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A 11 terature sur'rey covers a wide range 

of picture processing topics ~rom the general problem of 

rranipulating digitised images to the specific task 

of analysing the shape of objects within an image 

field. There ~ollow~ a discussion and jevelopment 

of theory relating to this latter task. A numbe~ 

of shape analysis tecLniques are inapplicable or 

computati0nally untenable when applied to objects 

containing concavities. A method is propose~ and 

implemented whereby any object may be diyided into 

convex components the a.lgebraic sum of which 

constitute the original. These components may 

be related by a tree structure. 

It is observed that properties based on 

integral measurements, e.g. area, are less 

eusceptible to quantisation errors than thosp based 

on linear and derivative measur~ments such as 

diameters anti slopes. A set of moments invariant 

with respect to size, position and orientation 

are derived and applied to the study of the above 

convex components. An outline of possible further 

developments is given • 

• 
( 

- 1 -



• 

Acknowledge'llents •. 

The author wishes to express his 

grateful thanks to all members of the Chemical 

Engineering department w~o have helped to enable 

this thesis to be completed. In particular, 

to Dr. P •. AlIen who both supervised this research 

and instigated the image processing project 

within.the department: To Dr. G. Mason, 

joint supervisor, for a number of stimulating 

discussions and for painstakingly proof-reading 

the text. of this thesis~ To Mr. K. Tilley who 

has written software for computer operation of 

the image scanner to obtain digitised images: 

To Mr. S. Cooper for building and commissioning 

much of the electronics used in scanner operation: 

And, not least, to Miss M. Hiorns for typing the' 

manus cri pt •. 

• 
( 

-11-



Nomer,clature. 

Unless otherwise defined symbols may be 

inter~reted throughout the text as follows: 

dij 

L 

MAT 

MPP 

MSP 

Mpq 

J1-pq 

N 

pr 

r 

9 

u, v 

x, y 

X(~), Y(f), G(f) 

x, y 

z, w 

Length between two points 

series filter weights 

name of line joining point i 

to point j 

length of ij 

total number of grey level& 

Medial axis transform 

Minimum perimeter polygon 

Minimum sided polygon 

Moment in pth power of x a~d 

qth power of y 

Mpq taken about the centroid 

origin 

width(length) of a digitised 

picture (in picture points) 

probability 

radial distance from (centroid) 

origin. 

angle of r to the positive y axis· 

variables in Fourier plane 

variables in real plane of 

digitised picture 

Fourier transforms of x, y and g 

centroid coordinates , 

complex variables in the discrete 

Laplace plane 
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Introduction. 

In the 1950's whilst many dismissed 

computers as glorified adding machines others 

failed to appreciate their limitations predicting 

the 'big brother' machine and huma.noid robots. 

Today, at least the latter of these two predictions 

appears f'lrther from rea;l.i ty than twenty years ago. 

-Indeed, computer development h8.s led man to study 

in more detail his own thought and reasoning processes. 

It is mans' combination of eye and brain coupled with 

manual dexterity which have enabled him to dominate 

other species. 

Like computers, image processing has also 

been underestimated in potential and.in the difficulty 

of realising this potential. It is remarkable how 

little has l:een achieved in this field during the 

past ten years. Thp. specific task upon which by 

far the most time, effort and money has been 

expended is that of character recognition. Some 

success has been achieved and provided only a 

pre-determined character set are used a number of 

moderately priced commercial machines will perf~rm-

this task with low error rates. Other workers 

have concentrated upon chromosome and finger print 

classification, interactive graphic aids, robots 

and, inevitably, military applications such as 

aerial reconnaisance. 

( 
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During the same decade the price/performance 

ratio of small computers has improved by lesps and 

bounds so that a once expensive novelty is rapidly 

becoming a commonplace necessity in industry •. 

Unfortunately, too many machines have been sold on 

the basis of the speed at which they can add two 

nllmbers rather than their ability to solve industrial 

probleIL.s. Lack of support in the form of 

inexpensive peripherals and easy to use software 

has caused many companies to become disillusioned. 

One can readily appreciate the frustration of having 

a sophisticated tool capable of assisting with many 

important tasks but unable to carry them out for 

want of specialised 'att~chments'. 

To avoid the task of interfacing their 

equipment with numerous small computers, 

manufacturers of image processing equipment have, 

in general, supplied their own special purpose 

hardware. Where only relatively sim9le operations 

are to be performed on pictures it is economic to 

implement them using hardwired circuitry. If 

units to perform simple operations are produced 

in modular form then the interconnection of 

modules may allow some flexibility. However, 

for more complex operations the incr~ased 

adaptability of a general purpose computer is 

unileniable. 

( 
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In the process industries small computers 

have assumed many of the tasks previously requiring 

manue.l intervention. A limj tation has been the 

relatively few types of information, concerning a 

process, which could readily be supplied on-line 

to process cont:.'ol comput.ers. It is hoped that 

in the future input of visual information will 

'become commonplace, making a v~luable contribution 

to the capability of on-line control systems. 

This project is primarily concerned with 

developing image processing techniques and software 

for on-line and off-line use on small general 

purpose computers. Most software has been written 

in FORTRAN since this language is becoming available 

on a number of small machines. The techniques 

used are generally limit~d most by the data handling 

facilities, however, so sections which 

manipulate data in other than single dimensioned 

vectors have been isolated as small routines •. 

In particular, it has been a policy to make all 

computer routines of moderate size so that work 

involved in modification or conversion for another 

computer would be min~mised. 

In choosing the subject of research for 

this thesis several lifetimes of work have readily 

suggested themselves. The difficulty has been in 

pi~king a path amid a maze of false trails and 

blind alleys in a direction most lik~ly to prove 
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profitable, moreover, a direction in which a 

useful amount of development could be imple~ented 

in the relatively short time available. The final 

"topic was selected from ohservations of thE short

comings of work by other researchers and, it is 

hoped, will prove to be a means of overcoming some 

lJf these difficulties •. 

• 
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Literature Survey. 
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The computer processing of images encomp

asse~ such a proliferation of literature that a 

comprehensive survey would 0CCUpy numerous volumes. 

Fortunately, other authors have surveyed sections 

o:? the subject and unnecessary repetition has beem 

avoidell. 

Every effort has been made to (!over the 

most recent v!orks of authors and research teams, 

but with new articles appearing each week no such 

work can remain up to date. A guide to periodicals 

which frequently contain relevant information has 

therefore been included as Appendix C. 

Special mention must be made of 'Picture 

processing by computer', by Azriel Rosenfeld(l). 

This textbook has been used as a framework to 

introduce basic concepts whilst mentioning more 

recent artic~es in the first two sec~ions of the 

survey. Several other pertinent books have been 

published,mostly collections of conference papers. 

The series of publications 'Advances in 

Information Systems Science' in which prominent 

authors discuss specific topics have also been found 

invaluable. Information has frequently been drawn 

from this source in attempting to link discussion 

of various subjects in a logical manner • 

• 
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It is hoped that this survey will provide 

a useful background knowledge of picture processing 

to Chemical Engineers (not least the author). The 

aim has been to complement rather than duplicate 

topics familiar to, Chem:.cal Engineers whilst never 

straying far from subjects of direct application. 

Nevertheless, ar~one with a fair knowledge of 

engineeri~g principles and mathematics should still 

'find the survey readable., 

The survey consists of three main sections 

of which the first, Information Theory and Data 

Handling, is the most general. It is difficult to 

understate the importance of laying good foundations 

in the form of careful selection of data structures 

if image processing procedures are to be implem~nted 

efficiently within a limited storage space. The 

first section reviews this problem in abstract terms 

before concentrating on the more specific task of 

coding images. 

Picture Processing, the second section, 

describes a number of operations which may be 

perfor~ed on pictures to enable either a human 

observer or a computer to more easily discern items 

of interest. Techniques described have been 

developed by workers in statistics, optics, and 

electrical an& audio engineering! Differences 

may be seen to be more in the methods of approach 

, . 
( 
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resulting from a diversity of purpose than in 

the actual transformations themselves. 

Researchers in picture proce~sing have increased 

the usefulnesc of these techniques by adding 

logic functions. 

The next section dealing with feature 

extraction reviews work on the problem of 

measuring picture properties and assessing the 

relation between such Ileasurements and pr'perties 

to be estimated. Treatment of the former topic 

is restricted to avoid overlap with 'Development 

of Theory', the next part of the thesis. 

Finally, brief reference is made to 

~canning hardware • 

• 
( 
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INFORMATION THEORY AND DATA HANDLING. 

A primary problem in the processing of 

iIDl.lges is the vast quantity of data arising from 

the digitisation of a single yicture. In this 

section a number of methods for reducing this 

volume are discussed. and compared •. 

A digital pictu~e is usually considered 

as a matrix of points (pixels) each representing 

the average grey level of a small area. If the 

number of possible discreet grey values is L:2x 

then the total storage requirement for an N by N 

pixel picture is N2.x binary bits, regardless of 

picture content. Considering a binary image (1:2), 

where '1' represents a white point and '0' a black 

point, then a completely white picture could:.ideally 

be represented by a single 'I' bit •. At the- other 

extreme a picture composed entirely of random dots 

would have a maximum information content, there 

being 1'.0 way of predicting the value of any point 

with more than 50% accuracy, i.e. using standard 

statistical notation for probability, pr(O) = pr(l)=t. 

In general the grey value at a point may 

be pr.edicted with better than 50% accuracy from a 

knowledge of neighbouring points, see for instance 

Deutsch(2). Simpson(3) has nsed statistical methods 

to.assess the degree of predictability of individual 

paints and Lence the redundancy of information 

cohtained in our N2.x bits. 

( 
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Efficient Coding. 

Huffmann(4), shows ~lOW storage requirements 

may be minimised by using a code in which the length 

of the number denoting each value is inversely 

proportional to its likelihood of occurence. Suppose 

there are three grey levels: 'I', '2' and '3' and 

pr (1 ) = t, pr (2) = t, pr (3 ) = t. We may use a code 

only half as long for 'I' since this value is twice 

as frequent. Let the binary numbers 1,.01 and 00 

be the codes for 1, 2 and 3 respectively. Summing 

the product of code length and probability for each 

code gives the average code length which will be 

Note that no 

separators are required between successive codes 

since a code starting with '0' is known to have 2 

bit length and code starting with '1' only singlE: bit 

length. 

Sequences. 

If the probability that the next grey value 

will be J is to some extent dependent on the current 

value I then prJI is called the conditional probability 

for this occurence. If prJI = prJ for all pairs of 

pOints then the points ~re said to be independent. 

Where grey values are interdependent a single code 

may b(> used for a. predetermined sequence. The length 

of code should be related to the frequency of 

occurence of the sequence. 

Predictive Coding. 

Frequently,neighbouring poants will have 

a high probability of being the same, Le. prII ,> 

prJI for I ~ J. For such cases the first grey value 

- 10 -



and successive differences may be stored. The 

diff~rence used may be shifteJ into the range 1 to L 

using J-I for J~I and J-I+L for J'I. The relative 

frequencies of each value will be lese equally 

distributed allowing mere efficient cor.ing. An 

interesting method used by Schwartz(5) takes into 

account lower frequency of change for the more 

significant binary digits of successive values. 

Run Coding. 

Where long runs of the same grey value 

occur it becomes efficient to store value and run 

length; For binary images, only the run length is 

required since black and white will alternate. 

, 

( 
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Data Compression. 

The above methods ~llow a reduction in 

storage space whilst retaining all the original 

infoI'mation. Unfortunatply, efficient coding may 

increase the difficulty of image processing and 

manipulation. Since only a slliall number of final 

:C'esul ts are normally required from each image, 

redundancy of required information will be much 

higher than redundancy of pictorial information. 

It is important to consider the type of processing 

required together with the above trace-offs in code 

selection. In practice it may be acceptable and 

even desirable to discard some of the data in the 

interests of further compression. 

Digitisation produces quantisation errors 

in both spatial and grey level measurements. Data 

compression may include smoothing opE-rations w':".ich 

actually reduce this error. 

FJurier Transforms. 

Slow variations in picture shading and 

sharply defined edges may be thought of as low and 

high spatial frequency picture components. Various 

frequency transformations are available, the best 

known being the Fourier transform~ Since two 

dimen3ional Four1er transforms are not well covered 

in standard texts some useful notes are collected 

in Appendix A. Andrews(6) discusses the use of 

Fourier image coding. Since the transform of each 

point involves the weighted sum of every point on 

the original image, distortions in the transform 
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plane become diversified and hence less visually 

objectionable when the original image is reconstructe~. 

The transform produces complex results, 

real :Jarts being dependent on magnitude of the 

frequency components and imaginary parts on their 

phase or position. Low frequency components have, 

in general, much greater ~agnitude than high 

frequency ones so that storage of the transform 

image can be compressed by suitable choice of code. 

BIFORE or Hadamard Transforms. 

In this case the approximating functions 

are rectangular waves rather;:-than sine and cosine 

functions. The Hadamard transform produces results 

which are both position and magnitude dependent. 

However, in a series of recent articles, Ahmed add 

Rao(7) have shown that it is possible to construct 

magnitude and phase spectra. Magnitude terms may 

be interpreted as th~ average pow~r of the sum of 

a funda.mental frequency al1d its odd order harmonics., 

Unfortunately, because of this summation, the ability 

to reconstruct the original image is lost. For a 

fuller description see Appendix A. 

Karhunen-Loeve Transforms. 

For any group of pictures there is an 

optimum linear transformation for data compression. 

For an N by N picture it is necessary to calculate 

the N2 by N2 covariance matrix. This is then 

di~gonalised and the eigenvectors found. 

( 
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• Normally the eigenva1ues are ordered in ~agnitude 

and a relatively small numher retained. Corresponding 

eigenvectors only are calculated, nevertheless 

computational effort and storage requirements are 

huge. Van Emden.(8) summarises the way in which 

various research workers have used different criteria 

each finding this transformation optimum. In 

practice it is useful to compare the performance 

of other compression methods usingKarhunen-Lo~e 

as a standard. Andrews(9) recently published a 

comparison of the three transformations mentiom;d 

here together with the Haar transform. As might 

be expected transforms requiring more computation 

produce more efficient compression. However, in 

cases where less than 80% of the information content 

need be retained he found the difference be~ween 

Fourier and Hadamard transforms only marginal. 

Fast Transforms • 

. By storing intermedillte resu1 ts it is 

possible to reduce computation required to perform 

Fourier or Hadamard transformation of a whole picture 

from N4 to 2N210g2N operations. Each operation is 

essentially a complex multiplication for a Fourier 

transform and only an addition or s',lbtraction for a 

Hadamard transform. Effectively, the Foul'ier transform 

uses N diffr.rent weighting factors, i.e. sin 2nx/N for 

x.1,2, .. ,N whilst the Hadamard uses only two,name1y, 

+1, and -1. Hence the term BIFORE or binary Fourier 

representation •. 
( 
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Compression by Sampling. 

Where other methods are unavailable 

compression by random sampling may be used. 

Particular mention should be made of the various 

applications of repeatable pseudorandom sequences. 

If pseudorandom noise is added to a digital picture 

prior to grey lp-vel quantisation(lO) and on 

reproduction the same noise is subtracted the effect 

.is to alter the quantisation It:vels in a random manner. 

This successfully breaks up 'false contours' which 

would otherwise be produced. 

Reconstruction of Pictures from Projections. 

If the grey levels for each vertical line 

of a picture are summed the resulting vector is the 

vertical ~rojection of the image. Any number cf 

projections may be found in different directions. 

Gordon(ll) has suggested: a novel method employing 

Monte Carlo technique to produce an image which 

satisfies the constraints imposed by the projections. 

Such an image will not normally be unique and he 

obtained the best results by averaging about twenty 

images produced using the same constraints. An 

important application of this technique is in t~e 

reconstruction of three-dimensional translucent 

objects from 2D i~ges at a number of angles. Each 

point is considered as the projection in the plane 

normal to the image • 

• 
( 
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-, PICTURE PROCESSING. 

A digitised pictur~ may be considered 

as data and, as such, manipulated by mathematical 

':ilethods. Picture processing takes into account 

-the pictorial nature of this data and is concerned 

with the change in appearance of the picture 

caused by processing. 

This section starts with basic 

definitions, then various methods for the removal 

of useless data and emphasis of selected classes 

of features are discussed. Digital filter design, 

matched filters, and deconvo1ution techniques will 

be considered in turn and an attempt made to show 

the equivalence of these procedure:s. 

Position Invariant Operations. 

If the net result of an operation is the 

same whether the pict-'Ire is operated upon directly 

or subjected to complementary shift operaticns 

before and after, then the operation is position 

invariant. In this context, the shifting of the 

picture matrix is cyclic, Le., any elements which 

are shifted beyond the edge of the picture reappear 

on the opposite edge. This corres~onds to the 

Fourier image representation as a periodic 

waveform which is repeated to infinity in both X 

and Y directions. Shift operations correspond 

to the post-multiplication or pre-multip1ication 

of the picture matrix by a.modified unit matrix of 

the same order. ( 
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Point Operation3. 

If the grey level value of each point 

on a picture is rescaled by linear transformation, 

imag~ brightness and contrast are altered. In 

certain cases (12) cyclic non-linear rescaling may 

prove advantageous, i.e. false contours are 

deliberately introduced by dividing the original 

grey scale into several grey scale ranges. Fine 

detail in low contrast picturea is greatly enhanced 

but noise is also amplified. 

Local Operations. 

These depend not only upon the grey level 

of the point undergoing the operation but also 

those in a local neighbourhood, e.g. a local 3x3 

matrix. Such operations may be mathematical 

transformations or include logic functions. To 

reduce random speckling of images the average grey 

level of the 8-near neighbours of a pixel may be 

comparp-d with the value of the pixel' itself. If 

the difference exceeds a threshold the average is 

substituted. Sklansky(13) has shown that in 

general the convolution and thresholdingoperations 
. .~ . -

are not equivalent, hence, it is not possible ~o 

find a non-zero aperture convolution which is 

equivalent to thresholding. 

Picture operations may be considered as 

the mapping of points of the original image onto a 

p~int or points of a new transformed image. To 

conserve space it is'frequently con-..;enient to 
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operate sequentia1ly on each pixe1 of a single image. 

Rosenfe1d and Pfa1tz(14) have demonstrated that 

parallel operations may be reformulated as equi va1el~t 

seque.'ltia1 operations •. 

Hexagonal Pattern Transformations. 

A rectangular array of picture points 

bas a number of disadvantages when used in picture 

processing. One is that the concept of connect:i.vi ty 

is not easily defined, since each point has 4, 4-near 

(horizontally or vertically adjacent) and a further 

4, 8-near (diagonally adjacent) neighbours. If 

connection requires a continuous path of 4-near 

points then the connectivity of two 8-near points 

may only be determined by studying the two mutually 

4-near neighbours. Conversely, if a'continuous 

path of 8-near points is deemed suf~icient it is 

possible for the connection paths of black and Vihite 

objects to cross. 

In hexagonal arrays all six near neighbours 

are placed in geometrically similar positions •. 

Go1ay(15) enumerates the 14 possible binary 

configurations of 6-near neighbours to a picture cell,. 

Subject to rotation inv~riance. This compares with 

more than 70 configurations for the 8 neighbours 
. 

of a rectangular array. 

If each cell composed of 6-near neighbours 

is tested and assigned a value in the range 0-13 

• according to its configuration and the value of 

this number is used to either change 'or not change 

the value of the central point then interesting 
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• pictorial transformations occur. In order that 

seri~l and parallel operations are not confused 

the image may be divided ird;o 3 or more subfields 

so that in each subfield any point is either a 

surround point or a centre point but not both. 

Each sabfield is operated upo~ in turn. 

Repeated application of these Golay transforms may 

be used for filling holes, countir:g blobs, 

'smoothing' contours and skeletonisation. 

Golay et al(16) have constructed a 

digital logic unit (GLOPR) capable of efficiently 

performing Golay transforms on pictures l.eld in 

computer store. The system includes a T.V. scanner, 

moni tor and magnetic tape storage device., This 

equipment has been used mainly in the classification 

of blood cells and is marketed as CELLSCAN. 

Associated software is written in a special Golay 

Logic Language (GLOL). 

Sharpening. 

Whereas smoothing involves substitution 

of the integral of local grey levels for a central 

point, sharpening ~s concerned with local grey 

level derivatives. Pingle(17) gives a simple 

formulation for the direction and magnitude of 

steepest grey level gradient using the 3x3 matrix 

of local points. The sum of the seco:'ld partial 

derivatives, or Laplacian operator, :~ be 

a~roximated by the difference between the average 

of a number of local points and the ~entral grey 

- 19 -
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value, i.e. the image subtracted from a blurred 

copy of itself. Both gradient and Laplacian 

operators emphasize edges and fine detail but also; 

increase noise. 

Wher, used as }losi tion invariant operations 

smoothing and sharpening represent an alteration 

of the trade-off between resolution and signal 

to noise ratio. If, however, logical procedures 

are applied, partic1llarly where the statistics 

of the picture are well known, a more positive 

gain in image quality may be achieved. One 

sophisticated technique includes a test to detect 

the presence of an edge. Smoothing operations are 

used at right angl~s to, or in the absence of, an 

edge whilst a sharpening procedure is simultaneously 

applied across the edge itse:f. 

Digital Filtering. 

By considering a picture to contain 

two co~ponents, useful information and unwanted 

information or noise, we may attempt to design a 

filter which, ideally, would remove all the noise 

leaving wanted information intact. First it is 

necessary to study the nature, i.e. the statistics, 

of the two components. The more disimilar some 

property of these components ·~he greater will be 

the success of a discriminent function. 

It follows naturally that where pictorial 
• information must ba transmitted over a noisy 

( 
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, 
channel the picture should first be processed to 

have minimum correlation with the known noise •. 

Optimum separation of noise and picture may then 

be achieved when the original image is recovered. 

2-Dimensional Filters in the Freguency Domain. 

If the frequency spectra of wanted signal 

and unwanted noise are sufficiently different then 

frequency domain filters maybe used successfully. 

In an earlier section Fourier transforms were 

discussed and the parallel between grey level 

transitions and spatial frequencies mentioned. 

Seltzer(18);gives a simple procedure 

for calculating the frequency response of a 

weighted average of grey level values applied as 

a convolution operator to each picture point. 

Consider a filter in which each point along a line 

is represented by the average value of the three 

points centred about itself. Let the weights be 

termed g and the initial rmd transformed series of 

points be x and y, then: 

k=:K+l 

~ (El) • 
k=K-l 

where g'{-l = gk=gki.l =1/3. The Fourier 

transform of Yn can be expressed as: 

• 

( 
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n",N-l 
Y(f) :. L: 

neO 

tL=N-l j ~ x -21'1' fn 
gk' n-O n_k· e . 

where f is the fractional frequency 

i.e. f=u/N, where u is the fre~uency, and the 

distance between neighbouring points is considered 

to be unity. Now let m~n-k so that n:m+k, hence:_ 

k=K+l 
Y(f) = L gk. e- 2 'tTjfk. 

k:K-l 
= G(f).X(f) 

i.e. the input and output of the filter 

are related in the frequency domain by the filter 

transfer function G(f) which is the Fourier transform 

of the filter weights. Now:-

G(f) 

• 

kdC+l 
= L gk· e 

kdC-l 
-2lrjfk 

1/3( e +2 'tT jf+eO ... e -2lT jf) 

1/3 ( cos2rr f+j sin21T :+1+cos2 'IT" f-j sin2lT f) 

1/3( 1+2cos2lTf) 

( 
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This simple derivation shows a number 

of basic properties of digi~aL filters. Firstly 

the convolution theorem, i.e. the convolution of 

equation (El) is equivalent to element by element 

mul tiplication of the transfo~t'lIl filter weights in 

the frequency domain. This property holds for 

a number of integral transforms including Laplace 

but it is particularly interesting in the light of 

fast Fourjer transformation since it may require 

less computation to transform an image, filter, 

and perform inverse transformation than to apply 

the same filter as a convolution operation in the 

image plane. Secondl~ we note that it is the 

symmetry of the filter weights about the central 

point which causes imaginary (phase shift) terms 

to cancel ou"':;. Applying this constraint to a 

general 3x3 matrix whose weights may be represented 

as, : : ::f and using ths same derivation 

in two dimensions with the plane x,y transfor~ng 

to the Fourier plane u,v we obtain the transfer 

function: 

G(u,v)~a72b(cos2wu/N+cos2~/N)~2c(oos2~(u+v)/N 

+ COS2TT( u-v )/N) ~ 

substituting u':21tU/N and v'~21fv/N this simplifies to:-

• G(u,v) = a+2b(cosu'4-COSV' );-2c.cosu' .cosv' (E2)~ 

( 
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If the illuminance of the filtered image 

is constrained to be unchanged then only two 

independent variables remain. Ideally, the 

amplitude response of such a filter should be equal 

in all directions, equation (E2) shows that this 

ideal may only be approximated for any finite size 

filter matrix (unless b:c~O). 

