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We study evolutionary models of financial markets. In particular, we study an

evolutionary market model with short-lived assets and an evolutionary model with

long-lived assets. In the long-lived asset market, investors are allowed to use

general dynamic investment strategies. We find sufficient conditions for the Kelly

portfolio rule to dominate the market exponentially fast. Moreover, when investors

use simple strategies but have incorrect beliefs, we show that the strategy which is

“closer”to the Kelly rule cannot be driven out of the market. This means that this

strategy will either dominate or at least survive, i.e., the relative market share

does not converge to zero. In the market with short-lived assets, we study the

dynamics when the states of the world are not identically distributed. This marks

the first attempt to study the dynamics of the market when the probability of

success changes according to the relative shares of investors. In this problem, we

first study a skew product of the random dynamical system associates with the

market dynamics. In particular, we compute the Lyapunov exponents of the skew

product. This enables us to produce a “surviving”investment strategy, i.e., the

investor who follows this rule will dominate the market or at least survive. All the

mathematical tools in the thesis lie within the framework of random dynamical

systems.
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Chapter 1

Introduction

The theory of evolution has a long history in biological, physical and social sci-

ences. In financial markets, evolutionary finance examines the dynamic interaction

of investment strategies and their long-run performance. Evolutionary finance has

been a very active area of research in financial mathematics for the past twenty

years. Survival and extinction questions of investment strategies have been exam-

ined in Blume and Easley [15]. They generalised the pioneering work of Kelly [29].

Kelly showed that the investor who follows the principle of betting your beliefs

ultimately accumulates total market wealth when the market composed only of

Arrow securities. This principle prescribes dividing wealth amongst assets accord-

ing to the probability of their success. The work of Kelly was inspired by ideas of

his postdoctoral mentor Claude Shannon, the creator of information theory [19].

Afterwards, the work of Kelly was developed by Breiman [16] and Cover et. al.

[1, 12, 13]. In all these papers, the authors assumed that the asset prices were

exogenous.

At the beginning of this century, there has been a remarkable development in evolu-

tionary ideas in finance. This development has been mainly carried by Evstigneev,

Hens and Schenk-Hoppé [27]. Evstigneev et. al. [21] analysed an evolutionary mar-

ket model with short-lived assets. In [21], the investors use constant investment

strategies and the prices are endogenous in the model. It is proved that there is a

unique survival investment strategy which accumulates the market wealth. After

this paper, this evolutionary model was studied under different assumptions and

from different points of view in [2, 26]. In the first paper, Amir et. al [2] used the

1
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homogenous discrete-time Markov process states of the world and general invest-

ment strategies were employed by the investors. In the last two papers, they used

the ideas from the theory of random dynamical systems [5, 14]. In [10], we have

examined the evolutionary market model with short-lived assets. However, we al-

lowed the states of the world to be not identically distributed. They may depend

on the amount of money invested in the assets. We have computed the Lyapunov

exponents of the skew product associated with random market system and have

applied these ideas to study wealth dynamics of investors. We have identified a

portfolio rule similar to Kelly rule. We have shown, [10], that the investor who

follows this rule cannot be driven out of the market. Our results in [10] marks

the first attempt to study the market dynamics when the probability of success is

allowed to change according to the relative shares of investors.

In [22, 23] Evstigneev et. al. introduced a model with long-lived asset. It is shown

that the Kelly rule is evolutionary stable and it is single survivor in the mar-

ket. Moreover, it is demonstrated in [7] that the Kelly rule forms a unique Nash

equilibrium strategy. In the last three papers [7, 22, 23], the investors use simple

portfolio rules. Also it is assumed that at least one of the investors uses the Kelly

portfolio rule. Recently we have shown [11] that when all the investors do not have

full information about the probability distribution of the assets and consequently

none of them uses the exact Kelly rule, then the investor who is closer to the Kelly

rule may dominate the market or at least survive. Our work in [11] also marks

the first attempt to study the market model with long-lived assets where none of

the investors have correct information about probability distribution of the states

of the world.

Amir et. al. [3] analysed the evolutionary model with long-lived assets when in-

vestors use general, adaptive portfolio rules. The authors showed that the Kelly

rule always survives. Their work suggested a very interesting question: Under

what conditions does the Kelly rule dominate the market? In [9], we found suffi-

cient conditions for the Kelly portfolio rule to dominate the market exponentially

fast. Roughly speaking, we show that if the Kelly rule and the “market portfo-

lio”deviate, then the Kelly rule will dominate the market.
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The mathematical framework of all these models is given by random dynamical

systems. Random dynamical systems appear in modelling of many phenomena

in economics, biology, climatology, etc., when uncertainties or random influences

are taken into consideration. These uncertainties or random influences are called

noises. This mathematical framework was mainly developed by L. Arnold [5].

Random dynamical systems explain probabilistically how the dynamics is effected

by noise. When the dynamical system is generated by a differential equation,

then it is called continuous-time dynamical system. When the dynamical sys-

tem is generated by a difference equation or a map, then it is called discrete-time

dynamical system. In this thesis we will be concerned with the latter; i.e., discrete-

time random dynamical systems. The concept of a random dynamical system is

an extension of the deterministic concept of a dynamical system and it gets to-

gether the ideas and methods from the well developed areas of dynamical systems

and probability theory. When applying results from dynamical systems to real

life problems external noise is unavoidable. Therefore, it is essential to require

the exact mathematical model to allow some small errors along orbits. This is

archived in the framework of a random dynamical system: we allow to embed the

randomness within the model to deal with this unavoidable uncertainty about the

observed initial states and correct parameter values.

There are recent developments of random dynamical systems theory in economics.

According to [33], the theory and application of random dynamical systems is at a

cutting edge in both mathematics and economics. In K.R. Schenk-Hoppé [33], he

studied and demonstrated the role and importance of dynamical systems theory

in economics. Furthermore, he demonstrated that the theory of random dynam-

ical systems for economic modelling and analysis is very useful with stochastic

components. The work in [33] focused on stochastic dynamic models in economic

growth. In particular, it was emphasised that random dynamical systems allows

to examine stability properties of economic systems, random interactions and time

dependent environments.

In Chapter 2 we give basic definitions and results from probability theory, stochas-

tic processes and ergodic theory. Moreover we state definitions and results from

finance and economics that we use in this thesis. In Chapter 3, we analyse ran-

dom maps with constant and position dependent probabilities. In particular we
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provide formulae of Lyapunov exponents for certain position dependent random

maps. This is part of our paper [10]. In Chapter 4, we introduce the evolutionary

market model with short-lived assets. We first give a literature review for models

with dynamic and constant investment strategies. Moreover, this chapter includes

our result from [10] which provides a surviving portfolio criterion when the states

of the world depend on the amount of money invested in the assets. In Chapter

5, the evolutionary market with long-lived assets is introduced. We first review

notions and literature in evolutionary finance for models with long-lived assets.

Section 5.3 includes our result from [9], where we have provided sufficient condi-

tions for the Kelly portfolio rule to dominate the market exponentially fast. In

Chapter 5 we also present our result from [11]. We have proved that when all the

investors have partial or no information about the probability distribution of the

assets, then the investor who is closer to the Kelly rule either dominates or at

least survives. Namely, the relative market share of the investor does not converge

to zero a.s. In Chapter 6, we conclude. In Appendix A we have proved auxiliary

lemmas for the proof of the main results in Section 5.3 and Section 5.4.



Chapter 2

Background

2.1 Probability Theory

In this section we state basic definitions and results from probability theory. All

these statements are need in this thesis. We have mostly used references [17,

18, 20, 34]. For more information on probability theory we refer the reader to

[17, 18, 20, 34].

2.1.1 Probability Spaces

Definition 2.1.

Let Ω be a non-empty set. A σ-field F on Ω is a family of subsets of Ω such that

i) Ω ∈ F ;

ii) If A ∈ F , then Ac ∈ F ;

iii) If A1, A2, . . . is a sequence of sets in F , then ∪∞i=1Ai ∈ F .

The elements of F are called F -measurable sets. The pair (Ω,F) is called a

measurable space.

Example 2.2.

• F1 = {∅,Ω} is the smallest σ-field.

5
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• F2 = P (Ω) = {A : A ⊆ Ω} is the largest σ-field of subsets of Ω.

• Let Ω = {0, 2, 4, 6, 8} and F3 = {∅,Ω, {2, 4}, {0, 6, 8}}. F3 is a σ-field.

Indeed,

i) Ω ∈ F3,

ii) ∅c = Ω ∈ F3, Ωc = ∅ ∈ F3,

{2, 4}c = {0, 6, 8} ∈ F3, {0, 6, 8}c = {2, 4} ∈ F3,

iii) ∅ ∪ {2, 4} = {2, 4} ∈ F3, ∅ ∪ {0, 6, 8} = {0, 6, 8} ∈ F3, ∅ ∪Ω = Ω ∈ F3,

{0, 6, 8}∪{2, 4} = Ω ∈ F3, Ω∪{2, 4} = Ω ∈ F3, Ω∪{0, 6, 8} = Ω ∈ F3.

An important definition in measure theory is given as follows.

Definition 2.3.

The Borel field on R, B (R), is the σ-field generated by open intervals in R. Subsets

of R which belong to B (R) are called Borel sets.

Example 2.4.

For a topological space X, the Borel algebra on X is the smallest σ-algebra con-

taining all open or closed sets.

Definition 2.5.

If f : A→ B and C ⊂ B, we let

f−1 (C) = {r ∈ A : f (r) ∈ C}

and call f−1 (C) the inverse image of C by f . Hence, f−1 (C) contains all points

in the domains of f mapped by f into C.

Proposition 2.6.

Let X : Ω → R denote a real-valued function. The collection of sets X−1 (B),

where B ranges over the Borel subsets of R, is a σ-field on Ω. We denote this

σ-field by FX and call it the σ-field generated by X.

Definition 2.7.

A mapping f : Ω→ R, where (Ω,F) is a measurable space, is called F -measurable

if f−1 (B) ∈ F for every Borel subset B ⊂ R.

Example 2.8.

Let f : R→ R. The function f defined by f (r) = r is measurable. Indeed,

f−1 ((a, b)) = {r ∈ R : a < f (r) < b} = (a, b) .
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Since (a, b) is interval, thus it is measurable. Therefore, f−1 ((a, b)) is measurable.

So that f is measurable.

The properties of measurable functions are given by the following theorem.

Theorem 2.9 (Properties of Measurable Functions).

1) If f, g : Ω→ R are measurable functions, then f + g, f − g, fg and f
g

(g 6= 0)

are measurable.

2) If f : Ω→ R is a measurable function, then f 2 is a measurable function.

3) If f, g : Ω→ R are measurable functions and α, β ∈ R, then αf + βg is also

measurable.

4) If f, g : R → R are measurable functions, then (g ◦ f) (r) = g (f (r)) is

measurable.

5) If f, g : Ω→ R are measurable functions, then max{f, g} and min{f, g} are

measurable.

6) If f : Ω → R is a measurable function, then the absolute value of f , |f |, is

also measurable.

7) If f, g : Ω → R are two functions such that f = g almost everywhere (a.e.)

and f is a measurable function, then g is measurable.

Remark 2.10. f = g almost everywhere means the set Ω = {r ∈ Ω : f (r) 6=
g (r)} is measure zero.

8) Let A be a set, define

XA (r) =

{
1, r ∈ A
0, r /∈ A

.

If A is measurable, then XA (r) is also a measurable function.

We now define a probability measure and then state its properties as a proposition.

Definition 2.11.

Let F be a σ-field on Ω. A probability measure P is a mapping

P : F → [0, 1]

such that
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i) P (Ω) = 1;

ii) If A1, A2, . . . , An, . . . is any sequence of pairwise disjoint events in F , then

P (∪∞n=1An) =
∞∑
n=1

P (An) .

Proposition 2.12 (Properties of Probability Measures).

1) For any subset A of Ω we have 0 ≤ P (A) ≤ 1.

2) P (Ac) = 1− P (A), where Ac is the complement of A.

3) If A ⊂ B, then P (A) ≤ P (B).

4) For any subsets A and B of Ω we have P (A ∪B) = P (A) + P (B) −
P (A ∩B).

Definition 2.13.

A probability space is a triple (Ω,F , P ) where Ω is the sample space, F is a σ-field

on Ω and P is the probability measure on F .

Definition 2.14.

The events A and B are said to be independent if P (A ∩B) = P (A)P (B).

Example 2.15.

Let us throw a die with all outcomes equally likely. Then Ω = {1, 2, 3, 4, 5, 6},
F = 2Ω and P {i}) = 1

6
for each i. Let A = {3, 5, 6}, B = {1, 4}, C = {1, 2, 3}.

Then we see that P (A) = 1
2
, P (B) = 1

3
and P (C) = 1

2
. Also B ∩ C = {1} and

A ∩ C = {3}. Since P (B ∩ C) = 1
6

= 1
6

= P (B) .P (C), events B and C are

independent. However, since P (A ∩ C) = 1
6
6= 1

4
= P (A) .P (C), events A and C

are not independent.

Definition 2.16.

Let (Ω,F , P ) be a probability space and X : Ω → R be F -measurable. Then X

is said to be random variable on (Ω,F , P ).

Remark 2.17.

Proposition 2.6 and Theorem 2.9 can be applied to random variables since random

variables are measurable functions.

Definition 2.18.

Let X : (Ω,F , P )→ R and Y :
(
Ω̄, F̄ , P̄

)
→ R be random variables. Then X and

Y are called identically distributed random variables if PX = PY .
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We now define independent random variables.

Definition 2.19.

The random variables X and Y on (Ω,F , P ) are said to be independent if the σ-

fields they generate, FX and FY , are independent.

The following definition is one of the fundamental concepts in probability.

Definition 2.20.

LetX : Ω→ R be a random variable. SupposeX can take values r1, r2, . . . , rn with

corresponding probabilities p (r1) ,p (r2) , . . . ,p (rn). Then the expected value of

the random variable X is given by

E (X) =
n∑
k=1

rkp (rk) .

The expected value of a random variable demonstrates its adjusted average.

Example 2.21.

How many tails would you expect when you tossed a coin three times?

X = number of ∈ {0, 1, 2, 3} and

p (0) = 1
8
, p (1) = 3

8
, p (2) = 3

8
, p (3) = 1

8
. Therefore, weighted average is

0
1

8
+ 1

3

8
+ 2

3

8
+ 3

1

8
= 1.5

In the following proposition we have listed the properties of expectation.

Proposition 2.22 (Properties of Expectation).

Let (Ω,F , P ) be a probability space. Let X, Y be simple random variables on

(Ω,F , P ), c ∈ R and A ∈ F . Then

1. E[X ± Y ] = E[X]± E[Y ];

2. if X and Y are independent, then E[X.Y ] = E[X].E[Y ];

3. E[cX] = cE[X];

4. if X ≥ 0, then E[X] ≥ 0;

5. if X ≥ Y , then E[X] ≥ E[Y ];
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6. if |X| ≤M on A ∈ F , then |E[X.1A]| ≤M.P (A).

To show the different components in the construction we need to introduce a new

notation by

E[X] :=

∫
Ω

XdP. (2.1)

When X =
∑n

i=1 ri1Ai , (Ai)
n
i=1 is a partition of Ω into F measurable sets and

ri = X (ωi) for any ωi ∈ Ai, by rewriting the integral, we obtain

E[X] =
n∑
i=1

X (ωi)P (Ai) =

∫
Ω

XdP. (2.2)

Example 2.23.

Let Ω = {1, 2, . . . , 7},F = 2Ω, P ({i}) = 1
6

for i = 1, 2, 3 and P ({i}) = 1
8

for

i = 4, 5, 6, 7. Let X (i) = 2i for i ≤ 4, X (i) = i for i > 4 and let A = {2, 4, 5, 7}.
Then∫

A

XdP =

∫
{2,4,5,7}

XdP =
∑

i∈{2,4,5,7}

X (i)P ({i})

= X (2)P ({2}) +X (4)P ({4}) +X (5)P ({5}) +X (7)P ({7})

= 4
1

6
+ 8

1

8
+ 5

1

8
+ 7

1

8

=
19

6
.

We now talk about integrability and its properties for random variables. If X is a

positive random variable on the probability space (Ω,F , P ), define

X [m] (ω) :=

{
X (ω) ifX (ω) < m,

m ifX (ω) ≥ m.

Definition 2.24.

Let X denote a positive random variable on the probability space (Ω,F , P ). If

limm→∞E[X [m]] <∞, we call X an integrable random variable. If X is integrable,

we let

E[X] = lim
m→∞

E[X [m]].

Lemma 2.25.

Let X and Y denote positive random variables on the probability space (Ω,F , P ).

If X is integrable and X = Y almost surely, then Y is integrable and E[X] = E[Y ].
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Definition 2.26.

A random variable X on a probability space (Ω,F , P ) is integrable if its positive

and negative parts, X+ and X−, are both integrable. If X is integrable we let

E[X] := E[X+]− E[X−] =

∫
Ω

X+dP −
∫

Ω

X−dP =

∫
Ω

XdP.

∫
Ω
XdP is called the Lebesgue integral of X over Ω with respect to P and let

L1 (Ω,F , P ) denote the set of all integrable random variables on (Ω,F , P ).

Proposition 2.27.

Let X and Y be random variables on the probability space (Ω,F , P ).

1. X is the pointwise limit of a sequence of FX measurable simple random

variables (Xn)∞n=1 such that |Xn| ≤ |X| for all n.

2. X is integrable if and only if |X| is integrable.

3. If X is integrable, then |E[X]| ≤ E[|X|].

4. If |Y | ≤ |X| and X is integrable, then Y is integrable.

5. If X and Y are integrable random variables and c ∈ R, then X ± Y and cX

are integrable.

6. If X and Y are integrable random variables on (Ω,F , P ), then E[X + Y ] =

E[X] + E[Y ].

Proposition 2.28.

If (Ω,F , P ) is a probability space with Ω = (ωn)∞n=1 and F = 2Ω, then X : Ω→ R
is integrable if and only if

∞∑
n=1

|X (ωn) |P ({ωn}) <∞.

If X is integrable

E[X] =

∫
Ω

XdP =
∞∑
n=1

X (ω)P ({ωn}) .
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2.1.2 Convex and Concave Functions

We now take a short break from probability theory and discuss certain properties of

real functions. Such properties are often used when studying financial or economic

problems. In particular, they are used quite often throughout this thesis.

Definition 2.29.

