (3 x 2) + 4. However, where the child is concerned, 

there is no need to actually use brackets to indicate which 



interpretation is intended for the meaning is defined by the 

question. If the child can handle many problems without 

worrying about conventions for ordering operations or brackets, 

one might ask how important a knowledge of these conventions 

is. Since algebraic operations such as x + y cannot be 

'performed' in the sense of being replaced by a single value, 

any need to record a sequence of operations immediately requires 

consideration of these conventions. If the child has not seen 

the need for them in arithmetic problems, it is perhaps unlikely 

that he will concern himself with them in generalised arithmetic. 

The S.B.S.M. Project (1982) uncovered this possibility when 

investigating the mistakes that children make in beginning 

algebra or 'generalised arithmetic'. Forty-eight second, 

third and fourth form children from middle mathematics streams 

were interviewed and were posed questions of the type: 

(1) What can you write for the area of this rectangle. 

3,--1 -;;;-'" --+1 .......--'4 l 
k + 2 by 3 Multiply 

Which of the following can you write for e + 2 

multiplied by 3? Tick everyone you think is 

correct. 

e + 6 

3 x e2 

3e + 6 

none correct 

e + 2 x 3 

Over one third of the children interviewed could explain how 

questions 1 and 2 were solved, but only one realised that it 

was necessary to use brackets in recording the answer. The 

remaining children recorded their answers as: 

m + 4 x 3 or 3 x m + 4 and 

3 x k + 2 or k + 2 x 3, 



even though they stated that each problem required the addition 

to be performed first. In question 3, only one child selected 

both bracket expressions and nothing else. Some children 

answered "you can put the brackets in if you want, its just 

the same", while others excluded them altogether because 

they did not know what they meant. 

Consequently, if we do in fact require children to have an 

understanding of these conventions (and for those children 

who are going to be taught algebra such conventions may be 

essential), then it would seem that we must first address 

ourselves to the problem of creating an awareness of the 

need for such conventions. The calculator can prove a useful 

aid to understanding this need and provides a useful source 

for practicing the conventions. 

The class may be asked to work out 5 + 4 x 3 mentally and then 

on the calculator. This is one occasion when different types 

of logic, algebraic and arithmetic, on different calculators 

would prove an asset. It soon becomes obvious to the class 

that some rule must be formulated to avoid ambiguity. 

The other rules may be built up in a similar way culminating 

in the overall M.D.A.S. convention (sometimes recalled as 

'My Dear Aunt Sally') Brackets may then be introduced to 

emphasise the M.D.A.S; rule, but the problem of using the 

calculator for expressions such as (173 x 42) - (1638 + 234) + 

(427 x 14) must be discussed. 

Some basic calculators now offer brackets (or parenthesis) 

either singly or multiple nested, which act as a form of 

memory, storing operands and pending operations. This means 

that expressions are evaluated properly before being combined 

with other expressions. However, if these keys are not 



available then the memory may be used. For example, 

(3 x 4).+ (5 x 6). Wo.uldiegrre: 

3 GJ4 QISTO L~Q6+ I RCLIGl 

If the memory was not available then the result of each bracket 

would have to be written down first before the final answer 

could be achieved. It may even be desirable to use this latter 

method first even if the calculator does have a memory for 

the emphasis is on use of brackets and ordering of operations. 

Children at this stage may not be familiar with the use of the 

memory. 

When the N.D.A.S. rule needs to be broken, then the use of 

brackets becomes essential (the BONDAS convention may now be 

introduced). Further calculations should be tried, firstly 

by writing down an intermediate answer from the brackets, and 

then the final answer calculated, and secondly by writing 

down the final answer only. For example: 

(279 - 142) x 15 

28 x (192 + 45) 

(372 + 639) '" 55 

43+17x8 
51x16-13 

The check without memory may seem tedious, but at an early 

stage, it may be necessary for the confidence of the child. 

A third kind of check involves ESTINATION, and this process 

is important in its own right, since we are very often not 

so much concerned with the exact answer as we are with an 

approximate answer: the distance is about 50 miles, the 

tank will hold about 50 gallons, etc. That is, learning 

to estimate is useful in general as well as an aid in detecting 

any major errors in computation as already discussed. 



All students should be asked to check the validity of the two 

basic properties of addition and multiplication: the commutative 

and associative properties, by comparing results using the 

calculator. At some later stage, they should compare answers 

to questions such as: 

Compute 352 x (1894 + 693) 

and Compute (352 x 1894) + (352 x 693) 

Clearly, the first is easier to compute than the second and 

this leads to establishing the usefulness of another basic 

property: the distributive property of multiplication over 

addition. In general, for any numbers a, b, c, 

a x (b + c) = (a x b) + (a x c) 

Also by the commutative property of multiplication, we have 

(b + c) x a = (b x a) + (c x a) 

By devising suitable numeric examples, other properties which 

are used to simplify calculations, can be validated by checking 

a given result or even encouraging the student to discover the 

propert himself. For example, 

a - (b - c) = a - b + C 

a - (b + c) = a - b - c 

(a + b) ~ c = (a c) = (b c) 

Dubisch / Hood provide a rich source of suitable material to 

demonstrate these basic principles. 

The calculator, then, provides a useful teaching aid to the 

topic 'ordering of operations', on the other hand, it becomes 

apparent that the topic itself has become even more important 

because an understanding of it is essential to the proper use 

of the calculator. 



GROWTH AND DECAY - AN APPLICATION OF THE CALCULATOR 

How money grows. 

A study of annual interest rates and compound interest can be 

a useful introduction to develop the idea of a growth factor 

and to exhibit the power of the calculator in evaluating 

exponential growth. Interest rates are a common feature in 

the high-street windows of banks and building societies and 

are prominent in their press advertisements. 

The work can be aimed at third year and above and assumes 

some experience of percentages and their decimal equivalents, 

simple sequences, indices and formation of simple algebraic 

formulae. 

After practice with simple interest rates for one year, followed 

by calculating compound interest rates one year at a time using 

the calculator, the results may be displayed as a sequence of 

growing amounts of money: 

£200 ~ £224 4 £250.88 4 £280.99 4 

To search for a pattern of change from one number to the next 

two different plans may be tried: 

Plan 1 uses subtraction: 

224 - 200 = 24 

.250.88 - 224 = 

280.99 - 250.88 

26.88 

= 30.11 

These results give the interest for successive years but do 

not suggest how you might continue the sequence after £280.99 

(,9 



Plan 2 uses division Ca calculator is a great help here) 

224 ~ 200 = 1.12 

250.88 

280.99 

224 = 1.12 

250.88 = 1.12 

The questioning may continue as follows: 

What number should you multiply £224 by to get £250.88 ? 

Continue the sequence beyond £280.99 and calculate 

the number of years it takes to almost double £200 with an 

interest rate of 12% per annum. 

What interest rate would produce this sequence? 

£125 ~ £135 ~ £145.80 ~ ? 

Can you explain this sequence: 

£75 ~ £84 ~ £96.60 ~ £115.92 i ? 

(Change of interest rate) 

The amount at the end of any year can be calculated by repeated 

multiplication by a constant GROWTH FACTOR. 

For an interest rate of 15% the growth factor is 1.15, for 

13~ it is 1.135, for 81% it is 1.0875 and so on. 

For a principal of £200 and a 12% p.a. rate of compound 

interest, the pattern of growth can be seen from: 

£200 - multiply by (1 .12)1 ~ £224 after 1 year 

£200 - multiply by (1.12)2 7 £250.88 after 2 years 

£200 - multiply by (1.12)3 ~£280.99 after 3 years 

£200 - multiply by (1.12)7 ~ £442.14 after 7 years 

and so on. 

Further questions to consider: 

Make a formula for calculating the amount after n years 

Make a formula which applies to any principal £P and 

any growth factor R. 

10 



Growth Factors and Decay Factors. 

The compound interest formula 

Amount after n years = Principal x (Growth Factor) 

introduces the formation and use of growth factors and now the 

idea of a decay factor may be explored. If scientific calculators 

are being used it is worth paying some attention to the use of 

a yX key (or its equivalent), and where a calculator result 

is to be followed by a realistic approximation, it is a good 

idea to ask pupils to mark the calculator result in some way 

e.g. ~ 

A growth factor is always greater than 1. 

e.g. 1.12 (= 1 + 0.12) for a 1~ rate of growth 

or appreciation. 

A decay factor is always less than 1. 

e.g. 0.88 (= 1 - 0.12) for a 1~ rate of decay 

or depreciation. 

Further exercises highlight the differences between growth 

and decay factors and introduce everyday terminology associated 

with them: 

(1) If inflation runs at s% p.a. for the next 

five years, how much would I expect to pay at the end of that 

time for a leather coat which costs £50 now? 

(2) What value would a £1 note have, under constant 

devaluation of 1~ per year after 10 years? 

(3) A car depreciates in value by 30% in its first 

year and then by 20% in each year after that. What % of its 

value at new will the car have after 5 years? 
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Regular Savings 

Many children will be saving regularly with a building society 

using the idea of the sum of a geometric progression. If there 

are n payments of £P each, and interest is added at a rate 

of R%, then the final amount is: 

dE + 1~dn -0 
··~--\--"--'-;'R:-""---~) 

100 

The power of the calculator may be used to combat formidable 

but impressive formulae such as the modification of the above 

formula when interest is compounded more frequently than 

annually: 

Amount = p0 + ~ 
R ~2n/k 

ek + 1) R~ 1 + 100 
2 x 10<;) L 

100 

where k is the number of months before compounding occurs. 

(Green and Lewis, 1978 pp. 77) 

Regular Payments 

Many children would have heard of a repayment mortgage, for 

a house purchase, and, although it would not be of any immediate 

practical significance, the calculator provides another opp

ortunity for the more-able child to take advantage of the 

challenge of following its workings. 

For example, payment per year for a loan of £5000 

at st% for 25 years may be built up as follows: 

Year 1 Amount owed = 5000 

Amount plus interest = 5000 x 1.085 

Repayment = A 



Year 2 

Year 3 

Year 10 

Year 20 

Amount owed = 5000 x 1.085 - A 

Amount plus interest = (5000 x 1.085 - A) x 1.085 

= 5000 x 1.0852 - A x 1.085 

Repayment = A 

Amount owed = 5000 x 1.085
2 

- A x 1.085 - A 

Amount plus interest = (5000 x 1.085
2
- A x 1.085 

- A) x 1 .085 

Repayment = A 

= 5000 x 1 .0853 - A x 1 .085
2 

- A x 1.085 

5000 x 1.0859 - A x 1.0858 - ..... - A x 1.085 - A 

19 18 5000 x 1.085 - A x 1.085 -. .. - A x 1.085 - A 

The end of the 25th year must see the loan completely repaid. 

