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I 

The work of this thesis mainly presents new direct computational 

algorithmic solvers for real linear systems of equations (of wide banded 

matrices) derived from the application of well-known finite-difference 

techniques to boundary value problems involving ordinary and partial 

differential equations. These algorithms are for illustrative purposes 

suitable for problems, not only differential equations with specific 

boundary conditions or two-point boundary value problems, but a wider class 

of differential equations can also be treated. They are applicable for 

partial differential equations where a banded matrix is obtained by using 

a high-order approximation such as a 9-point formula for the Laplace or 

Poisson equation. Also the application is extendable to higher order 

equations such as the Biharmonic equation. Whilst one type of the 

algorithm is suggested only for treating block linear systems, the other 

type is also applicable to these as well as their use in the point form 

applications to which they were basically proposed. The two types are 

respectively named in the last chaptersof this thesis as BLOCKSOLVERs and 

BANDSOLVERs. 

The two SOLVERs are categorised to suit two common kinds of problems, 

i) subjected to periodic boundary conditions and ii) those subjected to 

non-periodic or more commonly known, Dirichlet, Ne~ann and Robin 

conditions. Subsequently the factorisation procedure of the coefficient 

matrix takes place according to the type of the condition that the 

considered problem is subjected to. Precisely for a given matrix of order 

N with bandwidth 2r+l, r~l (N~2r+l), with type (i) the matrix is factorised 

into two invertable, cyclic (or periodic) upper and lower matrices of semi­

bandwidth r+l, whilst with type (ii) the obtained factor matrices are 

rectangular upper and lower of size (Nx(N+r» and «N+r)xN) respectively, 

and of semi-bandwidth r+l. 
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As an alternative approach to the conventional methods (as a LU­

Decomposition), the elements of the factor matrices are obtained by 

adopting some iterative schemes whose convergence properties are 

investigated. This is applicable to the BANDSOLVERs, whilst in the 

BLOCKSOLVE:<.s the factorisation procedure involves computing a matrix square 

root. 

Eowever, consistent with the demands of the new era of technology 

where high-speed computers are introduced, and the start of the revolution 

of micro-chips, the investigation for reliable computational methods is 

extensively broadening. Moreover, the emergence of parallel processing 

mQchines so far shows remarkable results on reducing the execution time 

for some particular numerical algorithms, although some reservations on 

storage demands still exist. 

Numerous problems arise in the Mathematical Physics and Engineering 

fields which are still encountered by Numerical Analysts and other 

specialists for which no satisfactory solution procedures have been 

reached and not so for the forseeable future. 

Basically, the development of computational methods takes place in 

one of two directions: to obtain the solution itepatively or directly, 

and consequently it has become customary in literature to classify the 

conventional and new methods to these appropriate directions. It is known 

that no method has the merit of generality, but they are valued or 

preferred for certain problems according to many vital factors associated 

with the use of the. computer such as the amount of storage required, 

computing time, levels of obtainable accuracy, ••• etc., and then the 

advantages and disadvantages of either method may accordingly be recognised 

or detected. The conventional types for both methods are discussed in 

Chapter 2. Here we present a brief indication to a few methods for both 
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types developed in recent years. 

Iterative methods have witnessed considerable advances in the last 

three decades or so, in particular we refer to the contributions of 

Frankel, Young and others in the 50's to generalise the successive over­

relaxation procedure (point form), and for the block case as given by 

Varga (1902) who also contributed earlier a method of normalisation of 

block systems so that a considerable reduction in arithmetic operations is 

implied (Cuthill and Varga (1959». Other'methods for sparse matrices may 

be found in Evans (1974). For certain cases, when the coefficient matrix 

of the considered linear system possess special properties some recent 

methods are suggested. 

For example, when the matrix is symmetric and positive definite 

Gustafsson (1979) presents the so-called Modified Incomplete Choleski, 

prior to that the "Incomplete LU-Decomposition" for a symmetric M-matrix 

was proposed by Meijerink and van der Vorst (1977) in which both methods 

are based on the idea of splitting the matrix, and in the former seeking a 

suitable parameter to accelerate the iteration process is significant and 

important. Another method deals with non-negative types of matrices, as in 

Neumann and Plemmonns (1978) in which their work includes a study of linear 

stationary iterative methods with non-negative matrices for solving singular 

and consistent linear systems. 

In direct methods too, the development in a similar period has 

progressed extensively, both in the theoretical and practical sides. In 

the former, for instance, the error analysis for the direct method 

contributed by Wi1kinson has enabled the 'users' to predict or recognise 

the behaviour of the method, its stability and the bounds of the accuracy 

in the obtainable solution. On the other hand, fast methods have been 

suggested, such as in (Hockney (1965» involving Fast Fourier transforms, 
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sparse factorisation by Evans (1971) and his work in the recent years. 

Other methods involving cyclic reduction as in Sweet (1974, 1977) or the 

spectral resolution methods introduced by Buzbee et al (1970). A comparison 

between point and block elimination schemes to solve block-tridiagonal 

systems and the stability for the latter scheme are given in Varah (1972); 

for "the considered block matrix being symmetric and positive defi,ite it 

is indicated in the same reference that Gene Golub has used the 

Choleski decomposition for this particular case. A fast numerical solution 

of linear systems of equations led to a block quindiagonal coefficient 

matrix using a factoring and block elimination process as proposed by Bauer 

and Reiss (1972). Another type of method which deals with rather sparse 

matrices is suggested by Henderson and Wassyng (1978) in which the method 

exploits the zero elements below the diagonal of the given coefficient 

matrix, but the method shows superiority to Gaussian elimination only when 

the matrix is sparse strictly in the lower triangular part. 

The presentation in this thesis is partitioned into seven chapters 

(excluding the current one) and may be outlined as follows. 

In Chapter 2, the general mathematical background is included which 

involves the basic concepts, definitions and theorems; in addition to some 

conventional theoretical work such as, direct and iterative methods, the 

contract mapping theorem and Newton's method with a few of its variants. 

The chapter also covers some other topics which to a certain extent are " 

directly related to the procedure of the new algorithms, such as the theory 

of the periodic continued fractions, the computation of a matrix square 

root by Newton's method, eigenvalue problem, etc. 

As a matter of interest, the field of the applications for some of 

the algorithms, the 2-point boundary value problem concerning non-linear 

(or linear) ordinary differential equations is chosen. In relation to this 
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problem, the so-called iterative-deferred-correction technique is adopted. 

Thus, this technique has been covered considerably in Chapter 3. Also 

indicated in this chapter we extend the idea of using symmetric finite­

difference formulae of high-order (or it is called in the appropriate 

chapter, high-order approximations) for the non-linear case, notably the 

work carried out by Shoosmith (1973) on the linear case is referred to. 

In fact, the motivation of considering such techniques is to provide us 

with 'the generality of the new algorithms indicated earlier, that is to deal 

with matrices of any' bandwidth! Apart from a brief indication of·the 

concepts involved in partial differential equations, the description of the 

discretisation schemes to specific continuous problems via using finite­

difference approximations involve different computational molecules, is 

included in Chapter 3. In addition, because the chapter is devoted to the 

numerical solution of boundary value problems, thus an abbreviated description 

to some of the numerical approaches are made at the beginning. in particular. 

finite element methods followed by our main interest approach in this work, 

the finite-difference method. 

The new suggested algorithms are presented in two chapters, 4 and 5. 

Chapter 4 includes the algorithms which are proposed for the pointwise 

problems (BANDSOLVERs). One of them is designed for the special case. when 

the coefficient matrix of the considered linear system is periodic and 

possesses constant elements. While the remaining BAND SOLVERs deal with the 

matrices of non-constant (generally. non-symmetric), elements for both 

periodic and non-periodic cases. The extension of these algorithms to 

certain skew-type matrices is also included. While Chapter 5 presents the 

BLOCKSOLVERs which in fact are considered as an extension to the BANDSOLVERs 

for special cases only. 

The results of the numerical experimental work corresponding to the 
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algorithms of the last two chapters are given in Chapter 6 and 7 respectively. 

In these chapters some model problems for both ordinary and partial 

differential equations are introduced; in addition, a >considerable 

discussion on the factorisation procedures applied to various common types 

of matrices in which some related aspects are included such as the rate of 

convergence of the involved iteration processes, etc. Eigenproblems are 

discussed in Sections 6.5 and 7.4. The tested examples as a whole may 

reflect to which type of matrices the new algorithms are ~oth practical and 

applicable. 

Finally, the main remarks in the light of this work are concluded in 

Chapter 8 with some recommendations for pursuing further investigations 

and extensions. 



CHAPTER 2 

MATHEMATICAL BACKGROUND 
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2.1 BASIC CONCEPTS OF MATRIX AlGEBRA 

Numerical approaches such as finite-difference, finite element methods 

(see Chapter 3) are generally based on matrix algebra which by using its 

cQn~ept3 the analysis of these methods or the solution process can be 

expressed in a suitable manner. In addition, in practice, the use of 

electronic computers enables matrix algebra to be an important tool in the 

aprlication fields. In this presentation, we will emphasise the concepts 

which are (generally) associated with the subjects throughout this thesis. 

The most important and well-known elementary concept is the matrix 

which is defined to be a rectanglar array of ordered numbers and customarily 

denoted by a capital letter (our consideration is merely on re(xZ matrices). 

A matrix A is of size (mxn) if it has m l'OUS and n columns. (Figure 2.1.1). 

A = 

a12 -;.. -_. --- al,n-l 

a22 - - - - - - - a 2 n-l 
I I ' 
I 

a 
l,n 

a 
2,n 

I 
I 

, , 
I 

a a - - ... -n,l r.l,2 a a 
I!l,n-l m,n 

FIGURE 2.1.1: A is an mXn matrix 

The matrix A is said to be square (or quadratic) when m=n, and hence A is 

of order n (or m). When m=l, we have a row vector., and for n=l, a colwnn 

vector, usually denoted by small underlined letters. The transpose of a 

T 
matrix A=[a .. ] is written as A and obtained by interchanging the rows 

~.J 
. T T 

and columns of A, i.e. the element a •. of A becomes a .. of A. If A=A , 
1,] J,1 

then A is said to be symmetric, and anti-symmetric if A=_AT (obviously the 

two concepts are applicable for square matrices only), i.e. a .. =a .. and 
L,] J,1 

a .. =-a .. respectively. A square matrix (from now on any mentioned matrix 
~,J J,1 

is assumed square unless otherwise stated). A matrix A possesses an inverse, 

denoted by A-I and is called a non-singular or invertable matrix (sometimes 
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this property is equivalent to, say, that A h'ls linearly independent ccl~ns 

cre rcws), ctherwise A is singuZar. On th\! ctller hand, if, the determinant 

cf A, which will be dencted by det(A), is zero, then A is singular, ctherwise 

(i.e. det(A)#O) A-I dces exist, and hence we have 

AA-I = A-lA = I , 

where I is the unit (identity) matrix. 

Definiticn 2.1.1: (Pseudc-inverse, (Strang (1976» 

Given a rectangular (mxn) matrix A which may nct be invertable. 

Its "inverse" which is dencted by A+ is expressed in the fcrm 

A+ = (ATA)-lAT 

T 
where A A is a square matrix cf crder n which can be inverted unless it is 

singular. 

In this thesis we shall be mainly ccncerned with banded matrices. 

Bandedness means that all elements beycnd the bandwidth cf the matrix are 

zero" i.e. fcr a banded matrix 

a .. = 0 fcr 
1,J 

A= [a .. ] we 
1,J 

U-i I > r 

can state the ccnditicn 

where 2r+l is the bandwidth cf A. 

If A has a large number cf zercs, then it is said to, be sparse banded 

r7atrix. In this chapter we may illustrate scme examples cf matrices such 

that the zero, elements will be presented as a single zero, nctaticn, "0" and 

the ncn-zerc elements will be dencted by "X". 

Two, types cf bandwidth fcr matrix A are shcwn in Figure 2.1.2. 

A = 

X X X 

X X X X 

X X X X X o 
\ \' , , , '\' \ 

\ ' \,' 
\' \ \ ' 

o 
\,' , \ \, \' , \ \ , , 

\, \' \ ,'­
'X X'X X X 

r=2 

X X X X 

X X X 

, cr 

X X X X 

X X X X X 

XXX XXX 

XXXXXXX 

o 
., ..... , ... .::: ................. .... .... ........ .... " ...... .... .... ....... ... ....... .... ... ;: ........ ,.. ................... ::: ... 

o 
... ..... .... ........ ..... 
'~X X"x X X X X 

r=3 

XXX XXX 

X X X X X 

X X X X 

FIGURE 2.1.2: Banded matrices (pentadiagcnal, septadiagcnal) 



If one half-bandwidth of a matrix is merely zero, then we have either 

an uvper or ZOUJer triangular banded matrix. For example. U= [u .. ] is upper 
1J 

triangular if u .. =0 for i>j and L=[t .. ] is lower triangular, if t .. =0 for 
1J 1J 1J 

i<j; also we have adiagonaZ matrix D= d .. if d .. =0 for all i/j and non-
1J 1J 

zero for d .. (Fig.2.1.3). 
11 

U = 

x X X 

X X X 0 
\ \ ' 

o 

\ , \ 
\ \ \ , 

\ , \ 
\ \ \ 
\ \ . 
\ \ X 

\ \ 
V , X X , 

X X 

x 

,L = 

X 

X X o , 
X X , . 

, " 
X' , , , , , , , , , , 

" " , , , , , , , 
o 

, , . . , , 
'X X X 

X X X 

r+l=3 r+l=3 

X 

X 

,1) = 

• 

o 

, , , 

o 

X 

FIGURE 2.1.3: Upper, lower triangular and diagonal matrices 

X 

X 

9 

It may be important to indicate that we shall also consider banded 

matrices as presented in Fig.2.l.4 and consists of bandwidth 2r+l plus T(~+~/2 

extra elements on each of the upper right hand and lower half hand corners. 

X X 

X X X 

X X X , , , 
, , 

\ , , 
\ 

, 
\ 

, , , , , , 
o 

·X 
r=l 

, , 
, , 
X 

X 

o 
, 

X X X 

X X X X 

X X X X X 

""" , " " , , 
o 

" , ',',', 
, " " " " 

X X 

X 

, " , " " ' " " , " " " , " " " , , 
, , , , , ... , ... " " " ... ... X X o X X X X X 

X X X 

X X 

X X X X X 

X X 

X X ___ X X 

x.............. .... ... ..... 

.r X 

X- --X 
... . 

... ' .... .... ..... .... I........ .......... ........... 0 ' .... ...... ... ... 
I .............. ... 

... , 
'X 

X... ... ... ~ ........ .... ...... )( ... 
X.... ........ .... '" .............. X .... ..... rv: .. ........ ... 

....................................... ' .. X 
.... .... ...... .... ... ........ ... ... ........ .... ... X ....... ... ......... .... 

'X X. __ X X 
o 

}r 
X X 
r=2 

'--...---' • 
r+l r 

_F_IG"-U"'RE=..:2:...; • ..;:1c.:. • ...;,4: Banded matrices - Periodic type 



Also we shall consider rectangular upper and lower banded matrices of 

bandwidth r+l, as in Fig.2.l.5. 

U = 

x X-----X 0 I 
\' \ t 

, 'r+ 1 ' I 
~' ~., 

" X, I 
" '- \ 

o 1 
'\ 1 X 
" I, 
'" I I \ , \ I t I , 

o 
, 'I I I , 
, , I ' , "I , 

, I " I , \ 'I ' 
X'X-----X 

r 

L = 

X , , 

o 
I ........ ... .... 

I ' " " , X r+l............. 
~"'I' , 
0....... ... .... 
~ "" ........ .... - - - -- - - - -'- - --, , 

o 'x::,-,~~rJ}r 
~~ 

r 

FIGURE 2.1.5: Rectangular banded matrices, U is nx(n+r) 

and L is (n+r)xn. 
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We may classify the type of matrices shown in Fig.2.l.4 as of periodic 

type and in Fig.2.1.5 as non-periodic type. (see later chapter). 

Defini don 2.1.2: (Augmented matrix) 

Given a system of linear equations A~=~, of order n, the augmented 

matrix is (A,~)which has the form given in Fig.2.1.6. 

all - - - - - - - - .a1n , , 
, I 
I I , 
I 
I I 

an1-- ------ ann 

h 
I 
I 
I 
I , 
I 
Z 

n 

FIGURE 2.1.6: Augmented matrix 

Vector and Matrix Norms 

In iterative solution processes using vectors and matrices, a 

measurement of convergence is usually required. Also, for direct solution 

procedures where the effect of rounding errors are considered. In this 

respect it is customary to measure the 'size' or magnitude of vectors and 

matrices by norms. 
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Definition 2.1.3: 

The )Wrm of an n-dimensiona1 vector 2:., written as 112:.11, is a scalar 

(or number) satisfying the following three axioms: 

(1) II.'::II~O and 11.'::11=0 if and only if .':: is a null vector, 

(2) 118.::<.11= I 131.11.'::11 for any scalar S (jzo.",ogeneity condition) 

(3) 11.'::+z.II~ I 1.'::1 1+1 1z.1 I for vectolB.':: and Z. (triangle inequality). 

Also 

Three vector norms are commonly used. These are: 

Definition 2.1.4: 

If x=[x.]; i=1,2, ... ,n, then we have 
- 1 

(a) infinite-norm 11.::<.1100 = m~x IXi I (uniform or Chebyshev norm) 
1 

(b) one-norm 112:.111 = 

(c) two-norm 

n 

L Ix. I , 
i=l 1 

n 

L 
i=l 

Ix.1
2)! (or Euclidean norm). 

1 

(2.1.1' ) 

(2.1.1) 

(2.1.2) 

(2.1.3) 

In fact, these norms are special cases of the general p-norm (or 

Holder norm) given by, i.e., 
n 

= ( L 
i=l 

I Ip lip 
x. ) , p>-l, 

1 

where by setting p equal to 00, 1 and 2 in (2.1.4) yields the norms 

(2.1.1) to (2.1.3) respectively. 

Analogous to the Definition 2.1. 3, we proceed to present the 

definition of a matrix norm as well. 

Definition 2.1.5: 

(2.1.4) 

A norm of a matrix A of order n, written as IIAII, is a scalar such 

that the following four conditions fulfil 

(a) IIAII>O and IIAII=o if and only if A=O (the null matrix), 

(b) 11 SA 11 = I S 1.11 A 1.1 for any scalar a (homogeneity condition), 

(c) IIA+BII~IIAII+IIBII for matrices A and B (triangle inequality) 

and 
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(d) IIABII"IIAII.IIBII for matrices A and B (multiplicative triangular 

inequality) • 
The postulation of (d) in a matrix norm imposes the occurrence 

of matrix products. 

Below are frequently used matrix norms: 

n 
IIAII",= max I la. ·1 (the "'-norm or maximum absolute co lurrr1 suy>') 

i j=l 1J 
(2.1.5) 

n 
IIAlll = max I la .. 1 (the l-norm or maximum absolute 1'01<) SU,ir:) 

j i=l 1J (2.1.6) 

IIAI12 = {maximum eigenvalue of the product ATA}! (spectral or 

Hilbert norm). (2.1.7) 

Another type of norm which is used is the F1'obenius no1'~ which is 

denoted by IIAIIF and defined as follows: 

IIAIIF = ( .I.lai,j 12)! 
1,J 

(2.1.8) 

Further, since most applications of matrices are accompanied by 

vectors, therefore it is useful to apply the multiplicative triangular 

inequality norm (Definition 2.1.5) for the produce of a matrix and vector. 

Thus, for a product Ax we have 

(2.1.9) 

This inequality relation may lead to the following definition: 

Definition 2.1.6: 

If matrix A and vector ~ have the norms IIAII and II~II respectively, 

then these two norms are said to be compatibZe provided that (2.1.9) is 

fulfilled. 

Definition 2.1.7: 

A subo1'dinate or induced matrix norm IIAII is defined as follows 

IIAII = sup 
x';O 

II~II 

II~II 
Sometimes (2.1.10) is written in an equivalent form, i.e. 

(2.1.10) 



sup 11 A2:.11 

112&11=1 

It can be shown that matrix norms (2.1.5) to (2.1.7) are subordinate 

(i.e. they satisfy (2.1.10) or (2.1.9) to the corresponding vector norm 

(2.1.1) to (2.1.3», whilst the Frobenius norm (2.1.8) is not subordinate 

to any vector norm (see Froberg (1974), Noble (1969», Conte and de Boor 

(1972), Broyden (1975». 

Definition 2.1.8: 

A vector is said to be normalised if it is multiplied by a scalar in 
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order to produce the size of the components to numbers of value less than or 

equal to 1 without changing the direction of the vector. 

Two common ways of normalising a vector x=[ x.l , i=l,2, ... ,n, is by 
- 1 

selecting a scalar S such that either: 

(i) S 
n 

=( I 
i=l 

or (ii) S = max(x.), 
• 1 
1 

to obtain the normalized vector 

relation 2:.T~=l holds. 

Definition 2.1.9: (Permutation matrix) 

Notice that for (i) the 

A square matrix is called a permutation matrix if for any of its rows 

only one non-zero element is included (which is unity), for example 

P = 

o 100 

o 0 1 0 

o lob 
1 000 

It can be shown that any permutation matrix, P (say), is orthogonal 

. T-l (l.e. P =p _). Also for any matrix A, the operations of pre-multiplication, 

i.e. PA and that of post-multiplication AP results in changing the order of 

rows and columns respectively. 



Definition 2.1.10: 

(i) 

An nth order matrix A=[a .. J 
1.J 

n 
diagonally dOminant if L 

j=l 
j#i 

is said to be: 
r 

la .. I~Ia .. I. 1.J 1.1. 
~ 

n 

i=1,2,.-;'.,n, 

< 
(H) strictZy diagonally da~inant if L 

j=l 
la .. I'1la.;;I. i=1.2 .... ,n. 1.J 1.J 

j~i 

Limit of a Sequence of Hatrices and Its Convergence 

14 

f . (r) 2 A sequence 0 matr~ces A ,r=l, , ... , of the same dimension converges 

to a ~Gte. limit. A (say). if the following necessary and sufficient 

condition is fulfilled. 

or 

as ~, 

lim IIA (r) 11 = A 
r-t= 

(2.1.11) 

In fact. the result (2.1.11) does exist if Cauchy's theorem holds, 

i.e. for any £>0 there must be an integer N such that 

1 IA(r+s)_A(r)1 1 < £ for all r>N and s>O. (2.1.12) 

Obviously (2.1.11) or (2.1.12) can be applied for vectors as well. 

(see Demidovich and Xcuan .<I976). Kolmogorov and Fomin (1970». 

Definition 2.1.11: 

(s) In general, if a sequence of matrices {A }. s=1.2 •••• converges to a 

1·· h . A(-A(l». . db' M . f 1.m1.t, t en matr1.X = 1.S sal. to e convepgent matp~x. oreover. l. 

1im A(s) is a zero matrix (null matrix) then A is said to be a zero-
s-
convepgent matpix (Neumann and P1emmonS(1978». 

Definition 2.1.12: 

The convergence of the sequence of vectors {x(s)} to a limit x* (say). 

is said to be of order P if 

11~(s+l)_~*11 
--~~~------ = k, where k is a non-negative constant. lim 
II.~ (s) -.::.* liP 

Thus. for p=2. we have quadPatic convergence. 

and for p=l we have (i) linear convergence iff O<k<l. 

(ii) supepZineap convergence iff k=O. 



Remark 2.1.1: 

If a non-singular matrix is symmetric, antisymmetric, diagonal, upper 

(or unit upper) triangular, lower (or unit lower) triangular, Hermitian, 

positive definite, then so is its inVep$8, (Broyden (1975», page 39). 

15 
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2.2 DIRECT AND ITERATIVE METHODS FOR SOLVING LI~~AR SYSTEMS OF EQUATIONS 

The task of solving a linear system of equations which is usually 

expressed in matrix form, i.e. 

all - -- ----aln Xl zl , 
= (2.2.1) 

I 

anl - - - - - _ann x z 
n n 

or in abbreviated form, 
(2.2.2) 

is still a major challenge in the solution of scientific problems. The 

derivation of ~he system (2.2.1) is basically from linear problems and non-

linear problems as well which are usually broken down into a sequence of 

steps involving linear equations, and is termed sometimes a linearization 

process which forms the basis of many numerical methods (e.g., see Chapter 

3, or Section 2.3). As Scarborough (1955) points out there is no single 

method which is best for any and all systems of equations that may arise. 

In other words a certain method may achieve quite a satisfactory solution 

for (2.2.1) if it is a sparse matrix (with few non-zero elements) as in 

problems which arise in large order differential equations but unsatisfactory 

if it has a dense matrix (with few zero elements) as in statistical problems 

where the dimension is small. 

, . 
The available approaches for solving (2.2.1) usually lie in the 

following categories: 

(i) Direct methods (or exact methods) 

(ii) Iterative methods (or indirect methods) 

Direct methods (e.g. Cramer's method, Gaussian elimination, the method 

of square root, etc •••• ) are basically designed to achieve an exact solution 

for (2.2.1) after a fixed number of arithmetical steps. This is true 

theoretically, but unattainable in practice due to the limitation of computers 

(i.e. their mantissa has a limited number of digits) which eventually enables 
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the occurrence of rounding errors to appear in the calculatio~ for example 

the rational number 2/3 has to be presented ~n a terminated form (e.g. 

0.66666 for five significant digits). This is actually one of the main 

drawbacks of direct methods. The accummulation of rounding errors is well 

considered in these methods because of the alteration of the matrix A in 

(2.~.2) which may destroy the initial property of the matrix (i.e. sparseness) 

and ultimately have a consideratce effect on the solution. Nevertheless. 

most of the computer routines for solving (2.2.2) involve direct methods 

since the total amount of computational labour can be determined in advance. 

For a given length of mantissa (i.e. number of digits) one may be able to 

predict the bounds of the rounding error and hence determine the range of 

reliability of the method. If A in (2.2.2) is dense. then the elimination 

methods are preferable (Jennings (1964». 

Iterative methods (such as Jacobi; Gauss-Seidel. Successive Over-

relaxation method. etc ••• ) are essentially based on generating a sequence 

of approximate solutions {~(s)}. s=O.l ••••• for (2.2.2) and hope that this 

-1 
sequence approaches the solution A ~ provided that the inverse exists. 

Generally speaking. iterative methods are considered to be reZiabZe approaches 

provided that the existence of convergence is assured; this is because (i) 

there is no inherent inaccuracy. (ii) it is self-correcting, (iii) the method 

is applicable to systems of any number of unknowns (Scarborough (1955» and 

(iv) the matrix remains unaltered. The criticism of these methods is mainly 

based upon: (i) there are certain systems of equations i.e. ill-conditioned 

one can not predict how many steps the iteration process will require to 

satisfy the required tolerance (ii) unless the sufficient and necessary 

condition is satisfied. convergence cannot be guaranteed. Thus. when using 

iterative methods it is advisable (i) to reduce the error each step of the 

iteration if it is possible or to determine an asymptotic factor of reducing 

the error to be less than one. and (ii) to provide an error bound to the 
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solution vector after a finite number of iterations (Lieberstein (1968». 