A function φ : (a, b) ⊂ R→ R is convex if for all r1, r2, a < r1 < r2 < b and all t,

0 < t < 1,

φ (tr1 + (1− t) r2) ≤ tφ (r1) + (1− t)φ (r2) . (2.3)

A function φ is said to be (strictly) concave if −φ is (strictly) convex.

Remark 2.30.

For a twice differentiable function f , if the second derivative, f
′′

(r), is positive,

then the graph is convex; if f
′′

(r) is negative, then the graph is concave.

Example 2.31.

Let f1 (r) = r2. We show that f1 (r) is convex. Following Remark 2.30 we have

f
′′

1 (r) = 2 > 0.

Hence, f1 (r) is convex.

Example 2.32.

Let f2 (r) = ln r, r > 0. We show that f2 (r) is concave. From Remark 2.30 we

have

f
′′

2 (r) = − 1

r2
< 0.

Hence, f2 (r) is concave.

Proposition 2.33.

If φ : (a, b) ⊂ R→ R, then the following conditions are equivalent:

1. φ is convex;

2. if a < r1 < r2 < . . . < rn < b, 0 < ti < 1 and
∑n

i=1 ti = 1, then

φ

(
n∑
i=1

tiri

)
≤

n∑
i=1

tiφ (ri) ; (2.4)
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r1 r2

tr1+(1-t)r2

f(tr1 +(1−t)r2)

tf(r1) +(1−t)f(r2)

Figure 2.1: f1 (r)

r2

r1
f(tr1+(1-t)r2)

tf(r1)+(1-t)f(r2)

tr1+(1-t)r2

Figure 2.2: f2 (r)
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3. if a < r < y < z < b, then

φ (r)− φ (y)

r − y
≤ φ (y)− φ (z)

y − z
. (2.5)

Corollary 2.34.

1. If φ is a twice continuously differentiable function defined on (a, b), then φ

is convex if and only if φ
′′ ≥ 0.

2. Convex functions are continuous.

3. If φ : (a, b)→ R is convex, then φ = φ1+φ2 where φ1 is convex and increasing

and φ2 is convex and decreasing.

We now state Jensen’s inequality for concave functions with positive weights.

Proposition 2.35.

For a real concave function φ, numbers r1, r2, . . . , rn in its domain, and positive

weights ai, Jensen’s inequality can be stated as :

φ

(∑
airi∑
aj

)
≥
∑
aiφ (ri)∑
aj

. (2.6)

Let us give an example.

Example 2.36.

Let φ (r) =
√
r. First we show that φ (r) is concave. The second derivative of φ (r)

is negative. Thus, from Remark 2.30 it is concave. Let r1, r2, . . . , rn be positive

numbers. Hence, they are in the domain of φ (r) =
√
r. Let ai, i = 1, . . . , n, be

positive numbers, then Proposition 2.35 implies that√∑
airi∑
aj
≥
∑
ai
√
ri∑

aj

⇐⇒
√
a1r1 + . . .+ anrn√
a1 + . . .+ an

≥
a1
√
r1 + . . .+ an

√
rn

a1 + . . .+ an
.

Example 2.37.

Let φ (r) = ln r. In Example 2.32 we have showed that φ (r) is concave. Let

r1, r2, . . . , rn be positive numbers. Hence, they are in the domain of φ (r) = ln r.
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Let ai, i = 1, . . . , n, be positive numbers, then Proposition 2.35 implies that

ln

(∑
airi∑
aj

)
≥
∑
ai ln (ri)∑

aj
.

This particular function is used frequently in this thesis. In particular this property

is used in Chapter 5.

We now state the following lemma which is proved in [4]. It will be used in the

proof of our main result in Section 4. This is a famous inequality which appears

quite often in problems related to information theory.

Lemma 2.38.

For any vectors (a1, . . . , aK) > 0 and (b1, . . . , bK) ≥ 0 satisfying
∑
ak =

∑
bk = 1,

the following inequality holds

K∑
k=1

ak ln ak −
K∑
k=1

ak ln bk ≥ 0. (2.7)

In particular, if (a1, . . . , aK) 6= (b1, . . . , bK), then
∑
ak ln ak >

∑
ak ln bk.

Proof.

We have

lnx ≤ x− 1,

which implies
lnx

2
= ln

√
x ≤
√
x− 1,

and so

− lnx ≥ 2− 2
√
x.

By using this inequality, we get

K∑
k=1

ak (ln ak − ln bk) = −
K∑
k=1

ak ln
bk
ak
≥

K∑
k=1

ak

(
2− 2

√
bk√
ak

)

= 2− 2
K∑
k=1

√
akbk =

K∑
k=1

(
ak − 2

√
akbk + bk

)
=

K∑
k=1

(√
ak −

√
bk

)2

≥ 0.

If (a1, . . . , aK) 6= (b1, . . . , bK), then
∑K

k=1 ak (ln ak − ln bk) > 0.
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2.1.3 Conditional Expectation

The expectation changes if new information becomes available.

Definition 2.39.

Let (Ω,F , P ) be a probability space and let G be a σ-field on Ω generated by a

countable partition (Gn)∞n=1 of Ω. Suppose G ⊂ F and P (Gn) > 0 for all n. If X

is an integrable random variable on (Ω,F , P ), let

E[X|G] (ω) =
1

P (Gn)

∫
Gn

XdP (2.8)

for all n and all ω ∈ Gn. E[X|G] is called the conditional expectation of X given

G. If G is generated by a random variable Y on (Ω,F , P ), we also write E[X|Y ]

in place of E[X|FY ].

Proposition 2.40.

Let (Ω,F , P ) be a probability space and let G be a σ-field on Ω generated by a

countable partition (Gn)∞n=1 of Ω. Suppose G ⊂ F and P (Gn) > 0 for all n. If

X is an integrable random variable on (Ω,F , P ), then E[X|G] is the unique G
measurable integrable random variable on (Ω,F , P ) satisfying∫

A

E[X|G]dP =

∫
A

XdP (2.9)

for all A ∈ G.

In particular, if A = Ω, then

E[E[X|G]] =

∫
Ω

E[X|G]dP =

∫
Ω

XdP = E[X], (2.10)

which means that the average of the averages is the average. The properties of

conditional expectation can be listed by the following proposition.

Proposition 2.41 (Properties of Conditional Expectation).

Let X and Y be integrable random variables on the probability space (Ω,F , P ). Let

c1 and c2 be real numbers and let G and H be σ-fields on Ω where H ⊂ G ⊂ F .

1. If Y is any version of E (X|G) then E (Y ) = E (X).

2. If X is G measurable, then E (X|G) = X a.s.
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3. (Positivity) If X ≥ 0, then E (X|G) ≥ 0, a.s.

4. (Linearity) E[c1X + c2Y |G] = c1E[X|G] + c2E[Y |G].

5. (Taking out what is known) If X.Y is integrable and X is G-measurable,

then

E[X.Y |G] = X.E[Y |G].

6. (Indepence drops out) If X and G are independent, then

E[X|G] = E[X].

7. (Tower Law)

E[E[X|G|H]] = E[X|H].

8. (Jensen’s Inequality) Let φ : R → R be a convex function and let X be

an integrable random variable on (Ω,F , P ) such that φ (X) is also integrable.

Then

φ (E[X|G]) ≤ E[φ (X) |G], (2.11)

for any σ-field G on Ω.

2.2 Stochastic Processes

We now define a stochastic process and a Markov process and then give an example.

Definition 2.42.

A stochastic process is a collection of random variables (Xt)t∈T defined on a prob-

ability space (Ω,F , P ), indexed by a subset T of the real numbers.

If subset T is countable, then the process X is called discrete stochastic process.

If T is uncountable, then it is called continuous stochastic process. The index T

represents time.

Definition 2.43.

For each fixed ω ∈ Ω, the mapping

t→ Xt (ω) ,

defined on index set t ∈ T , is called a sample path (or path).
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Definition 2.44.

Let X = (Xt)t∈T be a stochastic process and (Ft)t∈T be a filtration on (Ω,F , P ).

Then X is adapted to the filtration if Xt is Ft- measurable for all t ∈ T .

Definition 2.45.

A random sequence X1, X2, . . . is called an independent and identically distributed

(i.i.d.) process, if the sequence of random variables X1, X2, . . . is i.i.d..

Theorem 2.46 (Law of Large Numbers).

Let X1, X2, . . . be pairwise independent and identically distributed random vari-

ables, each having the same finite mean µ. Then

P

(
lim
n→∞

1

n
(X1 +X2 + . . .+Xn) = µ

)
= 1.

In other words, the partial averages 1
n

(X1 +X2 + . . .+Xn) converge almost surely

to µ.

The following theorem will be used in the proof of our main result in Chapter 5.

The proof of the theorem can be found in [25].

Theorem 2.47.

Let {Dt, t ≥ 1} be a sequence of random variables and {Ft, t ≥ 1} an increasing

sequence of σ-fields with Dt measurable with respect to Ft for each t. Let D be

a random variable and c be a constant such that E|D| < ∞ and P (|Dt| > x) ≤
cP (|D| > x) for each x ≥ 0 and t ≥ 1. Then

t−1

t∑
i=1

[Di − E (Di|Fi−1)]
p−→ 0 (2.12)

as t → ∞. If E
(
|D| log+ |D|

)
< ∞, or if the Dt are independent, or if {Dt, t ≥

1} and {E (Dt|Ft−1) , t ≥ 2} are stationary sequences, then the convergence in

probability in (2.12) can be strengthened to a.s. convergence.

Remark 2.48.

The above theorem is a weak version of law of large numbers unlike Theorem

2.46. In Theorem 2.47 the random variables are in general not required to be

i.i.d. This result roughly says that the time average asymptotically equals to the

“conditional”space average.
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Definition 2.49.

A sequence of σ-fields (Fn)∞n=1 on Ω such that

F1 ⊂ F2 ⊂ . . . ⊂ F

is called a filtration.

A filtration means that as the time t increases, the information about an event

increases.

Example 2.50.

For a sequence ψ1, ψ2, . . . of coin tosses we take Ft to be the σ-field generated by

ψ1, ψ2. . . . , ψt,

Ft = σ (ψ1, ψ2, . . . , ψt) .

Let

A = {the first 7 tosses produce at least one head and at least two tails}.

At time t = 7, we will be able to decide if A belongs to F7. Nevertheless at time

t = 6 it is not possible to tell if A has occurred or not. We have to wait for the

7th toss to decide.

Definition 2.51.

A stochastic process {Xn} where n ∈ N = {0, 1, 2, . . .} is called a discrete-time

finite state Markov chain if

P (Xn+1 = j|X0 = c0, . . . , , Xn−1 = cn−1, Xn = i) = P (Xn+1 = j|Xn = i) , (2.13)

for every i, j, c0, . . . , cn−1 and for every n.

The matrix P (Xn+1 = j|Xn = i)j,i∈S is called the transition matrix of the chain

Xn.

Let us give an example.

Example 2.52.

Suppose that a gambler starts with £1 and at each game the gambler wins £1 with

probability p or looses £1 with probability 1−p. The game ends when the gambler

has £7 or looses all his money. This is a Markov chain with its transition matrix



Chapter 2. Background 20

given by 

1 0 0 0 0 0 0 0

1− p 0 p 0 0 0 0 0

0 1− p 0 p 0 0 0 0

0 0 1− p 0 p 0 0 0

0 0 0 1− p 0 p 0 0

0 0 0 0 1− p 0 p 0

0 0 0 0 0 1− p 0 p

0 0 0 0 0 0 0 1


We now state a definition of Markov process with infinite state spaces.

Definition 2.53.

Let (X,B, λ) be a probability space. A function P : X × B → [0, 1] is called a

stochastic transition function if it has the following properties:

i) for any A ∈ B,P (., A) : X → [0, 1] is a B-measurable function;

ii) for any x ∈ X,P (x, .) : B→ [0, 1] is a measure.

A Markov process can be defined by a transition function P. Let λ be a proba-

bilistic measure on B called initial probability. Then we define all probabilities

related to the Markov process {Xn}n≥0 using λ and P:

P (Xn+1 ∈ A|Xn = r) = P (r, A) ;

P (Xn+1 ∈ A) =

∫
X

. . .

∫
X︸ ︷︷ ︸

n+1

dλ (r0)P (r0, dr1)P (r1, dr2) . . .P (rn−1, drn)P (rn, A) .

2.2.1 Discrete Martingales

Definition 2.54.

Let (Fn)∞n=1 be a filtration on the probability space (Ω,F , P ). A sequence (Xn)∞n=1

of random variables on (Ω,F , P ) is called a discrete martingale with respect to

(Fn)∞n=1, if

• Xn is integrable, n = 1, 2, . . .;
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• (Xn)∞n=1 is adapted to (Fn)∞n=1;

• E[Xn+1|Fn] = Xn a.s. for all n = 1, 2, . . . .

Let us give an example for martingales.

Example 2.55.

Let X1, X2, . . . be a sequence of independent random variables with E (Xs) = 0,

for each s. Define

S0 := 0,

Sn := X1 +X2 + . . .+Xn,

F0 := {∅,Ω} ,

Fn := σ (X1, X2, . . . , Xn) .

Then, for n ≥ 1, Sn is adapted to the filtration Fn. Also it is integrable because

E (|Sn|) = E (|X1 +X2 + . . .+Xn|)

≤ E (|X1|) + E (|X2|) + . . .+ E (|Xn|)

<∞.

Moreover,

E (Sn|Fn−1) = E (Sn−1 +Xn|Fn−1)

= E (Sn−1|Fn−1) + E (Xn|Fn−1)

= Sn−1 + E (Xn) = Sn−1,

since Sn−1 is Fn−1-measurable and Xn is independent of Fn−1. Thus Sn is a

martingale with respect to Fn−1.

Definition 2.56.

(Xt)t∈Z is called a martingale-difference sequence with respect to the filtration

{Ft}t∈Z if E|Xt| <∞, Xt is Ft-measurable and

E (Xt|Ft−1) = 0, ∀t ∈ Z.
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2.3 Ergodic Theory

In this section, we recall some definitions from ergodic theory. We follow [35] for

this section.

2.3.1 Invariant Measures and Ergodicity

Definition 2.57.

Suppose (X,F , µ) is a probability space. A transformation τ : X → X is measure-

preserving if τ is measurable and

µ
(
τ−1 (A)

)
= µ (A) ,

for all A ∈ F .

Let us give an example.

Example 2.58.

In this example we show that the doubling map τ (r) = 2r mod1 preserves Lebesgue

measure m, i.e., µ (τ−1 (A)) = µ (A), for all A ∈ F .

First,

τ−1 (a, b) = {r|τ (r) ∈ (a, b)}

=

(
a

2
,
b

2

)
∪
(
a+ 1

2
,
b+ 1

2

)
.

Therefore,

m
(
τ−1 (A)

)
= m

((
a

2
,
b

2

)
∪
(
a+ 1

2
,
b+ 1

2

))
b

2
− a

2
+
b+ 1

2
− a+ 1

2

b− a = m ((a, b)) .

Definition 2.59.

Let (X,F , µ) be a measure space. A measure-preserving transformation τ of

(X,F , µ) is called ergodic if the only members A of F with τ−1A = A satisfy

µ (A) = 0 or µ (A) = 1.
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Figure 2.3: τ (r)

Example 2.60.

Let us show that the doubling map τ (r) = 2r mod1 is ergodic with respect to

Lebesgue measure m. Let N be a standard dyadic interval at scale n, i.e., an inter-

val of type

(
a

2n
,
a+ 1

2n

)
, a ∈ Z. If A is any measurable set, then m (τ−nA ∩N) =

2−nm (A). If A is τ -invariant, then m (A ∩N) = 2−nm (A). This means the

relative density of A on N is m (A). If m (A) is not equal to 0 or 1, then this

contradicts the Lebesgue density theorem.

We now state a major result in ergodic theory.

Theorem 2.61 (Birkhoff Ergodic Theorem).

Let (X,F , µ) be a measure space and let τ : X → X be a measure-preserving

transformation. Then, for each f ∈ L1 (µ), there exists a function f ∗ ∈ L1 (µ)

such that f ∗ (τ (r)) = f ∗ (r), r ∈ X µ-a.e. and

lim
t→∞

1

t

t−1∑
i=0

f
(
τ i (r)

)
= f ∗ (r) , ∀r ∈ X, µ− a.e. (2.14)

Furthermore, if µ (X) <∞, then
∫
X
f ∗dµ =

∫
X
fdµ.

If τ is ergodic, then f ∗ is constant a.e. and so if µ (X) <∞ f ∗ = 1
µ(X)

∫
fdµ a.e.

If (X,F , µ) is a probability space and τ is ergodic we have ∀f ∈ L1 (µ),

lim
t→∞

1

t

t−1∑
i=0

f
(
τ i (r)

)
=

∫
fdµ a.e.
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The Birkhoff Ergodic Theorem shows that the asymptotic behaviour of the fre-

quencies of the iterates τn (r) of r. The limit in (2.14) of the time average of f

exists for a.e. r and the limit function f ∗ is integrable and measure-preserving.

2.3.2 Lyapunov Exponents

Definition 2.62.

A manifold is a topological space that is locally Euclidean (i.e., around every point,

there is a neighbourhood that is topologically the same as the open unit ball in

Rn).

Euclidean space is the basic example of a manifold. Also, any smooth boundary

of a subset of Euclidean space is a manifold, such as circle, sphere, etc. We can

show that a circle is a manifold.

Example 2.63.

A circle is given by

C1 = {(x, y) ∈ R2|x2 + y2 = 1}

is a manifold of dimension one. A possible atlas is

K = {(H1, α1) , (H2, α2)}

where

H1 = C1 \ {(−1, 0)}, α1 (x, y) = arctan
y

x
with − π < α1 < π

H2 = C1 \ {(1, 0)}, α2 (x, y) = arctan
y

x
with 0 < α2 < 2π.

Definition 2.64.

SupposeM is a Cs manifold (s ≥ 1) and r is a point inM . Pick a chart Φ : U → Rn

where U is an open subset ofM containing r. Suppose two curves Y1 : (−1, 1)→M

and Y2 : (−1, 1) → M with Y1 = Y2 = r are given such that ΦY1 and ΦY2 are

both differentiable at 0. Then Y1 and Y2 are called equivalent at 0 if the ordinary

derivatives of ΦY1 and ΦY2 at 0 coincide. This defines an equivalence relation on

such curves, and the equivalence classes are known as the tangent vectors of M at

r. The equivalence class of the curve Y is written as Y
′
(0). The tangent space of

M at r, denoted by TrM , is defined as the set of all tangent vectors.
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We now define the Lyapunov exponents . We use [32] for the following definition

and Oseledec’s Multiplicative Ergodic Theorem.

