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A literature survey covers a wide range
of picture processing topies from the general probiem of
nanipulating digitised images to the specific task
of anaiysing the shape of objects within an image
field. There follows a discussion and developmént
of theory relating to this latter task. ‘A number
of shape analysis techniques are inapplicable or
computationélly untenable when appliéd 10 objects
containing concavities. A method is proposeq and
implemented whereby any objeét-may be divided into
convex components'the algebraic sum of Which
constitute the original. These components may
be related by a tree étructure;

It is observed that pfoperties based on
integral measurements, e.g. area, are less
susceptidble to quantisaticn errors than those based
on linear and derivative measurements such as’ |
diameters and slopes. A set of moments invariant
with respect to size, position and orientation
are derived and applied to the study of the.above

.convex components. An outline of possible further

developments is given,
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~ Nomerclature.

Unless otherwise defined symbols may be

interpreted throughout the text as follows:

di’ Hi, Li Length between two points

£ : serieé‘filter weights

i3 - name- of line joining point i
to poinf 3

aij | length of ij

L ‘ © total number of grey levels

MAT Medial axis transform

MPP Minimum périmeter polygon-

MSP Minimﬁm sided polygon

Mpg Homent in pth power of x and
qth power of ¥y

;pd | ) Mpq taken about the centroid

_ origin |

N o width(length) of a digitised
picture (in picture points)

T probability

r radial distance from (centroid)
origin |

o angle of r to the positive y gxis

n, V ' variables in Fourier plane

Xy, ¥ ~variables in real plane of

' _ digitised picture

| X(f), Y(£), G(f) . Pourier transforms of x, y and g
Xy 7 centroid coordinates
Zy W complex variables in the discrete

Laplace plane
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Introduction;

in_the 195053 whilst.many-dismissed'
computérs_as glorified adding machines others
failed to appreciate their-limitations'predicting
the 5big brother machine and humanoid robots.
Today, at least the latter of tﬁesé two predictiohs‘
appears further from.rea;ity than twenty years ago.

-Indeed, computer development has led man to study

in more detail his own thought and reasoning processes.

It is mans' combination of eye and brain coupled with
manual dexterity which have enabled him to dominéte
other species.

Like computers,Aimage processing has also
been underestimated ih potential and in the difficulty
of réalising this potential. V‘It is remarkable how
little has teen achiewved in this field during the
past ten yearé. The specific task upon which by
far the most time, effoft?énd money haS'Been'_
expendedris that of character recognition. Some
success has been achieved and provided only a -
:pre-determined character sef'are_uSed a nﬁmber of
moderately priced commerciél machines will perform
this task with low error rates. Other workers
have concentrated upbn chromosome and finger print
classification,.interactive gfaphic aids, robots
and, inevitably, military applications such as

. aer¥yial reconnaisance.




Durihg the same decade the price/performance
ratio of small computers has improved by leaps and
bounds so that a once expensive novelty is rapidly
becoming 2 commonplace necessity in industry.
Unfortunately, too mény machines have been sold on.
the basis of the speed at which they can add two
pumbers rather than their ability to solve industrial
problemns. Lack of support in the form of
inexpensive peripherals and easy to use software
has caused many companiés to becomé disillusioned.
One can readily appreciate the frustration of having
a sophisticated tool capable of assisting with many
important tasks but unablé to carry them out for
want of specialised 'étfachmentsf,

To avoid the task of interfacing their
equipment with numerous small computers,
manufacturers of image processing equipment have,
in general, supplied their own special purpose
hardware. Where only relatively simole opéraﬁions
are to be performed on pictures it is economic to
implement them using hardwired circuitry. If
units to perform simple Operatiohs are produced
in modular form then the interconnection of
modules may allow some flexibility. However,
for more complex Operations the incr=zased
adaptability of a general purpose computer is

~undeniable,




In the process industries small comﬁuters
have assumed many of the tasks previously requiring
manuel intervention. A limitation has been the
relatively few types_of information, concerning a
process, which could readily be supplied on-line
to process bontrol computers. It is hoped that
in the future input of visuwal information will
‘become commonplace, making a valuable contribution
to the capability of on-line control systems.

This.project is primarily concerned with
developing image processing techniques and software
for on-line and off-line uée on small general
purpose compubers. Most éoftware‘has been written
in FORTRAN since this.language is becoming avéilable
on a number of small machines. The techniqués
used are generally limited most By the data handling
facilities, however, so sections which
manipulate data in other than single dimensioned
vectors have been isolated as small routines..

In particular, it has been a policy to make all
computer routines of moderate size so that work
involved in modification or conversion for anothér
computer would be minimised. i |

| In choosing the subject of research for
this thesis several lifetimes of work have readily
suggested themselves. The difficulty has been in
picking a path amid a maze of false trails and

blind allejs in a direction most likely to prove




'profitable, moreover, a direction in which a

useful amount of development could be implemrented

in the relatively short time available. The final

'topic was selected from obhservations of the short-

- comings of work by other researchers and, it is

hoped, will prove to be a means of overcoming some

uf these difficulties.




Literature Survey.




The computer,procéssing of images encomp-
asses such a proliferation of literature that a
comprehensive survey would nccupy numerous volumes.
Fortunately, other authors have surveyed sections
o? the subject'and unnecessary repetition has been
avoidea. |

Every effort has been made. to cover the
- rost recent works of authors and research teams,
but with new articles appearing each week no such
work can remain up to date. A guide to periodicals
which frequently contain relevant information has
therefore been included as Appendix C. |

Special mention must be made of 'Picture
‘processing by computen', by Azriel Rosenfeld(l)Q-
This textbook has been used as a framework to
introduce basic concepts whilst mentioning more
recent articies in the first two sections of the
survey. Several other pertinent books have been
publishedy; mostly collections of conference papers.

.Thé series of publications ‘'Advances in
Information Systems Science' in which prominent
authors discuss specific topics have also been found
invaluable. Information has frequently been drawn

from this sourece in attempting to link discussion

of various subjects in a logical manner.




It is hoped that this survey will provide
a useful background knowledge of picture processing
to Chemical Engingers (not least the author). The
aim has been ‘o complement rather than duplicate
topics familiar to Chemical Engineers whilst never
straying far from subjects of direct application.
Nevertheless, aryone with a fair knowledge of
engineeriag principles and mathematics should still

‘£ind the survey readable.

The survey consists of three main sectiohs
of which the first, Information Tﬁeory and Data
Handling, is the most general. It is difficult to
understate the importance of layiﬁg good foundations
in the form of careful selection of data structures
if image processing pfocedures are to bé implemented
efficiently within a limited storage space. The
first section reviews this problem in abstract terms
before concentrating on the more specific task of |
coding images. - _
| | Picture Processing, the second section,
describes a number of operations which may be
performed on pictures to enable either a human
observer or a computer to more easily discern items
of interesf. Technigues described have heen
deVeloped.by workers in statistics, optics, and
electrical and audio engineering: Differences

may be seen to be more in the methods of approach

LA




resulting from a diversity of purpose than in
the acfual transformations themselves.
Researchers in picture processing have inéreased
~the usefulnesa of these techniques by adding
"~ logic functions.

The next secticn dealing with featuré

_extraction reviews work on the problem of 1
-measuring picture properties and assessing the
relation between such neasurements and praperties
to be-estimated. Treatment of the former topic
is restricted to avoid overlap with *Development
of Theory', the next part of the thesis.

Finaily, brief reference is made to

tcanning hardware. ‘ ’ ¢




.INFORMATION THEORY AND DATA HANDLING.

A primary problem in the processing of
imagés is the vast quantity or data arising from
the digitisation of a single pictufe. In this
section a number of methods for reducing this
volume are discussed and compared. .L

| A digital picture islusually considered
as a matrix of points (pixels) each representing
the average grey level of a small area. If the
number of possible discreet grey values is L=2%
then the total storage'requirement for an N by N
pixel picture is N2.x binary bits, regardless of
picture content. Considering a binary image'(L=2),
where '1l' represents a whife point and 'O' a black
point, then a completély'white picture could'.ideally
_be represented by a single 'l' bit. At the other
extreme a picture composed entirely of random dots
would have a maximum infofmation content, there
being ro way of predicting the value of any point

with more than‘BO% accuracy, i.e. using standard

statistical notation for probability, pr(0) = pr(l)=43.

In general the grey value at a point may

" be predicted with better than 50% accuracy from a |
knowledge of neighbouring points, sce for insfance
Deutsch(2). Simpson(3) has used statistical methods
to assess the degree of predictability of imdividual

points and Lence the redundancy of information

cohtained in our N2.x bits.




Efficient Coding.

Huffmann(4), shows liow storage requirements
may be minimised by using a code in which the length
of thé number denoting each value is inversely
proportional fo its likelihood of occurence. Suppose
there are threé grey levels: '1', '2' and '3' and
pr(l)=%, pr(2)=%, pr(3)=%. Ve may use a code
only half as long for 'l' since this value is twice
as frequent. Let the binary numbers 1,.01 and 00
be the codes for 1, 2 and 3 respectively. Summing
the product of code length and probability for each
code gives the average code length which will be
1.242.,442.%2 = 1% binary bits. Note that no
separators are required between successive codes.
since a code starting with '0O' is known to have 2
bit length and code starting with 'l' only single bit
length.

Sequences.

If the probabilitj that the next grey value
will be J is to some extent dependent on the current
value I then Pry1 is called the conditional probability
for this occurence. If pry; = pr; for 2ll pairs of
points then the points'are said to be independent.
Where grey values are interdependent a single code

may be used for a predetermined sequence. The length
of code should be related to the frequeﬁcy of

occurence of the sequence.

Predictive Coding.

Frequently)neighbouring points will have

& high probability of being the same, i.e. pryy >
pryy for I#J. For such cases the first grey value

- 10 -




and successive differences may be stored. The
difference used may be shifted into the range 1 to L
using J-I for J>I and J=I+L for J4I. The relative
frequencies of each value will be lescs equally
distributed allowing mcre efficient coding. An
interesting method used by Schwartz(5) takes into
account lower frequency of change for the more
significant binary digits of successive values.

Run Coding.

Where long runs of the same grey value
- occur it becomes efficient tb gstore valuerand'run
length. For binary images, only the run length is

required since black and white will alternate.




Data Compression.

The above methods ellow a reduction in
storage space whilst retaining all the original
informﬁtion. Unfortunately, efficient coding may
increase the difficulty of imagé processing and
manipulation. Since only a swall number of final
results are normally required from each image, |
redundancj of required information will be much
higher than redundancy of pictorial information.

It is important to consider the type of processing
required together with the above trade-offs in code
selection. In practice it may be acceptable and
even desirable to discard some of the data in the
interests of further compression.

Digitisation produces quantisation errors
in both spatial and grey level measurements. Data
éompression may include smoothing operations_which
actually reducé this errcr. |

Fourier Transforms.

Slow variations in picture shading and
sharply defined edges may be thought of as low and
high spatial frequency picture components. Various
frequency transformaticns are available, the best
known being the Fourier transform. Since two
dimensional Fourier transforms are not well covered
in standard texts some useful notes are collected
in Appendix A.  Andrews{6) discusses the use of
Fourier image coding. Sincé.the transform of each
voint involves the weighted sum of every point on

the original image, distortions in the transform

-12 =




plane become diversified and hence less visually

objectionable when the briginal image is reconstructed.
The transform produces complex results,

real -Harts being dependent on magnitude of the

frequency components and iﬁaginary parts on their

phase or position. Low frequency components have,

in general, much greater magnitude than high

frequency ones so that storage of the transform

image can be compressed by suitable choice of éode.

BIFORE or Hadamard Transforms.

In this case the approximating functions
are rectangular waves rather-than siné and cosine
functions. The Hadamard $ransform produces results
which are both position and magnitude dependent. |
However, in a series of recent articles, Ahmed and
Rao(7) have shown that it is possible fd construct
magnitude and phase spectra. Magnitude terms may
be interpreted as th2 average power of the sum of
a, fundemental frequency and'its odd order harmonics..
Unfortunately, because of this summation, the ability .
to reconstruct the original image is lost. For a
fullér description see Appendix A.

Karhunen-Loeve Transforms. -

Por any group of pictures there is an
optimum liﬁear transformation for data compression.
For an N by N picture it is necessary to calculate

2 2

the N° by N® covariance matrix. This is then

di&gonalised and the'eigenvectors fdund.

‘ ' . ‘

- 13 -




Normally the eigenvalues ére ordered in magnitude

and a relatively small number retained. Corresponding
eigenvectors only are calculated, nevertheless
computational effort and storage requirements are
huge. Van Emden{8) summarises the way in which
various research workers have used diffefent criteria
each finding this transformation optimum. In
practice it is useful to compare the performance

of otherlcompression methods using Karhunen-Lowve

as a standard. Andrews(9) recéntly published a
comparison of the three transformations mentioned
here together with the Haar transform. As might

be expected transforms requiring more computation
produce more efficient compression. However, in
cagses where less than 80% of the information content
need be retained he found the difference between
Fourier and Hadamard transforms only marginal.

Fagt Transforms.

. By storing intermediate results it is
possible to reduce computation required to perform
Fourier or Hadamard transformation of a whole picture

from N4

to 2N210g2N bperations. Each operation is
essentially a complex multiplication for a Fourier
transform and only an addition or subtraction for a
Hadamaxd transform. Effectively, the Fourier transform -
uses N different weighting factors, i.e. sin 2wx/N for
x=1,2,..4N whilst the Hadamard uses only two,namely,

41, and -1. Hence the term BIFORE or binafy Fourier

representation..
14
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Compression by Sampling.

~ Where other methods are unavailable
_cempression by random sanmpling may be used.

Particular mention should be made of the vartous
applications of re?eatable pseﬁdorandom sequences.

If pseudorandom noise is added to a digital picture
prior to grey level quantisation(io) and on
reproduction the same noise is subtracted the effect
.is to alter +the quantisation levels in é random manner.
This éuccessfully breaks up 'false contours' which

would otherwise be produced.

i
Reconstruction of Pictures from Projections. . I
If the grey levels for each vertical line I
of a ?icture are summed the resulting vector is the |
vertical prbjection of the image. Any number of
projections may be found in different directions.
Gordon(ll) kas suggested:a novel method employing
Monte Carlo technique to produce an iﬁage whick
satisfies the constrainté imposed by the projections.
Such an image will not normally be unique and he
obtained the best results by averaging about twenty
images produced using the same'constréints. An
important application of this technique is in the
reconstruction of threé-dimensional translucent
objects from 2D imuges at a number of angles. Each

point is considered as the projection in fhe plane

normal tb the image.

-5 -



S PICTURE PROCESSING.

A digitised picturc may be considered
as data and, as such, manipulated by mathematical
nethods. Picture processing takes into account
the pictorial nature of this data and is concerned
with the change in appearance of the picture
caused by processing.

This section starts with basic
definitions, then varioué methods for the removal
of useless data and emphasis of selected clésses
of features are discussed. Digital filter design,
matched filters, and deconvolution techniques will
be considered in turn and an attempt made to show
the equivalence of these procedures.

Position Invariant Operations.

If the net result of an operation is the
same whether the pictire is operated upon directly
or subjected to complementary shift cperaticns
before and after, then the operafion is position
invariant. In this context, the shifting of the
picture matrix is cyecldic, i.e. any elements which
are shifted beyond the edge of the picture reappear
on the opposite edge. This corresponds to the
Fourier image representation as a periodic
waveform which is repeated to infinity in both X
and Y directions. Shift oferations correspond
to the post-multiplication or pre-multiplication

of the picture matrix by a.modified unit matrix of

14

the same order.




- Point Operations.

- If the grey level value of each point
or. a picture is rescaled by liﬁear transformation,
_ image brightness and contrast are altered. In
certain cases (12) cyeclic non-~linear rescaling may
prove advantageous, i.e. false contours are |
deliberately introduced by dividing the original
grey scale into several grey scale ranges. Fine
-detail in low contrast pictures is greatly enhanced
bgt noise is alsc amplified.

Local Operations.

These depend not only upon the grey level
of the point undergoing the operation dbut also
those in a local neighbourhood, e.g. a local 3x3
matrix. Such 0perations may be mathematical
transformations or include logic functions. To
reduce random speckling of imageé the averagé grey
level of the B8-near neighbours of a pixel may be |
~ compared with the value 6f the pixel itself. If
the difference exceeds a threshold the average is
substituted. Sklansky(13) has shown that in
general the convolution and threshqldingxgperations
are not equivalent, hence, it is not pdssibie to
find a non-zero aperture confolutinn which is
equivalent to thresholding.

Picture operations may bé considered as
the mapping of points of the original image onto a
point or points of a new transformed image. To

conserve space it is frequently convenient to .

- 17 -




operate éequentially on each pixel of a single image.
Rosenfeld and Pfaltz(14) have demonstrated that
parallel operations may be reformulated as equivalen
sequential Operations.!

Hexagonal Pattern Transformations.

A rectangﬁlar array of picture points
kas a number of disadvantages when used in'picture
processing. One is that the concept of connectivity
is not easily defined, since each point has 4, 4-near
(horizontally or-verticaily adjacent) and a further
4, 8-near (diagonally adjacent) neighbours. If
connection requires a coﬁtinuous path of 4-near
points then the comnectivity of two 8-near points
may only be determined by studying the two mutually
4-near neighbours. Cbnversely, if a’ continuous
path of 8-near points is deemed sufficient it is
possible for the connection paths of black and white
objecfs to cross.. | |

- In hexagonal arrays all six near neighbours

.are-piaced in geometrically similar positions. .
Golay(15) enumerafes the 14 possible binary
configurations of 6-near neighbours to a picture cell,.
Subject to rotation invariance. This compares with
more than 70 configurations for the 8 neighbours
of a rectangular‘array.

if each cell composed of 6-hear neighbours
is tested and assigned a value in the range 0-13
acéording to its configuration and the value of
this number is uséd to either change ‘or not change

the value of the central point then interesting

- 18 -




pictorial transformations occur. In order that
serinl and parallel operations are not confused
the image may be divided irio 3 or mofe subfields
so that in each subfield any point is either a
surround point or a centre point but not both.
FEach subfield is operated upbn in ‘turn.
Repeated application of these Golay transforms‘may
be used for f£illing holes, countirg blobs,
‘smoothing' contours and skeletonisation.

Golay et al(16) have constructed a
digital logic unit (GLOPR) capable of efficiently
performing Golay transforms on pictures Leld in
computer store. The system includes a T.V. écanner,
monitor and magnetic tape storage device. This
equiﬁment has been used mainly in the classification
of blood cells and is marketed as CELLSCAN.
Associated software is written in‘a special Golay
Logic lLanguage (GLOL).
Sharpening.

Whereas smoothing involves substitution
of the integral of local grey levels for a central -
point, sharpening is concerned with iocal grey
level derivatives. Pingle(l?) gives.a simple
formilation for the direction and magnitude of
steepest grey level gradient using_the 3x3 matrix
of local points. The sum of the second partial
derivatives, or lLaplacian operator, nay be
afproximated by the difference between the average

of a number of local points and the central grey

-19 -




value, i.e. the image subtracted from a blurred
copy of itself. Both gradient and Laplacian
operators emphasize edges and fine detail but also
inerease noise.

Wher. used as position invériant operations
smoothing and sharpening.represent an alterafion |
of the trade-off between resolution and signal
t0 noise ratio. If, however, logical procedures
‘are applied, particularly‘where the statistics
of the picture are well known, a more positive
gain in image qualify may be achieved. One
sophisticated technique includes a test to detect
the presence of an edge. Smoothing operations are
| used at right angles to, or in the absence of, an
edge whilst a sharpening procedure is simultaneoﬁsly
applied across the edge itself.

Digital Filtering.

By considering a picture to contain

two components, useful information and unwanted
information or noise, we mayrattempt to design a
filter which, ideally, would remove all the noise
leaving wanted information intact. First it is
necessary to study the nature, i.e. the statistics,
of the two components. The more.disimilar some
property of these components the greater will be
the'success of a discriminent function.

| It foliows naturally that where pictorial

[ ] .
information must ba transmitted over a noisy

!
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channel the picture should first be processed to
have minimum correlation with the known noise.
Optimum separation of noise and picture may tﬁen .
be acnieved when the original image is recovered.

2-Dimensional Filters in the Frequency Domain.

If the frequency spectra of wanted signal
and unwanted noise are sufficiently different then
frequency domain fiiters may be used successfully.
In an earlier section Fourief transforms were
discuSséd and the parallel between grey level
transitions and spaﬁial frequencies mentioned.

Seltzer(18),gives a simple procedure
for calculating the frequency response of a

weighted average of grey level values applied as
.a coﬁvoluticn‘operator td each picture point.
Consider a filter in which each point along a line
i1s represented by the average value of the three
points centred about itself. Let the weights be
termed g and the inifial and transformed series of

points be x and y, then:

k=K+1

y. =
n > &*Xn-x  (E1).
k=K-1

where g,_,= 8,8, ,,=1/3. The Fourier

transform of ¥y, can be expressed as:




) %fN—l %§K+1 " oritn
Y(£) = . &y, X -
=0 feg-1 K nk
keK+l wull-1 ‘ =2 - j fn

T Lek-l 8k =0 Fn-x°®
where f is the fractional frequenéy
j.e. f=u/N, where u is the frecuency, and the
distance between neighbouring points is considered
to be unity. Now let m=n-k so that n=m+k, hence:w
k=K+1 n=N-1

' -2 jfk 5 -2wifm
Y f ) e [ .-
) ééx;l %k | fo ‘m® N

= G(£).X(£)
i.e. the input and output of the filter
are relafed V:i.n the freguency domain by the filter
transfer function G(f) which is the Fourier transform

- of the filter weights. [Now:-

. k=K+1
G’( f) = z gk €
k=K~1

-2mwjfk

1/3( e+2'rrj:f_'_eO“_e-fZ‘n';jf)

1/3( cos2w £+jsin2w S+l+4cos2w f=jsin2w )

1/3( l+2cos27rf)
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This simple derivation shows a number

of basic properties of digital filters. Firstly
the convolution theorem, i.e. the convolution of
equation (El) is equivalent to element by element
multiplication of the transform filter weights in
the frequency domain. This property holds for
2 number of integral transforms including Laplace
~but it is particularly interesting-iﬁ the light of
fast Fourier transformation since it may require
less computation to transform an image, filter,
and'pérform inverse transformation than to'apply
the same filter as a coﬁvbiution operation in the
image plane. Secondly, we note that it is the
symmetry of the filtef'weights about the central
point which causes imaginary (phase shift) terms
to cancel out, Applying this cohstraint'to a
general 3x3 matrix whose weights may be represenﬁed
as: cbct and using the same derivation

batb

cbo
in two dimensions with the plané x,¥ transforming
to the Fourier plane u,v we obtain the transfer
function: L

&{u,v) = a+2b(cos2nu/N+cos2rv/N)+2¢(cos2w(u+v)/N

+cos2n{u-v)/N). | |

substituting u'=2my/N and v's2nv/N this simplities to:-

. G(u,v) = a+2b{cosu+cosv' )+2c.cosut .cosv'(E2).