We may demonstrate some of the conventional methods of both types: 

(A) Direct Methods: frequently are classified into three groups: 

(Leiberstein (1968». 

(1) Determinants: as in Cramer's method which involves unnecessarily 

extreme computation. For example, to solve (2.2.2) with order 10 

requires some 70 million multiplications (Kunz (1957», with order 

5 h h d . 1 64 . ate met 0 requLres 0 operatLons. The number of operations 

involved in this method is of order (n!) if the system is of order 

n (Fr,oberg (1974». What would be the case of a system consisting 

of several thousands of equations? No computer so far can provide 

enough storage and perform this large number of operations. 

(2) Inversion of Matrices: This strategy involves computing the inverse 

of the matrix A in (2.3.26) explicitly, which necessitates the 

solution of n systems of linear equations and hence the number 

of operations is proportional to (n4). 

(3) Systematic Eliminations: These methods are superior to the 

previous methods. The most widely used method is Gaussian 

elimination which involves a finite number of transformations 

(precisely one bess than the size of the given system) that will 

eliminate all coefficients of the matrix below the diagonal and 

we end up with an upper triangular matrix. Thus, for the system 

(2,2.1) we have after n-l transformations (Ra1ston (1965»: 

all a12 - - - - - - - - -- - - -- a
1n xl zl 

(1) (1) (1) (1) a2Z aZ3 - - - - - - - - - -- aZn X
z Zz 

(Z) (Z) (2) (2) a
33 a34 ... - - - - - - - --a x3 z3 3n 

(Z.Z.3) ... ... I I I .. ... = ... ... ... I I I .... ... I ... ... ... ... I ... ... 
"- ... , ... ... , ... ... I ... 

...... (n-Z)"' ... '(n-2) I 

0 a a xn- 1 n-1,n-1 n-1,n I 

(n-1) (n-1) a x Z n,n n n 
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where . (k-l) 
(k) (k-l) 

a
ik (k-l) k=1,2, ••• ,n-l 

a .• = a .. (k-l) a
kj 1.J 1.J 

akk j=k+l, ••• ,n 
(k-l) (2.2.4) (k) (k) a
ik (It-I) i~k+l, ... ,n; 

z. = z. (k-l) zk 1. 1. (0) akk a.· =a .. 
1.J 1.J 
(0) 

zl =z 
1 

The solution for (2.2.3) is given by 

(n-I) / (n-l) 
x = z a 
n n n,n 

[ (i-I) , (i-I) 1 z. - L a.. x. 
1 j=i+l 1J J 

i=n-l,n-2, ••• ,1. 

Alternatively the Gauss-Jordan process eliminates not only the lower 

off-diagonal elements but also the upper off-diagonal elements as well. 

Therefore, the final stage of the transformation produces a matrix of non-

zero elements solely on the diagonal, and hence the solution is obtained 

straight-forwardly by dividing the components of the right hand side vector 

by the corresponding diagonal elements. In other words, there is no need 

for the back substitution stage as in the Gaussian eZimination. Furthermore, 

Gaussian elimination can be shown to be superior to Gauss-Jordan since the 
3 3 

b f · . 1 n d n . 1 df num er 0 operat1.ons are proport1.ona to 3i an Z- respect1ve y, an or 

large n the latter requires 50 percent more operations than the former 

(Ralston (1965». 

LU-Decomposition (Triangular Factorisation) 

Let the (nxn) matrices Ml,M2""'~' k=l, ••• ,n-l, be defined as 

follows (see Ralston (1965), Goult et al (1974», 



Ml 

1 

-mZl 1 

-m3l 
0 1 

I \ 

I 
, , 

= \ , 
\ 

0 
-m nl 

0 

1 , , , , , 

• • 

0 

, , , 
1 

kth column 
1 

, 
1 

-Irik+l.()l 
I 
I 
I 
I 
I 

-m 
n.k 

o 
" , 

" 

MZ = 

" 

o 

" " , 

s=2.3 •.•• ,n, 

for ~: msk = ask/~k • s=k+l ••••• n. 
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1 

0 1 

-m32 
1 0 , 

I " , 
I " " , 

" 
0 " " " 

0 -m 
n.2 

' 1 

'1 

th 
and the values ask'~k are obtained at the (k-l) step of the 

transformation as illustrated in (Z.2.4). 

th 
In fact. ~+l.k's are the multipliers of the k step of the transformation 

for the Gaussian elimination method. Thus. the triangular matrix form 

(2.2.3) is equivalent to 
MA~ = ~ • 

where M = M lM 2 •••• ,M. n- n- "I 

If we define U such that 
U = MA , 

then (2.2.5) becomes 
Ux = Mz - -

-1 
- L • 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8) 

Since the inverse of a lower triangular matrix is ano.ther lower 

triangular matrix (see Remark 2.1.1), then we can write 
-1 -1 -1 -1 

M = M1 MZ ••••• Mn_l = L 
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and consequently (2.2.7) yields 

LU = A (2.2.9) 

and (2.2.8) gives 

or 

·0'\ 

-1 
Ux = L " 

LUx = z - - (2.2.10) 

'fhe form (2.2iS)' is termed triangular or the 'LU' decomposition. 
\'--/' 

Subsequently the solution of (2.2.2) by this algorithm follows from 

(2.2.10) via the introduction of an auxilliary vector, Z (say), such 

that the system (2.2.10) will be split into two systems, i.e. 

LZ==., (2.2.l1a) 

U~=Z, (2.2.l1b) 

where L is a unit lower triangular matrix and U is an upper triangular 

matrix. It turns out that the solution vector x can be obtained from 

(2.2.11) through fOY't!al'd and /xd,wal'd substitutions (i.e. by (2.2.na) 

and (2.2.11b), i.e. 
Y1 = zl 

i-I 
y. = z. - L Yk~'k , i=2, ..• ,n, 
~ ~ k=l ~ 

n 
x. = (y. - L u .. x.) lu .. , 
~ ~ j=i+1 ~J J 11 

and 

provided u .. /O (i.e. U is non-singular). 
~~ 

i=n(-l)1 

For sparse matrices with special form (tridiagonal, pentadaigonal, 

etc.) the factorisation (2.2.9) may be achieved by equating both sides 

"0 that a 'g~neral' recurrence relation can be formulated mainly for 

progrannning purposes. Further. the intermediate V!i\ctor Z in (2.2 .1l) 

doas not ceed to be computed explicitly, for example the solution of the 

tridiagonal system 

dl 
a

l Xl b
l 

c
2 

d
2 

a 0 x2 b2 2 , , 
" 

I I 

" " , I I , " , I = I , " 
, 

I I 

" 
, 

I " 
, 

I , , , , , a I , 
" n-l I I 

0 
, , I I , 

c d x b n n n n 
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can be expressed by the following recurrence relation (Varga (1962~: 

x = gn' . x. = g. - S .x. 1 , i=1,2, ••• ,n-l n 1. 1. 1. 1.+ 
i+1 a

1 
a. 

Sl S. = 1. i=2,3, ..... n-l (2.2.12) =- , 
d1 1. d.-c.S. 1 1. 1. 1.-

where 

and 
b

1 b.-e.g. 1 
= 

1. 1. 1.- i=2,3, •.• ,n. gl =- g. , 
d1 1. d.-c.S. 1 

1. 1. 1.-

In fact (2.2.12) 1.S an equivalent (nested) form of the Gaussian 

elimination process, 

However, the LU-decomposition may be applied when the following 

theorem is valid. 

Theorem 2.2.1: 

A non-singular matrix may be decomposed into the product LV (where L 

and U are lower and upper triangular matrices) if and only if every leading 

principal submatrix of A is non-singular. 

Corollary 2.2.1: 

If L is unit lower triangular then the decomposition is unique. 

Proof: 

Both Theorem 2.2.1 and Corollary 2.1.1 are given in Broyden (1975), 

see also Faddeeva (1959). 

Corollary 2.2.2: 

If U is a unit upper triangular matrix then the decomposition is 

unique. 

Proof: Similar to Corollary 2.2.1. 

The LU decomposition where Corollary 2.2.1 is valid is often called 

DoZittZe's method, whilst if Corollary 2.2.2 is valid, it is called 

Crout's method (6o",tt et a1 (1974». 

If the matrix A in (2.2.2). is symmetric, then the decomposition 

(2.2.9) may have a modified variant which is an economised procedure as 
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far as the computational work is concerned is called the Choleski's method 

(or the square-root method) which can be outlined as follows: 

Since A is a symmetric matrix, then U can be replaced by LT and hence 

we have (2.2.13) 

So, if L=[L .l, 
1J 

where L .=0 for i<j, then 
1J 

L. = [a .. 
H JJ 

1 
io. =-

1J ~ .. 
JJ 

i-l 
2 ! - L ~ jkl , for i=j 

1<=1 

j-l 
[a .. - L Lk~ 'kl, j<i:on, 

J1 k=l 1 J 

provided ~ .. ;,o. 
JJ 

j=1,2, .•. ,n (2.2.14) 

It is worthwhile to point out that if the positive square roots in 

(2.2.14) are chosen only, then (2.2.13) is a unique factorisation provided 

that the matrix A is reaZ symmetric and positive definite. In actual fact, 

this latter property may place the Choleski scheme superior to other 

variants of the elimination methods (such as those mentioned above), in 

particular if double-precision arithmetic is used so that the square roots 

of (2.2.14) are evaluated as accurately as possible. Although, the 

calculation of the square roots remains one of the main disadvantages of 

T the Choleski method, but this may be alleviated by the decomposition LDL =A, 

where D is a diagonal matrix (Broyden (1975». 

Practical Refinement of Gaussian Elimination Process 

If any of the diagonal elements of the matrix in (2.2.1) becomes 

zero during the elimination process, then the final upper triangular form 

will be unattainable, and hence the process will break down. Nevertheless, 

to overcome such difficulty and to ensure the continuation of the 

elimination process we may apply one of two basic well known pivoting 

schemes. 
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Definition 2.2.1: 

(k-1) 
Any of the diagonal elements in (2.1.1). i.e. ~k • k=l ••••• n 

(where a~~)=a11) is termed the kth pivot. If it is zero. then it is called 

The two strategies of pivoting are mainly concerned with avoiding a 

zero pivot which may arise during the elimination process. 

(1) Partial Pivoting 

This strategy is based on selecting an element with largest value in· 

modulus from the column of the reduced matrix as a pivotal element. 

Eventually. the appropriate rows of the augmented matrix (A(k).Z(k)) must 

be interchanged. 

The following example shows that the partial pivoting scheme can be 

inadequate. i.e •• (Williams (1973)) 

4x + 3y = la 

3x - 2y = 12 

Any row of the above equations can be multiplied by an arbitrary 

constant and hence change the pivotal row. This can be overcome by 

normalizing the rows and thereby making them comparable in one of the two 

following ways: (see De£. 2.1 • 8 ) : 

(i) divide each row by the largest element in modulus. 

(ii) divide each row by the Euclidian norm of the row. 

(2) Full (or complete) Pivoting 

The pivotal element is chosen to be the element of largest magnitude 

amongst the elements of the reduced matrix. regardless of the position of 

the element in this matrix. 

Both ways of pivoting can be easily illustrated in Fig.2.2.l 

assuming the system (2,2,2) is of order S. 
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x x X X X X 

o x X X X X 

1 2 3 

o 0 0 ill m [!] 
(A (2) ,~(2» = 

4 5 6 

o 0 0 @ 0 10 
7 8 9 

o 0 ill ill I]} ;@ 

FIGURE 2.2.1: The two strategies (X and ~ denote non-zero elements) 

(i) for partial pivoting, any of the elements in the box can 

. be taken as the pivot. If '7' is the largest magnitude, 

then the 3rd and 5th rows of (A(2) ,~(2» have to be 

interchanged. 

(ii) for full pivotin~ any of the 9 numbered elements can be 

taken as the pivot. If '5' is the element of largest 

magnitude, then the interchanging involves (1) the 3rd and 

4th rows of (A(2),~(2» followed by (2) the 3rd and 4th 

columns and the corresponding unknowns as well. 

The full pivoting is considered to be a satisfactory strategy but in 

practice it is time-consuming for execution. In addition, since the 

columns are included in the interchanging process, then it may be difficult 

to preserve the triangular form of the matrix to the final step. Also, 

searching for the pivot element may take a long time, especially for large 

systems of equations. Thus, the partial pivoting is, generally, 

preferred in practice and for most problems including the iterative 

improvement (or residual correction) procedure (see Goult et a1 (1974h 

Broyden (1975». 

The pivoting approach can also be applied for the LU decomposition. 

However it can be shown to be unnecessary for positive definite matrices. 
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(8) Iterative Methods 

These methods may be considered as an alternative to direct methods 

for solving linear systems of special properties, notably when the matrix 

is sparse (elimination methods may fill-in the zero elements with non-zero 

values and/or of large dimension. 

Iterative methods for solving the linear system (2.2.2) are, 

generally, based on genera_ing a sequence of approximate solution vectors 

(s) {! }, s=0,1,2, ..• , h h h . 1· (5+1). 1· sue t at t e approxlmate so utlon x lS a lnear 

function of ~(s). If this sequence does converge, then the iteration 

process can be interrupted whenever the desired accuracy in the solution 

is attained or an optimal number of significant figures is reached 

depending on the word length of the computer. Furthermore, in contrast 

to direct methods, iterative methods do not suffer from the inherent 

inaccuracy in the calculation since they are always self-correcting 

th procedures where the solution at the s step will not affect the solution 

th 
at the next step and can be regarded as an initial solution to the (5+1) 

iteration. On the other hand, if we are seeking a solution of N-digits 

accuracy, and the generated sequence of solutions is carried out retaining 

M-digits ef accuracy (M>N) then for the computation to be worthwhile the 

loss of accuracy should not exceed (M-N) digits. 

Three well-known iterative procedures are presented to solve (2.2.1): 

(i) Jacobi (or Simultaneous Displacements) Method 

In this method, the sequence of approximate solutions can be generated 

successively from the formula, 

(s+l) x. 
1 

1 
= -(z. -

a. . l. 
11 

n 

L 
j=l 
i.fj 

a .. x~s». i=1.2 ••••• n 
lJ J 

(ii) Gauss-Seidel (or Successive Displacements) Method 

The iteration process described by this method has the form. 

(2.2.15) 
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i-I n (s+l) x. 
1 

1 =-
a .. (z. -

1 I (s+l) a .. x. 
1) ) I (s) 

a .. x. ), 
1) ) 

i=1.2, ..• tn 
L1 j=l j=i+l 

(2.2.16) 

(Hi) Successive Over-Relaxation, S.O.R. (Extrapolated Gauss-Seidel Method) 

This method is, basically, to accelerate the convergence of (2.2.16) 

by inserting an over-relaxation factor w whose optimum value lies between 

1 and 2 (sometimes the method is formed under-relaxation for O<w<l). 

The computation form of this method (which was suggested by D.M. Young 

(1954» is 

(s+l) 
x. 

1 
= (l-w)x~s)+ ~(z. -

1. a.. 1. 
11 

i-I (s+l) I a .. x. 
j =1 1) ) 

n 
I a .. x~s»,i=l,2, ... ,n 

j=i+l 1) ) 

(2.2.17) 

However, the general matrix form for solving (2.2.2) iteratively 

can be given by 
(2.2.18) 

where the matrix A of (2.2.2) has been split into matrices Rand T such 

that A=R-T, and R is non-singular matrix. Subsequently, if A is split 

into three component matrices, L,D and U, i.e. A=-L+D-U, where D is 

diagonal, Land U are lower and upper triangular matrices respectively, 

then on substitution of Rand T in (2.2.18) as follows: 

(a) R=D, T=L+U, 

(b) R=D-L, T=U, 
-1 -1 

and (c) R=w D-L, T=U+(w -l)D, 

we will obtain the equivalent matrix form of the above mentioned iterative 

schemes (i),(ii) and (iii) respectively, i.e., 

~imu1taneous Displacement Metho& 
(2.2.19) 

x(s+l) = D-1L~(S+l)+D-1u~(s)+D-1z (Successive Displacement Metho& 
(2.2.20) 

(s+l) -1 (s+l) -1 (s)-l 
x = wD L~ +[wD U+(l-w)Il~ +wD ~ (S.O.R. Metho& 

(2.2.21) 

The three schemes can be presented by 
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~(S+l) = ~(S) + i ' (2.2.22) 

where the iteration (or correction) matrix M=R-IT and d=R-lz (where 

R,T and z are defined in (2.2.18». -
In fact, the iterative scheme (2.2.22) represents the general 

form of a stationary iterative process, where the matrix M remains 

unchanged throughout the iteration operation, (if the relaxation factor 

w in (2.2.21) depends upon s, then (2.2.21) becomes a non-stationary 

iterative process). 

The iteration process (2.2.22) converges to a fixed point ~, 

(~=A-l~, the'solution of (2.2.2) for any initial solution ~(O) if the 

matrix M is zero-convergent. More precisely, since any matrix is zero-

convergent if and only if its spectral radius is less than unity i.e. 

P(M)<l (Neumann and Plemmons (1978», then a sufficient and necessary 

condition of convergence for (2.2.22) can be given by the 

Theorem 2.2.2: 

A necessary and sufficient condition for the iteration process (2.2.22) 

to converge for any initial vector x(O) is that all the eigenvalues of M 

should be less than 1 in modulus. 

Proof: (see Goult et al (1974» 

Whilst a sufficient condition for convergence of (2.2.22) is merely 

that 11 MII <I, since 1 A k 11 MII (see Section 2.4), where A refers to the 

largest eigenvalue of the matrix M. This means that it may happen in 

some cases 1 IMI 1>1 but 11.1<1 which guarantees the convergence of the 

iteration process according to the above stated Theorem 2.2.2. On the 

otherhand as confirmed by Theorem 2.2.2 the convergence of (2.2.22) 

is totally independent of the choice of the initial vector, ~(O) as long 

as the matrix A in (2.2.2) is non-singular, whilst it is dependent on 

x(O) if A is singular (Meyer and Plemmons (1977». 
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The asymptotic rate of convergence of (2.2.22) is given by the value 

-log!A! (Froberg (1974» or the average rate of convergence for s 

iterations may be given by 
-.9.n! !M(s)! ! 

s 
, (Varga (1962». So, for a 

given non-singular linear system we can determine the rate of convergence 

of the iterative algorithms (2.2.19),(2.2.20) and (2.2.21). Generally, 

the Gauss-Seidel scheme yields a better rate of convergence than the Jacobi. 

Moreover, sometimes it happens that the former might converge and the latter 

diverge, and vice versa, (illustrated in Fox (1964), Faddeeva (1959». For 

a linear system which possesses adiagonaZ dominant matrix both schemes may 

converge since the suffici~nt condition (as given above) is fulfilled. 

Furthermore, the superiority of the Gauss-Seidel method over the Jacobi 

nethod is given by the following theorem: 

• Theorem 2.2.3: 

If A in (2.3.26) is symmetric positive-definite, then the Gauss-Seidel 

method always converges since all the eigenvalues of the iteration matrix 

(i.e. M=(D-L)-lU) are less than 1 in modulus. 

Proof: (see Lieberstein (1968), Fox (1964» 

In the former reference (see page 62) there is given a counter-

example which verifies the invalidity of Theorem 2.2.3 for the Jacobi 

scheme, i.e. although the matrix A is symmetric and positive definite 

the iteration matrix D-l(L+U) may have eigenvalue(s) greater than 1 in 

modulus. 

The convergence of the S.O.R. method depends upon the choice of over-

relaxation factor w so as to ensure the eigenvalues of the iteration 

matrix M be minimised to as small as possible and <1 in modulus. 

Unfortunately, there is no general method available to locate the optimum 

value of w to satisfy this requirement. This is discussed in Varga (1962), 

Goult et al (1974), Froberg (1975) and Smith (1978), etc. 
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In general, the amount of computational work involved in any iterative 

method cannot always be easily determined in advance. However, it can be 

shown that an iterative process requires approximately 0(n2) operations 

(multiplications and additions) per step for an (nxn) full/dense matrix. 

Thus, an iterative method would be superior to the conventional elimination 

h d ~f 1 (h f h b f hI' . met 0 s. s~ were s re ers to t e num er 0 steps w en tle LteratLve 

process is interrupted). Obviously, for large sparse linear systems, the 

number of operations may be considQrably less than 2 
n • Conrad and Wallach 

(1979) proved that the number of operations can be reduced consid~rably 

(25% or 50% for some iterative algorithms) by a so-called aZternating 

technique. This involves the combination of any two explicit iterative 

procedures, such as (2.2.19) :0 (2.2.21) in an alternating fashion, i.e. 

each step of (2.2.18) being replaced by two 'half' iterations of the form, 

where 

= z + T 
(s) 

l~ 

R 
(s+l) (5+ 1) 

X = Z + T x 2 5-0 1 2 2- 1 2- ,- , , , ... 

Finally, we outline the residuaZ oorreotion procedure which aims to 

improve the unacceptable solution of (2.2.2). The residuaZ vector, r 

(say) which is 0 for the exact solution can be shown to satisfy the 

following iteration process, 
(i) 

r = b - Ax (i) - - , i=O,1,2, ••• 

where x(O) is the initial solution vector, and rei) is the residual 

h . th . . vector at t e L 1teratLon. 

(2.2.23) 

If the solution ~(i), i~O, is not sufficiently accurate then one 

should proceed to compute the residual vector in doubZe preoision 

computation form (2.2.23), and consequently solve the system (using 

single precis ion computation), 

A.!l.(i) = rei) (2.2.24) 



for the correction vector ~(i) which can be added to ~(i) to produce the 

'improved' solution (~(i)+~(i». Further. if the factorization LU for A 

is computed initially and retained. then the work to carry out the 

iteration (2.2.23) is considerably reduced for i=1.2 •••• via the process 

f l · L (i) (i) d u (i) (i) o so vlng ~ =£ an ~ =~ • The iterative process can be 

terminated at a stage where no further improvement in the solution is 

obtained. Meanwhile. it is important to point out that the residual 

£(O)=~_A~(O) may have a 'misleading' concept. i.e. even if it has small 

components it does not necessarily indicate that the solution x(O) is 

acceptable (Fox and Mayers(1977» as for instance in ill-conditioned 

equations or cases where the exact solution x is small. 
(0) 

Thus. £ and 
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. (1) (2) (s) 
the remainder of the reslduals. E .! ..... ! must be calculated with 

double precision computation (Goult and et al. (1974». Thus. the residual 

correction scheme is a reliable procedure which reduces the error in the 

approximate solution and in particular whenever x(O) is reasonably close 

-1 
to A z. 
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2.3 CONTRACT MAPPING THEOREM, NEWTON'S METHOD 

Let there be given a non-linear system of n (~1) equations, i.e. 

(2.3.1) 

where the functions ~1'~2:'" '~n are defined and continuous in a given 

domain G, where GCa
n 

(the real n-dimensiona1 space). If the values x
1
,x

2
, 

••• ,x EG, then the function ~., i=l,2, ••• ,n form the mapping of G onto 
n 1 

itself. Moreover, rewriting (2.3.1) in the compact form, 

where 

x = i(~) 

T 
x = [x1,x2, ... ,xnl , 

we may establish the following definition. 

Definition 2.3.1: 

The mapping i in (2.3.2) is termed a contraction mapping in the 

(2.3.2) 

domain G if there exists a proper fraction L such that for any two vectors 

~l'~2EG their images i(~l) and i(~2) fulfil the following condition 

Ili(~l) - i(~2) 11 :S Lllx1-~211 , Ol:L<l , (2.3.3) 

and L is independent of ~1 and ~2 and is commonly termed a Lipschitz 

constant. The inequality (2.3.3) is known as the Lipschitz (contraction) 

condition. It leads to an important theorem which is stated below. 

Theorem 2.3.1: 

Given a closed domain G, a constant L<l and a function i to be an 

contraction mapping in G satisfying the Lipschitz condition (2.3.3), then 

the following statements hold true: 

(i) for any irrespective choice of the initial solution ~(O)EG, the 

sequence of successive solutions {~(r)}, r~O and ~(r)EG, will 

converge to a limit, x* (say), And x~G is the root of (2.3.2) 
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(ii) the non-linear vector equation (2.3.2) has a unique solution, i.e. 

~* is a sole one, 

(iii) the following relationship must hold as well, 

(2.3.4) 

Proof: 

Let s>r and writing 

11~(s)_~(r)11 =11 (~(r+l)_~(r»+(~(r+2)_~(r+l)+ ... (~(s)_~(S-l)11 , 

(2.3.5) 

we obtain the following by applying the triangle inequality given earlier 

in this chapter, 

11~(s)_~(r)II~II~(r+l)_~(r)II+II~(r+2)_~(r+l)II+ ... +II~(s)_~(s-l)ll. 

Now, by virtue of Lipschitz condition (2.3.3) we have 

111(~(m»_1(~(m-l» 11 

~ LII~(m)_~(m-l)11 

~ L211~(m-l)_~(m-2)11 

~ Lmll~(l)_~(O)11 , 

Applying the result (2.3.7) on (2.3.6), we obtain 

11~(s)_~(r)II~(Lr+Lr+l+ ... +Ls-l)ll~il)_~(O)11 
r s 

= L -L 1 Ix(l)_x(O) 1 1 (by using the sum formula 
l-L - -

(2.3.6) 

(2.3.7) 

of a geometric progression). 

(2.3.8) 

r 
Since L<l,then L +0 as~. Thus, for any € the Cauchy inequality (2.1.1~ 

can be applied on (2.3.8) and hence the sequence {~(r)} has a limit 

(cf. (2.1.11», Le., 

x* = lim 
(r) 

~ , 
part (i) of the theorem. 

and x* E G which completes the proof of 

To prove part (ii) we proceed as follows. 

Assume that x**EG is another solution of (2.3.2) different from ~*. then 

we have, 



112:,*-2:,**11 = 111(2:,*)-1(2:,**) 11 

"L 112:,*-2:,** 11 
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or 112:,*-2:,**11 (l-L)"O , (2.3.9) 

since (l-L)<O, then (2.3.9) cannot hold unless x*=x**. 

By letting s- in (2.3.8) we have E;' = lim x(s) and hence 
s--

point (Hi) of the theorem is complete. 

(See Ortega and Rheinboldt (1970), Demidovich and M~.~n (1976), 

Henrici (1964». 

However, according to the Theorem 2.3.1, the Picard iteration 

process for (2.3. 2) i.e. 