Where the problem is to apply a filter 

of a given frequency spectrum to a digital picture 

two methods are apparent. Firstly, the transfo~ed 

image may be weighted by the frequency terms and 

an inverse transformation made.> Alternatively, 

the inverse transform of the spectrum may be taken 

and convoluted with the image. The convolution 

filter will be an N by N matrix but may be 

approximated by a matrix of lower order. No 

straightforward method for optimizing this apprvx-

imation is known. If .the matrix terms are 

tr~cated at a given order the frequency response 

of those remaining are subject to oscillation or 

'ringing' • Better results are achieved when the 

filter matrix is itself weighted with coefficients 

whose values decrease with distance from the centre 

point. Where the filter is symmetric, yet another 

method is to fit the coefficients of the known 

(cosine series) fo~ of filter response to the 

desired spectrum using the method of least squares • 
• 

( 
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Correlation and Convolution. 

It is frequently re~~ired that a 

particular feature or shape which may occur within 

an image should be enhanced or that two images 

should be compared for similarities. This infers 

the correlation of two pictures or a picture and 

filter matrix. In.fact the filter may be thought 

of as a picture to which the subject image must be. 

matched. If the two series used in equation (El) 

are subjected to correlation the result may be 

expressed !is: 

k::K+l 

~ (E3) • 

k .. K-l 

Taking Fourier transforms this simplifies to: 

Y(f) = G*(f).X(f) where G*(f) is the complex 

conjugate of G(f). If the series g is symmetrical 

so that the terms in G(f) are real only then it 

is obvious tb~t correlation and convolution 

operations are identical •. 

Matched Filtering., 

One would have thought that the above 

explanation of cOl'relation led dire0tly to matched 

filter implementation. Namely, produce a filter 

matrix which is a picture of the required feature 

and correlate with the given picture., 

• 
( 
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I. 
Alternatively, find the complex conjugate of the 

filter transform and use a normal digital filter. 

Unfortunately, two major snags arise. Firstly, 

al though the fil ter opera~;es regardless of the 

position of the required feature on the image it 

is not invariant to changes of size or orientation. 

In some cases this limitation is not important 

e.g. in typewritten character recognition where 

both size and orientation are known. Orientation 

invariance may be achieved at the expense of mapping 

the image into an orientation invariant plane 

e.g. using polar co-ordinate Fourier transforms but 

it is still necessary to apply separate filters 

for each size range of the required object. 

Each point on the filtered image is 

effectively a similarity index whose value reflects 

the 'goodness of fit' of the required feature 

centred at that point •. A perfect fit will be 

obtained for any object whose boundaries totally 

engulf t"e required feature. This may be overcome 

by preprocessing the image so that the required 

feature becomes a contour outline, e.g. by 

differencing neighbouring pic'pure elements. 

Provided such an operation may be expressed by a 

simple matrix it may be combined with the matched 

filter. Combination filters are often ambiguously 

refered to as matched filters • 
• 

An interesting property of th~ matched 
( 

filter is that it is also optimal for finding 
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distorted c<)pies of a perfect filter shape, or 

conv~rsely in seeking a less distorted copy of 

a given image. 

Image Subtraction. 

This technique is used to show up small 

differences in different photographs of the same 

scene. Correlation techniques must be used for 

precise registration of the tW0 images prior to 

subtraction and additional difficulties occur from 

geometrical distortions. Barnea(19) detr,ils a 

method for rapid image registration •. 

• 
, 
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Image Restoration. 

If a one point pi~ture can be subjected 

to the same position invariant degradation as a 

picture which it is required to restore then cle~rly 

the op~ration required is one of deconvolution 

using the one point picture as a 'blue print'. 

Deconvolution may be performed by dividing the 

Fourier transform of the image by that of the one 

point picture and taking .he inverse of the 

result. In practice, good results are highly 

dependent on the original distortion bei~g precisely 

position invariant, usually only low frequency 

terms of the two pictures are divided. 

Point Spread Functions. 

Digitized images are normally degr9.ded 

in the following ways: Blurring, due to imperfect 

focussing and inaccurate scanning; Noise from the 

photosensing head and quantisation,and imperfections 

in the scanned image. If the degradations can be 

mathematically modelled compensation may be made 

using an inverse function. Using the blue pTint 

above as a starting point MacAdam has derived an 

interesting on-line method for improving image 

quality •. Adjustments are 

the restoring function. 

made incre~entally to , 
At each stag~ comparisons 

may be made on a T.V. monitor. The number and 

ralige of variable perturbations are greatly reduced 

by the programme which applies the cqn~traints of 
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circl .. 1ar symmetry to the restoring function and 

a ~redetermined illuminance range to the grey 

level3 of the restored image. 

Recursive Filt~ 

In equations (El) and (E3) the filtered 

output series y is deriv~d from the input series 

x and filter coefficients g. It is possible to 

design f11 ters in w:1.ich the output is also dependent 

upon previous output terms •. Unlike time series 

signals the meaning of 'previous' is open to 

arbitrary interpretation when applied to pictures. 

A close analogy exists in the differences betweeI! 

non-recurEive and recursive filters and open and 

closed loop control systems. Recursive filters 

may produce a more desirable frequency response 

using fewer filter coefficients but the stability 

problem must be considered. Usually, recursive 

filtern are designed using 2-dimensional discrete 

Laplace(zw) transforms, although Fourier methods 

may be applied(20). The frequency response is 

generally complex so that both magnitude and phase 

must be constrained. Hall(2l), gives a formul~tion 

and illustrates results obtained using a 2nd order 

Butterworth, maximally flat, ~ecursive filter. 

In particular, an illustration of oscillation of 

shading caused by non-linear phase response, i.e • 

• phase shift not proportional to frequency, is given~ 

The filter uses only the unfiltered centre point 

and two previous filtered values. 
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Unfortunately, l:.terature :)oncerning 

digital filtering, especially ~here applied to 

images is highly fragmentary. In addition to 

the works of Andrews(6), Selzer(18) and Rosenfeld(l) 

previo~sly mentioned two special issue~ of I.E.E.E. 

Transactions on Audio and Acoustical Engineering(22) 

have been found particularly useful. 

, 

( 
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Feature Extraction. 
In previous sections we have considered 

the suppression or removal of unwanted information 

and enhancement of features e:i.ther for the benefit 

of a human observer or to simplify fur~her computer 

processing. Some interesting work has been described 

by Macon(23) on the removal of objects from an i~nge 

so that neither object nor the reculting space are 

visually apparent. In this section, however, we 

are primarily concerned with carrying the enhancement 

process one stage further so that qualitative measure

ments may be made and analysed. 

Much work has been concentrated on the 

extraction and classification of chromosomes from 

digitized images. One research team, headed by 

Ledley(24). uses a FIDAC scanning system employing 

a T.V. Scanner to digitise photographic transparencies 

which are input directly to a computer. Various 

approaches have been made capitalizing on well 

defined chromosome features. Klinger et al (25) 

present the most recent work on this subject and 

review previous research. An edge tracing algorithm 

is used and the boundary poi~t list converted to 

polar co-ord~nates with centroid origin. Since 

chromosomes consist of a number of arms emanating 

from the centre, the polar plot has a number of 

peaks at or near the arm tips with heights related 

to arm length. Unfortuna~ely, the plo~ r:f(e) is 

not necessarily single valued and there is no 

guarantee that the origin will be within the enclosed 
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, region boundary. In certain circumstances, however, 

it is possible to classify regions as two overlapping 

chrom~somes. 

Zahn(26) describes an interesting method 

for analysing the boundary point list. Minor 

adjacent and opposite changes j,n directions called 

inflections are located and deleted. The remaining 

features are classified according to length of 

straigct segments and radii of curvature. Curves 

in the same direction in close proximity are grou~ed 

as one. A number of higher order features are 

defined in terms of Simpler ones using Backus normal 

form, a language first used by compiler writers. 

This hierachical language structure enables high 

level descriptions of objects to be derived and hence 

easy comparison and classification. A number of 

shape describing features are defined and appear 

together with some from other sources in Appendix B. 

Ordonnances. 

If the N boundary points of an enclosed 

region are numbered from 1 to N in, say, clockwise 

order;, there are N(N-l)/2 lines joining pairs of 

points. These lines are called Ordonnances. Let 

the line joining i to j be ij of length dij and the 

set of ij's be ordered in decreasing dij sequence. 

Parenthesizing. 

The ordered ij sequence described will not 

nepessarily correspond exactly to similar patterns 

with minor distortions. Simon et al.(27) give 
( 

details of a data structure to overcome this limitation. 
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An error tolerance is decided upon and t~e sequence 

pare~thesized to show the equivalence of all possible 

sequences within this tolerance, e.g., A(B C(D)E)F G. 

This means possible sequences all have A first with 

B, C or D second. Band C must preceed E althol1gh 

E may ltself preceed D. 

Principle of Assignment. 

When a pattern is being compared with a 

reference parenthesizej list each memoer must be 

assigned f'uch that the parenthesis rules are not 

broken. If only one assiglli~ent of corresponding 

lines of the two patterns concur with these rules' 

the assignment is said to be possible., When many 

or zero assignments are available they are described 

as undetermined and impossible, respectively. 

As the error tolerance io increased assignment may 

go from impo[lsible through possible to undetermined. 

Sometimes the transition from impossible to undeter-

mined is direct. 

Feature Extra~tion from the bulk image. 

It has been asserted (1), that the statistics 

of grey level variations in local areas are related 

to the textural appearance. Hence by considering 

sub areas, differences in texture can be determined. 

Taking moments to a sufficiently high order each 

sub area could be uniquely characterised although, 

for ease of computation, only low ord,er statistics 

are normally used. 

If the picture is converted to a binary , 

image by thresholding, contiguous poir.ts above the 

threshold may be considered as chords. If these 
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chords are measured in any direction then the stat

isti~s of their size distribu+'ions may be compared 

between different subareas, at various thresholds, 
/ 

and for different directions. The properties 

which may feasibly be assessed in this manner include 

size distribution, orientation, elongation, spacing, 

variations of packing density, permeabi1.i.ty, poro:::ity 

and surface area •. Unfortunately , such properties 

cannot generally be measured in a direct manner and 

it is necessary to find relations between measurements 

and the parameters required. This is essentially 

a problem of pattern recognition. 

Pattern recognition techniques are usually 

applied by using a training set fo~ which both 

measurements and parameters are k~own. An attempt 

is made to find either a measurement or a linear 

combination vf measureillents highly correlated to (, 

parameter. Among better known techniques are 

multiple linear regression, pri~ciple components 

(Eigenvalues) and factor analysis. The selection 

of measurements used in the estimation of the parameter 

may be completely empirical or based on a known physical 

interpretation of the measure~ents. The physical 

interpretation of low order moments are well knowrr 

hence their frequent use. Since the parameters 

required are often chosen in order to estimate other 

parameters e.g. Surface Area to estinate reaction rate, 

it'is desirable to short cut this procees by estimating 

the required parameters directly, wherever possible, 

thereby reducing computation and rounding errors. 
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Mucciardi and Gose(28) compare seven 

of the more sophisticated methods of choosing 'best' 

sttbsets of a given property list for the purposes 

of p~ttern recognition. 

below. 

A ~rief outline is given 

Multiple Linear Regression. 

The list of properties for each object 

or feature are considered as a point in N-space • 

. The first property selected is that which minimises 

the sum of the squares of the distances between, 

property points with all other co-ordinates set to 

zero and the correspC'nding N-space property points, 

• 

to an arbitrary multiplicative constant. The process 

is repeatp.d to choose subsequent property co-ordinates 

and their constants. Disadvantages are that tIle 

approximation will not necessarily approach a global 

optimum unless each proporty variable is unimodal, 

and that relationsh5.ps between variables are not 

consid<::red. 

Probability of Error(POE). 

The FOE of each variable used by itself 

to classify the objects is considered. The 

property for which this value is a minimum is 

selected first. Second, third and fourth properties 

are those with minimum FOE from the set remaining. 

Average Corre:ation Coefficient(ACC). 

The first property is chosen using the 

FOE test but t~e second is that with minimum 

correlation with the first and subseguent choices 

are of variables with minimum average correlation 

coefficients with properties already chosen. 



Sequential Selection. 

Again, the first pr~perty is selected 

using FOE but successive variables are those which 

least often misclassify the object class for which 

the error rate is highest using the set chosen so 

far. 

!eighted sum of FOE and ACC. 

The lowest weighted sum of POE and ACe 

is chosen as the next variable. Mucciardi found 

the sum O.I.FOE + O.9.ACe to give best results 

and that this method was more economical in 

computation than the Eigenvalue(Karhunen-Loeve) 
" 

method described earlier • 

• 
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Blum's Theory. 

Perhaps the most interesting of all 

picture transformations is that first suggested by 

Blum(36) • Each point on the object boundary is 

considered to initiate circular waves Le •. similar 

to those caused by a stone in a mill pond. The 

wave front produced·advances parallel to straight 

·sides but in,;erferes where convex corners occur. 

The interference ~aths or medial. axes together with 

distance from boundary values give a complete, 

reversible transformation of the original boundary • 
. , 

Another representation maps each pOint in the plane 

of the boundary into a third dimension, 'height', 

equal to the distance from the nearest boundary point •. 

Medial axes are fO:I'!!led along ridges and troughs of 

the resulting 3-D figure. 

The medial axis transfcrm, or skeleton, 

of a convex polygon has R particularly simple form. 

Fig. 3 (a) shows the skeleton and 3 (b) the 

propagating wave front of the originan boundary. 

~s the skeleton is formed sides of the original 

figure disappear from the wavefront, producing 

skeletal branches. Finally the wave front vanishes 

to a point. The geometrical construction of the 

skeleton is straightforward. Skeletal lines are 

bisectors of adjacent boundary sides. When two 

bieectors cross a branch is formed and the included 

side disappears. 
( 
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Rosenfeld's(37), imr.lementation of this 

transform uses the digitise~ picture stored in 

mp.trix form. Each pixel is re~laced by a number 

re;presenting its distance from the nearest boundgry 

point. Unfortunately, the distance value refers 

to the number of near neighbours on the ~hortest 

path to the boundary with 8-near and 4-near distances 

considered equal. If points with lower height v~~ues 

than one or more neighbours are removed a 3keleton 

is produced. Although the original object may be 

regenerated, this skeleton is not invariant unjer 
• 

rotation. Rutovi tz(38), shows a simpler method of 

implementating this Rosenfeld-Blum transformation 

and discusses a number of further developments. 

If a skeleton is produced from a digitised image 

with a n'~mber of grey levels then the height coord

inate may be "'1eighted according to the grey values 

on the nearest path to the bounr.ary, Le. a grey 

weighted distance transform. Rutovi tz also s"J.ggests 

a path-with-distance transform in which the skeletal 

points are augmented by pOinters, in each of the 

other pixels within the boundary, directed along the 

nearest path to the boundary. Since each pointer 

must point in one of eight directions a code may be 

used in which the numbers 0 to 7 repre~ent these 

directions. Such a code correspond~ closely to the 

chain code, discussed by Fr~eman(39), wtich a 

( 
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number of workers have employed for boundary 

representation. 

Philbrick(40), describes equipment, 

comprising a T.V. monitor and light pen linked 

directly to computer, used to investigate properties 

of the above transformation. He illustrates 

boundaries regenerated from skeletons which have 

been scraightened, i.e. each branch has been 

approximated by a straight line. 

A class of transformations which more 

closely approximate that of Blum are described by 
" 

Montanari(4l). Effectively the eight neighbouring 

points are considered to be at their true Euc].idean 

distances .' If more distant neighbours and their 

true distances are also considered specifically 

then 'height' values will more closeJ.y approximate 

the orthogonal distance to the nearest boundary 

point. Unfortunately, the computational effort 

required increases rapidly as more neighbours are 

taken into account. 

In a later article Montanari(42) describes 

a computer program which derives the true medial 

axis transformation (M.A.T.) from the boundary 

analytically. Xhe boundary is considered to be a 

polygon as in Fig. 3. It is neces~ary to calculate 

the height at which each side of the polygon will 

d~appear. Refering to Fig 3(c,), the perpendicular 

f 
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dista'lce d2 in which the side of length L2 disappears 

can be expressed as: 

d,., = 
" 

Clearly L2 = 

where and 

The half angles may be evaluated from:-

• 
92 = t tan -1 (YI - y 2 )(x2 - x3).- (Y2 - y3 )(xI - x2 ) 

(xl - x2 )(x2 - x3 ) •. (YI - Y2)(Y2 -Y3) 

= t tan -1 

since this expression may vary in value from zero 

to infinity an equivalent one employing the cosine 

function may be considered preferable:-

9
2 

= t Cos -1 a
l 

a 2 _ b 2 bll. 

~1 0 L2 

Notice that d 2 approximates the mean radius 

of curvature in the region of L2 o. If d values are 
• found for each polygon side and compare~ the minimum 

( 
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will correspond to the first skeletal branch. 

Th~ new angle formed on the wave front will be the 

sum of those on each side of the edge which vanisbes 

and affects the d valueD of the two adjacent sidet •• 

Use may be made of the relation:-

Cot (a +b) = Cot a.Cot b - 1 
Cot a + Cot b. 

The minimum remaining d value wi.ll form 

the next branch and the process is repeated. 

Eventually all +,he remaining d values (normally 3) 

are equal and the wave front vanishes •. 

Let us consider the transformations of 

three other shapes shown in Fig. 4. The wave front 

of a circle consists of concentric circles which 

disappear at their centre producing a single point 

. skeleton. The skeleton of an ellipse is a straight 

line along the major axis starting at the centre 

of the smallest radius of curvat~re and vanishing 

at the centre of the circumscribed circle. A concave 

angle produces a wave form containing circular arcs 

between the straight edges, hence no discontinuity 

in slope, and ther2fore no skeletal lines until this 

wave front impinges upon another travelling in a 

different direction. However, a skeletal line is 

formed on the outside of the angle as a perpendicular 
• 

bisector. 
( 
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Montanari(42) shows that 'Jircular arcs 

impinging upon straight linen produce skeletal lines 

which are parabolic arcs. Although analytical 

treatment of such lines is still fairly straight-

forward some of the attractive simplicity of convex 

polygonal skeletons is lost. The height at which 

each circular arc will impinge upon every other 

,advancing wavefront'mus't be calculated to ensure 

that skeletal branches are located in order of 

occurence. Computation of all the initial d values 

is therefore'radically increased. Fortunately, 

work involved in updating this list of he:i:ghts as 

sides disappear is not so drastically affected. 

However, complications occur when a circular arc 

impinges on another wavefront. Th\? wavefronts are 

split into two sections and each subset must 'there

after be considered se~arately~ 

.. ~. 

, 
---" 

• 
( 
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S:-:anning Hardware •. 

Many of the articles referenced describe 

equipment u~ed in the digitisation of images •. 

The author has already completed a survey and 

comparison of scanning techniques (29) and this 

topic is not repeated here. A recent article by 

stevens(30) describes a number of European pattern 

recognition projects. 

:;., 

• 
( 
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DEVELOPMENT OF THEORY. 

This section gives a detailed account of 

the theoretical developmen~ leading to the practical 

work of the thesis. Inevitably, the method of 

critical examination caused one to continually review 

techniques and in some 'cases reject them entirely. 

Some of the pitfalls e~countered are discussed since 

the knowledge gained from them influenced the final 

choice of method. 

One of the problems in reading deeply into 
" 

a subject is that more and mere of ones 'own' ideas 

become attrirutable to other w.riters. Where known, 

authors concurring or disagreeing with arguments put 

forward are referenced. Unfortunately, a number of 

r,orkers have p8.id far too little attention to problems 

of numerical stability and computational efficiency. 

Such cons~.derations have had a considerable influence 

on ones own choice of me'i;hod and its implementation • 

• 
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When a picture contains a number of 

distinct objects whose bour.daries may be determined 

from some function of the grey levels these bound-

aries frequently contain all the required inform~tion. 

Prior to the commencement of this thesis the author 

had written a computer program to extract boundaries 

of enclosed regions· from threshold.ed pictures(29). 

In practic~ the pictures may be of fibres, animal 

or plant cells, molecules, powders, polymers, metal 

grains or even household objects. This thesis is 

concerned with investigating parameters vrhich 

describe the shape of enclosed regions. 

It is unfortunate that shape descriptors' 

used by humans do not in general correspond to 

unique scientific measurements. Even a su'~jective 

judgement of relative Rize mE.y differ from corres-

pond ing measu.rements. 

The vocabulary of shane describing 

adjectives used in the English language is little 

short of enormous. These adjectives may themselves 

be classified some of the main groups are:-

• 

a) Comparison with a geometrical shape 

e.g. triangular, elliptical, 

prismoidal. 

b) Comparison with a familiar object 

e.g. pear-shaped, egg-shaped • 

, 
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c) Subjective ass~ssment of how the 

object would feel 

e.g. smooth, spiky. 

d) Subjective assessment of some 

physical property 

e.g. fragile, solid. 

Shapes are also described in t~rms of 

aesthetic qualities and even identified with human 

personality traits. In many cases such adjectives 

are closely related and their use varies considerably 
• 

from one individual to another. In shape character-

isation it is desirable to use parameters which are 

mutually independent. 

The boundary of an enclosed region obtp.ined 

from a digitised image may be consid£red as a list 

of (x,y) coordinates. Items in the list have an 

order, if for instance the boundary is followed in 

a clockwise direction, but no logical beginning or 

end • 

• 
( 
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Digitised Boundaries~ 

Before proceeding wi~h any analysis using 

scan boundary data it is essential to study the 

nature of the available information. Assuming a 

rectan~ular grid is used Fig 1. shows the measured 

black/white transition points connected as boundary 

B. This may be considered as the most likely or 

50% boundary when each measurement is regarded in 

isolation. It is immediately apparent that a 

boundary in closer corr'espondence with the original 

object might result by considering each point in 
• relation to its neighbours and by making certain 

assumptions concerning the boundary statistics. 

Strohl(3l) has derived a model for such 

schemes and uses it to prove, using information 

theory, that an improvement is achieved provided that 

78%.or more of points, which may be considered as 

moved onto a finer grid, are correctly repositioned. 

Boundary A in figure 1. is the outermost 

or 0% boundary, whilst C encloses the area which is 

known (100%) to lie within the object. This latter 

area is refered to by Sklansky (13) as the· core •. 

Some objects contain a complex core 1.e. in more 

than one piece. A square of side twice the error 

tolerance h.'l.S a core which is a single point •. 

Boundaries A and C are the limits of an annular 

uncertainty region within which the true roundary 

of the original object must lie. No upper limit , 
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to boundary perimeter can be estimated but if a 

string were pulled taught witnin the annulus a 

minimum perimeter path would be traced. Sklansky 

proves that this minimum perimeter polygon (~~P) 

is unique for a given boundary B. The reverse 

correspondence is 0nly true. however, provided the 

error limits are within those specified by Montanari(32). 