(4




If the illuminance of the filtered image
is constrained to be unchanged then only two
independent variables remain. Ideally, the
amplitude response of such a filter should Dbe equal
in all directions, equation {E2) shows that this
ideal may only be approximated fof any finite size
filter matrix (unlesg b=c=0).

Where the problem is to apply a filter
~of a given frequency spectrum to a digitél picture
two methods are apparent. Firstly, the transformedl
image may be weighted by the frequehcy terms and
an inverse transformation made.. Alternatively,
‘the inverse transform of the spectrum may be taken
and convoluted with the image. The convolution
filter will be an N by N matrix but may be
approximated by a matrix of lower order. No
straightforward method for optimizing this approx-
imation is known. If the matrix terms are |
truncated ét a given order the frequency reSpbnse
of those remaining are subject to oscillation oxr
"riﬁging'. Better results are achieved when the
filter matrix is itself weighted with coefficients
whose values decreaée with distance from the centre
point. Where the filter is symmetric, yet anothér
method is to £it the coefficients of the known
(éosine series) form of filter response to the

désired spectrum using the method of least squares.
p .
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Correlation and Convolution.

It is frequently reguired that a
partiéular feature or shape which may occur withiu
an image should be enhanced or that two images
should be compared for similarities. This infers
the correlation of two pictures or a picture and
filter matrix. In fact the filter may be'thought
of as a picture to which the subject image must be
matched. If the two Serieslused in equation (El)
are subjected to correlation the result may be
expressed as: o

k=K+1

In = zi & Xy  (B3).
k=K-1

Taking Fourier transforms this simplifies to:

Y(f) = G*If).x(f) where G*Tf) is the complex
conjugate of G(f). I the series g is symmetrical
s0 that the terms in G(f) are real only then it
is obvious tbaf correlation and convolution
operations aré identical.. |

Matched Filtering..

One would have thought that the above
explanation of correlation led directly to matched
filter implementation. Namely, produce a filter
matrix which is a picture of the required feature

and correlate with the given picture..




Alternatively, find the coﬁplex conjugate of the
filter transform and use a normalrdigital_filtér.
Unfortunately, two major snags arise. Firstly;ﬂ
although the filter operates regardless of the
position of.the re@uired.featufe on the image it

is not invariant to changes‘of sizé or orieﬁtation.
in some cases this limitation is not important'
e.8. 1in tYpewrittenicharacter recognition where
both size and orientation are known. Ofientation.
invariance may be aghieved at the ex?ense of mapping
.the image into an orientation invariant plane

e.g. using polar co-ordinate Fourier transforms but
it is still necessary to apply separate filters

for each size range of the required obdject.

E ach point on the filtered image is
effectively a similarity index whose.valﬁe reflects
the ‘goodness of fit'_of the required feature
centred at that point. A perfect fit will be
ottained for any object whose boundaries totally
engulf the required feature. .This may be overcome
by preprocessing the image so that the reQuired
feature becomes a contour outline, e.g. by
differencing neighbouring picture elements.
Provided such_an‘operation may be expressed by.a
simple matrix it may. be combined with the matched
- filter. Combination filters are often ambiguousiy
- refered to as matched filters.

. An interesting proPerty'of thg?matched

. f
filter is that it is also optimal for finding
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distorted copies of a perfect filter shape, or
conversely in seeking a less distorted copy of
a given image.

Image Subtraction.

This technique is used to show up small
differences in different phofographs of the same
scene. Correlation techniques must be used for
precise registration of the two images prior to
.subtraction and additional difficulties.occur from
geometrical distortions. Barnea(i9) details a

method for rapid image registration..




Image Restoration.

If a one point picture can be subjected

0 the same position invariant degradation as a
picture which it is required to restore then clearly
the oparation required is one of deconvelution
using the one point picture as a 'blue print'.
Deconvolution may be performed by dividing the
Fourier transform of the imagé by that of the one
" point picture and taking the inverse of the |
reéult. In practice, good results are highly
dependent on the original distortion beirg precisely
position invariant, usually only low freguency

terms of the two pictures are divided.

Point Spread Functioné.

Digitized images are normally degraded
in the following ways: Blurring, due to imperfect
focussing and inaccurate scanning; Noise from the
photosensing head and quﬁﬁtisation,and imperfections
in the scanned image. If the degradations can be
mathematically modelled compensation may be made
using an inverse fvnction. Using'the blue print
above as a starting point MacAdam has derived an
interesting on-line method for improving image
quality. Adjustnents are made incrementally to
the restoring function. At eéch stage com;arisons
may be made on a T.V. monitor. The number and

rarge of variable perturbatidns'are gfeatly reduced

by the programme which applies the cqnstrainté of
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circuiar symmetry to the restoriﬂg_function and
a predetermined illuminance range to the grey
levelz of the restored image.

Recursive Filters..

In equations (E1) and (E3) the filtered
output series y is derived from the input series
x and filter coefficients g. It is possible to
design filters in which the output is also dependent
upon previous output terms. ~Unlike time series
signals the meaning of 'previous' is open to
arbitrary interpretation when applied to pictures.
A close analogy exists in the differences between
non-recursive and recursive filters and open and
closed lbop control systems. Recursive filters.
may produce a more desirable frequency response
using fewer filter coefficients but the stability
problem must be considered. Usually, recursive
filters are designed usinz 2-dimensional discrete
ILaplace(zw) transforms, although Fourier methods
may be applied(20). The frequency response is
generally complex so that both magnitude and phase
must be constrained. Hall(2l), gives a formulation
and illustrates results obtained using a 2nd order
Butterworth, maximally flat, recursive filter.
In particular, an illustration ofloscillation of
shading caused by non-linear phasé response, i.é.‘
ph%se shift not proportional to frequency, is given.
The filter uszs only the unfiltered centre point

and two previous filtered values.
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Unfortunately, literaturé zoncerning
digital filfering, especially where applied to
images is highly fragmentary. In addition to
the works of Andrews(6), Selzer(18) and Rosenfeld(l)
previously mentioned two special issues of I.E.E.E.

Trahsactions on Audio and Acoustical Engineering(22)

have been found particularly useful.




Peature Extraction.

In previous sectiors we have considered
the suppression or removal of unwanted information
and enhancement of features either for the benefit
of a human observer or to simplify further computer
processing. Some interesting work has been described
by Macon(23) on the removal of objects from an irmage
so that neither object nor the resulting space are
fisually apparent. In this section, however, we
are primarily concerned with carrying the enhancement
process one stage further so that qualitative measure-
ments may be made and analysed. ' ,
Much work has been concentrated on the
extraction and classification of chromosomes from
digitized images. One research team; headed by
Ledley(24), uses a FIDAC scanning_system employing
a T.V. Scanner to digitise photographic transpérencies
which are input directly to a computer. Various
approaches have been made cépitalizing on well
defined chromosome features. Klinger et al (25)
present the most recent work on this subject and
review previous research. An'edge tracing algorithm
is used and the.boundary pbint list converted to
polar-éo—ordinates with centroid origin. Since
chromosomes éonsist of a number of arms emanating
from the centre, the polar plot has a aumber of
peaks at or near the arm tips with heights related
td arm length. Unfortunately, the plot r=f(8) is
not neéessarily single valued and there is no

guarantee that the origin will be within the enclosed
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¢ region ﬁbundary. .'In certain circumstances, however,
it is possible to classify regions as tﬁo overlapping
chromossomes. |

Zahn(26) describes an interesting method

for analysing the boundary point list. Minor
ad Jacent and opposite changes in directions called
inflections are located and deleted. The remaining
features are classified according to length of |
straight segments and radii of curvature. Curves
in the same directiqn in close proximity are grouped
as one. A number.of higher order feafures are
defined in terms of simﬁler ones using Backus normal
form, a langﬁage first used.by compiler writers.
This hierachicai language structure enables high:
level descriptions of objects to be derived and hence
easy comparison and classification. A number of
shape‘describing features are defined and appear
together with some from other sources in Appendix B.

Ordonnances.

If the N boundary points of an enclosed
region are numbered from 1 to N in, say, clockwise
ordery; there are N(N-1)/2 lines joining pairs of
points. These lines are called Ordonnances. Let
the line joining i to j be i of length dij and the
set of ij's be ordered in decreasing dij sequence.

Parenthesizing.

The ordered iJj sequence described will not
negessarily correspond exactly to similar patterns
with minor distortions. Simon et al.(27) give

r . .

details of a data structure to overcome this limitation.
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An error tolerance is decided upon and thé sequence

parenthesized to show the equivalence of éll possible

sequences within this tolerance, e.g. A(B C(D)E)F G.
This means possible sequencés 21l have A first with

| B, C or D second. B and C must preceed E although

E may itself preceed D.

Principle of Assignment.

When a pattern is being compared with a
reference parenthesized list each memver must be
assigned such that the parenthesis rules are not
broken. If only one'assignment of corresponding
lines of the twd patternsconcur with these rules-
the assignment is said to be possible.. Wﬂen many
or zero assignments are available'they are described
as undetermined and iﬁpossible, respectively.

'As the error tolerance is increased assignment may
go from imponssible through possible *o undeterminedf'
Sometimes the transition from impossible to undeter-
mined is direct. )

Feature Extraction from the bulk image.

It has been asserted (1), that the statistics

of grey level variations in local areas are related
to the textural appearance. Hence by considering
sub areas, differences in texture can be determined.
Taking moments to a sufficiently high order each
sub area could be uniquely characterised although,
for ease of computation, only low order statistics
aré normally usegd.

If the picture is.converteq T0. a binary‘--‘

image by thresholding, contiguous poihts above the

threshold may be considered as chords. If these
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chords are measured ih any direction then the sgstat-

istics of their size distributions may be compared

between different subareas, gt v%rious thresholds,

and for different directions. ‘The properties

wnich may feasibly be assessed in this manner include

size distribution, orientation, elongation, spacing,

variations of packing density, permeability, poroczity

and surface area. Unfortunately, such properties

cannot generally be measured in a direct manner‘and

it is necessary to find relations between measurements

and the parameters required. This is essentially

a problem of.pattern recognition. .
| Pattern reéognition techniques are usually

applied by uéing a training set for which both

measurements and parameters are known. An attempt

is made to fihd either a measurement or a linear | E

combination of measurements highly correlated to = :

varameter, Among better known techniques are

maltiple linear regression,rprinciple components

(Eigenvalues) and factor analysis. The selection

of measurements used in the estimation of the parameter

may be completely empirical or based on a known physical

interpretation of the measurements. The phjsical

interpretation of low order moments are well knowm

hence their frequent use. Since the parameters

required are often chosen in order to estimate other

parameters e.g. Surface Area to estimate reaction rate,

it*is desirable to short cut this process by estimating

the required parameters diréctly, wherever possible,'

thereby reducing computation and rounding errors.
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Muceiardi and Gose{28) compare seven
of the more sophisticated methods of choosing 'best?
subsets of a given property list for the purposes
of pattern recognition. A brief outline is given
below. |

Multiple Linear Regression.

The list of properties for each object
or feature are considered as a point in N-space.
- The first property selected is that which minimises
the sum of the squares of the distances between,
property points with all other co-ordinates set to
zero and the correspending N-space property points,
to an arbitrary multiplicative constant. The process
© is repeated to choose subséquent ﬁropérty co-ordinates
and their constants. | Disadvantages are that the
approximation will not necessarily approach a global
'optimum unless each.préperty variable is unimodal,
~and that relationships between variables are not
considered.

Probability of Error(POE).

The POE of each wvariable used by itself
to classify the objects is considered. The
property for which this value is a minimum 1is
selected first., Second, third and fourth properties
.are those with minimum POE from the set remaining.

Average Correlation Coefficient{ACC),

The first property is chosen using the
POE test but the second is that with minimum
correlation with the first and subseguent choices

are of variables with minimum average correlation

coefficients with ?rOperties already chosen.




Sequential Selection.

Again, the first property is selected
using POE but successive variables are those which
least often misclassify the object class for which

- 4the error rate is highest using the set chosen so
far.

Vieighted sum of POE and ACC.

' The lowest weighted sum of POE and ACC
is chosen as the next variable}' Mucciardi fouﬁd
the sum O0.1.POE 4 0.9.ACC to give best results
and that this method was more economical in

computation than the Eigenvalue(Karhunen-LQeve)

method described earlier.




Blum's Theory.

Perhaps the most interesting of all
picture transformations is that first suggested by
Blum(36). Each point on the object boundary is
considered to initiate circular waves i.e. similar
to those caused by a stone in a mill pond. The
wave front produced . advances parallel to straight
.sides but inverferes where convex corners occur.
The interference paths or medial axes tdgéther with
distance from boundary values give a complete,
reversible transtformation 6f the original boundary.
Another representation maps each point in Lhe plane
of the boundary into a third dimension, 'height',
equal to the distance from the nearest boundary point..
Medial axes are formed along ridges and troughs of
the resulting 3-D figure.

The medial axis transfcrm, or skeleton,
of a convex polygon has‘é particu1arly simple form.
Pig. 3 (a) shows the skeleton and 3 (b) the
propagating wavefront of the originall boundary.

As the skeleton is formed sides of the original
figure disappear from the wavefront, producing

| skeletal branches. Finally the wavefront vanishes
tb a point. The geometrical consfruction'of the
skeleton is straightforward. Skeletal lines are
bisectors of adjacent boundary sides. When two

bigsectors cross a branch is formed and the included

side disappears..



[

: . A m ‘_"O o
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Rosenfeld's(B?), implementation of this
transform uses the digitised picture stored in
metrix form. Each pixel is replaced by a number
répresenting its distance from the nearest bourndery
"point. Unfortunately, the distance value refers
to the number of near neighbours on the cshortest
path to the boundary with 8-near and 4=near distances
considered equal. If points with lower heizht values
. than one or more neighbours are removed a 3keleton

is produced. Although the original object may be
.regenerated, this skeleton is not_invariant unler
rotation. Rutovitz(38), shows a‘simpler method of
implementating this Rosenfeld-Bium transformation |
and discusses a number of further developments.
If a skeleton is produced from a digitised image
with a number of grey 1evelé then. the height coord-
inate may be weighted according to the grey values
on the nearest path to the boundary, i.e. a grey
weighted distance transform. Rutovitz also suggests
a path-with-distance transform in which the skeletal
points are augmented by pointers, in each of the
other pixels within the boundary, directed along the
nearest path to the boundary. Since each pointer
must pbint in one of eight directions a code may be
used in which the numbers 0 to 7 reprezent these
directions. Such a code corresponde élosely to the

chain code, discussed by Freeman(39), wkich a

f
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number of workers have employed for boundary
representation. |

Philbrick(40), describes equipment,
comprising a T.V. monitor and light pen linked
directly to computer, used to investigate properties
of the above transformation. He illustrates
boundaries regenerated from skelefons which have
been straightened, i.e. each branch has béen
approximated by a straight line. |

A class of transformations which more
closely approximate that of Blum are described by
Montanari(41). Effectively the eight heiéhbouring
points are considered to be at théir true Euclidean
distances. If more distant neighbours and their
true distances are also considered specifically
" then 'height' values will more closely approximate
the orthecgonal distance o the nearest boundary
vpoint. ~ Unfortunately, the conputational effort
required increases rapidly as more neighbours are
taken.into accoﬁnt.

In a later article Montanari(42) describes
a computer program which derivés the<true medial
axis transformation (M.A.T.) from the boundary
ganalytically. The boundary is considered to be a
polygon as in Fig. 3. It is necessary to caléulate
the height at which each side of the polygon will

disappear. Refering to Fig 3(c), the perpendicular

[
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distance d, in which the side of length Lz‘disappears .

can be expressed as:

d2 - Lﬂ
Cot 92 - Cot 93

2 2

Clearly L, = (x2 - x3)2 + (y2 - y3)2 = ay," +0,

where_ 8, = X5 - x3 and b2 =¥y - y3.

The half argles may be evaluated from:—

92 = '&I tan -1 (yl = yz)(x2 - XS).— (y2 - y3)(x1 - X2)
(xl = xz)(xz - x3) - (yl - yz)(YQ "'Y3) .
-1 -
= % tan. 2 b, — ayby
838y = byby

since this expression may vary in value from zero
to infinity an equivalent one employing the cosine

function may be considered preferable:-

-]
92 = %+ Cos S 88y b2bn.
L

RORR

Notice that d2 approximates the mean radius
of curvature in the region of L2m if @ values are

[}
found for each polygon side and compared the minimum

4
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will correspond to the first skeletal branch.

The new angle formed on the wavefront will be the
sum of those on each side of the edge which vanishes
and affects the d values of the twb adjacent sides.

Use may be made of the relation:-

Cot (a4 b) = Cot a.Cot b - 1
Cot a + Cot b.

The minimum remaining & value will form
the next branch and the process is repeated.
Eventually all the remaining d vélues (normally 3)
are equal and the wavefront vanishes..

Let us consider the transformations of
three other shapes shown in PFig. 4. The wavefront
of a circle consists of concenfric circles which
disappear at their centre producing a single point
"skeleton. The skeleton of an ellipse is a straight
line aldng the_major_axis starting at the centre
of'the‘smallest radius of curvature and vanishing
at the centre of the circumscribed circle. A concave
angle produces a wave form containing éircular arcs
between the straight edges, hence'nb,discontinuity |
in slope, and therafore no skeletal lines until this
wavefront impinges upon another traveiling in a
~different direction. However, a skeletal.line is
formed on the outside of the angle as a perpendicuiar

[
bisector.
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Montanari(42) shows that ~ircular arcs
impinging upon straight lines produce skeletal lines
which are parabolic arcs. Although analytical

- treatment of such lines is sfill fairly straight-
forward some of the attractive siﬁplicity of convex
'polygonal skeletons is lost. The height at which
each circular arc will impinge upoh every other |
-advancing wavefront must 5e calculated to ensure
that skeletal brancheé are 1ocafed in order of
occurence. Computation of all the initial d wvalues
is therefore radically increased. Fortunately,
work involved-in updating this list of heights as
sides disappear is not so drastically affected.

, o However, complications occur when a circular arc

impinges on another wavefront. Ths. wavefronts are

._'split into two sections and each subset must there-

after be considered separately.




Saanning Hardware..

Many of the articles referenced describe
equipment used in the digitisation of images.
The author has already completed a survey and
comparison of scanning teehhiques (29) and this
topic is not repeated heré. A recent article by

Stevens(30) describes a number of European pattern

recognition projects.'




DEVELOPMENT OF THEORY.

This section gives a detailed account of
the theoretical developmen® leading to the practical
work of‘the thesis. Inevitably, the method of
critical ekamination caused one to continually review
techniques and in some cases reject them entirely.

7 Some of the pitfalls encountered are discussed since
the knowledge gained from them inflﬁenéed the final
choice of method.

One of the protlems in reading deep%y into
a subject is that more and mere of ones 'own' ideas.
become attritutable to other ﬁriters; Where known,
authors concurring or disagreeing with arguments put
forward are referenced. Unfortunately, a number of
workers have pzid far too little attention to problems
of numerical stability and qpmputational efficiency.
Such considerations have had a considerable influence

on ones own choice of method and its implementation.
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When a picture cbntains a number of
distinct bbjects whose bourdaries may be determined
from some function of the grey 1eveis these bound-
aries frequently contain all the required iﬁformation.
Prior to the commencement of this thesis the author
had written a computer program to extract boundaries
of enclosed regions from thresholded pictures(29). |
In practice;the pictures may be of fibres, animal
or plant cells, molecules, powders, polymers, metal
grains or e#en household objects. This thesis is
concerned with investigating parameters wvhich
describe the‘shape of enclosed regions. ‘

It is unfortunate that éhape descriptors:
uéed by humans do not.in general correspond to
unique scientific measurements. Even a sutjective
judgement of relative size mey différ from corres-
vponding measuvrements. |

| The vocabulary.éf shane describing

adjectives used in the English language is little

short of enormous. - These adjectives may themselves
be classified some of the main groups are:-
a) Comparison with a geometrical shape
e.g. triangular, elliptical, |
prismoidal. |
"b) * Comparison with a familiar object

e.g2. pear-shaped, egg-shaped.
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c) Subjective assessment of how the
| object would feel |
e.g. smooth, spiky.
d) Subjective'assesément of some
physical property
e.g. fragile, solid.

Shapes are also described in terms of
aesthetic qualities and even identified with human
personality traits. In many cases such adjectives
are closely related and their use varies cqnsiderably
from one individual to another. In shape‘character—
isation it 1is desirable to use pafameters which are
mutually independent.'

The boundary of an enclosed region obtained
from a digitised image may be considered as a list
of (i,y) coordinates. Items in the list have an

order, if for instance thé boundary is followed in

a clockwise direction, but no logical beginning or

end,




Digitised Boundaries.

Before piroceeding wibth any analysis using
scan boundary data it is essential to study the
nature of the available informatioh. Assuming a
rectangular grid is used Fig 1. shows the measured
black/white transition points connected as boundary
B. This‘may be considered as the moét likely or
50% boundary when‘each measurement is regarded in
isolation. It is immediately apparent that a
" boundary in closer correspondence with the original
object might result by considering each point in
relation to its neighbours and by making cértain
assumptions COncerning the boundary statistics.

Stronl(31) has derived a model for such
"schemes and uses it to prove, using information.
theory, that an improvement is achievedlprovided thaf
78% or more of points, which may be considered as
moved onto a finer grid,‘are correctly repositioned.