Definition 2.65.

Let f : M → M be an endomorphism on a manifold M of dimension m. Let |.|
be the norm on tangent vectors induced by a Riemannian metric on M . For each

r ∈M and v ∈ TrM let

l (r, v) = lim
t→∞

1

t
ln
(
|Df trv|

)
, (2.15)

whenever the limit exists.

Let us give an example.

Example 2.66.

Let

τ (r) =

{
2r 0 ≤ r < 1

2
,

2− 2r 1
2
≤ r ≤ 1

be a map. If r0 is such that rj = T j (r0) = 1
2

for some j, then l (r0) is not defined

because its derivative does not exist. This kind of points make up a countable set.

For other points r0 ∈ [0, 1],

|f ′ (rj) | = 2 for all j.

Therefore, the Lyapunov exponent is l (r0) = log 2.

We now state the following theorem.

Theorem 2.67 (Oseledec’s Multiplicative Ergodic Theorem).

Let M be a compact manifold of dimension m, B be the σ-algebra generates by the

Borel subsets of M , and f : M → M be a C2 diffeomorphism. Then there is an

invariant set Bf ∈ B of full measure for every µ ∈ M (f), where µ ∈ M (f) is

the set of all invariant Borel probability measures for f , such that the Lyapunov

exponents exist for all points r ∈ Bf .

More precisely the following are true.

a) The set Bf is

i) invariant,
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ii) of full measure, µ (Bf ) = 1 for all µ ∈M (f).

b) For each r ∈ Bf , the tangent space at r can be written as an increasing set

of subspaces

{0} = V 0
r ⊂ V 1

r ⊂ . . . V m(r)
r = TrM

such that

i) for v ∈ V j
r V j−1

r the limit defining l (r, v) exists and lj (r) = l (r, v) is

the same value for all such v,

ii) the bundle of subspaces

{V j
r : r ∈ Bf and m (r) ≥ j}

are invariant in the sense that DfrV
j
r = V j

f(r) for all 1 ≤ j ≤ m (r).

c) The function m : Bf → {1, . . . , s} is a measurable function and invariant,

m ◦ f = m.

d) If r ∈ Bf , the exponents satisfy

−∞ ≤ l1 (r) < l2 (r) < . . . < lm(r) (r) .

For 1 ≤ j ≤ m, the function lj (.) is

i) defined and measurable on the set

{r ∈ B)f : s (r) ≥ j},

ii) is invariant, lj ◦ f = lj.

2.4 Background from Finance and Economics

In this section we state definitions that we use in this thesis. We mostly have used

the book [24] for the definitions.

Definition 2.68.

An asset is a resource controlled by the entity as a result of past events and from

which future economic benefits are expected to flow to the entity. We use two

types of assets in this thesis.
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• A short-lived asset is an asset that the investor plans to hold it for short

period of time, such as cash, securities, bank accounts etc.

• A long-lived asset is to be held for many years and are not intended to be

disposed of in the near future, such as bonds, common stock etc.

2.4.1 Capital Asset Pricing Model (CAPM)

CAPM is a model which defines the relationship between expected return and risk.

It is used to determine the pricing of risky securities.

2.4.1.1 Notation

• Asset prices are vectors denoted by

pt = (pt,1, . . . , pt,K) .

• Asset returns are random vectors denoted by

R = (R1, . . . , RK) ,

where Rk =
p1,k−p0,k
p0,k

. Here, 0 means the zero vector of dimension K. We use

boldface font for K + 1 dimensional vector, for instance,

R = (R0, R1, . . . , RK) .

k = 0 will be assumed to be risk-free, i.e., its return R0 = r > 0 non-random

number.

• Investor’s portfolio is characterised by a vector

x = (x1, . . . , xK) ,

x = (x0, x1, . . . , xK) .

• The vector of expected returns on the assets

m = (m1, . . . ,mK) ,
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where mk = ERk,

m = (r,m1, . . . ,mK) .

• The K ×K covariance matrix V = (σkj), where

σkj = Cov (Rk, Rj)

= E (RkRj)− E (Rk)E (Rj) .

The matrix V is positive definite. Thus, its inverse W := V−1 exists.

• The return on a normalized portfolio x is denoted by Rx = 〈R,x〉.

• The expected return on x is denoted by mx.

• The variance of a portfolio return is denoted by σ2
x.

• η ≥ 0 is the risk tolerance of the investor.

2.4.1.2 CAPM Equation

The Markowitz portfolio selection problem

max
x∈RK+1

{2ηERx − V arRx} (2.16)

subject to

〈e,x〉 = 1

has a unique solution x∗η given by

x∗η = xMIN + ηy∗,

where xMIN = (1, 0, . . . , 0), y∗ = (y∗0, y
∗), y∗0 = rC − A, y∗ = W (m− re), where

A = 〈e,Wm〉, B = 〈m,Wm〉, C = 〈e,We〉 and D = BC − A2 ([30]).

Theorem 2.69.

Let x∗η be a solution of (2.16). Then for each k = 1, . . . , K, the following equation

holds:

ERk − r =
Cov (Rk,Rx)

V arRx
(ERx − r) . (2.17)

The equation (2.17) is called capital asset pricing model (CAPM) ([28]).
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2.4.2 Game Theory

Game theory focuses on situations in which a group of people interact. It was

found by the mathematician John von Neumann. The first book was The Theory

of Games and Economic Behaviour. Game theory is firstly used in economics to

understand a collection of economic behaviour which includes markets, firms and

consumers. Then it is extended to psychology, political science, biology and logic.

It is the formal study of decision-making where many decision-makers must make

choices which affect the other players’ interests. The games analysed in game

theory are well-defined mathematical tools. It consists of players, payoffs and

strategies of players. Let us start by describing the game in a formal language.

Definition 2.70.

A game is a formal model of an interactive situation which consists of players,

actions, payoffs and information. These are known as the rules of the game.

Definition 2.71.

i) Players are the individuals who make decisions. Their aim is to maximise

utility by choice of actions.

ii) The payoff of a player i is the expected utility he/she receives as a function

of the strategies chosen by himself/herself and the other players.

iii) A strategy of player i is a rule that tells him/her which action to choose at

each instant of the game, given his/her information set.

iv) A strategy profile
(
λ1
t , . . . , λ

I
t

)
is a list consisting of one strategy for each of

the I players in the game.

Let us give an example of game. This game is called stag hunt in game theory.

Also this game is an example of a symmetric game. The following Examples 2.72,

2.75, 2.76 and 2.77 are well-known in game theory. Details can be found in [24, 31].

Example 2.72 (Stug Hunt).

There are two hunters decide to go out for hunting. Each can individually choose

to hunt a stag or hunt a hare. Each hunter does not know the other hunter’s choice

while they choose what to hunt. If one of the hunters hunts a stag, then he must

have the cooperation of the other hunter in order to succeed. A hunter can chooses
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a hare by himself, but stag’s meat is much better than a hare’s meat. The payoff

matric is given as the following.

(Hunter 2 (stag) Hunter 2 (hare)

Hunter 1 (stag) (9, 9) (0, 6)

Hunter 1 (hare) (6, 0) (4, 4)

)

In the above payoff matrix we see that if the both hunters hunt a stag both will get

a payoff 9. But if the Hunter 1 hunts a stag and Hunter 2 hunts a hare, then the

first one gets a payoff 0 and second hunter gets a payoff 6. If they both hunt a

hare they will both get a payoff 4.

Definition 2.73.

The normal-form representation of an I-player game specifies the players’ strategy

spaces λ1
t , . . . , λ

I
t and their payoff functions u1, . . . , uI . We denote this game by

G = {λ1
t , . . . , λ

I
t ;u1, . . . , uI}.

We now define a Nash equilibrium.

Definition 2.74.

In the I-player normal-form game G = {λ1
t , . . . , λ

I
t ;u1, . . . , uI}, the strategies(

λ̄1
t , . . . , λ̄

I
t

)
are a Nash equilibrium if, for each player i, λ̄it is player i’s best response

to the strategies specified for the I − 1 other players,
(
λ̄1
t , . . . , λ̄

i−1
t , λ̄i+1

t , . . . , λ̄It
)
:

ui
(
λ̄1
t , . . . , λ̄

i−1
t , λ̄i+1

t , . . . , λ̄It
)
≥ ui

(
λ̄1
t , . . . , λ̄

i−1
t , λ̄it, λ̄

i+1
t , . . . , λ̄It

)
(2.18)

for every feasible strategy λit; that is, λ̄it solves

max
λit

ui
(
λ̄1
t , . . . , λ̄

i−1
t , λ̄it, λ̄

i+1
t , . . . , λ̄It

)
. (2.19)

Let us give a famous example in game theory which is called prisoner’s dilemma,

where it has a unique Nash equilibrium.

Example 2.75 (Prisoner’s Dilemma).

Each prisoner obtains a higher payoff when he betrays the other prisoner, no mat-

ter what the other prisoner decides. If both prisoner cooperate and stay silent then

they will be charged for 1 year. If both prisoners confess then this time they will

be charged for 5 years. However, if the prisoner, say A, betrays the other and



Chapter 2. Background 31

prisoner B stays silent, then the prisoner A will be free and the prisoner B will be

charged for 10 years, or vice versa. The payoff matrix is represented as below.

(Prisoner B (cooperate) Prisoner B (confess)

Prisoner A (cooperate) (1, 1) (10, 0)

Prisoner A (confess) (0, 10) (5, 5)

)

Therefore both way, confessing makes sense, as it would for the other prisoner.

So, the Nash equilibrium is formed at 5 years for each.

Let us show an other example where the game has two Nash equilibrium. This

game is known as battle of the sexes in game theory.

Example 2.76 (Battle of the Sexes).

A girl and a boy want to go out together for a meeting this evening. There are two

activities in town; dancing and cricket match. However, they will not communi-

cate before the meeting. The girl wants to go for dancing. The boy wants to go

to the cricket match. But they prefer being together rather that being alone. The

payoff matrix of the game is the following.

(Boy (dance) Boy (cricket)

Girl (dance) (4, 3) (0, 0)

Girl (cricket) (0, 0) (3, 4)

)

This game has two pure strategy Nash equilibrium. One is both going out for

dancing and the other is both going out to watch the cricket match.

We can now illustrate an example where the game has no Nash equilibrium. This

game is known as matching pennies in game theory.

Example 2.77 (Matching Pennies).

This game is played between two players; Player 1 and Player 2. Each player

has a penny and must secretly turn the penny to heads or tails. Then the players

show their choices simultaneously. If the pennies match (both heads or tails), then

Player 1 wins the Player 2’s penny. If the pennies do not match (one heads and

one tails), then Player 2 wins thePlayer 1’s penny. The payoff matrix of this game
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is given as the following.

(Player 2 (heads) Player 2 (tails)

Player 1 (heads) (+1,−1) (−1,+1)

Player 2 (tails) (−1,+1) (+1,−1)

)

In this game there is no pure strategy Nash equilibrium. Because there is no pair of

pure strategies such that neither player would want to switch if told the player what

the other player would do. Furthermore, this game is an example of a zero-sum

game. Because one of the players’ gain is equal to the other player’s loss.
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Random Dynamical Systems

In this section, we recall some definitions from the theory of random dynamical

systems. In this section we mainly follow [5].

Definition 3.1.

A measurable dynamical system (θ (t))t∈T on a probability space (Ω,F , P ) for

which each θ (t) is an endomorphism is called a measure preserving or metric

dynamical system and is denoted by Σ =
(
Ω,F , P, (θ (t))t∈T

)
or, for short, by

θ (.).

Definition 3.2.

A measurable random dynamical system on the measurable system (X,B) over (or

covering or extending) a metric dynamical system
(
Ω,F , P, (θ (t))t∈T

)
with time

T is a mapping

φ : T × Ω×X → X, (t, ω, r) 7→ φ (t, ω, r) ,

with the following properties:

i) Measurability : φ is B (T )⊗F ⊗ B,B-measurable.

ii) Cocycle property : The mappings φ (t, ω) := φ (t, ω, .) : X → X form a

cocycle over θ (.), i.e. they satisfy

φ (0, ω) = idr for all ω ∈ Ω (if 0 ∈ T ) ,

φ (t+ s, ω) = φ (t, θ (s)ω) ◦ φ (s, ω) for all s, t ∈ T ω ∈ Ω,

33
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where “◦ ”means composition.

3.1 Random Maps With Constant Probabilities

We now define the notion of a random map (also called an iterated function system

with probabilities) and state some results from [8] for a certain class of iterated

function systems. Random maps are a special type of random dynamical systems.

Let S be a finite set, S = {s1, . . . , sL}. Let p be a probability distribution on S

such that ps > 0 for all s ∈ S and τs : X → X be measurable. The collection

F = {τ1, τ2, . . . , τL; p1,p2, . . . ,pL}

is called a random map or an iterated function system (IFS) with probabilities.

We denote the space of sequences ω = {s1, s2, . . .}, sl ∈ S, by Ω. The topology on

Ω is defined as the product topologies on S. The Borel measure on Ω is defined

as the product measure pN. Moreover, we write

st := (s1, s2, . . . , st)

for the history (information) up to time t.

Formally F is understood as a Markov process with a transition function

P (r, A) =
L∑
s=1

psXA (τs (r)) ,

where A ∈ B and XA is the characteristic function of the set A. Intuitively, this

means that at each time step

F (r) = τs (r)

with probability ps; i.e., at each time step, one transformation τs is selected with

probability ps and applied to the process.

Example 3.3.

Let S = {1, 2}, i.e., S consists of two symbols. Then F = {τ1, τ2;p1,p2}. Let us

consider a specific example where X = [0, 1]. Suppose that the formulae of τ1, τ2

are given by

τ1 (r) = 4r (1− r) ,



Chapter 3. Random Dynamical Systems 35

and

τ2 (r) =

{
2r 0 ≤ r < 1

2
,

2− 2r 1
2
≤ r ≤ 1,

and p1 = p2 = 1
2
.

Figure 3.1: τ1 (r)

Figure 3.2: τ2 (r)

For instance, when we take r = 3
5
, then we can see how a random orbit looks like

at time t = 1, 2 by the following diagram.
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r = 3
5

τ2

(
3
5

)
= 4

5

τ2

(
4
5

)
= 2

5
p

2 = 1
4

τ1

(
4
5

)
= 16

25p1
=

1
4

p
2 = 1

2

τ1

(
3
5

)
= 24

25

τ2

(
24
25

)
= 23

25
p

2 = 1
4

τ1

(
24
25

)
= 96

625p1
=

1
4

p1
=

1
2

3.1.1 Skew Products

A random map can be realised as a skew product (deterministic map) on the

extended phase space:

R (r, w) : X × Ω→ X × Ω

given by

R (r, w) = (τw1r, σw) ,

where Ω is the space of one-sided sequences w = {w1, w2, . . .}, wi ∈ {1, . . . , K}
and (σw)i = wi+1 is the left-shift map.

3.1.2 Random Homeomorphisms on [0, 1]

In [8], the following random map was studied. Let

F = {τ1, τ2, . . . , τL; p1,p2, . . . ,pL}

such that

i) τs : [0, 1]→ [0, 1],

ii) τs is continuous and increasing,

iii) τs (0) = 0 and τs (1) = 1.
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Let rt (st) denote

rt
(
st
)

:= τst ◦ τst−1 ◦ . . . ◦ τs1 (r0) ,

where st := (s1, s2, . . . , st) , si ∈ S.

Example 3.4.

Let S = {1, 2}, i.e., S is the space of two symbols. Then F = {τ1, τ2;p1,p2}.
Suppose that the formulae of τ1, τ2 are given by

τ1 (r) = r2,

and

τ2 (r) =
√
r,

with p1 = 1
3

and p2 = 2
3
.

Figure 3.3: τs (r) , s = 1, 2

One can easily check that the transformations τ1 (r) and τ2 (r) satisfy the properties

of the random map in [8].

3.1.3 Representation of Random Homeomorphisms

For such random map, one can easily observe (see Lemma 4.2. [8]) that each

constituent map of the random map can be represented as follows:

τs (r) = rβs(r),
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with βs (r) satisfying;

1. βs (r) > 0 in (0, 1);

2. (ln r) βs (r) increasing;

3. limr→0 (ln r) βs (r) = −∞;

4. limr→1 (ln r) βs (r) = 0.

Among other results the following proposition can be found in [8]. Let

αt := βs (rt−1) with probability ps, t = 1, 2, . . . .

Proposition 3.5.

Let F = {τs;ps}s∈S be a random map such that τs (r) = rβs(r). Assume that

0 < bs ≤ βs (r) ≤ Bs < ∞ for all r ∈ [0, 1]. If E (lnαt | st−1) ≤ 0 a.s., then

limt→∞ rt (st) 6= 0 a.s.

With Proposition 3.5 we say that the investor will dominate the market or at least

survive. This proposition will be used in our main result in Section 5.4.

3.2 Random Maps With Position Dependent Prob-

abilities

(X,B (X) , µ) will denote a measure space, where B (X) is a σ-algebra of subsets

of X and µ is a probability measure on (X,B). In particular, (I,B (I) ,m) will

be the unit interval I = [0, 1), with B (I) the Borel σ-algebra on I and m being

Lebesgue measure on (I,B (I)). For s = 1, . . . , L, let τs : X → X be measurable

transformations and ps : X → I be measurable functions such that
∑L

s=1 ps (r) =

1, that is, a measurable partition of unity.
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3.2.1 Position dependent random maps

We let F = {τ1, . . . , τL; p1, . . . ,pL} denote the associated random map. A random

map is more precisely a discrete time Markov process with transition function

P (r, A) =
L∑
s=1

ps (r)XA (τs (r)) ,

where XA denotes the characteristic function of a measurable set A.

3.2.2 A Deterministic Representation For Position Depen-

dent Random Maps

Following [6] we can represent the position dependent random map by a skew

product as follows. This deterministic representation represents the position de-

pendent random map on the extended phase space X × I where I is the unit

interval which accounts for the noise space. We make use of the following simple

lemma:

Lemma 3.6. Let Y and Z be a measurable spaces and let (Js)s∈κ be a finite

(or countable), measurable partition of Y . For each s ∈ κ, assume that Fs is a

measurable map from Js to Z. Then the piecewise-defined map F : Y → Z defined

by F (r) = Fs (r) if r ∈ Js is measurable.