One of the primary dif.ficulties encountered by 

workers on boundary analysis has been the existence 

of concavities. These may occur in the 50% boundary 

despite the original object being convex. S~lansky 

redefines convexity as possession of a convex MPP 

thereby removing the above anomaly, whilst enlarging 

the more easily managed class of boundary. 

Sklansky(33) describes a computer algorithm to find 

t:he MPP based on the taught string principle. It 

may be observed that the MPPdeletes the inflections 

refered to by Zahn(26) in a !'lore rigorous manner •. 

Reviewing the various way~ in which our 

boundary information may be considered, in absolute 

terms we have a number of boundary coordinate 

measurements each one subject to quantisation erro~. 

Hence, one may assert that the true object boundary 

passes within a certain small distance of each point 

this distance being equal to or less than the error 

tolerance • The above remark infers that the boundary 

• must pass through a circular area surrounding the 
( 
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point although in practice this ~rea may be rectangular, 

it also involves the implicit assumption that the 

local radius of curvature of the boundary is not 

significantly less than the linear error tolerance. 

If this assumption is false, e.g •. the boundary zig

zags wildly, then the quantised boundary will fall 

within the zig-zag region tut obviously its actual 

. error will be considerably greater. 

Having considered each boundary point by 

itself we may now attempt to group these measurements 

to obtain properties. Two methods of grou~ing are 

prominently featured in the literature survey. 

Firstly, all the points may be considllred as an 

ordered list tracing the boundary path. Intuitively, 

these points form a complete description of the 

boundary shape and it shonld only be necessary to 

manipulate the data into a more easily handled structure. 

By applying information theory one may devise an 

efficient code to represent the boundary and attempt 

to use this representation for the comparison and 

classification of boundaries. Alternatively, Using 

methods of mathematical approximation 0ne may attempt 

to fit a suitable function to the boundary points. 

Ideally, this approximating function should also 

perform boundary smoothing hence reducing quantisation 

noise • Since the boundary is a closed planar curve 
• 

it is not, in general, possible to find a ~ingle 

valued expression such as y _ f(x) to represent the 
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entire boundary. Fortunately, it is possible to use 

a number of such functions to fOrlli a piecewise 

approximation 1. e.. each function approximating one 

piece of the boundary. Clearly, the more complex 

the pieceVJise fitting-function becomes the larger the 

'piece' of boundary we may expect to satisfactorily 

approximate. In practice, we may consider two 

simple functions ,namely, straight lines at!d cubic 

polynomials. Since a detailed discussion of approx-

imation theory is outside the scope of this work we 

will consider these possibilities in outline only. 
, 

If piecewise linear approximation is used the boundary 

produced will resemble the form of that implemented 

by Sklansky(33). Since the MPP boundary is both 

unique and has minimum total curvature for any given 

digi tised boundrLry and error tolerance we may regard 

it as. an optimum linear fit. Extending the fitting 

function to a cubic equation it would seem reasonable 

to impose upon this boundary the constraints of passillg 

through the vertices of the MPP. Two add:.tional 

degrees of freedom of the cubic function may be ~sed 

either to increase the size of the boundary pieces or 

to provide continuity of slope, and hi5her deriva"ives, 

at the points where the pieces are joined. 'I:hese 

points are called 'knots'. If both degrees of 

freedom are used for boundary derivative continuity 

the piecewise fit is by a class of functions ~nown as 

cubic splines. The actual points where the pieces 
( 

overlap may be either pre-determined or nerived 
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from th€ constraints of the annuJ_ar boundary uncertainty 

region. 

In the particular task of shape analysis we 

are J.lore interested in the data compression resulting 

from functional approximation than accurate boundary 

reconstruction. Sklansky's MPP effectivel;)' selects 

a reduced set of vertex pOints which summarise both 

boundary and error tolerance information. Howaver, 

it does not select the vertices of a minimum sided 

polygon falling within the uncertainty region. 

This is a much more complex task and involve8 non-linear • 

programming along the lines described by Montanari(32). 

One may consider each boundary point ~s contributing to 

a knowledge of the true boundary position by constraining 

the uncertainty region. Clearly some points contribute 

more to this knowledge th-an others. III particular 

points which are collinear with their neighbourE will 

not alter the uncertainty region i~ they are omitted. 

The MPP vertices form a set sufficient for the polygon 

formed to always lie within the uncertainty region. 

A minimum sided polygon (MSP) conforming to this 

constraint would represent optim~ data compression 

but the improvement would not normally justify the 

additional computation involved. Since the method of 

Sklansky is straightforward it appears to be a good 

compromise between degree of compression and computat

ional'efficiency. 

The second method of grouping'p~eviously 

described is that of ordonnances. Effectively, each 

boundary point is given a number and all the lines 

- 50 -



joining pairs of pOints are then considered and ordere,j 

in decreasing length sequence. Each line is :lamed by 

the pOints which it joins. The ordered list of line 

names is then used as an object description.. This 

description is by its very nature size and position 

invariant and may be considered to be orientation 

inva~iant if the line numbering is carried out in a 

pre-determined manner e.g. if the longest ordonnance 

is chosen so as to involve point number 1 and point 

number I such that I is the minimum value for the two 

possible remaining orientations and points are labeled 

in clockwise order around the boundary. Although 

useful for comparing distorted forms of the same object 

this method has disadvantages in shape description,not 

least the large number of ordonnances involved •. 

However, it is interesting to study this set of all 

possible lines joining pairs of points •. 

Our analysis of individual points led us to 

the conclusion that some conveyed more information 

than others. It seems likely that this statement also 

holds for ordonnances •. Since the error tolerance of 

each boundary point is equal, the relative error 

associated with the line joining two points will be 

inversely proportional to its length. The longest 

chord from this set will also be the la~gest value ef 

Feret's diameter in any direction. In any given 

direction there will be a longest chord associated 

with two parallel tangents at right angles to the , 
direction on opposite sides of the boundary.. The 

length of this chord will be equal to Feret's diameter 
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multiplied by the secant of tha angle which the chord 

makes with the direction concerne.d •. Boundary points 

involved in all such chords will be the vertices of 

the convex envelope boundary or convex hull. These 

vertices will be a subset of those associated with the 

MPP. 

Having considered individual boundary point3 

and the lines formed by joining pairs of them we may 

move on to consider measurements obtained from any 

subset of points. One such measu::-ement is the area 

bounded by an ordered subset. The error associated 

wi th area measurement will be the ratio of e,nnUlal' 

uncertainty region area to 50% boundary area~ The 

error bound on area measurements will oe at least 

twice that of linear measurements of the same average 

diameter to the area involved but assuming errors are 

of Gaussian distribution the error variance will diminish 

by the square root of the number of points used in area 

calculation. 

In the f:oregoing discussion two prob:).ems have 

continually recurred •. Firstly" because of the nature 

of the boundary information resulting.from digitisation, 

measurements made between points particularly those in 

close proximity are subject to large errors. Perimeter 

and local bound~ry slo~e are two important parameters 

falling within this category. Secondly, a number of 

methods for analysing boundary shape are inapplicable 
• 

or become computationallY impracticable when concavities 
( 

occur. The practical work of this thesis has been 

- 52 -



concent~ated upon providing a sclution to these two 

problems. 

The possibility of more closel~' approximating 

the original boundary has already be en me:ltioned. 

However, since we are concerned with boundary shape 

description it is more straightforward to use 

descriptvrs which perform ~;he same smoothing operations 

implici tly., Integral functions are clearly indicated. 

The author had noted in previous work th~t 

area measurements were far less susceptible to errors 

than linear measurements •. An obvious extension was 

to consider two dimensional moments of which area is 

the zeroeth order-·member •. 

Mo,nents •. 

For the purpose of taking momeni.s it is 

convenient to consider tt-:! object to be constructed 

of filaments or chord s .' Considering such a chord 

in the x direction and taking moments we have:-

I' 
, I, /' I f \ ~', , , ( ) 

xmin xmax 

x = Xlll!'.x 

x = xmin 

p [ pH. 1 
x .dx:)( J 

p~.l. 
Mp = 

Clearly any scaling factor s used to', normalise 

the ~ize of the object will h~ve to affect the value of 

Mp by a factor s(p .. 2)!2. The values of: xmin and xmax 

are known to ±t a picture point unit hence the error 
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tolerances of the moments abo~t a filam~nt may be 

expressed as:- -

Mp = (xmax±t.)p~I-(xminit)p+I 
p+l 

ignoring second and higher order errors :.-

Mp = (xmax)p+l- (xmin)p~l 
p + I 

± t (xmp.x-xmin) 

where xmax and xmin are of opposite sign! 

Assuming that the 

errors are normally distributed we may weight the 

moments of each filament by the inverse squa~e of the 
" 

relative error magnitude to minimise the variance of 

the moments calculated •. This amounts to weighting 

longer chords more than short ones~ 

Another method of moment calculation is to 

consider, each p:i.cture point within the obj ect 

separately. For the case of zero error results 

should be identical but since only points near the 

boundary are sub~ect to errors these may now be 

considered and weighted individually •. 

Points which have one or more 8-near 

neighbours of a different colour to themselves may 

be considered to be in the boundary re~ion. It 

should be possible tc assign to such points a most 

likely % black area. The improvements made to the 

exact values of moments calculated may be considered 

less lmportant than the reduction of error bo"nds~ 

( 
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In partj0ular, in the comparison of two object~,error 

value~ would enable one to de~ermine whether on the 

basis of a number of moments the two objects were 

significantly different. 

We have previously mentioned the dependence 

of points in the boundary lj,st upon size, position 

and orientat~on~ Various measurements have been 

discussed, e.g. ordonnp.nces, which preclude this 

dependance. Low order moments may also be used to 

calculate a transformation to give the required 

independance •. Effbctiv~ly we may transform any 
• 

boundary list so that it will have similar form to 

any object of the same shape alld refer to such a process 

as boundary standardisation •. 

Boundary Standardj,sation •. 

Let us assume that Mpq is the moment in the 

pth power of x and the qth power of y. Clearly 

-MOO c Area and MOl and 
MOO 

MIO are x and y tae coordinates 
Moo 

of the centroid. If we also rotate the coordinate 

axes so that MII becomes zero and normalise the area 

to unity the resulting transformation is equivalent to:-

(;] ~~ ~] [; - ~J :: • -
ee~ tan-l fill where c :: [Area • Cos e and 

.u20-p02 

s = JArea • Sin e 

• 
( . 
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~11,~20 and/k02 are central moments i.e. equivalent 

to Mll, M20 and M02 but substituting x - i for x 

and y - y for y. 

The transformed object will have the 

following moment values: MOO = 1, MOl = lIUO =0, 

Mll = O. Within a close approximation, i. e •. 

subject to quantisation errors, all objects of the 

same shape should result in identical transformations 

independent of initial size, position or orientation. 

The parameters e, Area and i, y (the centroid 

coordinates) may in many instances be useful.. 

However, we are only concerned with shape and will 

therefore only consider transformedobjects~ 

Moments M02 and M20 may be regarded ae 

the variance or spr~ad of the object about the x 

and y axes a.nd hence are two independent shape 

parameters. Higher moments may be taken but first 

let us consider the boundary of our normalised object. 

Along the Enes of Klinger(25) we may use 

a polar representation of the object with respect 

to a circle of unit area centred on the centroid 

origin, see Fig. 2(a). Although this boundary is 

not necessarily a single valued function for r = f(e), 

it will be so for a larger class of objects than 

Sklansky's convex set. Obviously the areas above 

and below the axis of Fig. 2(b) are equal. Many 

of.the object features are revealed through studying 

this boundary e.g. number of zero crossings, enclosed , 

areas between zero crossings and the angles at which 

zero crossings occur. 

_.56 _ 



., 
. > 

. , , 

t 1-'. 

9~. 
( (,,) 

( 

.- 56A -



An interesting possibility is to consider each 

group of points between zero crossings as a subset and 

to make measuremonts upon each 01' these subsets as a 

separate entity. Rosenfeld(l) mentions the analysis 

of pictures using subsets but his main interest lay 

in the separation of objects within a picture rather 

than the segaentation of individual obj ects., If 

subsets are to be used for shape analysis a primary 

requirement will be the stability of subset formation 

when the object undergoes small distortions.. One 

therefore must consider situations in which similar 

objects will produce different subsets.. Unfortunately, 

as Fig.2(b) snows the angle at which the r = f(e) line 

crosses the unit circle is normally quite small. 

It is therefore reasonable to suppose that the shape 

ef subsets will vary considerably under small distortions 

as will the e values at which zero crossings occur~ 

This form of segmentation was therefore not considered 

suitable for further f"nalysis, but the general idea 

of segmenting the boundary into local subsets was 

thought ,to be good., 

Some objects have a sm~ll internal sub-area within 

which the centre of a single valued polar transformation 

r = f(9) may be situated although this area need not 

necessarily inclu1e the centroid •. Objects possessing 

such an area are described as star-shaped e.g., by 

Rosenfeld (1)., 

( 
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An object whose boundary is convex has a single 

valued polar transform for all internal points~ 

It is apparent tha'. the boundary would be . 
easier to handle if the two independent variables 

could be considered as one independent and one 

dep~ndent variable for all classes of closed boundary. 

Two such variables are distance along the boundary 

and slope., The slope is most conveniently expressed 

in terms of the angle to a principal axis., An inter-

polation routine is needed to enable the distance along 

the botmdary and the local slope tc be evaluated as 

accurately as possible., Unfortunately, as Hawkins(34) 

poi~ts out, both these variables will be sensitive to 

small distortions due to quantisation error and image 

perfe ctions., Indeed, unless the first derivative of 

the boundary is continuous the line will be disjo~nt. 

Despita the above drawbacks, Zahn(35) has 

recel!tly published an article in which this trans

formation itl approximated using Fourier descriptors. 

These are essentially Fourier coefficients of the 

line manipulated to give size, position and orientation 

invariance .' Zahn states that low order (low frequency) 

coefficients are good shape descriptors and are resistant 

to change under small image distortions. He illustrates 

t~e reconstruction of a boundary, using low frequency 

descriptors only, showing a large boundary discontinuity~ 
• 

Nevertheless, the convenience of this transformation 

may well outweigh its shortcomings. 
, 
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; . 
Concavities. 

The problem of concavities has troubled 

nu~erous workers. Let us first consider a method 

of is')lating individual conc!:'.vities from the main 

boundary in order to study them more closely. 

Around any object it is possible to draw a line 

corresponding to a taugh~ly stretched string. 

This line is the convex hull boundary, and, if the 

'object is convex, it will stay within a small 

distance of the main boundary, the difference being 

attributable to quantisation error. Since area 

measurements are less susceptible to error than • 

linear measurements we may consider each concavity 

as the area between the tru~ and convex hull boundaries. 

The number, size and shape of concavities are of 

great interest in the analysis of the shape of the 

parent object. Figure 5 shows five concavities~ 

Notice, in particular, that shape 5(c) suggests the 

overlap of objects more s":;rongly than the others •. 

The factors involved in reaching this decision may 

be enumerated:-

1) Acute angled vertex. 

2) . Smooth boundary elsewhere. 

3) Slope continually increasing except 

at discontinui~y. 

Unfortunately, all three properties 

depend upon lOCal boundary measurements and therefore 

• cannot be assessed accurately. On the other hand 

all three properties may be con3idered as features 
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, 
of the shapt. formed by the boundary points bordering 

on the concavity. Shape parameters generated from 

these points should allow the same assessment to 

be made whilst being less susceptible to small 

distortions. 

It can be seen from Fig. 5 that the sha~es 

of concavities are in no less general a class than 

the shape of original objects. A logical method 

of analysis is therbfore to consider each concavity 

as a new object. We h':l.ve thus defined a recursive 

procedure for analysing the shape of any object, 

namely, consider' each object to be a conveX' hull 

and a number of concavities, then treat each 

concavity as a new object. 

The above analys'is effectively segmenta 

an object into a number of convex components the 

algebraic sum of which constitute the original 

object. Figure 6 shows the segmentation and a 

tree illustrating the cOID!ection of convex 

components. This type of divis~on is uniquely 

defined for any object, The size of each convex 

component·will be accurate within easily calculated 

tolerances :l.nd most s~~ll distortions will have 

marginal effect. The connection tree is itself 

an important summary of the object shape •. 

• 
( 
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Applying our previo~s criterion of stability 

under small distortio~s we see t~at although the angle 

between the convex hull boundary and th~ true bounda.ry 

will normally be quite small, distortion of the true 

boundary will lead to a similar distortio~ of the 

convex hull., It follows that provided the distortiorr 

of the subset of boundary points on the convex hull ls 

representative of the distortion to the boundary as a 

whole, comparison of the convex hull and concavities 

will effectively be compensated for these distortions. 

Hence a marked gain in immunity to distortions is 

achieved over the segmentation shown in Fig.2(a)., 

There remains the problem of situations in 

which similar objects may give rise to a different 

component set. This will occur whenever the local 

radius of curvature on the boundary of a subset is 

very large. A small disoortion will form a new 

concavi ty and hence a new convex component., 

Fortunately, co~ponents so formed will be small in 

size and may thus be ignored by stipulating a threshold 

area below which any concavity will be included as part 

of the boundary of its parent component •. An additional 

bonus accrues from this procedure. le will perform a 

similar action to the formation of the MPP. nowever, 

choice of an area threshold rather than one based on 

the error tolerance of individual boundary points 

allows a number of distortions to be ignored in addition 
• 

to those arising from quantisation error. Specifically, 
, 
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when a cingle boundary point has been inaccurately 

me~sured due to a fault in image preparation or 

scanning its influenc(! upon the shape description of 

the object will be largely suppressed. Only one 

situation has been found in which the convex components 

of similar objects may be drastically different •. 

When two concavities are iL close proximity on an 

object boundary and the convex hull boundary s~anning 

them has a very high radius of curvature then a smell 

shift in position of the point or points on the portion 

of the convex hul'l between these two concavl. ties may 

cause them to merge into one., Fortunately, this 

si tuation will only occur rarely and l'lB.y easily be 

detected .' A possible solution would be to provide an 

object description which included an 'either or' 

structure for this type of occurrence. 

Every convex envelope may be considered as 

a 'host' subset to the boundary su'o area which it 

contains •. Suppose a parameter is calculated from all 

the points within the sub area and an identical type 

of measurement is then made using all the points in 

its convex envelope clearly the ratio ~f these measure

ments will be constant under a large number of possible 

distortions. 

The above method of segmentation was considered 

sufficiently stable to be useful in shape description • 
• The convex components formed could be individually 

( 
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analyse« by a number of techniqup.s thereby making its 

implementation independent of the component features 

later extracted •. Methods for tte computerised 

decomposition of an ordered boundary point list intJ 

convex components were therefore examined~ 

An initial step was the selection of the 

convex hull vertices from the boundaI7 point list~ 

A simple test to determine these points could be based 

upon the fact that any point which fell inside a 

straight line drawn between two other points could be 

eliminated •. Unfortunately, the definition of what 
• 

constituted 'inside' was found to present problems. 

Also even assuming this could be overcome the amount 

of work involved in using this test alone would be 

considerable •. Recalling that the convex hull vertices 

were the, same points whir:il influenced the value of 

Feret's diameter in any direction, the following model 

was considered .. Suppose the objE'ct was cut from a 

sheet of cardboard and then fixed to another sheot by 

a drawing pin. If the object was then rotated about 

the point at which it was fixed the point on the 

boundary with maximum projection in a given direction 

would be a convex hull vertex.· This model allowed 

a different test for use in rejecting points. 

Consider an internal pOint xcf~ and two boundary 

points xlYl and x2Y2 • Let the angle of the line 

• from XoYo to xlYl to a given ~xis be 91 and. the angle 

of the line from Xo~ to X 2Y 2 be 92 so that the angle 
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between the two lines is 92-91 • Also, let the lengths 

of 

as 

now 

and 

these two lines be HI and H2 , H2 may be rejected 

a convex hull vertex if:-

HI Cos(92-91 ) - H2 ~ 0 

Cos(92-91 ) = Cos 61 Cos 92 + Sin 61 

and Cos 91 = YO-Yl 

HI 

Sin 92 

with similar expressions for Sin 62 and Cos 92, 

Substituting in the above inequality we obtain:-

multiplying by H2 :-

(xO-x1 )(xO-x2)+(YO-Yl )(YO-Y2 ) - H2 
2 ~ 0 

but H/ =- (XO-x2)2_(YO-Y2)2 

substituting and rearranging:-

~. 0 

The above condition was found to be necessary 

but not sufficient for the rejection of the point 

In order to eliminate this point it was found 

that a further point x
3Y3 on the other side of x2Y2 

from xI Yl would have to satisfy the condition •. 

• 
These two conditions are of ab0ut the same , 

complexity as the test originally mentioned but 

appea~ed to solve the difficulty of whethe~ a point 

- 64 -



is inside or outside since this is effectively 

measured as the distance from xoYO' A computer 

routine based on this test was implemented and 

appeared both simple and successful until a group of 

pOints were tried which represented a very narrow and 

higHy concave obj ect., For this obj~ct a boundary 

point occurred which s~btended an angle ~ore than 900 

different to that of both its neighbours. 'This point 

was accepted by the routine.as a convex hull vertex 

even though it lay at the 'bottom' of a deep concavity. 

A reappraisal of the situation was necessary •. 

It soon became apparent that difficulties arose mainly 

through attempting to select the convex points using 

a single test •. A more det~iled study was made of the 

nature of the convex hull~ Figure 7 shows some of 

the properties of this hull, in particular it may be 

seen that the four points at the extremioies of the 

object in x and y directions will always be convex 

points •. The points at minimum and maximum x coord-

inates may be considered to divide the boundary into an 

upper half and a lower half. No more than one point 

at each x coordinate along the upper half of the 

boundary can be on the convex hull, hence the shaded 

points in Fig. 7 may be eliminated as convex points., 

A similar test removes points from the lower half of 

the boundary • It is also known that the convex hull 
• will monotonically rise or fall between each of the 

neighbouring four extremal points., A test using this 

fact may also eliminate a number of points., Final 
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selection may use the property that every convex 

point will lie outside a line drawn between any 

other two boundary points. In this context, 

'outside', may be tested as above for the upper 

bounuary half and below for the lower boundary~ 

The area of each concavity may now be 

calculated as previously defined and those above a 

-threshold size noted as new obJects. Points 

within concavities smaller than the threshold may 

be considered to lie on the convex hull. 

Simple moments may be calculated from 

the points on each convex hull by any of the 

methods outlined previously. 

Hu(43), showed that simple moments could 

be converted into parameters invariant with respect 

to size, poaition and orientation, thereby obviating 

the need to transfo:rm the boundal'y point coordinates. 

He men~ions two classes of such invariant moments; 

absolute i~variants, which are totally independent 

of the above variables and relative invariants in 

which the values of the variables are standardized. 

Since the former are computationally difficult to 

derive, invariants about the principal axes have 

been used._ 

-, 

( 
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Machine Generation of Invariant Moments. 

Initially objects a~~ known by an ordered 

list of boundary points. By definition 

+00 +06 

Mpq = J xP J yq dy • dx 
-00 -0() 

gives moments for the object in arbitrary orders of 

x and y. In digital terms the moment of an object 

may be considered as the sum of the moments of the 

digitised squares of which the object is composed, 

i.e. if~s is used for the sum of all the squares 

(picture points) within the object then 

Mpq -l - s 

(x+t)p+l_(x~})p+l 

p+l 
• 

dy • dx 

(y+t)q+l_(y-t)q+l 

q+l 

where it is assuoed that each square is of unit side 

centred at x,y. For squares with equal x values, 

and y values ~hich differ by unity, summation of 

their moments results in the cancellation of all but 

the extremal terms in y. Hence the moment of a 

chord may be expressed as:-

(xtt)p+l_(x-t)p+l 

p+l 
• ymaxq+l _ yminq+l 

q+l 

so that Mpq - " - <'c (x+! )p+l_(x-t )p+l • 
p+l 

, 

( 
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where ~c indicates the summation of all the chords. 

It is therefore a simple mattp.r to calculate moments 

from the boundary points since it is knovm whether 

y values are upper (ymax) or lower (ymin). 