Boundary A in figure 1. is the outermost
or 0% boundary, whilst C.encloses the area which is
known (100%) to lie within the object. This latter
area 1s refered to by Sklansky(l3) as the core.
Some objects contain a complex core i.e. in nore
than one piece. A square of side twice the error
tolerance has a core which is a. single point..
Boundaries A and C are the limits of an annular
uncertalnty region within which the true toundary

of the original object mus+t lie. No upper limit
‘ o
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to boundary perimeter can be estimated but if a
string were pulled taught witnin the annulus a
minimum perimeter path would'be traced, Sklansky
proves that this minimum perimeter polygon (MPP)
is unigue for a given boundarj B. The reverse
correspondence is c¢nly true, however, provided the
'error limits are withih those specified by Montanari(32).
One of the primary difficulties encountered by |
workers on boundary enelysis has been the existence
ef concavities.. These may occur in the 50% boundary
despite the original obj:ct being convex. Sklansky
redefinee convexity as posseseion of{a convex MPP
thereby removing the above anomaly, whilst enlarging
the more easily managed elass of boundary.
Sklansky(33) describes a computer algorithm %o find
the MPP based on the taught string prihciple._. It
may be observed that the MPP deletes the inflections
refered tc by Zahn(26) in a nore rigorous manner..

| Reviewing the various weys in which our
boundery_information may be considered, in absolute
terms we have a number of boundary coordinate
'measurements”each one subject tc¢ quantisation error.
Hence, ene may assert that the true object'bounda:y :
rasses within a certain small distance of each point
this distance being equal to or less than the-errdr

tolerance.. The above remark infers that the boundary

[} ' l
must pass through a circular area surrounding the

12




point although in practice this area may be rectangular,
it also involves the implicit assumption that the
local radius of curvature of the boundary is not
significantly less than the linear error tolerance.
If this assumption is false, e.g. the boundary zig-
zags wildly, then the quantised boundary wiil fall
within the zig-zag region tut obviously its actual
"error will be considerably greater. |

Having considered each boundary poinf by
itself we may now attempt to group these measurements
%o obtain properties. Two methods of grouning are
prominently featured in the literature survey.
Pirstly, all the points may be considered as an
ordered list tracing the boundary path. Intuitively,
these voints form a complete description of the
boundary shape and it shonld only be necessary to
manipulate the data into a more easily handled atructure.
By applying information theory one may devise an
effiéient code t0 represent the houndary and attempt
to use this representation for the comparison and
classification of boundaries. Alternatively, using
methods of mathematical approximation oné may attempt
to fit a suitable function to the boundary points.
Ideally,.this approximating funetion should also
verform boundary smoothing hence reducing quantisation
noise. Since the boundary is a closed planar curve
it ié not, in general, possible to find a usingle

valued expression such as y = £(x) to regrresent the
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entire boundary. Fortunately, it is possible to use
a number of such functions to forwm a piecewise
approximation i.e. each function approximating one
piece of the boundary. Clearly, the more complex
the'pieeewise fitting-function becomes the larger the
'piece! of boundary we may expect to satisfactorily
approximate. In practice, we may considerrtwo

gsimple functions,namely, straight lines ard cubie
'polynomials. Since a detailed discussion of approx-
imation theory is outside the scope of fhis work we
will consider these pdSSibilities in outline only. |
If piecewise linear approximation is used theiboundary
produced will resemble the form of that impiemented

by Sklansky(33). Since the MPP boundary isrboth
unigque and has minimum total curvature for any given
digitised boundary and error tolefance we may regard
it as an optimum linear fit. Exfending the fitting
function to a cubic equation it would seem reasonable
to impose upon this boundary the.constraints of passing
through the vertices of the MPP. Two additional
degrees of freedom of the cubic function may be used
either to increase the size of the boundary pieces or
to'provide continuity of slope, and higher derivatives,
at the points where the pieces are joined. These
points are called 'knots’'. If both degrees of
freedom are used for boundary derivative continuity
the'piecewisé fit is by a class of functions known as
cubic splines. The actual péints wheﬁg the pieces

'overlap may be either pre-determined or derived

- 49 -




from the constraints of the anﬁular boundary uncertainty
region. |
In the particular task of shape analysis we

are nore interested in the data compression resulting
frdm functional approximation than accurate boundarsr
reconstruction. Sklansky's MPP effectively selects
a reduced set of vertei points which summarise both
boundary and error tolerance information. Howaver,
1t does not select the vertices of a minimum sided
polygon falling within the uncertainty region.
This is a much more complex task and involves non-linear
programming along the lines described by Montanari(32).
One may consider each boundary point as contributing to
a knowledge of the true boundary position by constraining .
- the uncertainty region. Clearly some points contribute
moré to this knowledge than others. In particular
points which are collinear with their neighbours will
not alter the uncertainty region il they are omitted.
The MPP vertices form a set sufficient for the polygon
formed to always lie within the uncertainty region.
A-minimﬁm sided polygon (MSP) conforming to this
constraint would represent optimum dafa_compression
but the improvement would not normally Jjustify the
additional.computation involved. Since the method of
Sklansky is straightforward it appears to be a good |
compromise between degree of compression and computat-
ional'efficiency.

_ The second method of groupingfpreviously
described is that of ordonnances. Effectively, each

boundary point is given a number and all thes lines
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Joining pairs of points are then coﬁsidered énd orderer
in decresasing 1eﬁgth sequence.. Each line is amed by
the points which it joins. The ordered list of line
names is then used as an object déscription, This
description is by its very nature size and poéition
invariant and may be considered to be orientatioﬁ
invariant if the line numbering is carried out in a
pre-determined manner e.g. if the longest ordonnance
is chosen so as to involve point number 1 aﬁd point
number I such that I is the minimum value for the tﬁo
possible remaining orientatioﬁs and points are labeled
in clockwise order around the boundary. Aitﬁough
useful for comparing distorted forms of the same object
this method has disadvantages in shape description, not
least the large number of ordonnances involved..
However, it is interesting to study this set of all
possible lines joining pairs of points.. |

Our znalysis of individual points led us to
the conclusion that some conveyed more information
than others. It seems likely that this statement also
holds for ordonnances.  Since the error tolerénce of
each boundary point is equal, the relative error
associated with the line jéining two points will be
inversely proportional to its length. The longest
chord from this set will also be the largest value of -
Feret's diameter in any direction. In any given
direction there will be 2 longest chord associated
with two parallel tangents at right angles o the

direction on opposite sides of the boundary.. The

length of this chord will be equal to Feret's diameter
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multiplied by the secant of tha angle which the chord
makes with the direction concerned,  Boundary points
involved in all such chords will be the vertices of
the convex envelope boundafy or convex hull. These
vertices will be a subset of those associated with the
MPP.

Having considgred individual boundary pointas
and the lines formed by joining pairs of them we may
move on to consider measurements obtained from any
subset of points. One such measurement is the aren
bounded by an ordered subset. The error associated
with area ﬁeasurement will be the ratio of snnular
uncertainfy region area to 50% boundary area. The
error bound on ares méasurements will be at least
fwice that of linear measufements of the same average
diameter to the area involved but assuming errors are
of Gaussian distribution the error variance will diminish
by the square root of the number of points used in area
calculation.

In the foregoing discussion two problems have
éontinually recurred. Firstly,. because of the nature
of the boundary information resulting;frbm digitisation,
méasurements made between points particularly those in
close proximity are subject to large.errors. Perimeter
~ and local boundary slope are two important parameters
falling within this category. Secondly, a number of
metho?s for anaiysing boundary shape are inapplicable
or become computationally impracticabie when concavities

. 4
occur. The practical work of this thesis has been
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concentrated upon providing a sciution to these two
‘pfoblems.

The possibility of more closely approximating
the ofiginal boundary has already been meutioned.
However, since we are concerned with boundary shape
description it is more sfraightforward to use
descripters which perfbrm “he same smoothing operations
implicitly. Integral functions are blearly indicated.

The author had noted in previous work that
area measurements were far less suscéptible to errors
than linear measurements.. An obvious extension was
10 consider two dimensional moments of which area is
the zeroeth order member..

Moments..

For the purpose of taking moments it is

convenient to consider the object to be constructed

of filaments or chords.. Considering such a chord

in the x direction z2nd taking moments we have:- ff

\ P . e N

ST TR SN NS SA SN A _ avrels
xmin xmax
_ X = Xmex ' 1
' p+L
Mp = _ | z xpodx = X
| ‘ pd L
_ . X = xmin '

Clearly any scaling factor s used to:normalise
the dize of the object will have to affect the value of
Mp by a factor's(P+2)/2- The values of xmin and xmax

are known to t% a picture point unit hence the error
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tolerances of the moments about a filament'may be

expressed as:~ -

Mp = jxmaxt%)p+1—txmint%)p+l
pel

ignoring second and higher order errors:i~

)p+1 ¥ ¥ (xmex-xmin)

Mp = (xmax)p+1— (xmin
: P+l
where xmax and xmin are of opposite sign,

Assuming that the
exrrors are normally distributed we may weight the
moments-of each filament by the inverse équare of the
relative error magnitude to minimise the variéhce of
the moments calculated. This amounts to weighting
longer chords more than short ones.

Another method of moment calculation is to
consider each picture point within the 6bject
separately. For the case of zero error results
should be jdentical but since only points near the
boundary are subject to errors these may now be
considered and weighted individually.

Points which have one or more 8-near
neighbouré of a different colour to themselves may
be considered to be in the boundary fegion. It
should be possible tc assign to such points a most
likely % black area. The impro#emehts made to the
exact values of moments calcuiated may be considered

less jmportant than the reduction of error bounds.




In particular, in the comparison of two objecf%,error
valuex would enable one to determine whether on the |
basis of a number of moments the two objects were
significantly different.

We have previously mentioned the dependence
of points in the boundary list upon Size,-position
and orientation. Various measurements have been.
aiscussed, e.g. ordomnances, which preclude this
dependance. Low ordef moments may also be used to
calculate a transformation to give the required
independanceu Effectively we may fransform any
boundary_liét so that it will have similar form to
any object of the same shape énd refér to such a process
as boundary standardisation..

Boundary Standardisation..

Let us assume that Mpq is the moment in the

th th

P’ power of x and the q — power of yv. Clearly

MOO = Area and MOl and M1O are x and y the coordinates
MOO MO0

of the centroid. If we also rotate the coordinate

axes so that M1l becomes zero and normalise the area

to unity the resulting transformation is equivalent to:-

I B |

Jirea . Cos © and 6(%9% tan™l 411
' & 20-02

where c

s = JiArea . Sin ©
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M1ll, 20 and 02 are central moments i.e. equivalent
to M11l, M20 and MO2 but substituting x - X for x
and y - ¥ for y.
The transformed object will have the
following moment values: MOO = 1, MOl=M10 =0,
Mll = 0. Within a close approximation, i.e.
subject to quantisation errors, all objects of.the
same shape should fesult in identical transformations
independent of initial size, position or orientation.
The parameters O, Area and X, ¥ (the centroid
coordinates) may in many instances be useful.
However, we are only concerned with shape énd will
therefore only consider transforméd,objects.
Moments M02.and M20 may be regarded as
the variance or sprcad of the object about the x
and y axes and hence are two independent shape
parameters. Higher moments may be taken but first
let us consider the boundary of our normalised object.
Along the lines of Klinger(25) we may use
a polar representation of the object with respect
to0 a circle of unit area centred on the centroid
origin, see PFig. 2(a). Although this boundary is
not necessarily a single valued function for r = £(8),
it will be sc¢ for a larger class of objeets than
Sklansky's convex set. Obviously the areas above
and beiow the axis of Fig. 2(b) are equal. Many
ofe+the object'features‘are revealed through studying
this boundary e.g. number of zero crossings, enclosed
areas between 2ero crossingé and_the angles at ﬁhich

Zero Ccrossings occur.
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An interesfing possibility is to consider each
group of points between zero crossings as a subset and
.to make measurements upon each of these subsets as a
separate entity. Rosgnfeld(l) mentions the analysis
of pictures using subsets but his main interest lay
in the separation of objects within a picture rather
than the segrentation of individual objects.. If
subsets are to be used for shape analysis a primary
requirement will be the stability of subset formation
when the object undergoes small distortions.. One
therefore must consider situations in which similar
objécts will produce different subsets. Unfé;tunately,
as Fig.2(b) shows the angle éf which the r = £(8) line
crosses the unit circle is normally gquite small.

It is therefore reasonable to suppose that the shape

c¢f subsets will vary considerably under small distortions

as will the 6 values at which Zero crossings occur..

This form of segmentation was therefore not considered
suitable for further snalysis, but the general idea

of segmenting the boundary into local subsets was

thought to be good..

Some objects have a small internal subfarea within-
which the centre of a single valued polar fransformation
r = £(8) may be situated althoughuthis area need not
necessarily include the centroid.. Objects possessiﬁg

~such an area are described as star-shaped e.g. bY

. Rosenfeld(l)..




An object whose boundary is convex has a single
valued polar transform for all internal @oints.
It is apparent tha, the boundary wduid be

easier to handle if the two independent variébles
could be considered as one independent and one
dependent variable for all classes of closed boundary.
Two such variables are-distance aiong the boundary
and slope.. The slope is most conveniently expressed
in terms of the angle to a principal axis. An inter-
polation routine is needed to enable the distance along
t{he boundary and the local slope tc bhe evaluated as
accurately as possible.. ﬁnfortunately, as Hawkins{34)
points out, both these variables will be sensitive to
small distortions due to guantisation error and image
perfections. Indeed, unless the first derivative of
the boundary is continuous the line will be disjoint.

Despite: the above drawbacks, Zahn(35) has
recently published an article in which this trans-
formation is approximated using Fourier descriptors.
These are essentially Fourier éoefficients of the
line manipulated to give size, ﬁosition and orientation
invariénce» " Zahn states that low order {low frequency)
coefficients are good shape descriptors and are resistant
to change under smail imagé distortions. He illustrates
the reconstruction of a boundary, using low frequency
descriptors only, showing a large boundary discontinuity.

] .
Nevertheless, the convenience of this transformation

may well outweigh its shortcomings. ‘
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Concavities.

The problem of concavities has troubled
numerous workers. Let us first consider a method
of isolating individual conczvities from the main
boundary in order to study them more closely.
Around any object it is possible to draw a line
corresponding tc a taughily stretched string.

This line is the convex hull boundary, and, if the
‘object is convex, it will stay within a small
distance of the main boundary, the difference being
attributabie to quantisation error. Since area
measurements are less susceptible to error than
_linear measurements we may consider each concavity
as the area between the true and convex hull boundaries.
The number, size and shape of concavities are of
great interest in the analysis of_the shape of the
parent object. Figure 5 shows five concavities.
Notice, in particular, that shape 5(c) suggests the
overlap of objects more s%rongly than the others.
The factors involved in reaching this decision may
be enumerated:-

1) ~Acute angled veriex.

2) Smooth boundary elsewhere.

3) Siope continually increasing except

at diséontinuiﬁy. |

Unfortunately, all three preperties
depénd upon local boundary'measureméhts and therefore

cannot be assessed accurately. On the other hand

all three properties may be conzidered as features




_ (e)

F U\\' K. Flwe ‘Ccrhcuit'eﬂr

~-594-




of the shape formed by the boundary points bordering
ron the concavity; Shapé parametérs generated from
these points should allow the same assessment to

be made whilst being less susceptible to small
distortions.

It can be seen from Fig. 5 that the shapes
of concavities are in no less general a class than
the shape of originél objects.. A logical method
6f analysis is therefore to consider each concavity
as a new object. We have thus defined a recursive
procedure for analysing the shape of any object,

namely, consider each object to be a convex hull

e

and a number of concavities, then treat each . I‘/;;Frt>
I Y|
: RETY G
concavity as a new object. ' i /(;QL

The above analysis effectively segments
an object into a number of convex components the
élgebraic sum of which constitute the original
object. Figure 6 shqws the segmentation and a
tree illustrafing the conrection of convex

components. This type of division is uniquely

defined for any object, ?he size of each convex

component-will be accurate within easily calculated
~tolerances 2and most small distortions will have

marginal effect. The connection tree is itself

an important summary of the object shape.




Fr% 6 Gonox Components oj Q Conro e Lwc!ahd :

ond_HRele connection Ges .
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Applying our previous criterion of stability
under small distortions we see that élthbugh the angle
between the convex hull boundary and ths tfue boundary
will normally be quite small, distortion of the true
boundary will lead to a similar distortion of the
convex hull. It follows that provided the distortiom
of the subsei of boundary points on the convex hull ls
representative of the'distortion to the boundary as a
whole, comparison of the convex hull and concavities
will effectively be compensated for these distortions.
Hence a marked gain ih immunity to distortions is
achieved over the segmentation shown in Fig.2(a)..

There remains the problem of situations in
which similar objects'may give rise to a different
component set. This will occur whenever the local
radius of curvature on the boundary of a subset is
very large. A small distortion will form a new
concavity and hence a new convex component.
Fortunately, coriponents so formed will be small in
size and may thus be ignored by stipulating a thréshold
area below which any concavity will be included as part
of the boundary of its parent component. An additional
bonus accrues from this procedure. Ic will perform a
similar action to the formation of ﬁhe MPP. However,
choice of an area thresholé rather than one based on
the error tolerance of individual boundary points

allow; a number of distortions to be ignored in addition

to those arising from quantisétion error. Specifically,
. [




when a cingle boundary point has been inaccurately
measured due to a fault in image preparation or
scanaing its influence upon the shape description of
the object will be largely suppressed. Only one
situation has been found in which the convex components
of similar objects may be drastically different.
When two concavities afe ir. close proximity on an
object boundary and the convex hull bdundary sranning
them has a very high radius of curvature then a smsll
shift in position of the point or points on the portion
~of the 6onvex hull between these two concavities may !
cause them to merge into one. Fortunately, this
situation will only occur rarely and inay easil& be:
deiected.. A possible solution wouid be to provide an
object description'which included an 'either or!
gtructure for this type of occurrence.

Every convex enﬁelope may be considered as
s 'host' subset to the boundary suvo area which it
contains. Suppose a parameter is calculated from all\
the points within the sub area and an identical type
of measurement ié then made using all the points in
its convex envelope clearly the ratio of these measure-
ments will be constant under a large number of possible
distortiohs.

| The aboye method of segmentation was éonSidered

‘sufficiently stable to be useful in shape description.

The_convex components formed could be individually
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. analysed by a number of techniques thereby making its
implementation independent of the component features
later extracted. Methods for tre computerised
decomposition of an ordered boundary point list into
convex components were therefore examined.

An initial step was the selection of the
convex hull vertices from the boundary point list.
A simple test to determine these points could be based
upon the fact that any point which fell inside a
straight line drawn between two other points could be
eliminated. Unfortunately, the definition o? what
constituted t'inside' was found to present problems.
Also even assuming this could be overcome the amount
of work involved in using'this test alone would be
cbnsiderablen Recalling that the convex hull vertices
were the same points which influenced the value of
Feret's diameter in any direction, the followinz model
was considered. Suppose the object was cut from a.
sheet of cardboard and then fixed to another shect by
a drawing pin. If the object was then rotated about
the point at which it was fixed the point on the
- boundary with maximum projection in a given direction
would be a convex hull vertex. This model allowed
8 different test for use in rejecting points.
Consider an internal point %Y ‘and two boundary
points X1¥4 and Xo¥o Let the angle of the liﬁe
fromfxo%'to X1Y1 to a given axis be 81 and the angle
of the iine from xbx,to Xo¥ o be 92 so that the angle
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between the two lines is 92-91. Also, let the lengths
of these two lines be Hl and H2. H2 may be rejectéd

as a convex hull vertex if:-
Hl Cos(ez-el)_- H2 % O

now Cos(ez-el) = Cos 8, Cos 6, + Sin 6, Sin 9,

and Sin el = Xq=X; and Cos 91 =Yo7
H

1 H
with similar expressions for Sin 92 and Cos 62

Substituting in the above inequality we obtain:—

H 8 - B H
multiplying by H2 $=

(xo-xl ) (xo"xz )+ (Yo-yl ) (yo-yZ) - H22 2 0

but H22 = (xo-xz)z—(yo—yz)2

substituting and rearranging:-

(%= Mxg=%, 14 (y =71 N (¥g-y,5) > O

The above condition was found to be necessary
“but not sufficient for the rejection of the point

x2y2. In order to eliminate this point it was found
that a further point x3y3 on the other side of XY o

from XY, would have to satisfy the condition.
(xe"x3 ) (xo"'xz )+(y2-y3 ) (yo"'yz ) ) 0
’

These two conditioné are of about the same
r

complexity as the test originally mentioned but

appeared to solve the difficulty of whether a point
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ijs inside or outside since this is effectively
measured as the distance from X A computer
routine based on this test was implemented and
appeared both simple and successful until a group of
points were tried which represented a very narrow and
highly concave object. For this objeet a boundary
point occurred which subtended an angle more than 90°
different to that of both its neighbours. This point
was accepted by the routine .as a convex hull vertex
even though it lay at the 'bottom' of a deep concavity.
A reappraisal of the situation was ﬁecessaryn
It soon became apparent that difficulties arose mainly
through atfempting to select the convex points using
e single test. A more detailed‘study was made of the
nature of the convex hull. Pigure 7 3hows some of
the properties of this hull, in particular it may be
seen that the four points at the extremivties of the
object in x and y directions will always be convex
points. The points at minimum and maximum x coord-.
inates may be considered %o divide the boundary into an
upper half and a lower half. No more than one point
at each x coordinate along‘the uppér half of the
boundary can be on the convex hull, hence the shaded
points in Pig. 7 maf be eliminated as convex points.
A similar test removes points from the lower half of
the boundary. I% is also known that the convex hull
will ﬁonotonically rise or fall between each of the
" neighbouring four extremal pointsr A test using this

fact may also eliminate a number of points. Final
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selection may use the property that every convex
voint will lie outside a line drawn ﬁetweén anj
other two boundary points. -In this context,
‘outside', may be tested as above for the upper
Boundary half and below for the lower boundary.

" The area of each concavity may now be
calculated as previously defined and those above a
"threshold size noted as new objects. Points
within concavities smaller than thé threshold may
be considered to lie on the convex hull.