In our construction, Y = Z = X × I and the set Js will be given by Js = {(r, w) :∑
i<s pi (r) ≤ w ≤

∑
i≤s pi (r)}. We define maps ϕs : Js → I by

ϕs (r, w) =
1

ps (r)
w −

∑s−1
l=1 pl (r)

ps (r)
. (3.1)

The maps Fs are defined on Js by Fs (r, w) = (τs (r) , ϕs (r, w)). By

ϕr (w) : [0, 1]→ [0, 1]

we will denote the piecewise linear expanding map, whose L branches are given

by

ϕs (r, w) , s = 1, . . . , L.
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It is well known ([35]) that for such a piecewise linear expanding map Lebesgue

measure is invariant and ergodic. Define the skew product transformation R :

X × I → X × I by

R (r, w) = (τs (r) , ϕs,r (w)) , (3.2)

for (r, w) ∈ Js. R is then B (X)×B (I)-measurable.

We give the following example.

Example 3.7. Let T be a random map which is given by {τ1, τ2;p1 (r) ,p2 (r)}
where

τ1 (r) =

{
2r 0 ≤ r ≤ 1

2
,

r 1
2
< r ≤ 1,

τ2 (r) =

{
r + 1

2
0 ≤ r ≤ 1

2
,

2r − 1 1
2
< r ≤ 1;

and

p1 (r) =

{
2
3

0 ≤ r ≤ 1
2
,

1
3

1
2
< r ≤ 1,

p2 (r) =

{
1
3

0 ≤ r ≤ 1
2
,

2
3

1
2
< r ≤ 1.

Then, R (r, w) is given by:

R (r, w) =



(
2r, 3

2
w
)

for (r, w) ∈ [0, 1
2
]× [0, 2

3
]

(r, 3w) for (r, w) ∈ (1
2
, 1]× [0, 1

3
](

2r − 1, 3
2
w − 1

2

)
for (r, w) ∈ (1

2
, 1]× (1

3
, 1](

r + 1
2
, 3w − 2

)
for (r, w) ∈ [0, 1

2
]× (2

3
, 1].

3.2.3 Lyapunov Exponents of an Endomorphism

In this subsection, we recall the definition of Lyapunov exponents of an endomor-

phism [32].

Definition 3.8.

Let f : M → M be an endomorphism on a manifold M of dimension m. Let |.|
be the norm on tangent vectors induced by a Riemannian metric on M . For each

r ∈M and v ∈ TrM let

l (r, v) = lim
t→∞

1

t
ln
(
|Df trv|

)
, (3.3)
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whenever the limit exists.

Remark 3.9.

The multiplicative ergodic theorem of Oseledec [32] says that, for almost all r ∈M :

i) the limit in (3.3) exists for all tangent vectors v ∈ TrM , and

ii) there are at most m distinct values of l (r, v) for one point r.

Let m (r) be the number of distinct values of l (r, v) at r for v ∈ TrM , with tangent

vectors vj ∈ TrM for 1 ≤ j ≤ m (r) giving distinct values:

lj (r) = l
(
r, vj

)
with

l1 (r) < l2 (r) . . . < lm(r) (r) .

These distinct values are called the Lyapunov exponents at r.

3.3 Computing the Lyapunov exponents of the

skew product

In this section, we are going to assume that X = [0, 1] and that

τs : [0, 1]→ [0, 1]

are differentiable maps. In the next proposition, we will obtain formulae for the

Lyapunov exponents of the skew product R.

Proposition 3.10.

Let R : [0, 1]× [0, 1]→ [0, 1]× [0, 1] be defined as in (3.2). Then

1.

l1 (r, w) ≥ lim
t→∞

1

t

t−1∑
i=0

ln |τ ′si
(
τsi−1

(r)
)
|,

2.

l2 (r, w) = lim
t→∞

1

t
ln

1

pst−1

(
τst−2 ◦ τst−3 . . . τs0 (r)

) . . . 1

ps0 (r)
.
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Proof.

For (r, w) ∈ Js we have

R (r, w) = (τs (r) , ϕs,r (w)) .

Let us first compute the derivative matrix of R. We have

A (r, w) =

[
τ
′
s0

(r) 0
∂
∂r
ϕs0,r (w) ∂

∂w
ϕs0,r (w)

]
.

Let v1 =

(
1

0

)
, then

A (r, w) v1 =

(
τ
′
s0

(r)
∂
∂r
ϕs0,r (w)

)
. (3.4)

Also

A (R (r, w)) =

[
τ
′
s1

(τs0 (r)) 0
∂
∂r
ϕs1,τs0 (r) (ϕs0,r (w)) ∂

∂w
ϕs1,τs0 (r) (ϕs0,r (w))

]
. (3.5)

Therefore, by (3.4) and (3.5) we have

A (R (r, w))A (r, w) v1 =(
τ
′
s1

(τs0 (r)) τ
′
s0

(r)
∂
∂r
ϕs1,τs0 (r) (ϕs0,r (w)) τ

′
s0

(r) + ∂
∂w
ϕs1,τs0 (r) (ϕs0,r (w)) ∂

∂r
ϕs0,r (w)

)
. (3.6)

Thus, in general, we have

A
(
Rt−1 (r, w)

)
. . . A (R (r, w))A (r, w) v1 =

(
A1

A2

)
, (3.7)

where

A1 = τ
′

st−1

(
τst−2 (r)

)
. . . τ

′

s1
(τs0 (r)) τ

′

s0
(r)

and A2 includes terms which are analogous to the second component in (3.6).

Therefore, using (3.7) we obtain

‖A
(
Rt−1 (r, w)

)
. . . A (R (r, w))A (r, w) v1‖

≥ |τ ′st−1

(
τst−2 (r)

)
. . . τ

′

s1
(τs0 (r)) τ

′

s0
(r) |. (3.8)
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Since ln is an increasing function, using (3.8), we obtain

l1 (r, w) ≥ lim
t→∞

1

t
ln |τ ′st−1

(
τst−2 (r)

)
. . . τ

′

s1
(τs0 (r)) τ

′

s0
(r) |

= lim
t→∞

1

t

t−1∑
i=0

ln |τ ′si
(
τsi−1

(r)
)
|,

where we have used the notation τs−1 (r) = r. For l2 (r, w), we first compute

A (r, w) v2, where v2 =

(
0

1

)
. We have

A (r, w) v2 =

(
0

∂
∂w
ϕs0,r (w)

)
,

and by (3.5)

A (R (r, w))A (r, w) v2 =

(
0

∂
∂w
ϕs1,τs0 (r) (ϕs0,r (w)) ∂

∂w
ϕs0,r (w)

)
.

Thus, in general, we have

A
(
Rt−1 (r, w)

)
. . . A (R (r, w))A (r, w) v2 = 0

∂
∂w
ϕst−1,τst−2◦...◦τs0 (r)

(
ϕst−2,τst−3◦...◦τs0 (w)

)
. . . ∂

∂w
ϕs0,r (w)

 . (3.9)

Moreover, by the definition of ϕs,r (w) (see (3.1)), we have

∂

∂w
ϕs,r (w) =

1

ps (r)
. (3.10)

Therefore, by (3.9) and (3.10) we have

l2 (r, w) = lim
t→∞

1

t
ln

1

pst−1

(
τst−2 ◦ . . . ◦ τs0 (r)

) . . . 1

ps0 (r)
.

The next proposition shows that at common fixed points of maps τs, the Lyapunov

exponents have more precise formulae.
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Proposition 3.11.

Let r0 be a common fixed point for all the constituent maps τs; i.e., τs (r0) = r0 for

all s ∈ S. Then

1. l1 (r0, w) ≥
∑L

s=1 ps (r0) ln |τ ′s (r0) |

2. l2 (r0, w) = −
∑L

s=1 ps (r0) lnps (r0)

Proof.

By Proposition 3.10, since τs (r0) = r0, we have

l1 (r0, w) ≥ lim
t→∞

1

t

t−1∑
i=0

ln |τ ′si (r0) |, (3.11)

where s0 → s1 → . . .→ st−1 is the orbit of s0 generated by the map ϕr0 (w). Since

Lebesgue measure m is ϕr0-invariant and ergodic, we can use the Birkhoff Ergodic

Theorem and (3.11) to obtain that

l1 (r0, w) ≥ lim
t→∞

1

t

t−1∑
i=0

ln |τ ′si (r0) |

=

∫ 1

0

ln |τ ′w (r0) |dm (w) . (3.12)

Write m := mr0 to associate [0, 1] with the particular partition of ϕr0 . Then, using

the partition Js defined in Subsection 3.2.2 and (3.12) we get

l1 (r0, w) ≥
∫ 1

0

ln |τ ′w (r0) |dmr0 (w)

=
L∑
s=1

∫
Js

ln |τ ′w (r0) |dmr0 (w)

=
L∑
s=1

ps (r0) ln |τ ′s (r0) |.

Similarly, for l2 (r0, w), we use Proposition 3.10 and Birkhoff Ergodic Theorem to

obtain that

l2 (r0, w) = −
∫ 1

0

ln pw (r0) dmr0

= −
L∑
s=1

ps (r0) ln ps (r0) .
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Remark 3.12.

Obviously, we always have l2 (r0, w) > 0. Thus, if l1 (r0, w) > 0 then nearby points

cannot be attracted to (r0, w) under the dynamics of R. In particular, this will

mean that nearby points r ∈ [0, 1] cannot be attracted to r0 under the dynamics

of the random map F .



Chapter 4

An Evolutionary Market Model

With Short-lived Assets

We first recall the model of [21].

4.1 The Model

Let S is finite set and st ∈ S, t = 1, 2, . . ., be the states of the world at date t.

Let p be a probability distribution on S such that for all s ∈ S, ps > 0. s1, s2, . . .

are independent but their probability distribution will change at each time step

according to the money invested in the assets. This will be made more explicit

later in the model.

There are i = 1, . . . , I investors initially endowed with wealth wi0 > 0 and K short-

lived assets k = 1, . . . , K live for one period only and reborn in every period. They

yield the non-negative return Dk (s) at state s, and we assume that Dk (s) 6= 0 for

at least one s. Moreover, we assume that
∑

kDk (s) > 0 for all s.

At each time t, every investor i selects a portfolio

xit
(
st
)

=
(
xit,1
(
st
)
, . . . , xit,K

(
st
))
∈ RK

+ ,

where xit,k is the number of units of asset k in the portfolio xit = xit (st), (st) =

(s1, . . . , st). We assume that for each moment of time t ≥ 1 and each random

46
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situation st, the market for every asset k clears:

I∑
i=1

xit,k
(
st
)

= 1. (4.1)

Each investor is endowed with initial wealth wi0 > 0. Wealth wit+1 of investor i at

time t+ 1 can be computed as follows:

wit+1 =
K∑
k=1

Dk (st+1)xit,k. (4.2)

Total market wealth at time t+ 1 is equal to

Wt+1 =
I∑
i=1

wit+1 =
K∑
k=1

Dk (st+1) . (4.3)

Investment strategies are characterised in terms of investment proportions:

Λi = {λi0, λi1, . . .}

of K-dimensional vector functions λit =
(
λit,1, . . . , λ

i
t,K

)
, λit,k = λit,k (st), t ≥ 0,

satisfying λit,k ≥ 0,
∑K

k=1 λ
i
t,k = 1. Here, λit,k stands for the share of the budget wit

of investor i that is invested into asset k at time t. In general λit,k may depend on

(st) = (s1, . . . , st). Given strategies Λi = {λi0, λi1, . . .} of investors i = 1, . . . , I, the

equation

pt,k.1 =
I∑
i=1

λit,kw
i
t (4.4)

determines the market clearing price pt,k = pt,k (st) of asset k. The number of

units of asset k in the portfolio of investor i at time t is equal to

xit,k =
λit,kw

i
t

pt,k
. (4.5)

Therefore

xit,k =
λit,kw

i
t∑I

j=1 λ
j
t,kw

j
t

. (4.6)

By using (4.6) and (4.2), we get

wit+1 =
K∑
k=1

Dk (st+1)
λit,kw

i
t∑I

j=1 λ
j
t,kw

j
t

. (4.7)
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Since wi0 > 0, we obtain wit > 0 for each t. The main focus of the model is on the

analysis of the dynamics of the market shares of the investors

rit =
wit
Wt

, i = 1, . . . , I.

Using (4.7) and (4.3), we obtain

rit+1 =
K∑
k=1

Rk (st+1)
λit,kr

i
t∑I

j=1 λ
j
t,kr

j
t

, i = 1, . . . , I, (4.8)

where

Rk (st+1) =
Dk (st+1)∑K
m=1Dm (st+1)

are the relative (normalised) payoffs of the assets k = 1, 2, . . . , K. We have

Rk (s) ≥ 0 and
∑

k Rk (s) = 1.

Define

λ∗k := ERk (st) , k = 1, . . . , K, (4.9)

and put

λ∗ = (λ∗1, . . . , λ
∗
K) ,

where E (.) is the expectation with respect to the underlying probability on P .

The portfolio rule λ∗ is called the Kelly rule.

Assume I = 2. Then the random dynamical system (4.8) reduces to

r1
t+1 =

K∑
k=1

Rk (st+1)
λt,kr

1
t

λt,kr1
t + λ̄t,k (1− r1

t )
, (4.10)

where λt,k is the strategy of investor 1 and λ̄t,k is the strategy of investor 2. We

will assume that the probability function on S is a function of the relative wealth,

r, that the states s1, . . . , sL are independent.

Lemma 4.1.

The random dynamical system in (4.10) can be represented by a random map

F = {τs;ps (r)}Ls=1, where

τs (r) =
K∑
k=1

Rk (s)
λt,kr

λt,kr + λ̄t,k (1− r)
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such that:

1. τs : [0, 1]→ [0, 1],

2. τs (0) = 0 and τs (1) = 1,

3. τs is differentiable.

The proof of Lemma 4.1-(3) is in Appendix A.1.

4.1.1 Notions in Evolutionary Finance

Definition 4.2.

In the theory of evolutionary finance there are three possibilities for investor i :

1. Extinction; i.e., limt→∞ r
i
t = 0 a.s.

2. Survival; i.e., lim supt→∞ r
i
t > 0 a.s. but lim inft→∞ r

i
t < 1 a.s.

3. Domination; i.e., limt→∞ r
i
t = 1 a.s.

We have used [22] for the following two definitions.

Definition 4.3.

A portfolio rule λi is called evolutionarily stable, if for every portfolio rule λj 6= λi

there is a random variable ε > 0 such that limt→∞ ϕ
i (t, ω, r) = 1 for all ri ≥

1− ε (ω) almost surely.

Definition 4.4.

A portfolio rule λi is called locally evolutionarily stable, if there exists a random

variable δ (ω) > 0 such that λi is evolutionarily stable for all portfolio rules λj 6= λi

with ‖λi (ω)− λj (ω) ‖ < δ (ω) for all ω.

4.2 Literature Review

In this section we review some recent results from evolutionary finance with short-

lived assets. Firstly, we start with the general case where all the investors use

dynamic strategies.
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4.2.1 Dynamic Investment Strategies

4.2.1.1 CAPM Decision Rule

Amir et. al [2] analysed the model when the investors use general investment

strategies. Moreover, it is assumed that the states of the world are homogenous

discrete-time Markov process. The main result is given by the following theorem

in [2].

Theorem 4.5.

Investor 1 using the strategy λ∗t,k (st) is a single survivor in the market selection

process, and moreover, dominates the others exponentially, if and only if the fol-

lowing condition is fulfilled:

• There exists a random variable κ > 0 such that

lim inf
T→∞

1

T
#{t ∈ {0, . . . , T} : |λ∗ (st)− ξt

(
st
)
| ≥ κ} > 0

with probability 1, where

ξt = (ξt,1, . . . , ξt,K) = f
(
rt, λ

2
t , . . . , λ

I
t

)
=

I∑
j=2

rjt
1− r1

t

λjt .

Here, f is termed as the CAPM decision rule.

The Theorem 4.5 tells us the investor who follows the portfolio rule λ∗ eventually

accumulates the total market wealth. This portfolio rule λ∗ is asymptotically

distinct from CAPM rule. When the investor uses the CAPM rule then the relative

market wealth remains constant. Hence he/she neither dominates nor gets extinct

from out of the market.

4.2.1.2 Asset Market Games of Survival

Recently, in [4] by using general, adaptive portfolio rules Amir et. al. studied

that the investor who employs the identified portfolio rules survives in the market.

These strategies depend on observed history of the game and the exogenous states
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of the world. Furthermore, it is indicated that this kind of strategy is essentially

unique. The following theorems are proved in [4].

Theorem 4.6.

The portfolio rule Λ∗ = (λ∗t ) is a survival strategy.

Theorem 4.6 means that the relative market share is positive, bounded away from

zero over an infinite time horizon.

Theorem 4.7.

If Λ = (λt) is a basic survival strategy; i.e., the investment strategy depends only

on the history st of the process of states of the world, and does not depend on the

market history, then
∞∑
t=1

‖λ∗t − λt‖2 <∞ a.s.,

where ‖.‖ is the Euclidean norm in a finite-dimensional space.

The above theorem shows us the strategy λ∗t is essentially unique, i.e., any other

this type of strategy is asymptotically similar to the λ∗t .

4.2.2 Constant Investment Strategies

In this section, it is supposed that there are no redundant assets, i.e. the relative

payoffs of the assets R1 (s) , . . . , RK (s) are linearly independent and the states of

the world are independent, identically distributed.

4.2.2.1 Evolutionary Stability

In [26], Hens and Schenk-Hoppé studied the evolution of market shares of portfolio

rules with short-lived assets. The market is incomplete and the prices are given

endogenously. They found necessary and sufficient conditions for the evolutionary

stability of portfolio rules. The random dynamical system theory was used during

the analysis. The main results in this paper are given by the following theorems.

Theorem 4.8.

Let the state of nature be determined by an ergodic process. Suppose investors
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only employ simple strategies, i.e., λ (w) ≡ λ ∈ ∆K. Then the simple strategy λ∗

defined by,

λ∗k = ERk (w)

for k = 1, . . . , K is evolutionarily stable, and no other strategy is locally evolution-

arily stable.

Theorem 4.9.

Let the state of nature be determined by an i.i.d. process. Then λ∗k = ERk,

k = 1, . . . , K, is the only evolutionarily stable portfolio rule. Moreover, if S is

the power set of the set of states S, then we find that all other completely mixed

adapted strategies are not even locally evolutionarily stable.

The technical assumption that S is the power set of the set of states S is fulfilled.

For example, if S is countable (or finite) and S is the Borel σ-field. This condition

is necessary to guarantee measurability of a strategy.

Theorem 4.10.