Recalling the binomial theorem we know that:-

n::p 

(p-n) lnl 
n=O 

Scaling the moments for size invariance 

is a straightforward procedure since MOO is the area. 

To make the object of unit area it is necessary to 
• 

divide each linear distance byJMOO, from (E5) we get:-

Mpq (norme.lised) = MPq!MOJ(p+q+2)/2 (E6) 

Fositional invariance may be obtained by 

shifting the o~igin of the coordinate axis to the 

object centroid i,y where i = MIO/MOO and y = MOl/MOO 

Substituting x::x-x and y::y-y into 

)Lpq :Lc (x+!_x)p+I_(x-!_x)p+1. 
pt-I 

(E5) we obtain 

( - )q+l ( . - )q+1 ymax-y - ym~n-y 

q+l 

using the binomial theo~em 

n=p·H n .. p+l 
,(p+1)l . ( 4)p+l-n(_-)n_ " (p.H)l (-t)p+l-n(_x/ 
<"'o(p+l-n)lnl x 2 x £"o(p+l-n)lnl x 
11= n .. p,,,, = 

pt-I 

• 
~q+l(g+l) l ymaxq+l-m( _y )m_ ~q+l(g+l)l yminq+l-~-y' 
L.. (q+1-m) lml L:.. (q+l-m) lm! 
m=O m .. O 

q+l 

• 
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---------------------------------------------------------------------

rearranging:-

,.u..pq = plql~:::P (_~)n • ~q (_~)m 
n:O nl m=O iu •. 

Mp-n g-m 
(p-n) 1 (q-m) I. 

" 

(E7) 

Substituting values of p and q into (E7) 

and making the additional substitution9 of x:MlO/MOO, 

y:MOl/MOO we may obtain the relations given by 

equations 11 of Hu(43).· 

If in equation (E4) our squares are of 

size 2AX by 2~y we obtain 

which for arbitrarily small ~x and 6.y i=~ ~p. yq 

If the coordinate axes are rotated by the 

angle a, x and y are transformed sach that x .. xcosa+ysina 
y=ycosa-xsine. 

substituting in the above expression:-

Mpq(rotated) =~s (xcos8+ysin8)P(ycOs8-xsina)q 

• 

" n .. p 
C:'::: s Z 

n=O 

:; 

• cosep+q- n- m sinen+m 

.. l 
,s 

p-n-m q-m-n x y 

( 
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Subst.ituting and rearranging. 

Mpq 
n=p n ro--q 

(rotated)=plql~ (sine) (cose)p-n.r (-sin9)m'~COs~)q-m 
n::.O nl (p-n)! m,.O m!. q-m ! 

.Mp-n+m q-m+n (E8) 

Combining equations (E6), (E7) and (E8) 

invariance from size, poeition and orientation may 

be obtained. It will be seen that the transformed 

'moments are functions of all simple moments of equal 

or lower order. 

By choosing the angle 9 so that )tll (rotated)= 0 

i.e. e = t tan-l 2~~11 
P.20-)l.02 

9 is determined to be one of four angles at 900 , 

for all objects which are not symmetrical such that 

/1.11 ... 0 and }J..20 = jl.02 • To determine 9 uniquely a 

further constraint may be made. A simple choice 

is to make bothp..03 and p.)O ~ o • 

• 
, 
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Segmentation into internal COllvex sub-areas. 

It is also possible to divide an enclos~d 

rp-gion into convex sub-areas by internal segmentation. 

In ord~r to uniquely specify ~uch a procedure a 

number of rules are necessary. 

segmentation shall:-

For instance 

1) Avoid creating new concavities. 

2) Cause a minimum increase in the 

number of sides. , 

3) Avoid flegmen·ting convex subsets. 

4) Avoid producing acute angles. 

5) Minimis~ artificial segmenting 

lengths •. 

6) Exploit symmetry. 

As figure 8 shows it is essential to specify 

the order in which these rules are applied and in 

some cases to alter this order or specify new rules 

when a particular rule cannot be adhe~ed to. The 

figure contains two convex subsets but a new concavity 

is produced when the two concave pOints are joined. 

If'rule 1 is given prioritY,and the lower concavity 

is considered first, three possible segmenting lines 

occur, two of which are continuations of the lines 
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adjacent to the concavity and the third perpendicular 

to the side opposite. Comparing the first two of 

these options that are shown in Fig. 8 (a) is more 

attractive since it avoids creating an acute angle. 

Although shorter than the other two,the perpendicular 

line creates two new sides (and angles) rather than 

one as shown in 8 (d). If the shorter collinear line 

is chosen (as in 8 (a» then the vertex ~roduc€d is 

collinear with one line of the upp~r concavity hence 

only one new side is produced by the segmentation 

shown. Notice, however, that two acute angles are 

produced and that although a coincidence of the 

fi~lre is exploited the segmentation itself does not 

appear natural, the shorter collinear extension 

shown in 8 (b) appears preferable even though the 

total number of sides is one greater.-

In Fig. 8 (c) rule(l) is contravened, in 

that either of the segmenting lines in isolation 

produce a new concave angle. The lille joining two 

concavities appears to be a natural segmenting line 

and it is interesting to note the effect of concave 

points upon the M.A.T. 

Fig. 9 shows that whilst some concavities 

produce an internal starting point for the skeleton 

which then proceeds in opposite direction3 others 

merely create a curvilinear extension to existing 

skeletal branches.- There is a close correspondence 

between this distinction and that of , whether 
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concavities should be considered as evidence of 

overlapping objects. 

Using the line joining concavities in 

Figs. 8 (d) and 8 (e) we see two more possible 

segmentations. Since a number of other segmenting 

lines could have been drawn it is clear that any 

method for internal, ,segmentation will not be 

straightforward and is likely to necessitate a 

large:"number of rules and exception conditions to 

avoid ambiguities. 

Summary of Findings" 
" 

Let us therefore summarise our findings 

concerning computer extraction of shape parameters •. 

We have a list of boundary points subject 

to known quantisation errors. It is possible to 

calcuJate areas contained by groups of these points 

fairly accurately since errors tend to cancel. 

However, estimates of local boundary length and 

slope are highly sensitive to errors ~nd parameters 

calculated using them, e.g. perimeter, are subject 

to cumulative error. 

Low order mompnts will have low relative 

errors and weighting factors may extend their 

usefulness ." Feature extraction may be used, in 

characterisation but great care must be taken to 

ensure that the features chosen are invulnerable to 

s~ll distortions. Features whose ratio of area 

to perimeter is high, i. e. approximately circular,. 
( 
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appear more stable than others since errors occur 

at tl'>.e edges. If sub-are~s are to De considered 

some method of segmentation is necessary. The 

moments and connect~ng structure of segmented 
\ 

components are thought to be most useful in shape 
! 

characterisation •. 

Picture language theorists consider such 

components as primitives or symbols from which a 

picture language is constructed. Our primitives 

are closed planar figures and in general convex 

polygons. To uniquely specify a general polygom 

2n parametp.rs are needed where n is the number of 

sides. Economies of this number are possible where' 

some parametric relations are assumed e.g. a square 

requires only four parameters, size, centre 

coordinates and orientation. Primitives such as 

the circle and ellipse are infinite sided polygons, 

with special relations between si.des. The medial 

axis transform may be considered as the characterisation 

of the object boundary byia number of circles. 

Each skeletal point is a circle centre, its 'height' 

being the radius. The area to perimeter ratio of 

a circle is of course a minimum. Since circles 

are completely characterised by size and centre 

position the skeleton gives complete inforlliation 

for the infinite number of circ1es involved. 

Since the circle is itself a convex polygon it'is 

not'suprising that skeletons of concave curves are 

more complex. This insight could epable the boundary 



to be characterised by a smaller number of primitives 
\ 

(circles) and hence a more compact representation. 

Other primitives might also be used to. construct 

skeletons but this would necessarily require the 

standardisation of orientation prior to skeleton 

construction and/or an increase in skeleton 

aimensionality. 

Ideally, it should be possible to produce 

a list of feature/shape parameters for a~ given 

object, each item in the list being independent of 

the others. Initial list members would indicate 

general shape categories whilst later memb~rs would 

deal with progressively finer detail. The entire 

list would completely characterise the object., 

Similarity of two objects could, then be judged by 

the number of similar list items before a signifi-

cantly dissimilar one. In practice a number ut 

later members of the list would be discarded as 

inessential for the required task •. 

There is some evidence to suggest that the 

human eye-brain combination functions in a similar 

manner, the number of list items involved varying 

according to object complexity and frequency of 

encounter. It is significant that man finds no 

difficulty in recognising other individuals; partic

ularly of his own genus, but will not normally be 

able to distinguish individual sheep by facial 
• 

features. A shepherd will often have this ability. 
( 
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The inference is that remembered human facial 

feature-'lists are usually l':mger than those for 

sheep. A more complete discu~sion of this topic 

rImy be found in Walthen-Dunn(44) and its 

associ~"ted references. 

" 

• 

( 
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COMPU~ER IlVIPLElvIENTATION. 

Although work on the two problems 

discussed in Development of Theory has been carried 

out expressly for this thesis it is important to 

stress that neither technique could have been used 

wi thout the background experience and, in particular,. 

the software written during -i;wo years of previous 

research. 

Details of the edge following routine have 

already been mentioned(29} and onl~ the output from 

this procedure will be described here. Vectors of 
• 

boundary points in adjacent positions and with 

consecutive x coordinates are held in a data structure 

corresponding to a plex, as described by Ross(45) •. 

Effectively the list of y coordinates is headed by 

a number of parameters describing the vector, its 

interelation with others, and pointers enabling access 

to other: vectors, in which boundary points are 

continued in either dire~tion. It is therefore a 

. simple matter to access all the boundary points of 

an object given a single key entry value. Edge 

following is performed by the subroutine XYNSTACK 

which appears .ogether with the other routines 

mentioned in Appendix D •. 

Plex manipulation is handled by a series 

of short subroutines which greatly simplify other 

programming. To avcid excessive subscripting 

arithmetic these have been written in PLAN, the 
( 
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ICL 1900 series assembler language. Other useful 

software includes a subroutine enabling array aizes 

to be specified as data(46) and a special error 

diagnostic/recovery routine.-

When a complete enclosed region has been 

found the key value is passed from XYNSTACK to the 

subroutine PARTICLE which determines whether this 

region is in fact an outer boundary or ahole~ 

The key entries for holes are stored so that when 

an object is found a search for holes which it 

contains may be made •. 

When an outer boundary is detected the key 

value is passed to the subroutine PARPAR which 

supervises evaluation of particle parameters.. The 

version of this routine given in appendix D first 

calculates a number of parameters details of which 

are given in (47).- Following an optional call to 

PARTPLOT, which plots the particle boundary on the 

graphplotter, control is then passed to :'ARTMOM 

which supervises the procedures writt~n for this 

thesis. 

In the author's experience careful planning 

of program structure results in a more compact end 

product and conside~ably assists debugging and 

subsequent modification. One's first ~ask was 

therefore to divide the overall problem into smaller 

units,to be written as FORTRAN subroutines.- Since 

convex decomposition was conceived as a recursive 
( 

process a supervisory routine was necessary to organise-

the order in which components would be analysed. 
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The input to this routine (PARTMOM) comprises the 

key v2lue enabling access to the boundary,point list 

of an enclosed region and the threshold area value 

(AMIN) of the smallest significant component. 

Currently this threshold is set as a constant within 

the program but could easily be read as data or 

calculated as a percentage of total object area.-

YARTMOM first sets up a number of oonstants including 

a look up table for factorials._ It then sums the 

total number of points in "he boundary list (NTOT). 

The subroutine MOMSr,T is next called. This routine 
• 

evaluates simple moments for the entire enclosed 

region. Effectively MOIvlSET calculates the x and y 

coordinates for every boundary point.- If the point 

is on the upper bounda~ half then the moment values 

calculated for each point will be polynomials of x and 

y values for which the coefficients of y terms will be 

positive.- If the point is on the lower boundary 

this coefficient must be made negative. Moment 

contingency values for each point are calculated 

within the routine SMOMS. Two x values are supplied 

to this routine XA and XC which are equal to the x 

• .1; coordinate of the current point - 2' If XA) XC upper 

boundary values are calculated otherwise a sign reversal 

occurs in the arithmetic within SMOMS and lower 

boundary values result. SMOMS adds the moment 

conti~gency values for each point into the array MOM 

in which the sim~le moments for the entire boundary 
( 

- 79 -



are consequently summed •. PARTMOM next calls MOMINV 

which converts simple moments held in the array MOI,I 

into invariant moments about the principle axes •. 

Although the equations (E5), (E6) and (E7) are 

fairly simple to evaluate consider'able savings in 

computation can be achieved.by careful choice in the 

order of evaluation.. 'It had already been decided to 

store the simple moments within MOM as a tr~angul8r 

array. In practice this structure m'lst be held in a 

single dimensioned vector •. Both space and time in 

p.xecuting subscripting arithmetic are saved using this 
• 

storage form as opposed to occupying part of a two 

dimens:.onal rectangular array.. Unfortunately, the 

mapping of the moments of various orders into the 

appropriate location within the vector must be specified 

as part of the program. Area and the centroid 

coordinates i and y may easily be calculated from the 

simple moments •. 

evaluated:-

(_;:,n 
=Z.~ 

n! 

Two vectors of factors are then 

and (_;,;,rr YFAC .. ~ for n"'0,l,2, .••• R 
n nl. 

where R is the highest order of moments calculated •. 

At the same time size normalisation is combined with 

the scaling factor required in position invariance~ 

The equation used is:-

• Mpq = 
p!.q! MOO(p-q-2)/2 

( 
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The position invarianc'e equation (E6) 

involves moments of all lower orders in the calculation 

of each invariant moment •. In order to generate these 

moments in situ Le. for the, results to remain in the 

same vector (roOM) it is necessary to compute highest 

order moments first. The items within the vector are 

therefore made invariant in reverse sequence. The 

equation is:-

n .. p 

Mpq = p!q! r 
n ... O. 

:!FAO • 
n 

m-q 
~ 
m-O 

YFAC • Mp-n q-m m .,-.. 

It is now necessary to determine the orientation angle 

e or more specifically its sine and cosine. The 

relation: 

C2 s 0.5+0.·5/ /2.Mll/(M20-M02:,2 

is used where C2 will be either ('os29 or Sin2e. 
The Rmbiguity is resolved by evaluating the expression:-

(2.C2-1)Mll-(M20-M02).Sin e.cos 9 

which should approximate zero when the correct choice 

is made., It is now necessary to determine the quadrant 

in which M30 and M03 are both positive. This is 

achieved by effectively subjecting the values of sin e 

and cos e to a 900 ~otation and evaluating M03 and M30 

using equation (E7) until the required values are 

found • The final value 9 is then determined. It 

• is not possible to evaluate equation (E7) with values 
( 
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within NOM remaining in situ unless the new 

invariant values of moments for each order are 

stored temporarily. The array YFAC is used for 

this purpose. 

evaluated: 

Two new seJ;s of factors are also 

SFACn _ (-sin6)n and CFACn - (cosS)m for naO,I,2, •• R. 
n!. --nr-

Equation (E7) now becomes: 

Mpq 
n=p n = plq!. I (-1) SFAC 
n=O n 

m .. q 
CFAC ."'" SFAC CFAC p-n ~O m q-m 

.' Mp-n.m q-m+n 

At the completion of invariance calculations 

for each moment order the new values are returned to 

the appropriate positions in the array MOM. Since 

the values of MOO, MIO, MOl and Ml1 are known the 

corresponding locations irr·iYlOM are overwritten by 

area, x, Y and 6 respectively., 

On returning to PARTMOM a number of faCetors 

for use in component nOTmalisation are set up. The 

precise method chosen for this normalisation is to 

relativise the size of all components to that of the 

original object •. Tha same linear scaling factor is 

used to calculate the centroids of components relative 

to that of the original object. Values of x and y 

are measured along the principal axes of this object., 

( 
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Orientation angles for componbnts are measured 

relative to these axes. In this way all moment 

values of components may be considered as shape factors •. 

The area, centroid coordinates and orientation of the 

original 'Jbject are preserved as measurements relative 

to the original digitisation grid. These measurements 

and the other moments calculated are printed on the 

line printer using subroutine MOMOUT which also labels 

el1ch component •. 

In order to establish which component of 

an object is associated with a given set of moments 
" 

a component labeling scheme has been devised. The 

object as a whole and ito convex hull are referenced 

as components 0 and 1 respectively •. Convex sets 

associated with the concavities of objects are 

labeled as comp(ments 1.1, 1.2, etc. in clockwise 

order around the bot~dary. The decimal labeling 

may be continued to any depth thus component 1.2.). 

is the convex set associated with the third concavity 

around the boundary of the component L.2~ 

Subroutine MOMC(1N was written to handle 

completely the calculation of simple moments for a 

single convex component from a clockwis~ list of contiguous 

boundary points. Figure 6(b) shows that with each 

convex component may be associated a level or 'depth'. 

The original object and it's convex hull are at level 1 

whilst their concavities are at level 2 etc. An • 
important parameter which must be supplied as data to 

.. 
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MOMCON has a value which varies a.ccording to whether 

the !:'.:lxt component to be found is of odd or even level. 

It enables MOMCON to determine whether upper or lower 

boundary pOints should be 80ught along a section of 

boundary comprising upper points of the original object 

boundary. The list of boundary points from which a 

convex component is to·be extracted is described by 

three dat& items. The list vect0r or 'bead' within 

which the first boundary point coordinate is stored, 

the position of this coordinate within the bead and 

the total number of points in this boundary subset. 

These data items are held in corresponding elements 

of the three arrays NS, XS and YS respectively. After 

extracting this information from the arrays and 

dt~rmining whether th~ first point was an upper or 

lower point on the original object, IvIOMCON calls· the 

subroutine CONP. 

CONP produces an ordered list of convex points 

from the list supplied. As mentioned in 'Development 

of Theory' this task proved more complex than first 

imagined and even when "he methodology described was 

finally conceived its implementation was far from 

trivial. Figure 10 shows the boundary of a concavity 

with three segments mhrked AB, CD and EF. For ease 

of manipulation CONP unpacks the list of boundary points 

into the three arrays previously mentioned which are 

used in this instance to store the number of each point 

in the list and its x and y coordinates respectively. 
( 
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• 
At the same time the pOints corresponding to Band D 

are located. It should be noted that segments AB and 

EF may not necessarily exist i.e. pointC may be the 

first in the list andlor poir.t D may be the last. 

In the former case points Band C may be considered 

to be co-incident. Assuming that the subset supplied 

is of the form shown in Figure 10 a test is first made 

to confirn· that segment AB exists. The boundary list 

is then searched up to point B and for each x coordinate 

that point with the largest y coordinate is selected 

as a prospective convex point(Tl). Convex pOints 

are noVl extracted from those selected using tne straight 

line test previously described(T2). Since in each 

case non-convex points are eliminated from the list 

up to point B the resulting convex vertices may be 

stored in the same locations that these boundary points 

formerly occupied. Effectively, the complete boundary 

point list is contracted to a list of convex pOints only. 

Tests Tl and T2 are now applied sequenti~lly to the 

boundary pOints after point B and up to and including 

point D. In each case the contracted list is stored 

in consecutive locations to those occupied by the pre-

v'iously dtermined convex points. A test is now made 

to establish if D is the last boundary point and if 

not any remaining pOints i.e. segment EF, are subjected 

to the same tests and contraction. The final output 

is therefore an ordered list of convex points stored 
• 

in three arrays specifying x and y coordinates, and 
( 
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'number of this point in the or:i.ginal boundary point 

list. ~ests TI and T2 will vary according to whether 

an upper or lower bounda~J is sought. In many instanc~s 

it is required to move corresponding elements of the 

three arrays mentioned and a small utility routine (MOVEP) 

has been written for this purpose. 

MOMCON now zeroises the moments array (MOM) 

and calculates simple moments for points spanning segment 

AF of Fig. 10. This task is performed first since 

it is known that no concavities may occur in the sef,IDent 

and the data required is readily available. To calculate 

moments for the rest of the component subroutine li.t:;ONSET 

is called. 

As previou~ly mentioned any concavities of 

area less than A}lIN are ignored i.e. bou~darJ points 

within these concavities are assumed to be on the convex 

hull. If this assumption were not made areas, and 

other moments, would be overestimated. MCONSET therefore 

computes in turn the area of each concavity. The ' 

procedure is very simple since in all cases the convex 

hullwill follow a straight line between neighbouring 

convex points. The y coordinate corresponding to 

each point on the boundary point on 'the boundary which 

this line spans is obtained and subtracted from the 

coordinate of the point itself. Summing these 

differences gives the required area. This area is 

compared with AMIN and moments taken either for points 
• 

along the convex hull line or f~r those on the .rue 

boundary. In:the former case details of the boundary 

points within the concavity, i.e. their number and 
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the boad and looation within the bead of the first 

point, a:~ stored in the same manner as the data for the 

whole component. Once again ohe same locations within 

the three arrays may be used since the list of concav~ties 

will be shorter than those of convex points and will 

not be entered until the convex points'ovenvritten 

are no longer needed. The number of concave subsets 

so listed is also returned to PARTI~OM via MOMCON. 

The simple moments returned by MOMCON are 

treated in a similar way to those output by MOMSETi 

i.e. they are made invariant by MOMINV and printed 

by MOMOUT. Before printing, however, the size, centroid 

coordinates and orientation are relativised with respect 

to the cooresponding values of the original object. 

PARTMOM now tes"ts the number of new subsets found. 

If this value is non-zero then it is entered in the 

next available location of the array SET. This array 

holds the number of known components which have yet 

to be analysed at each level vf the connection tree. 

The next component processed will be the last located 

as a subset of the previous component. This component 

is the last listed within the three arrays NS, XS and"" YS 

which are used in the manner of a push down stack to 

hold details of outstanding components. When a 

component is found to have no concavities PARTMOM 
subtracts 1 from the value of SET at the current level 

and test if any outstanding components remain at this 
• level. If not the level indicator (JR) is diminished 

by 1 and the next level up tested in a simila~manner. 
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In this way components are systematically analysed 

with minimal storage requirement. The progra~~e is 

alsu simplified. Vfuen no more components remain control 

returns to XYNSTACK which continues to process scan 

data until another enclosed regio~ is completely 

located. 

The edge following routine itself is designed 

to handle one complete picture but may be c~lled 

repeatedly allowing any number of pictures to be 

processed in a single computer run. All input of 

pictorial information is effected via the input 

routines PREAD8 and PREAD5 thereby' enabling any 

peripheral to be used for this purpose without change 

to other routines • 

• 

( 
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RESULTS AND DISCUSSION. 

Figure 11 shows a graphp10tter 

representation of the boundaT.ies of four objects 

(lunar dust p~rticles). These'were obtained 

from a raster &can which was processed by the edge 

following routine (XYNSTA.CK), adjacent boundary 

points were then jo1nedby straight lines on a 

Calcomp incremental plotter. The four objects 

may all be loosely described as compact but each 

of them contains two or more concavities which 

should be considered significant for the purpose 
• 

of shape analysis. The computer output shows 

that even ignoring size, pusition and orientation 

information. the objects may VJ~ry easily be 

distinguished. This example is, of course, fairly 

trivial and was used mainly to debug the computer 

routines. One interesting featu.re, however, is 

the cc'ncertina undulations of the boundaries in 

Fig. 11. These were caused by backlash during 

scanning and may thus be considered as noise., 

It is apparent that any parameters based upon 

local boundary properties, or:g. perimeter, 

would be grossly affected by this fault. Using 

a convex component moment analysis it is merely 
c 

necessary that the area threshold AM!N exceeds 

the size of the small concavities produced for 
• only marginal differences to occur in the resulting 

moments. S..tch a choice of t(,resho'ld will not 
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Fig. 11. Four (lunar dust) particles. 
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prev~nt the location of 'genv~ne' concavities 

prbvided they are larger than AMIN. The optimum 

c~lOice of AMIN in this examplf. is not critical but 

could feasibly become important in the event of 

more gross distortions. Several strategies have 

been consj.dered for the automated selection of the 

threshold. A simple method would be to consider 

the distribution of concavities versus threenold 

to be bimodal and to choose AMIN as the minimum 

frequency between modes. 