Simple moments may be calculated from
the points on each convex hull by any of tﬁe
.methods ountlined previqusly..

Hu(43), shoﬁed that simpie moments could
be converfed into parameters invariant with respect
to sigze, positioh and drientation, thereby obviating
the need to transform the boundary point coordinates.
He men*tions two classés of such invariant moments;
absolﬁte_invariants, which are totally independent
of the above variables and relative invariants in
which the values of‘the variables are standardized.
Since the former are computationally difficult 1o

derive, invariants about the principal axes have

been used.




Machine Generation of Invariant Moments.

Initially objects are known by an ordered

list of boundary points. By definition

- o + 03
Mpg = zP . y& a7 . dx

gives moments for the object in arbitrary orders of
x and y. In digital terms the moment of an object
may.be considered as the sum of the moments of the
digitised squares of which the object is composed,
i.e. ifzss is used for the sum of all the squares

a

(picture points) within the obJect then

- x=x+h =y+h
Mpa: =Zs = %P ﬁ = q dy . dx
x-x-% y=y-%

=2, )PP L ()it gen)ett
: P+l q+l

(E4)

where it is‘assumed that each square is of unit side
centred at x,y. For squéres with equal x values,
and y values which differ by unity, summation of
their moments results in the cancellation of all but
the extremal terms in y. Hence the moment of a
chord may be expressed as:-

(243)P o (x-5)P* . ypax®* - ynin*t
P+l a+l

so that Mpg = :Ec (x+%)p+l-§x-%!p+l. ymaxq*l-yminq+l
‘ P+l

g+l




where Zc indicates. the summation of all the chorc.is.
It is therefore a simple matter to calculate moments
from the boundary poinfs since it is knowvn whether
y values are upper (ymax) or lower (ymin}.

,  Recalling the binomial theorem we know that:-

n=p
(x+y)P = . pt . xPR R
' ‘ Z (p-n)in!
. n=0
Scaling the moments for size. invariance
is a straightforward procedure since MOO is the area.

To make the object of unit area it is necessary to

divide each linear distance byJMOO, from (E5) we get:-
Mpq (normslised) = ]l_prq/]&KOJ('p"'q"'z)/2 (E6)

Positional invariance may be obtained by
shifting ‘the origin of the covordinate axis to the
object centroid X,y where X = M10/MOO and ¥ = MO01/MOO
Substituting xex-x and y=y-y i‘ntro (E5) we obtain

ppg =2 (x3-E)P*2- (e3P L (ymax-§)3* - (ymin-F)it

p+l q+l
using the binomial theorem
Fn:pi—l n=p+(-1 )
) +1)! ' +#l-n, =\n +1)! *l-n, =2
Heq = b3 {'}%llﬁ)!nl(x"%)p (-x) -Z'(Ipn—-f-ﬁ)!.nl(x-%)p (—x)
i n=0 n=0
L p+l I
T - - o
m=q“"l ] +] = - m":"q.+1 + 1 . +l_, P
R R s e T L et G o i ooy T L
m=0 - m=0
i | g+l |
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rearranging:-

|

|

|

|

' |

MPq = P’Q’E?p x)" .%fq (7)™ Mp-n gq-m -
n=0 nl = \

|

|

m=0 1k {(p~n)}i{q-m): (ET)

Substituting values of p and q into (E7)
and making the additional substitutions of X=M10/M00,
y=MO1/MOO we may obtain the relations given by
equations 11 of Hu(43)..

| If in equétion (E4) our squares are of

size 2hx by 2Ay we obtain

Mpg =2 (xbx)PHl-o(x-px)P*l ¢ (geay)dtl_(y-sy)atl
8 Pl q+l

 which for arbitrarily small Ax and Ay :g %P, y%
If the coordinate axes are rotated by the

angle 6, x and y are transformed such that x=xcos®+ysin®
' y=ycos8~xsiné. -

substituting in the above expression:-
‘Mpq(rotated) =:Es (xcose+ysin8)p(ycose-xsine)q

n=0

=§s .nzgp %_nml_ (xc0s8)P P (yaine )™ |

Me=q (_l )m ' ( g-m s m
. . ! ycos8) (xsin8)
: %@0 {q-m)7m? :
Nep . m=q . m
Z hd ‘ . (-l )
- n=0 (p-n})ini %LO -\q-m)imi

nem

p4+g-n-m

* c0se 8in®

. Zs £P-1-1 yq-—-m-n




Substituting and rearranging.

n=p —y =4 -
Mpq (rotated)=plq!y (sin® ) (cos)P n.z (-5in8)™, (cos6)1™ 2
: . n=0 n! (p—n)! m=0 ml {q-m)!

Mp-nem g-m4n (E8)

Combining equations (E6), (E7) and (EB).
invariance from size, position and orientation may
be obtained. It will be seen that the transformed
‘moments are functions of all simple moments of equal
or lower order. |

0]

By choosing the angle 6 so that }Lll(rOtatEd )=.-

i.e. 6 =% tan™t 2411

M20=-402
8 is determined %o be oné of four angles at 900,
for all objects which are not symmetrical such that
M1l = 0 and H20 = MO2. To determine © unigquely =a

further constraint may be made. A simple choicé :

is to make both 03 and ££30 3> O.
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Segmentation into internal couvex sub-areas, ‘
It is also possible to divide an enclosad

region'into convex sub-areas by internal segmentation.

In order to uniquely specify such a procedure a |

number of rules are necessary.. For instance

segmentation shall:-

1) Avoid creaiing new concavities.

2) Cause a minimum increase in the

number of sides. e !

3)  Avoid segmenting convex subsets,
4) Avoid producing acute angles.

5) Minimisz artificial segmenting

lengths.

6) Exploit symmetry.

As figure 8 shows it is essential to specify
the order in which these rules are a?plied and in
some cases to alter this order or specify new rules
when a particular rule cannot be adhered to. The
figure contains two convex subsets but a new concavity
is produced when the two concave points are joined.
If'rule 1 is given priority and the lower concavity

is considered first, three possible segmenting lines

occur, two of which are continuations of the lines
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adjacent to the concavity and the third perpendicular
to the side opposite. Comparing the first two of
these options that are shown in Pig. 8 (a) is more
attractive since it avoids creating an acute angle.
Although shorter than the other two, the perpendiéular
line creates two new sides (and angles) rather than
one as shown in 8 (d)., If the shorter collinear line
is chosen (as in 8 (a)) then the vertex produced is
collinear with one line of the upper concavity hence
only one new side is produced by the segmentation
shown. Notice, however, that two acute angles are
produced and that although a coincidence of the
figure is exploited the segmentation itself does not
appear natural, the sﬁorter collinear extension

shown in 8 (b) appears preferable even though the
total number of sides is one greater.

In Fig. 8 (c¢) rule(l) is contravened, in
that either of the segmenfing lines in isolation
produce a new concave angle. The line Joining two.
concavities appears to be a natural segmenting line
and it is interesting to note the effect of concave
poiﬁts upon the M.A.T.

Fig. 9 shows that whilst some concavities
produce an internal starting point for the skeleton
which then proceeds in opposite directions others
merely create a curvilinear extension to existing
~skeletal branches. There is a close correspondence

between this distinction and that of ,whether
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concavities should be considered as evidence of
overlapping objects.

Using the line joining concavities in
Figs. 8 (d) and 8 (e) we see two ﬁore possible
segmentations. Since a number of other segmenting
lines could have been drawn it is clear that any
method for internal segmentation will not be’
gtfaightforward and is likely to necessitate a
largernumbér of rules and excepﬁion conditions fo
avoid ambiguities.

Sunmary of Findingsn

Let us therefore summarise our ffndings
concérning computer extraction of shape parameters..

We have a list of boundary points subject
to'known.qﬁanfisation errors. it is possible to
_calcula%e areas contained by groups of these points
fairly accurately since errors tend to cancel.
However, estimates of local boundary length and
slope are highly sensitive to errérs and parameters
calculated using them, e.g. perimeter, are subject
to cumulative error. | |

| Low order moments will have low felative

errofs and weighting factors may extend their
usefulness.  Fegture extraction may be usedhin
charactérisatioﬁ but'great-care mast Be taken to
ensure that the features chosen are invulnerable to
smzll distortions. Features whose ratio of area

to perimeter is high, i.e. approximately circular,.
'
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appear more stable than others since errors 6ccur
at the edges. If sub-areas are to pe considered
gsome method of segmentation is necessary. The
moments and connecting structure of segmented
components are thought to be mos? useful in shape
characterisation. ]

Picture language theorists consider such
components as primitives or symbols from which a
picture language is construcﬁed.. -Qur primitives
areICIOSed planar figures and in general convex
poljgons. To uniguely specify a general polygom
2n parameters are needed where n is the rumber of
sides. Economies of this number are possible where'
some'parametric relations are assumed e.g. a square
requires only four paiameters, size, centre
coordinates and orientation. Primitives such as
" the circle and ellipse are infinite sided polygons:
with special relations between sides. The medial
axis transform may be coﬁsidered as the characterisation
of the object boundary by:a number of circles.
Each skeletal point is a circle centre, its ‘'height’
being the radius. The area to perimeter ratio of
a circle is of course a minimum. Since circles
are completely characterised by size and centre
position the skeleton gives complete information
fér the infinite numﬁer of circles involved. .
Since the éircle is itself a convex vpolygon it 'is

not suprising that skeletons of concave curves are

more complex. This insight could enable the boundary




'to be characterised by a smaller number of prlmltlves
(clrcles) and hence a more compact representatlon.'
Other primitives might also be used to construct
skeletons but this would necessarily require fhe
standardisation of orientation prior to skeleton
cdnstruction and/or an increase in skeleton
aimensionality. . | _

Ideally; it should be possible to produce
a list of feature/shape parameters for aﬁy given
object, each item in the list being independent of
the others. Initial list members would indicate
general shape categories whilst later membérs would
deal with progressively finer_detéil. The entire |
list would coﬁpletely'characterise the object.. )
Similarity of two objects cpuld,then be judged by
the number of similar list items before a signifi-
cantly dissimilar one. In practice a2 number of
later members of the list would be discarded as
inessential for the required task.

: There is some evidence to suggest that the
human eye—braih combination functions in a similaf
ﬁanner, the number of list items involved varying
according to object complexity and frequency of
encounter. It @s significant that man finds no
difficulty in recognising other individuals,partic—l:
ularly of his own genus, but will not ﬁormally bé
able to,distingﬁish indivi@ual sheep by facial
features. A shepherd will often have this ability.

4
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The inference is that remembered human facial
feature~lists are usually longer than those for
sheep. A more complete discussion of this topic

mey be found in Walthen-Dunn(44) and its

associz.ted references.




COMPUTER INPLEMENTATION.

Although work on the two problems
- discussed in beveIOpment 0f Theory has been carried
out expressly for this thesis it is important to
stress that neither technique could have been used
without the backgroundlexperiencé and, i; particular,.
the software written during two years of previous
research.
| Details of the edgé following routine have

already been mentioned(29) ahd only’ the output from
this procedure will be described ﬁere. Vectors of
boundary points in adjacent positions and witﬁ
consecutive x coordinates are held in a data structure
corresponding to a plex,'as described by Ross(45).
Effectively the list of ¥y coordinates is headed by
a number of parameters describing the vector, its
interelation with others, and pointeré'enabling access
to other:vectors, in which'bbundary points are
continued in eiﬁher direction. It is therefore a
-simple matter to access all the boundary points of
an object given a single key entry value. Edge
following is perfdrmed by the subroutine XYNSTACK
which appears vogether with the other routines
mentioned in Appendix Dm. |

Plex manipulafion is handled by a series
of short subroﬁtines which greatly simplify other

programming. To avcid excessive subscripting

arithmetic these have been written in P%AN, the




ICL 1900 series assembler language. Other ﬁseful
software includes a subroutine enabling array sizes
to e specified as data(46) and a special error
‘diagnostic/recovery routine.

| When a complete enclosed region has been
found the key value is passed from XYNSTACK to the
subroutine PARTICLE which determines whether this
region is in fact an outer boundary or a hole.
The key entries for holes are stored so tha£ when
an object is found a search for holes which it
contains may be made..

When an outer boundary is detected the key
value is passed to the subroutine PARPAR which
supervises evaluation of particle parameters.. The
" version of this routine given in appendix D first
calculates a number of parameters details of which
are given in (47).. Following an optional call to
PARTPLOT, which plots the particle boundary on the
graphplotter, éontrol is then passed to TARTMOM
which supervises the procedures written for this
thesis. |

| In the aufhor's experieﬁce careful planning
of program structure results in a more compact end
product and considexably aésists debugging.and
subsequent modification. One's first tgsk was
~ therefore to divide the overall problem into smaller
units, to be written as FORTRAN subroutines; Since
convex decomposition was conceived és arrecursive
process a supervisory routine was necessary to organise

the ofder in which components would be analysed.
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Phe input to this routine (PARTMOM) comprises the

key vealue enabling access to the boundary point list
of an enclosed region and the threshold area value
(AMIN) of the smallest significant component.
Currently +this threéﬁold ié set as a constant within
the program but could easily be read as data or
calculated as a percentage of total object area;
FARTMOM first sets up a number of constants including
a look up table for factorials. It then sums the
total number of points in the boundary list (NTOT).
The subroutine MOMSET is next called. This routine
evaluates simpie moments for the entiré encloééd
region. Effectiveij MOMSET calculates the x and y
coordinates for every bpﬁndary point.. . If the poinf
is on the upper boundary half then the moment values
calculated for sach point will be polynomials of x and
¥ values for which thé coefficients of y terms will be
positive. If the point is on the lower boundary

this coefficienﬁ must be made negative. Moment
contingenby-values for each point are calculated
within the routine SMOMS. Two x values are supplied
to this routine XA and XC whiéh are equal to the x
coordinate of the current point £ 4. If XA »XC upper
-boundary values are calculated otherwise a sign reversal
occuré in the arithmetic within SMOMS and lower
boundary values result. SMOMS adds the moment
cohtingency:values for each point into the array MOM

in which the simple moments for the entire boundary
. . r
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are conseguently summed.. PARTMOM next Ealls MOMINV
which converts simple mo@ents held in the array MOM
into invariant moments aboutrthe principle axes..
Although the equations (ES), (E6) and (E7) are

fairly simple to evaluate considerable savings in -
computation can be achieved.by careful choice in the
order'of evaluation. It had already been decided to
store the simple moments within MOM as a triangulzr
array. In practice this structure must be held in a
single dimeﬁsioned‘vectorn "Both space and time in
executing subscripting arithmetic are saved using this
storage form as opposed to occupying part of ; two
dimensional rectangular array. Unfortunately, the
mapping of the moments of various orders into the
appropriate location within the vector must be specified
as part of the progran. Area and the centroid |
coordinates x and ¥ may easily be calculated from the

simple moments. Two vectors of factors are then

evaluated :=-

XFAC, = -:? T and YFAC = g-z"‘zn’ for n=0,1,2,...R
. . Ile.

where R is the highes% order of moments calculated..
At the same time size normalisation is combined with
the scaling factor required in position invariance.

The equation used is:-

Mpag = Mpg
14

1q! MoolP=a-2)/2




The position invariance equation (E6)
involves moments of all lower orders in the calculation
of each invariant moment. In order to generate these
moments in situ i.e. for the results to remain in the
same vector (MOM) it is necessary to compute highest
order moments first. The items within the vector are
therefore made invariaﬁt in reverse sequencé. The

equation is:-

- N=p - m=-q

Mpg = plq! b3 XFACn : E YFACm « Mp-n g-m
n=0. m-0 s, :

It is now necessary to determine the orientation angle
& or more specifically its sine and cosine. The -

relation:

02 = 0.540.5/ J2.M11/(M20-102 12

2

is used where C2 will be either Cos26 or Sine.

The ambiguity is resolved by evaluating the expression:—

(2.02-1)M11-(M20-M02).5in 8.Cos &
which should approximate zero when the correct choice
.is mede.. It is now necessary to determine the gquadrant
in which M30 and MO3 are both positive. This is
 achieved by effectively subjecting the values of sin ©
and cos © to a 90° rotation and evaluating MO3 and M30
using equation (E7) until the required values are
found. The final value 6 is then determined. It

is no% possible to evaluate equation (E7) with values

4




within MOM remaining in situ unless the new
invariant values of moments for each ordér are
stored temporarily. The array YFAC is used for
this purpose. Two new se’is of factors are also

evaluated:

SFAC, = (-sin6)® and CFAC, - (cose)™ for ne0,1,2,..R.
ni . ) '

nt

Equation (E7) now becomes:

nep( n ' © meq
Mpg = plat S (-1)PSFAC_CPAC__ .5 SFAC_ CFAC
= pit R, ' S g..—o - &=

o« Mp-n+m q-m+n

At the completion of invariance calculations
for each moment order the new values are returned to
the appropriate positions in the array MNOM. Since
the values of MO0, M10, MOl and M1l are known the
corresponding locations in;HOM are 6verwrittén by

area, X, y and 6 respectively..

On returning to PARTMOM a number of factors

-for use in component normalisation are set up. The
precise method chosen for this normalisation is to
relativise the size of all components to that of the
original object. The same linear scaling factor is
used to calculate the centroids of components relative
to that of the original object. = Values of x and ¥y

are measured along the principal axes of this object.




Orientation angles for compoments are meésured
relative to these axes. In this way all moment
values of components may be considered as shape factors.
Thé area, centroid coordinates and orientation of the
original object are preserved as measurements relative
to the original digitisation grid. These measurements
and the other moments calculated are printed on the
iine printer using subroutine MOMOUT which also 1abels
esch component,.

In order to establish which component of
an object is associated with a given set of moments
alcomponent labeling scheme has been devised,i The
object as a whole and ite éonvex hull are referenced
as components 0 and 1 reépectivelyﬁ Convex sets
associated with the concavities of objects are
labeled as components 1,1, 1.2, etec. in clockwise
order around the boundary. The decimal labeling
may be continued to any depthlthus cdmponent 1.2.3.
is the convex set associated with the third cencavity

around the boundary of the component 1.2
Subroutine MOMCON was written to handle

completely the calculation of simple moments for a

single convex component from a clockwise list of contiguous
boundary points. Figure 6(b) shows that with each

convex componenﬁ may be asscciated a level or 'dépth'.

The original object and it's convex hull are at level 1

whils§ their concavities are at level 2 etc. An

important parameter which must be suppiied as data to

'




MOMCON has a value which varies according tolwhether
the next component to be found is of odd or even level.
It enables MOMCON to determine whether upper or lower
boundary‘points should bo sought along a section of
boundary comprising upper points of the original object
boundary. The list of boundary points from which a
convex component is to. be extracted'is described by
three data items. The list vectcer or 'bead' within
which the first boundary point coordinate is stored,
the position of this coordinate within the bead and

the total number of points iﬁ this boundary subset.
These data items are held in corresponding eléments

of the three arrays NS, XS and YS respectively. After
- extracting tuis information from the arrays and
dtermining whether the first point was an upper or
lower point on the original object, MOMCON calls- the
subroutine CONP.

CONP produces an ofdered list of convex points
from the list'sqpplied. As mentioned in 'Development
of Theory' this task proved more complex than first
imagined and even when the methodology described was
finally conceived its implementafion was far from
trivial. Figure 10 shows the boundary of = concavify
with three segments muarked AB,'CD and EF. For ease
of manipulatiop CONP unpacks the list of boundary poihts
‘into the three arrays previously mentioned which are
used jn this instance to store the number of each point

in the list and its x and ¥ coordinates respectively.
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At the same time the points corresponding to B and D
are located. It should be noted that segments AB énd
EF may not necessarily exist i.e. point C mzy be the
first in the list and/or poirnt D may be the iast.

In the former case points B and C may be considered

to be co—incident. Assuming that the subset supplied
is of the form shown in Figure 10 a test is first made
to confirn that segment AB exists. The boundary list
is then searched up to point B and for each'x coordinate
that point with the 1argest ¥ coordinate is selected

as a prospective convex point(Tl}. Convex points

are now extracted from those selected using the straight
line test previously described(T2}). Since in each

case non-convex points are eliminated from the list

up to point B the resulting convex verticgs may be
stored in the same locations that these boundary points
formerly occupied. Effectively, the complete boundary
pdint list is contracted tb a list of convex points only.
'Tests Tl and T2 are now applied sequentinlly to the
boundary points after point B and up to and including
point D, In each case the contractedAlist is stored

in conseéutive locations to those 6ccupied by the pre-
viously dtermined convex points. A test is now made

to establish if D is the last boundary point and if

not any remaining points i.e. segment EF, are subjected
t0 the same tests and contraction. The final output

is thgréfore an ordered list Of‘convex points stored

in three arrays specifying x and y coordinates and
r
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"nunmber of this point in the original fovndary point
list. Tests Tl and T2 will vary accbrding to whether
an upper or lower houndary is squght. In many instances
it is required to move corresponding elements of the
three arrays mentioned and a small utility routine (MOVEP)
has been written for this purpose. | .

MOMCON now zeroises the moments array (MOM)
and calculates simple méments for points spanning segment
AP of Fig. 10. This task is performed first since j
it is known that no concavities may occur in the segment i
énﬁ the data required ié readily available. To calculate ‘
moments for the rest of,the‘COmponent subroutine NCONSET !
is called, |

As previously mentioned any concavities of
areu less than AMIN are ignored i.e. boundary poéints
within these concavities are assumed to be on the convex
hull. If this assumption were not made areas, and
other moments, would be overestimated. MCONSET therefore
computes in tﬁrn thé ares, of each concavity. The
procedure is very simple since in all cases the convex
hullwill follow a straight line between neighbouring
convex points. The ¥y 6oordinate cbrre3ponding to
each point on the boundary point on the boundary which‘
this line spans is obtainéd and subtracted from the
coordinate.of the point itself. Summing these
differences gives the required afea. This area is
compared with AMIN and moments taken either for points
- along %he cchvex hull line or for those on the vrue

boundary. In the former case details of the boundary

points within the concavity, i.e. their number and
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the bead and location within the bead of the first
" point, are stored in the same manner as the data for the
whole component. Once again the same locations within
the three arrays may be used since the list of concavities
will be shorter than those of convex points and will
not be entered until the cdnvex points-overwritten
are no lohgef needed. The number of concave subsefs
80 listed is also'féturned to PARTMOM via MOMCON.