The amount at the start of the 26th year must therefore be 

zero: 

25 24 = 5000 x 1.085 - A x 1.085 .... - A x 1.085 - A = 0 

= 5000 x 1.08525 = A(1 .085 24 + 1.08523 + .. + 1.085 + 1) 

= 5000 x 1.08525 
= A(1.08525 - 1) 

1.085 - 1 

(the sum of a G.P. has already been developed) 

38433.8 = A x 78.6678 

= A = 488.56 

The annual payment is £488.56 

The following table shows how the loan decreases during the 

25 years and the proportions of interest and repayment, the 

yearly payment change. 
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Total £488.56 

Year Outstanding Interest Payment Loan repayment 
Loan (8~ of loan) 

£5000 £425 £63.56 
2 £4936.44 £419.60 £68.96 

3 £4867.48 £413.74 £74.82 
........ 

23 £1247.80 £106.06 £362.50 

24 £865·30 £73·55 £415·01 
25 £450.29 £38.27 £450.29 



SEQUENCES, SERIES AND LIMITS 

The study of simple sequences and series can give pupils 

valuable insight into interesting mathematical ideas and 

generalisations. This can lead into the use of algebraic 

formulae for the terms of a sequence and the sum of a series. 

The role of the calculator in the topic is simply to carry 

out additions, subtractions, multiplication and division and 

so enable the pupil to concentrate on investigating patterns 

and relationships more easily and quickly. 

The series of odd numbers is considered first, including 

investigating 

a) the number of terms in the series and it sum and 

b) the last term and the sum of the series. 

Further pupil material develops the topic by working with 

the sequences of whole numbers and triangle numbers. 

Sequence of Odd Numbers 

Although the sequence of odd numbers may not be of any practical 

value to the vast majority of pupils, interest can be heightened 

by presenting it in a physical context which aids the imagination. 

This may be achieved by considering stacking tins of beans in 

a supermarket, an idea included in "calculators Count", Schools 

Council (1983) 



Number of layers Number of tins in Total number of 
in the stack the bottom layer Tins in the stack 

1 1 1 

2 3 1 + 3 = 4 

3 5 1 + 3 + 5 = 9 
. 

10 

The build up to the concept may proceed with a similar sequence 

of questions and instructions to: 

Use a calculator to complete the table. 

How can you quickly calculate the numbers of tins 

needed to make the stack 15 layers high? The more able pupils 

should be encouraged to express the relationship algebraically 

i.e. Sn = n2 when n is the number of terms. 

Check the relationsh:ip using the calculator 

All children should find that: 

Number of layers ~ I squared r~ number of tins needed 

How many layers could be built with a) 169 tins 

b) 247 tins? 

The square root button may be used or a trial-and-error method. 

From the table, what has to be done to each number in 

the second column to mgke the corresponding number in the first 

column? 

How quickly can you calculate how many tins are needed 

if there are to be 27 tins in the bottom layer? 

This exercise is designed to develop the general relationship 

between the last term in the series and its sum. With many 

pupils it is enough to express the relationship in words. 

Number of tins inU Number of tins . "*" the bottom layer needed altogether 



Mor able children should be encouraged to go on to express 

it as an algebraic formula 

e.g. where 1 is the last term in the 

series. 

How many tins would there be altogether if the bottom 

layer contained 

a) 33 tins 

b) 397 tins? 

Challenge: One of the stacks has some layers missing 

at the top. The bottom layer had 89 tins. The top layer has 

11 tins. Can you calculate how many tins were in the stack? 

Whole Numbers and their Sum 

To investigate the relationship between the number. of terms in 

the series of whole numbers and its sum, the tins may be 

stacked in a different way 

17 



Following a similar build up to odd numbers, most children 

should be able to work out a relationship by considering the 

table for 12 layers 

12 
WORK OUT 
12 x 13 

DIVIDE 
BY 2 -.:;.- 78 tins 

12 + 1 = 

More able children should be able to express this algebraically 

e.g. S = n(n + 1) 
2 

when n is the number of terms. 

It should be noted that each sim is called a TRIANGLE number. 

Triangle Numbers and their sum 

To introduce the series formed by the sequence of triangle 

numbers, and the relationship between the number of terms 

and its sum, stacking in the supermarket may be used again. 

This time, however, we consider stacking oranges in a pyramid 

that has a triangular base with: 

4 oranges in the top layer 

3 oranges in the second layer 

6 oranges in the third layer, and so on 

u .' .... 
'" . .. & " ." 

." ,-
'.: ": .. 

It will be difficult for many pupils to visualize the successive 

layers and so table-tennis balls glued together can be used for 

each separate layer. 

Is there an easy way to calculate the number of oranges needed? 



A table of results leads to: (for 12 layers) 

12 

12 + 1 13 
WORK OUT DIVIDE 

364 oranges = 
12 x 13 x 14 BY 6 

12 + 2 = 14 

Again the more-able pupils may express the relationship as 

e. g. S = ne n + 1)( n + 2) 
6 

After using the calculator to practice the generalisation, 

the applications of the relationship in reverse may be tested 

and this involves seeking three consecutive whole numbers 

whose product is known. 

e.g. How many layers could be built with 1540 oranges? 

All pupils should be encouraged to experiment with their 

calculators initially, using trial and error to find the solution. 

For many pupils this may be as far as they can go. However, 

it should be possible for more able pupils, with a suitable 

background of knowledge, to develop a better strategy using 

the integer immediately below the cube root of the known 

product as a starting point: 

e.g. n(n +1)(n + 2) = 9240 (For 1540 oranges) 

3 9240 = 20.98 using the Lxylkey 

so try n = 20. 

check 20 x 21 x 22 = ? 

"When you multiply any three consecutive numbers together and 

then divide the answer by 6, you always finish up with a whole 

number". 



Can you explain why this MUST happen? 

Many pupils will again benefit from experimenting with their 

calculators before trying to suggest a formal answer. 

The following style of argument should be expected from pupils: 

At least one of the consecutive numbers must be even 

and have 2 as a factor. 

Exactly one of the consecutive numbers must be in the 

'3 times' table and have 3 as a factor. 

Therefore the product must have 6(= 2 x 3) as a factor. 

More searching questions: 

A big stack had some layers missing from the top. 

The bottom layer had 120 oranges and the top layer 

had 55 oranges. 

How many layers were missing? 

How many oranges are in the stack? 

The Geometric Series and a Limit 

To study some properties of a simple convergent geometric series 

and to introduce the idea of a mathematical limit, the topic, 

at its simplest level, can be approached by using decimals alone, 

in conjunction with a calculator. At a more advanced level 

fractions should be used alongside decimals. 

A jumping frog is used to introduce sequences in which success

ive terms are generated by a process of halving. For example: 

A clockwork frog can leap 32 cm when fully wound up. 

Its next leap is half as long (16 cm) 

Its next leap is half again (8 cm) and so on. 

Copy the table and use it to answer the questions 

Number of jumps Length of 
(cm) 

jump Total length jumped 
(cm) 

1 32 32 

2 16 48 

2 8 56 

. 
12 

'60 



If the frog had 12 jumps, how far would it jump 

altogether? 

At its basic level, this exercise provides an opportunity 

for discussing place value and calculator technique e.g. use 

of a memory, if present. If fractions are also used, it is 

easier to tackle the further question: 

If a frog had an unlimited number of jumps, could 

it ever jump 64 cm altogether? 

In considering the seventh jump onwards, this could lead to the 
11111 1..3.1.1.22J.. 

sequence 2' 4' 8' 16' 32 ...... and 2' 4' 8' 16' 32 as the 
corresponding partial sums. 

The idea of a mathematical limit can then become most apparent. 

Another clockwork frog can leap only 20 cm when fully 

wound up. 

Its next leap is half as long - and so on. 

In only 8 jumps, can this frog cross a rug that is 

40 cm wide? 

A 'super-de-luxe' frog has an adjustable first jump. 

This can be set in centimetres and tenths of a centi

metre; for example 21.3 

1) What is the smallest first jump that must be set 

so that this frog can cross a 40 cm rug in 5 leaps? 

2) Find the smallest jump that must be set so that 

this frog can cross the rug in 7 leaps. 

At a basic level, these questions give an opportunity for 

systematic decimal search (restricted to one decimal place) 

using a calculator. At a more advanced level, pupils might 

be asked to predict the answer on theoretical grounds, before 

cheCking with a calculator. 

The argument might run as follows •.... 

~I 



First jump is 1 unit long 

Second jump · 1 . t l.S "2 um long 

Third jump is t unit long 

Fourth jump · 1 . t l.s"8 um long 

Fifth jump · 1 . t l.S 16 unl. long 

In 5 jumps a total of 1.1.5. 
16 

units 

So 

40 cm = l1. units 16 

40 cm - 31 = 1 . t 
16 um 

(40 cm - 31) x 16 = unit 

Thus, length of first jump should be 20.645 cm (theoretically) 

Hence, the 'super-de-luxe' frog should be set at 20.7 cm in 

order to cross the rug in 5 leaps 

In general, if the frog is allowed n jumps, then 

40 cm = 2n - 1 units 
2n -1 



THE FIBONACCI SEQUENCE 

In the year 1202 the Italian mathematician Leonardo Fibonacci 

completed his book 'Liber abaci'. In the book was the follow

ing problem, which has inspired mathematicians up to the present 

day. 

"A pair of rabbits can breed when they are two months 

old. They will produce another pair of rabbits each month 

after that. The new pair of rabbits will also be able to breed 

after two months and will also produce a new pair of rabbits 

each month.· Starting from a single pair, how many rabbits will 

there be in 12 months?" 

The illustration shows part of the solution 

END TOTAL 
OF MONTH OF PAIRS 

o 
RR 

3 

5 13 

RR. RR. RR. 

Tree graph for Fibonacci's rabbits 



What has interested mathematicians is not the solution itself 

but the sequence of numbers which is generated in the finding 

of it. Each number in the series can be made by adding the 

two previous numbers together: 1,1,2,3,5,8, 

This sequence is known as the Fibonacci Numbers. 

Many other examples can be used to demonstrate their generation. 

One way is to list all the ways of using lp coins and 2p coins 

to make up lp, 2p, 3p, etc. 

lp 0 

2p 00, 0 2 

3p 000, 00, 00 3 

4p 0000, 000, 000, 000, 00 5 

5p 00000, 0000, 0000, 0000, 0000, 000, 000, 000 8 

Other ways include the dichotomous branching of a tree year by 

year and a progression of increasing sets of notes which is 

musically very tidy and in line with the conventional devel

opment of western music. 

The Fibonacci Numbers provide a wealth of patterns which may 

be investigated using the calculator. This material can be 

made suitable for a wide ability range. 

The most interesting and significant sequence can be produced 

by working out the ratios of neighbouring pairs of numbers 

in the Fibonacci sequence as follows: 

Fibonacci numbers 

2 

3 

5 

8 

Ratios 

.1. - 1.0000 1 -

2 2.0000 
1 
2= 1 .5000 2 
.2 - 1.6667 
3 
§ 
5 

= 1.6000 



Continue this pattern writing down the ratios to 4 decimal 

places. The calculator will enable pupils to conclude that 

the ratios get closer and closer to 1.6180 

as the 'GOLDEN RATIO'. 

a number known 

The pupils may then be asked to investigate the sequence 

produced by using the same rule but with different starting 

numbers. They should be encouraged to use different starting 

jumbers amongst themselves too. They should all arrive at 

the same limit as the numbers get bigger - the Golden Ratio -

1.6180. 