Object number 5 has a particular+y complex 

shape and proved to be ideal for finding minor errl)rs 

in program logic which did not aff(:ct the processing 

of the other particles shown. It is interesting 

to note that of 540 boundary points listed for this 

particle by XYNSTACK only 25 were convex vertices. 

318 of those remaining were found to be within 

significant concavities, leavin,~ 198 within concavities 

smaller than AMIN. For this scan, AMIN was set to 

0.5% of the area of each particle. 

Referring to Table 1, ~lthough objects 3 

and 4 have the same number of convex components the 

connection tree of each of the four particles is 

different. This structure could therefore be used 

to distinguish them. If only component O. were 

calculated the second order moments 1.'[20 and M02 

wo~ld also allow distinctiQn. 
, 
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Tab1r, 1. Analysis of Lunar Particles. 
NUMeFR OF OR:Ecr I~ SCAN 1 

AREA r'EIlIM CIRC"l 
EO.O'~MtTER -ARITV 

132.6 1~1.~ 0.1174 

MARTIN DIA~ PFIlI~ AREA 
x V 

134.n 129.n 476.313804 

FERET 
X 

136 

cnMP'~ENT O. uOME~T~ OF INCREASING 

DIM1 
V 

142 

OR~ER QOW~WAQO AND INCREASING POWER OF V ACROSS 
(0. n'lOF 05) 

(68.45) (?63.t-) 

\ _' -_. w:..._ .... 

MAi\.CIiORD 
X V 

136 130 

O. 723'i E-01 (fJ. 73>\~) 
0.1349E-02 -O.25Z1E-0? 
0.1.049E-01 -O.4Q Q OE-03 

0.9n27'E-01 
-O.11?le-n2 

O.4)79E-02 
0.2925E:-!l2 
O.6715E-03 0~1634E-01 

COUPONFNT 1. MOMENT5 OF I~CIlEASI~G 
OROER DOWNWARD AND INCREASING ~OWER OF V ACROSS 

1.022 
-0.9?6f:.E-03 

0.7117E-01 
O.892RE-~n 
o .1(111F-01 

0.611141'-02 
1).33NIE-i)1 

-O.18/5E-02 
-O.3822E-03 

COMPONF.NT 1.? 
OROER OOWNWARD AND 

O.1029E-n1 
-0.5116 
0.162~E-1)1 

-O.1072E-n;> 
0.66521:-03 

0.171)9 
1.256 

-,). 4n~RE-03 
-O.10':l2E-03 

COMPO'lFNT 1.1. 
ORDER OOWNwARU AND 

O.1213E-n1 
0.3556 
0.?l60E-n2 
O.2819E-03 

-0.1922E-(\;> 

• 

0.3762 
?634 

-O.21'17E-02 
-O.5 9Q 3E-03 

n.Q(l5SE-n1 
-0.9'1401:-03 

O.449I\E-02 
0.2269E-:(\2 
0,5296E-03 0~1631 E-01 

MOMENT~ OF I'NCREASJ~G 

I~CREISJNG POWER OF V AeROSS 

0.5461' 
O.3~73E-01 O.5340E-01 
O.6?98E-02 O.2817E-02 O~68R3 

MOMENTS OF INCREASING 
INCREASIMG POWER OF Y ACROSS 

1.16<) 
-0.4227E-01 0.3424 
O.6~82E-02 O.4436E-02 
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Table 1. cont Id 

~1J"BER OF neJECT PI SON ~ 

ARFA ~FRH' CIRClIl 
En.nl'~ETER -ARIY' 
15?~ 222.~ 0.6R4 

M~PTT~ nlAM 
x , 

136.0 171.4 

PHIM ARfA 

699.2 18224 

FEPET 
X 

143 

COPPONFNT O. NO~~NTS OF INCREAS!NG 

DIIIM , 
180 

OROER DOWNWARD ANn INCRE_SING POWEP OF Y ACROSS 
CO.1 Rnf 05) 
(201.<;) (111.7) 
0.6159E-01 (1.317) 

-O.4~66E-n3 -O.Z8K1E-02 
0.7S34E-OZ -0.6~40E-04 

O.Hn 
O.3 fl 29F:-03 
O.';103E-02 

O.3955E-02 
O.3026E-03 

COMPONENT 1. MO~ENT$ OF INCREASING 
ORDER OO~NWARD AND INCREASING POWER OF Y ACROSS 

1.055 
-0.12I)OE-01 

0.69811'-01 
-O.3184E-02 

.,"X.CHnpr 
x , 

136 173 

-0. 1391E..,01 
0.6359 E-01 
O.3933E-04 
O.8042E-02 -0.5117E-i)i, 

0.1 0 28 
-0.462<?E-Oi, 

O.4716E-02 
O.4806E-02 
O.1049E-03 O;2100E-Ol 

COMPONFNT 1.4. 
ORDE~ POWN~ARn ANO 

0.8RIl9E-OZ 
-0.5829 

0.971RE-02 
-O.415RE-03 

O.2551E-03 

0.1096 
1 .4') 6 

-O.4879E-02 
O.33 6 7E-03 

COMP(HH:NT 1.~. 
ORDER DOWN~AR~ AND 

0.141I1E-01 
-0.5087 

0.1159E-01 
-0.61.2M-04 
0.2516E-(l~ 

-0.3293 
2.079 

-0.2055E-02 
-0.2121 E-04 

COMPONENT 1 .• ~.1. 
OROE~ DOWNWARD AND 

0.504i1E-02 
-0.4913 

0.737';E-02 
0.16001'-0'3 
0.124i1F-03 

-0.3336 
2.01\5 

-0.1402E-02 
0.73 HOE-04 

COMPONENT 1.2. 
ORDER DOWNWARD AND 

0.293'11'-01 
-0.1613 

0.3163E-01 
-O.22nF-02 

0.2120E-02 

-0.4761 
-~.OHO 

-0.20;>51'-02 
-O.7515E-04 

CPMPONENT 1.1. 
ORDER DOWNWARD AND 

0.7161F-02 
0.4640 

MOMENTS OF INCREASING 
INCREASING POWER OF Y AtROSS 

1.1.2", 
-0.2104E-01 0.5319 

O.1495E-01 -0.5354E-O~ 3.426 

MOMENTS OF INCREASING 
INCREASING POWEQ OF Y ACROSS 

0.6355 
0.714IH:-02 
0.742~E-02 

0.7289E-01 
0.1215E-02 0~7604 

~OMENTS OF INCREASING 
INCREASING POWER OF Y ACROSS 

1.086 
-0.16971'-01 

0.6R13E-07 
0.1879 

-0.1486E-01 2.392 

MOMENTS O~ INCREASING 
INCREASING POWER OF Y ACROSS 

0.2 7 61 
~.2<;7oE-01 0.~A31E-1)2 
O.7R6oE-02 -0.2107E-02 0~1786 

MOMF~TS OF I~CRE4SING 

INCREASING POWEP OF Y ACROSS 

( 

-0.347I'E-O? 
0.154I)E-01 
O.479PE-n~ 

0.5520E-03 

3.0l2 0.6411\ 
-0.4876E-07 -0.2691E~01 
O.18?5E-0~ 0.7464E-02 

- gOB -
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Table 1. cent 'd 

NIIMBER OF OIlJECT 1'1 SCAN 4 

ARfA P~RIM CIRC!JL 
EO.OIAMETER -~RITY 

152.4 ?1~.A Q.7n~ 

MARTiN DIAM PERI'" AREA FERF.T 
• Y ~ 

145.n 170.3 677.9 18236 164 

O~Ml 

Y 
192 

COMPONENT Q. 
OROER no~~wARD AND 

lO.1A24E 05) 

vn~ENT5 OF INCREAST'IG 
INCREASING POWER OF Y ALROSS 

0.133Jl 
0.5242E-02 O.1I294E-02 

"1A>:.CHORn 
)I Y 

~45 171 

(,279.1) (31"'.1) 
0.5302F-01 V.1S5) 

-O.200PF-0? -O.456~E-02 
0.S657f.-02 .0.1S22E-03 O.5"'9RE-02 -0.55110E-03 O~3596E-01 

COMPONENT '. MOMENTS OF I~CREASING 

ORDER OOWNwARn AND INCRE~SING POWER OF Y ACROSS 
1.073 

-0.10471'-01 
0.5274E-01 

-O.1951E-0? 
O.5645E-0? 

-0.3'i46E-02 
0.31411F.-0;> 

-0. 34'}<) E-02 
0.1203E-03 

CO'1PONFNT 1.5. 
ORDER DOWNWARO AND 

0.9377E-0;> 
0.3537 
O. 3'nQ E-01 

-O.3454E-n? 
0.2974F-02 

0.3479 
-O.2f1::>~ 
-0.6DIHE-02 

0.1354E-03 

CO,.PONENT 1.4. 
ORDER DOWNWARD AND 

0.98161'-02 
-0.1833 

0.1671\E-01 
0.B77E-02 
0.2 /,QOE-n4 

0.401',9 
3.117 

-0.48"01'-02 
-0.6540E-03 

0.1784 
O.4~55E-02 
0.4932E-02 

0.7381 E-02 
-0.4799E-03 

~OMENTS OF INCREASI~G 

INCREASING POWER OF Y ACROSS 

0.3;>35 
0.2~('9E-01 O.5016E-01 
~.9681E-0? -0.6578E-02 0~;>545 

MOMENTS OF INCREAgI'IG 
INCREASING POWER OF Y ACROSS 

0.6"'79 
-0.30 04E-01 O.2845E-01 

0.9877E-07 O.223JlE-01 1.020 

COMPONENT 1.3. MOME~TS OF TNCREASING 
OR~ER nOWNWARD AND INCREASING POWER OF Y ACROSS 

0.2539E-01 
-0.6190 
0.171l~F-01 
0.1155E-0;> 
0.1I43f,E-n3 

-O.9Q(,I3E-07 
-1.314 

-n.3506E-02 
-0.1924E-()3 

0.41175 
-0.2(,17E-01 

O.61120E-02 
0.7294E-01 
O.44117E-02 

COMPONENT 1.2. MOMENTS OF INCREASING 
OROER OOWNWARD AND INCREASING POWER OF Y ACROSS 

0.;>117E-01 
-0. 539PE~01 
0.4~01E-01 

0.2794E-02 
0.3693F-02 

-0.45>7 
().72tl7E-01 

-0.84>\5E-02 
0.9('201'-03 

'Cll"PO'lFNT 1.1. 
ORnER OO!HJIIARI) AND 

O.~AOOF-O? 

0.6042 
o • 133P.E'-01 
O.345AE-n~ 

-0.17JlR~-01 

-0.171,9 
1).5574 

-0. 55"1,.,E-02 
-O.11S9E~02 

0.2593 
-0.2<;S(,E-01 

0.972 /.E-02 
O.6037E-01 
0.4629E-03 

MOMENT~ OF INCREASING 
I~CREASINr, PI)WEq OF Y ACROSS 

( 

0.8434 
-O.3354E-01 0.2559 

0.5R2IlF-07 O.1711E-01 

goe -
1.617 
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Table 1. cont'd 

NUMRFR OF OAJECT IN SCAN 5 

~RF~ ~FRI~ CJRClll 
EO.OTA,~<TFR -ARITY 

216.4 ~1~.O 0.6111 

MAPTIN OIAM P~QTM AREA 
J( Y 

124.7 297.4 9911.0 ~67110 

FERET 
X 

170 

DIAM 
Y 

3 () 1 

coO/r'Ot-lENT O. 
OROE'Q nnWNWAQO ANO 

(0.31,nE os) 

MOQENT5 OF INCREASING 
INCREASING POWER OF Y ACROSS 

n.1 ~ 79 
-n.2S64E-02 O.7650E-02 

""X.C~ORO 

X Y 
166 29"1 

(t.QO.~) (7.77.11) 
O.41QOE-O, (1.460) 
O.1R50F.-03 -O.1Q7~E-02 
0.3~43E-02 O.4R70E-03 0.~87{'E-02 -O.1279E-02 0;5299E-01 

COMPONENT 1. MOMENTS OF INCREASTNG 
ORO[R DOWNWARD AND INCREASING POWER OF Y ACROSS 

1.149 
0.14fWf-01 
0.4502E-01 
0.9070 E-04 
0.3R73f-O? 

O.77Q{'E-02 
O.2VH .. O? 

-0.1164E-n2 
0.13 6IlE-03 

COfJPONFNT 1.6. 
OROER DOWNWARD AND 

0.9R4?E-02 
-0.5?Q3 

0.1759F-/)1 
0.3411E-03 
O. t.970E-(l3 

0.3561 
-2.7?'4 

-O.32'12E-02 
0.6!\~RE-04 

COMPONENT 1.'l. 
OROER DOWNWARD AND 

O.5383E-02 
-0.6797 

0.1617E-1J1 
0.5195f-03 
0.477;:>1'-('3 

-0.161111 
-1.173 

-O.5RIl9E-03 
O.3227E-03 

0.1441 
-O.8i'37E-03 

O.517RE-02 
O.3160E-n2 

-O.4121E-03 

MOMENTS OF INCREASING 
INCREASING POWER OF Y AtROSS 

0.442" 
-O.107?E-01 O.7t.64E-01 

O.6790E-02 O.8810E-03 0:3875 

MOMENTS OF IMCREASIN~ 

INCREASING POWER OF Y ACROSS 

0.4"177 
-O.2275E-01 

0.7077E-02 
0.4671E-01 

-O.5R53E-02, 0:5089 

COMPONENT 1.4. MOMFNTS OF INCREASING 
OROFR DOWN4APD ANO INCRE~SING PCWEA OF Y ACROSS 

O.R007E-01 
0.1727 
0.146SE-01 
0.2917E-03 
0.4449f-(l3 

-0.3375 
O.61)11E-01 

-n.3R~I\E-07. 
O.36'>!\E-04 

COMPONFNT 1.4.1. 
I)JlnEQ OI)UN'!A'lO ,~Nn 

0.152C;F-01 
0.5756 
-26.51. 
-370.0 
-4469. 

-O.26~4 
1.6<1R 

-1.942 
-34.tl7 

C"~lPONF"'T 1. 'S. 
OROEP nOU~!IARD AND 

0.2.;49 

0.57.97 
-0.140?E-01 

0.6890E-02 
O.9R77E-01 
0.1943E-02 0~S666 

MOMENTS OF I"'CRE~SING 
INCREASIN5 POWER OF Y ACROSS 

(l.6405E-01 
n.1742 0.6249E-02 
0.2982 O.3502E-01 0:7119E-02 

MOMF.NT5 OF INCREASING 
INCRF~SING POWEQ OF Y ACROSS 

( 
0.122Sf-01 
0.6912 
0.4MM-01 -o.8~32 0.2377 

-0.3577F.-0? 
0.473~E-07. 

-O.Q4SRE-O? O.2?41f w 01 
-O.60~RE-03 0.9n7~E-02 
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Table 1. cont'd 

CM'pn"PH 1 .;;>. 
ORnfP onw~w~pn A~D 

0.31162"-1)1 
0.431.9 
0.6A;;>?E-01 

0.3111\ 
2.511. 

"(j"E'IT~ OF TNCRE~SING 
1"CREAStNG POWER OF Y ACROSS 

0.170': 
-O.2~7AE-O? O.?528E-01 

I 
....... ~,,;:_ • , __ 4 _ .... _,'"' 

-0.1309F-1)2 
0.11)81F-1)1 

-I) .11~1 r-01 
O.13>14E-02 O.614?E-A7 -O.3819E-03 O~4009E-01 

r.OMpn~~Nl 1.2.1. 
nROfP OOWNWARD A~D 

0.$108t)E-,1;) 
0.3620 0.3178 

"O"ENT~ OF "'CREA!; I\'G 
tNCRFASTMG POWER OF Y ACROSS 

0.21 R/,E-1)1 
0.232 0 E-/)2 
0.1363E-02 

-1.n~6 0.5788 
-O.3338~-n3 -O.245QF-01 O.2218E-01 

Co. 779 S E-02 -/).24Y()E-()3' o. R163E-0? 

COMpnNHIT 1.1. 
OROER DOWNWARD A~D 

0.350SE-01 
-0.1213 

0.146RE-01 
0.7010E-03 
0.4R')PE-03 

• 

0.4005 
-3.127 
0.56')SE-03 
o .131./)E-03 

MOMENTS OF INCREASING 
I~CREASTNG POWER OF Y ACROSS 

0.5487 
-O.276 Q E-n1 O.1002E-01 

O.6132E-02 -O.2160E-02 O~6226 
• 

( 
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A,.more critical test of the shape describing 

paraIl'.cters was devised by sele')ting five of the 

objects shown in Fig. 12. This group of 115 sand 

partie1es was scanned twice in mutually perpendicular 

directions. The 'clipping level', i.e. the grey 

level threshold between black and white, and the 

magnification factor wer~ slightly different for 

each scan. Fig. 13· shows enlarged graphplotter 

outlines of the fiv!') particles from two scans. 

The objects were chosen to be fairly similar so that 

the power of the :)shape descr:lptors could be assessed. 

A previousl:, written subroutine (PARPAR) 
• 

was used to calculate 'circularity' as defined in 

appendix E. The values of this shape factor are 

given in ~able 2. for the two scans of five objects • 

Various methods have been used to compare them in 

attempting to determine the correct correspondence 

of objects. Table 2. shows assignments established 

by (a) considering the ob~ect in the second list with 

nearest circularity to each item in the first, 

(b) using the same procedure but with the first list 

considered relative to the second, and (c) by assigning 

objects in ascen~ing order of circularity. It may 

be observed that only object number 2 is consistently 

assigned corl'ectly. Corresponding values of area 

and perimeter are also compared in Table 2 both 

parameters allowing correct classification. 

Cohsistent valu~s of perimeter are partially attributable 

to the fact that the two scans were at 900
• 
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Fig. 12. 115 sand particles • 
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'. 

SCAN 1 .. , . 
• 

I: 

66. 

SCAN 2. 

Fig 13. Two f,cans of 5 particles from Fig. 12 • 

• 
( 
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Table 2 

Comparison of area, perimeter and circularity 

for the two scans of five sand- particles in figure 13~ 

Areaa and perimeters are normalised to make totals equal 

for both scans. 

'? 

Object Number Number Perim Pe rim Circul Circul _ Within Scan. used 
Scan 1 Scan 2 for Area Area 

-eter -eter --arity -ari7.y 

analysis 1 2- 1 2 1 2 5 82 1 840 823 113.-9 113.6 902 882 
7 67 2 1158 1172 143.6 145~3 840 823 

16 64 3 792 788 106.8 107.-6 934 911 
1'7 75 4 1256 1258 141.-4 141.4 889 876 

- 27 - 66 5 905 907 120.2 117.-7 887 894 
• 

Predicted correspondence of objects from two 

scans using:-

Nearest i11 scan 2 Nearest in scan 2_ Assignment in order 
to value in scan 1 to value in scan 2 0f Circularity value 
Scan 1 Scan 2 Scan 1 Scan 2 Scan 1 !.;can 2 

1 -3 5 -1 1. 5 

2 2 2 2 2- 2 
~ 

3 3 1 3 3 3 

4 5 5 4 4 1 

5 1 4 5 5 4 

• 
, 
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Table 3. gives mO!llent ana~.yses of the 

five objects from both scans. The objects may 

first be grouped into convex (1 and 3) and non-convcx 

(2,4 and 5). Wh~m dealing with convex or near 

symmetrical objects it is important to consider the 

ratio of M02 and M20 before analyzing higher order 

moments. If this ratio is close to unity then it 

is conceivable that a sID~ll distortion would cause 
o 

orientation of the principal axes to change uy 180 • 

Similarly, if M30 is very much smaller than M03 a 

discrepancy of 900 may occur, changing the signs of 

moments in odd powers of either x or y. 

cases comparisons may still be made, using elongation 

and the product M20.M02 and absolute values of odd 

power moments respectively. For objects 1 and 3 

M02/M20 is approximately 2 and comparison of these 

moments clearly show4thc correct aSSignment. 

The non-convex group may be further 

sub-divided since object 2 has t''IO concavities 

whilst 4 and 5 have only one. This remaining pair 

of objects may easily be distinguished using either 

second order moments or by comparing the sizes of 

their concavities. 

Shape factors of components O. and 1. 

should be identic~l for convex objects. Numerical 

accuracy can therefore be assessed by comparison. 

Items which are not shape factonrhave been enclosed 
• 

in brackats. Values in brackets are, ill order of 
( 
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(Object 1). 
NIWflFR OF OI),'ECT PI ~CAN 

JlRFA PFRJt4 CIRC<lL 
E".PIaMFTFR -aRIry 
3?7 ~6.? O.9n~ 

MARTIN 
)( 

30.0 

5 

o T A tl P F 11 t M 
y 

32.0 1n.9 

.PEA 

841) 

F FIlET 
X 
31 

COMPONENT O. MOMENTS OF INCREASI~G 

OIAM 
Y 
39 

OROER nnW~'~ARn AND I~CRE~StNG POWE~ OF Y ACROSS 
l'l40.0) 
l35. 7R) l~25.1) 
0.543'1E-01 (-0.9'1/8) 

-0.5'Q1F-n~ -0.40 551'-03 
0.62761'-02 0.36~9E-03 

0.1195 
0.1144E-07 
0.3751)1'-02 

O.101l1E-02 
-/).1\81 RE-/)3 

COMPONENT 1. MOMENTS OF INCREASING 
OROER DOWNWARD AND INCREASING POWER Of Y ACROSS 

1.non 
i).ooonE 00 
0.54~Q['-01 

-0.54'121'-03 
0.6277E-02 

O.OOOIlE 00 
-().51i\~F-n7 
-0.4Q~4E-G3 

0.36l8E-03 

0.1195 
0.1144E-02 
0.3752E-02 

NUMRER OF OSJEcr IN SCAN 112 

0.1002E-02 
-0.8'1381'-03 

• 

AREA pERIM CIRCUL 
EO.OIAMETEe -ARITY 
31.9 36.2 0.81\2 

MARTIN 
~ 

32.7 

DTM4 
Y 

2'1.0 

PERI'" AREA FERET 
X 
38 1n.6 799 

COMPONFNT O. MOMENTS OF INCREASING 

(lIA'" 
Y 
30 

OROE~ OO~!"IuAIlJ) AN,) It.'CREASING POPER Of Y ACROSS 
(?9Q .O) 
(476.9) (148.11) 
O.547H-01 (0. 53il1) 

-0.1\797E-OJ -0.5620E-03 
0.638~F-02 O.2748E-03 

0.1186 
0.16511'-02 
O.3720E-02 

0.116nE-02 
-0.6144E-03 

CO"P~~ENT 1. ..,OMENTS OF INCREASING 
ORDEQ OOW~WARn AND tNCREAStNG POWER OF Y ACROSS 

1.00(0 
O.OOOOE 00 
0.547M-01 

-O.879RF.-n~ 
0.63R<;E-0;> 

• 

O.OOI)OE 00 
0.9615E-07 

-0.56171'-03 
0.27f>7E-03 

0.1186 
o .1651E-02 
0.37151'-02 
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0.11601'-02 
-O.60~4E-03 

( 

MAX.CHORC 
)( V I 

31 33 I 

'1AX.CHOIH 
X Y, 
33 3n I 

I 
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Table 3. cont 'd. (Object 2, Scan 1). 