The simple moments returned by MOMCON are
tfeated in a similar way tc those output by MOMSET,
i.e. they are made invariant by MOMINV and printed
by MOMOUT. Before printing, however, the sizé, centroid
coordinates and orientation are relativised with respect
to the coore5p§nding values of the original object.
PARTMOM now tests the number of new subsets found.
If this value is non-zero then it is entered in the
next available location of the array SET. This array
holds the number of known éomponents which have yet
to be analysed at each level of the 9onnection tree.
The next componeﬁt processed will be the last located
as a subset of the previous component. This component
is the last listed within the three arrays NS,X5 and-¥YS
which are used in the ﬁanner of a push down stack to
hold details of outstanding components.  When a

component is found to have no concavities PARTMOM
subtracts 1 from the value of SET at the current level

and test if any outstanding components remain at this
. | ,
level. If not the level indicator (JR) is diminished

by 1 and the next level up tested in a similamr manner.
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In this way components are systematically analysed

with minimal storage requirement. The programme is

alsu simplified. When no more components remain control
feturns-to XYNSTACK which continues to process scan

data until another enclosed regior is completely

located.

The edge following routine itself is designed
to handle one complete picture but may be cglled
repeatedly allowing any number of pictures 4o be
processed in a single computer run. All input of
pictoriai information is effected via the input
routines PREAD8 and PREAD5 thereby enabling an;
peripheral to be used for this purpose without change

to other routines.
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RESULTS AND DISCUSSION.

Figure 11 shows a graphplotter
representaticn of the bouﬁdaries of four objebts
(lunar dust particles). These were obtained
from a raster scan which was processed by the edge
following routine (XYNSTACK), adjacent boundary
points were then joined by straight lines on a
'Calcomp incremental plotter. The four objects
may all be loosely described as compact but each
of them contains twe or more concavities which
should be considered significant for the purpose
of shape analysis; The computer output shows
that even ignoring size, pcsition and orientation
.information the objects may very easily be
distinguished. This_example.is, of course, fairly
trivial and was used mainly to debug the computer
routines. One interesting feature,.however, is
the bohcertina undulations‘of the boundaries in
Fig. 11. These were caused by backlash during
scanning and ﬁay thus be_considefed as noise.

It is apparent that any parameters based upon

local boundary properties, ©:g. perimeter,

wouid bé grossly affected by this fault. Using

a conﬁex component moment analysis it is merely
necessary that the area threshold AMIN exceeds

the size of the small concavities produced for

ohiy marginél differences to occur in the resulting

moments. Such a choice of threshold will not
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Fig. 11, Four (lunhar dust) particles.
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prevent the location of ‘genvine! concavitias
provided they are larger than AMIN. - The optimum
cuocice of AMIN in +this example is not critical but
could feasibly become important in the event of
more gross distortions. Several strategies have
been considered for the automated selection of the
threshold. A simpie method would be to consider
the distribution of concavities versus threchold
to be bimodal and to choose AMIN as the minimum
freqﬁency between modes, |

Object number 5 has a particularly complex
shape and proved to be ideal for finding minor errors
in program logic which did.not affect the processing
of the other particles éhown. It is interesting
to_note that of 540 boundary points listed for this
particle by XYN3TACK only 25 were convex vertices.
318 of those femaining were found to be within
gignificant concavities, leavinz 198 within concavities
smaller than AMIN. For this scan, AMIN was set to
0.5% of the area of each particle;

Referring to Table 1, although objects 3
and 4 have the same number of convex components the
' connectibn tree of each of the four particles is
_diffefent. This strucfure could therefore be used
to distinguish them. If only component O. were

~e¢alculated the second order moments 1120 and MO2

would also allow distinction.
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Table 1. Analysis of Lunar Particles.
NUMBFR OF ORJECT IN SCAN 1

AREA FERIM CIRCHL MARTIN DTAM PERIM AREA FERET DIAM MAA.CHORD
EQO.DTAMYTER =ARITY X Y X Y X Y
132.6 151.6 0,874 134,0 129,0 476,3 13804 136 142 136 130

COMPOINENT 0, MOMEETS OF INCREASING
ORNDER DOWNWARD AMD INCREASTNG POMWEP OF Y ACROSS
(0.1%%0F 05) _
(68.45) (263.4)
0.7235€=-01 (n,733%) 0.9027E=01 .
0.1349F-02 ~0,2521E=02 =0,1177€=-02 0.2925€=-02 :
0.1049E=01 =0,4990E=03 (,4579E=02 0,6715€E=03 0,1634E-01

COMPOMNENT 1, ' “OMENTS OF IMCREASING
ORDER DOUNMLARD AND INCREASING "OWER OF Y ACROSS
1,022 ' '

~0,9264E~03 0,6184E-02

0.7117E=-01 0,3328E-01 0_G0O55E-01

0. RO2RE=0% ~0,1875E=02 =0,9740E=03 0.2269E=('2

0.1011F=01 =0_.3822E=03 0, 4498E=02 0.5296E~03 0,1431€-01

COMPONENT 1.2, MOMENTS OF TMCREASING
ORDER DOWNMARD AND INCREASING POWER OF Y ACRUSS '
0.1029E-01 o
~0.5116 0.17499
0,162AE=01 1.256 0.546%

-0.1072E=07 =0,4038E=03 0.3073E=-01 0.5340E-01
0.6652E-03 ~0,1082E=03 0,62986=02 0.2817E=02 0.£883

COMPONENT 1.1, MOMENTS OF INCREASING
ORDBER DOWUNWARD AND INCREASIMG POUWER OF Y ACROSS
0.1213E=-01
0.3556 0,3762
0.7760E-02 ?.634 1,169

0.2819E~03 «0,2197E=02 ~0,4227€=01 0, 3424 .
" =0,1922E=0? -0,5093E-03 0,6582E=-02 0,4436E-02 3,076
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Table 1. cont'd
KUMBER OF NRJFCT IN SCAN 3

ARFA PFRIM CIRCUL MARTIN DIAM™ PEPIM  AREA FEPET DIAM #aX, CHNRE
EQ.PTAFETFR =ARITY X Y X \ X \
152.3 222.6 0,684 136.0 171.4 699,2 18224 143 180 136 173

COMPONENT 0, ' POMENTS OF INCREASING
ORDER DOHNUARD AND INCREASING PONER OF Y ACROSS
(0.1822F 05)
(201.5) (111.7)
0.6159€-01 (1.377) 0.1077
-0,436KE-03 ~0,2881E-02 0.3029E=-03 0,3955E=02
0.7534E=-02 =0,6650E-04 0_5103E-02 0,3026E-03 0,2255E-01

COMPONENT 1, ' MOMENTS OF TNCREASING
ORDER DOVNUWARD AND INCREASING POWER OF Y ACROSS
1.055

-0.9391E=01 =0_,1200E=~01

0.6359E-01 0.6931E~01 0,1028 :

0.3933E-04 =0, ,3184E=02 =0,4622E-04 0O _4LBOGE=02

0.8042€=-02 =0, 5117E=04 (O, 4716E=02 0_1049E=03 0,2100F=01

COMPONFNT 1,4, MOMENTS OF. INCREASTING L
ORDER DOWNUARD AND INCREFASING POMER OF Y ALROSS
0.RRROE=02
-0,5829 0.1096
0.9718FE=0? 1.496 1.42%

~0,4158€=03 =0, 4879E=02 =0_,2104E=01 00,5319
0.2551€E=-03 0_,3367E-03 (0,1495FE=01 ~0,5354E=02 3,426

COMPONENT 1.3, MOMENTS OF TNCREASING
ORDER DOWNUARD AND !NCREASING POWER OF Y ACROSS
0.1418E-01 :
-0,5087 -0,3293
0.115°E-01 2.079 0.6355

“0,6L2AE=04 =0,2055E=02 0,7148€-0? 0_7289E~01
0.2516E-0% =0.2121E=-04 0,7423E=02 0,1215E-02 0.7604

COMPONENT 1.3.1., MOMENTS OF INCREASING
ORDEP DOVWNUARD AND INCREASING PCWER OF Y ACROSS
0.504RE=02
-0.4913 -0,3336
0,7375€E=-02 2.085 1.N86

0.1600F=03 =0 _1402E-02 -0_1697E=01 0,1879
0.124RF=-03 0_,7380E=04 O0_.6R13E=0? =N _1486E=-C1 2,392

COMPONENT 1.2, - MOMENTS 0OF INCREASING
NRNER DOWNWARD ANR INCREASING POUER OF Y ACROSS
0.2933E~01
-0.1613 -0.4761
0.3163E~0%1 =3,040 0.2761

-0,2277F=02 -0,2025FE=02 0N, 2570FE=01 0.4R31E=-02 _
0.2120E=-02 =0 ,7515E=04 (.7R6NE~=D2 ~-0.2107E=02 0.1786

CPYPONENT 1.1, MOMENTS OF INCREASING
ORNDER DO”N“AR) ANU INCREASING POWEP OF Y ACROSS
0.7161E=02
“0,3478FE=02 0,4640 | ‘
0.1540E=-01 3,022 = 0.6418

0.479BE=N3 =N ,4876E~N2 «0,2A91E~01 0.2971
0.5520E=-03 0,1825E=03 0,7464E=02 =0.5373E~-02 7.109
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Table 1. cont'd
KIMBER OF DRJECT IM SCAN 4

ARFA PERIM CIRCUL MARTIN DIAYM PERIM AREA FERET DTAM MAY. CHORD
TEO.DIAMFTER =ARITY X Y. " Y X Y
152.4 215,8 DH.70% 145.,0 170,33 677.9 18236 164 192 145 171

COMPONENT 0, . MOMENTS OF INCREASTNG
ORPER DOWNWARD AMD TMCREASING POWER OF Y AUROSS
(0.1824€ 05)
(279.1) (316.13
0.5302F=-01  (2.155 0.1338
=0,200RE-02 ~0.4565E-02 0,5242E=02 0,R294E-02
0.5657E-02 0.1522E-03 (.569RE=02 =0.5580E=03 0,3596F=01

COMPAONENT 1, ' MOMENTS 0OF THCREASING
ORDER DOUNUARN AND INCREASING POWER OF Y ACROSS
1.075 :

0.5274E=01 0.3148FE=02 00,1284
«(,1951F=0? =0, 34Y0F=02 0,.4R55E=02 0,7381€-02
0.5645E=02 0.1263E=03 0_4932€=02 =0,4799E=03 0,3338F~01

COMPONFNT 1.5, MOMENTS OF INCREASING
ORDER DOWNWARD AMD INCREASIMNG POWER OF Y ACROSS
0.9377e=02
0.3537 0.3479
0.3539E-01 =0.26023% 0.3235

w0 .3454LE=02 =N_6043E=02 0.2R69E=01 0.5016E=-01
0.2924E=02 0.1354E-03 (C.9681E=07 =0.6578E~02 0.2545

COMPONENT 1.4, MOMENTS OF INCREASING

ORDER DOWNWARD AND IMCREASING POWER OF Y ACROSS
- 0.9816E~02
-0.1833 0.4069
0.1678E=-01 3,117 N.6A79

0.1377E-02 ~0,4RANDF=02 -0,3°04E-01 0.2845E-01
0.2490E=04 =0 ,6540E=-03 0,9877€=02 N.2238€=01 1.020

COMPONENT 1,3, MOMENTS 0OF TNCREASING
GRNER DOUMLARD AMD IMCREASING POWER OF Y ACROSS
0.2539E-01 ‘
-0.6190 -0,9993E~02
0.1785F=01 =1,374 0.4875

0.1155E=N02 =0_,3506E=~N2 =0,2417E=01 0,7294E-01

“0.1047E=01 =0.3546E=02 | |
0.RL36E=03 =0 _1924E=03 0,6R820NE=02 0.4487E~02 0.5048

COMPONENT 1.2, MOMENTS OF INCREASING
ORDER NOUNWARD AND INCREASING POVER OF Y ACROSS
0.2%17€=-01 .

=0.,5398E-01 =-0,4537
0.4201E=01 N, 7207E=-01 0_259%
0.2794E=02 =0, 84H5FE=02 =0_.2584E=01 .0,6037E=01
0.3693E=02 0.9620F=03 0.9724€=02 0.4629E~03 0,1855

COMPONENT 1,1, MOMENTS OF INCREASING
ORNER NOMNUARD AND INCREASING POWER OF Y ACROSS
0.AROOE=07 -,
0.6042 -0.1759
0.133RE=01. 0.5574 0.8434

0.345R8E=0% =0 5576E~02 ~0,3354E~01 00,2559
=0, 178RE=01 =0.1159E=02 (0.582%F=02 0.1711E=-01 1.617
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Table 1, cont'd
NUMBFR OF NRIFECT IN SCAN 5§

ARFA FPERTIM CTRCUL MARTIN DIAM PERTM  AREA fERET DIAM MaiX,CHORD
EQ.DIAVETFR =ARITY ¥ Y X Y X Y
216,46 3R, 0 0,687 124,77 297.4 99R,9 36780 170 301 166 293

COMFONENT @, MOMENTS OF TNCREASING
ORDEY DNUNVARD AND IMCREASING POWER OF Y ACROSS
(n.3478€ 05)
(490.3) (?27.33
0.6190F=01 (1,469 0,1479
0.18506=03 «~0,197AE=02 =0_.2564E=02 0,7650E=02 :
0.3543E-02 0,4870E=03 (.SS76E=02 -0.1279€=02 0.5299E-09

COMPONENT 1, . MOMENTS 0OF TNCREASTING
ORDER DOUNUWAROD AND FNCREASING POWER OF Y ACROSS
1,149

0.94R80€E-01 0,7796E=02

0.4502E=01 0.2521F=02 0.14417

0.307%9E-04 =0,1154E=02 ~0,8237€=03 0.3160E=02

0.3873E=02 0.1360GE=N3 0,51783E=02 =0,4121E=03  0.3935E=01

COMPONFENT 1.6, MOMENTS OF INCREASING ,
GRNER DOUNUARD AND INCREASING POWER OF Y ACROSS
0.9842E-02
-0,5293 0.3561 :
0.1759F=01 =2,724 0.4425%

0.36116-03 =0,3292E-02 =0_1072E-01 O0.7464E=01
0.4970E-03 0,68%R€=04 0.6790€E=02 0.8810E=-03 0.3875

COMPONENTY 1.5, MOMENTS OF TMCREASING

ORPER DOWNHARD AND INCREASING POWER OF Y ACROSS
0.5383F=02
~0.6797 -0,1608
0.1612E=01 =1,173 0,4877

0,5195E=03 «0,5889E=03 =0,227SE~01 0.4671E=-01
0.4772F=03 0,3227E-03 0.7077E=-62 ~0,5853E-02 0.5089

COMPONENT 1.6, MOMENTS OF TN{REASING
ORDER DOWNYARD AND INCREASING PCMER OF Y ACROSS
0.8007€E=-01 : - T
- 0.,1727 -0.337% ' :

0.14656=01 0.6071E=01 0.5297
0.2917E=03 =0,3838E-02 =0.1402E=01 0.9R77E~01
0,4449E-03 0,.3628E~04 0.6390E~02 0.1943E=-02 0.5666

COMPONFNT 1.6,.1, MOMENTS OF INCREASING
OROAER DOVNUYARD AND INCREASING POWER OF Y ACROSS

0.152%€=-N1

6.57564 -0,2624 :

26,54 L 1,698 . 0.6405E=01

«370.0 -1.942 N.1742 0.6249E-02

=4469, -34 K7 0.2982 0,3502€=01 0.7119€=02
COMPONENT 1.3, MOMENTS OF TNCREASING
ORDEP NOWNYARD AND IMCRFAS!NG POWERP OF Y ACROSS

0.1225E-01

0.6912 n.2049 ‘

0.664L4E-01 =0_B332 0,2377

~0.3572E=02 =0,9458E=02 0.2241E~01 0.5872E-01
0.473RE=02 =0.600RE=03 0,90756=02 =0.5620E=03 01530
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COMPANENT 1.2, MOMENTS OF TNCREASING
ORDEP DNWNWAPD AMD IMCREASING POWER OF Y ACRDSS

- 0.3R62¢=01

———e . w -

0.4349 0.3116
0.6622E-01 2.514 f,120%
=0.1309E~n2 ~0.1131F-01 =0.237R3€=02 0.2328FE=01
0.1081F=01 0,1344F=02 0.6147E~12 =} 3819E=~03 0,4009E~-01

COMPONENT  1.2.1, MOMENTS OF IMCREASING

NRNER DOMNWARD AND TMCREASTHNG POWER OF Y ACROSS
0.8080E~N2 '
0.3620 0.3178
0.21R4F=01 =1,0%64 0.5781%

0.2329E~02 =0.3338E~-03 =0,24590F=01 0,2218E=01%
0.1363E-02 =0.2490E~03 0.8163E-02 (.7795E~02 0.5543

COMPONENT 1.1, . MOMENTS OF IMCREASING
ORDER DOWNUARD AMD INCREASING POWER OF Y ACROSS
0.35056=01 ‘ :
-0.1213 - 0,4005
0.146RE=01 =3.127 D.5487

0.7010E~-03  Q,56:5E~03 -0,2269FE=01 0,.1002E-01
0,4RSRE=N3 0,1320E«~03  0,6132E=02 =0_.2160E=-02 0.6226
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A:more criticai test of the shape describing
pararcters was devised by sele~ting five of the
objects shown in Fig. 12. This group of 115 sand
particles was scénned twice in mutually pefpendicular
directions. The 'clipping level', i.e. the grey
level threshold between black and white, and the
magnification factor were slightly different for
each scan. Fig. 13 shows enlarged graphplotter
buﬁlineé of the five particles from two scans.

The objects were chosen to be fairly similar so that
the power of the:shape descriptors could be assessed.

A previously written subroutine.(pARPAR)
was used to calculate 'circularity' as defined in
appendix B.  The values oflthis shape factor are
given in Wable 2. for the two scans of five objects.
Various methods have been used to compare them in
attempting to determine the corréct correspondence
of objects. Table 2. shows assignments established
by (a) considering the objeét in the second list with
nearest circularity tc¢ each item in the first,

(b) using the same procedure but with the first list
considered relative to the second, and (c) by assigning
objects in ascending order of circularity. It may

be observed that oﬁly object number 2 is consistently
assigned correctly. Correspcending values of area

and perimeter are also compared in Table 2 both -
pérameters allowing correct classification,

Cohsistent valuss of perimeter are partially attributable

to the fact that the two scans were at 909.
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Fig 13. Two scans of 5 particles from Fig, 12, |
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i Table 2

Comparison of area, perimeter and circularity
for the two scans of five sand»partigles in figure 13.
Areas and perimeters are normalised to make totals equal

for both scans.

. > ‘
Object Number Number : Perim Perim Circul Circul .
Within Scan. used —eter -eter -arity -—arity -
Scan 1 Scan 2 for - Area Area. .
. : analysis 1 A | 2 1 2
. 5 . 82 1 840 823 113.9 113.6 902z 882
T 67 2 1158 1172 143.6 145.3 840 823
16 64 3 792 788 1C6.8 107.6 934 911
17 75 4 1256 1258 141.4 141.4 883 876
.27 66 5 905 907 120.2 117.7 887 894

?redicted correspondence of objects from two

scans using:-

Nearest in scan 2 Nearest in scan 1. Assignment in order
to value in scan 1 +to value in scan 2 of circularity value

Scan 1  Scan 2 Scan 1  Scan 2 Scan 1 Jean 2

1 .3 5 -1 1 5

2 2 2 2 2 2 y
3 3. 1 3 3 '3

4 5 5 4 4 1

5 1 4 5 5 4
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Table 3. gives moment. analyses of the
five objects from both scans. The objects may
first be grouped into convex {1 and 3) and non-convex
(2,4 and 5), When dealing wiith convex of near
symmetrical objects it is important to consider the
ratio of ¥02 and M20 before analyzing higher order
moments. If this ratio is close to unity then it
is conceivable that‘é small distortion would cause
orientation of the principal axes to change by 1800.
Similarly, if M30 is very much smaller than MO3 a
discrepancy of 90°may occur, changing the signs of
moments in odd powers of either x or y. In:both !
cases comparisons may still be made, using elongation
and the product N20.M02 and absoluts values of odd
power moments respectively. For objlects 1 and 3
M02/M20 is approximately 2 and compariscn of these
moments clearly show8thc correct assignment.

The non=-convex group may be further
sub-divided since object 2 has two concavities
whilst 4 and 5 have only one. This remaining pair
of objects may easily be distinguished using either
second order moments or by comparing the sizes of
their concavities,

Shape factors of components O. and 1.
shouldrbe identical for convex objecﬁs. Numerical
.accuracy can therefore be assegsed by cdmparison.
Items which are not shape factorShave been enclosed

[
in brackats. Values in brackets are, in order of

f
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(object 1).