A further investigation would change the rule by adding three 

consecutive terms to produce the next. Will this sequence 

also have neighbouring numbers whose ratios get closer to 

1.6180? A discussion should preceed the calculations. The 

results of investigating adding 4, 5 or more numbers may be 

practiced in a table and graphically. 

Since the time of the ancient Greeks the Golden Rectangle 

has played an important part in art and in architecture. 

A Golden Rectangle can be drawn using the ratio 1:1.618. 

It is said to be one of the most pleasing of all geometric 

shapes and the dotted lines in the drawing show how the Golden 

Rectangle fits the famous Parthenon at Athens. 
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The pupils may produce an approximate one, without measuring, 

by adding squares on squared paper several times as follows: 

I 
I 

After many stages you will have an almost perfect Golden 

Rectangle . 

It follows that if you draw a Golden Rectangle and take away 

a square you are left with another Golden Rectangle. If you 

take away a square from this Golden Rectangle you get 

another Golden Rectangle. The Golden Rectangle is unique in 

this way. 

The more able pupil may be shown this in another way: 

Given a rectangle of width 1 unit and length x, find x such 

that if a square of side 1 unit is cut away, the remaining 

rectangle is similar to the original. 

I I, 1 
2 

- x - 1 0 ]!; = = x = 
1 x-1 

1 x. ) x =~ +--"-'- 2 

+ ~ is the Golden Ratio 
2 

The continued fraction 1 + ~ __ _ 
+ _1 __ 

1 + •.....• 

may also be investigated and be shown to approach the Golden Ratio. 



1. ~ .2 .5. § 1.3 Successive stages give 1, l' l' 2' 3' 5' 8' 

The calculator proves an invaluable aid to checking Binet's 
th formula for the n term of a Fibonacci Sequence, namely: 

Fn =~(1 ~ B)n _~ ; J5)n) 

Furthermore as n ~ .. (1 2 
f5\n 

) ., 0 

1 (1 +15\n 
and so F n ., j5 2:; '" 0 .447214 

Other interesting properties of the Finonacci Sequence may be 

investigated by studying patterns and extending them. 

e.g. a) + 1 = 3 - 1 b) + 2 = 3 

+ 1 + 2 = 5 - 1 + 2 + 3 = 8 

........ . ....... 
c) 12 + 12 = 1 x 2 

12 + 12 + 22 = 2 x 3 d) 
2 

x 2 = 1 + 1 

........ x 3 = 22 -

2 x 5 = 3
2 

+ 

Pupils should be encouraged to explain them. 

The Fibonacci Sequence is only one of many sequences and number 

patterns that may be investigated more thoroughly and enjoyably 

now a calculator is available to deal quickly with calculations. 



ITERATIVE METHODS 

One method of finding a reasonably close answer to a problem 

which does not have an exact solution is to find an approximate 

one, and then use this to obtain a second approximation which 

is more accurate than the first. The process may be repeated 

so that we obtain a third approximation which is more accurate 

than the second. We may go on like this until we obtain the 

degree of accuracy that we desire. Unfortunately, some of the 

calculations involved are rather difficult, although many of 

the methods themselves are fairly simple. Now that calculators 

(and computers) have become available to tackle the tedious 

series of operations, the methods are a more feasible proposition 

for the 11 - 16 year range. The methods are called ITERATIVE 

METHODS and the process is ITERATION. 

Perhaps the simplest place to start for this range is deter

mining the square root of a number correct to a given number 

of decimal places by the method of decimal search. It is an 

example of the way in which the systematic use of trial and 

error can help solve a problem and illustrates a particular 

advantage which calculators can bring to problem solving. 

After some initial work on the concept of a square and a 

square root the pupils may be asked to find 13 to a given 

number of decimal places. 

The number line is a useful visual aid to many pupils. 

Step 1 
,[1= 4 .f9 ,,~ ,,1$ 

\ I 1 I I I 
0 2 3 t 4 5 6 7 8 9 

[13 

113 is between 3 and 4, but is it nearer to 3 or 4? 

10 



Step 2 

s I I I I I I I I L 3!~0--34.-1--3.~12--3+.3--3~.-4--3+.5--3~.-6--3~.7--34.-8--3r.9--4+!0 

3.0 ~s too small (S) and 4.0 is too large (L) 

Try half way between 3 and 4, that is 3.5 
The calculator is used to test if this is too small 

or too large. 

large. 

and 3.7. 

Step 3 

3.5 is too small, so try 3.6, 3.7 until one is too 

3.7 is too large. 

Mark on the diagram therefore, J13 is between 3.6 

s I I I r , I , I , I I L 
3.60 3.61 3.62 3.63 3.64 3.65 3.66 3.67 3.68 3.69 3.70 

Continue by trying 3.65. Mark all the numbers on the diagram 

with S or L. 

Continue until J13 is found correct to two decimal places. 

The method also increases an awareness and understanding of place 

value in decimals, especially in relation to the number line. 

A similar pattern could be used to find the cube root of a 

number. 

A more interesting method than 'interval halving' for finding 

the square root of a number is the iterative method known as 

Hero's Method. However, pupils should not gain the impression 

that square roots should normally be obtained in this manner! 

The square root is used here as a vehicle for the introduction 

of iterative methods and when a square root is needed in a 

calculation the usual way is to use a calculator with a square 

root key. 



In order to find the square root of 70, the calculator is used 

to fill in the table 

New Estimate 
Estimate (E) 70 .,. E (F) (F + E) .;. 2 

1 st 

2 nd 

3 rd 

The plausibility of 8 as a first estimate should 

and why F > Fa if E < Fa (and vice-versa). 

be discussed 

The iterative formula for producing the sequence of estimates 

f th t f b th t · El - flEx + EJ ~. 2 o e square roo 0 some num er x, a 1S - ~ -

when E' is the new estimate calculated from the previous estimate 

E, should then be investigated. 

When E' agrees with E to calculator accuracy, we could say 

that E' and E are both approximately equal to some number N. 

We could then write the formula as 

N ~ ~ + NJ .;. 2 
Rearrange this formula so that the connection between N and x 

becomes very clear. 

It will be seen that the formula approaches the answer very 

quickly, but what happens with other starting points? How 

many steps? 

Using a similar build up the pupils may be introduced to 

and then be asked to rearrange so that the connection between 

N and x becomes very clear. 

qo 



Does this require as many steps as 

N ~ ["!2 + NJ 7 2? 

What could this new iterative method be used for? 

Try to write down a similar iterative formula which 

might be used to find the fifth root of x. 

(Terms such as 'converge' and 'recursive' may be introduced 

at the discretion of the teacher and the more able pupils may 

be shown the use of the more traditional notation used in 

many textbooks such as 

+;: ) 
Advantages of this method include the fact that even if the 

first guess is a poor one, the correct answer will still emerge. 

Further, even if a mistake is made the correct answer will still 

emerge although, of course, after more steps than would have 

been necessary otherwise. 

It may be desirable at some stage to encourage the use of the 

constant key on the calculator and then the use of the memory, 

but these should not be rushed or assumed to be understood 

by the pupils. Some pupils may well prefer to continue setting 

out each intermediate step as a check. 

Pupils should appreciate that most iterative methods would 

be too lengthy and too complicated to continually carry out 

on a basic or scientific calculator - a programable calculator 

or computer would be more appropriate. However, by following 

a set of simple instructions, pupils may be able to work out 

what a particular iterative procedure does. Take, for example, 

the following set of instructions. Choose a number from 8, 

64, 125 and call it x. 



1) Start with 1 

2) Multiply by your number x 

3) Take the square root 

4) And again! 

5) Record your result but do not clear your calculator 

6) Repeat steps 2, 3, 4, 5 over and over again until 

successive recorded results agree when corrected to three 

decimal places. 

7) Write out your last result correct to 3 decimal places 

8) Stop 

What relationship has your final result with your number x? 

The pupils have, in effect, been using the following iterative 

formula to produce a sequence of estimates to the cube root 

of x. It has been achieved using a calculator with a square 

root button. 

Rearrange N =~ to show the connection between 

x and N. 

What might you expect these iterative formulae to 

lead to? 
I ~? E = 

E = 1Jr:=x ? Test your idea 

An alternative form of the instructions given may be a flow chart. 
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SOLUTION OF EQUATIONS 

The work on iterative methods, sequences and limits may be 

extended to the more able fifth year pupils and more traditional 

notation used. 

If we require the solution to a problem such as 

x2 _ 2x - 2 = 0 

we might rearrange as follows: 

2 
x = 2x + 2 

x = ~J2x + 2 

If the corresponding iterative process: 

t 1 = J(2t + 2) n + n 

or alternatively x = J2x + 2 new 

results in a limit then it will be a solution of the original 

equation. Putting t,= 1 will soon confirm that this leads to 

2.732 as a solution of x2 - 2x - 2 = 0 

The process may be summarised as follows: 

1) Rewrite the equation to be solved in the form 

x = f(x) for some f(x) 

2) Use x ...... = f(x) to generate a sequence of x-values 

3) If a limit results, then this value satisfies 

x = f(x) and so is a solution of the original 

equation. 

Some important questions arise including: 

Will the processes always yield a solution no matter 

how the equation is rearranged? 



Is the starting point for the iterative process 

important? Well chosen examples will show that convergence 

may arise for some starting points but not others and that 

not all arrangements will, in fact, lead to a solution. 

The situation may be confusing for the pupils and so a graphical 

approach can be employed to illustrate why some sequences 

diverge and others converge onto one particular solution of 

the related equation. Further, it should assist in deciding 

which particular rearrangement might be profitable. 

We may adopt an investigatory approach to the solution of an 

equation in order to illustrate these main ideas. 

Consider x2 - 7x - 3 = 0 

First rearrange in the form x = f(x) 

There are many possibilities, for example 

2 
x = 7x + 3 leads to 

x(x - 7) - 3 = 0 leads to x=_3~ 
x - 7 

and 
2 

x = x - 3 
7 

At this stage we could choose one of the above, together with 

a starting value, and see what emerged from the related 

iterative process, but this is rather hit-or-miss in approach 

to a complete solution. For example 

with xI = 10 gives 7.405 as a limit but 

2 
3 x = x -n + n 

7 

with xI = 10 does not give any limit. 



2 If, however, we first examine the graphs y ; x and y ; 7x + 3 

then we can see that there are two solutions to be found. 

10 

~o 

30 

10 

gives rise to a path going 'vertical' to the line and 'horizontal' 

to the curve and thus any positive starting value leads to a 

larger solution as illustrated. However, 

is effectively an inverse process but with the arrows reversed. 

Thus, a too .large starting value ( 7.405) produces a divergent 

sequence, whereas for xl <7.405 (and> -7.405) the resulting 

sequence converges to the other solution. 

-2. -I 



If We choose, say, x = 3 
I 

x = J(7X + 3) yields 7.405 

2 - 2 and x x 
yields - 0.405 = 7 

which furnishes a complete solution of the equation. 