Let the state of nature be determined by a Markov process (with transition proba-

bility P ). Then the adaptive strategy λ∗ defined by

λ∗k (w0) = E (Rk (w1) |w0) =

∫
S

Rk (s)P (ds, w0) ,

for k = 1, . . . , K is the only evolutionarily stable portfolio rule. Moreover, if S is

the power set of the set of states S, then we find that all other completely mixed

adapted strategies are not even locally evolutionarily stable.

The above three theorems tell us the local stability conditions conduct a simple

portfolio rule in the case of ergodic, i.i.d., and Markov process, respectively. This

portfolio rule is the unique evolutionarily stable strategy.

4.2.2.2 Domination

In [21], Evstigneev et. al. studied the model in Section 4.1 when the investors use

simple investment strategies in an incomplete market; i.e., the number of securities

is less than the number of states. The prices are endogenous. The following

theorem which is proved in [21] tells us there is a unique survival investment

strategy that accumulates the total market wealth.
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Theorem 4.11.

Let investor i use the strategy λi = λ∗, while all the other investors j 6= i use

strategies λj 6= λ∗. Then investor i is the single survivor.

From Definition 4.2 - (3), we say that the investor is a single survivor if the market

share of this investor tends to 1 a.s.

4.2.2.3 Investors With Partial Information on Probability p

In the model used in [8] with short-lived assets, the investors use constant (simple)

investment strategies. The Kelly rule requires the full knowledge of the probability

distribution from the investor which is more difficult. In [8], Bahsoun et. al. used

an IFS representation of (4.8) and Proposition 3.5 and found another successful

strategy which does not require full knowledge of the probability distribution.

Theorem 4.12.

If for each k ∈ {1, . . . , K} λ1
k lies between ERk and λ2

k, then investor 1 cannot be

driven out of the market; i.e., he/she either dominates or at least survives.

In Theorem 4.12, λ1
k and λ2

k are investment strategies of investor 1 and investor 2,

respectively. It means that by using Proposition 3.5 a rule is provided with partial

information on p for investors. As long as the investor employs this rule he/she

either dominates or at least survives in the market. More details can be found in

[8].

4.3 Betting Games and The Probabilities of Suc-

cess

This section is one of our main results [10]. We will apply our ideas (Proposition

3.10 and Proposition 3.11) in Section 3.2 to study the wealth dynamics of investors,

where the states of the world are not identically distributed. In particular, they will

depend on the amount of money invested in the assets. To simplify this idea, let us

first reconsider the Kelly model [29] in a more realistic setting. In particular, let us

consider a horse race model where the odds of the outcomes of the events depend

on the amount wagered on them. For example, in the case of a horse race between
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two horses, say black and white, this means that the probability that black wins is

a function of the amount bet on black. Such a setting is common in real-life betting

games. We will investigate this situation in a more general setting. In particular

in the financial model of [21] introduced in Section 4.1 when the probabilities of

success of assets depend on the amount invested in them. Investors are allowed

to use simple investment strategies and states of the world are not identically

distributed. Our main result is showed by the following theorem.

Theorem 4.13.

Suppose that investor 1 uses the strategy λk =
∑L

s=1 ps (0)Rk (s). If investor 2

uses a different strategy; i.e., λ̄ 6= λ, then investor 1 will survive.

Proof.

First find τ
′
s (0) for any s. We get

τ
′

s (0) =
K∑
k=1

Rk (s)
λk
λ̄k
,

where λk is the strategy of investor 1 and λ̄k is the strategy of investor 2. Using

Proposition 3.10, we find that the first Lyapunov exponent at 0.

l1 (0, w) ≥
L∑
s=1

ps (0) ln |τ ′s (0) |

=
L∑
s=1

ps (0) ln
K∑
k=1

Rk (s)
λk
λ̄k
.

By Jensen’s inequality,

≥
L∑
s=1

ps (0)
K∑
k=1

Rk (s) ln
λk
λ̄k

=
K∑
k=1

(
L∑
s=1

ps (0)Rk (s)

)
ln
λk
λ̄k

=
K∑
k=1

λk ln
λk
λ̄k

> 0,

where the last inequality follows from Lemma 2.38. Since the Lyapunov expo-

nent of l1 (0, w) > 0 at 0 for all w, we conclude that nearby orbits of the skew

product map representing the random map of the market cannot converge to zero.

Consequently investor 1 survives.
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An Evolutionary Market Model

With Long-lived Assets

We first recall the model of [3].

5.1 The Model

We consider a market where K ≥ 2 long-lived assets. The market is influenced by

random factors modeled in terms of independent, identically distributed random

elements s1, s2, . . . in a finite space S. At each date t = 1, 2, . . . assets k =

1, 2, . . . , K pay dividends Dk (st) ≥ 0 depending on the “state of the world” st at

date t. The functions Dk (st) are measurable and satisfy

K∑
k=1

Dk (s) > 0 for all s.

This condition means that in each random situation at least one asset yields a

strictly positive dividend. The total volume (the number of units) of asset k

traded in the market at date t is Vt,k = Vt,k (st) > 0, where st := (s1, . . . , st) is

the history of the process (st) from time 1 to time t. For t = 0, Vt,k is a constant

number, and for t ≥ 1, Vt,k (st) is a measurable function of st.

We denote by pt ∈ RK
+ the vector of market prices of the assets. For each k =

1, . . . , K, the coordinate pt,k of pt = (pt,1, . . . , pt,K) stands for the price of one

55
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unit of asset k at date t. There are I ≥ 2 investors (traders) acting in the

market. A portfolio of investor i at date t = 0, 1, . . . is specified by a vector

xit =
(
xit,1, . . . , x

i
t,K

)
∈ RK

+ where xit,k is the amount (the number of units) of asset

k in the portfolio xit. The scalar product 〈pt, xit〉 =
∑K

k=1 pt,kx
i
t,k expresses the

value of the investor i’s portfolio xit at date t in terms of the prices pt,k. At date

t = 0, the investors have initial endowments wi0 > 0 (i = 1, 2, . . . , I) that form

their budgets at date 0. Investor i’s wealth (budget) at date t ≥ 1 is

wit := 〈Dt + pt, x
i
t−1〉, (5.1)

where

Dt := D (st) := (D1 (st) , . . . , DK (st)) .

It consists of two components: the dividends 〈Dt, x
i
t−1〉 paid by the portfolio xit−1

and the market value 〈pt, xit−1〉 of the portfolio xit−1 expressed in terms of the

today’s prices pt. A fraction µt = µt (st−1) of the budget is invested into assets.

We suppose that the investment rate 0 < µit (st−1) < 1 is the same for all the

investors, although it may depend on time and random factors. We assume that

µt is predictable: it depends on the history st−1 of the process (st) up to time

t−1 (not t). The number 1−µt represents the consumption rate. The assumption

that 1−µt is essential since we focus in this work on the analysis of the long-term

performance of trading strategies. Without this assumption, an analysis of this

kind does not make sense: a seemingly worse performance of a portfolio rule in

the long run might be simply due to a higher consumption rate of the investor

[3]. We shall suppose that the function µt (st−1) is measurable (for t = 0, 1 it is

constant) and satisfies the following condition:

µt
(
st−1

)
< Vt,k

(
st
)
/Vt−1,k

(
st−1

)
. (5.2)

This condition holds, in particular, when the total mass Vt,k (st) of each asset k

does not decrease, i.e., when the right-hand side of (5.2) is not less than one. But

(5.2) does not exclude the situation when Vt,k decreases at some rate, not faster

than µt.

An investment strategy (portfolio rule) of investor i = 1, 2, . . . , I is specified by a

vector of investment proportions λit =
(
λit,1, . . . , λ

i
t,K

)
according to which he/she

plans to distribute the available budget between assets at each date t. Vectors λit
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belong to the unit simplex

∆K := {(a1, . . . , aK) ≥ 0 : a1 + . . .+ aK = 1}.

In this model it is assumed that the market clears (asset supply is equal to asset

demand), which makes it possible to determine the equilibrium price pt,k of each

asset k from the equations

pt,kVt,k = µt

I∑
i=1

λit,kw
i
t, k = 1, . . . , K. (5.3)

On the left-hand side of (5.3) we have the total value pt,kVt,k of all the assets of the

type k in the market (recall that the amount of each asset k at date t is Vt,k). The

right-hand side represents the total wealth invested in asset k by all the investors.

Equilibrium implies the equality in (5.3). The investment proportions λi1, . . . , λ
i
K

chosen by the investors determine their portfolios xit =
(
xit,1, . . . , x

i
t,K

)
at date t

by the formula

xit,k =
µtλ

i
t,kw

i
t

pt,k
, k = 1, . . . , K, i = 1, . . . , I. (5.4)

Note that for t ≥ 1, the price vector pt is determined implicitly as the solution to

the system of equations (5.3), which can be written

pt,kVt,k = µt

I∑
i=1

λik,t〈Dt + pt, x
i
t−1〉, k = 1, . . . , K. (5.5)

Given a strategy profile
(
λ1
t , . . . , λ

I
t

)
of investors and their initial endowments

w1
0, . . . , w

I
0, we can generate a path

(
pt;x

1
t , . . . , x

I
t

)
, (5.6)

of market dynamics, by defining the price vectors pt = pt (st) and the portfolios

xit = xit (st) recursively according to equations (5.3) - (5.4). Equations (5.4) make

sense only if pt,k > 0, or equivalently, if the aggregate demand for each asset (under

the equilibrium prices) is strictly positive. Those strategy profiles
(
λ1
t , . . . , λ

I
t

)
which guarantee that the recursive procedure described above leads at each step

to strictly positive equilibrium prices will be called admissible. In what follows,

we will deal only with such strategy profiles. The hypothesis of admissibility
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guarantees that the random dynamical system under consideration is well-defined.

Under this hypothesis, we obtain by induction that on the equilibrium path, all

the portfolios xit =
(
xit,1, . . . , x

i
t,K

)
are non-zero and the wealth wit = 〈Dt+pt, x

i
t−1〉

of each investor is strictly positive. Further, by summing up equations (5.4) over

i = 1, . . . , I, we find that

I∑
i=1

xit,k =

∑I
i=1 µtλ

i
t,kw

i
t

pt,k
=
pt,kVt,k
pt,k

= Vt,k (5.7)

(the market clears) for every asset k and each date t ≥ 1. Thus for every equi-

librium state of the market
(
pt, x

1
t , . . . , x

I
t

)
, we have pt > 0, xit 6= 0 and (5.7).

Assume that the total mass Vt,k of each asset k grows (or decreases) at the same

rate γt = γt (st−1) > 0:

Vt,k/Vt−1,k = γt (t ≥ 1). (5.8)

Thus

Vt,k
(
st−1

)
= γt

(
st−1

)
. . . γ2

(
s1
)
γ1Vk, (5.9)

where Vk > 0 (k = 1, 2, . . . , K) are the initial amounts of the assets. The growth

rate process γt (like the investment rate process µt) is predictable: γt depends

only on the history st−1 of the states of the world up to time t − 1. In the case

of dividend-paying assets involving investments in the real economy, assumption

(5.8) means that the economic system under consideration is on a balanced growth

path. Define the relative dividends of the assets k = 1, . . . , K by

Rk (st) =
Dk (st)Vk∑K

m=1Dm (st)Vm
. (5.10)

It follows from (5.8) that

Rt,k =
Dt,kVt−1,k∑K

m=1 Dt,mVt−1,m

,

where Rt,k = Rk (st) and Dt,k = Dk (st).

Define

λ∗k := ERk (st) , k = 1, . . . , K, (5.11)

and put

λ∗ = (λ∗1, . . . , λ
∗
K) ,
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where E (.) is the expectation with respect to the underlying probability on P . The

portfolio rule λ∗ is called the Kelly rule. The portfolio rule specified by (5.11)

prescribes to distribute wealth across assets in accordance with the proportions of

the expected relative dividends (which do not depend on t because the random

elements st are i.i.d.). Assume that the following conditions hold:

(A1) For each k, the expectation ERk (st) is strictly positive.

(A2) The functions R1 (s) , . . . , RK (s) are linearly independent with respect to

the probability distribution of st, i.e., the equality
∑
βkRk (st) = 0 holding

a.s. for some constants βk implies that β1 = . . . = βK = 0.

(A3) There exist constants 0 < σ
′
< σ

′′
< 1 such that the process

σt
(
st−1

)
:= µt

(
st−1

)
/γt
(
st−1

)
satisfies σ

′ ≤ σt (st−1) ≤ σ
′′
.

Condition (A1) implies that the vector λ∗ has strictly positive coordinates. Hy-

pothesis (A2) can be interpreted as the absence of redundant assets. Condition

(A3) states that the discount factor σt cannot be too close to 0 and 1.

The market share of investor i is defined by

rit :=
wit
Wt

,

where Wt :=
∑I

i=1w
i
t is the total market wealth. Consider the path (5.6) of the

random dynamical system generated by
(
λ1
t , . . . , λ

I
t

)
and the sequence of vectors

rt =
(
r1
t , . . . , r

I
t

)
of the market shares of the investors at date t. The following

proposition is proved in [3]. We include its proof for the sake of completeness.

Proposition 5.1.

The following equations hold:

rit+1 =
K∑
k=1

[ρt+1〈λt+1,k, rt+1〉+ (1− ρt+1)Rt+1,k]
λit,kr

i
t

〈λt,k, rt〉
, i = 1, . . . , I, t ≥ 0.

(5.12)



Chapter 5. An Evolutionary Market Model With Long-lived Assets 60

Proof.

From (5.3) and (5.4) we get

pt,k = V −1
t,k µt

I∑
i=1

λit,k〈pt +Dt, x
i
t−1〉 =

µtV
−1
t,k

I∑
i=1

λit,kw
i
t = µtV

−1
t,k 〈λt,k, wt〉, (5.13)

xit,k =
Vt,kλ

i
t,kw

i
t

〈λt,k, wt〉
, (5.14)

where t ≥ 1, wt :=
(
w1
t , . . . , w

I
t

)
and λt,k :=

(
λ1
t,k, . . . , λ

I
t,k

)
. The analogous formu-

las for t = 0,

p0,k = µ0V
−1

0,k 〈λ0,k, w0〉, xi0,k =
V0,kλ

i
0,kw

i
0

〈λ0,k, w0〉
. (5.15)

Consequently, we have

wit+1 =
K∑
k=1

(pt+1,k +Dt+1,k)x
i
t,k =

K∑
k=1

(
µt+1
〈λt+1,k, wt+1〉

Vt+1,k

+Dt+1,k

)
Vt,kλ

i
t,kw

i
t

〈λt,k, wt〉
=

K∑
k=1

(
µt+1
〈λt+1,k, wt+1〉Vt,k

Vt+1,k

+Dt+1,kVt,k

)
λit,kw

i
t

〈λt,k, wt〉
, t ≥ 0. (5.16)

By summing up these equations over i = 1, . . . , I, we obtain

Wt+1 =
K∑
k=1

(
µt+1
〈λt+1,k, wt+1〉Vt,k

Vt+1,k

+Dt+1,kVt,k

)∑I
i=1 λ

i
t,kw

i
t

〈λt,k, wt〉
=

K∑
k=1

(
µt+1
〈λt+1,k, wt+1〉Vt,k

Vt+1,k

+Dt+1,kVt,k

)
.

As long as

Vt+1,k/Vt,k = γt+1 > 0 (5.17)
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(see (5.8)), we have

Wt+1 =
K∑
k=1

(
µt+1γ

−1
t+1〈λt+1,k, wt+1〉+Dt+1,kVt,k

)
=

K∑
k=1

(
µt+1γ

−1
t+1〈λt+1,k, wt+1〉

)
+

K∑
k=1

Dt+1,kVt,k

= µt+1γ
−1
t+1

K∑
k=1

I∑
i=1

λit+1,kw
i
t+1 +

K∑
k=1

Dt+1,kVt,k

= µt+1γ
−1
t+1

I∑
i=1

(
K∑
k=1

λit+1,k

)
wit+1 +

K∑
k=1

Dt+1,kVt,k

= µt+1γ
−1
t+1

I∑
i=1

wit+1 +
K∑
k=1

Dt+1,kVt,k

= µt+1γ
−1
t+1Wt+1 +

K∑
k=1

Dt+1,kVt,k.

This implies the formula

Wt+1 =
1

1− µt+1γ
−1
t+1

K∑
m=1

Dt+1,mVt,m, (5.18)

where µt+1γ
−1
t+1 := ρt+1. From (5.16) and (5.17), we find

wit+1 =
K∑
k=1

(ρt+1〈λt+1,k, wt+1〉+Dt+1,kVt,k)
λit,kw

i
t

〈λt,k, wt〉
, t ≥ 0.

Dividing both sides of this equation by Wt+1 and using (5.18), we get

rit+1 =
K∑
k=1

[
ρt+1〈λt+1,k, rt+1〉+ (1− ρt+1)

Dt+1,kVt,k∑K
m=1Dt+1,mVt,m

]
λit,kw

i
t/Wt

〈λt,k, wt〉/Wt

,

which yields (5.12) by virtue of (5.8) and (5.10).

5.1.1 Notions in Evolutionary Finance

Definition 5.2.

In the theory of evolutionary finance there are three possibilities for investor i :

1. Extinction; i.e., limt→∞ r
i
t = 0 a.s.
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2. Survival; i.e., lim supt→∞ r
i
t > 0 a.s. but lim inft→∞ r

i
t < 1 a.s.

3. Domination; i.e., limt→∞ r
i
t = 1 a.s.

Definition 5.3.

A portfolio rule λi is called evolutionarily stable, if for every portfolio rule λj 6= λi

there is a random variable ε > 0 such that limt→∞ ϕ
i (t, ω, r) = 1 for all ri ≥

1− ε (ω) almost surely.

Definition 5.4.

A portfolio rule λi is called locally evolutionarily stable, if there exists a random

variable δ (ω) > 0 such that λi is evolutionarily stable for all portfolio rules λj 6= λi

with ‖λi (ω)− λj (ω) ‖ < δ (ω) for all ω.

5.2 Literature Review

In this section we review some recent results from evolutionary finance. We first

start with the general case where all investors use dynamic strategies.

5.2.1 Dynamic Investment Strategies

Amir et al. [3] studied the above model when general, adaptive portfolio rules are

used by the investors. The following theorem is proved in [3]. It shows that the

Kelly rule λ∗ survives; i.e., keeps relative wealth bounded away from zero a.s., but

it does not necessarily dominate the market.

Theorem 5.5.

The portfolio rule λ∗ is a survival strategy.

Theorem 5.5 means that the investor using λ∗ cannot be driven out of the market.