(k+1) (k) 
x = 1(2:, A k=O,l,... (2.3.10) 

converges for a unique fixed point 2:,*E <?=Rn for any 2:,(0) EG. Furthermore, 

if G=R
n

, then we have global convergence for (2.3.10). Meanwhile, 

Theorem 2.3.1 in this .case, may be termed as the gZobaZ convergence theorem 

(Ortega and Rheinboldt (1970), page 385). 

We may introduce .another theorem which is associated with the 

preceeding theorem, concerning the convergency of the non-linear equation 

(2.3.10) (see Dahlquist and Bjork (1969), Demidovich and M9lron (1976), 

Szidarovszky and Yakowitz (1978»: 

Theorem 2.3.2: 

Let the vector function 1(~ be continuous together with its 

derivative 1'(2:,) in a bounded convex closed domain G and satisfies 

where ~ is a constant and 
n aq, • (x) I 11 t' (~ III = max (max L 1 - ) • 

~G j i=l aXj 

If x(O)EG and all successi:e approximations 2:,(1) ,2:,(2) , ••• also lie 

(2.3.11) 

(2.3.12) 

in G, then the iteration process (2.3.10) converges to a unique solution 

of the equation (2.3.2)~. 
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(N. B. this theorem is also valid for I 1.1 loo or I 1.1 IF in addition to 

11.11
1 

as in (2.3.11) and (2.3.12). but not necessarily all of them at 

the same time). 

Corollary 2.3.1: 

The process of the Picard iteration (2.3.10) converges to the unique 

solution of equation (2.3.2), if the inequalities 

n 

l: 
i=l 

hold true for x EG. 

dq,.(X) 
~ - ~ \.lJ' < 1 • j=1.,2, .•. ,n 

dXj 

Newton's (or Newton-Raphson's) Method in n-Dimensions 

We consider a non-linear system of equations. 

fl (Xl .X2 ' .... X
n

) = 0 

f
2

(x
l
.x

2 
..... X

n
) = 0 

f n (X
l

.X2 ••••• xn) = 0 

(2.3.13) 

(2.3.14) 

or compactly. (2.3.14) can be written in conventional vector form given 

by 

where 

and 

!(!!.) = 2. • 

F 

T 
x = [xl .x2 .... ,xnl 

o is the null vector of the n-tuple. 

(2.3.15) 

Suppose that (2.3.15) has the exact solution~. By solving (2.3.15) 

iteratively (using the preceding iterative procedure) we may obtain an 

approximate solution x(s) after s iterations. thus eventually we may write 

(8) (s) 
x =cx+ E: (2.3.16) 

where 

which represents the error vector of the root. 

Since a is the exact solution. then it is trivial -to write 

!(::) = 0 • 

or from (2.3.16). we have 
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(Z.3.17) 

By Taylor's expansion. (2.3.17) yields the following result 

() () ( ) aF (s) a! (s) a! (s) 
Q = !(~ s -E., s ) _ (~s) - [..".--x (~ ). -, -(x ), .... -:;--(x ) 1 E 

o 1 oX2 - oXn - -

(Z.3.18) 

where O(sl ••••• sn) represents the high order terms of the error values 

sl.sZ .... ,sn (> order 1). By supressing this term in (Z.3.18) we obtain. 

(Z.3.19) 

where J(~ is the Jacobian matrix which involves the derivatives of 

f
l
.f2 ••••• f

n 
with respect to the independent variables x

l
.x

2 
••••• x

n
• i.e •• 

af. 
J(~) =!' (~;; [ a/(xl.xZ"" .xn) 1 • i.j=1.2." •• n. 

J. 

Assume J(~) is a non-singular matrix. thus we have from (2.3.19). 

E.,(s) = [J(~(S»l-l!(~(s» • (2.3.20) 

Taking (s) (s+l) (s) . e. =-(x. -x.), ~=1,2, ••• ,n, 
~ ~ ~ 

and substituting (2.3.20) we obtain the so-called generalized Newton 

method" i.e. 

x(s+l) = ~(s)_(J(~(s»(l!(~(s». s=O.l .... (2.3.21) 

where x(O) refers to the initial solution which is often recommended 

to be taken as close as possible to the desired exact solution. 

It is known that (2.3.21) is impractical for implementation purposes. 

therefore it is usually converted to the equivalent form. i.e. 

J(~(S»ll~(S) = _!(~(s) • (2.3.22) 

which can be solved for the OOl'l'eotionll~(s) and added to x(s) to 

. (s+l) 
produce the new approx~mate ~ • 

The modified form of the Newton's process is to approximate J(~(s» 
(0) 

by J(~ ). then (2.3.21) becomes 

(2.3.23) 

which sometimes is named as the simplified Newton method. 



(a) 

(b) 
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A geometrical comparison between the generalized and simplified forms 

for a single variable is given in Fig.2.3.1. 

y 

Cl 

--~----------~~~~(S-+~2~)----~(-s+~1~)----------~~(s~)~"x 
o x x x 

F(x) 

y 

----~--------~~~~~----~----------------~--~ .. x 
(0) 

x 
o 

F(x) 

FIGURE 2.3.1: (a) Generalized Newton method (method of tangents) 

(b) Modified simplified Newton method 
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We may derive from (2.3.21) that each step of the iteration process 

requires to evaluate the following: 

(i) the n components of !(~), fk(xl, ••• ,x
n
), k=1,2, ••• ,n, 

2 af. 
n elements of the Jacobian matrix, i.e. ~(xl""'x ),i,j=1,2, ... ,n. ox. n 

(ii) 
J 

(iii) the solution of the linear system (2.3.22) by a suitable method 

(see previous section).' 

One of the procedures to economise on the amount 'of work is, to avoid 

computing the Jacobian at every step and instead we either (1) use the 

modified Newtpn process (2.3.23), or (2) the Jacobian is evaluated once 

after several steps. Both cases however may depend upon the initial guess 

of the solution vector. 

Generally speaking, Newton's method is still an attractive method from 

the theoretical viewpoint, this could be mainly due to its quadratic 

convergency propert~ where the error vectors in two successive steps of 

the iteration are associated by the relation 

1 I,£(s+l) 1 I::KI I,£(s) 1 12 , K is constant 

where e(j) = x(j)-u and ~ is the exact solution. - -
(2.3.24) 

Relation (2.3.24) is judged to be valid as long as the initial vector 

solution is sufficiently close to the exact solution. 

Convergence of the Newton process and its sufficiency conditions have 

been studied and formulated by Kantorovich (see Henrici (1962), 

Demidovich and MQron (1976), Brown (1962». Also it has been discussed by 

Ortega and Rheinbo1dt (1970) and Ostrowski (1966). 

In praatiaeNewton's method, unfortunately, may not be considered as 

an efficient and attractive computational procedure, in particular for 

large systems of non-linear equations where the order may exceed several 

thousands (as in non-linear partial differential equations). The main 

concern in this respect is the loss of accuracy during the solution of 
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the linear system (step (iii), page 38) by direct methods and loss of 

both practical and theoretical efficiency in solving the linear system by 

iteration (Lieberstein (1968». In addition, the amount of computational 

effort required by step (i) and step (ii) (page 38) is too expensive and 

may be too difficult (unless the desired derivatives are in a simple form). 

However, due to extensive investigations which have been reported in 

this respect so far some modifications of the Newton's process have been 

proposed (see Ortega and Rheinboldt (1970». Three variants will now be 

introduced. 

(1) Discretized Newton Iteration 

In this method (2.3.21) is replaced by the iteration (by way of a 

simple illustration we choose a single variable example), 

(s+l) (s) 
x = x (2.3.25) 

where 

d h d · . df. 1 db' .. an t e erLvatLve dX LS rep ace y Lts approxLmatLon, i.e. 

df ~ f(x+~x)-f(x) 
dX ~ fix 

(2) By inserting a damping factor w such that the iteration process will 

have the form (2.3.26) 

and to ensure the norm-reducing inequality 

, (2.3.27) 

to be fulfilled each step. Usually w is less or equal to unity 

(Hall and Watt (1976». 

(3) By shifting the origin of the Jacobian matrix. This method involves 

adding the diagonal matrix AI to the matrix J, thus (2.3.21) now becomes: 

where the factor A can be chosen to ensure the validity of (2.3.27). 



The modifications (2.3.25),(2.3.26) and (2.3.28) may have the 

property of super linear convergence under certain conditions or higher­

order convergence under others (Ortega and Rheinbo1do (1970». 

40 
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2.4 EIGENVALUE PROBLEM 

Solving a linear system of equations, such as (2.2.2) , has already 

been discussed in Section 2.2. The investigation of the dynamic behaviour , 

(i.e. the stability) of such linear systems (which arise in many physical 

problems, e.g. in electrical or mechanical oscillations) can be based on 

scalar values called the eigenvaZues. For example, for a vibration 

problem the eigenva1ues give the natural frequencies of the system. 

These are especially important because, if external loads are applied at 

or near these frequencies, resonance will cause an amplification of motion 

making failure more likely. 

th Now consider an n order system 

Ax = AX (2.4.1) 

where A is known as the eigenvaZue (Zatent root, characteristic number 

or rroper number) of A and x its corresponding eigenvector etc. The n 

values of A represents the roots of the polynomial which can be expanded 

from the determinanta1 equation, 

P(A) = det(A-AI) = 0 • (2.4.2) 

In fact the matrix A also satisfies (2.4.2) as well, i.e. P(A)=O. 

This is given by the following theorem: 

Theorem 2.4.1: (Cay1ey-Hamilton theorem) 

Any square matrix A is a root of its characteristic equation. If 

n n-1 
P(A)=[A +cIA + ••• +cn]=det(AI-Ax), then 

_ n n-l 
P(A) = A +clA +, •• +cnI = O. 

Proof: (see Faddeeva (1959), Demidovich and Moron (1976». 

The problem in (2.4.1) is called a standard eigenprobZem, an 

eigenvalue probZem if the eigenvalues only are required to be determined 

and an eigen~b~em if the corresponding eigenvectors are required as well. 

These may be obtained from the homogeneous equation 
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(A-AI)~ = Q . 

Whenever the characteristic equation (2.4.2) has simple zeros, i.e. 

the matrix A has distinct eigenvalues, each of them p,ossessing a unique 

corresponding eigenvector, and consequently those eigenvectors are 

linearly independent the matrix is then called non-detective, (Goult et al 

(1974), page 9, Ralston (1965) page 470). Otherwise, if there exists 

Al=AZ= ••• =Ak'Aj' l~k<j~n, then the number of the corresponding eigenvectors 

will be less than or equal to k and hence the whole set of eigenvectors of 

A fail to form a base of the space since their number is less than the 

order of the matrix (in this case a matrix is called a defeotive matrix). 

Practically, (2.4.2) is not used to determine the eigenvalue(s) of 

a matrix unless it is of very low-order. Before referring to an alternative 

strategy we introduce the main definitions and theorems that might be 

related to this thesis. 

Definition 2.4.1: 

A real matrix A is said to be 

positive definite if XTAx>O } 
-' - for all non-null, real vector 

positive semi-definite if ~TA~O ~. 

(1) 

(2) 

Remark 2.4.1: 

A rectangular matrix A of order (~n) with linearly independent 

columns, the product ATA is symmetric and positive definite. (Broyden 

(1975). page 34). 

Moreover, it can be shown that a real matrix A is positive definite, 

if and only if it is symmetric and all its eigenvalues are positive, 

positive semi-definite if they are greater than or equal to zero and 

indefinite if they are negative, zero, or positive (see Noble (1969». 



Definition 2.4.2: 

th The n order matrices A and B are said to be similar if there is 

-1 a non-singular matrix P such that P AP=B. Matrix B is said to be , 

obtained from matrix A by a similarity transloPmatlcrlt or orthogonal 

tY'ansj'cY',"ae;ion if P is ortho(JcnaZ matrix, (Le. if pT=p-l ). 

Then both the matrices A and B have the same eigenvalues and their 

eigenvectors are associated with the relation PL=~' where ~ and L refer 

to the eigenvectors of A and B respectively. 
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The last definition is often exploited whenever the standard eigen-

problem (2.4.1) is difficult to deal with, thus by use of a similarity 

transformation the standard problem can be transferred to the so-called 

generalised eigenpY'olJ lem, i. e. 

or 

where P and ~ are defined as in Definition 2.4.2). 

Theorem 2.4.2: (Gerschgorin or Brauer's theorem) 

If A=[a •. ) is any matrix of order n, then all the eigenvalues of A 
~J 

lie within the union of the circles 
n 

I A-a.·1 ~ L I a,,1 ,i=l(l)n. 
u. . 1 ~J J= 

jii 

Proof: (see Varga (1962), Noble (1969), Smith (1978». 

(2.4.3) 

Since the transposed matrix AT has the same eigenvalues as A, hence 

the result of the above theorem for AT yields (Froberg (1974» 
n 

lA-a .. I ~ L la .. 1 ,j=l(l)n. 
JJ i=l ~J 

(2.4.4) 

iij 

Using result (2.1.1) the inequalities (2.4.3) and (2.4.4) can be 

written as n 
I AI ~ L la .. 1 , i=l(l)n, 

. 1 ~J J= 

and 
n 

I AI ~ L la .. 1 , j=l(l)n. 
i=l ~J 
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Hence an estimate of A can be given by the results. 
n 

I AI ~ max L la.·1 - 11 All", (2.4.5) 
i j=l ~J 

n 
I AI ::: max L la··1 - 11 AliI . 

j i=l ~J 
(2.4.6) 

If peA) is defined such that p(A)= maxIA.I. hence the estimate of . ~ 
~ 

the spectral rad:us of A is bounded by the "'-norm or the I-norm of A. 

In fact. although both norms can be computed easily in practice. 

theoretically it can be shown that peA) is bounded by any norm of A. i.e. 

p (A) ::: IIAII (2.4.7) 

This result follows from (2.4.1), Le. IIA~II=IAI·II~II=IIA~II 

~ 11 AII·II ~II or I A I ~ 11 All provided ~ is non-null vector. 

Determination of the Eigenvalues 

In this respect two fundamental approaches are normally adopted. (i) 

if there exists two eigenvalues (not equal) of ratio less than unity in 

modulus. then this ratio may be made small if it is raised to a suitable 

high power. Subsequently,methods based on this approach are often used 

to calculate one eigenvalue of the matrix. Examples of these strategies 

are the Power method. inverse iteration. etc ••••• (ii) to perform a 

similarity transformation (which is often an orthogona1 transformation) 

so that the matrix can be reduced to either diagona~ or tridiagona~ or 

triangular form where the eigenva1ues appear on the principal diagonal 

or as a recursive Sturm sequence. Methods based on this technique give 

all the eigenva1ues. such methods are Jacobi. Givens. Householder. QR 

method. etc •••• However. we are interested only in method of the first 

type. thus we briefly demonstrate the following methods. 

(a) The Power Method 

th 
Let an n order matrix A which possesses the eigenva1ues A .• i=1.2 ••••• n 

~ 
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such that there exists one of them which has the largest value in modulus 

A
l

, (say) (oftenterwed the dominant eigenvalue), i.e. 

\\\>\A2\::\A3\ ... ::\An\ • 
Let x

l
.x2' •••• x be the corresponding eigenvectors of the eigenvalues 

- - -n 

Ai such that their linear combination can be expressed as a vector l' i.e., 
n 

Z = 1: c.x. , (2.4.8) 
i=l 1.-:t. 

where c., i=l(l)n. are constant coefficients. 
1. 

For any eigenvalue A. we have from (2.4.1) 
1. 

Ax. = A.x. , l~i~n 
-:L 1.-1, 

Now, operating on Z in (2.4.8) by A we obtain 
n 

AZ = 1: c.Ax. 
i=l 

1. -1. 

n 
= 1: C.A.X. (by using 

i=l 1. 1.-1. 

n A. 

(2.4.9» 

1: c. (..f:.)x.}, 
i=2 1. Al -1, 

or the iterative form after s steps, (2.4.10) may be written as 
n A. s 
1: c.(,1.) x.} 

i=2 1. Al -1. 

(2.4.9) 

(2.4.10) 

(2.4.11) 

Since 1:~1<1' i=2, ••• ,n by the initial assumption, therefore the 

second term in the parentheses of (2.4.11) tends to zero for sufficiently 

large s. 'Subsequently, the vector Z(s) becomes a scalar multiple of .!l 

and the ratio between the kth component, l~k~n, of Z(S+l) and Z(S) tends 

to ~1' i.e. 
(s+l) 

y 
lim ....;k:::.-_ 
s-- Yk 

= 

The practical feature of the algorithm can be summarised as follows. 

Given a vector .!(s), the iteration process involves, 

v(s+l) __ A,!(s) Step 1 ... 

Step 2 (s+l) Choose a = the element of largest modulus amongst the 

components of Z 
(s+l) 



Step 3 

Step 4 

(s+l) 1 (s+l) 
x = r, (normalisation stage) 

i3 (s+l) 

if ~(S+l) and ~(s) are sufficiently close, then halt the 

procedure, otherwise repeat from step 1: 
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The rate of convergence depends upon the ratio I:~I (where AZ is 

assumed to be the sub-dominant eigenvalue, i.e. the A2 = max IA.I) being 
2

. L 
~l~n 

very small. Obviously, the smaller the value of this ratio. the faster 

convergence. 

(b) The Inv~rse Power Method 

Any non-singular matrix A and its inverse A-I have the same eigen-

vectors but reciprocal eigenvalues as can be noticed from (2.4.1) and 

the equation -1 1 
A ~=I~' (2.4,12) 

Therefore, the smallest eigenvalue of A can be determined by 

obtaining the largest 
-1 

eigenvalue of A • Furthermore, it is unnecessary 

to compute A-I explicitly since the iteration procedure can be carried out 

as follows. 

At iteration s, we compute 

Step 1 r,(s+l) = A-l~(S) which can be written as 

Ar,(S+l) = x(s) 

Step 2,3,4 continue as in method (a). 

(2.4.13) 

The system (2.4.13) can be solved by a suitable method (such as 

those discussed earlier or the ones proposed in this thesis). For 

example, of the LU decomposition process is used initially, then (2.4.13) 

will be solved cheaply in each successive iteration. 

Further it can be shown that for any number p, the eigenvectors of 

the matrix A-pI coincide with those of A, but its eigenvalues are Ai-P, 

i=l(l)n. This is known as shifting the origin of the matrix A by the 



47 

amount P. The shifting strategy is basically introduced to speed up the 
A ' 

convergence. For example, if the ratio IA~I is net small 

very c1ese to 1), then P can be chos~nsuch that the ratio 

enough (Le., 

I P-Aol I A21 max --~- <-
i P \ A1 

which eventually accelerates the convergence. Likewise adopOting the 

shifting strategy for the inverse power method leads us to solve 

(A-PI)Z.(s+l) = ~(s) , (2.4.14) 

instead of (2.4.15) and hence the smallest eigenva1ue of A-1 is given 

by l/(A-p). 

Apart from the scheme of shifting the origin which is referred to 

as Wi1kinson's method (1955), there are other techniques for accelerating 

2 
the convergence of the Power method such as 0 -process, Rayleigh quotient, 

etc •••• (see Ra1ston (1965), Fadeeva (1959». 



48 

2.5 EVALUATION OF THE SQUARE ROOT OF A SQUARE MATRIX 

Let a matrix A of order n possess the eigenvalues A1.A Z ••••• An • The 

characteristic polynomial which is derived from det(4-AI) is of order n 

and may be expressed in the form 

By the Cayley-Hami1ton theorem 2.4.1 matrix A is a root of its own 

characteristic equation. i.e. P(A)=O. thus we have 

(2.5.1) 

Therefore the matrices AlI.AZI ••••• AnI are solutions of the 

matrix equation p(A)=O. Furthermore. the products of matrices in (2.5.1) 

maY'be zero even though no factor is zero (Hohn (1973). page 31). thus 

P(A)=O may also have other solutions apart from A.I. l~i~n. (See Jennings 
1 

(1964). Hohn (1973». 

We should point out that in this thesis our interest is the square 

root. denoted by A!. for a positive (or semi-positive) definite matrix A 

satisfies the following theorem. 

Theorem 2.5.1: 

The matrix A of order n is a definite (i.e. positive or non-negative) 

matrix of rank r (r~n) iff there is a definite matrix A! of rank r such 

that (A!)2=A. 

Proof: (see Lancaster (1969). p.95). 

In his paper. Laasonen (1958) recommended the use of Newton's method 

for computing the square root of a matrix possessing the properties as 

stated in the following theorem: 

Theorem 2.5.2: 

Let A denote a real square matrix with real. positive eigenva1ues. 

Then. the matrix iterative algorithm 
X(O) = kI 

X(i+1) = lx(i) + l(AX(i»-l 
2 2 

. } (Z.5.Z) 
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where k is a non-zero constant, generates a sequence of matrices which 

converges to the solution of 

AX?-I = 0 , (2.5.3) 

which has positive eigenvalues. Moreover the rate of convergence is 

quadratic. 

Laasonen also suggested that if the matrix A is non-negative definite, 

then A!=X can be obtained from the algorithm 

1 1-1 
X(i+l) = 2' XCi) + 2' AX(i) , (2.5.4) 

where the initial matrix X(o) is as given in (2.5.2). Therefore, the 

iterative process (2.5.4) will produce an approximate solution to the 

equation 2 
X -A = 0 • (2.5.5) 

According to the theorem (2.5. 1), the solution of (2.5.3) and (2.5.5) 

by the algorithms (2.5.2) and (2.5.4) respectively preserve the property 

of the original matrix, i.e. the matrices A-! (and A!) remain positive 

(and non-negative) if A is also. 

Each iteration of both the processes (2.5.2) or (2.5.4) involve the 

1 , f 2 I' , so ut10n 0 n 1near equat10ns. It is recommended that any of the above 

iterative procedures should be terminated as soon as the difference 

(i) x(i+l) between two successive solutions X and no longer decreases, 

otherwise the influence of the round-off errors may be significant on 

the obtained solution. Laasonen pointed out that in most cases the 

influence of round-off errors does not become serious due to the 

quadratic rate of convergence of the process. 
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Z.6 MAIN PROPERTIES OF CONTINUED FRACTIONS 

We consider in this section the basic theory of continued fractions 

and their application which is relevant to the algorithms presented in 

Chapter 4. A comprehensive study of continued fractions (in particular 

the convergence theory) is due to H.S. Wall (1948». Others such as 

Frank (196Z). Blanch (1964) •••• etc •• have contributed to develop the 

theory and the.application of continued fractions. 

Definition Z.6.l: 

Consider the two variables t and w associated by the relation 

a. 
t. (w) =--L 

J b.+w 
J 

:.", .. ,, l (Z.6.l) 

where the a's and b's are real or (generally) complex numbers, and 

the linear transformation of w into t is expressed in the form: 

or 

totl(w) 

totltZ(w) 

• 

= 

= 

t Ot l t 2···tk (w) = 
k 

Tk (w) TT t. (w) = 
i=l 1. 

to[tl(w)] , 

tOtl [tz (w)] , 

totltZ···tk_l[tk(w)] 

n'-l 
1T t. [t

k 
(w) ] • 

i=l 1. 

from (2.6.1) Now, for k=», we have 
a

l 
T (w) = b + ...:.......,.-----

'" 0 a2 
b l + ..::..-----a

3 
b3 + ""b;:"+'---

3 
• • 
a. 

+ J 
b.+ 

J • 
• . 

, k=1,2, ••• 

«2.6.Za) 

which is called an infinite continued fraction. The abbreviated notation 

for (Z.6.Za) will be used and is 
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T (w) 
'" 

(2.6.2b) 

a. 
or -r.-.... ] (2.6.2c) 

J 
a . 

The fractions 
b

O b =­o 1 
• -L. j=1,2 ••••• are called the ~omponents or the 

b. 
J 

partial- ql!ot:q.n.~s of the continued fraction (2.6.2). (N.B. the partial 
a. 

quotients ~ can not be reduced). and a .• b .• j=1.2 •••• are called the 
j J J 

partial numerators and denominators respectively. For the case T (w), 
n 

n+». i.e. n is a finite number then the continued fraction is said to be 

fl:nite 

If the partial numerators are equal to 1. i.e. a.=l. i=1.2, ... 
~ 

then (2.6.3) is said to be a simple or standard continued fraction. i.e. 

T",(w) = bo + 1!)1~)1~3+1 "'I~) ... (2.6.4) 

Furthermore. the continued fraction (2.6.2) is said to converge 

if there exists a limit (or has the value) v such that 
n 

lim IT t.("') :: lim T ("') = v • 
n- i=l ~ n- n 

This means that at a fixed point w- under the transformations t .• i=1.2 •••• 
~ 

as defined earlier the value of the continued fraction is a limit of an 

infinite sequence of images. 
n 

Similarly at the fixed point w=O. 

defined. The quantity T (0) is termed 

then lim T (0) =lim TT t. (0) is 
~ n n- i=l ~ 

the n approximant or convergent. 
n 

The zero th (Oth) approximant is to (0) =b
O

' 

It is shown by mathematical induction (Wall (1948» that 
n A JA +A 

TT n-J. n 
T (w) :: t. (w) = B +B' n=0.1.2 .... 

n . 1 ~ JA L= n-l. n 
(2.6.5) 

where the quantities A 1.A ,B l,B are independent of w anA can be n- n n- n 

evaluated by the fOllowing fundamental recurrence formulae. 



A. 1 J+ = b. lA.+a. lA. 1) J+ J J+ J-

= b. IB.+a. lB. 1 J+ J J+ J-

and the initial values, 

A_I = 1 , 

AO = bO ' 

B = 0 
-1 

B = 1. o 
} 

, j=O,1,2, •.. 

Thus, the nth approximant, i.e. T (0) can be easily obtained 
n 

from (2.6.5), i.e., 
A 

T (0) =...'l. 
n B 

n 
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(2.6.6a) 

(2.6.6b) 

where A and Bare 
n . n 

th 
called the n numerator and denominator respectively. 

Moreover for a simpte continued fraction, the recurrence relation (2.6.6a) 

becomes 

B. 1 J+ 

= b. 1A.+A. 1) J+ J r 

= b. lB. +B. 1 
J+ J r 

, j=0,l,2 •••. , 

with the same initial values as (2.6.6b). 

(2.6.7) 

Finally, the value of the continued fraction (2.6.2) does exist if 

the following conditions are fulfilled (Blanch (1964»: 

(i) At most a finite number of the denominators Bk vanish. 