Pupils appreciate visually the idea of spiralling towards a 

point of intersection but it is not so easy to understand how 

to work the corresponding numerical process. A step-by-step 

illustration is desirable and even then considerable teacher 

assistance will be necessary. Unless a graph-drawing exercise 

using the calculator is to be incorporated as part of the lesson, 

it would be useful to have the graphs already prepared by the 

teacher. 



CHAPTER 3 - THE CALCULATOR AS AN INFLUENCE ON CURRICULUM DESIGN 

The Effect of the Calculator on the Mathematics 

Curriculum 

2 Some outstanding issues on the effective use of 

the Calculator 

3 The Effect of the Calculator on Mathematical Content 
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THE EFFECT OF THE CALCULATOR ON THE MATHEMATICS CURRICULUM 

Over the past few years the introduction of the calculator into 

schools has become less of a contentious issue. However, it is 

doubtful whether the impact of this technological tool has been 

as dramatic as has been predicted and hoped for by many 

educators. This chapter will discuss some of the advantages 

the calculator could bring to the mathematics curriculum in 

general, the effects it might have on mathematics content in 

particular, and some outstanding issues in its effective use. 

In brief, the calculator can be used: 

1) To assist in UNDERSTANDING some mathematical CONCEPTS. 

2) As an aid to PROBLEM-SOLVING. 

3) To encourage discovery, exploration and creativity 

by introducing appropriate INVESTIGATIONS and 

mathematical ideas. 

4) To introduce 'REAL WORLD' DATA into problems. 

5) To MOTIVATE pupils by introducing more interesting 

and challenging topics. 

6) As a SERVICE FUNCTION across the curriculum. 

7) As an aid to COMPUTATION. 

8) As an aid to more FLEXIBLE TEACHING programmes. 

For example, mixed ability teaching and individ

ualised learning by 'freeing' the teacher and 

closing the gap between ability groups. 

Add to the list a statement from Cockcroft(389): 

'''We believe that there is one over-riding reason 

why all secondary pupils should, as part of their mathematics 

course, be taught and allowed to use a calculator. This arises 

from the increasing us which is being made of calculators both 

in employment and adult life". 

and we see how strong the arguments for its use are. 



THE CALCULATOR AS AN AID TO UNDERSTANDING SOME MATHEMATICAL CONCEPTS 

The calculator is now invariably the device used by those people 

involved in regular day to day calculations and it has largely 

replace such aids as logarithm tables, slide rules and ready 

reckoners in shops, offices and factories. In school, however, 

the position is somewhat different for research has shown that 

the calculator has a specially important contribution to make 

in the teaching and learning of mathematics. The calculator is 

potentially a powerful teaching aid which can be used to 

considerable effect in helping pupils to acquire understanding 

of mathematical concepts. 

In his excellent article 'Calculator: Abuses and Uses' 

David Johnson (1978) suggests that the pupil uses the calculator 

to generate output with the purpose that the output will 

demonstrate a concept or relationship, or that the actual 

generation of the output will serve to help reinforce a concept 

which has been taught previously. 

In CONCEPT - DEMONSTRATION, the pupils are first asked to look 

for a pattern when the calculator is used to do some calculations 

the pupils have not yet learned how to do (discover a rule), 

then justify the result with a few, well-chosen examples, and 

then practise. 

When a particular piece of mathematical content has already 

been introduced and the calculator activity is planned to provide 

an opportunity to practise or apply what has been learned, this 

can be thought of a Concept - reinforcement. 

Chapter 2 attempts to demonstrate how certain basic topics, 

which have been identified by the C.S.M.S and S.E.S.M. research 

teams as presenting particular difficulties to many pupils, 

may be illuminated by using the calculator. These topics: 

lOO 



fractions, decimals and place value, and order of operations 

are not the only ones identified which may be helped. Others 

include percentage, proportion, negative number, and graphs, 

where greater use of the unitary method may be made for the 

understanding of proportion; greater emphasis on the link 

between decimals and percentage rather than fractions and 

percentage; easier plotting of points of a graph and testing 

if points lie on a line; and so on. 

The standard pencil and paper ALGORITHMS may, in time, be 

removed from the curriculum but that does not mean that pupils 

are introduced to fewer algorithms. There are many, more 

powerful and more general, waiting to be explored. In the 

words of Polya (1965) "we must teach 'guessing'''. From 

unstructured trial-and-error we can mOve to guided trial and 

error, search methods and more general iterative procedures. 

Blakeley (1980) suggests that pupils should be able to: 

a) follow an algorithm 

b) modify an algorithm to produce an alternative 

required result; and 

c) design algorithms, involving them in analysis of 

problems. 

Iteration can be a powerful and widely applicable technique 

and can be used to aid the understanding of such concepts as 

square root and cube root as described in Chapter 2. Further 

iteration can be used to attack all equations met in an o-level 

course should the teacher so desire. Although traditional 

methods of factorisation, completing the square and the formula 

for quadratic equations may often be more easily applied at 

this level, iterative methods may be more readily understood 

hy the pupils. 

As an example of a possible style of algorithm we may ask a 
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pupil to DESCRIBE the method used with the calculator when 

testing if certain numbers (say 901, 1009) are prime. We might 

expect something like the following: 

1) Enter the number 

2) Divide by - smallest prime 

- next odd number until this exceeds x 

(x may be n, ~ or even n depending 

on the ability of the child) 

3) Check for remainder (i.e. a decimal fraction in output) 

4) If no remainder - Stop (not prime) 

5) If remainder go back to 1 

This style may be preferable to a flow chart for the majority 

of pupils. 

The emphasis will be on flexibility and clarity with real 

discussion of pupils' suggestions, rather than the learning of 

'standard' algorithms. 

A better understanding of the concepts of square root and square 

will naturally lead to a better understanding of Pythagoras; 

an understanding of ratio and proportion leads to enlargement, 

scale factors, lengths and areas of similar figures. Before, 

circumference and area of circles can be understood, pupils 

should have an appreciation of 'pi'. The Schools Council 

(Calculators Count, 1983) provides a gradual approach by 

considering the perimeter/diagonal relationship for a square, 

then for a hexagon and finally the circumference/diameter 

relationship for a circle. More ambitious pupils may like 

to study the history of 'pi' and appreciate (but notJnecessarily 

understand) the significance of the attempts made by such men 

as Archimedes, Wallis, Vieta and Leibnitz to obtain approximations 

for the elusive ratio. Turinese (Maths Teaching, No.89) 

gives a brief outline of these. Rade and Kaufman (1980) too 

give a fascinating account of the history of 'pi' as well as 

other interesting and sometimes puzzling areas of real mathematics 

via a pocket calculator. 



Trigonometrical concepts, too, may be enhanced by the use of 

the calculator, and this section of work is now more accessible 

for pupils of moderate ability. 

The ability to estimate an answer and to give an answer correct 

to a sensible number of significant figures is also highlighted 

in Chapter 2. Great importance is attached to these skills and 

the difficulties that pupils may have in understanding the concepts 

is not 'underestimated'. 

However, although the use of the calculator in the classroom 

is becoming increasingly accepted, it is under this heading -

'Understanding of Concepts' - where least work has been done. 

There has been a steady trickle of articles and publications 

which have been designed to be easily usable in the classroom 

and related to the current mathematical curriculum. It is the 

need for these materials which is most pressing. To quote 

from Cockcroft: 

"There is an urgent need for an increase in the limited 

amount of work which is at present being undertaken to develop 

classroom materials designed to develop understanding of 

fundamental principles". (392) 
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~----------------------------------........ 
The Calculator as an aid to Problem-Solving 

Mathematics is only 'useful' to the extent to which it can be 

applied to a particular situation and it is the ability to apply 

mathematics to a variety of situations to which we give the 

name 'problem-solving'. 

In 1980, the first of N.C.T.M.'s Recommendations for School 

Mathematics of the 1980's states: 

"Problem solving must be the focus of school mathe

matics in the 1980's". 

This recommendation not only indicates the importance of 

problem-solving, it also implies that a concentrated effort is 

needed in order to establish problem-solving as an integral 

part of the mathematics curriculum. Further, todays research, 

is concentrating on processes or the set of steps students 

use to find a solution rather than focussing on the actual 

solution to the problem or the anSWer to the exercises. It 

has been found that correct solutions to problems involve 

setting up a plan, however brief, for the solution (Kantowski, 

1977, 1980) and that different students approach the same problem 

in a variety of ways, indicating the existence of a style or 

preference. 

To many classroom teachers and other educators, a problem is 

simply a word problem or an exercise stated in verbal form. 

An example might be: 

"Clare bought a sandwich for 70p and a drink of squash 

for 30p. If the service charge is 10%, how much change would 

she receive from £2.00?" 

Such problems are easily solved by most students by application 

of algorithms that are part of standard instruction. 

To other educators a problem exists if a situation is non

routine, that is, if the student has no algorithm at hand that 



will guarantee a solution. The student must put together 

the available knowledge in a new way to find a solution. The 

possibilities must be tabulated and some trial and error attempted. 

Moreover, more than one solution may be possible. An example 

might be: 

"Clare has exactly £3.00 and would like to spend it all 

on her lunch. The menu includes hot dogs at 80p, hamburgers 

at 90p, onion rings at 60p, french fries at 50p and drinks at 

30p, 40p, and 50p. The service charge is 10%. What would 

Clare have for lunch?" 

A third type of problem can be called application or 'real 

problems'. A real problem involves a complex real-life situation 

that must somehow be resolved. Often there is not an exact 

solution, but one that is determined to be optimal to fit the 

conditions. The Spode Group have produced a compilation of 

such problems (Solving Real Problems, 1982) and include 'Easing 

the Traffic Flow', 'Car-Park Layout', 'Where to place a Telephone 

Box' as typical problems. Most of these problems include 

substantial computation. 

What part then can the calculator play in this new emphasis on 

problem-solving in the curriculum? We must certainly be cautious 

about claims that it is a panacea. Even with the verbal 

question above, the pupil must still be able to select the correct 

buttons to push. As Cockcroft states: 

"We wish to stress that the availability of a calculator 

in no way reduces the need for mathematical understanding on 

the part of the person who is using it" (378) 

Suydan (1981) points to evidence from research in America to 

support the belief that problem-solving requires more than 

computational skills. Several reports conclude that the use 

of calculators does not affect problem-solving scores significantly. 
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However, there is also evidence to support the use of calculators 

in problem-solving in the same Suydan review. Other findings 

show that calculators are useful if the problems are within the 

range of students' paper-and-pencil computational ability; 

that students are less afraid to tackle difficult problems when 

using calculators; and that students use more varied problem-solving 

strategies when using calcuators. 

The calculator then has a useful, if somewhat limited, role to 

play. Polya (1973) considers four phases in the solution of 

a problem, one of which is the computational skill. If the 

calculator can considerably simplify this phase then the student 

may focus his attention on the other phases. Further, the 

student will have more confidence and less fear of the problem. 