NIIMBFR NF OBJECT IN SCAN 5

CARFA PFRIM CTRCHL MARTIN DTAM PERIM - AREA FERET DIAM MAX,CHORE
FN_ODIAMFTFR =ARITY X Y X Y X y
32.7 35,2 0.90° 0.0 32,0 113.9 840 31 39 31 33 |

| 1

COMPONENT 0, MOMENTS OF INCREASING '
NRDER DNLUNJARD AND INCREASING. POUER OF Y ACROSS

(R4, 0} '

(35.78) (325.1)

0,5439E~01 (=0 _9978) 0,195

=0.5401F=0% =0 ,4055F=03 0,1144E-07 0.1001E=02
0.6276E=02 0.3639E=03 0.3750€=02 =0.881RE=03 0.3034E-01

COMPONENT 1. MOMENTS NF INCREASING
ORDER NOWNUARD AND INCREASING POWER OF Y ACROSS
1.000 )

0.0000E 00 (.0030E 00

0.5430E=01 -0,5133F=n7 0,195 _
“0,5492E~0N3 =0,4954E~G3 0,1144E=02 0_.1002E-02 o
0.6277E=02 0.3678FE=03 0,3752e-02 -0.883RE=-03 0.3034E-01

PR i ns m e e et e v ot e fem o al  emane s ees e

NUMRER OF OBJECT IN SCAN 82

ARFA PERTIM CIRCLL MARTIN DIAMVPERIM AREA FERET DIAM MAX, CHQORT
EC.NDIAMETER =ARITY X Y X Y X Y
31.9 36,72 0,882 32.7 2R.0 113.6 799 38 30 33 30

COMPONENT O, MOMENTS OF INCREASING
ORPER DOUNUARN ANy INCREASING POWER OF Y ACROSS

%?90.0\

476.9) (458.8)

0.54766-01 {0.5381) - 0.1186

-0.8797F=03 ~0,5620E~03 0.1651F=02 0.1160E-02
0.6385F=02 0,274RE=03 0. 3720E~02 =0.6144E-03 0,?990E-01

COMPONENT 1, MOMENTS OF TNCREASING
ORDER DOUNWARD AND INCREASTNG POWER OF Y ACROSS
1.0040 : '

0.0000E 00  0.0000F 00
 0.5476E=-0D1 0_9625E-07 0.11864
“0.8798FE=03 =0_5617E=03 0.1651E=02 0.1160E-02
0.6385F=N2 0.2767E-03 0,37156-02 =0.6054E=03 0,2988E=01
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Table 3. cont'd., (Object 2, Scan 1).
NUMBER OF ORJECT IN SCAN 7

AREA PFRIM CIRCHL MARTIN DPIAM PERIM AREA FFRET NIAM MAX, CHORF
EQ.DIAMFTER =ARIJTY X Y X Y X Y
38,4 45,7 0,340 30,0 50,7 143.6 1158 34 53 34 52

COMPONENT 0, ' MOENTS OF INCREASING
ORDPER DOUNLARD AND INCREASING. DOMFQ OF Y ACROSS
(11538,
(37.90 («12.0)
0.5214E=01 (=1.59%) 0.1449

0.1721E-03 =0, 7276FE=02 0.,7402E-03 0,2416E=01
0.6NR7E-02 =N 1964E=-03 0,4782E=02 0.7311€~03 0,4772EFE-01

COMPONENT 1, ' MOMENTS OF INCREASIMG
ORDER DOWNUARD AND INCREASING POUER OF Y ACROSS
1.035

0.13156=01 0,5051€=02

0.5133F-01 0,1513F=01 0,1413

0.2021F=03 =0,6553F=02 0,355NE=04 0,1979€~01

0.5754E~02 =0,1119E~-03 0,4783E=02 0.3549E=03 0.4364E-01

COMPONENT  §.2, MOMENTS OF INCREASING ,
ORPRER DNOUNWARN AND INCREASING POUWER OF Y ACROSS :
0.RA3AE-02
G.4543 -0.,2556
C0.1131E-01 0,3894 2.290
0.R794E~03 ~0,4012E=02 ~0,2982€=-01 1.091
=-0.1246 0.2396 ~-0,4301 0.8938 8,932
COMPONENT 1,7, MOMEMTS OF INCREASING

ORDER DOWNHARD AND INCRFASTNG POWER OF Y ACROSS
0.2591E=01
0.3749 '0.28%9
0,7596E-02 2,793 1,512
0.7137€=~04 =0,1276E-02 -0.3600E=01 10,3866
0.62036-03 0.18%2E=02 0.17306-01 0.1347E=01 4,853
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Tdble 3. cont'd._ (Object 2, Scan 2).

MUMBFR OF OBJECT IN SCAN A7

ARFA pFRIM CIRCUL MARTIN DTAM PE?YM AREA FERET DUAM "AYX, CHoP!
EN DIAMETER =ARITY X Y ' X Y X Y
38,1 46,3 0,823 51.1 29,9 145,33 1138 53 34 53 34

COMPONENT D, OVENTS OF IMCREASING
ORDER DOWNWARD AND IhCRFASING POWER OF Y ACROSS

(1138

(390.3) (15n.8)

0.5071F=01 (N.5055E=01) 00,1472 . -
~0.5500F=06 =0,6R12E=02 0,100%E=02 0,2378E~01 _
0.5790E=02 =0.1179E=03 0.4A34E-02 0.5350€~03 0,4883E=-01

COMPONENT 1, ‘ MOMENTS OF IMCREASING
ORDER DONNUAQU AND THCREASING POWER OF Y ACROSS
1,054
0.19456-01 0.7427E-02
0.50036-01 0.1830€E=061 0.1410
0.1671F=04 =0,574DE=02 0.528NE=04 0.1752E-01
© 0,5420E~02 =0.1199E-04 0,4A12E=02 0,1705E=03 0,4267E=01

COMPONENT 1.2, : MOMENTS OF INCREASING
NRNDER NOWNIIARY AND INCREASING POWER OF Y ‘ACROSS '

0.1494F~-01

0.4288% -0,.2708

0.5762F=02 0_3028 . 2.071

-0.73R9E=04 0. 8654E=03 -0,2874E=01 0, B8488E~N1

0.99136F=02 =~0,3800E=02 ~0,2083E=-01 0.,1189 8.210
COMPONENT 1.1, MOMENTS OF INCREASING

ORDER DOUNWARD AND INCREASING POWER OF Y ACROSS
0.3954E=01
0.3566 0.3022
0.6580E=02 2,801 1.296
0.48456-03 =0,6939E=03 =0.3151E-01 0,2052
0.19916-01 0,2773E-01 0.4099FE=01 0.2928E~01 3,439




NUMBER OF OBJECT IN SCAN 16

ARFA PERTM CIRCUL MARTIN DIA™ PERIM - AREA FERET DIAM MAX,CHORD
EQ,NPTAMETER ~ARITY ¥ Y X 4 X Y
31.8 34,0 0,938 32,0 34,R 106.8 792 33 35 32 35

COMPONENT O, MOMENTS NF IHCREASING

QRPER HOUNWARD  AMD INCREASING POWER OF Y ACROSS
(792.0) | | 1
(78.75) (421.3) | ' |
6.5845F=n1 (=2,227) 0.1108

0. 6R1PE=03 =0.1350E=02 =0.9&77E-03 0.2134E~N2
0.8A7RE=(? =0 _2776€E=03 (. 4RB4F=92 Q_4LT74LRE~03 0.2364E=01%

COMPONENT 1. WOMENTS NF INCREASING

ORNER NOUNUARD ANMD INMCREASING POUWER OF Y ACROSS :
1.000 :

0.0000E 00 0.00NA0E 0O
0.5R45E=01 =0 ,9467E-07 0.110R

0.68116=03 =0,1350E=02 =0, 9A72E=N3 0,2134E=02

0. 6677E=02 =0,279N0E=03 0. 4882E=02 0.4700E=-03 0.2363E=01

NUMBER OF OBJFECT I SCAN A4 . .

AREA PERTIM CIRChL MAPTIN DIAM PERIM AREA FERET DIAM MAX,CHORE
EC.DIAMETER ~ARITY X Y X Y X Y
34.2 34.3% 0,911 3.5 30.0 107.6 765 35 33 35 32

COMPONENT O, : MOMENTS OF INCREASING
ORPER DOWYNYWARD AND INMCREASING POWER OF Y ACROSS
&765.0) | |
381,2) (191.4)
0.5792€=-01(=0,6393) - N.1125

0.1087€=0? =0_.14355€=02 =0,18310E-02 0,2250E=-02
0.6594E=07 =0.2831E=03 0,.4032F=02 0,4926E=03 0,2444E=01

COMPONENT 1. " MOMENTS NF INCREASING

ORDER DOUNWARD AND INCREASING POWFR 0F Y ACROSS
1.000

0.0000F 09 O0,00I0E 0O

0.5792E-01 =0,2910E=10 06,1125

0,108RF=02 =0.1435€6=02 -0,181%F=0? 0,2250E-02

0.6590E=02 =0,2857F~03 0,4031€-02 0N.4918E-03 0,2444E~01




- .

MIIMBFR OF NBJFECT IN SCAY 17

AREA PERIM CIRCHL MARTIN DTAM PFRIM ARFA FERET DIAM MAX.CHORE
FQO,NTAMFTFP =ARITY X ¥ _ X Y X Y
40,0 45,0 0,88V 38,0 41,0 141.4 1256 43 46 39 43

COMPONENT 0, A0MENTS OF TNCREASING
NRNER DOUNWARD AND INCREASING POMER OF Y ACROSS
(1256)
(75.972) (368.2%
0.5380€=-01 (n,8347 0,1248
1, 73S1E~03 =0,36/9E=02 =0,1733E~02 0,72756=02

0.5761E=02 ~0.5748€=04 0.5191E«02 0,.3489E=03 0.3033FE=01

COMPONENT 1, MOMENTS NF TNCREASING

ORPER DOUNWARD AND INCRFASING POUER OF Y ACROSS
T.021

0.4672F=02 0, 7919E=-07

0,545RE-01 0.2572€=-01 0,1211

0,842N0E=03 =0 ,2976FE=02 =0,244RE=02 0,5410F=-02

0.5834E-02 0,1807E-04 0,5101€=-02 0.9550E~04 0, 2855E-01

COMPONENT  1.1. | MOMENTS OF INCREASTNG

ORDER DOWNWARD AND INMCREASING POWER OF Y ACROSS
0.2070E~01 7
0.2304 0.3905 ,
0,2295€=-01 2,908 00,4705 : ‘

0.1711€-02 -0, 7356E=04 =0_3796E=01 0_.6505E~01

_e0.5106E=01 -0 4617E-01 =0.3223E-01 =0,4371E-01 0,558

.

NUMBER OF OBJECT IN SCAN 75

AREA PERIM CIRCUL MARTIN DIAM PERIH AREA FERET DIAM MAX,CHOR{
EQ.DIAMETER =ARITY X Y X Y X Y
39.4 45,0 0,875 41.7 37.9 141,46 1221 45 L4 42 38

COMPONENT O, " MOMENTS OF INCREASING
ORDER DOMNLARD AND INCREASING POWER OF Y ACROSS

1221,
4340 188.7)

0.5290E=-01 (2.44R) 0.1269
0.8142F=03 =0,34%9FE=02 =0, 2078FE=02 0N _7N92FE=072
0.5557€-02 ~0.5470F=04 0,5229€=02 0.3343E=03 0.3121E=~N1

COMPONENT 1. MOMENTS OF INCREASING
ORDER DOWNUARD AND INCREASYNG POWER OF Y ACROSS
1,017

0.3531E~02 {(D.A3B1E=02

0.5354E=01  0,1R40E-01 00,1237

0.B77RE«03 =0, 2904RFE=N? ~0,2681F=02 0_,5593FE=02

0.56216~-02 N, 7453€=-05 0,51356=02 0.1222E=03 0.2969E=01

- COMPONENT 1.1, MOMENTS OF JINCREASING
NRPER DOWNMARD AND INMCREASING POWER 0OF Y ACROSS
0.1679F=01
0,238 0_.3855
0.2850FE=31 2.R74 0.4595

0.3720F=02 =0 ,1547E-02 ~0,4908E=-01 0,7608E=01
-0.2455%  =0,1265 =0.5A90FE=01 =0.3727€E~-01 0.6099




NIJMBER OF OBJECT IN SCAN 27

AREA PERIM CIRCUL MARTIN DTAY PERIM AREA FERET DIAM MAX,CHORD
EO NPTAMETFR =ARITY X Y ‘ ' X Y X Y
33,9 38,3 0,837 31,0 32,0 120,2 905 31 37 39 37

COMPONENT 0, MGUENTS OF TNCREASING
ORNER DOWNVARD AND INCRFASING POUESR OF Y ACROSS
ans, )
118,2) (413.1
0.5803E=01 (~2,197 0.101R

~0.2303E~02 -0,2441E-02 0,3414F-02 0.53,8E-02
0.104R6-01 0,9956E=04 0.3520£=02 0.3007E~03 0.2359E-01

COMPOANENT 1. "MOMENTS OF INCREASING
ORNER DOUNWARD AND INCREASING POWER OF Y ACROSS
1.039
0. 1298E-01 0.1366E-01
0.6729E-01 00,1390 0,9968F=01

=0,2057E=n2 =0,2731€E=02  0,2197e~02 0,4230€~02 )
0.9843E-02 0.5767E=03 (0.376AF=02 =0.7171€6~-03 0,.2171E-01

COMPONENT 1.1, MOMENTS OF INCREASING
ORDER DOMNWARD AND INCREASTNG POWER OF Y ACROSS
0.3867E=D1 |
0.3487 0.3662 ,
0.2092E=01 =0,4471 0.4725

~0.1556F=02 ~0,2098E-02 0.3%25E=01 0.3603E-01
0.430SE-01 0.5591€-02 0.2774F202° 0.1197£-02 ~0.6069

PoMmen me L e e i ke e e st emeem ae i BeA b e e e o e mm b e ok e e e e v mr m s hi e hie wme e e e et e e e e e

MUMBFR NF OBJECT IN SCAN 66

AREA PFRIM CTRCUL MARTIN DIAM PERIM APEA FERET DIAM MAX,CHOR]
EQ.DTAMETFR =ARITY X Y ‘ X v X Y
33.5 37.5 0.894 35.0 30,3 117.7 881 36 31 36 31

COMPONENT 0O,  MOMENTS OF INCREASING

ORDER DOWUNMARD AND INCREASING POWER OF Y ACROSS
881,0 :
380,5) - (23n.8

0.6714E=01(=-0,4317 0.1024

“0.1787E=02 =0.2171E-02 0.2002E=02 0.5143E~02
0.1013E=-01 =0,1021F=04 (.34664E=02 0.3353E=03 0.2380FE=01

COMPONENT 1, MOMENTS OF TMCREASING
ORNER DOWNUARD AND INCREASING POUER OF Y ACROSS
1.037
0.704NF=07? 0,9053E=02
0.66056=01 0,1141 0.16006

=0, 14136=-02 «0,2251E-02 0,1745€=02 0_4205E=02
0.9479E=-02 0,3734€-03 0,3625€=02 =0.5513E=03 N_.2216E=01

COMPONENT 1.1, MOMENTS 0OF INCREASING
-ORNER DOUNVIARD AND INCREASTING POWER OF Y ACRDSS
0.%419 0.3620 ]
0.213RE=-01 =0_4534 0,4400
=0.205LE=02 ~0,2315E=0?2 O0.3V1AE=01 O0J4037E=-01
0.16477 0.3336E=-01 0,1969E-01 0.5796E=02 - 0.4389
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appearance, object'area in pictufe points, centroid
coordinates and angle of orientation measured in
radians relative to the vositive y axis.

| Fig. 13. shows that all five objects are
fairly'similar with no 'wild' features. Also, the
two scans produced boundaries with a considerable
number of small but not insignificant‘discrepancies.
Nevertheless,‘it is apparent that only a few of the
shape factors calculated are needed for correct
classification. One therefore infers scope for
considerably more complex tasks to be performed.
Low order moments appear to be excellent deécriptors
of general shape, whilst higher order values are
more influenced by points distant from the centroid
and may be interpreted as charactericing finer detail.
Moments as high as tenth order have been calculated
using the existing programme but as can be observed
the number of significaht‘decimél digits diminishes
fairly rapidly with increasing order. Using moments
up to fourth order,.as shown, ten shape factors:are
available even for convex objects. Under most
circumstances this level of analysis should be more
tlian sufficient. |

Where distortions are large it mayr be
difficult to reach a satisfactory compromise
between the value of AMIN and the order of momeats
ca%culatedf Increasing the value of AMIN reduces
the risk of bogus components being detected but if
‘

the number of components is reduced tcodrastically

correct classification may become impossible.
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One's task for the npurpose of this
tresis has primarily been to develop and implement
a method of shape énalysis. This has been achieved.
However, one of the design considerations was that
_either of the two parts of the analysis, namely,
convex decomposition and invariant moment analysis
could be used separately. This flexibility allows
-considerable further exploitatibn. o

The preéise method in which moments
should be relativised is open to experimentation
and if is ddubtful if there is a single me?hod
which will be 'best' in all circumstances. It has
previously been suggested fhat each non-~convex
component should be cdnsidered_relative to its
convex hull. Thus the ratio of corresponding
moments of these two objects'coﬁld be used as
~distortion tolerant parameters. Alternatively,
if the shape of each conrék'COmponent is considered
important its shape describing moments may be made
invariant in the normal manner i.e. by boundéry
'standardisation._ This approach hés been used so
far although the area,‘centroid coordinates and
orientation of components have been relativised to
the briginal‘scan object so that they also become
sha?e descriptors.

By further processing it is possible to
gemerate elongation invariant moments. This

“invariance may be achieved in additign to those
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previously mentioned. The tsrm elongation may
be applied to the ratio of the moments M20 and MO2.
This factor may be removed from moments by using the

equation:—~

Mpq (elongation invariant) = Mpg/ (M20/M02)P~%/*

Applying this transformation, both M20 and MO2
become [MZ0.MO2. It is difficult to find an
adqective to describe this term which has not been
used for a different shape factor by anothqr author.
Its magnitude will be a minimum for a perfect circle
and will be large for:objects having long narrow
projections along the x and y axes, e.g. a plus sign.
Factors which are ratios betwesen components
and convax hulls ﬁill always have magnitudés between
zero and unity. This fact is particularly useful
when considering numgrical stability. It cannot
be guaranteéd that the set of moments currently
produced will decrease in absolute value for
increasing orders of x and y. Indeed, should any
boundary point lie at a distance greater than or
equal to one unit ffom the centroid coordinates
(after standardisation) values will diverge with
increasing order. If size standardisation is
achieved by normalising the size of +he object
cohvex hull to unity and affine invariart moments

r



are.used then it can be shown that higher order
moments will eventually converge to zero. An
éffire transformation may be defined as a linear
fransformation plus a translation i.e. an affine
iﬁvariant is invariant with respect tb‘size,
position, orientation and elonmgation. It is
conjectured (the proof would be guite long) that
'the maximum distance of a boundary point of any
object normalised in this manner would be

2[30'75 = 0.875 units from the centroid.

The prospect of using weighting functions
in moment calculation has previously been ;entioned.
Ideally, such weighting furctions should give
greater weight to Poiﬁts near the centroid in oxrder
to reduce the relative error magnitude. Two
possible functions are the negative exponential
and reciprocal. Beth functions may be expressed
as a series expansion e.g; for one dimension:-

f(x) = (l-i+xz¥x3+---) F(x)
l4x

f(x).e.-x = (1-x + 2 _ 53 +o00 )of(x)
1! 3

%) |

The expansions are valid only for x<1 hence .
normalisation along the lines suggested should
 first be implemented.  These functions may then
b? calculated to any desired accuracy by summing
the corresponding terms of the equivalent moment

series exparnsion e.g.

£(x,y).e™F = MO0 ~ MIO & N20 - M30 4. ««

~06—




'Similar expansions exist for other exponent terms
which are simple expressions in x and y. Moments
in negative powers of x and y may not be used
since the centroid would “hen have infinite weight.
Unfortunately, the amount of computation
Tequired to evaluate high order moments is quite
large. Since the number of boundary points
involved should be much greater than the.number
of moment values most of this work will occur in
calculating the initial simple moments. For
each point and every moment calculated inv?lving

that point the following expressioﬁ is evaluated:

(x43)P* - (e3)PHL L pOH
Pl q+l

o+
If all moments up to the R

order are
calculated then clearly this expression may be
deorived for every moment éoﬁcerhed from two sets
of factors one involving x and the other y. If
we assume that most computer time will be engaged

in multiplication and division and consider either

to bz equivalent to one arithmetic operation then:-

Operations to calculate x factors = 3.R
Operations to calculate y facters = 2.R

Operations to find moments from factors

(R+1).(R+2)
2

hence total number of operations perr boundary point

= 3R% 4+ 63R + 1
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Wheﬁ R €13 the second term_of this
expression will be larger tlhan the first.  For
practicle purposes one may aséume that the amount
of computation required is approximately proportional
to the total number of moments evaluéted (about 2 to
23 operationé per point per moment).

The number of‘moments.evaluated should
vary with the size of she component involved and the
type of classification for which shape factors are
required. In the case of components which are
only slightly larger than AMIN the most important
factor will be that of existence. Howeveé, since
existence is determihed by evaluating component
area the zeroeth ordef moment will always be
available. It should be possible for a given
analysis to cstablish thresholds above which the
next higher order of moments will be calculated.
Jﬁdicious use of such threéholds would greatly
reduce the couwputation required for effective

shape description..
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Suggestions for Further Work.

In the introduction it was mentioned that

several lifetimes of possible research became

apparent whilst reviewing work done in image
processing. As might be expected thié amount has
increased during the past year. This section is
" therefore restricted to an outline of further
developments and application of one's current
research.

One of the major obstacles encountered in
image analysis is that of touching or overlapping
objects. The former problem is frequently a
function of the surface adhesion of individual
objects whilst the latter is related to the fact
that the objects are three-dimensional, only a
two-dimensional projection being available for
analysis. It is uncertain whether the former
problem should be tackled-by reducing surface
~ adhesion, i.e. physicai means, or by image
processing. | Certainly phjsical separatibn would
moke life much easier for the image processor but
~even where practicable a different method would be
- needed depending uponn the type of objects involved..
Software written to perform separation must rely
upon estimated boundary statisties to guess ‘'most
likely' positions for missing boundary points.

Even when ali the boundary ﬁoints are available

‘unless it is known that objects are touching but
'3
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do not overlap there exist caszes in which even a
human will be unable to uniquely determine the
boundsaries of individual objects; |

If overlapping objects occur the
situation becomes much more difficult. Where
boundary statistics are well defined it should be |
f_possible to define a'filter to detect the presence
of an overlap. If the individual objeéts are
convex (or possess only small concavities),

i.e. 'less,thén AMIN, then bvérlaps may be detected
by the simple application of convex décomposifionm
The number of level 1 concavities found should be
twice the number of overlapping-objects,

Otherwise, if more than one overlap occurs within
the same concavity, lower level components should
establish the.predise namber.  Unfortunately, a
number of cases exist in which this method will be
iraccurate, e.g. where an object is totally
‘included in an agglomerate., Also, if two objects
are almost totally_overlapped, any concavities
found will be émall and may therefore be erroneously
ignored by the threshold (AMIN).