(ii) Given a positive quantity E, there exists an N such·that, 

for n>-N 

l ~n_:n+kl<E n n+k 
for all positive k. (2.6.8) 

The implication of the validity of (2.6.8) ensures the existence of a 

limit quantity T such that 

whereas the failure of (2.6.8) means the continued fraction is said to 

diverge or to be divergent and its value can not be assigned. 
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Periodic Continued Fraction 

Definition 2.6.2 : 

Consider the infinite continued fraction (2.6.1) in the form 

~
l aZ I 

b + r ... I:: + I ... (2.6.9) 
1 I 2 

________ v-__ ~n~=::;lf2, ••• 

Is t period 2nd period 

The essential property of the continued fraction (2.6.9) is that 

its partial numerators and denominators are periddically repeated after 
a. 

n divisions. or the partial quotient ~ • j=1.2 ••••• n. is repeated after 
J 

a period of 'length' or cycle n since its previous occurrence. Thus. 

equation (2.6.9) is termed an infinite periodic continued fraction, and 

its linear fractional transformation can be expressed by 

T(w) = ;~+ I I:~+ I ... I::+wl (2.6.10) 

Consequently, as in (2.6.5), we introduce (2.6.10) in the form 

T(w) = 
A lw+A n- n 
B lw+B n- n 

th where A ,B refer to the n numerator and denominator of the continued 
n n 

fraction and their values are given by the recurrence formulae (2.6.6a) 

with initial values 
Al = I, B_1 = 0 

Aa = 0, Ba = 1. 

We now define the fixed point of the continued fraction. 

Definition 2.6.3: 

Let the point x be such that 

A lx+A 
x = n- n 

B lx+B n- n 

holds true. Then there are two values of x which can be obtained by 

solving the quadratic equation. 

2 
Bn_lx +(Bn-An_l)x-An ~ 0 • (2.6.ll) 
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which for xl ,x2 (say), are termed the fixed points of the transformation 

(2.6.10). 

Some of the algorithms adopted in Chapter 4 are associated with 

the numerical evaluation of periodic continued fractions. This is 

basically formulated by the following 'theorem. 

Theorem 2.6.1: 

Let xl' and x
2 

be the fixed points of the transformation (2.6.10) 
A 

where a. ,b .• 
1 1 

i=1,2 •••• ,n are any complex numbers and a.fO. 
1 

th the m 

Let Bm be 
m 
Then approximant of the periodic continued fraction (2.6.9). 

(2.6.9) converges iff xl and x2 are finite numbers satisfying one of the 

following two conditions: 

(i) x
l
=x

2 

I 
An_l IIAn-l --x >--
B 2 B n-l n-l 

x2 ' j=O,1,2, ••• ,n-l. or (ii) 

If the continued fraction converges, its value is xl' 

Proof: see Wall (1948), page 37. 

Theorem 2.6.2: (Equivalence theorem) 

A continued fraction is unchanged in value if some partial numerator 

and partial denominator, along with the immediately succeeding partial 

numerator, are multiplied by the same non-zero constant (see Blanch (1964». 

Such a tranformation has been termed in (Wall (1948» an equivalence 

transformation. 

Now, consider the following infinite periodic continued fraction 

(2.6.12) 

By virtue of Theorem 2.6.1 due to successive transformations, 

the periodic continued fraction (2.6.12) may be expressed in a form 

with unitary partial denominators, i.e. 
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Yz I 2J ~2:.LJ ~ r ... rf~:.--' ~ 11- .•. r-- ... , (2.6.13) 

where Y1 = ~1/S1 ' 

y. = CI../S. 1S" S. and S. 1,,0, i=2,3, ... ,n. 
~ 1. 1- 1. 1. 1-

A 

It is proved by Blanch (1964) that T (2.6.13) will converge to a 

positive value less or equal to I provided that any of the partial 

1 numerators is positive and does not exceed 4' i.e., 

If l' ~ 1 o < Yi ~ 4 ' then T converges and O<T~2 (2.6.14) 

Okolie (1978) or (gJa"~ and OJcolie(1979» pointed out that the .. '. 
condition (2;6.14) for the convergence of (2.6.12) can be exploited to 

introduce a cyclic factorisation of a periodic tridiagonal matrix, i.e. 

if CI.. and S. are given by the relations, 
1. 1. 

Cl. 1 = a1 cn 
, S = b 1 n 

, 
CI.. = ck~+l 

} k=(n-i+l)mod 1. i=2,3, ..• ,n, S. = bk 
n, 

1. 

where a.,b.,c., i=l(l)n are the coefficients of the periodic tridiagonal 
1. 1. 1. 

matrix 

(2.6.15) 

then a periodic continued fraction of the form (2.6.l2) converges provided 

the matrix (2.6.15) is diagonally dominant, in a sense that the 

inequalities 

It I I~ 1. 1. 

hold true. 

1 
~4 , i=1,2, ..• ,n 

Likewise, we will consider the equivalence theorem and the 

condition (2.6.14) to introduce the method in Chapter 4 which involves 

the cyclic factorization of a periodic general matrix of bandwidth 

2r+l, r>.l (see Section 2.1). 



CHAPTER 3 

Nur'lERI CAL SOLUTI ON OF BOUNDARY VALUE PROBLEMS 
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3.1 DIFFERENT NUMERICAL APPROACHES FOR SOLVING BOUNDARY VALUE PROBLEMS 

To deal with a suitable approach to obtain the solution of certain 

boundary value problems (b.v.p.) there arise many points which should be 

taken into account, 'i. e. the boundary condi tion(s) which the problem is 

subject to, the existence and uniqueness of the solution, the stability 

of the adopted approach, the level of accuracy in the solution which can 

be attained, ... etc. For example, techniques such as the factorisation 

of the operators and the use of projection operators are suitable for 

linear boundary value. problems while for the non-linear boundary value 

problems the non-iterative schemes which are based on continuous trans­

formation are used (Meyer (1973». 

Broadly speaking, n'jmerical techniques have had advantages and dis­

advantages in practice. The Shooting (or Driving) method, for instance, 

is a well known approach for initial value problems, Keller (1975 ) in 

his survey indicated that this method accounts for nearly one third of 

the work concerned with the numerical investigation of differential 

equations. On the other hand the shooting method has many drawbacks due 

to the difficulties which are encountered in practice, such as 1) the 

starting solution might not be assured for the convergency of the Newton­

Raphson iteration or (and) 2) the method becomes unstable due to its 

sensitivity to any perturbation in the initial conditions (which accounts 

for ,the growth of round-off error) although the numerical method is stable 

(however, the Multiple or Parallel shooting procedures are proposed to 

tackle such difficulties), (Hall and Watt (1976», Keller (1968), Osborne 

(1969» • 

Finite element methods (variational, collocation, ••• etc.) and 

finite-difference methods are used for boundary value problems. An 

important exposition of the recent theoretical advances have been made 
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on the methods for initial and b.v.p. are collected in Hall and Watt (1976). 

Our sole interest is the finite-difference methods which will be 

discussed in the next section. Whilst for the finite,e1ement methods 

we briefly outline the following. 

Finite Element Method 

The finite element method is a recent new method which has been used 

widely during the last three decades. During this time the electronic 

digital computer has progressed to the stage where it can accomplish 

considerable amounts of computational work in a short time. The method is 

commonly used in engineering problems. in particular civil. aeronautical 

and mechanical engineering. especially for the analysis of stress in solid 

components. Furthermore. it has been applied even to three-dimensional 

problems. such as the time-dependent problems involving fluid flow. heat 

transfer. magnetic field analysis •••• etc. (Fenner (1975). Bathe and 

Wi1son (1976), Martin and Carey (1973». 

The finite element method is based on the idea of partitioning the 

physical system, such as structures, solid or fluid continua into small 

non-overlapping svbregions or eZements. Each element is a basic unit 

which has to be considered. Within these elements an approximation 

function (in the form of polynomials or rational functions •••• etc.) 

where parameters can be adjusted to ensure the existence of the continuity 

of the functions in adjacent elements (Mitchell and Wait (1977». 

Moreover. an approximating function. generally •. can be expressed over the 

region under consideration containing N nodal points in the form 
N au. 

U(x l .x
2 
..... xm) = L (p. (x1 ... ·.x )u.(xl ... ·.x )+q. (xl.···.x )~ • -1 1. m 1 m 1. m oXl 1- au~ 

(xl ..... x )+r. (xl" •• ,x )~(x1'''''x )+ ... ) m 1 m aX2 m 
(3.1.1) 
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where Ui refers to the value of U(~l, •• ·,xm) at the nodal point i, and Pi,qi' 

r., ... etc. are known as' basis functions which, in fact, are the most 
1 

important parts of the finite element method. Therefore, to construct the 

basis functions many techniques are suggested in the literature such as 

Lagrange, Hermite interpolation formulae for polygonal regions (which can be 

divided into triangular elements). For example, the simplest form of (3.1.1) 

(with the absence of the derivative terms) is when m=2, i.e. the two-

dimensional case. The function U(x,y) (=U) can be interpolated at !(8+l)(s+2) 

points with a polynomial of order s, i.e. 

! (s+l) (8+Z) 
U(x,y) = L 

(s) 
U.p. (x,y) 

J J 
(3.1.Z) 

j=l 

If the smallest element (the basic unit) is assumed to be the tri-

angle Pl,PZ,P3 (Fig.3.l.l), then the polynomial (3.1.2) interpolates U(x,y) 

at !(s+1)(s+2) symmetrically placed points on the triangle Pl ,PZ,P3' For 

s>l, the non-vertex points can be obtained geometrically by dividing each 

side of the triangle Pl,PZ,P3 into s equal segments and by joining the points 

of subdivision by lines drawn parallel to the sides of the triangle (see Fig. 

3.1.1) as an example for s=2,3). 

s=l 

(a) (b) 

FIGURE 3. 1. 1 , 

P5 

s=3 

(c) 

P2 
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For any s (31). the coordinates of p. (=p.(x.y». j=1.2 ..... !<s+1)(s+2) 
J J 

are determined by the fOllowing: 

given 

x = ~(elXl + e2x2 + e3
x3) l 

y = "(elYl + e2Y2 + e3y3) 

Now. for s=l (the Zinear case). we have 

k=1;2.3 (3.1.3) 

u(x.y) = U1P l (x.y) + U2P2(x.y) + U3P3(x.y) • 

where U .• j=1.2.3 are the values of U(x.y) at the vertices p. which are 
J J 

now given by 

where 

P2 

P' 3 

D 

= det 

= det 

= det 

= det 

For s=2 (the quadratic case). we have 

6 
U(x.y) = L U.~. (x.y) 

. 1 1 1 1= 

(3.1.4) 

where $.=~.(x.y) refer to the functions at the nodes. p .• i=1.2 ••••• 6. 
1 1 1 

in Fig.3.l.l(b)and are 'given by 

~. = p.(2p.-l). j=1.2.3 
J J J 

~4 = 4P l P2 
~5 = 4P2P3 

~6 = 4P 3Pl 

and P
l

,P 2,P3 are available in (3.1.4). 

(3.1.5) 



For s=3 (the cubic case), we have 

10 
U(x,y) = L U.1/I.(x,y) 

i=l 1. 1. 

where 1/1.=1/1. (x,y) refer to the functions at the nodals p.; i=l,Z, ••• ,lO in 
1. 1. 1. 

Fig.3.1.1(c), and are determined as follows, 

1/1. = -Zl p. (3p.-l)3p.-Z) .. j=1,Z,3 
J J J J 

9 
1/1 4 = 2 P1PZ( 3Pl-l) 

9 
1/15 = 2 P1PZ( 3PZ-1) 

Similarly, 1/16,1/17' can be expressed in terms of PZ'P 3 and 

P3'Pl , 

U10(x,y) can be eliminated as follows 

1 9 
= - L 

4 . 4 J= 

U. _ 1 
J 6 

3 
L U. 

j=l J 

terms of 
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However, the above procedures or others (such as the patch test for non-

conforming cases) can be used with any of the finite element methods such as 

viz. Ritz, Galerkin (or Bubnov-Galerkin), least squares, collocation, ••• etc. 

(see Mitchell and Wait (1977)). 
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3.2 FINITE-DIFFERENCE METHODS 

These methods are broadly used for solving boundary value problems 

which occur in the mathematical physics and engineering fields. The idea 

is based on discretizing the continuous b.v.p. in order to obtain an 

approximation to the numerical solution since the analytical solution is 

either too awkward or impossible to be obtained. Unfortunately (and this 

is conunon in the implementation of numerical algori thms) sometimes the 

numerical solution might be very poor or not acceptable at all; therefore 

the discretization procedure ought to be improved in a suitable manner 

(see Section 3.3) or to increase its order (see Section 3.4). 

Since most of the important physical problems (such as problems of 

elasticity, vibration, heat flow, ••• etc.) are formulated by equations 

of order two (Gerald (1970», therefore we will demonstrate using the 

finite-difference scheme on this type of b.v.p. Moreover, we restrict 

ourself to consider the central-difference approximations to the 

derivatives, it is known Fox (1962) 

our argument is that the forward or 

that such methods converge rapidly; 
~I>l'< sdt1, 

backward/approximations possess the 

quality of poor accuracy (for the simplest form of approximation the 

latter are of order 1 versus 2 for the former). However, this property 

cannot be exploited for any system; for instance using central-differences 

for first order systems may cause problems of stability (Keller (1968), 

page 105). For this we classify two alternatives: 

(i) low-order discretization which leads to a linear system of equations 

with narrow bandwidth matrix, 

(ii) high-order discretization which leads to a smaller linear system 

of equations with bpoad bandwidth matrix. 

It is obvious then that the same accuracy can be achieved from a smaller 

number of points. 
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Now, consider the following real non-linear two-point b.v.p. for 

the second-order ordinary differential equation: 

N(y) = y"(x) - f(x,y(x),y'(x» = ° , 
in the range (3.2.1.a) 

which has the solution y(x) and with Dirichlet boundary conditions, 

yea) = A, y(b) = B • (3.2.1.b) 

The boundary value problem (3.2.1) is usually called linear 

whenever f(x,y(x),y'(x» is linear in the arguments y(x) and y'(x). 

If the interval [a,b] is partitioned into N (an integral number) 

subinterva1s, then the obtained interior points are x =a+nh, n=O,l, ••• ,N, 
n 

and Nh=b-a. (Notice that sometimes it is preferred to normalize the 

range [a,b] to the form [0,1] by setting x=(b-a)y+a, probably for 

programming purposes). 

Since the purpose of the discretization process when applied to 

differential equations is to replace the derivatives by their corresponding 

finite-difference approximations, therefore we introduce the following 

general formulae of approximation for the first and second derivatives 

which occur in the boundary problem (3.2.1), (Froberg (197 4». 

At any interior point x , we have 
n 

"' (t:) 82t+\(x ) y' ('h) = 
-1 

L (-1) t IIh (2t+l) ~ t=O n 
(3.2.2) 

"' (t: ) y" (x ) = 2h-2 
L (-1) t 8 2t+2y (x ) 

n 
t=O (2t+2)~ n 

(3.2.3) 

where 8 is the central difference operator, and 11 the average operator, i.e. 

8y(x) = y(x+h/2)-y(x-h/2) , 

IIY(x) = !(y(x+h/2)+y(x-h/2» 
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Finally, we see that finite-difference methods, in general, are 

reliable from the point of view of their convergency as long as the 

smoothness of the functions and small mesh sizes are provided, while they 

may diverge if the interval is too big or there exists discontinuities of 

the functions (or its derivatives). 
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3.3 LOW-ORDER DISCRETIZATION 

The simplest common approximation to the continuous boundary value 

problem (3.2.1) employing (3.2.2) and (3.2.3) has the linearized discrete 

equations: 

Nh(Yn) - anYn-l+6nYn+YnYn+l = -g(x ) , l:;:n:;:N-l 

) 
n 

yO = A, YN = B 
(3.3.1) 

-2 -1 
where a = -h -!h p(x) n n 

-2 
S = 2h +q(x) 
n n 

-2 -1 
Yn 

= -h +!h p(x), n 

and p (x) and q (x) represents the Frechet derivation, i .e . , 

p(x) 
a 

= ay f(x,y(x),y'(x» (3.3.2) 

q(x) 
a . 

= ay,f(x,y(x),y'(x» (3.3.3) 

and Nh(Yn) is the discrete nonlinear operator for the continuous N(y). 

It is known, that the tridiagonal system of the discrete equations 

(3.3.1) can be solved by many ways, e.g. by the well-known Gauss elimination 

in the compact form as given by Varga (1962) to yield a solution which· 

differs from the analytical solution by an error of order h2 (O=(h2», 
notably this type of error is called in the literature as a global 

truncation (discretization) error (E ), i.e. 
n 

E = I the difference between the exact and computed solution o.f X I 
n n 

= O(h
2
). 

Furthermore, since each discrete equation of (3.3.1) is a truncated 

form of the actual derivatives, then another type of error which is 

associated with each equation is considered. It is called the local 

truncation (discretization) error, T , in notation we may write, 
n 

T = Nh(y )-N(y ) , l<n:;:N-l , 
n n n 

(3.3.4) 
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The relationship between both of the above-mentioned types of errors 

is as fo llows : 

max 
O~n~N 

I E I lO C 
n 

max 
O~n~N 

where C is a constant independent of h. 

If the inequality (3.3.5) holds, then Nh is called stable and 

(3.3.5) 

consi3tent of order p (positive integer) provided that max IT I~, where 
11 

O~nfN 

Tn=O(hP). Thus, if Nh possesses these two properties, the convergence to 

the numerical solution is guaranteed. However, the stability, consistency 

and convergency have been investigated fully by Keller (1968), Pereyra (1973) 

and Henrici (1962), but here we briefly outline the procedure by which 

this is done for the nonlinear case only. 

Let 

1 
K = max(l, Q*)' where O<Q*~q(x), a~x~b 

M 
r 

r = y (~ ), x l~~ ~x l' l~n~N-l, n n- n n+ 
r (where y denotes that the derivative is of order r), 

and 

p* = max Ip(x)1 
O~x~b 

h ~ 
2 

p* 

Therefore, for the b.v.p. (3.2.1) we h~ve 
2 

Tn = ~2 (M4+2P*M3) + O(h
4

) = O(h
2

) 

(3.3.6) 

(3.3.7) 

Le. the local discretization error is of order 2, ,and hence Nh is 

consistent of order 2. Furthermore, on the assumption that the first, 

derivative in (3.2.la) is absent (Le. p(x)=o), then (3.3.7) can be 

expressed as (Pereyra (1973»: 

T = 
n 

J 
I (2~+2)! y2k+2(x

n
) h2k + O(h2J+2) • 

k=l 
(3.3.8) 

Also, Nh is stable if the result in (3.3.5) is valid, provided 

that the mesh size, h, is small and the existence and uniqueness of the 

solution are proved. 
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As mentioned above, the error (E ) in the approximate solution is of 
n 

O(h2) which can be improved as follows: 

(3.3.9) 

where the function 8(x) is continuous and twice differentiable and 

satisfies the following b.v.p.: 

8"(x)-p(x)6'(x)-q(x)6(x)+g(x) 
2 

h f " • = + 12(8 V(x)-2p(x)6 (x» } (3.3.10) 
with 6(a) = 6(b) = 0 , 

where p(x),q(x) are given by (3.3.2) and (3.3.3) respectively. 

Furthermore, if 62j , j~l, satisfy the boundary value problem (3.3.10) 

which implicitly assumed the sufficient differentiabi1ity of the e's, then 

the asymptotic expression of (3.3.9) can 

E = I e.(x)h2j + 0(h2K+2) 
n j=l J 

and is of order 2K. 

be expressed as 

K~l , 

The result of (3.3.11) shows that the possibility of achieving 

(3.3.11) 

high accuracy by finite-difference schemes is available. Two approaches 

are capable of fulfilling this task. The first, is called the Richardson 

extrapoZation (deferred approach to the limit or extrapolation to zero 

mesh width). Starting with a coarse mesh, the procedure is based' on 

halving the mesh at each step of the process, which consequently increases 

the dimension of the system to be solved at each step (see Ke11er (1968» •. 

The second approach is the difference correction or deferred correction 

which is the only one considered in this thesis. 

The Deferred Correction Method 

A technique known as "difference correction" was developed by L. Fox, 

(1957), although from about 1962, the technique has become known inter-

changeably with "deferred correction". This technique has been applied by 

Fox and others to a range of problems involving transcendental equations. 
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Subsequently, this theoretical work has been applied to give solutions 

to problems requiring advanced calculus, tools arising in natural science 

and engineering. For example, application to first order systems have been 

studied by Pereyra (1966, 1967, 1968). The implementation of this work has 

been considered by others, i.e., Daniel and Hartin (1977) using Numerov' s 

method with deferred corrections. 

The philosophy of deferred ~orrection is to improve the approximate 

solution obtainable'using higher finite difference formulae by considering 

the asymptotic expansion for local discretization error. 

A brief demonstration for the deferred correction method can be 

introduced as follows: 

Reverting to the b.v.p. (3.2.1) and using the approximation formulae 

(3.2.2) and (3.2.3), we have 

Cy - f(x ,y ,cy ) = 0 , 
n n n n 

(3.3.12) 

where 
~4 + ..l. ,6 _ 1 ,8 ) 
12 90 u 560 u +. . . , 

) (3.3.13) 
'" -1 1 3 1 5 1 7 
C = h (~o - 6 ~o + JOUo - 140 ~o + •.• ) , 

To obtain a tridiagonal system (as in (3.3.1), we should consider 

(3.3.14) 

where 

) (3.3.15) 
".., - -1 
D = C - h ~o 

.y 

It is clear that by setting D=D=O we obtain the system of equations 
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of which equation (3.3.1) is its linearized form. 

The iterative procedure of deferred correction is basically presented 

in the form: 

with 
(s) 

YO = 
(s) 

A, YN = B , 
(3.3.16) 

where the superscript s refers to the nllmber of iterations, i.e. the 

. (1) (2) (3) 
obtainable successive approximate solut10ns are'i. ,'J.. ,'i. , ••• , and 

'J.. (s) is a 'good' initial starting solution to the process; also DY(O)=I5y(O)=o. 
n n ,., 

Now, assume y' does not exist in (3.2.1), i.e. C=O, therefore (3.3.16) 

can be rewirtten in the simpler form: 

(3.3.17) 

It can be shown that the first solution 'J..(l) has errors of O(h4), 

(2) 6 (s) 2s+2 
'i. of O(h ) •••• and y of O(h ) (Pereyra (1973». Obviously, 

during the iterative process, in order to obtain high order accuracy in 

the numerical solution implies the USe of high order finite-difference 

symmetric formulae, which means the involvement of more neighbour points 

to any interior point of the range. Symmetric formulae of high order 

cannot be augmented at the grid points adjacent to the boundaries (xo and 

~), therefore the alternatives must be unsymmetric formulae with the same 

order. 

However, to compute the coefficients due to using such formulae for 

the implementation purposes some automatic methods have been provided'by 

Pereyra (see next section). 

If the b.v.p. (3.2.1) is periodic, i.e. the boundary conditions are 

of the form (3.2.47) such difficulties do not occur because the symmetric 

formulae will be applicable at any grid point of the range. 

The iterative deferred correction scheme involves solving a set of 
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non-linear algebraic equations (3.3.17) (or (3.3.16» at each step. 

Consequently, two types of iteration are required per step (Fox (1977»,i.e. 

(i) Innep itepation - to solve a set of non-linear equations, 

(ii) Outep itemtion - to apply (3.3.17) (or (3.3.16» to obtain a new 

.. (s) 
apprOXlmatl0n, y 

. n 
say, at stage s, by computing the correction 

(s-l) term [,y (say), 
n 

so that y(s+l)+[,y(S-l)_y(S) where [,y =0 at the 
n n -n' n 

boundaries (see Section 3.4). 

When the non-linear equations of the inner iteration are solved usually 

by Newton's method; where each step requires the solution of tridiagonal 

systems (of dimension N-l) but the Jacobian matrix would of necessity be 

re-computed at each step (unless the guarantee of convergence is desired). 

As an initial approximate solution for Newton's method the linear inter-

polation between the boundaries (i.e. yea) and y(b» is recommended if no 

more than (3.2.lb) information is supplied. On the other hand, if (3.2.1) 

is a linear b.v.p., then the inner iteration involves one step. 

Finally, it may be important to indicate that the asymptotic expansion 

for the global discretization error is not necessary at all for the practical 

implementation compared to the Richardson's extrapolation procedure, but for 

theoretical argument only (Pereyra (1973». While the asymptotic expansion 

of the local discretization error forms the basis of the deferred correction 

method, which has a form in terms of powers in h similar to (3.3.11). 
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3.4 HIGH-ORDER DISCRETIZATION 

The procedure above (Section 3.3) can be extended to prove the 

theoretical justification (mainly the stability). This seems to be a very. 

difficult intractable topic which has yet to be discussed fully in the 

literature. In this thesis we will assume that this extension to high 

order discretization is possible which eventually yields a small matrix 

with wide bandwidth, in order to proceed to the even more interesting 

problem of determining new algorithms for obtaining the solution procedures. 

High order discretization for linear two-point b.v.p. has been 

investigated hy Shoosmith (1973) which will be shown briefly later in this 

section. 

Now, reverting to the b.v.p. (3.2.1) we consider the extension of 

the previous approach discussed in Section 3.3 (including the deferred 

correction technique) and for the non-uniform spacing case. 

Initially, we assume that f(=f(x,y(x),y'(x» in (3.2.1) satisfies 

the three following conditions: 

(i) f is a continuous function of x,y and y' at least in the interior 

points of the considered range of integration, [a,b], 

(U) f is Lip.d;tzian, i.e., 

where Kl = 

and 

sup If (x,y,y')1 
(x,y ,y')Y 

sup If ,(x,y,y') I 
(x,y ,y') y 

provided that 

(Hi) f (x,y,y') and f ,(x,y,y') exists. 
y y 

Consequently, a unique solution to the b.v.p. (3.2.1) must exist. 

Let h denote the space between any two points, i.e. 
n 

h
n 

= x -x 
n+l n' Q::;n::;N+Q-l 

and Q (any positive integer) is the limit of extrapolition beyond 

(3.4.1) 
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the given interval [a.b]. and N is defined in Section 3.2. 

Also. we define the operator 'L' as follows 

We introduce the following different order types of approximation for y" and 

y' : 

(1) 2nd-order discretization: 

(2) 4th-order discretization: 

- L(a 1 .CLO .CL 1 )y ) ,n ,n - ,n n 

• 
- L (i31.n.i30.n.i3-1.n)Yn 

• 

}. 
(3) 'Genera1'-order (of order 2r. r>-1). 

y" = L(ar,n.(X.r-l,n' ••. 'cto,n' ••.• Cl-r+l,n,a-r.n)yn} 

y' = L(13r.n·i3r-1.n·····130.n·· ···i3-r+1.n·i3-r.n)Yn 

, 

(3.4.2) 

(3.4.3) 

(3.4.4) 

In fact the coefficients CL'S and B's in (3.4.4) are functions of x • 
n 

They have constant values whenever the equal spacing case is considered; 

for example in (3.4.2): 

and 

in (3.4.3) 

and 

CL l,n 

13 1 •n 

CL 2.n 

CL l,n 

-82 •n 

13 1,n 

2 2 = CL = l/h • CL
O 

= -2/h -1,n ,n 

= -13 1 = 1/2h, 130 = 0 , - ,n ,n 

= CL = -1/12h
2 

-2,n 

= CL = 16/12h2 
, aO,n = -30/12h2 

-l,n 

= 13 = 1/12h , 
-2.n 

= -8 = 8/12h • i3 O,n = 0 
-l.n 

(c.f. (3.2.2) and (3.2.3)) • and h is as defined in Section 3.2) • 

Therefore, the discretization form of (3.2.1) using (3.4.4) becomes 
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L Ca •••• '''0 •••• '" )y -f(x .y ;, <e •••• '~O ••••• ~ )y ) = 0 r,n ,n -r,n n n n r,n ,0 -r,n n 

y(a) = A. y(b) = B (3.4.5) 

Notice that if (3.4.5) is considered for equal spacing. then the 

local discretization error is of 0(h2r). otherwise the order is reduced 

to one less. 