The calculator, too, may be useful in some of the thought 

processes in both non-routine and real problems. If we consider 

three stages of specialising (trying something out), conject

uring'(guessing a pattern) and verifying (explaining the pattern) 

of a non-routine problem, various roles of the calculator may 

be linked to these stages. These roles may be considered as 

1) providing the correct answer 

2) enabling attention to remain on the problem 

3) giving confidence to try specific cases. 

Thus the calculator supports non-routine problems by allowing 

the swift numerical exploration of particular cases as a basis 

for 'guessing' and 'explaining' 

The calculator overcomes the main objection to using realistic 

problems in the syllabus. Knowing a calculator is at hand to 

cope with the arithmetic is enough of a confidence booster to 

get the pupils started. Often, if you can just get a feel for 

what happens when a couple of specific cases are tried, this can 

provide the impetus for more involvement in the problem. Interest 
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will be more likely to be maintained if the pupils know they 

will not get stuck on the arithmetic, and more time may be 

spent on interpreting the result. It is as a direct result of 

the use of calculators that statistics questions now tend to 

concentrate on interpretation of answers and less on calculations. 

However, one note of caution should be heeded. Realistic numbers 

should not necessarily be introduced When a new concept is to be 

learned. It is still good teaching practice to use easy, 

manufactured and convenient numbers to illustrate a new concept. 

"Problems involving 'messy' numbers rather than 'neat' 

numbers are not necessarily appropriate merely because of 

calculator availability. 'Nessy' numbers may be as much a 

distraction with calculators as they are without them" (Kirst, 

1980) 

Thre is a further advantage that may be accrued from having the 

calculator available in the mathematics curriculum, although 

more indirect to problem solving. As Kantowski (1981) reflects: 

"Too much emphasis on computational drill may be counter 

productive to the development of the flexibility needed for 

problem-solving. How can this demand for emphasis on basic 

skills be reconciled with the need for development of problem

solving ability in the limited time available for mathematics 

instruction". 

Perhaps this time may now be more wisely spent. Kantowski sees 

the present decade as an exciting one with the curriculum 

promising to be more child-centred if the new technology 

(and,he includes computers here) can be used to advantage 

in dealing with the diversity of problem-solving styles. 

Problem-solving is a basic skill and we must teach problem

solving: 

"Anyone who can execute standard routines but is 

incapable of solving a new problem has no skill" (Van Dormolen, 

1976). 



To encourage discovery, exploration and creativity by introducing 

appropriate investigations and mathematical ideas 

"The idea of investigation is fundamental both to the 

study of mathematics itself and also to an understanding of 

the ways in which mathematics can be used to extend knowledge 

and to solve problems in very many fields". - Cockcroft (250) 

A mathematical investigation is often thought of as an extensive 

piece of work or 'project' which will take quite a long time 

to complete and will probably be undertaken individually or 

as a member of a small group. However, investigations need be 

neither lengthy nor difficult. An investigation may be planned 

by the teacher or it may arise spontaneously from a pupil's 

question such as "what happens if .•.. ?" The teacher must be 

prepared to pursue the particular question which may have 

arisen from a routine lesson, and the result may be a brief, 

interesting discussion or may lead to a full investigation. 

Chapter 2 includes such an enquiry from a pupil which leads 

to an interesting and even exciting series of investigations 

on recurring decimals. 

The teacher should not be afraid to veer from the syllabus 

nor to curtail the investigation because of lack of time, but 

must be aware of when the investigation has served its purpose 

and the pupils have lost interest. 

The calculator may be thought of as having two significant 

roles in investigations. On the one hand it may prove an 

invaluable aid to computation in investigations which would 

otherwise have been too time-consuming and too difficult to 

pursue to any worthwhile length. Just as the ideas involved 

become interesting the arithmetic becomes boring and difficult. 

Watsons 'Exploring Numbers: Some Investigations with a 



, 
Calculator (1979) contains activities concerning the usual 

number patterns, arrow games, factors, Pascal's Triangle, 

factors and questions are asked about rules, conjectures, tests 

and proofs. The activities are interesting and worthwile, 

but the use of the calculator is only incidental and, indeed, 

the word does not appear in the text. Chapter 2 contains 

investigations on the Fibonacci Series and sequences and limits, 

where the calculator plays the same sort of useful but 'passive' 

role. 

The other role is when the investigation centres on the calculator 

itself and its distinct features. The answer to the question: 

"In how may different ways can you carry out this 

calculation on your calculator : which way requires the least 

number of steps?" 

depends on the particular model of calculator which is used, 

and pupils who undertake an investigation of this kind will 

produce a variety of answers, all of which are equally valid. 

Keane and Fenby (Things to do with a Calculator) ask the reader 

to investigate: 

"What is the biggest / smallest number you can show 

on your calculator? What is the largest number you can square 

and still get a result? Show 0.0123456 on the display by 

pressing no more than 5 keys. Calculate powers of three on 

your calculator and powers of 9 without one" 

There are some purely artificial activities which rely on the 

idiosyncrasies of the calculator. At a higher level, an 

interesting exploration by John Clarke (Sept 1978) involves 

reversing a random 4-digit number not ending in zero by 

combining it using any of the four operations - though not 

the same twice in succession - with any 2-digit numbers (the 

firs t digit being non z.ero ) made up from the digits of the 

number being reversed. Digits after a decimal point produced 
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by division are omitted before the next operation. 

Example: 1119 - 19 = 1100 

1100 x 91 = 100100 

100100 - 11 = 9100 

9100 + 11 = 9111 

Dr. Clarke says the maximum number of steps necessary so far 

is 10, and there are some obvious variations. 

David Fielker (M.T. number 89) begins some sessions with teachers 

by saying: 

"I divided one whole number by another - each under 

1000 - on my calculator and obtained 0.6 786 389: I can't 

remember what the two numbers were; can you find out?" 

After anything from 15 to 40 minutes there is usually a digress

ionary discussion about what makes a good mathematical problem! 

But sooner or later it is realised that the real problem is to 

find an efficient algorithm rather than to find the two numbers. 

Other calculator investigations of varying degrees of difficulty 

abound and Haylock (M.T. 101) is even able to investigate the 

mathematics of a dud calculator which had a defective zero key. 

One other very significant value of the calculator is worth 

mentioning at this stage. The less-able pupil is now able to 

join in investigational work, to proceed at his own pace without 

the distraction of difficult arithmetic, and discover the 

pleasure of real mathematics. There still exists a minority 

of teachers who believe that the calculator should be excluded 

from this type of pupil, but this is surely a misguided view, 

for it is the less-able pupil who must have more to gain from 

the availability of the calculator. 
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Mathematical puzzles and games of various sorts also offer 

valuable opportunities for investigational work for these and 

other pupils, and their value will be discussed later. 

It is perhaps appropriate to conclude this section with the 

thoughts of Brian Davies, I.L.E.A. (M.T. number 93) after two 

months of calculator activities with juniors: 

"How exciting and interesting it has all been. How 

it has converted the teacher to an investigational approach. 

What a liberating force the calculators have been, enabling 

the children to tackle calculations that would have been 

tedious, time-consuming and error-prone without them. How 

important is the teacher's attitude, giving the children 

time, taking their ideas seriously, taking time for discussion, 

and being interested in the process as well as the answer". 
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To Introduce 'real world' Data in Problems 

"How fast do you think James Hunt was going when he 

completed a lap at Silverstone in the British Grand Prix in 

1 minute and 18.81 seconds?", the teacher asked the class of 

twelve year old children. 

The overhead projector displayed the following information: 

One Lap Record Time Driver 

Silverstone 2.932 miles min 18.81 secs James Hunt 

Brands Harch 2.614 miles min 18.60 secs Niki Lauda 

Firs t pupil: 

Teacher 

First pupil: 

SECond pupil: 

Teacher 

"Are those real numbers?" 

"Yes, they are the current records" 

"I'll bet it isn't as fast as Niki Lauda" 

"Youtr wrong! Itls faster" 

"Let's use our calculator and figure the speed 

for both records" 

Hutton (1980) quotes this lively discussion as typical of many 

during a course involving the use of calculators. 

Bell et al (1978) argue that calculators, by allowing numbers 

of realistic size and actual measurements and observations to 

'1976 

1978 

be handled, fulfil an important role in emphasising the useful

ness of mathematics. Too often We restrict childrens' experience 

of the mathematical environment through the choice of convenient 

examples and problems. The children show more interest and 

committment to problems which they know contain real data. 

Johnson (1978) uses applications of everyday living to illustrate 
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that the calculator can help us to become 'wise consumers' 

e.g. comparative shopping; personal consumption of water, 

gas, electricity. The calculator, too, helps us to make 

decisions which have implications for benefiting society as 

a whole e.g. population growth; conservation of resources; 

health and health care; inflation; and so on. 

Chapter 2 illustrates the use of realistic mortgages and compound 

interest calculations, while statistics must be one of the 

areas of mathematics which benefits most from the availability 

of the calculator. Actual data from surveys may now be used; 

the teacher will no longer have to use a convenient 30 when 

taking readings from his class of 29; realistic pie-charts 

may now be drawn, too. 

Green (1981) invites his readers to examine and investigate 

the incredible distances between the bodies in the solar system 

and the sizes of these bodies, while the Spode Group (1982) 

deal with actual attendances at soccer matches and transfer 

fees. 

However, as usual, some care must be taken. Reys (1980) 

warns that merely displaying very large numbers on the calculator 

may be falsely interpreted as understanding. Research has 

shown, he says, that understanding the formulation of numbers 

is a delicate cognitive process developed over a long period 

of time, and the calculator may not bypass the development of 

this concept. 

It is with the use of very large, very small and realistic numbers, 

generally, that the understanding of estimation and accuracy 

really become of major importance. 



To Motivate Pupils 

During every mathematics lesson a child is not only learning, 

or failing to learn mathematics as a result of the work he is 

doing, but is also developing his attitude towards the subject. 

Once attitudes are formed they can be very persistent and diff

icult to change. Positive attitudes assist the learning of 

mathematics; negative attitudes not only inhibit learning but 

very often persist into adult life and affect choice of job. 

The challenge for the teacher is to present mathematics in a 

way which continues to be interesting and enjoyable and so 

allows understanding to develop. The teacher must nurture 

the young child's natural uninhibited enthusiasm and curiosity 

in the primary school and, hopefully, this can be maintained 

in the secondary school. Any aid to this difficult task is 

very welcome. There can be little doubt of the motivating 

effect which calculators have for very many children. As 

Shumway (1981, pp. 169) emphasises: 

"One of the most powerful and consistently reported 

effects of student use of calculators is the high enthusiasm 

and valuing students have for calculator aided mathematics 

activities. Any device which causes so much pleasure to be 

associated with mathematics .•.••• deserves special note". 

Shumway also believes that parental openness to calculator use 

can be influenced significantly by the enthusiastic response 

children exhibit to calculator aided mathematics. 

Hutton 6980l too, reports that teachers in her study group 

believed the calculators not only improved attitudes towards 

the mathematics in general, but specifically improved interest 

in problem-solving. 