The problem may be reduced to that of
touching objects‘if complete three dimensional
information is available. A number of methodé for
obtaining such informatiqn have been tried by

[}
various researchers. An interesting technique

¢




utilizes the phenomena of interference. A coherent
light or ultra-sonic sound heam is direbted onto
the object. Part of the same beam is deflected
from the source to the receiving mgdium where it
interferes with light{or sound) reflected from the
" object. The phase relationship between the two
beams supplies the third dimension or depth
information. A gimilar method involves placing a
grid between the object ahd-light sensor, Again,
reflected light interferes with light direct from
the source at the grid. A moiré fringe iqﬁerference
pattern comprising depth 'contours'! is formed.

This latter method may use normal incoherent light
but grey level detail of the object will be lost.
None of these methods enable total 3600, 3-D
information to be collrcted and suffer from the
snag that every point scanned must be in direct
line of sight with both soﬁfce and image sensor.
‘To the authorfs knowledge no 3-dimensional scanning
systems have yet been marketed commercially for
“image digitisation. ’

| The concept of convex decomposition could
readily be extended for use in three or more
dimensions. Convex polygons wouid be replaced by
convex bodies {polytopes), but the component
connection tree wounld remain in the =same fofm.
Iﬁplementation in three-dimpnsions‘would ol course
reqﬁire more compﬁtation although it,is envisaged

that decomposition would involve the same basic steps.
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‘ Iﬁvariant moment analysis could also be applied
to the compcnents. '_

It would not be difficult to impose thé
constraint that any component accepted és convex
should be star-shaped about ité centroid. The
relationship r = £(®) would then be single valued
thereby allowing numérous methods of analysis.,
in pafticular, the Fourier descriptors mentioned
by Zahn{35) could be used.

Analyses given as results required only .
a Tew shape factors for correct classification.

It would ﬁe most valuable to study the precise'rel-l
ationships betweén individual factors and object
shape. Affine invariant moments have been suggested
but for any group of objects it should be possible

to determine the linear correlation between each
pair of moments and by suitable manipulation, e.g.
using Eigenvalues of factcr analysis, create a set

of unrorrelated measurements,
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CORCLUSIONS.

A method of shape analysis has been
derived, implemented and illustrated. The technique
of convex component decomposition does not éppear
o have been used before and has greater stability
under distortion than alternative methods considered.
Computation required is quife moderate.

Engtions ﬁave beeniderived for the efficient
machine generation of moments invariant with respect
to size, position and orientation. When applied
to the convex components ardétailed object description
is obtained, .

.One's primary aim has been to by-pass
a stumbling block encounteréd by others, namely,
analysis of objects‘With concavities. The method
used capitalizes upon the existence of these
concavities which are treated as important features,
Glaésification becomes more presise for concave
objects than for convei ones., Results are presented
{illustrating the discriminatory power of the shape

factors derived.
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Appendix A.

Two-dimensional integral transforms.

ZW or discrete laplace Transform.

’ This has the general form:-

L [f'(\l.,v )_] = Zx zy f(x;¥) . exp(~sux~tvy)
where s and t are complex variables and Zx means
i:g";_ii meansZEy 1 for an N x N element picture.

Ef (u,vil is the wvalue of the transform at posivion
4KMV) in the transform plane. It may be observed taat
every point in the original picture is used to dofermine
any point in the (u,v) plane, also the (wy) plane is
continuously defined even though only discrete points
were known on the (x,¥) plane. |

Normally transformed values are calculated for

a matrix of N x N values, This allows reconstruction
of the original picture using an identical type of
transformation with s and t'subsfituted by their oomplex
conjugates. The transformation is =zaid to be séparab;e
gsince it may be considered os a two stage process, each

~involving one variable only:-

L [f'(u,)y ,.)] = Z exp(-sux)z exp(-tvy). f(x,y)

Separation allows a considerable saving in
computation since each line of the picture may rirst
be transformed and the final transform evaluated from

these line transforms.
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The procedure may be considered in matrix form as:-—

lee] = [0] . ] - (8]

where all matrices are of size N x N and the v,yth

element of [@] s b = exp (-t.v.y) and the u,xth

vy
element of [s] , Sy = €XP (-s.u.x.)
The discrete Laplacz transform is often
considered in terms of the complex variablesZ <exp(s.u)

andlw = eip(t.v.). The transform equation becomes:-
Pzw) = 2, 2y fmy)ew™ o

i.e. the transform is a complex polynomial in negative
po&ers of , and w, which when expanded becomes a
rational polynomial.. |

Fourier Transform.

This may be considered as a speeial case of
tre laplace transform where s = t = 2WJ, (J = ¥=1).

The transformrequation may be‘written:—
Bla,v) =3, T, flxy).cxp(-2Ti(uctvy)
and in matrix form:-
[f] = ES].[f]-ESJ

Hadamard Transformns.

Let [H] be a2 Hadamard matrix, all coefficients

being 41 or ~l. Then:-

[H] . [B] T_oN.I , where I is the identity
matrix and all matrices are of order N. The Simplest
Hadamard matrix is {1 1] = H2 . This may be used

: 1 -1 ‘
to generate all Hodamard matrices of order on by the

equation
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The number of sign changes along a row of
such a matrix is known as the sequency (cf. frequency).

For symmetric Hadamard matrices of order N = 2!,
| ' vy b(xyyeu,v)
F(u,V) = %&-ZX Zy f(x,y).—(-l) 1J 2 ™M

. i=N~1 -
where b(x,y,u,v) = 50 (ui X; = vy yi)

and u; = sum of binary digits in u and the summation

of b is performed'in modulo 2.




Appendix B.

Ak Glossary of shape describing terms.

‘oblongness!' Largest ratio between length and
width for all possible c¢ircumscribed
rectangles.

‘stringiness' : 2'timcs area/perimeter. If object
of linelike parts of width w the

- w = stringiness..

I'convex hull® Convex envelope boundary.

‘convex point' Vertex of convex hull.

tcurvature point! : Vertex of polygonal obj?ct boundary,.l
"inflection! (also 'bay' and 'peninsula') closely

adjacent pairs of curvature points
with opposite curvature,produced
artificially during quantisation..

'curvaturerafe' Number of curvature points (excluding
inflections)/perimeter..

'wiggliness’ Number.of occurrences of adjacent
bends of opposite signs not classi-
fiable as inflections..

'star-shaped' ~ (Object having at least one internal
point from which é line to any point
on the boundary does not cross
boundary elsewhere.

'spread’ Sum of.the second order moments about

the principal axes i.e. MNM20-}02.

'slenderness’  M20-M02.
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tequivalent area diameter' Diameter of circle with the

tequivalent perimeter

diameter!

'‘Martin's diameter!

'Feret's diameter!

"Maximum linear

diameter!

'‘diameter-to-length

ratio!

tgeneral rotundity’

or 'roundness?

' ’

Sources of definitions..

same area as the object.

Diameter of circle with the
same‘perimetgr as the object.
Length of the line through the
particle profile, parallel to a

fixed direction, which divides

the particle profile into two

equal areas.
Projected length of the particle
profile with respect to a fixed

direcfion.

The length along the major
(longest) axis, also refered to

as simply 'length'..

(length of a chord normal to
the major axis)/(maximum

linear diameter)

Average value of diameter-to-
length ratio of a group of
objects an equal number of
measurements being made on

each object.

’ 4
Rosenfeld (1), Kaye(48), Zahn(26).
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Appendix C.

List of periodicals and series' of publications frequently

containing articles on image processing..

I.5.BE.E. Transactions on: Audio and Electroacoustics,
Biomedical engineering, Computers, Automatic control,

Information theory and Systems, man and cybernetics.

Journal of the association of computing machinery (J.ACM)

Communications of the ACM (CACM).

Journal of the opticél society df America.
Scientific American.

Journal of pattern recognition..

Advances in information précessing, Plenum press..
Advances in computers, Academic press..

Machine intelligence, Edinburgh university pressm‘
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Listing of computer subroutines,




SUBROUTINE INITIAL
COMMON I1AMIN,SCAF,l0UT
COMMON/BT/NO,10n8(100)
COMMON/BA/MAXX,T1ARC
EXTERNAL XYNSTaCK

¢ SEY UpP ERROR RECOVERY
IF{IENT.NE,O) GO TO 3
YENT21

READ(Y,1YTAMILCH IMAX,MNC+TARC,NTHONST NCORErIAH Ni!OUT
1 FORMAT(2010)
" READ¢%,14) NTAPpES -
$4 FORMAT(1010)
¢ ~ ¥I7 louy 6T 0 oLOT PARTICLE EDGES
1FCIoUT.GT.0) CALL UTPOP
19 CALL PREADS(IXX,IYY MAXX MAXY) .
" READ(41,%9) NO,(108¢CJY), JJ-1 NOY
NO=1
9 FORMAT(1INO10)
IF¢IoUT.GT,.0) CALL PLO?ST(HAXX.HAXV.SCAF)

€ ALLOCATYE SPACE AND SET UP LENGTHS FOR PLEXES
_ CALL STACKS(NCORE,IARC+IARC,90000,NST,1ARC,1D)
¢ CALL XYNSTACK AFTER ALLOCATING ARRAY SPACE :
: CALL DIMECXYNSTACK S+sTAMsLCH IMAX . MNCINTHO) ¥

15:!AH LCH, TMAX ,MNC,NTHD)
3 CALL ENDSTACKS
NTAPESENTAPES=Y

€ -  TEST 1F ANY PICTURES REMAIN TO BE PROCESSED
IF(NTAPES.EQ,0) GO TO 43
60 70 419 '
13 1FCIOUT.GT,0) CALL UTPCL
sTop :
. END

GMENT, LENGTH 150, NAME INITIAL

14
f




CICI Y IO

SUBRAUTINE XYNsTACK(Iv.ICHS.JNT.LCL J¥O, 1AM LCH, IMAX,
1 MNC,NTHO)

COMMON/BN/NCL

COMMON/BA/MAXX, TARC

DIMENSTION IV(IAM), ICHS(LCH), JHO(NTHO).JNT(IMAX). CL{MNE)
STREAMLINED EDGE FOLLOWER UPDATED APL 1972 N, BISHOP
CALL CLEARO(Y,1CHS)

CA.L OPSTACK(JHOLE,NTHO)

NPt '

NHO,NCL:JX=0 . .
KMAX, JMAX=IMAX w4 .

* JTluedMAX

10

L~ NSO

11

22
12

Inlle?

IMINGIJMAX=IL

CALL PMOVE(JNT(1L¢1)tJNT(i)o!M!N,

Izl=1L

ILeKMAX=TMIN '

CALL prEADB(JIJNTCIMINGY)Y,IL)

JMAXslL+IMIN

Jnel

N=MONCJINT (1), 50000)

NTeEl+eN+N+1

IF(NT=-IMAX=1)8,13,18 ' e “
1F(JIX=-MAXX)® 19,17 o
TFCINTINTY EQ,JX+1) €0 TO 13 ‘
TF(JY+5=MAXX) 14,19,18 T
NT=1+14 .

JNT(NT)=50000

L=l

IPEwy

INYCTY,INT(1~91)100000

Ipulp+?

Iale?

JYEJINT(I=1)

AYPL,INT(D)=INTY(T)+JY

J=J+2

JYPLL=JNT(J+Y)

1F¢JyYPL=SYPLL)»,3,5

IFCJYPLL=-JYY33,33,6
SFCINT(Je2)-JYPLYLL,3,3
IfCIyPL=INT(JIY11,11,7
IF(INT(1e4)=dYDPLLY22,3,3
LCO=ISTACK(IVITIP+1) ,JYPL) = ISTACK(!V(!P).JY)
!CHS(LCO)ﬂ!CHStLCO)+1

GO TO 4

K=l

TFEIY. LT 40000y GO TO 92

JXBJX+1 .

60 T0 &

=4

CALL PMOVEC(IVC(IP+K) ,1V(IP+2+K) ,NP=1P=K)

- START 2 STACKS SETTING UP STACK HEADER

FIRST & TTEMS ARE LABEL FOR CURRENT ARC CHAIN, ARC WHICH

MAY*HELP IN LOCATING HOLES., NEXT CLOCKWISE ARC, JOIN TYPE,

NEXT ANT1 CLOCKWISE ARCs JOIN TYPE, UPPER OR LOWER ARC
INDICATOR, FIRST X COORDINATE ,

CALL OPSTACK(JP,IARC) ‘

CALL OPSTACK(LP,TARC)

IVCIP+1)=INSTACKCLP +4,90,LPs0,0,0,JP,1%Ks140X,0,0)
IVEEP4RSKIRINSTACK(JP,1410,LP 10, LPs14Ks0,04=1,dX0040)
NPEND+2

Ju -2
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33
b

‘36

38

L

1

1¢K.FQ.0) GO 70 3 _
CALL INSTKI(LP,2,1V(IP)Y)
IFC(NP.GT.IP+3) CALL INSTK1(JP,2,1V(IP+3))
60 70 3
K=0
GO Tn 34 -
K=
JBalV(IP+K+K)
JAHINSTACK(IV(!P‘1) 3 2.JB:3+K)
CALL INSTACK(JB,3,2,JA,3+X)
JPEKSTACK(JA, 1)
LPeXSTACK{JB, 1)
NPzNp-2
CALL PMOVE (lV(!Pt2+K).IV(;P*K),NP-IP-K)
1F¢JP_EQ_LP)Y GO TO 35
L7e3
TFCKSTACK(JP,8)=KSTACK(LP,8)+K)35,38,36
JBuJA
LTS
JPelLp
CALL IN3STXI(JB,14JP)
JBEKSTACK(JB,LT)
IFt(JR.NE. 0O) GO TO 38
GO To 10
CALL INSTK1{JP,1,JX~1)

CALL PARTICLECLCL,MNC,JHO ,NTHO,NHO,JHOLE +JP 4K}

60 10 10
WRITE(2,15) JINTINT),JX,NT

- FORMAT (' ERROR IN X SEQUENCE',416)

FINISH SCAN AND RETURN

ENTRY SPPRTY(IER)

WRITE(2,39) lEm

WRITE(2,39) JNT

FORMAT (1018)

TFCIMAX.LT, C(IMAX= 4)/&0)*40) CALL INITIAL
JHAXzKNHAYX i

CALL PREADB(JNT(1) JMAX)

60 Y0 20

CONTINUE

IFC(ICHS(LCH~=1¢1) ,NE.O0) GO TO 24
WRITE(2,28) (1eHS(JY,Jaf,LCH~T+1)

R e

FORMAT(//24X:"TOTAL CHORDS OF EACH LENGTH INCREASING FROM',

' ONE'//(46X,1016))

. REYURN
. END

GMENT, LENGTH

642, NAME yYNSTACK
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GMENT,

&S

SUPROUTINE PARTYICLE(LCL,MNC,JHO,NTHO,NHO,JHOLE,JdP,K)
COoMMON 1AHIN

COMMON /BN /NCL

DIMENSTION JHO(NTHOY, LCL{MNC)

ENLLOSED BOUNDARY COMPLETED TEST IF cLUMP OR HOLE
IF(K.FD.0) GO TO 45

HOLE FOUND

NHO=NHO+1

JHO(NHO)=JP

REYURN

CLUMp FOUMD LOOKXK FOR HQLES

NCL=NCL+y

JAMIN=100

NPAR=200

"IHO=0

49
43

48

42
47

el
39

LENGTH

CALL OPSTACK(LNCL,NPAR)

IF(NHO.EQ.Q) GO TO 47

CALL INSTKY(KSTACK(JP,5),3:+0)

JTulp

DD 48 K=1,NHO

1FC(JT.NE. kSTACK(JHO(K).z)) GO0 Y0 48
1HO= 1H0+1

CALL I1STACK(JHOLE,JHOC(K)) : o
CALL PMOVE(JHO(K+1) ,JHO(K), NHO«K) '
NHO=NHO=-1 ‘

IF(NHO.EQ.0) Gn TO 42

IF{(K.LE.NHO> GO TO 43

CONTINUE

JTaKSTACK(JIT,3)

IF(JY.NE.O) GO TO 41

CALL TNSTXI(XSTACK(JP,5),3.JP)

NS, LEL(NCL)=TNMSTACK(LNCL»1+3¢JPsTHO, LSTACK(JHOLE) IHO)

CALL PARPAR(NS.,JP)
IF(KSTACK(NS.2) EQ,0) GO TO 39
ICAR=0

MaKSTACKINS,3) :

bD 21 K=1.KSTACK(NS:2)
LELSTACK(NS)

IAMINE =1

CALL PARPAR(NS,KSTACK(JHOLE, HOK))
CONTINUE

CALL CLSTACK(NS)

RETURN -

END

247, NAME PARTICLE




SUBROUTINE PARPAR(NS/NT)
COMMON/BT/NO,10B(100)
COMMON/BN/NCL
COMMON TAMIN,SCAF,10UT
DIMENSTION DIST¢200),1W¢400),10U(400)
IF(NCALL_NE.O) GO.T0 90
- D0 18 124.200
$8 DIST(1)aSORT(FLOAT((I=2)*1+2))
NCALI=NCALL+}Y
90 CONTINUE
TAREA=Q
PERIM=0,
C P1=3.,4445827
RPl=zq./P12
RPY4sl  woPl
JT,LS=NT
IFC(LSTACK(NS).FQ,3) JT.LS:KSTACK(NT-SJ
CALL INSTKYI(KSTACK(JIT,S5),3,0)
IFCTAMIN_ LT, 0) GO TD 7
IYMIN=2100000 ,
FYMAX s LMAXzalYMIN
Kpsi1 .
1FCJT.EQ.NT) GO TO 2 _ _ »
1P=2xMODCKSTACKC(IT,6),2)~1 .
Kp=0
1Px1
2 1P==1p
PER!M:PERIM+ISIGN(KSTACK(JT KPY,1P)
1Palpw{1=2*MODCKSTACK(IT L) +KSTACKIT16).2))
PERIM=PERTM+ISIGN(KSTACK(JT,11KP),IP)
1AREA=TAREA=ISUMSTK(JT).
TYMINSMINOCIYMIN,MINSTACK(JT)Y)
JTaKSTACK I T, 3
IfPe=1p
PERIM=PERIM+ISIGNCKSTACK(JIJT »11=KPY,IP)
IPE1Pn (1 =2+MODIKSTACKCIT ;&) +KSTACK(IT,6),2))
PE&IM:DERIM+ISIGN(KSTACK(JT.KP).lp)
IAREA=TAREA+IS IMSTK(JT) )
TYMAX=MAXC (TYMAX, MAXSTACK(JT))
JTEKSTACK(IT3)
IF(JT.NE.O) GO TO 2
JTELS
IXMINEKSTACK(NT,8)
S IXMEIXMIN~Y
IXMAY=XSTACK(NT /1)
- TFXatXMAY=1XM _
IYM=TYMIN=Y : S
IYMM=1YM=1 .
IFY=1YMAX=T1YMIN
CALL INSTACK(NS:LSaACK(NS)*1aSo!FX IFY IXMIN-IYMIN 1AREA)
IF(IAREA. LT .1AMINY GO TO 7
CALL CLEARO(Z,tW,IDW)
PERIMEPERIM=2,
LYEKSTACK(IT 1)
MBKSTACK(IT,B)m1XM
DO 3 k=19,LSTACKLIT)
NYaKSTACK(JT,KY
PERIM= pEntM+anT<1ABS(NY-LV)+1)
TWEMY=TWIM)=NY
MaM+d
LENY=1¥YM
_ . LYmNy . ' . '
O UUUPRUIE % 1 1 SO UL U

- O

-




3 oraulLYsI AW L)+
JTEKSTACK(IT,3)

LYaKSTACKCIT 14D
MekSTAIK(JT B)nlXM
DO 4 X=%11,LSTACKWIT)
NYRKSTACKCJT  X)
PERIM=PER!H+DIST(IABS(NY-LV)+1)
IW MY TW(M)4NY
MM+
LYuNY

~ LENY=TYHM

& INUII=IDW(IL) «
JTEKSTACK(JIT,3)

IFC(JTY.NE_0OY G0 TO o
PERIM=PERIM+2,

LAREA,MAREA  MAXX, MAXY IWID=0
JAREASTAREA/?2

ASSIGN B8 TO LINK

DO 5 I=1,1FY+1
IWIp=IWIn+IDUW(L)
MAXXaMAXO(MAXX, luID)

. GO TO LINK

8 LAREAzLARFEA+IWID .
1F(LAREA.LT.JAREA) GO 10 5
FRAC=FLOAT(LARFA~ JARSA)IFLOA?(IH!D)
Jbu=0
IF¢I.NE.1) JOU=IDW(D)
XMART=1W1D=JDW#FRAC
MARTX=NINT (XMART)

ASSIGN 5 TO LINK

§ CONTINUE -
ASSIGN 9 TO LINK
00 10 I=1,IFX - .
MAXY=MAXO (MAXY,IW(I))

GC YO LINK

9 MAREA=MAREA+IW(I) :

" IF(MAREA.LT.JAREA) GO 70 19
FRAC=FLOAT(MAREA=JAREAY/FLOATCIWCI)Y)
Jou=0
IFCI_NE.S) JOWalW(I)=1W(I=%)
YMART=1W(1)=JDU*?RAC
MARTY=NINT(YMART)

: ASSIGN 10 TO LINK
10 CONTINUE

TPER=NINT(PERIMN) :
SALL INSTACK(NS,LSTACK(NS)I+1,S5.1PER, nARTx.MARTY.HAxx.MAxY)
ADIASSQRT(RPIL&FLOAT(TAREA)) ,
PDIASPERIM®RP]
AOP=2ADTA/PDIA
TFCIoB(NN) . NE,NCL) GO TO 7
NO=NO+1
WRITE(2.,25) NC
25 FORMAT('41,17%,'NUMBER CF OBJECT IN SCAN',I4)
WRITF(2,21)

2% FORMAT('0',17X,"AREA pERIM CIRCUL MARTIN DIAM PERIM ',
19 AdEA FERET DIAM MAX,CHORD LOCATION'/17X,'EC,DIAMETER',
2' =ARITY X Y X Y X Y X,
3! vy