NIJMIlFR nF OnJECT IN ~ON 7 

ARF.A PFR'''' CIRC,Jl "~~TTN nI~M PEIlP1 AREA FFRET OPM 1.1 A ~ .r. .H)Ilr, 
EO.DIAMFTFR -ARITV X V X Y y.. Y 
3R.4 4,\ .7 0.8I,i) ~o.(l SO .7 14~.(, 115R 34 5~ 34 52 

COMPONE~T n. "O~ENT5 OF INCREASING 
ORDER OO~N~ARI) A~D INCREaSING PO~EQ OF Y ACROSS 

(11';8.) 
(37.9<» (4p.n) 
0.521LE-01 (-1.SiI(,) 
O.1721F-n~ -0.72/(,F.-02 
O.6nR7E-02 -O.1964E-03 

O.144Q 
O.7l,O?E-03 
O.478?E-07 

0.7.416E-01 
O.7311E-03 O~~?72E-01 

COMPONENT 1. MOMENTS ~F INCREASING 
OROER IlOWNWARn A~D INCRE_SING POWER OF Y ACROSS 

1.035 
O.1315E-n1 
O.5133F-01 
O.2021E-n3 
O.5754E-02 

O.50S1E-02 
0.1SBE-n1 

-0.65'i~F-02 
-O.111QE-03 

COl.1PONFNT 1.2. 
ORnfR nOWNuARn AND 

O.M.~(,E-02 
0.4513 
O.1B1E-n1 
0.1l794E-03 

-0.124(, 

-0.2556 
0.38"4 

-O.40PE-02 
0.23()(' 

CO~lPO'-l"~1T 1.1. 
OIl/lER ilO1.JNIIARll AND 

0.2591 F.-1)1 
0.3749 
0.759('F.-02 
O.7137F-04 
0.6203E-O~ 

• 

0.28'>Q 
2.7"~ 

-0.1U(\F.-0?' 
I) .1In2E-1)2 

0.1413 
0.3'i51\1:-04 
O.4783E-07 

O.1979E-01 
0.~549E-03 

MOMENTS OF INCREASING 
INCQEASHsG PO~Jf'R OF Y ACRhSS 

7.;>90 
-0.2Q8~E-01 1.091 
-0.4301 0.8Q38 8.932 

MO~ENTS OF I~CREASiNG 
INCRE~STNG POWER OF Y ACROSS 

.1.'>12 
-0.36001'-01 Q.3S66 

0.17301'-01 0.13471'-01 

( 
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Table 3. cont'd. (Object 2, Scan 2). 

"U"RFR OF 09.IECT IN 5CA~ 67 

ApF. pFRIM Cl~CIJl 

EO.OI~MFTFR -ARITy 
3R.1 46.' 0.Rl3 

PEPlM 

145.3 

AREA 

113R 

FEPET 
X 
53 

DPr.< 
y 
34 

COr'PONFNT O. 
OROER OOt-JN\.IAR,) 

~O~ENTS OF INCREASING 
AND INCRFASING POWER OF Y ACROSS 

l11311 ;') 
l390.3) (15(\.11) 

lll.50S5E-fl1) 
-,).6i112E-02 

. 
_ ... _i: .. ~_.~l......-_ ... 

'·;A)(.CHOPC 
X Y 
53 34 

O. 'i071F-01 
-0.5500F-04 

0.5790E-02 -0.1FQE-03 

0.1472 
0.100 RE-02 
O.4fo34E-02 

O.237I\E-01 
O.6~50E-03 0~4883E-01 

COMPONENT 1. MOMENTS OF INCREASING 
ORDER ~OWNWARD ANO I~CRE.STNC POWER OF Y ACROSS 

1.054 
O.1945E-01 
O.5003E-01 
0.1671 [-04 
0.5420E-02 

O.74'J7E-02 
0.1 IltlllE-01 

-O.57 1.OE-02 
-0.11'i9E:-04 

r.O'~PON"NT 1 • 2. 
OROER OOWNUAR~ AND 

-0.27()1\ 

0.1410 
O.S?8IlE-04 
O.4fo1?E-02 

O.175i?F-01 
o .HOSE-03 

MOMENTS OF INCREASING 
I~r.REASING POWER OF Y ~CPOSS 

0.1494F.-01 
0.4288 
0.576;>F-02 0.30 28 2.071 

-0.731\9F-04 
O.9136E-02 

0.86S4E-03-0.2R74E-01 o.8488E-01 
-O.380IlE-02 -O.2IlS3E-01 0.1189 8.210 

COr-PMIENT 1.1. 
OROER OO\.l~WARn AND 

0.395/.E-01 
0.3566 
0.6589F-02 
0.4845E-O~ 
0.1991E-01 

, 

0.30n 
2.1\01 

-O.69~9E-03 
0.27?~E-01 

MOMENT~ OF INCREASING 
INCRE~SING POWER OF Y ACROSS 

1.29fo 
-O.3151E-01 0.2052 

O.4099E-01 O.2928E-01 

( 

920 

3.439 

---------- --- ----- - -_. --I' 
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~U~BER O~ OBJECT IN SC~N 16 

AJlFA PI'IlTM CIRClJl ~'AJlTlN 

EA.nTAMI'TFR -.RlfV , 
31.8 34.0 0. 9 3 4 32~n 

OIA" 
V 

34.~ 

PFPIM AREA 

106.11 

FER FT 
X 
33 

OIAM 
V 
35 

COMPONENT O. 
OROER 1)0"lIjliAR~ 

~ONENTS OF INCREASING 
ANn INCREASING POWER OF V ACROSS 

(792.11) 
(711.7<;) 
P.5845F-111 
O. ('/\1 ?E-O'l 
O.66nE-Q7. 

(421.3) 
t-?2n} 
-O.1359E-0? 
-0.2716E-03 

o.noil 
-O.9"7'lE-O'l 

O.4i18t.E-'l2 
0.2134E-02 
0.474I1E-03 

COMPOIIJENT 1. ~OMENT~ OF I~CREASING 
URnEIl nOWNuARD AND INCRE.SING POWER OF Y ACROSS' 

1.0/}1) 
O.OOOOE 00 
0.51145E-1I1 
0.6811F-0~ 
0.6(, 771'-/)2 

O.OIH)I1E 00 
-0.94<'>7E-07 
-0.l'IS9E-1)2 
-0.27'II)E-03 

0.1101l 
-O.9"nE-03 

0.411821:-02 
0.2134E-02 
0.47001'-03 

MAX.CIIOPC 
X V 
32 35 

.,-.- .... - -----j 

NUMBER OF 08JECT I~ SCAN 64 

~R!'A PERIM C1RCIIl 
EO.DIAMETER -ARIrv 
31.2 34.3 0.911 

MAPTlN 
X 

34.5 

OIAM 
Y 

31).0 

PERI'" 

107.6 7(,5 

FERET 
X 
35 

OIAM 
Y 
33 

CO"PIHIF"IT O. 
ORnER DOWNWARn A.O 

(765.i'l) 

MO~ENT~ OF INCREASI~G 
INCREASING POWER OF Y ACROSS 

0.1125 
-O.1R10E-02 0.2250E-02 

"lAX. CHOP 
)( y 
35 3? 

(381.2) (191.1\) 
0.5792E-01 (-0.63<)3) 
0.10871'-02 -0.14551'-02 
0.6594E-07. -0.2R~1E-n3 0.4Q3~E-07 0.'926f-03 0~2444E-01 

COMPONFNT 1. MO"lENTS OF INCREASING 
ORnE~ DnWNu~RD ANO JNCREASI~G POWFR OF Y ACROSS 

1.000 
O.OOOOE on 
0.5792E-01 
0.1088F-02 
0.6590E-0/1 

• 

o.on·)OE 00 
-O.2Q 1(1E-10 
-O.14~5E-02 
-O.21l57E-O'l 

0.1125 
-0.1~1nF.-O? 

O.4Q 31F.-O? 
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0.2250E-02 
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1,R~A PFRIM CIRC11l 
fn.OTAMFTFP -ARITV 
40,0 45.0 O.88~ 

fl TA" 
V 

41.0 

PFRHl 

141 .4 

ARF.A 

1 ;>56 

FFRET 
X 
43 

OlAM 
V 
46 

CO"PO~FNT O. 
OROER DO~!N"'AR1) 

(1251,.) 
(75.9") 
O.538f1E-01 
,).7351 f-1)3 
O.5761E-02 

.OM~NT5 OF TNCREj~I~G 
A~D INCRE~SING POWER OF V ACROSS 

«
(368.2) 
0.8317) 

-U.3f,/QE-02 
-0.57"8E-OL 

0.17411 
-1).,73H-02 

0.S191E-02 
0.7275E-02 
0.3489E-03 

COfJPMJPH 1. "OM,f.~TS OF INCREASING 
OROER DOWNWARD ANO INCRF4SING POHER OF V ACROSS 

:~A)(. CHORe 
x V 
3Q 43 

'j .021 
0.4A7?E-()2 
0.545,QE-01 
0.842I)E-03 
0.51l34E-O? 

O.79IQE-O? 
O.257?E-01 

-0.2976E-02 
O.18,)7E-04 

0.P11 
-0.2t,4I1E-02 

0.S101E-02 
0.5419f-02 
0.Q550E-04 0~2855E-01 

COMPONENT 1,1. 
OROfR OOWNWARO AND 

~OMENTS OF INCREASING 
INCREASING POWER (IF V ACROSS 

0.207(1E-1)1 
0.2304 
0.220 5E-01 
0.1711E-0;> 

0.3905 
2.9QR 

-0.73i6E-04 
0.4705 • 

-0. V)Q6E-01 
~0.~106E-01 -O.4617E-1)1 -0.3223E-(11 

0.6505E-01 
-0.4371E-01 0~5518 

~-.. - .. _---------_ ...• _- ... -- --- --. - - -- -- -. _._----,-- - -. --- ... -,.~-, .. " - --- --' .. '--_ .• '--' . 

• 
NUMBER OF OOJECT IN SCAN 75 

ARE~ PERIM CTRCUL 
E?OIAMFTF.R -ARITY 
39.4 4~.0 1).87~ 

MARTPJ 
x 

41~7 

o I A'~ 
V 

37.Q 

PERHI 

141.4 

AREA 

1221 

FERET 
X 
45 

DIAM 
Y 
44 

COMPONFNT O. 
ORDF.R OOIJ~~'~RD 

MOMENTS OF I~CREASING 
AND INCREASTNG POWER OF Y ACROSS 

(1811.7) 
(>.4'18) 

-0. ,~4 "Q E-02 

MAX.CHORr 
x Y 
42 38 

(1221.) 
(434.0) 
0.5290['-01 
0.814;>F-03 
O.S'i57E-02 -0.54?OE-04 

0."'1'>0 
-0.21l7RE-0? 

0.5?2QE-n2 
1).7092['-02 
1).3343E-03 O~ 3121 E-01 

COMPONENT 1. MOMENTS OF INCREASING 
OROER OOWNuARO AND INCREASING POWER OF Y ACROSS 

1.017 
0,3531 F.-02 
0.5354E-n1 
O.877P~-03 
O.5A?1F.-f12 

O.6361E-02 
0.1111.0E-01 

-O.204RE-02 
1).74~3E-05 

COr.'Pf'NFNT 1. 'I. 
ORDER DOWNWARD AND 

0.167QF-01 
0.?131l 
O.21!~O~-01 
O.372nF-O? 

-0.24')5 

0.31165 
2.11'4 

-0.15'.7E-O? 
-0.1265 

0.1:>37 
-0.21iIlH-02 

0.5135['-02 
O.5593E-02 
o .1222E-03 O~ 2969 E-01 

~OMENTS OF INCREASING 
INCREASTNG POWER OF Y ACROSS 

0.459<; 
-O.4Q08E-01 O.16n8E-01 
-O.51i9 Q E-01 -O.3727E-01 0:60Q9 
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~U~RE~ OF PBJECT IN 5C~N 77 

~REA PERTM CIRCIll MARTIN DTA'4 PEflTM 
Y 

AREA FERET 
X 
31 

OIAM 
V 
37 

'·lAX.CHORO 
En.nl~MFTFR -~RITV X 
33.9 ~R.3 O.8Rt 31." 37.0 170.2 905 

COMPONFNT O. ~O~ENT~ OF I~CqEASING 

OR"EP nOW~WA.J AND INCRF~SING POWE~ OF V ACROSS 
t0 05. 0) 
(1111.?) (413.1) 
0.6803E-01 (-7.1 9 7) 

X V 
31 37 

-0.2303E-O? -O.2441E-O? 
0.104RE-01 O.9Q~~E-04 

0.101R 
0.3414E-02 
0.3';20£-07 

0.B.,8E-02 
0.3007E-03 0~?359E-01 

COMPONENT 1. .OMENTS OF I~CREASING 

ORnFR nDWNWARD AND INCREASING POWER OF Y ACROSS 
, .039 

0.129i1E-01 
0.~72QE-01 

-O.20S7E-il2 
0.9843E-02 

0.1364E-01 
() • 13 oH) 

-0.27S1E-()2 
O.S767E-03 

0.996RE-01 
0.2197E-02 
0.376M-02 

O.4230E-02 
-0.7171E-03 0~2171E-01 

COMPONFNT 1.1.· 
OROE~ DOWNWARD AND 

0.3867E-01 
0.3487 
0.2092E-01 

-O.1556F-02 
O.4305E-01 

0.3667 
-1).4471 
-0.20'}IlE-O? 

O.5591E-O? 

MOMENTS OF INCREASING 
INCREASTNG POWER OF V ACROSS 

• 
0.4725 
O.3~25E-01 0.3603E-01 
0.2774E~n2· ~.1197E-02 -O~6069 

~UMBFR OF OBJECT IN SCA~ 66 

AREA PFQJM C1RCUl 
EQ.DIA~~TER -ARITY 
33.S 37.5 0.894 

Cf)"PfHJFr.:T O. 
OROE~ D04N4AQD AND 

(!l81 • (\) 
(380.5) (23n.8) 
O.6714E-01 (-(1.!'~17) 

I)TA~1 

V 
30.~ 

PEQTM AREA 

881 

FERET 
X 
3(, 

DTAM 
V 
31 

"O.ENT~ OF I~CREASING 
INCREASING POWER OF Y ACROSS 

(1.1n24 
O.2997E-n2 0.5143E-02 

MAX.CHOR! 
X V 
36 31 

-0.17R7E-02 -O.21/1E-02 
0.1013E-01 -O.1n21E-04 O.3464E-O? O.3353E-03 O~2380E-01 

COMPONENT 1. MO"ENT~ OF INCREASING 
OROEQ DOWNWARD AND I~CREASING POWER OF V ACROSS 

1.037 
0.704111'-07. 
0.6('051'-01 

-0.1413E-02 
O.947QE-02 

O.90i3E-02 
0.11"1 

-O.22S1E-02 
n.37~4E-O~ 

COPlPI1NENT 1.1. 
ORoER nOllNIIIIRfl AND 

O.3n65E-01 
0.~419 
O.213~F-111 

-0.20';LE-02 
0.1471 

0.3('20 
-0.4SH 
-0.231SE-0? 

0.3336E-01 

0.100!' 
0.1745E-02 
0.3('25E-02 

O.4205E-02 
-0.5513E-03 1)~2216E-n1 

"O~ENTS OF INCREASING 
INCREASING POWER OF V ACPOSS 

0.4400 
0.'~14E-01 0/4Q37E-01 
0.1969E-01 0.57Q6E-02 0~4389 
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appearance, object area in picture points, centroid 

coordinates and angle of oriel.-tation measured in 

radians relative to the positive y axis. 

Fig. 13. shows that all five objects are 

fairly similar with no 'wild' features. Also, the 

two scans produced boundaries with a considerable 

number of small but not insignificant discrepancies. 

Nevertheless, it is apparent that only a few of the 

shape factors calculated are needed for correct 

classification. One therefore infers scope for 

considerably more complex tasks to be performed. 

Low order moments appear to be excellent descriptors 

of general shape, whilst hiGher order values are 

more influenced by points distant from the centroid 

and may be interpreted as characterizing finer detail. 

Moments as high as tenth order have been calculated 

using the existin.g programme but as can be observed 

the number of significant decimal digits diminishes 

fairly rapidl~ with increasing order. Using momerits 

up to fourth order,_as shown, ten shape factor3.are 

available even for convex objects. Under most 

circumstances this level of analysis should be more 

tlian sufficient. 

Whe-re distortions are large i t ma~T be 

difficult to reach a satisfactory compromise 

between the value of AMIN and the order of moments 

calculated. Increasing the value of AMIN reduces 
• 

the risk of bogus components being detp.cted but if 
( 

the number of components is reduced tvodrasticalJy 

correct classification may become impossjble. 
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One's task for the purpose of this 

tt.esis has primarily been to develop and implement 

a method of shape analysis. This has been achieved. 

However, one of the design considerations was that 

either of the two parts of the analysis, namely, 

convex decomposition and invariant moment analysis 

could be used separately. This flexibility allows 

considerable further exploitation. 

The precise method in which moments 

should be relativised is open to experimentation 

and it is doubtful if there is a single method 

which will be 'best' in all circumstances •. It has 

previously been suggested that each non-convex 

component should be considered relative to its 

convex hull. Thus the ratio of corresponding 

moments of these two objects could be used as 

distortion tolerant parameters. Alternatively, 

if the shape of each con~ex component is considered 

important its shape describing moments may be made 

invariant in the normal manner i.e. by boundary . 
standardisation. This approach has been used so 

far although the area, centroid coordinates and 

orientation of components have been relativised to 

the original. scan object so that they also become 

shape descriptors. 

By further processing it is possible to 

ge~erate elongation invariant moments. This 

invariance may be achieved in additiqn to those 
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prev~ous1y mentioned. The term elongation may 

be applied to the ratio of the moments M20 and ),102. 

T~is factor may be removed from moments by using the 

equation:-

Mpq (elongation invariant) = Mpq I (M20/M02 )P-q/4 

Applying this transformatio~ both M20 and M02 

become JM20.M02. It is difficult to find an 

adjective to describe this term which has not been 

used for a different shape factor by another author • 
• 

Its magnitude will be a minimum for a perfect circle 

and will be large for objects having long narrow 

projections along the x and y axes, e.g.. a plus sign~ 

Factors which are ratios between components 

and convex hulls will always have magnitudes between 

zero and unity. This fact is particularly l~seful 

when considering numerical stab~lity. It cannot 

be guaranteed that the set of moments currently 

produced will decrease in absolute value for 

increasing orders of x and y. Indeed, should any 

boundary point lie at a distance greater than or 

equal to one unit from the centroid coordinates 

(after standardisation) values will diverge with 

increasing order. If size standardise.tion is, 

achieved by normalising the size of ~he object 

cohvex hull to unity and affine invariant moments 
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are nsed then it can be shown that higher order 

mo~ents will eventually converge to zero. An 

affir.e transformation may be defined asa linear 

transformation plus a tTanslation i.e. an affine 

invariant is invariant with respect to size, 

position, orientation ann elongation. It is 

conjectured (the proof would be quite long) that 

'the maximum distance of a boundary point of any 

object normalised in this manner would be 

2/3°·75 ;: 0 •. 875 units from the centroid. 

The plospect of using weighting functions 

in moment calculation has previously been mentioned. 

Ideally, ,'3uch weighting fur.ctions should give 

greater weight to points near the centroid in order 

to reduce the relative error magnitude. Two 

possible functions are the negative exponential 

and reciprocal. Both functions may be expressed 

as a s'3ries expansion e.g. for one d~Lmension:-

. 2 3 (l-x-4-x -x + ••• ) .f(x) 

The expansions arr: valid only for x < 1 hence 

normalisation along the lines suggested should 

first be implemented •. These functions may then 

be calculated to any desired accuracy by summing 
• 

the corresponding terms of the equivalent moment 
( 

series expar.3ion e.g~ 

f(x,y).e-x = MOO - mo + 1:20 - M30 + ••• 
2! 3:· 
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. Similar expansions exist for other exponent terms 

which are simple. expressions in x and y. Moments 

in negative powers of x and y may not be used 

since the centroid would ·;hen have infinite weight. 

Unfortunately, the a~ount of computation 

7:equired to evaluate high order moments is quite 

large. Since the number of boundary points 

involved should be much greater than the.number 

of moment values most of this work will occur in 

calculating the initial simple moments.. For 

each point and every moment calculated involving 
• 

that point the following expression is evaluated: 

(x+t)p+l - (x-t)p+l 
p+l 

.. yq+l 
q+l 

If all moments up to the R~h order 

calculated then clearly this expression may be 

d~rived for every moment concerned from two sets 

of factors one involving x and the otl1ery. If 

we assume that most computer time will be engaged 

in multiplication and division and consider either 

to be equivalent to one arithmetic operation then:-

Operations to calculate x factors = 3.R 

Operations to calculate y factors .. 2.R 

Operations to find moments from factors 

= ~R+I) .~R+2) • 2 

hence total number of operations pe~boundary point 
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When R < 13 the second term of this 

expression will be larger t:,!an the first. For 

practic1e purposes one may assume that the amount 

o~ computation required is approximately proportional 

to the total number of moments evaluated (about 2 to 

2t operations per point per moment)., 

The number of moments evaluated should 

vary with the size of -~he component involved and the 

type of classification for which shape fac~ors are 

required. In the case of components which are 

only slightly larger than AMIN the most i.'Ilportant 

factor will be that of existence. However, since 

existence is determined by evaluating component 

area the zeroeth order moment will always be 

available. It should be possible for a giv:ln 

analysis to establish thresholds above which the 

next higher ordel' of moments will be calculated. 

Judicious use of such thresholds would greatly 

reduce the coroputation required for effective 

shape description., 

• 
( 
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Suggestions for Further Work. 

In the introduction it was mentioned that 

several lifetimes of poscible research became 

apparent whilst reviewing work done in image 

processing. As might be expected this amount has 

increased during the past year. This section is 

therefore restricted. to an outline of further 

developments and application of one's current 

research. 

One of the major obstacles encountered in 

image analysis is that of touching or overlapping 

objects. The former problem is frequently a 

function of the surface adhesion of individual 

objects whilst the latter is related to the fact 

that the objects are three-dimensional, only a 

two-dimensional projection being available for 

analysis. It is uncertain whether the former 

problem should be tackled by reducing surface 

adhesion, i.e. physical means, or by image 

processing. Certainly physical separation would 

make life much easie~ for the image processor but 

even where practicable a different method would be 

needed. depending upon the type of objects involved •. 

Software written to perform separation must rely 

upon estimated boundary statistics to guess 'most 

likely'positions for missing boundary points. 

Ev~n when all the boundary points are available 

·unless it is known that objects are touching but 
( 
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do not overlap there exist ca.~es in which even a 

human will be unable to uniquely determine the 

boundaries of individual objects •. 

If overlapping objects occur the 

situation becomes much more difficult. Where 

boundary statistics are well.defined it should be 

possible to define a filter to detect the presence 

of an overlap. If the individual object's are 

convex (or possess only small concavities), 

Le. less. than AMIN, then overlaps may be detected 

by the simple application of convex decomposition •. 

The number of level 1 concavities found should be 

twice the number of overlapping objects., 

otherwise, if more than one overlap occurs within 

the same concavity, lower l~vel comvonents should 

establish the precise number •. Unfortunately, a 

number of cases exist in which this method wil~ be 

iLaccurate, e.g. where an object is totally 

included in an agglomerate. Also, if two objects 

are almost totally overlapped, any concavities 

found will be small and may therefore be erroneously 

ignored by the thresholu (AMIN). 

The problem may be reduced to that of 

touching objects if complete three dimensional 

information is available. A number of methods for 

obtaining such information have been tried by 

• various researchers. An interesting technique 

( 
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utili~es the phenomena of inte~ference. A coherent 

light or ultra-sonic sound ":leam is directed onto 

the object. Part of the same beam is deflected 

from the source to the receiving medium where it 

interferes with light(or sound) reflected fronrthe 

object. The phase relationship between the two 

beams supplies the third dimension or depth 

information. A similar method involves plar.ing a 

grid between the object and light sensor. Again, 

reflected light interferes with light direct from 

the source at the grid. A moir' fringe interference 
• 

pattern comprising depth 'contours' is formed. 

This latter method may use normal incoherent light 

but grey level detail of the object will be lost. 