5.2.2 Constant Investment Strategies

In this section we first assume: All investors use constant strategies: for all i =

1, 2, ..., I and t ≥ 0

λit := λi = (λi1, ..., λ
i
K).
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Strategies of this kind are called fixed-mix, or constant proportions, portfolio rules:

they prescribe to select investment proportions at time 0 and keep them fixed over

the whole infinite time horizon. Thus the random dynamical system (5.12) reduces

to

rit+1 =
K∑
k=1

[ρt+1〈λk, rt+1〉+ (1− ρt+1)Rt+1,k]
λikr

i
t

〈λk, rt〉
, (5.19)

i = 1, ..., I, t ≥ 0.

5.2.2.1 The game theoretic setting

In [7] the model of Section 5.1 was studied from a game theoretic point of view.

Given a strategy profile (λ1, ..., λI), the performance of a strategy λi used by

investor i will be characterised by the following random variable

ξi := lim supt→∞
1

t
ln

wit∑
j 6=iw

j
t

. (5.20)

The expression wit/
∑

j 6=iw
j
t is the relative wealth of player/investor i and the

group {j : j 6= i} of i’s rivals. The random variable ξi = ξi(s∞;λ1, ..., λI) depends

on the strategy profile (λ1, ..., λI) and on the whole history s∞ := (s1, s2, ...) of

states of the world from time 1 to ∞. In the game under consideration, ξi plays

the role of the (random) payoff function of player i.

We shall say that a strategy λ̄ forms a symmetric Nash equilibrium almost surely

(a.s.) if

ξi(s∞; λ̄, ..., λ̄) ≥ ξi(s∞; λ̄, ..., λ, ..., λ̄) (a.s.) (5.21)

for every i, each strategy λ of investor i and each set of initial endowments w1
0 >

0, ..., wI0 > 0. The Nash equilibrium is called strict if the inequality in (5.21) is

strict.

The following theorem is proved in [7]:

Theorem 5.6.

The portfolio rule λ∗ is a unique strategy forming a symmetric Nash equilibrium

a.s. This equilibrium is strict.
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In game theory, Nash equilibrium is a solution concept of a game. There are

at least two investors in the game. It is assumed that each investor knows the

equilibrium strategies of the other investors. And also, if the investor changes

his/her strategy while the other investors keep their strategies same then, this

investor does not gain anything.

5.2.2.2 Domination

In an earlier work, Evstigneev et al. [23] proved that the Kelly rule dominates

when all investors use constant strategies. Namely they proved:

Theorem 5.7.

The investor who follows the Kelly rule λ∗ dominates the market.

5.2.3 Local and Global Stability

Results on the local and global stability (see definitions 5.3 and 5.4) of investment

strategies and the proof of the following main result for local and global stability

can be found in [22].

The market selection process is given by the following random dynamical system:

rt+1 =
λ0

Dt+1 (wt+1)
ft
(
wt+1, wt

)
, (5.22)

where

ft
(
wt+1, wt

)
=Id−

[
λit,k (wt)wit
λt,k (wt)wt

]
i,k

Λt+1

(
wt+1

)−1 [
K∑
k=1

Dk
t+1

(
wt+1

) λit,k (wt)wit
λt,k (wt)wt

]
i

and Λt+1 (wt+1)
T

=
(
λt+1,1 (wt+1)

T
, . . . , λt+1,K (wt+1)

T
)
∈ RI×K is the matrix of

portfolio rules. To analyse evolutionarily stability of a portfolio rule, one has

to consider the random dynamical system (5.22) with an incumbent (with mar-

ket share r1
t ) and a mutant (with market share r2

t = 1 − r1
t ). The resulting

one-dimensional system governing the market selection process for two stationary
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portfolio rules is given by

r1
t+1 =

λ0

δt+1

([
1−

K∑
k=1

λ2
t+1,kx

2
t,k

]
K∑
k=1

dkt+1x
1
t,k +

[
K∑
k=1

λ2
t+1,kx

1
t,k

]
K∑
k=1

dkt+1x
2
t,k

)
(5.23)

where λit,k = λik (wt), dkt+1 = dk (wt+1), and

δt+1 =

[
1−

K∑
k=1

λ1
t+1,kx

1
t,k

][
1−

K∑
k=1

λ2
t+1,kx

2
t,k

]

−

[
K∑
k=1

λ2
t+1,kx

1
t,k

][
K∑
k=1

λ1
t+1,kx

2
t,k

]
.

The portfolio of the incumbent and the mutant , respectively, are given by

x1
t,k =

λ1t,kr
1
t

λ1t,kr
1
t+λ2t,k(1−r1t )

and x2
t,k =

λ2t,k(1−r1t )
λ1t,kr

1
t+λ2t,k(1−r1t )

. Denote the right-hand side of

(5.23) by h (wt+1, r1
t ). The variational equation vt+1 =

[
∂h (wt=1, r1

t ) /∂r
1
t |r1t=1

]
vt

governs the stochastic dynamics of the linearisation of (5.23) at the fixed point

r1
t ≡ 1. It is derived from the derivative of (5.23)’s right-hand side with respect

to r1
t evaluated at r1

t = 1. This derivative can be equated as

∂h (wt+1, r1
t )

∂r1
t

|r1t=1 =
K∑
k=1

(
λ1
k

(
wt+1

)
+ λ0d

k (wt+1)
) λ2

k (wt)

λ1
k (wt)

. (5.24)

From (5.24) it can be read off the exponential growth rate of portfolio rule λ2’s

market share in a small neighborhood of r1 = 1, i.e. the state in which portfolio

rule λ1 owns total market wealth. The following assumption is made on the process

that governs the state of nature and in turn determines the asset payoffs.

• The state of nature follows a Markov process with strictly positive transition

probabilities, i.e. πss̄ > 0 for all s, s̄ ∈ S.

The exponential growth rate of portfolio rule λ2’s wealth share in a small neigh-

borhood of r1 = 1 is given by the Lyapunov exponent of the above variational

equation. It is given by

gλ1
(
λ2
)

=

∫
SN

∑
s∈S

πw0s ln

[
K∑
k=1

(
λ1
k

(
w0, s

)
+ λ0d

k (s)
) λ2

k (w0)

λ1
k (w0)

]
P
(
dw0

)
where P denotes the stationary probability measure on histories wt induced by the

Markov chain. The main result in [22] is given by the following theorem.



Chapter 5. An Evolutionary Market Model With Long-lived Assets 66

Theorem 5.8.

Define the portfolio rule λ∗ by λ∗0 = λ0 and

λ∗ = λ0

∞∑
m=1

(1− λ0)m πmd, (5.25)

using the matrix notation λ∗ = (λ∗k (s))s,k and d =
(
dk (s)

)
s,k

.

Stability:

i) Suppose
[
λ∗k (s) + λ0d

k (s)
]
s,k

has full rank. Then for every portfolio rule

λ 6= λ∗, one has gλ∗ (λ) < 0. Thus λ∗ is evolutionarily stable.

ii) For every λ, one has gλ∗ (λ) ≤ 0. Thus λ∗ is never evolutionarily unstable.

Instability:

iii) For every λ 6= λ∗ there exist arbitrarily close portfolio rules µ 6= λ such that

gλ (µ) > 0. Thus every λ 6= λ∗ is locally evolutionarily unstable and, in

particular, evolutionarily unstable.

Theorem 5.8 means that the investors who employ the Kelly portfolio rule drive

the investor who does not employ the Kelly portfolio rule out of the market. This

is known as the property of evolutionarily stability of λ∗ in evolutionary finance.

For more details on the existing literature on evolutionary finance we refer to [22].

5.3 The Kelly Portfolio Rule Dominates

Amir et al. [3] studied the model in Section 5.1 when investors employ general,

adaptive portfolio rules. It was shown in [3] that the Kelly rule λ∗ survives; i.e.,

keeps relative wealth bounded away from zero a.s., but it does not necessarily

dominate the market. The result of [3] suggests a very interesting question: Sup-

pose that investors are allowed to use general adaptive portfolio rules, can the

Kelly rule dominate? Or, more precisely, under what conditions does the Kelly

dominate?
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Obviously, in general, without any restrictions, one cannot expect the Kelly rule

to dominate. To see this, we first describe a recursive method of constructing

strategies which allows the investor who follows this recursive method to have

constant relative wealth at all times. Consequently, if other investors employ the

Kelly rule, they will not be able to accumulate the total relative wealth of the

market; i.e., they will not be able to dominate. This will be shown in the following

proposition.

Proposition 5.9.

If investor 1 uses the portfolio rule

λ1
t,k =

∑I
j=2 λ

j
t,kr

j
t

1− r1
t

, (5.26)

for all t = 0, 1, . . . , and all k = 1, . . . , K, then her/his relative wealth remains

constant at all times; i.e., for all t = 0, 1, . . . , r1
t+1 = r1

t .

Proof.

From (5.12) we have

r1
t+1 =

K∑
k=1

[
ρt+1

I∑
j=1

λjt+1,kr
j
t+1 + (1− ρt+1)Rt+1,k

]
λ1
t,kr

1
t∑I

j=1 λ
j
t,kr

j
t

. (5.27)

Observe that the portfolio rule (5.26) implies that

λ1
t,k =

I∑
j=1

λjt,kr
j
t . (5.28)

Therefore, from (5.27) and (5.28), we obtain

K∑
k=1

[
ρt+1

I∑
j=1

λjt+1,kr
j
t+1 + (1− ρt+1)Rt+1,k

]
=
r1
t+1

r1
t

. (5.29)

The left hand side of the above equation (5.29) is equal to 1. Indeed,

K∑
k=1

(
ρt+1

I∑
j=1

λjt+1,kr
j
t+1

)
+ 1− ρt+1 = 1.

This completes the proof of the proposition.
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The above observation gives us the following. If one of the investors 2, . . . , I uses

the portfolio rule λ∗, then he/she cannot be a single survivor, as long as investor

1 uses the decision rule (5.26). Consequently, the relative market share of investor

1 remains constant.

Remark 5.10. The portfolio rule (5.26) has an economic interpretation. By (5.3)

and (5.4), the portfolio of investor 1 is given by

x1
t,k =

µtλ
1
t,kw

1
t

pt,k
=
λ1
t,kw

1
t · Vt,k∑I

i=1 λ
i
t,kw

i
t

. (5.30)

If investor 1 uses the portfolio rule (5.26), then by (5.28) and (5.30), we obtain

that

x1
t,k = r1

t · Vt,k.

Thus the vector x1
t will be proportional to market portfolio; i.e. to the (V1, . . . , VK)

whose components indicate the amounts of assets k = 1, . . . , K traded in the mar-

ket. Following [2] we call such portfolios CAPM portfolios. This is due to the fact

that portfolios having this structure result from the mean-variance optimisation

in the Capital Asset Pricing Model (CAPM).

In the following section we will state sufficient conditions for the Kelly rule to dom-

inate the market even when other investors are allowed to use dynamic adaptive

strategies.

5.3.1 The main result.

Define

ξt = (ξt,1, . . . , ξt,K) = ft
(
rt, λ

2
t , . . . , λ

I
t

)
, (5.31)

where f is the decision rule (5.26); i.e., for all t = 1, 2, . . . ,

ξt(s
t) :=

∑I
j=2 λ

j
t,kr

j
t

1− r1
t

.

Following [2] (see Remark 5.10 above) we call the portfolio rule in (5.31) CAPM

strategy. Our first main result in this chapter is given by the following theorem

[9].
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Theorem 5.11.

If investor 1 employs the Kelly strategy (5.11), then he/she dominates the market

exponentially fast provided the following conditions are satisfied:

(C1) E (ln ξt,k (st) |st−1) = ln ξt−1,k(s
t−1) a.s.,

(C2) There exists a strictly positive random variable κ > 0, such that, almost

surely,

|λ∗ − ξt(st)| ≥ κ (5.32)

for t large enough.

(C3) The coordinates λt,k (st) of the vectors λt (st) are bounded away from zero by

a strictly positive non-random constant % (that might depend on the strategy

λ, but not on k, t and st), i.e. infi,k,t,st λ
i
t,k (st) > % > 0.

The proof of Theorem 5.11 is in section 5.3.2.

Remark 5.12.

Assumption (C1) means that the CAPM strategy ξt(s
t) forms a martingale with

respect to the filtration generated by (st).

Remark 5.13.

Since ξt(s
t) is a convex combination of λ2

t , . . . , λ
I
t , assumption (C2) is certainly

satisfied if there exist a random variable κ, and a T > 0, such that for t ≥ T ,

with probability one, the distance between the vector λ∗ and the convex hull of

the vectors λ2
t , . . . , λ

I
t is at least κ.

5.3.2 Proofs

We start this section by proving two lemmas which are needed in the proof of

Theorem 5.11.

Lemma 5.14.

We have

1− r1
t+1 =

K∑
k=1

{
ρt+1

[
λ1
t+1,kr

1
t+1 +

(
1− r1

t+1

)
ξt+1,k

]
+ (1− ρt+1)Rt+1,k

}
×

ξt,k (1− r1
t )

λ1
t,kr

1
t + (1− r1

t ) ξt,k
,
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and

r1
t+1 =

K∑
k=1

{
ρt+1

[
λ1
t+1,kr

1
t+1 +

(
1− r1

t+1

)
ξt+1,k

]
+ (1− ρt+1)Rt+1,k

}
×

λ1
t,kr

1
t

λ1
t,kr

1
t + (1− r1

t ) ξt,k
.

Proof.

By using (5.12), we have

1− r1
t+1

1− r1
t

=

∑I
i=2 r

i
t+1

1− r1
t

=

∑I
i=2

{∑K
k=1 [ρt+1〈λt+1,k, rt+1〉+ (1− ρt+1)Rt+1,k]

λit,kr
i
t

〈λt,k,rt〉

}
1− r1

t

=

∑I
i=2

{∑K
k=1

[
ρt+1

∑I
j=1 λ

j
t+1,kr

j
t+1 + (1− ρt+1)Rt+1,k

]
λit,kr

i
t∑I

j=1 λ
j
t,kr

j
t

}
1− r1

t

=

∑K
k=1

[
ρt+1

∑I
j=1 λ

j
t+1,kr

j
t+1 + (1− ρt+1)Rt+1,k

] ∑I
i=2 λ

i
t,kr

i
t∑I

j=1 λ
j
t,kr

j
t

1− r1
t

=
K∑
k=1

[ρt+1ψt+1,k + (1− ρt+1)Rt+1,k]
ξt,k
ψt,k

,

where

ψt,k =
I∑
j=1

λjt,kr
j
t = λ1

t,kr
1
t +

(
1− r1

t

) ∑I
i=2 λ

i
t,kr

i
t

1− r1
t

= λ1
t,kr

1
t + ξt,k

(
1− r1

t

)
.

Therefore,

1− r1
t+1 =

K∑
k=1

{
ρt+1

[
λ1
t+1,kr

1
t+1 +

(
1− r1

t+1

)
ξt+1,k

]
+ (1− ρt+1)Rt+1,k

}
×

ξt,k (1− r1
t )

λ1
t,kr

1
t + (1− r1

t ) ξt,k
,
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r1
t+1 =

K∑
k=1

{
ρt+1

[
λ1
t+1,kr

1
t+1 +

(
1− r1

t+1

)
ξt+1,k

]
+ (1− ρt+1)Rt+1,k

}
×

λ1
t,kr

1
t

λ1
t,kr

1
t + (1− r1

t ) ξt,k
.

Lemma 5.15.

For t = 1, 2, . . . , let

Dt = ln
r1
t

(
r1
t−1

)−1

(1− r1
t )
(
1− r1

t−1

)−1 .

Dt are uniformly bounded random variables.

Proof.

We have

rit+1 =
K∑
k=1

{
ρt+1

I∑
j=1

λjt+1,kr
j
t+1 + (1− ρt+1)Rt+1,k

}
λit,kr

i
t∑I

j=1 λ
j
t,kr

j
t

≥
K∑
k=1

(1− ρt+1)Rt+1,k

λit,kr
i
t∑I

j=1 λ
j
t,kr

j
t

≥ rit (1− ρt+1)
K∑
k=1

Rt+1,k

mink λ
i
t,k

1

= rit (1− ρt+1) min
k
λit,k.

By assumption (C3), inf λit,k ≥ %. Then, we have

% ≤
rit+1

rit
.
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For the upper bound we have

rit+1

rit
=

K∑
k=1

{
ρt+1

I∑
j=1

λjt+1,kr
j
t+1 + (1− ρt+1)Rt+1,k

}
λit,k∑I

j=1 λ
j
t,kr

j
t

≤
K∑
k=1

{
ρt+1

I∑
j=1

λjt+1,kr
j
t+1 + (1− ρt+1)Rt+1,k

}
1

mink λit,k

=

{
K∑
k=1

(
ρt+1

I∑
j=1

λjt+1,kr
j
t+1

)
+ (1− ρt+1)

}
1

mink λit,k

=
1

mink λit,k
≤ %−1.

Therefore, % ≤ rit+1

rit
≤ %−1 and this implies, because 1 − r1

t =
∑I

m=2 r
m
t , that the

random variables Dt are uniformly bounded.

Proof of Theorem 5.11.

By Lemma 5.14, it is sufficient to consider the case of two investors 1 and 2, using

the strategies λ∗ and ξ, and whose market relative shares are given by

r1
t+1 =

K∑
k=1

{
ρt+1

[
λ1
t+1,kr

1
t+1 +

(
1− r1

t+1

)
ξt+1,k

]
+ (1− ρt+1)Rt+1,k

}
×

λ1
t,kr

1
t

λ1
t,kr

1
t + (1− r1

t ) ξt,k
,

(5.33)

1− r1
t+1 =

K∑
k=1

{
ρt+1

[
λ1
t+1,kr

1
t+1 +

(
1− r1

t+1

)
ξt+1,k

]
+ (1− ρt+1)Rt+1,k

}
×

ξt,k (1− r1
t )

λ1
t,kr

1
t + (1− r1

t ) ξt,k
.

(5.34)

We consider the ratio zt =
r1t

1−r1t
of the market shares of investors 1 and 2. Then

the dynamics of zt are described by the following equation

zt = zt−1

∑K
k=1 [ρtξt,k + (1− ρt)Rt,k]

λ∗k
λ∗kzt−1+ξt−1,k∑K

k=1 [ρtλ∗k + (1− ρt)Rt,k]
ξt−1,k

λ∗kzt−1+ξt−1,k

⇔

zt
zt−1

=

∑K
k=1 [ρtξt,k + (1− ρt)Rt,k]

λ∗k
λ∗kr

1
t−1+ξt−1,k(1−r1t−1)∑K

k=1 [ρtλ∗k + (1− ρt)Rt,k]
ξt−1,k

λ∗kr
1
t−1+ξt−1,k(1−r1t−1)

. (5.35)
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The derivation of equation (5.35) can be found in Appendix A.2.