The calculator engenders confidence in the child by enabling 

him to experience success. This allays the fear and anxiety 

114 



\ 

that Cockcroft emphasises, and especially in those less-able 

children who usually experience failure. 

The calculator is an alternative source of the correct answer 

and is 'neutral'. As one young pupil said: 

"l like the calculator because it is easy to work 

with. It is easy and it does not get angry with you when you 

get it wrong. 11 (Open University, 1982) 

The child's inquisitive nature is stimulated as soon as he 

encounters a calculator. However, Johnson (1978) warns that 

although there is no harm in pressing buttons to see what 

happens just for fun, there is concern if the child is asked 

for responses or procedures for which he lacks the necessary 

background for understanding. 

There seems to be some disagreement in the educational world 

about using the calculator for checking answers. On the one 

hand some, and Johnson is one, believe that the calculator is 

the best device for doing the calculation in the first place, 

while others such as Cockcroft believe that the child can 

gain <lionfidence by checking 'mental' answers or written 

answers. 

The calculator, then, can motivate by not only increasing 

the child's chances of success but it can also allow the child 

to experience a much more exciting mathematical world. Amongst 

the most rewarding sources of calculator based activities are 

calculator games and puzzles. 

Games need no justification as an aid to teaching as long as 

they have a mathematical objective. Children play games with 

great concentration and involvement and most enjoy the comp

etitive nature of them. Games should be fun to play and should 
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have a logical reasoning component, but they should also 

illustrate some mathematical idea or practice some useful 

skill. The teacher should plan the type of game he uses, 

where he introduces it into the curriculum and the reason for 

doing so. It is too often used as an end of term treat or as 

a casual addition to a lesson to relieve boredom without much 

forethought. For maximum benefit the child should be encouraged 

to keep records. The teacher should be able to exploit the 

flexibility of the activity, for example by adjusting the 

difficulty of the game. Further, the teacher must plan the 

teaching sequence and decide how the game can be located within 

the usual teaching of mathematical concepts. A motivating 

and effective strategy is to start with a game and then teach 

a relevant topic and finally let the children return to the game. 

The appendices of this project include games that have been 

tried by the second year pupils of Collenswood School, Stevenage. 

The games were from various sources such as F.R. Watson (I~SZ) 

and those drawn from the S.M.P. 11 - 16 syllabus. Those 

included were considered by the pupils and staff to be the 

most interesting, useful and appropriate of all the ones 

attempted. Only a sample has been included. 
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The Calculator as a Service Function 

There is one important function that the calculator offers that 

is often neglected when the use of calculators is discussed. As 

Kaner (1980) remarks: 

"It is in the service aspects of mathematics that 

the use of the calculator is such an enormous blessing. The 

barrier of poor arithmetic skills, that has kept so many 

children from effective study in the sciences, geography, 

home economics etc., has now been swept away. All that is 

needed is a small supply of calculators in the laboratory 

to be used whenever a calculation is to be carried out". 

The science teacher should no longer be able to blame the mathe

matics department for childrens lack of success in his subject. 

Hart (1981) highlights many of the problems that exist between 

the two departments but remarks that: 

"Calculators may serve a useful purpose in that children 

may be able to concentrate on the essence of the problem rather 

than the calculations involved". 

However, it is the duty of the mathematics teacher to do two 

things. First he must make sure that his science colleagues 

are fully aware of the help that a calculator can be to 

ordinary children in learning science. Second, he must make 

sure that all his pupils are fully competent with the electronic 

calculator. 

It is important that, not only mathematics teachers, but other 

teachers too, take advantage of in-service courses. Research 

must be initiated into how the calculators can be used effect

ively in other subjects. One such piece of recent research 

is: 

'An Experiment in Using Calculators in Teaching Home 

Economics' (Parry and Rothery 1983) 
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The Calculator as an Aid to Computation 

It is well to note, obvious as it is, that calculators are the 

quickest, most accurate computational algorithm available to 

children today. In fact, the primary function of a calculator 

is to compute, and in the hands of children, the calculator 

serves the computational function better than any other technique 

or device in existence. They make logarithmic tables and slide

rules obsolete and have caused us to think hard about what 

written computational skills the children now need and the 

effect the calculator has had on these and their mental skills. 

(discussed at some length in Chapter 1) 

Calculators are practical, convenient, and efficient. They 

remove the drudgery and save time on tedious calculations. 

They are less frustrating, especially for low achievers. They 

encourage speed and accuracy. 

The point has been made in this chapter and others that the 

ability to compute can be very beneficial to various aspects 

of the mathematics curriculum such as problem-solving, inclusion 

of real data, motivation and so on. The calculator, therefor~, 

narrows the gap between childrens' abilities and widens the 

scope of mathematics teaching. It widens the educational 

horizons of many pupils who have, until now, been held back 

by poor arithmetic skills. Further, Blakely (1980) remarks 

that the calculator puts numbers back into mathematics and 

also provides a portable number laboratory, which can be taken 

home and used there by the children. 

However, there still exists some contentious issues surrounding 

the use of the calculator, and these are mainly concerned with 

not if they should be used but how and when. 
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OUTSTANDING ISSUES IN THE EFFECTIVE USE OF THE CALCULATOR 

So far this chapter has been concerned with advantages attributed 

to the use of the calculator in the secondary school curriculum. 

To restore the balance of the argument it would seem fair to 

consider any disadvantages that may arise. Theeeare, perhaps, 

two objections that have constantly been put forward to limit 

their use, and even these seem to have been discredited over 

the years. 

Firstly, it has been argued that calculators encourage mental 

laziness and that they are detrimental to the mastery of basic 

facts and algorithms. It was this fear that prompted many 

calculator investigations into the possible effects on comput

ational skills. However, reviews and summaries of these 

investigations, especially by Suydam (1977), Suydam (1978) and 

again Suydam (1979) conclude that the calculator has no adverse 

effect on these skills. A review by Roberts (1980) and year long 

study by Moser (1979) agree. with this conclusion. Further, 

Shumway (1981) observed that 

" children did not develop any of the feared 

debilitations when tested without calculators because of 

calculator use for instruction". 

Seldom is research literature so clear that .there is no cause 

for concern or alarm about this particular calculator effect. 

Secondly, it is argued that they are not available to all students 

and so leave some at a disadvantage. It is evident that most 

students now have access to a calculator either at home or 

school and that more and more schools are able to offer their 

pupils the use of one. For example, a survey (Saunders 1980) 

of 100 'random' occupations reports that fully 9~ of those 

persons involved used a calculator. 

Hopefully, therefore. we are able to avoid creating another 



false dLchotomy, as in new mathematics versus old mathematics, 

discovery versus expository lessons. It is not appropriate to 

consider calculator programmes versus non-calculator programmes. 

The real question is not should calculators be used but when, 

where and how they can be used most effectively. 

Fielker (1979) believes that the cartoon at the beginning of 

this chapter is only one step removed from reality because, 

he says, judging by some of the literature that is being prod

uced, it is sometimes a struggle to find the right sort of 

mathematical questions to ask when calculators are readily 

available to children. He believes that there are too many 

books and articles which feature the word 'calculator' in the 

title and yet use of the calculator is only incidental. More 

research should be put'into activities that use the power of 

the calculator more directly. 

The recent publication 'Calculators Count' (1983) demonstrates 

various topics that can be taught more effectively with the 

aid of the calculator. Perhaps, as important as the ideas 

themselves, is the authors' suggestions where these topics may 

be usefully placed into existing mathematics courses. The 

appendices include their suggestions for both the S.M.P. 

lettered books and the S.M.G. modern mathematics for schools 

courses. 

S.M.P. have produced their own calculator series of booklets 

to complement their existing '0' level course and the new 

S.M.P. 11 - 16 course has been devised with the assumption 

of calculator availability in mind. 

Fielker, too, is one of the many educationalists outside the 

school classroom who believe that the calculator should be 

available to all children at all times (assuming correct use). 
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To those teachers who would advocate the learning of some 

arithmetic before the calculator is used he would argue that 

this is rather like not allowing anyone to pass their driving 

test until they can run at 40 m.p.h. 

"Children were born with brains, and they should use 

them", 

one teacher had said to him at a course. He replied that 

she was born with legs, and had she walked the twenty miles 

to the course? However, it might well have been pointed out 

that walking .is a beneficial exercise, and that many people 

find it enjoyable and a challenge. 

Perhaps a more appropriate analogy would concern the advent of 

sewing machines. It was feared that many of the traditional 

hand-sewing skills would disappear, and it is true they have, 

but who could deny that the use of a sewing machine requires 

new skills and, some would agree, better and more versatile 

results. 

The classroom teacher may well consider Fielker's view as 

rather extreme. The ability to carry out simple calculations 

by all children and more difficult ones for the more able 

is still valued by parents, employers and the pupils themselves. 

To them it is a matter of pride, and, to some, enjoyment. 

It must be useful, at times, therefore to prohibit the use of 

the calculator in order to test these skills. Mental arithmetic 

is regarded as even more important in the calculator age. If 

asked 

"What is 8.16 x 25 ?, 

most children, if they have access to a calculator, will use 

it and quickly get the right answer, but it is very easy to 

answer this question without one. 

The ability to find short cuts and tricks (an interesting 
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and worthwhile activity in its own right) may well disappear if 

some limitation, however slight, is not put on calculator use. 

Also, well-worn arguments such as the calculator breaking down 

or forgetting your calculator, do have a ring of truth. 

It is unlikely that any external examination in mathematics 

now forbids the use of calculators on all of its papers. 

Cockcroft recommends that: 

"Examination Boards should design their syllabus 

and examinations on the assumption that all candidates will 

have access to a calculator by 1985". (395) 

However, despite strong views that calculators should be allowed 

at all times, most examinations like to include a section 

which forbids its use. This usually involves questions of 

a simple, computational nature. 

Using calculators to check paper and pencil calculations is 

often cited as an important use for pupils. In 1979 

P.R.I.S.M. reported that 93% of professional people sampled 

by them gave 'checking answers' as the best use of calculators. 

It is not surprising that this use is cited, but it is sur

prising that it was quoted as the most important use by so 

many. Reys (1979), like many other educators, believes 

there is little point in checking computations done without 

a calculator when the calculator could have been used in the 

first place. 

It soon becomes obvious that the mere possession of a calculator 

by a pupil is not enough. There is still a good deal of 

convincing to do that the calculator offers more than the ability 

to ease the burden of computation. Great claims have been 

made as to the effect the calculator will have on the actual 

content of the mathematics curriculum and some of these claims 

will be examined briefly in the next section. 
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EFFECT OF THE CALCULATOR ON MATHEMATICS CONTENT 

In considering the impact of the calculator on the mathematics 

syllabus at secondary level, we may ask three questions: 

"What comes in?" 

"What goes out?" 

"What do we do about what is left?" 

Pollak (1977) writes of two partial orderings of the curriculum, 

one supplied by the discipline of mathematics (the partial 

ordering of prerequisites) and the other by society (the 

partial ordering of importance). He argues that both will 

be affected in a major way by the calculator. Certainly 

both will be borne in mind when considering the needs of our 

pupils when they are 10 or 20 years into their adult life. 