Now. we expand y ••••• y 1 and y 1 ••••• y by a Taylor's n-+r n + n- n-r 

expansion as 

yn+1 = 

Yn-1 = 

follows: 
h2 

Yn + h y' + ~ y" + ••• n n 2! n 

h2 

y - h y' + n-1 y" _ 
••• n n-l n ~ n 

Y +(h +h )y' + l..(h +h ) 2y" + ••• 
n n n+1 n 2! n n+l n 

(3.4.6) 

= y -~h +h )y' + l..(h +h ) 2y" -
n n-1 n-2 n 2! n-1 n-2 n ••• 

Yn+r = y +(h +h +l+···+h l)y' '2~ (h +h 1+' •• +h 1)2y" + n n n n+r- n . n n+ n+r- n 

y = y -(h 1+" .+h )y' '21, (h 1+" .+h )2y"_ ... n-r . n n- n-r n . n-. n-r n 

Hence from (3.4.5) and employing (3.4.6) we can easily obtain the following 

two systems of equations in terms of the unknown cl'S and ~'s respectively: 

" +" 1 +,"+(10 + ••• ,+cx. 1 +0. = 0 r,n r-,n ,0 -r+,o -r,n 

ex t + ••• +(l t -Cl S -,. ,-a S 
r,n r,n l,n l,n -I,n -1,n -r,n -r,n 

= 0 

1 2 1 2 1 2 1 2 1 (lr ,n 'I t + ••• +0. -::;'T t +(1 -; s 1 +, •• +ex 2' s = 2. r.n 1.n 2. 1.n -l.n 2. - ,n -r,n. -r,n 

1 k 1 k (_l)k k (_l)k k 
Clr,n k't + ••• +a 1 - t +" k! s 1 + •• • +ct S = . r,n ,n k! 1.n -l.n - ,n -r,n k! -r.k 

and (3.4.7) 

5 
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a + ••• +6 + ••• +13 = 0 r,n O,n -r,n 

k k k k k k 
S t + ••• +S t +(-1) S 1 s 1 + ••• +(-1) S s r n r,n l,r l,n - ,n - ,n -r,n -r,n - , ) 

(3.4.8) 

where in both (3.4.7) and (3.4.8), k=1 ••••• 2r and 0 is the Kronecker 

delta, i.e. 

o ={ 1, 
0, 

k=2 in (3.4.7), k=l in (3.4.8) 

otherwise 

t. = h + ••• +h . 1 ) J.n n n+J-

s. = h 1+" .+h . -J ,n n- n-J 

j=l(l)r. 

Thus, we rewrite (3.4.7) and (3.4.8) in the compact form, i.e. 

Vw = z 

and ~ ~ 

Vw = z 

where the matrix V is of order (2r+l) and has the Vandermonde form 

1 1 

Yo Y1 

2 2 
Yo Yl 

V = 

2r-l 2r-1 
YO Y1 

2r 2r 
Yo Y1 

where 

= 

1 

Y2r- l 

2 
Y2r- 1 

2r-l 
Y2r- l 

2r 
• Y2r- 1 

t k' O::;klOr-l r-

o • k=r 

s k' r+l~k~2r r-

1 

Y2r 

2 
Y2r 

2r-1 
Y2r 

2r 
Y2r 

k=O(1)2r, 

or from the definitions of t and s above and h in (3.4.1). we 
n 

define the y's more explicitly in terms of x , as follows: 
n 

(3.4.9) 

(3.4.10) 
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Y~: = Y. k-x. k=0(1)2r • 
~ 'n+r- n 

(3.4.11) 

The vectors ~ and ~ of (3.4.9). ~ and ~ of (3.4.10) have (2r+l) 

components and have the form. 

T 
w = [Cl t ••• ,0.

0 
' •• • ,a. ] r,n ,n -r,n (3.4.l2a) 

~ T 
w [13 ••••• 13 0 ." •• 13 ] r,n ,n -r,n 

and 

z = CO.0.2.0." •• O]T 
(3.4.l2b) 

~ 

z = [0.1.0 ..... 0] 

The Vande;monde systems. i.e. (3.4.9) and (3.4.10) can be solved 

'" . for ~ and ~ respect~vely by using the procedure PVAND suggested by Bjorck 

and Pereyra (1970). 

Equation (3.4.5) can be presented in a more accurate approximation 

form (cf.(3.3.l7)). that is 

(s) (5) (s) 
L(a ..... CI )y -f(x.y .L(S ..... 13 )y ) 

. r,n -r,n n n n r,n -r,n n 
= D(y~S-l)) 

(3.4.13) 

(s is the number of iterations). 

where the deferred correction term of order 2r+2 is defined below: 

j j 
D(y ) = - L ai.nYn+i+f(xn·Yn· L iii.nYn+i) n i=-j i=-j 

+ L(a ••••• CI )y -f(x .y .L(S ••••• 13 )y) r,n -r,n n n n r,n -r,n n 

where j=r+l. -Q+j~~N+Q-j • 

At any grid point. x • 
n 

determined from (3.4.9) and 

(3.4.14) 

the coefficients a. and S. can be 
1.,n 1,n 

(3.4.10) respectively; but ~ and z both 

have 'zero' components and their non-zero element is as in (3.4.l2b). 

while the elements of the matrix V. i.e. Y's should be evaluated as 

follows (at any point x ) 
n 

By virtue of 

Yk = xn-r-l+k-xn' k=0(1)2r+2. 

(3.4.14) it may be desired to extrapolate values of y 
n 
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beyond the range [a.b]. up to Q points from both end points (boundaries). 

This can be accomplished by two alternatives: 

(A) The Newton's backward and forward interpolation formulae (see Froberg. 

(1974). which can be modified into the form (Audish (1978». (see 

~­

-Q 

Fig. 

-i 

3.4.1) • 

YN+i 

Y-i 

-1 . 

= 

= 

o 

r ~.YN . 
j=O J -J 

.i=l(l)Q and p+1~N. (3.4.15) 
P 
L lJ!.Y. 

j=O J J 

k N N+Q 
~-;J/"-------I -- - - - - --

(a) 

, ____________ _ ~O ____ --,N;;..-..:;k~::--_ ::::::~§~N~ .. ___ =-::::-:~oilIoo... __ l'1!Q 
-Q 

N+1 N+i 

(b) 

FIGURE (3.4.1a):Using the 1st of (3.4.15) to compute Y-l' •••• Y_
Q 

FIGURE (3.4.1~: Using the 2nd of (3.4.15) to compute YN+1 ' •••• YN+
Q 
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The weights <I>'s and Iji's in (3.4.15) are obtained from (3.4.9) as 

in the same manner as for the a's in (3.4.14) but the value of y (of the 

matrix V) are obtained from the both sides of the range as follows, (at any 

point outside the range) 

for </>'s: y. = x -"N 

} j -0, •.. ". \C, 
J N-j +n 

and for Ij!' s: is defined in (3.4.15» y. = x.-x 
J J -n 

l~n~Q 

while the r.h.s. vector, i.e. z, for both the <I>'s and *'s, will have p 

components, and has the form, 

or 

. T 
z = [1,0, ••. ,0] 

(B) The differential equation scheme, i.e. 

£(a , ••• ,a )y -f(x ,y ,£(a , ••• ,a )y) = D(Yn)' (3.4.16) r,n -r,n n n n r,n -r,n n 

Now, since our discretization procedure is of order 2r, hence we are 

willing to use a '2r+1'-point symmetric formulae at the interior points 

x , ••• ,~ .• Whilst imposing the same order formulae at the remainder of 
r N-r 

the interior points (i.e. x1 , ••• ,xr , and "N-r+1""'xN- 1) we introduce 

2r-2 (for r>l) extra unknowns, i.e. y-1,···,y-(r-1) and YN+1""'YN+r-1' 

and hence we end up with N+2r-3 unknowns (assuming that yO and YN are 

given) for N-1 equations. To overcome this difficulty one must seek for 

some 'practical' non-symmetric formulae (or perhaps a linear combination 

of non-symmetric and symmetric formulae of order 2r-2 (see page 79). 

Nevertheless, we will assume that these non-symmetric formulae are 

provided, thus we may write the final form at both sides of the interval, 

the approximation for y" and y' as follows: 

(1) for n=1, ••• ,r-1 
n 

y" " " L 1\ 

} 
= et Y + ••. +et Y + et Y n r,n n+r O,n n 

k=l -k,n n-k 

n , (3.4.17) 

yi " " L " or = B y + ••• +a Yn + a y n r,n n+r O,r 
k=l -k,n n-k 
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(2) for n=N+l, .•. ,N-r+l 

1 
~ + ~ !l 

y" = r ak,nYn+k aO nYn + •• • +(1 -r,nYn-r n k=n , 

1 (3.4.18) 
A A ~ 

L 
A A 

y' = S~,nYn+k + So nYn + •.. +8 -r nYn-r n k=n , , 

returning to (3.4.13), as indicated in the previous section, at each 

step of the iterative prvcedure we need to solve a system which consists 

of the discrete equations, 

~n(1.) ;: L(a , ... ,a )y -f(x ,y ,L(S , ... ,S )y )-D(y ) = 0 r,n -r,n n n n r,n -r,n n n 

with yO = y(a), y = y(b) , 
N 

(3.4.l9a) 
(3.4.l9b) 

Assuming that f possesses the properties listed earlier in this 

section and considering the possibility of providing the desirable 

non-symmetric formulae, thus by differentiating ~ (y) in (3.4.19b), we n-

obtain the following, 

" A. 
],n 

" " af c = a. - t3. -t - ,j=r,r-l, ... ,O,-l, ... ,-n, (l~n~r-l), (3.4.20a) 
] ,n J ,n ay 

~ " ~ af " A. = a. - e - - c , j=N-n, ... ,O,-l, ... ,-r, (N-r+l:;n:;N-1) , 
J,n j,n ay' J,n 

for r>l. 

af c j=r, ... ,l,O,-l, ..• ,r, (r:;n:;N-r) A. = a. - e - - , , 
J ,n J,n j ,n ay' 

where C in the above relations (3.4.20a), (3.4.20b), (3.4.20c) is 

defined as 

{

af 
C = ay' 

0, 

for j=O 

otherwise. 

(3.4.20b) 

(3.4.20c) 

Thus, we can proceed to solve (3.4.19) by Newton's method as follows: 

(s) (s-l) J~ ( s-l) 
1. =1. - ~n1. 

or JlI1. (s-l) = -~n (l-l) (3.4.21) 

where the correction term lI1.(s-l) (s) (s-l) 
= 1. -1. , 

lI1. = 0 at the boundaries, 
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and Z(O) is presented to be a good initial solution which is recommended 

to be taken as a linear interpolation between yea) and y(b), (Pereyra (1973». 

J, the Jacobian matrix is of order (N-1) with bandwidth (2r+1), r31, and 

has the form~ 

r-1 

J = 
(N-l»{N-l 

N-2r+l 

" " AO 1 , \ 1 , 
" " 
A-l,2 A2 2 , 
I 
I " 

" A 
r,l 

" A 
r-l,2 

" ... 

A 
r,2 

" " " "-
" " /"0 /10 A .... 

A ----A ------A 
-r+2,r-1 O,r-1 r,r-1 

A- r +1,r-'- - - --Ao,r- - - - - -Ar,r 

A-r,r+l - - - - - - AO,r+l- - A 1 r,r+ 
, " "-

... " "-
"4~---------- 2r\1-------~~ " 

" " " " , , 
A -r,N-r-l 

" " " 
" A o ,N-r-l 

o 

"-
A l,N-r-1 

A -r,N-r A -----A 
O,N-r r-1 N-r 

A ' ~ A 

l 

1 -r-N-r+l A - --A 
0,N-r+1 r-2,N-r+1 

r-1 

" " o 
" " ~ 

A 
-r,N-2 

~ 
A -r+l,N-2 
~ 
A -r,N-l 

" 
I 

" I 

" ~, ~ 

-AO N-2'''t N-2 , ,,' 
~ " A A 
-l,N-l O,N-l 

Furthermore, Newton's method should converge quadratica11y or otherwise 

the iterative procedure can be halted whenever the convergence condition 

is met; for example such a condition can be shown as 

N-l 
.!. L ltoy 12]1 
N i=l 1 

< 8 (8 small) • 

Now, for Zineap two-point b.v.p.'s with uniform mesh over the range 

[0,1], we consider N(y) in (3.2.1) as linear operator. Shoosmith (1973) 

considered a high-order discretization for N(y) and based his theoretical 



investigation on the monotone property of Nh(y) (the discrete operator 

of N(y». If the discretization is of order 2r (r was taken up to 4 in 
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his work), then three approaches were suggested to tackle the difficulties 

which arise at the interior points near the boundaries: 

(i) Non-symmetric formula of order 2r or 2r-2. 

(ii) Reduction in bandwidth near the boundary. which involves using non-

symmetric as in (i). a symmetric formulae of order less than 2r or 

linear combinations between such formulae. 

(iii) A matrix polynomial which is based on formulae (3.2.2) or (3.2.3), 

th 
for example. on 8 -order discretization (r=4) the matrix polynomial 

comes from the second derivative y" which has the form 

-1 
y" = - [n 

h2 

where 

n = 

+ .l n2 1 3 1 4 
12 + 90 n + 560 n 1 

2 -1 

-1 2 -1 o 
" , , 

o 
" " " " " , " .... , "-1 " , 

'-1 '2 

(3.4.22) 

In his paper in (Aziz (1975» there is given an example of using 

th the approach (i) and (ii) above. for example, for a 6 -order discretization 

(i.e. r=3). where the interior points xl .x
2 

••••• x
N

_
2 

and ~-I are exempted 

from using symmetric formulae of order 6. instead he used y~.Yl and yZ 

chosen as follows: 

1 4 
yO = l2h2(45YO-154Yl+2l4Y2-l56Y3+6lY4-l0Y5) + O(h ) • (3.4.23) 

y" = _1_(lOy -15y -4y +14y -6y +y ) + O(h 4) • 
1 l2h2 0 1 2 3 4 5 

(3.4.24) 

and 

y" = _l_(_y +16y -30y +16y -y ) + 0(h4) • 
2 l2h2 0 1 2 3 4 

(3.4.25) 

Thus. 

(i) at the interior point Xl' the approximate Yl is taken as a linear 



combination between (3.4.23), (3.4.24) and (3.4.25) in the form 

y" = __ l_(y"+lOy"+Y") 
1 l2h2 0 1 2 

= -l(_y +2y _y ) 
h2 0 1 2 

Similarly, at x l' we obtain n-
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(ii) At the interior point, x2 a fourth-order symmetric formula is 

taken, as in (3.4.25) and similarly at XN-2' i.e., 

(iii) The remainder of the interior points x , n=3, ••• ,N-3, the 7-point 
n 

symmetric -formula is applicable, i.e. 

y" = 1 2 [-2Y 3+27y 2-270y 1+490y -27Oy 1+27y 2-2y 3J n 180h n+ n+ n+ n n- n- n-

+ 0(h6
) , n=3, •••• N-3. 

Therefore from (i),(ii) and (iii) we obtain the following matrix 

of order N-1 for y", 

2 -1 

-16 30 --16 1 
12 IT 12 IT 
27 -270 490 -270 
180 180 180 180 , , 
-2 "- "- , 

... , 
180 "- , ... 

"- " ... 
1 " "- " 

h
2 " , .... ... .... .... ... ... 

" ... 
" ... .... ... 

-2 27 
180 180 

0 

27 -2 
180 180 

"-
... 

"- "-
" "-... 

" " " 
... .... , 

... "-.... " ... " -270 
180 

1 
IT 

.... 
"-

, 
"-

.... 
" " 

490 
180 

-16 
12 

0 

"-
"-

"- .... 
.... 

" "-
-270 
180 

30 
IT 
-1 

.... 

-2 
180 

27 
180 

-16 
12 

2 

,(3.4.26) 

(N-1)x(N-1) 

In practice the first and second rows (and the last two rows) of (3.4.26) 
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can be computed from (3.4.17) (and (3.4.18», i.e., 

i) at Xl' we have 

" 0, f> -1, " 2 
~ 

-1 "3,1 = "2 1 = "1,1 = "0,1 = , , , 

ii) at x2' we have 

to. 1 " -16 " 30 " -16 1\ 1 
"3,2 =- "2 2 = -- "I 2 = , "J 2 = -- " =-

12 , 12 , 12 , 12 -1,2 12 

If the discretization of order 2r is used for periodic b.v.p.'s then 

a '2r+lLpoint symmetric formulae will be applicable at any grid point. 

Therefore, if we consider the boundary problem (3.2.1) as periodic which 

means it is subject to the periodic boundary conditions of the form, 

y'(a) = y'(b) } yea) = y(b) 

then as a result of this condition (3.4.20c) will be applicable at 

the points X , 
n 

n=O,l, ••• ,N, and hence we have (from (3.4.20c» 

- A. k' J , 
k is any integer 

(3.4.27) 

(3.4.28) 

Moreover, the linear system (3.4. 21) will consist of N equations 

and J will have the following form by virtue of the coefficients (3.4.28), 

, 



J = 
NX~ 

AO,l Al 1- - - A A , r-1,1 r,l A --r,l 

A A A ---_A A -r,2 0,2 1,2 r-l,2 r,2 
I...... ,," "-
I '- ......" "-

, 
.... , 

I .... """ "-
I ..... ...." ....', 

A "" , -r+l, r " ......... "-

.... 
.... 

o 
A -r r:l"" ........ ' .... """, ""........ /', ........ "" 
'" """" ""', , " "',,, '..."'" , .... " "-

" " ,,'x"Y" ........ " .... .... '),~ .... 

, 
.... 

.... 

.... 
.... 

.... , 

.... 

.... 

.... 

.... 

A 
-r,r 

.... , , 
.... 

A r,N-r .... .... 
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"<X<>~: , " .... .... 
.... .... 

.... 

.... 
A r-1,N-r+l 

A r,N-r+l 
I .. 

I " , ..... 

o 

A' " .... 
2,N-l .... 

" Al,N-- -- Ar,N 

r 

" ..... 

" " 

..... 
.... 

.. .... .. 
" ..... , .... 

.... ..... .... .. 
" .... " .... 

"-
.... .... .... , 

..... ... .... .... 

A -r,N-l A . --.A l lAONl -r+l,N-l - ,N- ,-

A A -r,N -r+l,N , 

r+l 
(3.4.29) 

Hence, for the linear 2-point b.v.p. under the periodic conditions 

(3.4.27) th~ matrix polynomial (3.4.22) becomes, 

y" 

where 

,.. 
Q = 

2 -1 -1 
.... "-

-I ........................ 0 
.... , , ' 
o 

-1 

.... ""-1 , 
"- , 
'-1 2 

and the matrix (3.4.26) is given as, 

1 

180h2 

490 -270 27 -2 
........ .... ........: 

-270....... ........ .... .............. .... 
.... ............ ......... ........ ..... 

27~... .......... ...... ...... """-
.... , -

-2 .... 

-2 

27 

-270 

, 

-2 

27 

, 
.... 

.... 

o 
-2 

, , 
.... 

o 
.... .... , 

.... 

.... 
'-2 27 

(3.4.30) 

-2 27 -270 

-2 27 

-2 

.... 
-2 

.... 27 

-270 .... ...., 
-270 490 



which infact coincides with (3.4.30) up to ~6. 

Another example for the use of non-symmetric formulae is for the 

linear differential equation of fourth order which is associated with 

beam analysis (Gawa;~and Ball (1977), (1978» who inttoduced the so­

called 'revised' finite-difference formulae of higher order accuracy 

appropriate interior points adjacent to the boundaries to replace the 

conventional finite difference formulae of lower order accuracy. 

83 
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3.5 FINITE-DIFFERENCE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 

The previous sections were mainly devoted to using finite-difference 

schemes for second order differential equations of one independent variable. 

In this section we shall confine ourselves to differerttial equations of two 

independent variables; i.e. partial differential equations, and concentrate 

on equations of second order. 

It is well known that most mathematical models of applied engineering 

problems are expressed in terms of partial differential equations which may 

involve more than one independent variable. On the other hand, the 

analytical so~ution for these equations, in most cases, is extremely 

difficult or too cumbersome to be obtained. Thus, numerical methods are 

found to be an attractive alternative, in particular, at the present time 

where the use of automatic digital computers are becoming widespread. 

Furthermore, the experience of the past years have showed that finite-

difference methods are still powerful techniques to obtain a reasonable 

solution for a wide range of applicable problems involving partial 

differential equations. 

The general form of the second order partial differential equation of 

two independent variables, x and y (say), and with a dependent variable, 

u (say), can be 
2 
~+ 

a l 3x2 

expressed 
2 

3 u + a --2 3x3y 

in the form: 
2 a u 2u a--+a-·+a 

3 al 4 ax 5 

Equation (3.5.1) is said to be: 

o , 

(i) Linear if the coefficients a., i=1,2, ••• ,7, are constants or 
1. 

functions of one or both independent variables x andy. 

(3.5.1) 

(H) Quasi-Linear if the coefficients a., i=1,2, ••• ,7 are functions of 
1. 

(Hi) 

the independent variables x and y, or functions of one or both 

partial derivatives, ~ and ~ • 

Non-Linear if any of the coefficients, a. , 
1. 

dependent variable, u, or its derivatives. 

are functions of the 
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(iv) Self-Adjoint if the equation (3.5.1) can be replaced by 

(3.5.Z) 

(v) 

(vi) 

and 
2 

(vii) Hyperbolic, if a
Z
-4a

l
a

3
>O 

Normally, equation (3.5.1) of type (v) occurs in equilibrium (or 

steady state) problems whilst (vi) and (vii) occur in propagation problems 

(diffusion and oscillating systems). 

Usually, the elliptic problems are classified as of the boundary value 

type since the boundary conditions are accommodated or given round the 

(closed) region, whereas the parabolic and hyperbolic equations are 

classified as initial boundary problems, where the initial conditions are 

given or/and boundary conditions supplied on the sides of the open region; 

and the solution procee~s towards the open side. 

Further, it is possible for an equation to be elliptic in one domain 

and hyperbolic in another, e.g. gas flow at high velocities, the flow can 

be subsonic at some places, supersonic at others (Froberg (1974». 

(1) 

(Z) 

Common examples for the above cases are: 
Z 2 

. au 1au Hyperbolic - wave equat10n: --- = ----- , c is the propagation velocity 
,2 2 , 2 
oX c ot 

(the vibrating string) 

initial condition O~x~l (vibrating string stretched between x=o and 
x=l) 

and the boundary condition u(x,O) = f(x) 

au 
at(x,O) = g(x). 

2 
• a u au 

equat10n: ---2 = at ' 
1lx 

Parabolic - the heat 

initial condition u(x,O) = f(x), O~~l 

and the boundary condition u(O,t) = ~(t) 

u(l,t) = 1/I(t) 
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(3) Elliptic - the most connnon equations are: 
2 2 

(i) Lap lace equation, V
2

u - .L!! + .L!!. = 
dx2 a 2 

0 , (3.5.3) 

(H) Poisson equation, V
2
u a2u Ju = f(x,y)', (3.5.4) - --+--

ax2 
a/ 

where '12 is the usual harmonic operator (or Laplacian). 

Our consideration will be restricted to elliptic problems, in 

particular Laplace and Poisson equations, since the suggested algorithms 

in Chapters 4 and 5 are proposed mainly for these types of problem. 

Generally, the classification of elliptic problems lie in three 

categories ac~ording to the boundary condition accommodated at the surface 

(r(R» of the closed domain, (three well-posed problems): 

(i) Dirichlet's Problem, where the solution u is given on r(R) , 

( ,. ,. ) N 'p b 1 h hId· . (a u). . eumann s ro em, were t e norma er1vatlve an 1S glven 

on r(R), where n denotes the direction of the outward normal. 

(iii) Robin's Problem, where the boundary conditions are of the type 

au 
cm + e an 

where a and e are given. 

on r(R), 

In the following we shall consider the application of finite-difference 

techniques for partial differential equations. 