£ WRITF(2,20) AD1A: POIA,AOPXMART ,YMART, PFRIH:!AREAuIFK.IFY.
AMAXX ,MAXY, IXMINs TYMIN

20 FORMAT(1SX,2F6.,1:+57.3.,F7.,1.2F6.1¢16, &15.216115)

CALL INSTKT(KSTACK(LS,5),3,LS)
IFCIOUT.GT.0) CALL PARTYPLOT(NY,SCAF)



: AMIN=AMAXY (1ARFA%,005,9.)
CCALL PARTMOM(NT,AMIN)
7 CALL INSTKY(KSTACK(LS,5),3,0:
T P? CALL CySTACK(LSY)
LSEXSTACK(LS,3)
1F(LS.NE.0O) GO TO 77
RETURN
ENG

GMENT, LENGTH 764, NAME PARPAR

SUBROUTINE PREADS(IX,1Y/MAXXsMAXY)
READ(1,9) IXeIYsMAXX/MAXY

4 FORMAT(2014)
RETURN

END

GMENT, LENGYH. . 50, NAME PREADS

4

CSUBROUTINE PREADS(JINT,M)
¢ COMPACT CARD VERSION
DIMENSION JNT(M) KNTC(40)
CALL CLEARD{1,JNT)
1=0
. 3 READ(1.1.CND=2Y KNT
~§ FCRMAT(40A2)
- bu 5 Km1,40
8§ CALL COPY(2,JNT(I+K),3, KNT(K) 1)
1=1+440
IF{Mm1 GE 40) ©D 10 3
2 Mel}
- RETURN
END

EGMENT, LENGTH 73, NAME PREADS
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SURROUTINF PLOTST(MAXY ,MAXY,SCAF)
c OPENS PLOTTER SETS SCALING FACTOR AND CREATES ORIGIN
MeMAYO (MAXX , MAXY)
NEMINOCMAXX , MAXY)
SCAF=AMINI (40, /FLOAT(MY,6,./FLOATINY)
CALL UTP2(FLOAT(MAXX)*SCAF., FLOAT(HAXY)*SCAF 0) C.
RETURN
END

GMENT, LENGYH ~ 47. NAME PLOTST

~ SUBROUTINE PARTPLOT(NT,SCAF)
€ - PLOTS A PARTICLE ON READY DRAWN AXES
JTeNT
CALL INSTKY(KSTACK(HT,5),3.0)
XeKSTACK(JIT,8) wSCAF
CALL UTP2(X,FLOAT(KSTACK(JT, 11))*SCAF.1)
XeX=QCAF _
% D0 1 Ke19,LSTACKIT) - ' . s
XeX+SCAF :
1 CALL urp?tx.FtoAT(KSTACK(JT.K))*SCAF 2)
JTEKSTACK(JT,3)
KeLSTACK(JT)+11 , :
80 2 J=14,LSTACKWIT) .
CALL UTPRUX,FLOAT(KSTACK(JT/K=J))*SCAF2) :
2 XaX=SCAF
JIRKSTALK(JIT,3)
1FCJT.NE.0) GO TO 3
CALL UTP2(X+SCAF, FLOATC(KSTACK(NT,19))#SCAF,2)
“CALL INSTKA(KSTACK(NT,5), 3.ur)
RETURM :
END

GMENT: LENGTH 153, NAME PARTPLOT
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SUBROUTINE PARTHMOM(JT,AMIN)

GENERATES AND nUTPUTS INVARIANT MOMENTS OF CONVEX COMPONENTS
OF BOUNDARY IN STACK J7

COMMON/SL/SI,CY

INTEGER SET (20) . '

DIMENSION NSC(1000), xs(1000).vs<1000)

REAL MOM(220),XFAC(20) ., YFACC20),FACT(20)

C JFINCALL.NE,O) GO TO 99

98
29

Pla3 1415827

P12=2+p]

PI3=34pl

FACT(1)=4

pa 98 1=2,20

FACTC(I)=FALT(Ia1)%(1=9)

NCALL=NCALL+1

NNES

MME15 . _ -
18810014 _ '

NTulARS(JT)

CALL INSTXY(KSTACK(NT,S),3,0)

FIND NUMRER OF POINTS ON BOUNDARY
"NTOTY=0 . .
NTOT=NTOT+LSTACK(NT) =10 ' ' o
NT=XSTACK(NT,3)

IF(NT_NE.0) GO TO §

NTalAaBS(aT)

- GALL INSTKIC(KSTACKI(NT.5):3/NT)

JRuY
SET(1)=0
CALL MOMSET(NT,10.,NTOT,MOM/NN/MM,YFAC, 1.FLOAT(KSTACK(MT:8)))
CALL MOMINV(MOM,NN, MM.xFAC.YFAc.FAuT} '

LR

CeCl

AREA=MOM(1)

XBAR=MQOM(2)

YBAR=zMOM(3)

TYHETA=MOM(S)

CFuSQRT(AREA)

HOM(2)=MNM(2)»OF

MOMCZY=MOM(3)*(F

CALL MOMOUT{(MOM,SET,MM,NN,JR)

LMIN=1

SET(1)=1

MS(1)Y=NT

X$(1yY=10,

YS¢1Y=NTOT=1

L2(MND(JIR,2) %2 1)*!SIGN(1 JT) -

CALL MOMAONC(NSCLMINY ,XSCLMIN) ,YSCLMINY ,MOM,NN,MM,YFAC, L.AMIN
F+IS=LMINY

LMINSLMIN+L=Y

CALL MOMINV(MOM,NN,MM,XFAC,YFAC,FACT)
CF,MOM(1Y=MOM(4)/AREA

CFESCORT(CF)

X=MQM(2) «CF=XBAR

YeMOM{(Z3)«"F=YBAR

MOM(2)=X*C+Y*S

MOM(TZ)=YslmX*S

MOM(S)=AMNDD (MOM(5)»THETA+PI3,P12)~P1]
CALL MOMNUT(MOM,SETY,MM,NN,JR) '
IFC(L_EQ.0) GO YO0 6
JRuJr+1

SET(JR)=L

-

- pllg_




EGMENT, LENGTH

GMENT, LENGTH

60 Yo 8

6 TF(LMIN FQ, 0% RETURN
7?7 SET(JR)YESET(JRY=1

TF(SET(JRY,.GT,0) GO YN 8
JReJR~4

GD YO 7

END

352. NAME PARTMOM

SUBROUTINE MOMSETCJT,JJ s NEM MOM NN, MM, YFAC ,MQ,XA)

FINDS MOMENTS OF NNM POINT ARC FR0OM XA:!A T0O XF,Y¥

REAL MOM(MM),YFACC(NN:

CALL CLEAROC(T, non>

NMENNM

MeMQ

Jedd

XaxA S - _

NTEJT o “ S
YAZKSTACK(NT s JoM) S -
LEN=tSTACKI(NT)

A=M

DESIGN(O.5,A)

'JEB11+HAXO(0 Myw(LEN=1%)

NDaMINO(NM,IABSC(J=JE))

PO ¢ 1=21,ND

NENEd

CALL SMOMS{MOM, NN /MM, YFAc X+D;X-D:FLOAT(KSTAcK(NT 4y
XuY+A _
NMaNM«ND

IF(NM.EQ_OY GO TO 3

MuaM

XaX=A

NTaKSTACK(NT.3)

- LEN=LSTACK(NTY

Juj0aMINACO, M) (LEN=9)
GO YO ?

XFeX=A

RETUaN

END

196, NAME MOMSET
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GMENT,

SUBROUTINE S/OMS(MOM,NN,MM,YFAC,XA,XC.Y)

REAL MOM(MM),YFAC(NN)
INTEGER P, Q

FINDS SIMPLE MOMENTS FROM UPPER OR LOWER BOUNDARY POINT

XBrXA

Xbaxe

LS=1

YPe1.

DO 2 =1 ,NN
YPa¥Ypry
YEACtIY=VPLY

PO 3 p=1,NN
XalXn=XD)/pP
L:ESulLS+p=

PO &4 Q=9 ,NN+1=p
MOMCLYsMOM(L) +X*YFAC(Q)
lel+Qep
XBaXBwXA
XDuXnex{

- RETURN

LENGTH

&

1 FORMAT(20X,'COMPONENT!, 13 20C, 7,110

& FORMAT(0+1,43%, VMOMENTS OF INCREASING ¢/20Xs¢ORDER DOWN'.,
" 4%WaARp ANp YNCREASING POWER OF ¥ AcROSS')

3
2

LENGTH

END

131, NAME SMOMS

SUBROUTINE MOMOUT(MOM,SET,MM,NN,JR)

INTEGER SET(JR)
REAL MCOM(MM)
Jeuft

WRITE(2:4)

FORMAT (! 1)
WRITE(2+1) SET

WRITF(2,%5)

D0 2 1=1.NN

WRITE(2,3) (MOMCK) ,K3Js1,J+1)

Jej+l
FORMAT(15X,8G12.4)
CONTINUE

RETURN

END

85, NAME MOMOUT
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SURROUTINE MUMINVIMOM NN MM/ XFACI/YFAC/FALT)

MOM £OMTAINS SIMPLE MOMENTS, FACT(I) 1§ rAcTonlAL I-1
ALL OT1HER ARRAYS ARE yORKING SFACE :

OUTRPUT 14 INVARIANT MOMENTS GUT MOM(4) IS ARFA,
MOM(2) AND MOM(3) ARE SCALED CENTROID roonrlNATES
AND MOM(S) 1S THETA IN RANGE +P] TO =PI
COMMON/SC/S,C

DINENSTION CFAC(?20),SFAC(ZN)

REAL MOM(MM)Y , XFACINN)Y,YFACCNN) ,FACT(NN)

INTEGER p.,Q

AREA=MOM(1)

$S,521./50RT(AREA)

XpuS/AREA

XBAR=MOM(2)#XP

YBAR=MOM(3)#XP

TeXP,YP=1,

L=0

DO 1 1=%,NN
SrS*8S
XFACt1)YsXP

"YFAGC(I)=vP

XPrw=XpwXBAR/T : | .
YPu=YP*YRAR/T _ :

TeT+1.

leker=¢

DO 2 Jm1,.1

MOM(L+0)= MOM(L*J)*S/(FACT(! JE1)REACT(J))

-CONTINUE

MAKE POSITION INVARIAMT
LLeNK+ 1
LaMMe1

Do L1 :311NN
Kei il

INE TR

DO 3 P=1 .LL
QuiK~p
Ls1S,11L~1
IKstL

Sul.

- bo 4 Na1cp

 BBE(MOM(&)~MOM{A) ) #Sw(

13

LB ¢
ssul.
Bl 5 Met,Q

"SSESSHYFAC(M) *MOM(IT)

1inl1=1J

IJu]J=1

s=s+qs*xrAc<N)

IXnlKe1

1S,11=185=1K
MOM(1LY=S«FACT(p)*FACT(Q)
FIND THETA AND 1TSS SINE AND COSINE
€C220.540.5/8QRr(1,+(2, tMOH(S)I(MOMt4) MOM(6)))ww2)
CeSORT(C2)
$aSQRT(1.-C2)
ARa(C2#2.=1,)*MNM(5)

L}

-~

IFC(ARS(BR+AA).IT,ABS(BR~AA)) GO TO 12
§=aS
Tes$
Sul

ComT | - D123 -
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LS 0

12 AMB0aMOMI7I#C a3+ (3, 4 (MOM(B)Y «CaMOM{PI#S)IWCHMOM(I0) ¥SwS) +S
AMOZ==MOM(7) S e w3+ (3, 4 (MOM(B8)wS~ MOM(9):C)*S+MOH(10)*Cw6)*c
IF¢AMOZ. LY. 0,..0R,AH30.LT.0.) GO T0 13
THETA:ATANZ2(S.C)

¢ MAKT ROTATION
. L,o
TeSF,CE=29,
PO 7 1=9,NN
SFAC(1)=SF
CFACCI)=CF
6o 8 a1,
Qul=p+d
SUM=0,
si=1,
DO 9 N=1,P
58=n0.
"KL +N+Q
0o 10 M=1,Q
10 SS=SS+MOM(K~M)ASFAC(MIXCFAC(Q=M+1)
SUM=SUM+SSwSFAC(NIWCFAC(P= N+1)*SI
¢ Si:»31
8 YFAC(P)=§UM*FACT(P)*FAC?(Q)
DO 14 M=1,1 o .

11 HOM(L+M)=YFAC(M) : s -
CFalFreC/T _ : . _ -

T=aTed, - ' o
7 LaL+t ' o )

MOM{41)=AREA

MOM(2)=XBAR

MOM(3)=YRAR

HOM(5)=THETA

RETURN

END

FGMENT, LENGTH 607 NAME MOMINYV
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SUBROUTINE MOMCON(NS, XS, YS/MOM, NN, MM,YFAC, LN, AMIN, IS}
FIND STMPLE MOMENTS OF CONVEXL HULL AND MARK CONCAVE S$ETS
REAL MOM(MM) .
CoMMON/BN/LB,LD,HC

DIMENSTION XS(!S):YS(IS):NS(IS).YFAC(NH)

JT:NT=NS (1)

JoedLeNINTIXS(1Y)

Mo ML=KSTACK(NT,?)

HCeLN

CALL CONDU(XS:YS NS »JT)JsNINTCYSC1)Y41,HC, IS/ KN M)

CALL CLEARO(1,MOM)

CALCULATE FIRSY THE MOMENTS TO CLOSE BOUNDARY

XE=XS{1)

YpxYS(4)

XFaXS{KNY

YFeYS (KN}

ANL=Y |

AMEYFnyp

ArD,

pum( S+«MeHC

IF(NINT(XF=XP) _ EQ,0) GO TO 1

AeSIGNCY. XF=XP) . : ,

ANL=ABS (XF~XP) o . Lo
AMEAM/ANL .
1E¢LR.EQ. 1Y CALL SMOMS(MOM,NN,MM,YFAC+ XP+DsXP=D,YP)
IF(LD.EQ _NSCKNY) ANL=ANL=-1,

IFCNINT(ANL) EQ,0) GO TO 2

CONTINUE

060 9 t1=1,NINT(ANL)

YPuYp+AM

XPpaXpsa

CALL SMOMS(MOM NN /MM, YFAC,XP+D,XP=D,vP)

CONTINUE

CALCULATE MOMENTS FOR BOUNDARY ITSELF

CALL MCONSET(NS,XS,YS,MOM,¥YFAC,NN,MM,LN,KN, NT,JL, ML, AMIN,IS)
RETURN

END

253, NAME MOMCON
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30

31

52

12
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SUBROUTINE CONP(XXsYY, LLsJTsJ e NMeBMU,JTOT, NP, ML)

SELECT CONVEX POINTS FROM NM POTINTS STARTING AT (NT,J+M)
COMMANM/BN/LB.LD _ .

DIMENSION XXCJTOT),YYCITOTI, LLEJSTOT)

Ma ML

.AMU=BMIiJ#M

NP:LHD

LMIN,LMAX =1

LENSLSTACK(JT)

XaKSTACK(JT,8)ed=11+M

XMIN,XMAX=X

UNPACK THE POINTS AND LOCATE B8 AND D
JE=T14+MAYO(O, M)*(LEN=YY)
ND=MINO(NM,IABS(J=JE))

CARM

bOo % 1=1,ND
Juj+M

-LsL+t

VY(LY=KSTACK(JT,J)
XX (Ly=X
LLdLY=tL

XaX+A

NM=NM=ND ’ 4
Me=aM . -
XeXa)p

IFC(NINT{XMAX=XY,GE,0) GO YO 30

XMAXeX

LMAX=L

TFI(NINT(XMIN= X) LE.0) GO TO 314

AMIN=aX

LMIN=L

CONTINUE

IF(NM, EQ_0y GO YO 5

JYESTACK(IT 3)

LEN=LSTACK(JT)

Jr§0«MINACO, M) *(LEN=D)

GO T0 4

" LB=MINOCLMAX,LHUIN)

LDulMAX+IMINaLB
TEST tF AB EXISTS

IF(LB_.EQ_ 1) GO TO 32

APPLY T1 AND T2 TO SEGMENT AB
CALLCONTRACT(XX,YY.,LL,JTOT, 1;LB.NP.AMU;BMU)
LBalp+

APPLY T1 AND T? TO SEGMENT CD
CALLEONTRACTCAX s YY,LL,JTOT,LB,LD, NP,-AHU BMU)
TEST IF EF EXISTS

IF¢Ln. EQ L)Y GO TO 42

CALLCONTRACT(X!;YY LL,JTOT LD+t ,L,NP, AMU, BHU)
CONTINUE

RETURN

END

Jo7, NAME CcONP
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SUBROUTINE CONTRACT(XX,YY s LLeJTOT /LS LE/NP,AMU«BMU)
¢ CONTRACT POINYS FROM LS TO LF USING T1 AND T2
DIMENSION XX(JTDT)PYY(JTOT)ILL('TOT) :
JPelrelLS+1
1FC¢ID,LE.2) GO T0 14
MLeSTIGNCT, XX F)=XX(LS))
K JPaNINY LN (LS))Y=ML*(1+HP)
) DO 2 1=LS.LF
JPE(NINT (XX(1)y=1P)aML
2 TFCID.GT. .0, AND. (NINT(XXCI)=XX(JPY), NE,O,.OR,
T NINTOLYVCT)I=YYCIPII#AMUY LY. 0)) ‘
4 CALL MOVEP{XX,YY,LL,1,JP%1/JTOT)
CIFfPLLEL2) GO TO
KP,NP=NP4+2

DO X 1=MP+i,JD
6 TFININTCIYY(NP=g)»(XX(1)~ XX(NP))*YY(:)*(XX(NP)-XK(NP-1)) YY(NP)
L(XX{T)=XX(NP=4)))#BMU))16,0,0
NPuNp=i '
TF(Np.GE.KP) GO TO 6
16 NP=ND+1

3 CALL MOVEP(XX.YYslLL,s1, NP:1-JTDT)

- RETURN _

4 NPuNp+JPp o . »
CALL MOVEDP(XX,YYsLL. LS/ NP=JP+1,JP, JTOT) L
RETURN
END

EGVENT, LENGTH . 286, NAME CONTRACT -~ - - o commmommommoeees

SURRQUTINE MOVEP (XX, YY,LLsTsJdsKosL)
DIMENSTON XX(LY,YYCLY, LLCLY
1F¢1.€0.J) RETURN

CALL PMOVE(XXCT) o XXCJY K+K)
CALL PMOVELYY(1) . YY(J),K+K)

CALL PMOVE(LL(D) JLL(J) KD
RETURN
END

LENGTH

EGMENT, 97, NAME MOVEP
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SUBROUTINE MCONSETU(NS, XS+ YS+MOM,YFAC, NN MM, L, K¢NT,J,
1 M,AMIN,1S)

COMMAON/RN/LB LD/ HC

FINES SIMPLE MOMENYS OF THE CONVEX HULL OF TH& NM
POINTS STARTING AT (NT,J+M) AND SUPPLIES DETAILS OF
ANY CONCAVITIES

DIMENSION XSCIS)YSCISY NSCIS),YFAC(NN)

REAL MOMEIMM)

HCslL

Led

Xa¥s¢1)

- ¥eYS(1)

21
22

20

12

NaksS{1)
LEN=LSTACKINT)
DNesHC«(Q,.SwM
DO 10 1=£,K
ALeX

YA,YL=Y

_hHLeN

Xu}sS(1)

YaYS(l)

N=NS(1) - '

AaM . -
DeDN :

JF(NL. LY.LB,OR_NL,GT,LD) D=~D

AR=0,

JLz)

NTL=NT

ML=M

JEJEL=114MAXO (O M)*(LEN -11)

TF{X . NF.XL) GO TO 21

AMM, AM=0 .

60 To 22

AMY , AMz (Y=VL) /ABS (X=XL)

NM,NMLeNaNL

FIND AREA BETWFEN LINE OF rouvex KULL AND BOUNDARY

NDe=MINO(MM,IABS(J=JE))

00 12 11=1,ND

Jel+M

FREAR+YL=KSTACK(NT, J) -
YisYL+AM

1F¢J.NE,JEY GO YO 23

ARE=AR

MEwM

AMa=AM

YLsYL+AM

NYeKSTACK(NT:3)

23

IFC(NT.EQ.0) GO TO 23

LENSLSTACK(NT)

JE0-MINO(0,M) s {LEN=D)

JEaf1+MAXO (0, M) * (LEN=~11)

NMzNM=ND

IF(NM_NE_0) GO YO0 20

IF AREA LT AMIN ASSUME CONVEX RULL RUNS ALONG BOUNDARY
ELSE USE CONVEX HULL LINE AND MARK CONCAVE SEY

IF( ABSCAR).LT_AMIN) GO YO 13 -,

tel+d o

NS(LY=NTL _

XS(Ly=dl
YSCLYsMML .
DO 14 11=1,12Bg(NINT(X=XL))

CALL SMOMS(MOM,NN MM, YFAC,XL4DsXL=DsYA)

"D".l27 _....‘.'-.. wmmm— —...

-



s ' . XLEX|4A
- 14 YABRYA+AMM
GO T0 10
13 NMoNali
D=lleMi*0.5
N]l=9
TF(LD.ME.NS(K) . AND.T,EQ, K. AND.NINT(HC41.).%Q.0) NM=NM41
TIFC¢LR.NE_ Y, AND. Y EQ.2,AND NINTIHC+4)_ EQ.0) NI1I=2
16 NDBM!NO(NM.ilas(JL-JEL))
" JF(NT].ED,2) JLZJL+ML
IFCND_ LT _NII) 640 TO 17
DO 45 11=N11,ND
JLaJLeML
CALL sMOMS (MOM, NN, MM.YFAC;4L+D.XL-D FLOAT(KSTACK(NTL JLIY)
5 XLuXt+A
C XlaXL~A
1? NH“NM"ND ]
JEC(NM. EQ_ 0) GO TO %0
NTYL=KSTACK{NTL,3)
LEN=| STACK(NTL)
Mlm~tL
Deep
Ar=A
JLefO0=-MINOCO, ML) *(LEN=G) P P
JELE144MAXO (0, ML) * (LEN=11) : |
NIT=4 _ :
GO Y0 16 ‘ . B |
0 CONTINUE
RETURN
- END
|

GVENT+ LENGTH 576+ NAME MCONSET

v - - D128 ~°
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