The following suggestions do not purport to be a comprehensive 

or definitive list, and they will certainly cause some dis

agreement. However, it is clear that due consideration must 

be given to the syllabus now. Many factors, of course, have 

to be considered when devising a syllabus for the future; the 

calculator is only one of them. 

What goes out? 

There seems to be general agreement that the calculator will 

make logarithm tables and the slide rule redundant as calculating 

aids. Trigonometrical tables, too, will soon be superceded by 

the scientific calculators. The exclusion of the long division 

algorithm for many pupils and more difficult fractions may 

cause a little more controve~y but, hopefully, not too much. 

Other minor areas, such as the use of coding for calculation 

of the mean and standard deviation, and other less obvious areas 
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will need careful consideration. In the latter category, 

Blakeley (1980) looked at the S.M.P. '0' level course which, 

as he comments, was devised before calculators were taken 

into account, and he was able to eliminate 22 chapters out of 

124 by adding to the list: 

linear programming, 

latitude and longitude, 

and the matrices/transformations link. 

He does not reason strongly for these and suggests other topics 

could be argued against by other people. His 'hatchet job' 

is really to create room in an already overcrowded syllabus. 

For a start, a conservative list might be: 

LOGARITHMIC TABLES 

TRIGONOMETRICAL TABLES 

SLIDE RULES 

FRACTIONS IN DEPTH 

DIVISION ALGORITHMS FOR MOST PUPILS 

What comes in? 

A long list of additions to the syllabus might appear rather 

daunting to teachers, but few of these are entirely new. 

Some of them, such as patterns, estimation and accuracy have 

been on the fringe for some time while others, such as iterative 

methods, may replace more traditional techniques. Further, 

it must be assumed that more time will be available with less 

emphasis on the standard pencil-and-paper algorithms. 

MATHEMATICAL MODELLING involves translating a real situation 

into a mathematical equation which can be used to explain 
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known phenomena and even predict. Excessive calculations have, 

in the past, hampered the inclusion of this topic in the syllabus. 

ESTIMATION OF ANSWERS AND ACCURACY take on a new importance 

in the calculator/computer age, and more emphasis can be 

placed on PROBLEM-SOLVING. The concept of AlGORITHM and the use 

of ITERATIVE PROCEDURES, too, arebasic in today's computer age. 

Children need to be given the opportunity to design and modify 

new algorithms, and iterative methods may be given as an alter

native or even replace such traditional techniques as solving 

quadratic equations by factorising or by the formula. Certainly, 

more interesting and higher order equations could be investigated, 

as well as more interesting graphs. 

Studying more practical applications of geometry and trig

onometry, such as TECHNICAL DRAWING AND SURVEYING, has been 

reported by Wilson (1977) to be much more successful for pupils 

of moderate ability, provided calculators were used. 

GROWTH AND DECAY RATES should gain greater prominance on the 

new syllabus. Compound Interest is a vital topic to us all 

ranging from personal overdrafts and hire purchase and mortgages 

to major economic problems of the National Debt. 

The exploration of PATTERN has already become a popular topic 

in new books and courses related to the calculator. However, 

if it is to be worthwhile, it must be used to promote mathe

matical thinking. While the main purpose of the calculator 

is to generate the pattern, the main purpose of the activity 

should be the search for the pattern, with some possible 

explanation of the pattern, a generalisation and then the 

calculator may be used again to verify the result. Johnson 

(1978) examines patterns in-cmore detail in his article 

'Calculators: Use and Abuses'. 

Most of the books on calculators have given prominance to 
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GAMES AND PUZZLES, APPLICATIONS of all types and to INVESTIGATIONS, 

and the calculator allows much greater scope for these. 

Arguments for the inclusion of SEQUENCES, SERIES AND LIMITS, 

would be strong. 

We must not forget what might be thought of as the two most 

important additions to the syllabus: the PROPER USE OF THE 

CALCULATOR and NENTAL TECHNIQUES as suggested by Plunkett 

to replace the standard written algorithms. 

The list might look like this: 

MATHEMATICAL MODELLING 

ESTIMATION OF ANSWERS 

ACCURACY AND ERRORS 

ALGORITHMS 

ITERATIVE METHODS 

POLYNOMIALS 

PROBLEM-SOLVING TECHNIQUES 

GROWTH AND DECAY APPLICATIONS 

PRACTICAL GEmlETRIC AND TRIGONOMETRIC APPLICATIONS 
(Surveying and technical drawing) 

PATTERNS 

APPLICATION TO THE 'REAL WORLD' PROBLEMS WITH REAL DATA 

INVESTIGATIONS 

GAMES AND PUZZLES 

SEQUENCES, SERIES AND LIMITS 

PROPER USE OF THE CALCULATOR 

NEW MENTAL TECHNIQUES TO REPLACE STANDARD WRITTEN ALGORITHMS 

No doubt, a strong case could be made for several other topics 

and it is inevitable that the 'inclusion' list will far exceed 

the 'exclusion' list. 



It is up to all educators to examine each topic in the syllabus 

and decide if and how the calculator can make a real contribution 

to the UNDERSTANDING and LEARNING of that topic. It is up to 

every teacher to exploit its very special properties. However, 

the application of calculators should not be forced if better 

aids, and methods exist. 

Suggestions for ways in which the calculator can aid the 

understanding of some topics, have already been described. 

Many other topics can also benefit, including the promotion 

of all pupils 'numeracy' skills. 

The ORDER in which topics are introduced into the syllabus 

will also need rethinking although other factors, such as 

the work of PIAGET and C.S.M.S., will have to be taken into 

consideration. For example, decimals may be introduced before 

fractions, negative numbers may be taught earlier. 



CONCLUSION 

If we have any doubts about the tremendous interest that the 

advent of the calculator has had in educational research, then 

we should heed the words of Suydall1 ( 1979, pp. 3) In the 

second of her state-of-the-art reviews she asserted that: 

"Almost 100 studies on the effect of calculator use 

have been conducted during the past four or five years. This 

is more investigation than almost any other topic or tool or 

technique in mathematics instruction during this century". 

Reports of calculator use in school settings have continued 

to be released, more or less unabated, ever since. 

However, research is not an end in itself. We should do 

something as a result of research. The teacher should 

incorporate the conclusion of research (after taking into account 

his/her own unique situation and circumstances) into his/her 

daily teaching. We may not be inclined to take the dramatic 

action some educators strongly recommend by allowing the use 

of the calculator at all times. When Shumway (1981) thinks 

of his own children, for example, he wants to say: 

"Don't waste their time doing trivia! Give them a 

calculator and get on to teaching them the mathematics they 

cannot now do". 

The classroom teacher may have to take a more conservative 

line but recent support for the use of the calculator by 

Cockcroft has given the impetus to take action. The Head of 

the Mathematics Department has an important role to play here: 

1) He has to decide where effective calculator based 

activities can be fitted into his existing syllabus, and alter 
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aspects of the curriculum with the calculator in mind. 

2) He should rethink his philosophy about the standard 

pencil-and-paper algorithms. Whatever his decision, he should 

liase closely with the primary school and employers. He should 

convince parents and colleagues, too, that the calculator has 

no detrimental effects on the pupils own skills. 

3) He should initiate closer co-operation between 

mathematics and other departments by emphasising the service 

aspect of calculators. As Green (1980) reports: 

" ..... there is a need for closer co-operation. 

Maybe the calculator can be the catalyst". 

The L.E.A's must provide the finance and in-service training, 

and the teachers and other educators must carry on with the 

research, especially for material where the calculator can 

be used as a teaching and learning aid. 

Thereis an increasing danger, however, that the calculator 

will be overshadowed by its technological 'big-brother' - the 

microcomputer. In his article 'Remember the Calculator', 

David E. Williams (1983) reports on a conversation between two 

mathematics supervisors: 

"I'm putting all my money into microcomputers this 

year .•..•.. " 
"Have you ordered any calculators lately?" 

"Calculators are dead: Nobody cares about calculators 

any more. Everyone wants to order microcomputers .••.•.• " 

"But even with micros being purchased, calculators 

are still valuable tools and aids for students and teachers to 

use". 

"Don't waste your time and money on calculators. 

Microcomputers are going to revolutionise mathematics education. 

Get on with it - you're really hehind the times". 



Mathematics educators are rushing to purchase computer hardware, 

and yet it is curious that many who questioned the educational 

value of the role of the calculator in the mathematics education 

of primary school children have no reservations about putting 

microcomputers in the primary classroom. (The reader might 

enjoy 'The Discovery of the Mathematics Textbook', an amusing, 

tongue-in-cheek article by Michael Cornelius, 1982). We must, 

of course, continue to develop ways to use both calculators 

and computers in our classrooms. 

Others may see the danger coming from another source. On a 

more frivolous note Watson (1980) draws a picture of what may 

be in store for us. Some have concluded that, just as with the 

invention of the motor car, mankin~ is losing the ability to 

walk, so we shall lose all 

calculator age. 

j('sht h""I 
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You will notice that the pupil has no legs (car travel) and 

that his television aerials are 'built in'. The pointed index 

finger is for pressing the tiny buttons of his wrist-watch 

calculator, and the bifocals are for reading the tiny displays'; 

However, Watson does not share this pessimistic view 

Weaver, (1980), too, is confident that we can embark on school 

mathematics programmes with "freedom from fear" - freedom from 

fear that calculator use will have harmful or debilitating effects 

on students' mathematical achievement. This can no longer be 
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------------------------------........ 
used as a reason, nor excuse, for not welcoming and including 

calculators among the instructional aids and materials that 

have potential contributions to make in connection with school 

mathematics programmes. 

He goes on to conclude: 

"Now, as we enter the 1980's, we are in a position 

to reformulate school mathematics programmes in a manner 

that will free them from the shackles of the attainment of 

computational skills with pencil-and-paper algorithms as the 

basis upon which instruction is initiated, organised and 

sequenced at the pre-secondary level;, and will have anal ago us 

reorganisational implications for programmes at the secondary 

level. THE CALCULATOR IS THE KEY. Now is the time to turn 

that key in all earnestness". 
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APPENDIX 1 

S.M.G. Modern Mathematics for Schools 

Possible fit of some of the project materials to this series of 
textbooks. 