None of these methods enable total 3600
, 3-D 

information to be collr.cted and suffer from the 

~nag that every point scan:'led mus"~ be in direct 

line of sight with both source 8.nd image sensor. 

To the author's knowledge no 3-dimensional scanning 

systems have yet been marketed commercially for 

image digitisation. 

The concept of convex decomposition could 

readily be extended for use in three or more 

dimensions. Convex polygons would b~ replaced by 

convex bodies (polytopes), but the component 

connection tree would remain in the Eame form. 

Implementation in three-dim.ensions· would 01' course 

require more computation although it,is envisaged 

that decomposition would involve the bame basic steps. 
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Inva~iant moment analysis could also be applied 

to the compenents. 

It would not be difficult to impose the 

constraint that. any component accepted as convex 

should be star-shaped about its centrotd. The 

relationship r = fee) would then be single valued 

thereby allowing numerous methods of analysis. 

In particular, the Pourier descriptors mentioned 

by Zahn(35) could be used. 

Analyses given as results required only 

a few shape factors fur correct classification. 

It would be most valuable to study the precise-rel

ationships between individual factors and object 

shape. Affine invariant moments have been suggested 

but for any group of objects it should be possible 

to de-termine the linear correlation between each 

pair of moments and by suitable manipulation, e.g. 

using E~genvalues or fact er analysis, create a set 

of unoorrelated measurements. 

, 

( 
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CONCLUSIONS'. 

A method of shape al!alysis has been 

derived, implemented and illustrated. The technique 

of convex component decomposition does not appear 

to have been used before and has greater stability 

under distortion than alternative methods considered. 

Computation required is quite moderate. 

Equations have been1derived for the efficient 

machine generation of moments invariant with respect 

to size, position and orientation. When applied 

to the convex components a detailed object description 

is obtained. • 

One's primary aim has been to by-pass 

a stumbling block encou."ltered by others', namely, 

analysis of objects with concavities. The method 

used capitalizes upon the existence of these 

concavities which are treated as important feat~res. 

Classification becomes more preoise for concave 

objects than for convex ones. Results are presented 

illustratin8 the discriminatory power of the shape 

factors derived • 

• 
( 
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Appendix A. 

Two-dimensional integral transforms. 

ZW or discrete Laplace Transform. 

This has the general form:-

L (f' (U"v)] = rx ~y f(x,y). exp(-sux-tvy) 

where sand t are complex variables and ~ means . x 

means)'y=N-l for an N x N element picture. 
-:1=0 

is the value of the transform at posi.ion 

-(-\1,") in the transform plane. It ~y be observed t~at 

every point in the 0riginal picture is used to determine 
I 

any point in the (\I..,v) plane, also the (ILl") plane is 

continuously defined even though only discrete pOints 

were known on the (x,y) plane. 

Normally transformed values arf! calculated for 

a matrix of N x N values. This allows reconstruction 

of the original picture using an identical type of 

transformation with sand t substituted by their complex 

conjugates. The transformation is said to be separab~e 

since it may be considered as a two stage process, each 

involving one variable only:-

Separation allows a consideramle saving in 

computation since each line of the picture may first 

be transformed and the final transform evaluated from 

these line transforms • 

• 

( 
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The procenure may be considered in matrix form as:-

= LT] . (f] [s] 

where all matrices are of size N x N and the v,yth 

element of [T] , tvy 0: exp (-t.v • .y) and the u,xth 

element of CS] , sux = exp (-s.u.x.) 

The discrete Laplac~ transform is often 

considered in terms of the complex variables z "<9Xp(s~u) 

and W _ exp(t.v.). The transform equation becomes:-

( ) 'C'" '" ( ) -x -y F z,w = ~x ~y f x,y ~ w. •. z 

i.e. the transform ~s a complex polynomial in negative 

powers of z ij.nd w I which when expanded becomes a 

rational polynomial •. 

Fourier Transform. 

This may be considered as a special case of 

tl:'.<: Laplace transform where s = t = 2lrj, (j = 4-1) •. 

The transform equation m~y be written:-

F(u,v; = lx Z:y. f(x,y).r.xp(-21fj(ux~vy) 

and in matrix form:-

[FJ :. [S]'[fJ .(S] 

Hadamard Transfor~s. 

Let [H] be a Hadamard matrix, all coefficients 

being +1 or -1 •. Then:-

[Hl • [H] T :. N • I ,where I is the identity 

matrix and all matrices are of order N •. The simplest 

• • Hadamard matrl.x 

to generate all 

equation 

is [1 11 - H • This may be used 
1 -lJ - 2 

H~damard matrices of order 2n by the 
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i, 

The number of sign changes along a row of 

such a matrix is known as the sequency (cf. frequency). 

For symmetric Hadamard matrices of order N = 2n. 

F(u,v);: 1 ~ 2 f(x,y).(-l) b(x,y,u,v) 
N x y. 

i=N-l 
where b(x,y,u,v) = ~ 

i .. O 
(u~ x~ - v. Yi' ... ~ 

and ui ~ sum of binary digits in u and the summation 

of b is performed in modulo 2 • 

• 

( 
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I • 
Appendix B. 

A Glossary of shape describing terms. 

'oblongnes9' 

'stringiness' 

'convex hull' 

'convex point' 

'curvature point' 

'inflection' 

'curvaturerate' 

'wiggliness' 

'star-shap6d' 

'spread' 

• 'slenderness' 

Largest ratio between length and 

width for all possible: circumscribed 

rectangles •. 

2 tim~s area/perimeter. If object 

of linelike parts of width w the 

w .;. stringiness •. 

Convex envelope boundary. 

Vertex of convex hulI. 

Vertex of polygonal object boundary •.• 

(also 'bay' and 'peninsula') closely 

adjacent pairs of curvature points 

with opposite curvature,produced 

artificially during quantisation •. 

Number of curvature points (excluding 

:l.nflections )/perimeter •. 

Number of occurrences of adjacent 

bends of opposite signs not classi

fiable as inflections •. 

Object having at least one internal 

point from Which a line to any point 

on the boundary does not cross 

boundary elsewhere. 

Sum of the second order moments about 

the principal axes i.e. M20-M02 • 

M20-M02. 

( 
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'equivalent area diameter' Diameter of circle with the 

'equivalent perimeter 

diameter' 

'Martin's diameter' 

'Feret's diameter' 

'Maximum linear 

diameter' 

'diameter-to-length 

ratio' 

'general rotundity' 

or 'roundness' 

• 
Sources of definitions. 

same area as the object. 

Diameter of circle with the 

same perimeter as the object. 

Length of the line through the 

particle profile, parallel to a 

fixed direction, which divides 

the particle profile into two 

equal areas. 

Projected length of the particle 

profile with respec~ to a fixed 

direction. 

The length along the major 

(longest) axis, also refered to 

as simply 'length'.-

(length of a chord normal to 

the major axis)!(maximum 

linear diameter) 

Average value of diameter-to-

length ratio of a group of 

objects an equal number of 

measurements being made on 

each object.-

( 

Rosenfeld(l), Kaye(48), Zahn(26) 
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.\ppendix C. 

List of periodicals and series' of publications frequently 

containing articles on image processing., 

I.E.E.E. Transactions on: Audio und Electroacoustics, 

Biomedical engineering, Computers, Automatic control, 

Information theory and Systems, man and cybernetics. 

Journal of the association of computing machinery (J.ACM) 

Communications of the ACM (CACM)., 

Journal of the optical society of America. 

Scientific American. 

Journal of pattern recognition •. 

Advances in information processing, Plenum press •. 

Advances in computers, Academic press •. 

Machine intelligence, Edinburgh uni versi ty press •. 

• 
( 
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Appendix D. 

,-

Listing of computer subroutines • 

• 
, 
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SUBROUTINE INITIAL 
COMMON IAMIN,SCAF,IOUT 
COMMON/BI/NO,InB(100) 
COMMON/BA/MAXX.IARC 
EXTeRNAL XVNSTaCK 

C SET UP ERROR RECOVERY 
IF(IFNT.NE.O) GO TO 3 
HNh1 

--~ .. - .. 

READ!1,1) lAM, LCH, IMAX,MNC, IARC,NTHO,NST ,NCORE, IAM:N, lOUT 
, FORMAT!20IO) 

READ!1,14) NTApES 
14 FORMATt10IO) 

C Ir lOUT GT 0 pLOT PARTICLE EDGES 
IF(IOUT.GT.O) CALL UTPOP 

'9 CALL PRE'DS<IXX,IVV,MAXX,MAXY) 
READ!1 ,9~) NO, (lOB(JJ) ,JJ=1 ,NO) 
NOa1 

99 FORHAT(1 nOlO) 
IF(IOUT.GT.O) CALL PLOTST(MAXX,MAXY,SCAF) 

C ALLOCATE SPACE AND SET UP LENGTHS FOR PLEXES 
CALL STACKS(NCORE,IARC+IARC,90000,NST,IARC,10) 

C CALL XVNSTACK AFTER ALLOCATING ARRAY SPACE 
CALL DIMF.(XYNSTACK,5,IAM,lCH,IMAX,MNC,NTHO, • ; 

15,IAM,lCH,tMAX,MNC,NTHO) 
3 CALL ENDSTACKS 

NTAP I;S = NU PES ~ 1 
. C TEST IF ANY PICTURES REMAIN TO BE PROCESSED 

IF(NTAPES.EQ,O) GO TO 13 
GO TO 19 

,) IF(IOUT.GT,O) CALL UTPCL 
STOP 

.END 

GMENT, LENGTH 150, NAME INITIAL 

"' 

" . 
• 
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C 

C 
C 
e 
C 
C 

SUBROUTINE XYNSTACK(IV,ICHS,JNT,lCl,JVO,IAM,lCH,IMAX, 
1 MNC,~T'lO) 

COMMON/BN/NCL 
COMNO~/BA/MAXX.IARC 

-..! •• 

D~ME~SION IVCIAM),ICHSeLCH),JHOeNTHO),JNT(IMAX),LCL(M~C) 
STRE1MLI~EO EDGE FOLLOWER UPDATED APL 1972 N. BISHOP 
CAll CLEAROC', ICHS) 
CAtL OPSTACK(JWOLE,NTHO) 
NP.1 
NHO,NCL,JhO 
KMAX,JMAXcIMAX.4 
l.l.JMAX 
ID Il.:? 

9 IMIN_JMAX~Il 
CALL PMOVE(JNT(ll+,),JNT(1),IMIN) 
I-I-IL 
Il-KMAX-IMIN 
CALL PREAD8(JNT(IMIN+1),ll) 
JMAXaIL+"HN 
Ja.1 

4 N=MoOeJNT(I),50000) 
16 Nhl+N+N+1 

IFeNT-JMAX-1)8,13,1S 
18 IF(JX-MAXXl9,19,17 

8 IF(JNTeNT).EQ.JX+1) GO TO 13 
IF(JY.+'-MAXX) ,4,19,1S 

19 NT"I+' 
13 JNTCNTl=50000 

IL-I 
I paw, 
JNTCi),JNTCI-1)·,00000 

1 IPalp+2 
laJ+:! 
JVaJNT( 1-') 

.JVPL,JNTCJl:JNTCI)+JY 
10 J=J+2 

JVI'LL=JNT(J+1) 
IFeJVPL-JVPLL)~,3,5 

5 IfCJVPLL-JY)33.33,6 
6 IFeJNT(J+2)-JYPL)44,3,3 
2IFeJVPL-JNT(J»'1,",7 
7 IF(JNTCI+1)-JV~LL)22,3,3 
3 lCO=ISTACKCIVCtP+1l,JYPL)-ISTACK(IVCIP),JV) 

ICHSeLCO)alCHSCLCO)+1 
GO TO 1 

" 1( .. 0 
IF(JV.LT.40000, GO TO 12 
JXaJx+1 
GO TO 4 

22 K= 1 
12 CALL PMOVECIVCrP+X),IV(IP+2+K),NP-IP-X) 

START 2 ~rACKS SETTING UP STACK HEADER 

" 

FIRST 8 1TEMS ARE LABEL FOR CURRENT ARC CHAIN, ARC WMICH 
MAV'HELP IN LOCATING HOLES, NEXT CLOCKWIse A~C, JOIN TYPE, 
NExf ANTI CLOCKWISE ARC, JOIN TYPE, UPPER OR LOWER ARC 
INDICATOR, FIRST X COORDINATE 
ClLL OPSiACKCJP,IARC) 

, 
( 

CALL OPSTACKCLP,IARC) 
IV(IP+!l.INSTACKCLP,1,10,LP,0,O,O,JP,1+K,1,JX,O,O) 

. IV(lP+~+K)=INSTACK(JP,1,10,lP,O,lP,'+K,O,O,-1,JX,O,0' 
NPaNP+2 
JaJ-2 

- D1l2 -I=.:""""_';'O'!' ........ ,;...-. ....... _----' __ --'-'""--"-'-"-~_"'_""_'.-:.:.. .. -,-,--'-' .. "-..-=-,-_.c... . ....:-",-..:,;-.-=-_. ---_ .. ----~. --- . -- - .- .. --

" 



'. 

c 

1~(K.F.Q.6) GO TO 3· 
CALL INSTK1ClP.2,IVCIP») 
lFttIP.GT.IP+:S) CALL INSTK1CJP,2,IVClP+3» 
GO TO :; 

S3 K-O 
GO 'iO 34 

44 K-1 
34 J8~IV(!P+K+K) 

JA~INSTACKCIVCIP+1),3,2,JB,3+K) 
CALLINSTACKCJB.5,2,JA,3+K) 
JP"KnACK(JA,1 ) 
LP .. KSTACK(JB,1 ) 
NP"NP~2 
C~ll PMOVE CIVCIP.2+K),IVCiP+K),NP-IPRK) 
IF(JP.F.Q.lP) GO TO 35. 
lY .. 3 
IFCK~TACKCJP,8)-KSTACK(LP,8)+K)3B,38,36 

·:56 JB .. JA 
LT"S 
JP .. LP 

.-.-

:58 CALL INSTK1 CJB.1 ,JP) 
JB"KSTACKCJB,LT> 
IFCJR.NE.O) GO TO 38 
GO TO 10 

:55 CALL INSTK1 <JP,1 ,JX-1) • 
CAll PARTICLEClCL,MNC,JHO,NTHO,NHO,JHOLE,JP,K) 
GO lO 10 '4 WRtTF.(2,15) JNTCNT),JX,NT 

15 FORMATC' ERROR IN X SEQUENCE',6I6) 
FINISH Sr.A~ ANn RETURN 
ENTRV SPPRTCIER) 
WRIHC2,:3Q) IEII 

20 WRIT£(2,39) JNT 
n' FORMAT(10tS) 

IFCJMAX.lT.CCIMAX-4)/40)*40) CALL INITIAL 
JHAX=KIIAX 
CALL PREAD8CJNT(1),JMAX) 
GO TO 20 

17 CONTINUE 
DO 23 1=1,LCH 

23 IF(ICHSClCH~I+1).NE.0) GO TO 24 
24 WRITF(2,28) Clr.HSCJ),J.1,LCH~I+1) 

.I.-~ __ • • ..... ___..... _._.' ....,;:: ... 

28 FORMATC//24X,'TOTAl CHORDS OF EACH LENGTH INCREASING FROM', 
l' ON~'/1(16X,1016» 

RETURN 
. eN D 

GMENT, LENGTH 642. NAME XyNSTACK 

. . 
• 
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C 

(; 

C 

SU~ROUTINE P1RTICLEClCL,MNC,JHO.NTHO.~HO,JHOLE,JP.K) 
COLlMM; I&MIN 
CO"1MO'~/BN/NCL 
DIMENSION JHOC~THO).lCLCMNC) 
EN~lOS~O BOUNDARY COMPLETED TEST IF CLUMP OR HOLE 
IFfK.F~.~' GO TO 45 
HOLE FOUND 
NH')=NHO+1 
JHOCNHO':JP 
RfTUIHi 
CLUMp FOUND lOOK FOR HOLES 

45 NC l=~C L+1 
IAMIN=100 
NPAR=200 

·IHO=O 
CALL OPSTACKCLNCL.NPAR) 
IF(NHO.EQ.O) GO TO 47 
CALL INSTK1CKSTACK(JP,S),3,O) 
JTaJP 

4' DO 48 K=1.NHO 
43 IF(JT.NE.KSTACKeJHO(K),2» GO TO 48 

IHO=IHO+1 
CALL I~T4CK(JHOlE.JHO(~» 
CALL PMOVECJHO(K+1).JHOeK),NHOwK) 
NHO=NHO-1 
IFCNHO.EO.O) Go TO 42 
IFCK.lE.NHO) GO TO 43 

48 CONTJ NUE 
,iTIIKSTACI(JT.3) 
IFCJT.NE.O) GO TO 41 

42 CAll 'NSTt:1 (KSTACKeJP.5) ,3,JP) 

• 

47 NS,lCl(NCL)=I~STACKClNCL'1,3,JP,IHO,lSTACKCJHOLE)_IHO) 
CALL PARPAR(NS.JP) 
IFCKSTACK(NS,2),EQ,O) GO TO 39 
ICAR·O 
HIIKSTACK!NS,3) 
DO 21 K=i.~STACKeNS,2) 
LlIlSTACK(NS) 
IAMIN=-1 
CAll PARPAR(NS.KSTACKCJHOLE,M+K» 

2' CONTINUE 
39 CALL CLSTACKCN~) 

RETURN 
!:ND 

GMfNT, lENGTH 247. NAME PARTICLE 

" . • 
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SUBROUTINE PARPAR(NS,NT) 
COMMO~/eI/NO,IOB('OO) 
CO"lMON/BN/NCL 
COMMON IAMIN,SCAF,IOUT 
DIMENS!ON OIST(200),IWC400),IDUC400) 
I~CNCAlL.NE.O) GO TO 90 
DO '8 la1,200 

,8 DIr.TC!l=SQRTCFLOATCCI-2)*I+?» 
NCAlI.=NCAlL+' 

90 CONTHlUr
IAIlEA=O 
PERI"I=O. 
PI,,3.14'S827 
RPI=1./PY 
RP!40:4."'!PI 
JT,lS=NT 
IF(lSTACK(NS).FQ.3) JT,LS=KSTACKCNT,3) 
CAlL INSTK1 CKSTACK(JT,S) ,3,,') 
IFCIAMIN.LT.O) GO TO 7 
IVIIIIN=100000 
IVMAX,LMAX=-IYMIN 
KP=1' 
IFfJT.F.Q.NT) GO TO 2 
IPa2*MOOCKSTACK(JT,6),2)-1 
KP=O 
I P"" 

2 IP=-IP 
PERI"I",PERI"I+ISIGN(KSTACK(JT,KP),IP) 
IPaIP*C1-2*MOOCKSTACKCJT,4)+KSTACK(JT,6),2» 
PERIM=PER!M+ISJGN(KSTACKCJT,1,RKP),IP) 

·IAREA=IAREA-lSUMSTK(JT) 
IVMIN=HINOCIY~IN,HINSTACK(JT» 
JTaKSTACI(UT,3) 
trc:-yp 
PERIM=PERI"I+ISIGNCKSTACKCJT",-KP),IP) 
IP=lp*C1-2*MOD(KSTACKCJT,4)+I(STACK(JT,6),2» 
PE~IM=PERIM+ISIGN(KSTACI(JT,I(P',I~) 
I AREA=I AREA+ I SJMSTK (J T) 
IVMAX=MAxCCIVMAX,MAXSTACKCJT') 
JhKSTACI(CJT,3) 
IFfJT.NE.O) GO TO 2 
JTIILS 
IXMIN=I(STACKCNT,8) 
JXM=IXMIN-1 
IXMAX=KSTACKCNTi1) 
IFX=IXM4Y-IXM 
IVM=!YMIN-1 
IVMM=!VM-1 
IFV=YVMAX-!VMIN 

.. 

CALL INSTACKCNS,LSiACKCNS)+',5,IFX,IFV,IXMIN,IYMIN,JAREA) 
IFfIARFA.lT.IAMIN) GO TO 7 

6 CALL CLEAIlOC2,IW,IDW) 
1 PERI"I=PERIM-2. 

LV=KSTACKCJT,'.) 
M"'K~TACK(JT,8l-IXM 
DO 3 K=1.,lSTACKCJT) 
NV=KSTACK(JT,K) 
PERI"I=PERIM+OIsTCIABSCNV-LV)+1) 
IWCM)=!WCM)-NY 
M"M+' 
L"'NV .. YVM 
LV-NV 

( 
( 
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3 l~U(l).lnW(l'~1 
JhK!:TACKCJT,3) 
LYDKSTACKCJT,11) 
H~KSTA:KCJT,8)-IXH 
DO 4 K=11,lSTACK(JT) 
Ny"t(STACIUJT,IO 
PERIM=PERIH.DIST(IABS(NY-lY)+1, 
HI' H le!lH H) .NY 
MaM.1 
LYaNY 
LaNY .. IYllM 

4 I~U('.) .. InWCl)-1 
JTaKSTACKCJT,3) 
IF(JT.NE.O) GO TO 1 
PERIM=PERIH.2. 
LAREA,MAREA,HAXX,HAXY~IWloaO 
JAREA=IAREA/2 
ASSIr.N 11 TO LINK 
DO 5 la1,IFY+1 
IWIOaIWln.IDW(I) 
HAXX.MAXOCMAXX,IWID) 
GO TO LINK 

8 LAREA=LAR~A+IUln 
IF(LAREA.lT.JAREA) GO TO 5 
FRAC=FlOAT(LARFA-JAREA)/flOAT(IWID) 
JDW=O 
IF(I.NE.1) JOW-IDW(I) 
XHART=IUID-JDW-FRAC 
MARTX=NINTCXMART) 
~SSltHJ 5 TO LINK 

5 CONTINUE 
ASSIQN 9 '!'O UNK 
D01nl=1.IFX 
MAXy .. MAXO(MAXY,IW(I» 
GC TO LINK 

9 MAREA=MAREA+IW(I) 
IF(MAREA.lT.JAREA) GO TO 10 
FRACaFlOATCMAREA-JAREA)/FlOAT(IW(i» 
JDLI=O 
IF(I.NE.1) JDW.IW(I)-IW(I-1) 
YMART=IWCI)-JDU*tRAC 
MARTY=NINTCYMART) 
ASSIGN 10 TO LINK 

10 CONTf HUE 
IPER=NJNTCPERIM) 

• • 

CAll INSTACK(NSilSTACK(NS).1,5,IPER,MARTX.HARTY,MAXX,MAXY) 
ADIA=SQRTCRPI4*FlOAT(IA~EA» 
PDtA=PfRI ... *RPI 
AOP=AIIJA/PDIA 
IF(108CHO).NE.NCl) GO TO 7 
NOIING+1 
\lR I Tf C 2 , 25 ) N C I. 

25 FORMATc'1',17X,INUHBER OF OBJECT IN SCAN',14) 
WR IT F C 2 , 21 ) 

2' FORMATC'0',17X,'AREA PERIM CIRCUL MARTIN DIA~ PERIH I. 
" A~F.A FF~ET DIAM HAX.CHORD LOCATION'/17X,'EQ.DIAMETER'. 
2' -ARJTV X Y X Y X V X', 
l' VI) f 

" WRITFC2,20) ADIA,PDIA.AOP,XMART,YMART,PERIH,IAREA,IFX,IFY, 
1MAXX.MAXV,IXHIN,IVMIN 

20 FORMATC15X,2F6.1,~7.3,F7.1,2F6.1,I6,415.216,15) 
CAlL INSTK1 (KSTAC!(lS,5) ,3,lS) 
IF(IOIJT.GT.O) CAll PARTPLOT(NT.SCAF) 

- ill.16-'" .. .. -0 ••••••• 

, , 



• • AHIN=AMAX1(IARFA*,005,9,) 
CALL PART~OM(NT,AMIN) 

7 CALL INSTK1(KSTACK(LS,S),3,0) 
, 77 CALL l'lST4CK(L~) 

LSaK'lTACI«LS,3) 
I~(LS.NE.O) GO TO 77 
RETUIIN 
EN~ 

,GMENT, LENGTH 764. NAME pAR PAR 

SU8ROUTINE PREAOSCIX,IY,MAXX,MAXY) 
RHOC1 ,1) IX,rY,/1AXX,MAXY 

, FOIIMU(21)14) 
RETURIj 
ENO 

:GMENT, LENGTH. 50, .NAME PREA05 

SUBROUTINE PREAD8CJNT.M) 
C COMPACT CARD VFRSION 

DIMENSION JNTCM),KNT(40) 
CALL CLEAr.O(1,JNT) 
1-0 

3 READ(1 .1.I:NO"2) KNT 
1 FOrlMAT(40A2) 

DU 5 K.1.40 
5 CALL COPY(2.JNTCI+K).3.KNTCK).1) 

1"1+40 
IF(M .. I,GE.40) '~O TO 3 

2 Mill 

,GM ENT , LENGTH 

RETURN 
END 

•• • 

73. NAME PREA08 

.,;. D1l? -

" 

'. 