Consider the Dirichlet problem for Poisson equation (3.5.4) which 

requires to find the solution u(=u(x,y» satisfying (3.5.5a) inside a 

certain closed domain (R) and is determined on the boundary (r(R» by the 

boundary conditions, (3.5.5b), 

a2
u a2

u ;i2 + ay2 = f(x,y), (x,y) E R (3.5.5a) 

u(x,y) = g(x,y), (x,y) E r(R) (3.5.5b) 

The strategy of finite-difference methods (as indicated previously 

for O.D.E.s) are based on mapping the continuous problem to discrete ones 

and replacing the indirectional derivatives by the appropriate directional 

ones which they are easier for programming purposes to obtain the approximate 

solution. 
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We assume that the region under consideration R and the boundary r(R) 

lie in the cartesian plane xOy, Fig.3.(·), and is subdivided by two groups 

of straight lines parallel to Ox and Oy. The intersection of these two 

groups are called the nodal (mesh, net, grid, lattice; or pivotal) points 

and each point a discrete equation will represent an approximation to the 

continuous derivative at that point. 

y 
~ boundarv "oint - --~ ./ !~ 

...... / 

k{ 
1 

f • r( 
R 

R) 

I (x. , ) I 
• L \ I1 

Y / 
""- V 

-....... -interior point FIGURE 3.5.1 

x 
~ 

0 
h 

If a uniform mesh (or equally spaced) is adopted in both directions 

Ox and Oy, and choose hand k to be the net spacing of grid lines in the 

two direction (see Fig.3.5.l), then we may write 

x. = x + ih, 
1. 0 

Y/.,\ = 
1.) 

yo + jk, 

i=O,±1,±2, ... 

j=O,±1,±2, ••• 

Therefore the values of the function u(x,y) are approximated by the 

points (xi,yj):(xO+ih'Yo+jk). Further, for sake of simplicity the region 

R can be considered as a square or rectangle; and the grid point (xo'YO) 

coincide with the origin. Also let the two dimensions of R be a and b 

length units on Ox and Oy respectively, and define the integers N and M such 

that Nh=a, Mk=b. Thus, a general approximated form of the derivatives in 
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equation (3.5.4) (cf. eq. (3.2.3) can be expressed at the grid poing 

(x. ,y.)=(ih,jk) as follows (Fox (1962» : 
1 J 

a
2

u -1..(0 2 _ -1.. 0 4 1 6 • •• )u. (3.5.6) (-2)' . = + - 0 - , 
h2 x 12 x 90 x , 

ax 1,] 1,J 

a
2
u = -1..(0 2 _ -1.. 0 2 1 6 ... )u .. (3.5.7) (-2)' . + - 6 -

ay 1,] k2 y 12 Y 90 y 1,J 

where 0 and 0 operates on the sufficies i and j respectively, i.e. 
x y 

o u. . = U. I .-u. ! . 
x 1.,J l.+~ ,] 1.- ,] 

h 
- u(x + 2'Y) u(x h 

2'Y) 

and o u .. = u .. I-U .• I - u(x,y + ~2) - u(x,y - ~2) 
y 1,J 1,J+~ 1,J-~ 

which obviously, gives 

2 o u •. = u. 1 .-2u .. +u. 1 . 
x 1,J 1.+ ,] 1.,J 1- ,] 

2 
15 u .. = u .. 1-2u .. +u .. 1 Y 1.,J 1,]+ 1,J 1,J-

(3.5.8) 

(3.5.9) 

By ignoring the term involving of order 0 greater than 2 in both 

(3.5.6) and (3.5.7) a s,imp1e, approximated form of (3.5.4) can be obtained, 

Le. 1 2 2 2 
+ -2 <5 u .. = f(x. ,y.)+O(h +k ) 

k Y 1,] 1 1 
(3.5.10) 

or by virtue of (3.5.8) and (3.5.9) and assuming h=k (which is commonly 

used in practice) we have from (3.5.10) the discrete equation: 

2 
-u. 1 .-u. 1 .+4u .. -u .. 1-u .. 1 = -h f .. + T .. , O<i<N, O<j<M 

1+ ,] 1- ,j 1,J 1,J+ 1,]- t,] 1.,J 
(3.5.11) 

_ = ('h 'h) i=O,N for j=l, ••• ,N-1 
u. . - g. . - g 1 ,J ,. 0 f . 1 1 1.,J 1.,J J= ,N or 1.= , ••• ,N- , 

(3.5.12) 

where T .. is the local truncation error defined on page 64. The solution 
1,] 

u .. at the point(ih,jh) can be obtained by solving the linear system (3.5.11) 
1,J 

(where T. . and further high order forms are ignored), which compactly can 
1,) 

be written as 
Au = z (3.5.13) 

where the vectors are of size (N-1)(M-1), 

u includes the components of unknown u .• , i=1, ••• ,N-1, j=1, ••• ,M-1, 
1,) 

and _z=_f+", f has the components f. ., i=1, ... ,N-1, j=1, ... ,M-1, 
.!2. - 1,] 

and.£ consists of the values emanating from the boundary condition (3.5.12), 

and the matrix A of order (N-1HM-l) has the tridiagonal block form, Le. 
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B -I 

-I B -I 0 , " 
, 

" " ... ... .... ... ... ... .... 
A = .... ... ... (3.5.l4a) ... ... ... , ... .... , ... 

0 -I B -I 

-1 B 

(Notice the equations of (3.5.13) are assumed to be ordered row by row 

from left to right or reversely, or column-wise), where 

4 -1 

-1 4 -1 ... 0 ... , ... , .... ... ... ... .... ... ... 
(3.5.l4b) B = ... ... .... ... ... ... , .... ... 

0 ... -1 .... 4 '-1 

-1 4 

and 1 is the unit matrix. Both matr~es B and 1 are of order (N-l) . 

(N.B. for the case of annular regions the derived equations may lead to 

a similar block matrix A (3.5.l4a) but matrix B in (3.5.l4b) has an extra 

element at the off-diagonal top right and bottom left hand corners (see 

King (1976». 

It is important to notice that the solution obtained from (3.5.13) 

2 will have accuracy (in relation to the exact solution) of O(h ), where 

the local truncation error, T .• of equation (3.5.11) has the form: 
1,J 

where 

or 

l2{a
4
u a

4
u }. 2 T .• = 12 h (4) (8 ) +(-4) ( A) = O(h ) , 

1, J ax' Y j ay xi' 

1 2 
T •• = -6 h 
1,J 

(3.5.15) 

This last result leads us to observe that whenever h tends to 0, the error 

term (which fs proportional to h
2
), T .. ...0, and hence the numerical method 

1,J . 

has the consistency (compatibility) property. However, the concepts of 

consistency, stability and convergence have been defined in Section 3.3, 

but the related mathematical theory (including the existance and uniqueness 

of the solution) will not be discussed for p.d.e.s (relevant references: 

Smith(1978) Wendroff (1966), Fox (1962». 
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The strategy of improving the accuracy in the solution of the discrete 

equations (3.5.11) can be viewed from the following points: 

(i) as always we can reduce the mesh, h, but this increases the 

dimension of the system (3.5.13), which becomes too large for 

storage in the computer memory. This approach includes Richardson 

(see STIith (1973», 

(H) including the terms o~ and o~ in (3.5.6) an": (3.5.7) but this will 

incur the penal'ities of increasing the bandwidth of the matrix 

but, decreasing the size as well as introducing extreme difficulties 

at the boundaries (Compare Figs. 3.5.2 and 3.5.3). 

and 

(iii) the diagonal elements can be included in the approximation of the 

derivatives to avoid going beyond the boundaries of the region (see 

the molecule of Fig.3.5.4). This will not be so accurate as scheme 

(ii) above but is easier. If the molecule of Fig. 3.~4 is applied 

to (3.5.10) we will have a similar system as (3.5.11), but the first 

1 2 
term of the r.h.s. will be - ~2 f ..• 

points at the 
boundaries 

l /,1) 

1,J 

points outside 
the boundaries 

j ~ er> 
I 

-

~...-: o 
(1,1) 

-- ..... 

I 

I 
I 

FIGURE 3.5.2: Molecule of using 

0
2 

02 and has the x' y 
form overleaf 

I 
I 
I 

FIGURE 3.5.3: Molecule of using 

04 04 and has the x' y 
form overleaf 
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i ,j +2 

-16 i ,j+l 

i-l,j i, j i+l,j 

i-2,j i-l,j i, j i+l,j i+2,j 

i ,j-l 

. ,j-2 
i-l,j+l 

i-l,j-l i+l,j-l 

FIGURE 3.5.4: Molecule of using "6 2,0 2 (on the diagonal grid) 
x y 

The "deferred correction technique (see Section 3.3) which was based 

on expressing the local truncation error in terms of differences can be 

applied for partial differential equations provided that the solution is 

well-behaved (i.e. the existance and uniqueness of the solution is assumed, 

and the appropriate functions are sufficiently differentiable). As for 

ordinary differential equations, we can start with an initial approximate 

solution, and by difference operations, evaluate the correction terms. 

Therefore, these corrections can now be inserted in the initial finite-

difference equations and the 'new' equation solved on the same mesh for a 

more accurate solution (Fox (1962), Smith (1978». For example, for the 

Laplace equation (3.5.3) which can be written by virtue of (3.5.6) or (3.5.7) 

(where h=k) as, 
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C(u) (3.5.16) 

where 1 

From (3.5.8) and (3.5.9) the discrete form of equation (3.5.16) is 

-u. 1 .-u. I' .+4u .. -U •• l-u .. 1 + C(u) .. = 0 , 
~+,J 1- ,] 1.,J 1,J+ 1,J- 1.,J 

(3.5.17) 

Now we solve (3.5.17) for the ini tial approximate solution by setting C (u). . =0 
103 

4 4 The next step is to compute C(u) .. , only for the terms 0 u .. ,0 u .. by 
, L,J x 1,J Y 1,J 

differencing every line of points in each of the two directions (Ox and ay), 

and hence (3.5.17) yields an improved solution. The process can be repeated 

if necessary •. 

So far, we have illustrated how to solve the Poisson and Laplace 

equations by using the five-point formula (with its computational molecule 

shown in page 91), (see eqs.(3.5.11), (3.5.17). Now, we demonstrate the 

procedure of deriving a more accurate formula, i.e. the nine-point formula 

(Fox (1962), Smith (1978), Salvadori and Baron (195~) where the order of 

the l.t.e. is increased. 

We define the following (on the assumption that h=k for both the 

Poisson and Laplace equations as before), 

and 

D a 
x = ax 

a 
Dy = ay 2 

d 
D =-­xy dxay 

2 2 2 
so that the Laplacian operator V =D +D 

x Y 
By Taylor expansion, we have for example, 

d h
2 i 

u(x+h) = (u(x) +l7,?(x) + 'IT di u(x) + ••• ) 

= (l+(!t~) + -IT (lTx)2 + tr(tTx)3 + ... 

~ 
= e dx u(x) 

hence, we may write on the basis of the above result 

(3.5.18) 

)u(x) 



+hD 
u. 1 . = e - x u .. 

1± ,J 1,J 

±hD 
u. .+ 1 = e Y u .. 
1.J- 1.J 

·u. +1 ·+1 1- ,J-

±h(D +D ) 
x Y = e 

±2hD 
x u = e 

i.±2.j 
u .• 

± 2hD· 
Y 

1,J 

u .. 
1,J 

u. . 
1,J 

D.D in (3.5.~9) are defined in (3.5.18). 
x y 

We define Sl,S2 and 83 as follows 

u. 1 . + u. 1 . + u. . 1 1.+.J 1'-.] 1,J+ 

u. 1 . 1 + u. 1 . 1 + u. 1 . 1 + u. 1 . 1 1+ .J+ 1- .J+ 1+ .J- 1- .J-

u. 2 . + u. 2 . + u. . 2 + u. . 2 
1+ .J l-.J 1.J+ 1.J-

i-2,j 0 
i-1.J 

FIGURE 3.5.5 

i+2,j 
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(3.5.19a) 

(3.S.19b) 

(3.5.20) 
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It can be easily observed from.Figure 3.5.5 that the points of 5
1

,5
2 

and 53 in (3.5.20) have the distances h,12h and 2h from the centre point 

(i,j) • 

and 

(where 

Therefore, by using (3.5.19), we obtain for 

2 2 h4 4 2 h6 6 2 2 
[4+h V + -12('1 -2D )+ 360('1 -3'1 D )+ ... J u ..• xy xy 1,] 

2 0 h 4 4 2 h6 6 2 2 
[4+2h V~+ -6 (V +4D )+ -180('1 +12'1 D )+ ... J u, . xy xy 1,] 

D is 'defined in (3.5.18)). 
xy 

By eliminating the term (D2 ) 
xy between 51 and 52' '.e obtain the 

following nine-point formula: 

(3.5.21) 

2 
V u. , 

1,J 
1 1 2 4 

= ~(45l+52-20u .. ) - -12 h V u .. + T 
6h 1,] 1,] P 

(3.5.22) 

4 2 2 2 '. where V u:V (V u)=V f and T refers to the local truncat10n error for 
p 

the Poisson equation, which is of 0(h4). Further, for the Lap1ace 

equationv
2

u=0, the term T vanishes, instead we have 
p 

2 
V u .. = (451+52-20u .• ) + TL ' 

. l,J 1,] 
(3.5.23) 

where TL is now of 0(h6). 

5ymbo1ica11y, the Poisson equation is exhibited for: 

(i) the five-point formula, in the form, 

r' 
-1 

-'J 
4 

2 u = -h f 

-1 and 

(ii) the nine-point formula in the form 

~' 
-4 -'] -6h2

f 
1 4 2 

-4 20 -4 u = --h 'If. 
2 

-1 -4 -1 

Other combinations between (3.5.21) yield different formulae, for 

example, 5
3
-165

1 
gives for the Laplace equation as (in symbolic form): 



1 

-16 
,,2u 1 1 -16 60 -16 1 + 0(h6) =- u. 

12h2 L,j 
-16 

1 
For the Biharmonic equation which is a more complicated partial 

differential equation of elliptic type and has the form: 

4 2 a2 a2 
" u = " (- + --)u = 0 2 2 oX ay 2 

2 2 ,2 ,2 
= (_a _ + --L-) ("-- + "--)u 

2 2 2 2 ax ay ax ay 
or in symbolic notation, 

1 

2 -8 2 
1 1 -8 20 -8 1 =- u. 
h4 L,j 

2 -8 2 

1 

u .. = 0 
L,J 

= 0 

Finally, we consider the Poisson's equation (3.5.5) under periodic 

boundary conditions on a square (or rectangle) plane such as encountered 

in Plasma problems (see Hockney (1965). (Evans (1979) also considered 
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(3.5.5) in a square region with periodic conditions). The effect of the 

periodic boundary conditions can be regarded as equivalent to the solution 

being periodically repeated in both directions Ox and Oy (or merely in one 

direction for some cases (Wood (1971». By rewriting (3.5.11) (and 

suppressing the term T) we have 

-u. 1 .-u. 1 . +4u. .-U. . 1-u. . 1 L+ ,J L- oJ LoJ LoJ+ LoJ-
2 

= -h f .. 
L,J 

" i,j=1,2, ••• ,N, 
(3.5.24) 

where the region is assumed to be a unit square covered by a square 

" grid of size h=l/N. Then the periodic boundary conditions can be 

presented in the form, 
U ..... '" = u .. i+kN,j+kN LoJ , (3.5.25) 
f "'. "" = f .. i+kN, L+kN L ,J 
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,., 
where the k is any integer and the indices are to be interpreted modu10 N. 

Consequently, equations (3.5.24) with boundary conditions (3.5.25) 

can be written compactly in the form 

A2:!, = ~ , (3.5.26) 

where the matrix A is <,N 2XN2) and has the form 

B -I -I 

-I B -I ' 0 , 
" "-

"- " , 
"- , , 

A = " , , ... , ... , 
"-

, , 
" 

, , ... 
0 

, 
" " , 

'B -I -I 

-I -I B 

and 

4 -1 -1 

-1 4 -1 , 0 
" ... ... 

" ... " ... " ... ... 
B = " " " " " " 

" " ... 4 " 0 -1 -1 

-1 -1 4 A'" 
(NXN) 

However, the system (3.5.26) has not got a unique solution(Berman and 

P1emmons (1979» since the matrix A is singular. 



CHAPTER 4 

NEW ALGORITHrUC METHODS FOR THE SOLUTION 

. OF BANDED r·1ATRIX EQUATIONS 
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4.1 INTRODUCTION 

In this chapter, we shall consider several algorithmic methods for 

the solution of the linear system of equations which ,stem from the 

discretized mathematical physics problems via the application of finite­

difference procedures. We are, as it was pointed out earlier, mainly 

concerned with the type of linear system where the matrix is banded (and 

may be sparse) and has constant elements, as in the algorithm of Section 

4.2, for non-constant elements, as in the algorithm of Section 4.3. 

The algorithms described here involve the factorization of the 

coefficient matrix into inverted semi-banded matrices, and hence the 

solution is obtained by forward and backward algorithmic processes. 

Two kinds of factorization schemes are adopted in this thesis, i.e. 

(1) Factorization in Invertable Cyclic Matrices (FICM), 

(2) Factorization in pseudo-Invertable Rectangular 

Matrices (FIRM). 

The FICM and FIRM algorithms are associated with periodic and non­

periodic banded matrices respectively. Different variants of both 

methods will be included in the following sections. Convergence, 

stability and rounding-error analysis will be discussed for some of 

these methods. The extension of the FICM and FIRM algorithms for tri­

diagonal and quindiagonal block matrices will also be given in special 

cases (see Chapter 5). 

The numerical applications for these algorithms will be dealt with 

in later chapters. This chapter will deal only with the theoretical 

derivation and analysis of the algorithms. 
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4.2.1 ALGORITHM FICM1 

The matrix factorization procedure described in this algorithm is 

for use·in the fast numerical solution of constant banded symmetric 

linear systems. For such a special linear system, we will show that it 

can be solved efficientlY by the factorization of the coefficient. matrix 

into 2 easily inverted matrices and the solution obtained by forward and 

backward substitution schemes. 

We consider a general real linear system of the form 

Ax= z 

where A is a matrix of bandwidth (2r+1), r~l of order N (~2r+l) 

and has the (general) form: 

i 
r+l 

1 
A = 

Co Cl --- cr _l cr , , 
c ..... "" ....... 

1 ... ', ',"" 
I ',""" ....... , 

, , , o ,' .... ', ... , .... , 
..... "'.... ', .... , 

, 0 
c 

r 
........... .... ..... 

.... ...." "" ..... ... "- ...... 
....."''''' ...'" 

...... " " ... ', 
...... ...."" ', .... 
,," """ ,,""''' ... 'c .... ......... ',r 

... , 
c r-l 
c , ... r " " " , 

" 
, 

.... ........"" .... 
.......... ... .......... .... "" cr- 1 

" " ............ I c 
r 

0, 
I ... , 
o ... , , 

o 
c

1
----cr 

" " ........ ',',', I 
' ...... " ..... ,,"" I 

........ " .... 'c 
.............. ......"" 1 

..... C 'c l----'c
1
'c 

r r- 0 

(4.2.1) 

We now follow Evans (1973) and consider the factorization of A 

so that (4.2.1) can be solved by simple forward and backward substitution 

processes in the manner, i.e •• 

Ql. = z } T (4.2.2) 
and Q,!=l. 

where QQT = A (4.2.3a) 

and Q is defined in (4.2.3b). 
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In this subsection we are interested only in (4.2.3a). that is. 

a general factorization of A into Invertable Cyclic Matrices Q and QT. 

where the solution of the systems (4.2.2) are discussed in subsection 

4.2.3. 

Given that the matrix Q has the general form: 

o 

Q = (4.2.3b) 

~r , o 
I , 
I , 

I " 
I ' 
a l - - - - - Cl r 

then by virtue of equation (4.2.3a). if we multiply Q by QT. and equate 

corresponding elements to A. we obtain the following non-linear system 

of equations to solve for the unknowns a O.a1 ••••• a r • 

... 
= c 

r 

or in abbreviated form (4.2.4a) can be written as 

r 
L a.a·_k = ck • k=O.l ••••• r 

i=k 1. 1. 

(4.2.4a) 

(4.2.4b) 

which has to be solved to determine the (r+l) unknowns a
O

.a
1 
••••• a

r
• 
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4.2.2 ITERATIVE METHOD OF SOLUTION (GITRM) 

To solve the non-linear ,system (4.2.4) we choose a generalized 

iterative method, and, for reasons of algebraic simplicity, we define 

the quantities A
1

,A
2 

as follows: 

r 

A1 = Co + 2 L c. 
i=l ~ 

s 
A = c + 2( L c . -

2 0 i=l h 

where t and s are defined as: 

and 

t = {r/2 

(r+1)/2 

s = 
{

r/2 

(r-l) 12 

- r even 

- r odd 

- r even 

- r odd. 

(4.2.5) 

(4.2.6) 

(4.2.7) 

Now, the GITRM method requires the following necessary conditions 

for the equations (4.2.4) to possess rea1'roots, 

(4.2.8a) 

and (4.2.8b) 

In fact, the conditions (4.2.8) do not require the matrix A to 

be diagonally-dominant, except for A being tridiagona1, i.e. the case 

where r=l (see Evans (1973». We clarify this point further by 

introducing two examples of banded matrices: 

Example 1: r=2, 

A = 

7 -4 1 

-4 7 -4 1 " ... .... .... 
1 

.... .... .... .... 
... ...', ... 

.... ..... .... 

1 

-4 1 

.... .... .... 
.... ..... 

o 

.... 
.... 

.... 
..... 

.... 

.... 
..... 

.... 
.... 

.... , 
.... 

..... 
.... 

.... 

.... .... 
.... 

..... 

o 
1 -4 

1 

, 
.... , ....................... .... 
.... "', ......... ....... .... ... 1 

.... .... ... .... 
.... ....... ... ....... -4 

.... .... 
.... ' .... 

.... 1'-4 ' 7 

, (4.2.9a) 



Examp le 2: r=3 

21 -15 6-1 

-15 21 -15 6 -1 
.... " ... " ... 

6 ... "" " " , ,'" '- ,'" 
.... '- " " ....... "­

-I "" ... " ,,"-" " "'... " ,''-" ", " ...."... '- "-
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-1 6 -15 

-1 6 
, 

o -1 

.... "' ... '-" " ... " ... ' " ... .... ... " .... "' .... 
""'" ... ' ... 

, (4.2.9b) 

-1 

6 -1 

-15 6 -1 

o 
... .... "'" ... " .... '" "' ... ' 

" " ,,"" ... ..." -1 '- .... ..."" .... ... ... ..." ... ... 
" ....... "" ... '6 ... ... ... '- , 

,," ',', ... 
.... ', '~"',-15 , , ' " ... ... ' 

-1 6 -15 21 

where both matrices can be derived from the 2nd order periodic boundary 

value problem (see Chapter 3). In the examples (4.2.9), Al and A2 can 

easily be obtained from (4.2.5) and (4.2.6) respectively. Thus, we 

have, for A
l

, A
1
=1, A2=17 and for A

2
, A

1
=1, A

2
=65 and hence in both 

examples A1 and A2 satisfy conditions (4.2.8), although the matrices 

A1 and A2 are not diagonally dominant. 

However, the only restrictions we impose upon the matrix A are (i) 

that it must possess positive diagonal elements and (ii) that in each 

row the diagonal element is the largest one amongst the other elements, 

i.e. (4.2.10) 

noting that A is symmetric and possesses constant elements. 

We proceed now to solve the non-linear system (4.2.4). Our 

major interest in this respect is to modify the first equation of 

(4.2.4) to a more simpler form. This modification can be accomplished 

as follows. 

If we multiply each equation (from the 2nd onwards) of (4.2.4) by 

2 and add to the first equation, then the first equation becomes 



In fact, the L.H.S. of (4.2.11) is the expansion of the 

2 
expression (aO+Ct1 +, •• +a

r
) , i.e. 

Thus from (4.2.12) the equation (4.2.11) can be rewritten in 

the form, 
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(4.2.11) 

(4.2.12) 

(4.2.13a) 

or, by the assumption (4.2.5), we can replace the R.H.S. by AI' i.e. 

(4.2.13a) becomes, 

(4.2.l3b) 

since Al is assumed to be a positive quantity, by condition 

(4.2.8a), then taking the square root of both sides of the equation 

(4.2.13), we have 

+ + + + +-'l! • eto et 1 Ct2 ••• <lr = A 

At present we will consider the positive square root of Al' 

In this case, the final form of the (modified) first equation of (4.2.4) 

is 
(4.2.14) 

Now, taking equation (4.2.14) with the 2nd equation and 

subsequent equations of (4.2.4) we can formulate a system whose 

solution is that of (4.2.4). This system is 
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Cta +(11 +ct
2 

+ ••• +cx
r 

~ 

= Co 

aOal+ala2+···+ar_lar = cl 

aOa2+ala3+···+ar_2ar = c2 (4.2.l5a) 

aOar = c J r 

or in abbreviated form, 

r 
~ 

~ 

a. = Co 
i=O 

L 

, (4.2.l5b) 
r 
l: a.a. k = ck ' k=1,2, ••• ,r 

i=k L L-

~ ! where cO=A
l

, and hence the first modification of the system (4.2.4) 

is completed. 

Now, the second modification involves replacing the 2nd equation 

of (4.2.15) by a new equation in simpler form similar to the first 

equation in the system (4.2.15). This can be done as follows. 

If we square the first equation of (4.2.15), and multiply the 

2nd equation, 4th equation, ••• (r+l)th equation, if r is odd (or the 

th r equation, if r is even) of the same system by (-4) and add together 

the new second equation of (4.2.15) will have the form, 

(i) for r odd, 

+ ... +ar_3ar)- ... -4(aoar) = (Co)2-4cl-4c3-· .. -4cr 

- Al -4cl -4c3-···-4cr 

(cO is defined in (4.2.15» 

= (cO+2cl+2c2+···+2cr)-4cl-4c3-

••• -4c 
r 

(AI given by (4.2.5» 
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(4.2.16) 

, 
The left-hand side of (4.2.16) can be simplified further by 

2 expanding the term (a + ••• +a) which is given by (4.2.12), and then, o r 

by clearing up terms, we arrive at the result, 

L.H.S. 

Thus, replacing the L.H.S. of equation (4.2.16) by its 

equivalent in (4.2.17), we obtain, 

2 
(aO-al+a2-a3+ ••• -al) = co-2cl+2c2-2c3+···-2cr 

(ii) for r even, 

(4.2.17) 

(4.2.18) 

By following a similar procedure to the above, we can obtain the 

following result, 

(4.2.19) 

Equations (4.2.18) and (4.Z.l9) can be combined to be written 

in the form, 

or by using the integers t and s, given by (4.2.7), this equation, 

can also be written in the form, 

2 
[(aO+a2+···+aZs)-(al+a3+···+aZt_l)j = co+2(cZ+c4+···+c2s) 

-2(cl+c3+ ••• +cZt_l)' (4.Z.Z0) 

Since the right-hand side of (4.2.20) equals AZ' given by 

(4.2.6), and A2 is positive by the condition (4.Z.8b), then by 
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taking the square root of both sides of the last equation (again we 

consider only the positive square root case), we have 

(4.2.21) 

Thus, the second modified system can be obtained from (4.2.15) 

by replacing its 2nd equation by the equation (4.2.21), i.e. 

~ (=,!) aO+cx 1+a2+···+ar = Co Al 

... 
= c 

r 

= A! 
2 

• (4.2.22) 

Finally, by adding, then subtracting the first two equations, 

we obtain 

and 

to. !! "1!1 with sand t defined as in (4.2.7) and Co =HA l +A 2), cl =2 (A l-A 2) • 

Thus, our final form of the system, having the same solution as 

(4.2.4) and (4.2.15) is: 

(l.O+a 2+·· .+cx2s 

al+a3+···+a2t_l 

0.0a2 + ••• +Cl r- 2 (lr 

... 
alar 

or in abbreviated form 

,., 
= Co 

,.. 
= cl 

= c2 

= c 
r 

,., 
= c o 

= ~ • k=2,3, •••• r. 