BOOK 1 

BOOK 2 ARITHMETIC - Chapter 1 

BOOK 2 ALGEBRA - Chapter 4 

BOOK 2 GEOMETRY - Chapter 2 
BOOK 3 GEOMETRY - Chapter 2 

BOOK 3 ARITHMETIC - Chapter 

BOOK 4 ARITHMETIC - Chapter 2 

BOOK 4 ARITHMETIC - Chapter 3 

BOOK 4 ARITHMETIC - Chapter 4 

BOOK 4 GEOMETRY - Chapter 2 

BOOK 5 TRIGONOMETRY - Chapter 

PROJECT MATERIAL 

8 Understanding the (x2) key 
15 Odd numbers and their sum 

2 Multiplication of decimals 
3 Division by a decimal 
6 Fractions and decimals 

20 Counting and estimation 

4 Introduction to the 
distributive law 

5 Areas of rectangles and 
decimal multiplication 

7 Fractions, decimals and 
percentages 

39 Electricity meters and 
electricity bills 

11 Introduction to cube roots 
13 An iterative method for 

finding the square roots 

31 Introduction to the number 'pi' 
32 Introduction to the area of 

a circle 

21 Word length 
22 Letter frequency 

30 Introduction to Pythagoras' 
rule 

33 Introduction to trigonometric 
ratios 

BOOK 6 ALGEBRA - Chapter 3 37 Gutter design 
38 Box making 

BOOK 6 TRIGONOMETRY - Chapter 6 34 The sine rule 

BOOK 7 ARITHMETrC - Chapter 1 27 Errors and accuracy: areas 

BOOW 7 ALGEBRA - Chapter 4 19 Introduction to rates of change 

BOOK 8 CALCULUS - Chapter 1 

BOOK 9 ALGEBRA - Chapter 3 

for non-linear relationships 

41 How money grows 
42 Growth factors and decay factors 
43 Mathematics and the guitar 



APPENDIX 2 

S.M.P. Lettered Books 

BOOK/CHAPTER 

After A1 

After A8 

B5 

After B3 
(or as late 
as X5) 

B9 or C11 

C4 

With C4 

After C4 

After C4 (or X5) 

C11 

D2 
With D2 (or X5) 

D5 or earlier 
D5 

D8 
D10 

E1 

E5 

E9 

After E9 

E10 

E11 

litO 

PROJECT MATERIAL 

15 Odd numbers and their sum 
16 Whole numbers and their sum 
17 Triangle numbers and their sum 

6 Fractions and decimals 
23 Errors and accuracy length 
24 Errors and accuracy weight 
25 Errors and accuracy time 
26 Errors and accuracy angles 
22 Letter frequency 

2 Multiplication of decimals 
3 Division by a decimal 
5 Areas of rectangles and 

decimal multiplication 
39 Electricity meters and 

electricity bills 

18 The jumping frog 
40 Conversion between metric 

and imperial units 

27 Errors and accuracy : area 
20 Counting and estimation 
21 Word length 

35 Lengths of similar figures 
28 Errors and accuracy 

comparing lengths 
1 Number messages 
4 Introduction to the 

distributive law 2 
8 Understanding the (x ) key 
7 Fractions, decimals and 

percentages 

30 Introduction to Pythagoras' rule 
9 Introduction to square roots 

10 Square roots by decimal search 
37 Gutter design 
38 Box making 
11 Introduction to cube roots 
12 Cube roots by decimal search 
33 Introduction to trigonometric 

ratios 
31 Introduction to the number 'pi' 
32 Introduction to the area of a circle 



APPENDIX 2 (Continued) 

BOOK/CHAPTER 

F8 
F12 or earlier 

F12 

G9 

After G9 

X5 
Y1 

After Y 

I Lt I 

PROJECT MATERIAL 

36 Areas of similar figures 
13 An interative method for finding 

square roots 
14 An iterative method using a 

square root key 

41 How money grows 
42 Growth factors and decay factors 
43 Mathematics and the guitar 

29 Errors and accuracy : speed 

19 Introduction to rates of change 
for non-linear relationships 

34 The sine rule 



APPENDIX 3 

Calculator Games 

(1) For two players and one calculator. 

Player A enters any number. 

Player B multiplies by any number he or she chooses to 

try to make the display show 

1.0****** 

where the asterisks may be any digits. If B succeeds 

he or she wins. 

Player A multiplies the number n2li in the display by any 

number he or she chooses to try to make the display show 

1.0****** 

They continue until either A or B succeeds. 

For a harder game try 1.00***** 

or 1.000**** 

PRACTICE: Estimation and showing that multiplication does 

not necessarily increase a number. 

(2) For any number of players, 1 calculator per player, pencil 

and paper. 

Choose a two-digit number as the target. 

Now choose four digits as the ammunition. 

Try to hit the target using only the specified ammunition and 

the operations +, -, x, -. 

Score 10 for a direct hit 
7 for an "inner" (within 2 of target) 
3 for an "outer" (within 5 of target) 

\1,.:1. 



Example Target 58 Ammunition 4, g, 3, 7. 

Player A 

B 

C 

PRACTICE 

(4x9) + (3x7) 
(9+3) x 4 + 7 

7x(4+3) + 9 

Ordering of Operations 

57 

55 

58 

(3) Twenty Questions 

A thinks of a whole number < 10000 

B tries to guess it in 20 questions 

Both players have calculators; answers to questions can 

only be YES/NO. 

Questions which involve the words "less than", "more 

than" count double! 

(Easier versions for younger pupils: 

Number must be less than 1000 (100) 

Remove the restriction on "less than"/"more than") 

PRACTICE Properties of Numbers 

(4) Calculator Snooker 

Player A enters any two-digit number, B takes a 'shot' 

by performing a multiplication sum. To 'pot' a ball, 

the first digit of the answer must be correct according 

to the table shown. (The d~ree of accuracy can be varied 

according to experience.) 

BAlL Red 

RESULT NEEDED 1 .• 

SCORE 

Yellow Green Brown Blue Pink Black 

2. • 3 .. 

2 3 

4 •. 

4 

5.. 6.. 7 .. 

5 6 7 



Otherwise the rules are similar to 'real' snooker. There are 10 

(or 15) reds and one of each of the six 'colours'. A player must 

score in the order red, colour, red, colour, and so on, until all 

the reds have gone. (Note that the colours are replaced but the 

reds are not.) When the last red has gone, the colours are potted 

'in order' and are not replaced. 

For example, one sequence of plays was 

Player Enters Display Comments 

Jimmy 69 69 

Peter x 2 = 138 Peter pots the first red, 
He elects to go for blue .. 

x 5 = 690 and misses. 

Karen x 2 = 1380 Karen pots the second red, 
She elects to go for black •. 

x 5.5 = 7590 and pots it. 

x 2.7 = 20493 She misses the next red. 

PRACTICE Estimation skills 

(5) Target Practice (2 players) 

The players agree to aim for a 'target area' which is 

a range of decimal numbers (say 0.2 to 0.5 inclusive). 

Each player in turn must then choose two whole numbers 

which are then divided on the calculator. If the result 

falls into the target area, then they score a hit. 

Sample Play 

Player Numbers 
chosen 

A 8, 4 

B 4, 8 

A 1 , 4 

B 3, 5 

etc etc 

Key 
Sequence 

8 .;. 4 = 

4 8 = 

4 = 

3 5 = 

etc 

11;-4 

Answer Score 

2 o 
0.5 

0.25 

0.6 o 
etc etc 



Note 

Keeping a record in a table is slow and rather 

unexciting. Much better is to record the play on 

graph paper, thus: 

"f"r 
10 

fJ ,. 1,,1:-
"v".,b. r ~ )C. ~ "'In.. 

~ 

". 0 

'" ;!. 
Q 

t It b & 10 Bo t re In t\ Lot "'6 ........ 

PRACTICE Decimals and Estimation 

(6) Percentage Maze 

Work through this maze, starting with 100 on your 

calculator. Find which route gets to 46.1916 (the finish) 

Choose from 

ABE, ADE, ADG, CDE, CDG, CFG. 

1 100 l 
t\<Id 20·/. -tAl 

.. ...... b;;l I'S·/. &1 

, Iltlllu b~ 'i'!, 'I. "cIo-... ~ S'/. Il\dd ~':i'!. 

N1~ .,0/, ttJ." ., 10'/. 
I C-

I -.l 'D I 1 E: 1 I I I 

t\ •• 11% ~rJ.tj S·t. otkllrf. 

I f I r Grl : LW·"'·I I .... d.".. b '1-,'/, I I o.id 10% 

PRACTICE Percentage 

IIi-S 



(7) Going down 

You need a calculator. 
/1 '2..3 4-->b 7 g 17 

Write down the digits 1,2,3, ... , 9. 

This is the check list. 

Enter 1 into the calculator. 

Players take it in turns to subtract a number from the 

display. 

The number you subtract can have 2 digits at most 

You can use 0 as many times as 

you like in the numbers you 

subtract. 

But each number in the check list 

can only be used once in the game 

Cross off the digits in the check list as you use them 

The winner is the first person to get 0.01 in the display 

The game is a draw if no-one can get 0.01. 

If you get a negative number in the display, you lose 

straight away. 

PRACTICE Place Value and Decimals 

(8) The Keyboard Game 

In this game you only (i] ill 
use the numbers from to 9 [£I m 
Start with 31 on the display. DJ ill 

The first player picks any number from to 9 " 
They subtract this off the display. 

The second player picks a number. 

IIJ 
(iJ 
QI 

Their number must be next to the key the first player used. 
The second player subtracts their number. 

Then the first player picks a number next to the second 
player's, and so on. 

The first player to get a negative answer loses. 

PRACTICE : Mainly a game of strategy 



(9) Target 100 

Similar to Game Number 1 but the target is 100.**** 

by multiplication. 

For harder games the target becomes 100.0*** 

or 100.00** etc. 

Now try playing "target" when you are only allowed to press 

the IiJ button! 

PRACTICE Estimation 

(10) 4-in-a-row 

This is a calculator game for two players. 

You need one calculator, some graph paper and a pencil. 

Copy the number line below onto your graph paper. (Let 
2 cm represent 1 unit) 

o It 7 8 10 
, 

Player chooses two numbers from the table below, and an 

operation (either x or +) 

103 0.4 0.07 

25 1.5 5 

11 0.5 8.3 

Player 1 writes down this sum and works out the answer 
using a calculator (for example: 25 x 0.3 ~ 7.5) 

He marks his answer on the number line with a cross (x) 

1 '1 

Player 2 then chooses two more numbers and an operation o or ill 

Iltl 



He marks his answer with a blob (.) 

If the point cannot be marked, (off the edge or already 
taken), then the player misses a go. 

The first player to get 4 of his points in a consecutive 
row wins! 

is a win for player 2. 

PRACTICE Use of scale and estimation. 

2 Players (more-able 

One calculator with 

children) 

!X\ keys 
X· j 

'f 
2. 

3. 

A sets any number in a calculator display - 8 or 9 
is a reasonable choice. 

B adds any number Z, presses ~ and )IX) 
and then subtracts Z, presses ~ ~ , 
A does the same as B, (choosing a different no. Z), 
and so on. 

(The display is NOT cleared at each stage, so each 

player carries on where the other leaves off). 

First to get 10.0**** in the display is the winner. 

NOTE i) The number Z can be NEGATIVE (i.e. subtract 
1st and then add) 

ii) **** can be any digits, but the display must 
start with 10.0 •.. 

Harder version "Home" is 10.00** 

,:f! "You are the commander of a space craft, which is 
malfunctioning. In order to ensure safe return to Earth (before 
the motor goes critical) you have to set the quasor-warp-force 
display at 10.0 .• " 

PRACTICE : Behaviour of functions]X and X"l. 

Iltg 