To prove the theorem, our goal is to show that, with probability 1,

lim inf
T→∞

1

T
ln

r1
T

1− r1
T

> 0. (5.36)

For this purpose, we define for t = 1, 2, . . .

Dt := ln
r1
t

(
r1
t−1

)−1

(1− r1
t )
(
1− r1

t−1

)−1 = ln
zt
zt−1

. (5.37)

Observe that

D1 +D2 + . . .+DT = ln
r1
T

1− r1
T

− ln
r1

0

1− r1
0

. (5.38)

Hence, (5.36) holds if and only if

lim inf
T→∞

1

T
(D1 +D2 + . . .+DT ) > 0 a.s. (5.39)

We have the following identity:

1

T

T∑
t=1

Dt =
1

T

T∑
t=1

E(Dt|st−1) +
1

T

T∑
t=1

(
Dt − E(Dt|st−1)

)
.

Let Gt := Dt−E(Dt|st−1). By Lemma 5.15, the random variables Dt are uniformly

bounded. Therefore, by the law of large numbers, ( see Theorem 2.47 proved in

[25] ), we have
1

T
(G1 + . . .+GT )→ 0

with probability 1. It follows that

lim inf
T→∞

1

T

T∑
t=1

Dt = lim inf
T→∞

1

T

T∑
t=1

E(Dt|st−1). (5.40)

Therefore, (5.36) is equivalent to

lim inf
T→∞

1

T

T∑
t=1

E(Dt|st−1) > 0 a.s. (5.41)
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By using (5.35), we have

E(Dt|st−1) = E

[
ln

zt
zt−1

|st−1

]
=

E

ln

∑K
k=1 [ρtξt,k (st) + (1− ρt)Rt,k]

λ∗k
λ∗kr

1
t−1+ξt−1,k(1−r1t−1)∑K

k=1 [ρtλ∗k + (1− ρt)Rt,k]
ξt−1,k

λ∗kr
1
t−1+ξt−1,k(1−r1t−1)

|st−1

 . (5.42)

We will show that (5.42) is bounded away from zero. When we apply Jensen’s

inequality for conditional expectations ( see properties of conditional expectation

8 ) to equation (5.42), we obtain

E

(
ln

K∑
k=1

[ρtξt,k + (1− ρt)Rt,k]
λ∗k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

) |st−1

)

− E

(
ln

K∑
k=1

[ρtλ
∗
k + (1− ρt)Rt,k]

ξt−1,k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

) |st−1

)

≥ ρtE

(
ln

K∑
k=1

ξt,k
λ∗k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

) |st−1

)

+ (1− ρt)E

(
ln

K∑
k=1

Rt,k
λ∗k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

) |st−1

)

− E

(
ln

K∑
k=1

[ρtλ
∗
k + (1− ρt)Rt,k]

ξt−1,k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

) |st−1

)

= ρtE

(
ln

K∑
k=1

ξt,k
λ∗k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

) |st−1

)

+ (1− ρt)E

(
ln

K∑
k=1

Rt,k
λ∗k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

) |st−1

)

− ρtE

(
ln

K∑
k=1

[ρtλ
∗
k + (1− ρt)Rt,k]

ξt−1,k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

) |st−1

)

− (1− ρt)E

(
ln

K∑
k=1

[ρtλ
∗
k + (1− ρt)Rt,k]

ξt−1,k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

) |st−1

)
:= ρtA + (1− ρt)B,

where

A := E

ln

∑K
k=1 ξt,k

λ∗k
λ∗kr

1
t−1+ξt−1,k(1−r1t−1)∑K

k=1 R̃t,k
ξt−1,k

λ∗kr
1
t−1+ξt−1,k(1−r1t−1)

|st−1

 ,
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B := E

ln

∑K
k=1 Rt,k

λ∗k
λ∗kr

1
t−1+ξt−1,k(1−r1t−1)∑K

k=1 R̃t,k
ξt−1,k

λ∗kr
1
t−1+ξt−1,k(1−r1t−1)

|st−1

 ,
and

R̃t,k := ρtλ
∗
k + (1− ρt)Rt,k.

Therefore, to show that (5.42) is bounded away from zero, it is enough to show

that A ≥ 0 and B is bounded away from zero. For A, noticing that E(R̃t,k|st−1) =

λ∗k, and using Jensen’s inequality for conditional expectations ( see properties of

conditional expectation 8 ), we obtain

A = E

(
ln

K∑
k=1

ξt,k
λ∗k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

) |st−1

)

− ln
K∑
k=1

ξt−1,k
λ∗k

λ∗kr
1
t−1 + ξt−1,k

(
1− r1

t−1

)
= E

ln

∑K
k=1

ξt,k
ξt−1,k

λ∗kξt−1,k

λ∗kr
1
t−1+ξt−1,k(1−r1t−1)∑K

k=1

λ∗kξt−1,k

λ∗kr
1
t−1+ξt−1,k(1−r1t−1)

|st−1

 .
(5.43)

Define ak :=
λ∗kξt−1,k

λ∗kr
1
t−1+ξt−1,k(1−r1t−1)

. Notice that ak > 0 and that ak is measurable

with respect to information generated by st−1. Then, by applying the finite form

of Jensen’s inequality for concave functions ( see Proposition 2.35 ) to the right

hand side of (5.43) we obtain

A = E

ln

∑K
k=1 ak

ξt,k
ξt−1,k∑K

k=1 ak
|st−1

 ≥ E

∑K
k=1 ak ln

ξt,k
ξt−1,k∑K

k=1 ak
|st−1


=

1∑K
k=1 ak

E

(
K∑
k=1

ak ln
ξt,k
ξt−1,k

|st−1

)
(5.44)

=

∑K
k=1 akE [ln ξt,k − ln ξt−1,k| st−1]∑K

k=1 ak
= 0,

by using condition (C1). For B, by Lemma A.2 (see Appendix A.3), we have

B ≥ δ%(|λ∗ − ξt−1(st−1)|), (5.45)
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where % is the strictly positive constant bounding away from zero the coordinates

of λit. Therefore, by (5.44) and (5.45) we obtain

E(Dt|st−1) ≥ δ%
(
|λ∗ − ξt−1

(
st−1

)
|
)
. (5.46)

Consequently,

lim inf
T→∞

1

T

T∑
t=1

E(Dt|st−1) ≥ lim inf
T→∞

1

T

T∑
t=1

δ%
(
|λ∗ − ξt−1

(
st−1

)
|
)
≥ δ%(κ) > 0.

The last inequality follows from our assumption (5.32). Therefore, we obtained

(5.41) which implies (5.36); i.e.,

lim inf
T→∞

1

T
ln

r1
T

1− r1
T

> 0 a.s.

Consequently, for large T , there exists a strictly positive random variable η such

that
r1
T

1− r1
T

> eηT .

Thus, investor one dominates the market and its relative wealth converges to 1

exponentially fast.

5.4 Absence of Correct Beliefs

In Section 5.4, we use Proposition 3.5 to show that the investor who is closer to

the Kelly rule cannot be driven out of the market (see Theorem 5.17). We have

the relative wealth of the investors given by

rit+1 =
K∑
k=1

[ρ〈λk, rt+1〉+ (1− ρ)Rk (st+1)]
λikr

i
t

〈λk, rt〉
, i = 1, · · · , I. (5.47)

Here, we only consider the case when I = 2. From equation (5.47), we obtain

rt+1 =
K∑
k=1

{
ρ
[
λk(1− rt+1) + λkrt+1

]
+(1−ρ)Rk(st+1)

} λkrt

λk(1− rt) + λkrt
, (5.48)

where λ = (λk)
K
k=1 is the strategy of investor 1 whose relative wealth is rt+1 and

λ = (λk)
K
k=1 is the strategy of investor 2 whose relative wealth is 1 − rt+1. Now
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from equation (5.48), we obtain

rt+1

(
1−

K∑
k=1

ρ(λk − λk)
λkrt

λk(1− rt) + λkrt

)
=

K∑
k=1

(
ρλk + (1− ρ)Rk(st+1)

) λkrt

λk(1− rt) + λkrt
. (5.49)

Note that R.H.S. of the equation (5.49) is positive for all t. Then, L.H.S. of this

equation is positive for all t. Since rt+1 > 0 for all t, we have

1−
K∑
k=1

ρ(λk − λk)
λkrt

λk(1− rt) + λkrt
> 0. (5.50)

Therefore, we can divide both sides of the equation (5.49) by (5.50) and we obtain

rt+1 =

∑K
k=1

(
ρλk + (1− ρ)Rk(st+1)

)
λkrt

λk(1−rt)+λkrt

1−
∑K

k=1 ρ(λk − λk) λkrt
λk(1−rt)+λkrt

. (5.51)

In conclusion, the above random dynamical system (5.51) can be represented by

the random map

F = {τs,ps}s∈S (5.52)

where

τs (r) =

∑K
k=1

(
ρλk + (1− ρ)Rk (s)

)
λkr

λk(1−r)+λkr

1−
∑K

k=1 ρ
(
λk − λk

)
λkr

λk(1−r)+λkr

:=
A

B
, (5.53)

and p = (ps) is the distribution on S. We now state our main result. From now

on, we impose the following condition.

Assumption 5.16.

We assume that for k ∈ {1, . . . , K}{
either λk ≤ λk ≤ λ∗k,

or λ∗k ≤ λk ≤ λk.
(5.54)

Assumption 5.16 means that the investment strategy of investor 1 is closer (coor-

dinatewise) than that of investor 2 to the Kelly rule. Our second main result in

this chapter is given by the following theorem [11].
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Theorem 5.17.

Let I = 2. Under assumption (5.16) investor 1 cannot be driven out of the market.

He/she will either dominate or at least survive.

5.4.1 Proofs

To analyse the performance of investment strategies in the absence of “correct be-

liefs”, i.e., in the absence of an investor using the Kelly rule, we invoke the theory

of random dynamical systems ( see Section 3 for definition of RDS). In this section

we define the notion of a random dynamical system (RDS) and state some results

from [8]. Our ideas are inspired by [8], where techniques from RDS were applied

to the model of short-lived assets of Evstigneev et al. [21].

We verify that the evolution of the relative market wealth (5.12) can be represented

by a random map whose constituent maps satisfy the assumptions of [8]. We refer

the reader to sections 3.1, 3.1.2 and 3.1.3 of Chapter 3.

Lemma 5.18.

1. τs (0) = 0, τs (1) = 1.

2. τs is an increasing function which maps [0, 1] into itself.

3. τs is a continuous function on [0, 1], moreover it is differentiable.

Proof.

1. τs (0) = 0 is obvious.

τs (1) =

∑K
k=1

(
ρλk + (1− ρ)Rk (s)

)
λk
λk

1−
∑K

k=1 ρ
(
λk − λk

)
λk
λk

=
ρ
∑K

k=1 λk + (1− ρ)
∑K

k=1Rk (s)

1−
∑K

k=1 ρ
(
λk − λk

)
=
ρ+ 1− ρ

1
= 1.
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2. Let gs (r) =
τs (r)

1− τs (r)
. Note that gs (r) is increasing⇐⇒ τs (r) is increasing.

Thus, it is enough to show that gs (r) is increasing.

gs (r) =

∑K
k=1

(
ρλk + (1− ρ)Rk (s)

)
λkr

λk(1−r)+λkr

1−
∑K

k=1 ρ
(
λk − λk

)
λkr

λk(1−r)+λkr

× 1

1−
∑K
k=1(ρλk+(1−ρ)Rk(s)) λkr

λk(1−r)+λkr

1−
∑K
k=1 ρ(λk−λk)

λkr

λk(1−r)+λkr

=

∑K
k=1

(
ρλk + (1− ρ)Rk (s)

)
λkr

λk(1−r)+λkr

1−
∑K

k=1

(
ρλk + (1− ρ)Rk (s)

)
λkr

λk(1−r)+λkr

=
fs
hs
.

Observe that

fs (r) =
K∑
k=1

(
ρλk + (1− ρ)Rk (s)

) λkr

λk (1− r) + λkr

=
K∑
k=1

(
ρλk + (1− ρ)Rk (s)

) λk

λk
(1−r)
r

+ λk

increases as r increases. Moreover,

hs (r) = 1−
K∑
k=1

(
ρλk + (1− ρ)Rk (s)

) λkr

λk (1− r) + λkr
.

Since
(
ρλk+(1− ρ)Rk (s)

)
λkr

λk(1−r)+λkr
increases, hs (r) decreases. Therefore,

gs (r) increases.

3. The proof of (3) is standard but long. Therefore, we have added it as an

appendix at the end of the paper.

Lemma 5.19.

Let

τ (r) =

∑K
k=1

(
ρλk + (1− ρ)Rk

)
λkr

λk(1−r)+λkr

1−
∑K

k=1 ρ
(
λk − λk

)
λkr

λk(1−r)+λkr

, r ∈ [0, 1] ,
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and

τ (r) = rβ(r).

Then, for any r ∈ [0, 1], ln (β (r)) is bounded.

Proof.

We have

τ (r) = rβ(r) = exp (ln (r) β (r)) .

Consequently,

β (r) =
ln (τr)

ln (r)
, for any 0 < r < 1 and 0 < τ (r) < 1.

Notice that for any 0 < r < 1 and 0 < τ (r) < 1, β (r) > 0. The minimum and

maximum of β (r) can be attained at r = 0, r = 1 or at a point of local extremum.

We apply De L’Hospital rule to find the limr→0+ β (r) and limr→1− β (r).

lim
r→0+

ln (τr)

ln (r)
= lim

r→0+

{∑K
k=1

(
ρλk + (1− ρ)Rk

)
λkλk

{λk(1−r)+λkr}2
}
B

AB
r

+

{∑K
k=1 ρ

(
λk − λk

)
λkλk

{λk(1−r)+λkr}2
}
A

AB
r

=

∑K
k=1

(
ρλk + (1− ρ)Rk

)
λk
λk∑K

k=1

(
ρλk + (1− ρ)Rk

)
λk
λk

= 1.

lim
r→1−

ln (τr)

ln (r)
= lim

r→1−

{∑K
k=1

(
ρλk + (1− ρ)Rk

)
λkλk

{λk(1−r)+λkr}2
}
B

AB
r

+

{∑K
k=1 ρ

(
λk − λk

)
λkλk

{λk(1−r)+λkr}2
}
A

AB
r

=

∑K
k=1 (ρλk + (1− ρ)Rk)

λk
λk∑K

k=1

(
ρλk + (1− ρ)Rk

)
=

K∑
k=1

(ρλk + (1− ρ)Rk)
λk
λk
.
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Lemma 5.20.

The function

G (r) =

∑K
k=1

(
ρλk + (1− ρ)λ∗k

)
λk

λk(1−r)+λkr

1−
∑K

k=1 ρ
(
λk − λk

)
λkr

λk(1−r)+λkr

≥ 1, (5.55)

for r ∈ [0, 1].

Proof.

G (r) ≥ 1

⇐⇒
K∑
k=1

(
ρλk + (1− ρ)λ∗k

) λk

λk (1− r) + λkr
≥

1−
K∑
k=1

ρ
(
λk − λk

) λkr

λk (1− r) + λkr

⇐⇒ H (r) := 1−
K∑
k=1

{
ρ
(
λk − λk

)
r + ρλk + (1− ρ)λ∗k

} λk

λk (1− r) + λkr
≤ 0.

Since H (1) = 0, it is enough to show that H (r) is increasing. We have

H
′
(r) =

K∑
k=1

(1− ρ)λ∗kλk
(
λk − λk

){
λk (1− r) + λkr

}2 . (5.56)

• For λk ≤ λk ≤ λ∗k, we have

λ∗kλk{
λk (1− r) + λkr

}2 ≥
λ∗kλk(

max{λk, λk}
)2

≥ λ∗kλk

(λk)
2 =

λ∗k
λk
≥ 1

λ∗kλk
(
λk − λk

){
λk (1− r) + λkr

}2 ≥ λk − λk. (5.57)

• For λ∗k ≤ λk ≤ λk, we have

λ∗kλk{
λk (1− r) + λkr

}2 ≤
λ∗kλk(

min{λk, λk}
)2

=
λ∗kλk

(λk)
2 ≤ 1
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λ∗kλk
(
λk − λk

){
λk (1− r) + λkr

}2 ≥ λk − λk. (5.58)

From (5.57) and (5.58), for all k, we have

λ∗kλk
(
λk − λk

){
λk (1− r) + λkr

}2 ≥ λk − λk.

Consequently,
K∑
k=1

(1− ρ)λ∗kλk
(
λk − λk

){
λk (1− r) + λkr

}2 ≥ 0.

So, the function H (r) is increasing and therefore, the function H (r) ≤ 0.

Proof of Theorem 5.17.

Let us consider the expression

L∑
s=1

ps ln (βs(r)) ≤ ln

(
L∑
s=1

psβs(r)

)
= ln

(
L∑
s=1

ps
ln(τs(r))

ln(r)

)

≤ ln

(
1

ln r
ln

(
L∑
s=1

psτs(r)

))

= ln

 1

ln r
ln

 L∑
s=1

ps

∑K
k=1

(
ρλk + (1− ρ)Rk(s)

)
λkr

λk(1−r)+λkr

1−
∑K

k=1 ρ
(
λk − λk

)
λkr

λk(1−r)+λkr

 (5.59)

= ln

 1

ln r

ln r + ln

∑K
k=1

∑L
s=1 ps

[
ρλk + (1− ρ)Rk(s)

]
λk

λk(1−r)+λkr

1−
∑K

k=1 ρ
(
λk − λk

)
λkr

λk(1−r)+λkr


= ln

 1

ln r

ln r + ln

∑K
k=1

[
ρλk + (1− ρ)λ∗k

]
λk

λk(1−r)+λkr

1−
∑K

k=1 ρ
(
λk − λk

)
λkr

λk(1−r)+λkr


= ln

(
1

ln r
(ln r + ln (G(r)))

)
= ln

(
1 +

1

ln r
ln (G (r))

)
≤ 0.

In the last inequality we used the fact that which was proved in Lemma 5.20

G (r) ≥ 1. Since the stochastic process st is an independent, identically distributed

process, we have, by (5.59),

E
(
lnαt | st−1

)
=

L∑
s=1

ps ln (βs (rt−2)) ≤ 0.
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Therefore, by Proposition 3.5, limt→∞ rt (st) 6= 0 a.s. This means that investor 1

either dominates or at least survives.