(4.2.23a) 

(4.2.23b) 



Now, an iterative solution scheme for the non-linear system 

(4.2.15) can be written as 

1 1 1 

(n-1) (n-l) 
(la (l1 

(n-l) 
(la , 

_____ 1 

(n-1) 
- - - - -(lr-1 

(n-1) 
- - - - -(lr-2 
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.... , 
.... , , = (4.2.24) 

o .... .... 
.... , , 

I 

I 
(n-1) 

(la 

and for the non-linear system (4.2.23), as 

1 o 1 O------p 

1 0 1 - - - --q 

o 

~(n-1) ~(n-l)_ _ (n-1) 
~O ~1 - - (lr-2 

, , , , , 
\ , 

\ , , 
I 

-I 
1 
I 

= 

c2 
I 
I 
I 

i I 
l,j 

(4.2.25) 

where n denotes the number of iterations, i.e. n~l and the initial 

(0) (0) (0) (0) T 
vector ~ =[(lO '''1 , ... '''r 1 is an arbitary starting solution 

p = {~ - r odd 

- r even 

with q = 1-p. 

since the systems (4.2.24) and (4.2.25) are upper triangular in 

form, then "0' ... ' (l of the system (4.2.4) can be computed by a simple . r 

back substitution process for each iteration, i.e. at step n, we have: 



(n) 
Cl 

r 

(n) 
(1. = (c. _ ~ (n-1) (n»/ (n-l) 

~ Cl. • Cl. ClO ' j=r-l, ... ,l 
J 

for (4.2.24) and 

Cl 
(n) 
r 

Cl ~n) 
J 

(n) 
Cl 1 

for (4.2.25). 

J i=j+1 L-J L 

r 
= C - L Cl ~n) 

o j=l J 

= 

= 

/ (n-1) c
r 

Cl
O 

r (n-1) (n»/ (n-1) (c. - I: J i=~+l 
Cl. • Cl. Cl

O L-J 1. 

t 
'" L c -1 j=2 

s 

L 
j=l 

" C -o 

(n) 
Cl2j -1 (provided t>-2, 

nd 
2 term:= 0) 

(provided s::l, 
nd 2 term:= 0) 

' j=r-l, ... ,2 

otherwise the 

otherwise the 

The iterative processes (4.2.26) and (4.2.27) are terminated 

when the solution vector has converged .to the required tolerance. 

Hence the elements of matrix Q (and QT) can be determined • 

• 
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(4.2.26) 

(4.2.27) 
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4.2.3 SOLUTION OF THE SYSTEM QL=~ 

To obtain the solution of the given system (4.2.1). we first 

consider the relation of (4.2.2) whose matrix form can be expressed as . 

a O a l a 2----a r Yl zl 

aO a l --- a a r-l r 0 Y2 z2 
, , , , I' , , , , , , , , , , , , , , , " , , , , , , , , , = (4.2.28) , , , , a , r , , , 

0 
, , a , , , r-l , , 

a , , , 
I r , a

l I ' 
, , , 

1 
, , , 

al----a r 'a 
0 YN N 

To solve for Z. we perform an elimination process in order to 

reduce Q. the matrix of (4.2.28). to a lower triangular matrix. i.e •• 

we proceed to: 
-a 

multiply the Nth equation of (4.2.28) by --1 and add to the 
a 

lli ~ 0 
(N-l) equation to obtain a new (N-I) equation. 

then we multiply 
~ ~l th 

the new (N-l) equation by - and the N 
a O -a 

equation by --1 and 
a 

add to the (N_2)th equation to obtain a 

th 0 
new (N-2) equation. 

This procedure is continued up to the (N_r+l)th equation. 

In general to 

(N_k+l)th equation 

obtain an,(N_k)th new equation. we multiply 
-ex -Cl 

by --1. the (N_k+2)th equation by --l •...• 
a O a O 
~ 

the 

the 

th 
(N-k+r) equation by --E. and 

aO 

th 
add to the (N-k) equation. where 

k=r.r+l, •••• N-r+l. 

To obtain the remaining new equations in the rows r-l.r-2 ••••• 1 

the procedure which is carried out is as follows: 
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W 1 · 1 h ( .) th . b -"k+j . -1 2 -k d e mu t~p y t e r+J equat~on y , J - , , ••• , r ,an eto 
add to the (r_k)th equation to obtain a new (r_k)th equation, where 

k=1,2, ... ,r-l. 

The above elimination strategy can be formulated as follows: 

Let 

" r' for j ~i } i=1,2, .•. ,r, 
f. ~ 

~-J 

~,j 0 otherwise j~l,2, ... ,r-l 
(4.2.29) 

{ -et for j~i 

) 
f. N . ~ 

0 
~, +J 0 otherwise i,j=1,2, .•. ,r 

and m. ~ -et/eto ~ 

(4.2.30) 

We now form the quantities, 

m.f
k 

.• +1) 
~ ,J+1. 

I) ~ {eto' 
0, 

k~j 
r 

l: 
i~l 

k~l(l)r 

j~N,N-l, 
otherwise 

r ••• ,r 
e. ~ z. + L ~e. k' where e _ 0 for all t>N 

J J k~l k J + t 

(4.2.31a) 

and r-i 
" fk . ~ L m .. f .+f ., k~l(l)r 

,r-~ . 1 ~+J k,r+J k,r-~ 
J~ 

" where the f's are given by (4.2.29), i~l,2, ... ,r-l 

Thus, the 

e . 
r-~ 

= z . 
r-~ 

r-i 
+ L 

j~l 

given system (4.2.28) 

fll f 21----fr ,l 
f I I 
22 I I 

' .... I I 
.... 

f 
, .... 

r,r 
.... et 
, 0 

I .... 

m •. e . 
~+J r+J 

now has the 

0 

I .... 
I ..... 

0 .... 
I J .... 

I .... 
f l ,N f 2,N - -- fl,N 

... aO 

(4.2.3lb) 

form, 

Yl e
l 

Y2 ~2 

~ (4.2.32) 

I 

YN eN 



Now. we proceed to eliminate the coefficients f .. for all i>j. 
1..J 

j=l ••••• r-l as follows. 

for i=1,2, ... ,r-l, 

" . let k=r+l-1.. 

= f(i-l)+R f(i~l) j=l ••••• r-i 
j .k i.k j.k • k=1,2, ••• ,r-i, 

and 

where the sUgerscript 

process and f~O\fo 
x.,v N," 

refers to the ith stage of the elimination 

and e(O)=e are as given in (4.2.32). 
s s 

110 

(4.2.33) 

Thus. having completed the elimination (4.2.33) the lower triangular 

matrix in (4.2.32) is obtained and immediately the auxiliary 

solution vector Z is given by. 

and 

Yl = el/fU ' 

Y2 = (e2-Ylf12)/f22 

• 

y = (e -
r r 

y. = (e. -
J J 

r-l 
L y.f. )/f . 

i=l 1. 1.,r r,r 
r 

L 
i=l 

y.f .. )/0.0 ' j=r+l, ... ,N 1. 1.,J 

(4.2.34) 

where f .. for i~j and e., j=l, ••• ,r-l are given by (4.2.33) while the 
1.,] J 

remaining f's are as located in (4.2.32). 

(N.B. in practice one can replace the denominator in the R.H.S. of 

(4.2.34) by 
, 
, 

for j~r } 
j=1,2, •.• ,N. 

otherwise 

Then the final relation of (4.2.21) can be used to evaluate 

Yl""'Yr as well, provided that Z must be CLEARED in the computer 

store, i.e. the y!s set to zero). 
J 
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A similar solution process is also carried out on the companion 

system T 
Q.!=l. (4.2.35) 

which will have the final form: 

a
O f r •N- - - - f 2•N f l •N 
, 0 I I , , , 

.... 
a O 

f 
r, r, = (4.2.36) 

.... .... 
0 , , , , I 

f 2•2 

f l • l 

where f's are as given in (4.2.34). and nl ••••• n
N 

are defined as follows: 

Let 

then. 

and 

'" Yk = YN- k+l ' k=1.2 ••••• N 

" ~ can be simply evaluated as ~ in (4.2.31). 
r 

/\. "'-no = yo + 
J J 

L ~no k' where n =0 for all t>N. 
k=l ~ + t 

r-1. 
D'r-1." = Yr-1." + L m. on ., i=1,2, ••. ,r-l. o 1 1.+J r+J J= 

i.e. , 

j=N,N-l,. It ,r 

Also due to the elimination procedure presented in (4.2.33) the 0 

quantities nl ••••• nr- l will be modified at the ith step. i=1.2 ••••• r 

exactly as el ••••• e
r
_l • Notice that we retain the notation of the 

modified elements to avoid further complication. 

Hence. the solution is given by the back substitution process derived 

from (4.2.36). i.e. 

and 

'), = nN/fn • 

'),-1 = (n N- l -'),f12) /f22 

• 

'),-r+l = (n -x.of - -x. 0 f O)/f 
N-r+l N l.r ••• N-r+2 r-l.r r.r 

xo = (n 0 

_ J J 

1 

- oL '),+i-rfr+l-i N+1-j)/aO' j=N-r.N-r-l ••••• l. 
L=r ' 

(4.2.37) 



Again, we point out that the last relation of (4.2.37) can be used 

to evaluate ~'~-l""'~-r+l which has been indicated previously. 

Finally the computational complexity of the algorithm for the 

solution of (4.2.1) involves approximately O(SNr) additions and 

multiplications (where divisions are assumed to have roughly the same 

consuming time as multiplications) together with the predetermination 

of the a's. 
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4.2.4 A POLYNOMIAL SCHEME FOR THE SOLUTION OF THE MODIFIED NON-LINEAR 

SYSTEM 

I 
The strategy used is to form the polynomial, pea) of anyone of the 

a's, say a , and derive the smallest zero by the Newton-Raphson method. 
r 

Let us consider the following cases for the modified non-linear 

system (4.2.23). 

( i) For r=l, the system (4.2.23) will consist of two linear equations 

only. These equations are: 

... 

} aO 
= Co 

"- (4.2.38) a l 
= c 

1 

where '" and "- are defined earlier, and in this special case Co cl 

are given by 

'" HA!+A!) l«c +2c )!-(c -2c )!) l Co = = 1 2 o 1 0 1 
and 

HA !-A!) l«c +2c )!-(c -2c )!) 
(4.2.39) 

'" cl = = 1 2 o 1 0 1 

The unknowns aO,a
l 

are obtained immediately by (4.2.38) and hence 

we conclude that, for the system (4.2.1) being periodic tridiagonal, 

(i.e. r=l) the iterative solution process is not required, i.e. 

the procedure (4.2.25) (or (4.2.27» is not applicable for this 

special case. 

(ii) For r=2, the system (4.2.23) consists of the following equations: 

a O +a2 = " Co 
1\ 

(4.2.40) a 1 
= cl 

aOa2 = c2" 

The polynomial in a
2 

can be easily formulated from the first 

and the last equations of the system (4.2.40) and has the quadratic 

form 
(4.2.41) 

from which we can easily evaluate a
2 

and consequently a
O

; with 

'" a l =c1' 
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(Hi) For r=3, the equations of the system (4.2.23) are 

" " + <t = Co o 2 

'" Ct 1+<l) = cl 

Ct O"2+"1"3 = c
2 

(4.2.42) 

"0"3 = c3 

The polynomial in a3 can be derived from (4.2.42) and expressed 

in the form of the quartic equation, 

4"32,, 2 
P{"3) = "3-cl"3+c2"3+cOc3"3+c3 = 0 • (4.2.43) 

Further it can be easily seen that P{"4) will be a polynomial of 

order 8. Therefore, in general we can say that 

P{" ) _ 0{2r - l ), r>l 
r 

Now, as r increases, the polynomial p{" ) becomes increasingly 
r 

more difficult to formulate and to solve and therefore alternative 

solution methods have to be relied upon. 

Remark 4.1 

After the completion of the work in Audish and Evans (1980) describing the 

iterative method (GITRM, Subsection 4.2.2), of solving the non-linear 

system (4.2.4), a direct method for a special case of the system (4.2.4) 

was presented by Berg (198l), (see Appendix A). 
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4.2.5 STABILITY OF THE METHOD 

The method involves, as a first step, solving the non-linear set of 

equations derived from the factorization of the coefficient matrix, and , 

then, as a final step. solving the two linear systems of equations to 

produce the solution of the given system (4.2.1). Hence the stability 

of the method will clearly depend upon both steps. Thus, the 

investigation of the stability can be categorized into two parts: 

(A) The Stability of the Iterative Method (GITRM) 

We have,seen that equation (4.2.l3b) yields two values of A
l

, i.e., 

±Ai. and equation (4.2.20) yields two values of AZ' Le. ±A~' The 

,.., ~ ~ 

constant values Co of the system (4.2.15) and Co and cl of the system 

- .1\ "". (4.2.23) are defined, Co in terms of Al and Co and cl Ln terms of Al ,A2 ' 

and the positive square roots of Al'A2 were taken. Therefore, by also 

considering their negative square roots, we have the following possible 

cases tabulated below: 

Case 1~0 -Co = i 
\' 

Case 1~1 
,.., 
Co -Ai = 1 

, 

Case 110 
,. 

HAi+A~) , '" HA LA i) Co = cl = 
1 2 

Case 111 " i_ i '" HA !+A!) Co = HAl A2), cl = 
1 2 

Case 112 '" -! ! " -i(Ai+A~)' Co = H Al +A 2) , cl = 

and Case 113 '" = -HAi+A~)' ~ =!H!+A!) Co 1 1 2 

In fact, the cases 1~0 and 101 indicate that the modification 

procedure discussed in Subsection 4.2.2 leads to the formulation of two 

non-linear systems instead of one (i.e. the system (4.2.15). Also, 

the cases 110 to 113 lead to the construction of the system (4.2.23) 
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and of three other systems related to the cases III to 113. The 

iterative method GITRM was not applicable to the systems associated with 

cases III and 112 but was applicable in the other cases. We now clarify 

this point further. 

The cases 100 and 101 lead to values of the a's which are equal but 

opposite in sign; similarly for the cases 110 and 113. Whilst, for the 

cases III and 112, the results showed that convergence was not always 

possible. In addition. the condition of the diagonal element (ao) being 

the largest in modulus was not satisfied by cases III and 112. whilst for 

the remaining.cases. the conditions. 

(4.Z.44) 

was satisfied. Noting that condition (4.2.44) is similar to condition 

(4.2.10) which was imposed on the elements cO,cl •••• ,cr of the matrix A. 

Let us now consider the convergent case ll~. 

(1) We set r=l. Then from the equations (4.2.36) we have the ratio 

. .... .... 
Now, if we follow Evans (1973) and subst1tute Co and cl in terms 

of Al,AZ' and then in terms of cO,c l and cz as they are given in 

(4.2.39) we have the result, 

a l 
AtA! 

1 Z -= 
A!+A! a

O 1 2 

a l Al -A2 or -= 
A

l
+2(A

l
A
2

)i+>. a
O Z 

and by using (4.2.37), 

= 

By putting aO=l, al=-a, we obtain the result 

-Zc 
1 a = 

which coincides with the value given by Evans (1973). 
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(2) Now set r=2. The three equations obtained from the non-linear 

system (4.2.23), i.e. the equations (4.2.40), are the same as 

those given by Evans and Hadjidimos (1978). H~wever, they obtained 

a
O

,a
2 

(and all by solving the equation (4.2.41), and 8 triples 

were obtained (see Evans and Hadjidimos (1978». In fact, these 

triples can be easily obtained since the quadratic equation 

(4.2.41) yields 2 roots and the constant ~o of this equation has 4 

possible values given-by the cases ll~ to 113. Two of these triples 

lead to the optimal solutions which coincide with cases 11~ and 113 

(or cas'es 1~~ and 1~1). 

(3) Finally, we set r=3. A Newton-Raphson iterative technique was used 

to obtain the smallest root from the quartic equation (4.2.43). The 

values of the a's, i.e., the solution of the system (4.2.42) which 

were obtained agreed exactly with those evaluated by the iterative 

method (GITRM) given in subsection 4.2.2. 

(B) The Stability of the Solvable Linear Systems (4.2.2) 

We consider an example with the coefficient matrix A in the system 

(4.2.1) being periodic quindiagonal, and choose A to be Al which is 

defined in (4.2.9a). Hence the matrix Q defined by (4.2.3b) has the 

form, 
aD al 

a2 , , , 
0 , , , , , , , , , , , , , , , 

, , , 
(4.2.45) Q = , , , , , 'a , , 2 

0 , , , , , 
a2 'aD a 1 

a l a2 aO 

The elements c
O

,c
1 

and c
2 

of the matrix A, for this special case, are: 

Co = 7, Cl = -4, c2 = 1 
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and hence the quantities ~o and ~l of the system (4.2.40) can be 

evaluated, Le., ~O=Hl+IU), ~1=!<1-/i7) since \=1, "2=17. Therefore, 

the elements of the matrix Q in (4.2.45) can be determined by solving 

the system (4.2.40). On the other hand, if we consider one of the 

in (A), say case 111, " 
,. 

become, non-convergent cases part then Co and cl 
A !(AL,,!) w-/i7i Co = = 1 2 

and " !<.\ l+>h !<l+/i7i cl = = 1 2 

By substituting these values in the system (4.2.40) and solving 

for aO,a1 and a
2 

we obtain the results: 

= l-m(l+ T) a
O 

4 _v'll, 

Subsequently it can be easily verified that laol<a
1 

and hence 

:the matrix Q of (4.2.45) does not possess a diagonal of largest 

magnitude (i.e. the condition (4.2.44) is not fulfilled). This is the 

case which we for two reasons exclude from our consideration of this 

method: (i) the convergence, as pointed out in part (A) was not assured 

and hence the determination of the elements of the factorized matrix are 

unattainable, and (ii) even if the polynomial or other schemes are 

employed to calculate the values of the a's such that the inequalities 

(4.2(,4) are not satisfied, then the elimination process of solving the 

systems (4.2.2), described in subsection (4.2.3), cannot guarantee to 

obtain the solution to the desired accuracy due to the influence of the 

growth of rounding errors. 

However, in the solution of the two systems of (4.2.2), we have 

used an elimination without pivoting on the assumption that the conditions 

(4.2.44) are fulfilled. Wilkinson (1961) has shown that the Gaussian 

elimination is stable against the growth of rounding error if the 

diagonal element is the largest element (in modulus) in each row. 

Since, in our case, we stipulate the conditions (4.2.44) then the 

algorithm is STABLE. 
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4.2.6 CONVERGENCE OF THE NON-LINEAR SYSTEM 

The general form of the non-linear systems (4.2.15) or (4.2.23) can 

be written compactly as 

Ch = d (4.2.46) 

where matrix G of order (r+l) and vector d of (r+l) components (r as 

defined earlier) are defined as follows: 

either 

1 1 
1 ______ 

1 

a O a l - - - - -a r - l 

a O a l ----ar _2 
\ , I 

\ , ... 
I G = \ 

, 
I 

\ 
, 

I \ 
, 

\ , I 

0 \ , I , 
\ a l 

\ 

aD 

for the case of the system (4,2,15), 

or - 1 o 
1 

1 

o 

O ______ p 

1 _____ q 

, 

aD a l - ----a r - 2 

G = 

o 

, 
\ 

aD \ , 
\ \ 

\ \ 
\ \ 

\ \ 
\ ' r 
\ a l 

\ , , 
o 

-Co 
cl 

c2 , 
I d = I , 
I 
I 
I 

c r 

, d = 

c 
r 

(4.2.47) 

(4.2.48) 

for the case of the system (4.2.23) (p and q as defined in (4.2.25». 

To investigate the convergence of,the iterative schemes (4.2.24) 

or (4.2.25) let us consider a splitting of the matrix G, such that 

G = D+U (4.2.49) 

where D is the diagonal matrix comprising the diagonal elements of G, 



and U is a strictly upper triangular matrix containing the elements of G. 

Then, when (4.2.49) is substituted into (4.2.46), we have 

(D+U)2. = i , 

which, after premultiplication by D- l in both sides and re-arrangement, 

becomes, 

Now, we introduce the vector function 

and suppose that 

Therefore, 

2. = i(!V • 

from (4.2.50) and 

-1 
i(Si,) = D i + 

(4.2.51), 

-1 
(-D U)2. 

we obtain 

which involves (r+1) non-lin"ar equations, of the form 

(i) for the case (4.2.47) being considerered 

~ = L (c ] 
r Cl

O 
r 

1 r 
~. =- [c. - \' Cl .• CI.] 

J Cl J " 1-J 1 o i=J+1 

r 

I Cl· 
i=l J 

, j=r-l, ... ,l 

(ii) for the case (4.2.48) being considered 

[c ] 
r 

1 
~ = - (c. -

j Cl O J 

r 
\' Cl •• CI.], 
" 1-J 1 i=J+1 

j=r-l, ••• ,2 

t 

-.I ~2J'-1 
J=2 

(provided t>.2, otherwise 
nd 

the 2 term;: 0) 

~ 2j 

(4.2.50) 

(4.2.51) 

(4.2.52) 

(4.2.53) 
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Now, the iterative form for (4.2.51) can be written 

(a) for the scheme (4.2.24), as, 

~r(,,~n-1)) 

(n) 
"k 

(n) (n) (n) (n-l) (n-l) 
= 4>k(a. ,a.r-1'···'(X.k+l,ctr- k ,. •• ,0: 0 ), 

k=r-l, ... ,l 
(n) (n) (n) (n) 

"0 = ~o("r '''r-l'''' '''1 ) 

(4.2.54) 

and 

(b) for the scheme (4.2~25) as, 

a;n) = ~r(~~-l)) 

(n) «n) (n) (n) (n-l) (n-l) 
elk ~k ar ,ar-l····"cxk+l'ar-k , ••. ,eta ), 

k=r-l, ••• ,2 
(n) (n) (n) (n) 

a l = ~l(at , ••• ,a5 ,a3 ) 

(n) ( (n) (n) (n) 
a O =~Oas, .. ·,a4 ,a2 ) 

(4.2.55) 

It can be readily seen that (4.2.54) and (4.2.55) are Seide1-

type iteration methods (Szidarovszky and Yakowitz (1978)). The 

convergence criteria to these two non-linear systems of equations can 

be shown below. The following analysis is based on the Theorem 2.3.2 

and Corollary 2.3.1 of Chapter 2. 

From the system (4.2.52) and (4.2.53) it can be shown that the 

partial derivatives 
d~i (lV 

dll. 
l 

• O~i,j~r exist. Moreover, if we consider 

the system (4.2.52), for instance, and differentiate w.r.t. a
O

' then 

we obtain the result, 

121 



and 

122 

a$ -1 r [e ] 
~ = 2 r 

0 CL
O 

a$. -1 r 
_.1. = [c. - L CL •• CL.] j =r-l, ... ,1 (4.2.56) 
acto 2 

, 
CLO 

J i=j+1 1-J 1 

a",o r a$. 
L 1 = 

acto i=l aCLo 

By substituting c , .•. ,c from (4.2.15) then the system (4.2.56) becomes, 
r 1 

a$r -1 [tlr ] 
aCLO 

= 
CLO 

a$. -1 --.:.1.. [CL.], j=r-l, ... ,1 aClO CLO J 

and a$O 1 r 
= L CL. aClO CLO i=l 1 

Hence, we obtain 
r a$i (~) r 

L 1 aCL 1= 2 L 
i=l 0 i=l 

Similarly, we obtain ~l""'~r 

r a4>.(£) 

. L 1 ~"k 1= 2 
1=1 

such that 

r a . 

L I--.!.I =~ k' 
i=2 aO 
i#k 

k=1,2, •.• ,r 

By applying a similar differentiation procedure to the system 

(4.2.53), we obtain 
r CL· 

A 2 
iL 

I--.!.I ~O = , 
aO 

r a· 
A = 2 L 1-2:.1 ' ~1 

i=3 aO 

r a. 
~ = k 2 L 1-2:.1 

i=l aO 
, k=2,3, ..• ,r-l, 

i#k-1,k+l 

r-2 CL. 
and ~ = 2 L 1-2:.1 

r i=l aO 

(4.2.57a) 

(4.2.57b) 

(4.2.58a) 

(4.2.58b) 
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It can be observed that, from (4.2.58a) and (4.2.57a) we have the 

result ,.. 
= \l + o 

or (4.2.59) 

~ow, the sufficient condition for the convergence of the systems 

(4.2.54) or (4.2.55) (cf. (4.2.26) or (4.2.27» can be obtained by 

applying Theorem 2.3.2 or Corollary 2.3.1 to give the result, 

11c < 1 

'" and 11c<1. 
More precisely, from (4.2.57) and (4.2.58) it can be easily 

(4.2.60) 

(4.2.61) 

" shown that \lo=max(\l.) or \lO=max(\l.). Therefore, the final form for . ~ . ~ 
1. 1. 

the condition required by the appropriate theorem is 

(4.2.62) 

where the bracketed term is placed by virtue of the relation (4.2.59). 

This condition for convergence was tested numerically on the results 

presented in Chapter 6 (Sec. 6.2). The values obtained for \l0 are 

tabulated for various values of r(i.e. matrices of bandwidth 2r+1) , and 

presented in Table 4.1. For the initial case r=l, it can be seen that 

only weak convergence can be proved. 

Bandwidth Value of !\lo at convergence 
(2r+l) (obtained from the relation 

(4.2 .57a» 

3 5.00x10-1 

5 4 .17x10- 1 

7 3.96x10-1 

9 3. 80xlO-1 

11 3.79xlO 
-1 

TABLE 4.1 
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4.2.7 ERROR ANALYSIS FOR THE LINEAR SYSTEMS INVOLVED IN THE ALGORITHM FICMl 

It is known that, because computers cannot perform exact arithmetic, 

any numerical process involving a matrix system generally produces an 

approximate solution. Thus, to ensure the. stability of the solution 

obtained by such a process, it is worthwhile to assess the bounds of the 

rounding errors which grow during the course of its implementation. 

We also need to point out that-the algorithm YICMl involves the 

factorization of a given matrix into two matrices, Q and its transpose QT, 

whose elements are determined iteratively. Therefore, the rounding error 

analysis will apply equally to either of the two systems in (4.2.2), i.e., 

the bounds of roundrng errors which affect the solution will be formulated 

in terms of the elements of Q (or QT). 

Initially, we shall assume that in binary floating point computer 

arithmetic, each number, say x, is represented internally in the form, 

t 
x = a.2 , 

where a is the mantissa, and t the exponent which is bounded by the 

binary word lengths of the given machine registers. Following Wilkinson 

(1963), the computed result of mUltiplying together two floating point 

numbers x and y will be designated by ft(x,y). Then, in general the 

conventional exact mathematical relationships can be expressed as follows, 

ft(x±y) = (x±y)(l+E
l

) , 

H(xy) =(xy) (1+E
2

) , 

and ft(x/y) = x/y(l+E
3

) 

(4.2.63) 

Each E. in (4.2.63) refers to the rounding error associated with 
l. 

the respective arithmetic operation and is some value of E such that 

IEI=2- t , where t is the number of binary digits allocated to the mantissa 

of the floating point number in the computer. 

Now, we consider one of the two systems in (4.2.2) (since either matrix 



is the transpose of the other), say 

·T 
Q ~ = Z' 

or 

where 

and has the form, 

B = 

.... ... .... ... .... .... b 
r~ 1 .... 

.... 
...... 

.... .... 
"-

.... ... o 
" b r,N 

" .... ... .... 
..... 

b , 
. r+l,l " 

... , , , .... , 
.... ........ ..... ........ .......... 