·1 . 

SUBROUTINF PLOTSTCMAXX,MAXV,~CAF) 
C OPEN~ ~lnTTER SETS SCALING FACTOR AND CREATES ORIGIN 

M~MAXOCMAXX,MAXV) 
NCMINOCMAXX,MAXY) 
SCAF.AMIM1 e10./FLO~TCM),6./FlOATCN» 
CALL UTP~eFLOATCMAXX).SCAF,FLOATCMAXV)'SCAF,O) 
RE':URN 
[Hr, 

GMEHT, LENGTH 67. NAHE PLOTST 

SUBROUTINE PARTPLOTCNT,SCAF) 
C PLOT~ A'PARTICLE ON READV DRAWN AXES 

JTaNT 
CALL INSTK1CKSTACKCHT,S),3,O) 
XeKSTACKCJT,8).SCAF 
CALL UTP2CX,FLOATCKSTACKCJT,11»'SCAF,1) 
Xo:X-!:CAF 

'l DO 1 1Cc11,LSTAeK(JT> • 
Xo:X+SCAF 

• CALL UTP2CX,FLOATCKSTACKCJT,K»'SCAF,2) 
JTo:KSTACKeJT,3) 
K-LSTAr.KeJT)+11 
CO 2 Jo:11,LSTACK(JT) 
CALL UTP2CX,FLOATCKSTACKCJT,K-J»*SCAF.2> 

2 X=X-!:CAF 
JTaK!;TACKCJT.3) 
IF(JT.NE.O) GO TO 3 
CALL UTP2ex+sCAF,FlOATCK~TACKCNT,'1»*SCAF,2) 

GMENT. LENGTH 

CAll INSTK1(KSTACKCNT,S),3,NT) 
RETURIl 
ENIl 

153, NAME PARTPLOT 

, . 
• 

, , 
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c 
c 

c 

SUBROUTINE PARTMOMCJr,AMIN) 
GENERtTES AND OUTpUTS INvARIANT MOMENTS OF CONVEX CO~PONENTS 
OF BOUNDARY IN STACK JT 
COMMON/Se/SI,C! 
INTEGF.R ~F.T(20) . 
DI~ENS!ON NS(1000),XS(1000),YS(1000) 
RE~L MOM(220),VFACC20),YF4C(20),FACT(20) 
fF!NCAlL.NF..O) GO TO 99 
PI=3.HBII7.7 
PI2=;?*Pi 
P!3=3*PI 
FACTC"'" 
DO 911 1=2,20 

98 FACTCI)=FACTCI.1)*CI-1) 
99 NC4LL=NCALL+1 

NNaS 
"IM-15 
IS .. 1001 
NTIlIABSCJT> 
CALL INSTK1CKSTACK(NT,S),3,O) 
FIND NUMRER OF POINTS ON BOUNDARY 
NTOT=O 

. ~ NTOT=NTOT+LSTACKCNT)-10 
NhKSTACKCNT,3) 
IF(NT.NE.O) GO TO S 
NTaJ IIBS (.IT) 

CALL INSTK1(KSTACKCNT,S),3,NT) 
JRa1 
$£TC1>-O 
CAll MOMSFTCNT,10'NTOT,MOM,NN,MM,YFAC,1,FLOATC~STACKCNT,8») 
CAll MOMI~VCMOM,NN,MM,XFAC,YFAC,FACT) 
SaSI 
CIICJ 
AkEA=M('IMC1) 
XBAR="IOM(2) 
Y8ARz:MOM(3) 
TIIHA=MOM(S) 
CFaSQRTC~REA) 
1-10 M C 2) =MI')~: / 2) * CF 
MOM(3)=MOM(3)*CF 
CAll MOMOUTCMOM,SET,MM,NN,JR) 
LMIN=1 
SET(1)a1 
~IS C1 ):NT 
JCS(1)=10. 
V!;(1)=NTOT-1 

8 LaCMon/JR,2)*2-1)*ISIGNC1,JT) 
CALL MOMr,ON(NS(LMIN),XS(LMIN),ySCLMIN),MOM,NN,MM,YFAC,L,AMIN 

1, rS-PHN) 
LHIN .. UHN+L-1 
CALL MOMINV(MOM,NN,MM,XFAC,YFAC,FACT) 
CF,MOM(1)=MOM(1)/AREA 
CF .. SQRTCCF) 
X-M~M(2)*CF-XBAR 
V .. MOM/3).~F-YBAR .. 
110M (2) d*C+Y*S 
110M(3)=Y*C-X*S 
110M(5)nAMI'lD(MOMCS)-THETA+PI3,PI2)-PI 
CALL MOMnUT/MOM,SET,MM,NN,JR) 
IFCL.F.w.n) GO TO 6 
JR-J 11+1 
SET(JR)"L 

( 
( 

11 
_"_. __ '.' A.. -1): 9-'---------------. -'-' ._.----=::.:. . ..:. :........:. ... _ ... -. -------



GO TO 1\ 
6·IFCLMIN.~Q.Ol RETURN 
7 SET(JR)~~ET(JR)-1 

IFCSFY(JR).GT.O) GO T~ 8 
JR"JR-1 
GO TO ? 
ENIl 

GHENT, LENGTH 352, NAM~ P~RTHOM .. , .... 

C 

,"._.- .... -. .--... -._'. -- -........ -.. 

SUBROIIT!NE MOHSET(JT,JJ.NNH,MOM,NN,M~,YFAC,MQ.XA) 
FINO~ HOH~NTS OF NNM POINT ARC F~OM XA,YA TO XF,YF 
REAL MOM(MM),YFAC(NN' 
CALL ClEARO(1,MOM) 
NM-NNM 
Mat.\Q 
J"JJ 
XaXA 
NTr;JT 
VA~KSTACK(NT,J.M) 
LEN=lSTAI:K (NT> 

2 A"'" 
n-SIGrHO.5,A) 
JEa11+MAXOCO,M).(LEN-1') 
NIl.MINO(NM.I~BS(J-JE» 
lIO 1 ,"1,'10 
JaJ+M 

" 

.' _~ . __ i.-._.-. 

.. 

CALL SMOHS(MOH.NN.MM.YFAC.X+D,X-D,FLOAT(KSTAC~CNT,J»; 
~ XaX+A 

NMaNM-NO 
IFCNM.EQ.O) GO TO 3 
Ma"H 
XaX-A 
NhKSTACK(NT,3) 

. LEH=lSTACKCNT)· 
J=10-MINOtQ.M).<LEN-9) 
GO TO 2 

3 XF"X-A 

GHENT, LENGTH 

RETURN 
ENIl 

196, NAME MOM.SET 

• • • 
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! 

., 
SU9RnUTINE S~OMS(MOM,~N,MM,YFAC,XA,XC,Y) 
Rf~L MOM(MM),YFAC(NN) 
INTEGeR p,Q 
FIND~ ~IMPLE MOMENTS FROM UPPE~ OR LOWER 
XBo:XA 
XDIIXr. 
lSll1 
YPII1. 
00 2 J.,1.NN 
YPIIYP*V 

2 YFACtJ)"vP/J 
DO 3 PII1,~N 
XII!XR-XD)/P 
l,LSaLS+P-' 
00 4 Q=1.NN+1.p 
HOM(l)=MQM(L)+X*YFAC(Q) 

4 l=l+Q+P 
XIIIIXB*XA 

3 Y.DIIXn*xC 
RETUQN 
END 

iGMENT, LENGTH 131, NAME !:MOHS 

SUBROUTINE MOMOUT(MOM,sET,MM,NN,JR) 
INTEGER SET(JR) 
REU MOM(MM) 
Jlln 
WRITE(2,4) 

4 FORMAT (I ,) 

WRIT!:(2") SET 
1 FORMATt2nx,'COMPONENT',13,ZO('.',I1» 

WRJiF(2,~) 

BOUNDARY POniT 

'. 

, . 

5' FORMAT('.',43X"MOMENTS OF !NCREASING "ZOX,'ORDER DOWN', 
1'WARn ANn !NCREASING POWER OF V ACROSS') 

00 2 I"' .NN . 
WRITF.(2,]) (HOM(IO ,KIIJ+' ,J+I) 
JaJ+r 

3 FORMAT('5X,BG12.4) 
2 CONT! NUE 

GMENT, LENGTH 

RETURN 
ENO 

85. NAME ~OHOUT 

, 
• 
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SUBROUTI~E Mt~INV(MOM'NN,MM'~FAC,VFAC'FACT) 
C MO~ C~~TAINS SIMPLE MOMENTS, FACT(I) IS FAcTORIAL 1-1 
C ALL 01~ER ARRAVS ARE ~ORKING S~ACE 
C OUTPUT I~ INVARIANT MO~ENTS 'nUT MOM(1) IS AREA, 
C ",0"1(2) AND MO~(3) ARE SCALED CENT~OID COORrlNATES 
C, AND MO~(.) IS THETA IN RANGE +Pl TO -PI 

~Ol!HON/SC/S,C 

DI'IEN~ION CFAC(70),SFAC(2~) 
REAL "'OM(MM),XFhC(NN),VFAC(NN),FACT(NN) 
INTEGER p,Q 
AREA .. MOM(1) 
SS,S=,./SQRT(AREA) 
XP-S/4I!E~ 
XBAR .. MOM(2)*XP 
VBAR"MOM (3) *XP 
T,XP,YP=1. 

C HA~E sIZe INVARIANT A~D SET Up POSITION INVARIANCE FACTORS 
L=O 

c 

C 

D011=',NN 
S·S.SS 
XFACtn=xp 
VFACtI'=Yp 
XP-"XP*XBARIT 
VP,,-YP*VBAR/T 
T=T+1. 
L=l+I'" 
D02J=',1 

2 MOM(l+J)=MOM(l.J)*S/(FACT(I-J+')*FACT(J» 
1 CONTI "LIE 

MAKE POSITION INVARIANT 
LL=NI:+' 
L=MM+1 
DO 3 1.1,NN 
K"I.L 
LL-LL-' 
DO 3 p=1.ll 
Q=I(-P 
LrIS,JI"l-' 
IKaLL 
SIlO. 
DO 4 N.1,P 
IJ"U 
5S .. 0. 
DO 5 ", .. "Q 

'SS-SS+YFAC(M)*",oM(II) 
lI·U-IJ 

5 IJ.IJ-' 
S.S+!';S*XFAC(N) 
U.!K-' 

4 ISrIf=IS-11( 
3 HOH(L'''S*FACT(p).FACTCQ) 

.. :. 

FIND THETA A~D ITS SINE AND COSINE 
C2mO.S+O.5/SQ~T('.+(2 •• MOH(5)/(MOM(4)-HOH(6»)**2) 
CcSO'I!TCC21 , , 

S-SQRT(1.-CZ) 
Ah(C?*2.-'. )."."MCS) 
B8"(MOMC6)-MOM(~»·S·C 
IFCABSCRR+AA).IT,ABS(BB-AA» GO TO 12 
s-.. S 

U 18S 
SaC 
Ca .. T - D12q -

( 

f 

" 



_ _ • _. _ ••• _... • ••• _ '~8'_'~ _ •• _ _ __ .... 

12 AM30aMOM(7).C •• 3+(3.'CMOMC8),C+MOM(9"S).C+MOM(10)*S'S)'5 
AM03=~MOM(7).~ •• 3+(3 •• (MOM(8).S-MOM(~)*C)*S+MOM(10).C*C).C 
JF(A~03.lT.O •• OR.AH30.lT.O.) GO TO 13 
THETA~ATAN2(S,C) 

C HAK~ ROTATION 
l"O 
T,SF.c u 1. 
DO 7 11l1,NN 
SFAC(I)=~F 
CHC Cl) =CF 
DO 8 l'a1.I 
QIIJ-p+, 
SUM=O. 
51=1. 
DO 9 N.1.P 
SSaO • 

. Ka l+N+Q 
DO 10 Mc 1,Q '0 SSaSS+MOMCK-M).SFAC(M).CFAC(Q-M+1) 
~UM=~UM+~S'SFACCN).r.FACCP-N+1)'SI 

9 Sl"-:;;! 
8 YFAC(P)=SUM.FACT(P)·FACTCQ) 

DO 11 Ma1, I 
" HOMCl+M'=VFACCM) 

SFa-SF.S/T 
CF .. CF'C/T 
T=T+1. 

7 Llll+ t 
HOM(1)aAREA 
MOM(2)·XRAR 
JoIOr.t(3)IIVRAR 
MOMCS'=THETA 
RETURN 

GHENT, LENGTH 

END 

607. NAME MOMINV 

.. 
• 
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C 

c 

c 

, 
. __ • ..Io! •..•. Wo-

SUBROUTINF. HOHr,ONCNS,XS,VS,MOH,NN,MH,Y,AC,lN,AMIN,IS) 
FIND st~PlE MOMENTS OF CONVE~ HULL AND MARK CONCAVE S~TS 
REAl ,.,OMCMM) 
COMMON/Bn/lB,lD,HC 
OJMEN~ION XS(IS),YSCIS),NS(IS),YFAC(NN) 
JT,NT=NS(1) 
J,JL=NINTCXS(I,) 
M,Hl.KSTAC~(NT,7) 
HC .. lN 
CALL corpCXS,Y~,NS,JT,J,NINT(YS(I»+1,HC,JS,KN,H) 
CALL ClEARO(I,HOM) 
CALCULATE FIRST THE MOMEUTS TO CLOSE BOUNDARY 
Xr-"XS(1) 
YP",YS(') 
XFBXSCKN) 
YFaYS (lCN) 
ANl=1. 
AM,,¥FRYP 
1.=0. 
0" .. O.5*H<rHC 
IF(NINT(XFRXP>.EQ,O) GO TO 1 
A"RlGN(1. ,XF-Xp) 
ANL=ABS(XF-XP) 
AM .. AM/ANI. 

• 
IF(lR.EQ.1> CAll SMOMS(MOM,NN,MM,YFAC,XP+D,XP-D,YP) 
IF(Ln.EQ.NS(KN» ANL=ANL-I, 
JF(NINT(ANL).EQ.O) GO TO 2 

1 CONTINUE 
00 9 t=1,NINT(ANL) 
YP.YP+AM 
XP"XP .. l 

9 CALL SMOMSCMOM,NN,MM,YFAC,XP+D,XP-D,YP) 
2 CONT! NtJE 

CALCULATE ~OMENTS FOR ROUNDARY ITSELF 

• 

" 

CALL MCONSET(N~,XS.YS.HOM.YFAC.NN.MH,lN.KN,NT,JL,Hl.AHIN,IS) 
RE'I'URN 
END 

GMENT, LENGTH 253. NA~E MOMCON 

. , 
• 
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c 

c 

c 

c 

SUBROUTI~E CONPeXX,VV,LL,JT,J,NM,BMU,JTOT,NP,ML) 
SELECT r.ONVEX pOINTS FROM NM PO~NTS Sl~RTING AT (NT,J?M) 
COMMOP!lFl~/LB,LD 
DIMENSION XXeJTOT),VyeJTOT),LLeJTOT) 
Ma"'L 

.AMU=BMIj*", 
tlP,L=O 
LMIN.LMAlC=1 
LEN=lSTACl(eJT) 
XaKSTAr.r.eJT,8)+J-11+M 
XMIN.lCMA)(lIX 
UNPAr.1( THE POINTS AND LOCATE BAND 0 

4 J~=11+"'A~oeO,M).(lEN-11) 
ND~MINoeNM,IABs(J-JE» 

All'" 
DO 1 Ill' ,NO 
JIIJ+M 

·laL+1 
~V(L)=KSTACKeJT,J) 
xxeu=x 
llCL)"l 

1 X"X+A 
NMeNM-ND 
Ma"M 
XclC-A 
JFeNINTeXMAX-X\.GE.O) GO TO 30 
XMAXo:X 
LMAXo:l 

30 1FcNINTeXMIN-X).LE.0) GO TO 31 
XMINIIX 
LMJN"l 

31 CONTINUE 
JFeNM.EQ.O) GO TO 5 
J!aKSTACI(.IT,3) 
LF.N=LSTACK CJT) 
JII,O_MINOCO,M)*(LEN-9) 
GO TO 4 

5 LB=MINOClMAX,li4IN) 
lDIILIoIAX+l.MlN-lB 
TEST IF AB EXISTS 
JF(lB.EQ.1) GO TO 32 
APPLY T1 AND T'- TO SEGMENT AB 
CALLr.ONTR~CTCXX,YY,LL,JTOT,1,LB,NP,AMU,BMU) 
LBIILB+1 

t 

C APPLV T1 AND T' ~O SEGMEN! CD 
32 CAllCONTRACTCXX,VY,LL,JTOT,LB,LD,NP,-AHU,BHU) 

C TEST IF EF EXISTS 

. . . 

JF(LD.EQ.L) GO TO 12 
CAlLCONrRACTeXx,YY~LL,JTOT,LD+1,L,NP,AMU,BMU) 

12 CONTINIIE 
UTURN 
EtlD 

- D125 -
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i. 
C 

SUBROIJTINE CONTRACT(XX,VV,LL,JTOT,LS.Lf,NP,AMU,BHU) 
CONTRAr.T POINTS FROM LS TO LF USING T1 AND T2 
DIME~~ION XX(JTOT),YY(JTOT),LL(}TOT) 
JPIIl~-LS+1 
IF(J~.lE.2) GO TO 1 
HlaSI(jN(1. ,XX(I F)-XX(LS» 
IPIININ~(XX(LS»-ML'(1+NP) 

DO 2 I=LS,LF 
JPa(NINTtXX(I»-IP).Hl 

2 IF(JP.GT.O.ANO.(NINT(XX(I)-XX(JP~).Ne.O.OR. 
, NINT«VV(I)-YV(JP»*AMU).LT.O» 
, ClLt MOVEP(XX.YY,LL,I,JP,1,JTOT) 
IF~JP.LE.2) GO TO 1 
KP.NP=NP+2 

DO :5 I=NP+1,Jp 

. _ L.-. 

6 IF(NINT(1VV(NP-1)*(XX(I)-XXCNP»+YV(I)*(XX(NP)-XX(NP-1»-VV(~P) 
'(XX(I)-XX(NP-11»*BMU)116,O,0 • 

NP"NP-' 
!F(NP.GE.KP) GO TO 6 '6 NPIINP+' 

3 CALL MOVEP(XX,YV,LL,I,NP,1,JTOT) 
RETUIIN 

, NP.NP+JP 
CALL MOVEPCXX,VY,Ll,LS,NP-JP+',JP, JTOT) 
RETURN 
END 

~IJ.ENT, LENGTH 286, NAME CONTRACT 

GMENT, lENGTH 

.' '-" . 

.- ... -

SUBROUTINE MOVEP(XX,VV,LL,I,J,K,L) 
DIMENSION XX(L),VV(L),LL(Li 
IF(I.EO.J) RETURN 
CALL PMOVE(XX(t),XX(J),K+K) 
CALL PMOVF.(YY(!> ,VY(J) ,K+I() 
CAll PMOVE(LL(I),LL(J),K) 
RETURN 
END 

97, NAME ",OVEP 

•• • 
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• • 
SUBROUTINE MCONSET(NS,XS,YS,MOM,YFAC,NN,MH,L,K,NT,J, 

, M,AMIN.tS) 
COMMON/Rn/lB,LD,HC 

C FINr.S SIMPLE MOMENTS OF THE CONVEX HUll OF THf NM 
C POINTS STARTING AT (NT,J+M) I,ND SUPPLIES DETAILS OF 
C ANY CO~CAVITIE~ 

c 

C 
C 

DIHENSION XS(IS),YS(IS),NS(IS),YFAC(NN) 
REAL HOM(MM) 
HCaL 
L"O 
XaXS(1) 
Y"VS(" 
NaifS t1 ) 
LEtJ=lSTACKCNT> 
DNaHC.Q.c;*H 
DO 10 1=;1,1( 
XL-X 
YA,Yl=V 
tilaN 
XaXS(!) 
Y"YS (n 
N=NS (J) 

A-M 
DaDN 
IF(Nl.lT.lB.OR.NL.GT,lD) D"ND 
AR"O. 
Jl.J 
NTl"NT 
Ml"M 
JE,JEl,,11+HAXOtO,M)*(lEN·11) 
IF(X.Nf..Xl) GO TO 21 
AMH,AM"O. 
GO TO 22 

• 

21 AM~,AM=CV-Yl)/ABS(X-Xl' 
22 N M, N M l" tJ - N l 

FIND AREA BETWFEN LINE OF CONVEX HUll AND BOUNDARY 
20 ND=MINOCUM,IABSCJ-JE» 

1)0 12 1I=1,ND 
JaJ+M 
AR-AR+Vl-KSTACKCNT,J) 

12 YL=Yl +AM 
IF(J.NE.JF.) GO TO 23 
ARa-AR 
M· .. H 
AM--AM 
YLaYL+AM 
NTaI(!:TACKtNT,3) 
IF(NT.FQ.O) GO TO ~3 
lEN=lSTACKCNT) 
J.,,0.HINO(0,H).ClEN-9) 
JE,,11+MAXOCO,M)*(LEN-11) 
NHaNM-NO 
IF(NM.NE.O) GO TO 20 
IF AREA IT AMIN ASSUME CONVEX HUll RUNS ALONG BOUNDARY 
ElS~ USE CONVEX hULL LINE AND MARK CONCAVE seT 

23 IF( ABStAR).LT.AHIN) GO TO 13 
l"L+1 
NS(U=NTL 
XS CL) =.It 
YS(U=~!Ml 
1)0 14 II=1,I~B~(NINTCX-XL» 

f 
( 

CALL SMOMSCMOM,NN,MM,YFAC,XL+D,XL-D,YA) 
- D1127 ..... -.----.-- . ------- .. 

• 
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• • Xto:Xl+A 
14 VAaYA+AMM 

GO TO 10 
13 N ..... N.':i 

D=Hr .• ~i..n. 5 
NI h1 
IFCLD.~E.NS(K).AND.I.EQ.K.AND.~INTCHC+,.).eQ.O) NM=~M+' 
IFCL8.~E.1.A~D.I.EQ.2.AND.NINT\HC+1).EQ.0) Nlla2 

16 NDaMtNO(NM.IABS(JL-JEl» 
IFCNII.F.o.2) JL'JL+ML 
IFcND.LT.NII) r,o TO 17 
DO 15 II=NII.ND 
J L"Jl+ML 
CALL ~MOMS(MOM.NN.MM.VFAC,vL+D,XL·D,FlOAT~KSTACKCNTL,JL») 

15 XL"XL+A 
.u"Xl-A 

1;0 NMaNM-ND 
IFCNM.F.Q.O) GO TO 10 
NTl=KSTACK(NTl.3) 
lEN'" STACK(NTL) 
Ml"-Ill 
0".0 
A".A 
JL"'O-MINO(O,M,.)·(lEN-~) 

JEl=11+MAXO(O,Ml)*ClEN.',) 
NII=1 
GO ro 16 

10 CONT! Nur 
RETURN 
END 

I 

~ENT, LENGTH 576. NAME MCONSET 
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