Chapter 6

Conclusion

We have studied survival and extinction problems in evolutionary finance. Firstly,

we have examined an evolutionary market model with short-lived assets. We pre-

sented our results when the states of the world are not identically distributed.

They may depend on the amount of money invested in the assets. We have com-

puted the Lyapunov exponents of the skew product associated with random market

system [10]. We used the Lyapunov exponents to study wealth dynamics of in-

vestors. We have found that the investor who employs a particular portfolio rule

cannot be driven out of the market [10]. Then, we analysed the market model with

long-lived assets. In [9], we have found sufficient conditions for an investor using

the Kelly rule to be a single survivor. Moreover, we showed that this investor dom-

inates the others exponentially fast. The investors were allowed to use dynamic

investment strategies. Finally, in [11], we analyse the long-lived asset model when

the exact probability distribution of the states of the world is not available for

investors. We have shown that in the absence of correct beliefs, the investor who

is closer to the Kelly rule may dominate the market or at least survive; i.e., this

investor cannot be driven out of the market. Our techniques are borrowed from

the theory of random dynamical systems.

Our results are based on many assumptions that can be extended in future re-

search. For instance, we showed the strategy that is closer to the Kelly rule

cannot be driven out of the market in case of two investors. One can extend this

result in case of I > 2 investors in the market. Moreover, we have assumed that

the investors use constant strategies. We would like to study this problem when

84
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the investors are allowed to use dynamic investment strategies. The solution of

this problem would be a remarkable result in the field.
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Appendix

A.1 Appendix

Proof of Lemma 4.1-(3).

To show that the function

τs (r) =
K∑
k=1

Rk (s)
λ∗t,kr

λ∗t,kr + λ̄t,k (1− r)

is differentiable we need to show that the following limit

lim
h→0

{
K∑
k=1

Rk (s)
λ∗t,k (a+ h)

λ∗t,k (a+ h) + λ̄t,k (1− a− h)
−

K∑
k=1

Rk (s)
λ∗t,ka

λ∗t,ka+ λ̄t,k (1− a)

}
1

h

(A.1)

exists. From (A.1) we have

lim
h→0

{
K∑
k=1

Rk (s)
λ∗t,k (a+ h)

[
λ∗t,ka+ λ̄t,k (1− a)

][
λ∗t,k (a+ h) + λ̄t,k (1− a− h)

] [
λ∗t,ka+ λ̄t,k (1− a)

]
−

K∑
k=1

Rk (s)
λ∗t,ka

[
λ∗t,k (a+ h) + λ̄t,k (1− a− h)

][
λ∗t,k (a+ h) + λ̄t,k (1− a− h)

] [
λ∗t,ka+ λ̄t,k (1− a)

]} 1

h

= lim
h→0

{
K∑
k=1

Rk (s)
λ∗t,kλ̄t,k (a+ h) (1− a)− λ∗t,kλ̄t,ka (1− a− h)[

λ∗t,k (a+ h) + λ̄t,k (1− a− h)
] [
λ∗t,ka+ λ̄t,k (1− a)

]} 1

h

= lim
h→0

{
K∑
k=1

Rk (s)
λ∗t,kλ̄t,kh[

λ∗t,k (a+ h) + λ̄t,k (1− a− h)
] [
λ∗t,ka+ λ̄t,k (1− a)

]} 1

h
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= lim
h→0

K∑
k=1

Rk (s)
λ∗t,kλ̄t,k[

λ∗t,k (a+ h) + λ̄t,k (1− a− h)
] [
λ∗t,ka+ λ̄t,k (1− a)

]
=

K∑
k=1

Rk (s)
λ∗t,kλ̄t,k[

λ∗t,ka+ λ̄t,k (1− a)
]2

We showed that the limit exists. Therefore, the function τs (r) is differentiable.

A.2 Appendix

We make use the following proposition in Proof of Theorem 5.11. This proposition

can be found in [3].

Proposition A.1.

The process zt is governed by the following random dynamical system:

zt
zt−1

=

∑K
k=1

[
ρtλ

2
t,k + (1− ρt)Rt,k

] λ1t,k
λ1t,kzt−1+λ2t−1,k∑K

k=1

[
ρtλ1

t,k + (1− ρt)Rt,k

] λ2t−1,k

λ1t−1,kzt+λ
2
t−1,k

. (A.2)

Proof. By using (5.12) with I = 2, we obtain

rit =
K∑
k=1

[
ρt
(
λit,kr

i
t + λjt,k

(
1− rit

))
+ (1− ρt)Rt,k

] λit−1,kr
i
t−1

λit−1,kr
i
t−1 + λjt−1,kr

j
t−1

,

where i, j ∈ {1, 2} and i 6= j. Setting Cij
t−1,k :=

λit−1,kr
i
t−1

λit−1,kr
i
t−1+λjt−1,kr

j
t−1

, we obtain

rit

[
1 + ρt

K∑
k=1

(
λjt,k − λ

i
t,k

)
Cij
t−1,k

]
=

K∑
k=1

[
ρtλ

j
t,k + (1− ρt)Rt,k

]
Cij
t−1,k.

Thus
rit
rjt

=
Aijt /B

ij
t

Ajit /B
ji
t

,

where

Aijt :=
K∑
k=1

[
ρtλ

j
t,k + (1− ρt+1)Rt,k

]
Cij
t−1,k

,

Bij
t := 1 + ρt

K∑
k=1

(
λjt,k − λ

i
t,k

)
Cij
t−1,k.
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Observe that Bij
t = Bji

t . Indeed,

Bij
t −B

ji
t = ρt

K∑
k=1

[(
λjt,k − λ

i
t,k

)
Cij
t−1,k −

(
λit,k − λ

j
t,k

)
Cji
t−1,k

]
= ρt

K∑
k=1

(
λjt,k − λt, k

i
)

= 0

because Cij
t−1,k + Cji

t−1,k = 1. Consequently,

r1
t

r2
t

=
A12
t

A21
t

=
r1
t−1

r2
t−1

∑K
k=1

[
ρtλ

2
t,k + (1− ρt)Rt,k

] λ1t−1,k

λ1t−1,kr
1
t−1/r

2
t−1+λ2t−1,k∑K

k=1

[
ρtλ1

t,k + (1− ρt)Rt,k

] λ2t−1,k

λ1t−1,kr
1
t−1/r

2
t−1+λ2t−1,k

,

which yields (A.2).

A.3 Appendix

Let S be a finite set and for each s ∈ S, p (s) ≥ 0 be a probability distribution

on S. Let R (s) = (R1 (s) , . . . , RK (s)) be a vector in the simplex ∆K satisfying

(5.11) and (A2). Let R̃k (s) := ρλ∗k + (1− ρ)Rk (s), where 0 < ρ < 1. Let % > 0

be a number, such that λ∗k > %. Denote by ∆K
% the set of those vectors (b1, . . . , bK)

in ∆K that satisfy bk ≥ %, k = 1, . . . , K. Consider the function

Θ (s, κ, µ) = ln
K∑
k=1

Rk (s)
λ∗k

λ∗kκ+ (1− κ)µk

− ln
K∑
k=1

R̃k (s)
µk

λ∗kκ+ (1− κ)µk
(A.3)

of s ∈ S, κ ∈ [0, 1] and µ = (µk) ∈ ∆K
% .

Lemma A.2.

There exists a function δ% (γ) ≥ 0 of γ ∈ [0,∞) satisfying the following conditions:

1. The function δ (.) is non-decreasing, and δ% (γ) ≥ 0 for all γ > 0.
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2. For any κ ∈ [0, 1] and µ = (µk) ∈ ∆K
% , we have

E [Θ (s, κ, µ)] ≥ δ% (|λ∗ − µ|) . (A.4)

Proof.

The proof of this lemma is based on the proofs of Lemma 3.1 of [21] and Lemma

1 of [2]. The only difference is that the second summand we have R̃k as defined

above and not Rk. But since
∑

s∈S p (s)Rk(s) =
∑

s∈S p (s) R̃k(s) = λ∗k. Moreover,

since Rk(s) satisfies (A2), R̃k(s) satisfies (A2) too. Let us take the expectation of

equation (A.3). Then from Lemma 3.1 of [21], for all s ∈ S, κ ∈ [0, 1] and any

µ ∈ ∆K
% , µ 6= λ∗, the value of E [Θ (s, κ, µ)] is strictly positive.

E ln
K∑
k=1

Rk (s)
λ∗k

λ∗kκ+ µk (1− κ)
− E ln

K∑
k=1

R̃k (s)
µk

λ∗kκ+ µk (1− κ)
≥ 0. (A.5)

Indeed, if µ = λ∗, inequality (A.5) turns into an equality. We now show that the

expression on the left-hand side of (A.5) - which is denoted by E [Θ (s, κ, µ)] - is

strictly positive for all κ ∈ [0, 1] and µ 6= λ∗. By applying Jensen’s inequality, we

find

E ln
K∑
k=1

Rk (s)
λ∗k

λ∗kκ+ µk (1− κ)
≥

K∑
k=1

λ∗k ln
λ∗k

λ∗kκ+ µk (1− κ)
, (A.6)

E ln
K∑
k=1

R̃k (s)
µk

λ∗kκ+ µk (1− κ)
≤ lnE

K∑
k=1

R̃k (s)
µk

λ∗kκ+ µk (1− κ)
(A.7)

and so

E [Θ (s, κ, µ)] ≥
K∑
k=1

ak ln
ak

akκ+ µk (1− κ)
− ln

K∑
k=1

ak
µk

akκ+ µk (1− κ)
, (A.8)

where ak = λ∗k.

Let κ = 0. Then the right-hand side of (A.8) reduces to

∑
ak ln ak −

∑
ak lnµk.

This difference is strictly positive, since (ak) 6= (µk).

If κ ∈ (0, 1], then we have a strict inequality in (A.7). To prove this it suffices to
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show that the function

φ (s) =
K∑
k=1

R̃k (s)µk [λ∗kκ+ (1− κ)µk]
−1 , s ∈ S,

is not a constant. Suppose φ (s) is constant, i.e. φ (s) ≡ β. Then

K∑
k=1

R̃k (s)
(
µk [λ∗kκ+ (1− κ)µk]

−1 − β
)

= 0, s ∈ S,

which implies µk = β (λ∗kκ+ (1− κ)µk), since the functions R̃k (.), k = 1, 2, . . . , K,

are linearly independent. We can see that β = 1, and so κ (λ∗k − µk) = 0. Since

κ > 0, this implies λ∗k = µk, k = 1, 2, . . . , K, which, however, is ruled out by our

assumptions.

It remains to prove that the expression on the right-hand side of (A.8) is non-

negative. It is equal to zero if κ = 1. If κ < 1, we can write it in the form

g (u) =
K∑
k=1

ak ln
ak

aku+ µk
− ln

K∑
k=1

ak
µk

aku+ µk
, (A.9)

where u = κ (1− κ)−1. We can see that g (u)→ 0 as u→∞. Thus it remains to

prove the inequality g
′
(u) ≤ 0 for all u > 0. We write

g
′
(u) = −

K∑
k=1

a2
k (aku+ µk)

−1 +

∑K
k=1 a

2
kµk (aku+ µk)

−2∑K
k=1 akµk (aku+ µk)

−1
.

The sign of g
′
(u) is the same as the sign of the expression

J := −

[
K∑
k=1

a2
k (aku+ µk)

−1

]
K∑
k=1

akµk (aku+ µk)
−1 +

K∑
k=1

a2
kµk (aku+ µk)

−2 .

By setting wk = aku+ µk, we find µk = wk − aku and

J = −

[
K∑
k=1

a2
kw
−1
k

]
K∑
k=1

ak (wk − aku)w−1
k +

K∑
k=1

a2
k (wk − aku)w−2

k

= −

[
K∑
k=1

a2
kw
−1
k

][
1−

K∑
k=1

a2
kuω

−1
k

]
+

K∑
k=1

a2
kw
−1
k −

K∑
k=1

a3
kuw

−2
k

= u

( K∑
k=1

akνk

)2

−
K∑
k=1

akν
2
k

 ,
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where νk = akw
−1
k . The last expression is non-positive by virtue of the Schwartz

inequality.

By following Lemma 1 of [2], fix some γ0 > 0 for which the set W (s, γ) = {µ ∈
∆K
% : |λ∗ − µ| ≥ γ} is non-empty for all s ∈ S, γ ∈ [0, γ0] and define

δ% (s, γ) = inf {E [Θ (s, κ, µ)] : κ ∈ [0, 1], µ ∈ W (s, γ)}

if γ ∈ [0, γ0] and δ% (s, γ) = δ% (s, γ0) if γ > γ0. Since E [Θ (s, κ, µ)] is continuous

and strictly positive on the compact set [0, 1] × W (s, γ) (γ > 0), the function

δ% (s, γ) takes on strictly positive values for γ > 0. Clearly this function is non-

decreasing in γ. Fix some s, consider any µ ∈ ∆K
% and define γ = |λ∗ − µ|. Then

we have µ ∈ W (s, γ), and so

E [Θ (s, κ, µ)] ≥ δ% (s, γ) = δ% (s, |λ∗ − µ|) .

A.4 Appendix

Proof of Lemma 5.18-(3).

We rewrite the function τ as

τ (r) =

∑K
k=1 δkfk (r)

1−
∑K

k=1 βkf (r)
,

where δk := ρλk+(1− ρ)Rk, fk (r) := λkr

λk(1−r)+λkr
and βk := ρ

(
λk − λk

)
. We need

to show that

lim
h→0

[ ∑K
k=1 δkfk (a+ h)

1−
∑K

k=1 βkfk (a+ h)
−

∑K
k=1 δkfk (a)

1−
∑K

k=1 βkfk (a)

]
1

h
(A.10)

exists. The limit of (A.10) is equivalent to

lim
h→0


∑K

k=1 δkfk (a+ h)
[
1−

∑K
k=1 βkfk (a)

]
[
1−

∑K
k=1 βkfk (a+ h)

] [
1−

∑K
k=1 βkfk (a)

]
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−

∑K
k=1 δkfk (a)

[
1−

∑K
k=1 βkfk (a+ h)

]
[
1−

∑K
k=1 βkfk (a+ h)

] [
1−

∑K
k=1 βkfk (a)

]
 1

h

= lim
h→0


∑K

k=1 δk [fk (a+ h)− fk (a)] +
∑K

k=1 δkfk (a)
∑K

k=1 βkfk (a+ h)[
1−

∑K
k=1 βkfk (a+ h)

] [
1−

∑K
k=1 βkfk (a)

]
−

∑K
k=1 δkfk (a+ h)

∑K
k=1 βkfk (a)[

1−
∑K

k=1 βkfk (a+ h)
] [

1−
∑K

k=1 βkfk (a)
]
 1

h
.

When we substitute the function fk in the above equation, we obtain

= lim
h→0


∑K

k=1
δkλkλkh

[λk(1−a−h)+λk(a+h)][λk(1−a)+λk(a)][
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]

+

∑K
k=1 δk

λka

λk(1−a)+λka

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)[
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]
−

∑K
k=1 δk

λk(a+h)

λk(1−a−h)+λk(a+h)

∑K
k=1 βk

λka

λk(1−a)+λka[
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]
 1

h

= lim
h→0


∑K

k=1
δkλkλkh

[λk(1−a−h)+λk(a+h)][λk(1−a)+λk(a)][
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]

+

∑K
k=1

∑K
k=1

δkλka

λk(1−a)+λka

βkλk(a+h)

λk(1−a−h)+λk(a+h)[
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]
+

∑K
k,j=1

δkλka

λk(1−a)+λka

βjλj(a+h)

λj(1−a−h)+λj(a+h)[
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]
−

∑K
k=1

∑K
k=1

δkλka

λk(1−a)+λka

βkλk(a+h)

λk(1−a−h)+λk(a+h)[
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]

−

∑K
k,j=1

δjλja

λj(1−a)+λja

βkλk(a+h)

λk(1−a−h)+λk(a+h)[
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]
 1

h
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= lim
h→0


∑K

k=1
δkλkλkh

[λk(1−a−h)+λk(a+h)][λk(1−a)+λk(a)][
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]

+

∑K
k,j=1

[δkλkβjλja(a+h)][(λk(1−a−h)+λk(a+h))(λj(1−a)+λja)]
(λk(1−a−h)+λk(a+h))(λj(1−a)+λja)(λk(1−a)+λka)(λj(1−a−h)+λj(a+h))[

1−
∑K

k=1 βk
λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]

−

∑K
k,j=1

[δkλkβjλja(a+h)][(λk(1−a)+λka)(λj(1−a−h)+λj(a+h))]
(λk(1−a−h)+λk(a+h))(λj(1−a)+λja)(λk(1−a)+λka)(λj(1−a−h)+λj(a+h))[

1−
∑K

k=1 βk
λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]
 1

h

= lim
h→0


∑K

k=1
δkλkλkh

[λk(1−a−h)+λk(a+h)][λk(1−a)+λk(a)][
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]

+

∑K
k,j=1

δkλkβjλja(a+h)h(λkλj−λkλj)
(λk(1−a−h)+λk(a+h))(λj(1−a)+λja)(λk(1−a)+λka)(λj(1−a−h)+λj(a+h))[

1−
∑K

k=1 βk
λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]
 1

h

= lim
h→0


∑K

k=1
δkλkλk

[λk(1−a−h)+λk(a+h)][λk(1−a)+λk(a)][
1−

∑K
k=1 βk

λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]

+

∑K
k,j=1

δkλkβjλja(a+h)(λkλj−λkλj)
(λk(1−a−h)+λk(a+h))(λj(1−a)+λja)(λk(1−a)+λka)(λj(1−a−h)+λj(a+h))[

1−
∑K

k=1 βk
λk(a+h)

λk(1−a−h)+λk(a+h)

] [
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]
 .

When we take the limit we obtain

τ
′
(a) =

∑K
k=1 δk

λkλk

[λk(1−a)+λka]
2 +

∑K
k=1 δk

λka

λk(1−a)+λka

∑K
k=1 βk

λkλk

[λk(1−a)+λka]
2[

1−
∑K

k=1 βk
λka

λk(1−a)+λka

]2

−

∑K
k=1 δk

λkλk

[λk(1−a)+λka]
2

∑K
k=1 βk

λka

λk(1−a)+λka[
1−

∑K
k=1 βk

λka

λk(1−a)+λka

]2 .

The limit in (A.10) exists. Hence τ is differentiable.
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