.... .... ....... ..... 
.... " ....... .... 

............. ........ ................ .... 
... ........ .... .... ... .. ...... ...... .... .... ........ ... 
b' b '---b b 

N,N-r N,N-r+l N,N-l N,N 

o 
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(4.2.64) 

(4.2.65a) 

(4.2.65b) 

The elements b .. ,i,j=1,2, ... ,N of the matrix B in (4.2.65b) are 
. 1,] 

defined as follows by virtue of the relation (4.2.65a), 

and 

also 

b .. = c> •• , i=j,j+l, ... ,j+r, j=1,2, ... ,N. 
1,] 1-J 

b. N . = ex •• , j=i,i+l, ... ,r, i=l, ... ,r 1, -r+J r+1-J 
) 

b •. = 0 for 
1,J 

J' = {
i+l,i+2, .•• ,N-r+i-l if l~i~r }. 1 1 1= , ••• ,N-
i+l,i+2, ••• ,N otherwise 

b .. = 0 for i=j+r+l, ••• ,N, j=1,2, ••• ,N-r-l. 
1,] 

The process of solving (4.2.64) is by a Gaussian elimination 

(4.2.66a) 

(4.2.66b) 

process (without pivoting), as indicated earlier. Hence, we shall follow 

the backward error analysis developed by Wilkinson (1961), or (1963, page 

94) for the linear system (4.2.64), whose matrix possesses zero elements 

given by (4.2.66b). 

Let the triangularization steps of (4.2.64) be given by 
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(4.2.67) 

where k=l, ••• ,N; (k=l refers to the original system). 

Then, after (N-l) transformations, i.e. at k=N, the system (4.2.67) 

yields an upper triangular matrix (see Chapter 2) of the form 

b(1) b(l) _______ b(1) 
1,1 1,N-r+l 1,N 

b (2) (2) (2) 
2,2 b2,N-r+l - - - - b2 ,N 

, 0 I I 
, I 

" I 
" I 

I " I 
, I 
'b (N-r) 

N-r,N-r 
__ ~ (N-r) 

I N-r,N 
I 

o 
b (N-r+l) 

N-r+ 1, N-r+ 1 I 
, I 

" I 
" I , 

, , I (N) 
bN,N 

f.(-----r ,. 
Let a lower triangular matrix, say L, be defined as follows: 

L = 

where 

1 

m2,1 1 

m3,l m3,2 
I , 

1 , , , , , 
......... ....., , , , 

o 

mr+1 ,1 .......... ... , , 
m " r+2,2 ......', 

, "" .... ... - _..... .... , " 
.......... .... ..... , 

....... ......... ..... 
, " .... ...... ......... 

........ '....... ... 
1D.. - ~ - 1D.. 1 N,N-r N,N-l 

o 

(k) (k) 
m. k=b. k/bk k ' k=l, ••• , N- l , 
1, 1, , 

and b's are given by (4.2.66a). 

Thus it is correct to write (see Chapter 2), 

LU = B(l)+OB , 

(4.2.68a) 

(4.2.68b) 

(4.2.69) 

where the matrices L,U are given in (4.2.68), and oB is the perturbation 

in B whose bounds we are interested in assessing. 



th It has been shown in Chapter 2 that at the k step, k>l, i.e. when 

B(k) of the system (4.2.64) is obtained, the element b
kj

, j=k, ••• ,N is 

modified and bi,k-l' i=k, ••• ,N is eliminated. Details' of the formulation 

of the appropriate equations of the whole elimination procedure are given 
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in Wilkinson (1963). Here we merely introduce the final (general) form of 

the modified and eliminated elements which can be expressed as follows. 

(1) For i~j, i=2, ••• ,N when B(i) is obtained, we have the-modified 

elements. 

(i). (1) (1) (2) b(3) _ (i-I) 
b •. = b .. -m. lb l .-m. 2b 2 .-rn. 3 3 .••• -m .• lb. 1 .+e .. , 1.,J 1,J 1., ,] 1, ,] 1.,,] 1,1.- 1.- ,] 1.,J 

where the form e. . refers to the summation of the rounding 
~,] 

nd errors which occur during the elimination process from the 2 

(4.2.70) 

step up to the ith step. i.e. if we let E~k~ be the error of the 
~,J 

th k step, then we may express e. . in the form 
1. , J 

e .. 
~,J 

(2) (3) (i) 
= € .• + € •• + .•. +e: •. 

~,J ~,J ~,] 

(2) . . . 1 1 h B(j+l). . For ~>J. J= •••• ,N- , w en ~s obta~ned, we have 

(4.2.71) 

(1) (1) - (2) (3) (j) o - b .• -m. lb l .-m. 2b 2 .-m. 3b3 .- ••• -rn .. b .. +e •.• (4.2.72) 
1.,J 1., ,] 1., ,] 1.,,J 1,J J,] 1,J 

Here, the error term is expressed as 

e. . 
~,J 

(2) (3) (j+l) 
= e .. +£ •• + ••. +e: •. 

1.,J 1,J 1.,J 
(4.2.73) 

Notice that in both relations (4.2.70) and (4.2.72) the values of the 

multipliers (m's) correspond to those given by (4.2.68b). 

Furthermore, since B possesses zero elements (given by (4.2.66b» 

which remain zeros, except in the case of those above the diagonal in 

the columns, N.N-l •••• ,N-r+l. then the corresponding error terms e .• 
~ .J 

equal zero and e .. =0 as well, i.e., 
1,~ 
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for the relationship (4.2.71), (where i~j) 

e .. = 0 , j=i,i+l, ... ,N-r, i=1,2, ..• ,N-r , 
1,] 

(4.2.74a) 

and for the relationship (4.2.73), (where i>j) 

e, , = 0, i=j+r-l, ... ,N, j=l,2, ... ,N-r-1 
1,] 

Now, the computed element b~k~ is defined in floating point 
1,] 

using (4.2.63) as follows, 

b (,k), (k-1) (k-l) = f~(b. , -m, k lb
k 

1 ,) 1,J 1.,J 1., - -,] 

(k-1) (k-1) 
= [b. . -m. k-lbk-l . (1+E: 1)] (1+e: 2) 1.,J 1, ,J 

(4.2.74b) 

(k-l) (k-1) (k-1) 
= (b. , -m, k-lbk-l .-m. k-1bk-l '£1)(1+£2)' (4.2.75) 1.,J 1., ,] 1., ,J 

Therefore, each E: .. in (4.2.61) and (4.2.73) can be expressed as 
1,] 

£~k~ = b~k~_(b~k~l)_m. b(k-l~) 
1,] 1,] 1,J 1,k-l k-1,J 

b~k~ 
= b~k~ (~+ m. b(k-1)E) (by (4.2.75» 

1,J 1+E: 2 1,k-1 k-1,j 1 ' 

= 2 b~k~_m. b(k-1~E: 
1+E: 2 1,J 1,k-1 k-1,J 1 

It can be easily verified that the modulus of E: .. satisfies the 
1,J 

inequality given below, i.e., 

1 1 (k) 1 1 11 (k-l) 1 1 1 1 (b.. + m. k-l bk_1 . ) E -Iq 1,] 1., ,J 

where 1£I=maxl£. I, and IEI=2-t as defined earlier. 
• l. 
1 

(4.2.76) 

By virtue of the condition (4.2.44) matrix B possesses a diagonal 

element with the largest magnitude. This implies that no pivoting is 

required throughout the elimination process, and hence the multipliers 

have values (in modulus) less 

we assume the maximum element 

than unity, i.e., Im. kl~l. 
1, 

(in modulus) in any B(k) is 

Moreover, if 

designated by g, 
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1 -t 
---''----=-t (g+g) 2 
1-2 

< (2.01)g 2- t (say) • (4.2.77) 

Wilkinson (1963) shows this result is applical,le to all £~k~ and 
1. ,J 

(j+1) (. >') 1 £.. 1 J as we 1. 
" J 

Subsequently, by applying (4.2.77) on (4.2.71), we have (i~j) 

le .. 1~1£~2~ 1+ 1£~3~ 1+ ... + I£~i~ I 
1.,J 1.,J 1,J 1,J 

-t -t -t 
< 2.01g 2 +2.01g 2 + ••• +2.01g 2 

= (2.01)(i-l)g 2- t 
(4.2.78a) 

and from the relation (4.2.73), we have (i>j) 

le .. kI8~2~ 1+18~3? 1+ ... + 1£~j:1) I 
1.,J 1.,J 1,] 1.,] 

< 
-t -t -t 

2.01g 2 +2.01g 2 + ••• +2.01g 2 

-t 
= 2.01jg 2 . (4.2.78b) 

Hence, by combining (4.2.74) and (4.2.78), we have deduced that 

the error matrix, denoted by oB earlier, is bounded by 

loBI~(2.01)g 2-~ , 

where E has the form -----r 
0,-------------00----------0 
1 .... , ' 1-- -- ------1 
12', ' 2---------2 
1 2 3 " I 3- _ _ _ - _ - - - 3 

(r+1)t I 1 4, .... , 11 : 
I I I 1 ' 

row-+ 1 ' I , .... .......... ......... I : 
o 2 I '........ I - - - 1 

E= ,3 I ' , .... , I t 
t,4 1,,11 

o 
1 
2 
3 
I 

I 
I 
1 
t 
I 

I ..... ........ J ...... " ......... 1 I 
t " ' 0 (N-r-1) .... , 

I 
(N-r-l) (N-r-1) 

0- - _ '0 (N-2r+1) (N-r) (N-r) 
1 .... , 

........... .... .... 
I ........ .... 
I " '........ ....., 
I ".........', 

- .. - (N-r) (N-r) 

I ",,", 
, ......... .......... ' .... I I 

0- - - - - - - - - 0 (N-r) (N-r+l)- - - (N-l) (N-l) 

t 
th 

(N-2r+l) col. 
t 

th 
(N-r) col. 

(4.2.79a) 

(4.2.79b) 

(NxN) 



Also, it can be shown that the augmented matrix (oB,ol) where 1. 

is the perturbation in the vector'1., is bounded as follows, 

I(oB,oY)I~(2.01)g 2-t (E,oE) - -
where E is given by (4.2. 79b), and the vector ° E!. consists of the elements 

of the Nth column of E (see Noble (1969, page 272». 

Finally, the bounds of loBI in terms of I-norm can be given below, 

from the inequality (4.2.79a), 

I IIoB 11 Il~2.01g 2-
t

llEII l 

= N(N-l) (2.01)g 2- t 
2 

< 1.OlN(N-l)g 2- t 
. 

N-l 
since L i 

i=l 
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4.3.1 ALGORITHM FICM2 

This algorithm is basically devoted to obtaining a solution for a 

linear system of equations, where the matrix is periodic and possesses 

non-constant elements (see Chapter 3, Section 3.4). 

The FIC~2 algorithm, as in the preceding algorithm, involves two 

major steps; firstly, factorizing the matrix of the given system into two 

cyclic matrices, and hence formulating two linear systems of equations; 

secondly, solving each of these systems via a triangularization procedure 

followed by b~ckward and forward schemes. In addition, the elements of 

the two cyclic factorized matrices will be computed iteratively, which 

involves the use of the periodic continued fraction theory as discussed 

in Chapter 2. 

Let the given linear system of order N be of the form 

Ax = z (4.3.1) 

where the matrix A is a circu1ant of bandwidth 2r+1, such that 

N~2r+1, (r is positive integer), and has the form: 

A= 

aO 1 a l 1 - - --- ar _1 1 a 1 " , r, , 
"­ ... , 

... ... 
a la 1 1- - - - all -r -r+ -

, ...' I ' 
, I ...., ... 

" I 
............ I "", ... o ... ... 

a -r+l,r 
a ... 
-r,r+l ... 

, , " , 
" , ... , 

, , 

... 

, , . ... ... ... ... ... , a r,N-r+1 
I ... , o 
I , 
I ...... 

... 

a2 N-1 ' ... , , 

, 
" 

- - a -1 N' a N r , r, 

, ... 

...... , 

, , 

... , 
, ... 

, , ... 

, 

, 

... 
, 

"­ , 
, 
, 

"', 
, , ... 

'a -r,r 

.... , ....... 
, ' , a 

..... r,N-r , 
a 

r-1,N-r+1 
I 

+----------r+1----------~ 

r 
r 

1 
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The factorization of the matrix A proposed by the present algorithm 

consists of evaluating the elements of a lower cyclic triangular matrix, 

L (say) and an upper cyclic triangular matrix, U (say), such that 

LU = A , 

where the matrices Land U are of the semi-banded form (of order N 

each) illustrated below. 

L = 

and 

U = I 

1 

t 1 ,2 1 

t2 3 t1 3 1 
I '..... .'.... .... ......... ... ... , 
I ..... .......... ..... 
I .............. ......... ..... 

o t 
R. .......... ......... 
r-l r .......... ..... 

r,r 

R. 
, .... '" ........................... ..... , ... .... .... 

r,r+l ... 

o 

, ' .... 
..... ......... ................... .................. 

, ... 
.... ............ ... .... .... ... , ..... ... ... ......... ..... ........ 

............. ............ ....... 
... t 't - --t2 N' t1 N 1 r,N r-l,N , , 

r+ 1------+-

u _____ u u 
2,1 r,l r+1,1 

.... ...." " ...." , " .... 
.... " .... , , , , 

.... .... 
" .... "-

.... .... .... , .... .... 
" u ' .... r+1,N-r 

.... .... 
..... 

.... 
..... .... .... 

..... 

.... , , 
.... 

.... , 
..... .... 

..... .... 

.... 
.... .... , 

o 

u 
r+1,N-r+1 

I .... 

.... 
.... .... " .... .... 

u r,N-r+1 
I 

I " 
.... " , , , 

u 
r,N 

r 

o 

.... 
u 

r+1,N 

.... .... 
.... 

..... , 
.... 

.... 
" .... 

I 
.... I , 

..... 
......... U 2 ,N-1 

.... 
U 1 ,N 

r 
r 

1 

I 
r+1 

1 

(4.3.2) 

The implication of this type of factorization is that, instead of 

solving the system (4.3.1), we replace this system by the alternative 

form, LUx = z (4.3.3) 
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Consequently, the new factorization strategy has the merit of 

preserving the form (and the sparsity, if it is the case) of the original 

periodic matrix, which can be considered as an advantage from the storage 

strategy viewpoint. 

However, the product of the two matrices Land U having been computed 

are equated with the corresponding elements of A. This procedure 

eventually yields a set of (r+l) equations which formulates the inter-

locking relations between the elements of Land U. These relations are, 

~ • u
l 

.. 
r,l. ,l.-r 

~ 1 .ul · l+~ .u2 · r-,1 ,l-r+ r,l. ,l.-r 

~ 2· u. 2+~ 1· u2 • l+~ . u3 . r- ,~l,l-r+ r-,1 ,l-r+ r,l ,l.-r 

= 

= 

= 

a -r,i 

a 
-r+ 1, i 

a -r+2,i 

-------------------------~------------------------

~l 'Ul . 1+~2 .u2 . 2+···+~ .u . ,1 ,1- ,1 ,1- r,l r,l.-r = a -l,i 

u .+~ .u • 1+~3 'U3 . 2+···+~·u . 1,1 1,1 2,1- ,1 ,1- r,1 r+l,1-r = a
O 

. 
,1 

u2 ·+~l .u3 . 1+ ••• +1 -l'u l' 1 ,1. ,1. ,1.- r- ,1 r+ ,l.-r+ 
--------------------------------------------------

u .+~l· u 1· r,l. ,1 r+ ,1-1 

u 1. r+ ,1 

= al' r- ,1 

= a • 
r,1 

,(4.3.4) 

where i=1,2, ••• ,N for each individual equation, and the second suffix 

of the u's is interpreted as the modulo of N. i.e., for ~ • k=1,2 ••••• r+l 
K.\) 

the suffix \) is defined by 

\) " \) modulo N. 

The system (4.3.4) of (r+l) equations can be reduced to an 

abbreviated form consisting of five equations (provided r>l) which will 

be considered later in the further analysis of the method. These equations 

are: 
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R. . u
l 

. = a -r,i r,l. ,l.-r 
(4.3.5a) 

r-k+l 
L R. . 1 .u .. (k . 1) = a k .,.k=r-l,r-Z, ••• ,l 

j=l k+J- ,~ J ,~- +J- - ,1 \ 
(4.3.5b) 

1 
L L . u. 1 .. +u1 . = a

O 
. 

j=r J,1 J+ ,1-J ,1 ,~ 
(4.3.5c) 

r-k+l 
L L.uk···+~· = ~-l,i ' k=r,r-1, ••• ,2 

j=1 J,1 +J ,1-J ,1 
(4.3.5d) 

U r+l,i = a r,i (4.3.5d) 

where i=1,2, •.•• ,N (and as indicated in the equivalent system (4.3.4». 

For the two well-known cases in the numerical problems quoted in 

Chapter 3 where the coefficient matrix A is tridiagonal or quindiagonal, 

i.e. r=1,2 respectively, the equation (4.3.4) becomes, 

(a) for r=1 (A is periodic tridiagonal), 

R.l . ul ·-1 = al· ,1 ,1 - ,~ 

ul ·+R. l .u2 ·-1 = 
,1 ,1 ,l. 

a
O 

• 
,~ i=1,2, ... ,N, (4.3.6) 

U2 . = a
l 

. 
,~ ,~ 

- U l N ' U 2 0 , , 

(b) for r=2 (A is periodic quindiagonal), 

R.Z .ul ·-Z ,1 ,1 
= a -2,i 

R. .u . 1+R. 3 .u2 . 2 1,1 1,1- ,1. ,1-
= a -l,i 

i=1,2, ... ,N, = aO . 
,~ 

Ul .+R. .uZ · 1+R.2 .u3 . 2 
,1. 1,1 ,1- ,1. ,1-

(4.3.7) 

= a l 
• 

,~ 
U2 ·+R. l .u3 ·-1 

,1 ,1. ,1. 

= a
2 

• 
,~ 

U
3 

. 
,~ 

where u1,-1 - ul N-l' ul 0 - ul,N , , 

U z -1 - u2 N-l' u2 0 - U z N , , , , 

u3,_1 - u3,N-l' 

u3 0 ;: u3,N = a2 N , , and 



Notice that for the case of the system (4.3.1) being periodic tri-

diagonal, the elements of the upper circulant off-diagonal (represented 

by u
2 

., i=1,2, ••. ,N) of the matrix U, in (4.3.2), are known by virtue 
,~ 

of the last equation of the system (4.3.6). In the quindiagonal case 

also, the elements u3 ., i=1,2, .•• ,N are determined already from the 
,~ 

last equation of the system (4.3.7). Thus, for the general case (i.e. 

r~l), the elements of the furthest circulant off-diagonal (denoted by 
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u 1 ., i=1,2, ••• ,N) of the factorized matrix U, in (4.3.2), are equal to r+ ,~ 

the corresponding elements of the original matrix A. This is confirmed 

by equation (4.3.5c). Hence, each of the factorized matrices L,U 

includes r unknown circulant diagonals which have to be determined. 

These circulant diagonals, i.e., ~k .,~ ., k=1,2, ••• ,r, i=1,2, ••• ,N, 
,L k,L 

will be computed by an iterative procedure and will be discussed later 

in this section. Therefore, we proceed now to solve the modified system 

(4.3.3). 
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4.3.2 DERIVATION OF THE ALGORITHMIC SOLUTION 

The solution of the factorized matrix equation (4.3.3) can be 

obtained via the insertion of an auxi liary vector, 1. ~say) and formulating 

two alternative systems (each of order N) instead, i.e. 

(4.3.8a) 

and Ux = 1. (4.3.8b) 

Both linear systems will be solved by an elimination procedure, 

but whilst for the former system the elimination process starts from 

th 
the N row upwards the latter takes place in the conventional direction. 

As in the previous algorithm FICM1, we shall also adopt here the 

elimination-without pivoting strategy, on the grounds that the magnitude 

of the off-diagonal elements are less than the magnitude of the 

appropriate diagona1'in each row of the matrix L in the system (4.3.8a), 

and of the matrix U in the system (4.3.8b). 

We now proceed to describe the triangularization procedure for the 

systems (4.3.8), whose equivalent forms are: 

1 ~ r,l---R.Z,l R.1 1 Y1 zl , 
\ Z 

1 ... I 
, I , 

I I I , ... 
R. R. l ,3 1 , 

I I I 
,Z,3 

, 
I , 

" I , I , 
" 

, I I 
I , 0 R. Yr Z I , ... r,r r .... , 

R. , , I 
r-l,r , ... , , 

R. ... , 
r, r+l ' ... " , = ... " , 

.... ... , , , ... , , .... , ... , , , , , 
... ... , , 

... , .... , ... , , , ... .... 
" 0 

, , .... ... ... .... , ... , , , , ... ... , , , "', , , 
I " , .... 

i R. r-l ,N - - --' i1 N 1 YN zN r,N , 
~r ) (4.3.9a) 

and 



137 

uI,1 u2,1-- --_ur,l ur+l,l xl YI , , , 
" "-

, , , , , , \ 0 , , , , , \ , , , , " , , , , , , , , , 
" " 

, , " " " " , " , 
" " " , , 

" " " 
, 

" " , , " , u , " , r+l,N-r = 

" " " I 

" 
, 

U X YN- r +l , " r,N-r+1 N-r+l 
0 , " I " U " , I r+I,N-r+1 , 

" I 
I , , 

" " , I 
I " " I " , 

u2 N-l I , I 
I , " , 

I I " " u -- --u U uI N ~ YN 2,N r ,N r+l,N , 
r 

(4.3.9b) 

In fact, the elimination process for the systems (4.3.9a) and 

(4.3.9b) takes place in an analogous way to the systems (4.2.35) and 

(4.2.28) respectively. Moreover, here we will adopt a matrix analysis 

method (similar to the LU-Decomposition of Chapter 2) to explain the 

transformation of the systems (4.3.9) to the triangular form. 

This can be accomplished as follows. 

We introduce the matrices r 2,r
3

, ••• ,r
N 

to be the same size NxN as the 

matrix L in (4.3.9a), and defined in terms of the elements of L such that 

1 1 

-\ 2 1 0 1 0 , 
" 0 , 

-1,2 3 -\ 3 1 
r

2 " r3 " = , = , , 
" , ... , 
" 

0 " , , 0 " , , , 
" 1 '1 



1 

1 
... ... ... 

... 
... 1 

r ~ 
r 

- 2 1 - 2 2 •.• 21 r- ,r r-, r , r 

1 .... ..... .... 

o 

th . 
(k-r) col. 

... 
'. 1 

... ... 

(k) th col. 

+ 

r ~ 
k 

, 
'1 

-2 
r,k 

o 

where k~r+1, .•. ,N-r+1, 

1 

" \. 
" '\ 

1 

'. , 
\. 

" r N-r+2 1 
1 

R. ---2 01 
r,N-r+2 2,N-r+2 

o 

o 

" " '\ 
" " 

1 
..... 

, 

..... 

, , 

o 

1 ... 

o 

..... 

1 

... 

...... , 
... , 

'IN-r+ 

... 

..... 

... ... ... 
... 1 

th 
... (k+1) row 

1 

1 , 
1 

'\ 
1 , , , 

'1 
1 

R. ---~ 001 
r,N-r+3 ,N-r+3 " 

o 

o 

" \. , , , , 
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, ... 

1 



up to rN' which has the form, 

1 
" "-

"-

"" " 

o 

, 1 

1 , 
" , 

o 

" , 
" 1 

-R. O---~-Ol r,N 

t 

(r+l) th col. 

Now, by premultiplying both sides of the system (4.3.9a) by the 

matrices r Z,r3, .•• ,rr in succession we obtain the following system 

(in compact form), 

139 

r r 1, .•• r 2Lv = r r 1, ••. ,r2z rr- 'L rr- - (4.3.l0a) 

The purpose of this strategy is the premultiplication of the 

system (4.3.9a) by r 2 eliminates the element R.l 2 by r
3

, eliminates , 
the elements R. 2,3,R. l ,3' and so on up to rr eliminating the elements 

R. 1 ,R. 2 ,···,R.l We proceed now to eliminate r elements, i.e. r-,rr-,r ,r 
th 

R.r,k'R.r_l,k •••• 'R.l.k on the k row. k=r+l •••• ,N-r+l, of the system 

(4.3.9a) by successive premultiplication of both sides of the system 

(4.3.l0a) by rr+l'rr+2 ••••• rN-r+l. i.e. 

rN_r+lrN_r·····r3r2Lcz = rN_r+l·····r3r2~ 

Then. we premultiply both sides of (4.3.l0b) by the matrix 

(4.3.l0b) 

r N-r+2 to eliminate r-l elements (i.e. ~r.N-r+2 ••••• R.2.N-r+2)' by the 

matrix rN_r+3to eliminate r-2 elements (i.e. R.r.N-r+3 ••••• R.3,N-r+3). 

and so on up to rN to eliminate one element (i.e. R.r,N)' Hence. the 

system (4.3.l0b) becomes 

(4.3.lOc) 
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or !'Lx. = r~ , (4.3.lOd) 

where 

In fact the system (4.3.10d) assumes an 'incomplete' triangularized 

form, and the form of matrix (!'L) is i llus trated in Figure 4.3.1. 

x xx" - - - - -xx 
x xx- - - - - xx x xx- _ .. - - xx 

x.. 0 ~I I1 

" I1 11 
, I' 

o 

" I1 I 
',' I I , ' , 

.... I I I 

'x 'I I, 
X~I " 

oX 
oox, 'I , , I, 
1 , 1 

Xx I I 
• xxx oxx 0 ___ - __ oox 

E r~ 

FIGURE 4.3.1: The diagram of the matrix (rL) of the sys tern 
(4.3.l0d), where 'x' and '0' denote non-zero 
elements. The elements denoted by 0 will be 
eliminated when the triangularization process 
is completed. 

The (N-l) transformations to the system (4.3.9a) which are 

replaced by the equation (4.3.l0c) can be algebraically formulated as 

follows. 

Let ... 
fi,N-j+l 

fk,_j+l 

fk . ,1 

e. 
1 

= 

= 

= 

r 
, j=i 

}'4.' ....... R... • j<i 
01-J ,N-J+l j=l,2, ••• ,r-l, 

, otherwise 

{:l 

, j=k } 
j ,k=1,2, ... ,r, 

, otherwise 
(4.3.llb) 

{
l if i+k=N+l} 

0=0 h • k~I,2 ••••• r, ot erw1se 

where fk,t for t~O are given by (4.3.llb) 

I 
= z. + L (-R. • • )e •. , where et=O, for all t<l 

1 j=r J ,1 1-J 
i=I,2, ••• ,N-r+l (4.3.llc) 
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f k •N+2- i = 

i-I A 

I C-i . I . N 2 .)f . +f 2' . r-1+ +J + -1 k N-r+I-J k N+ -1 J=l ' , , 
,., 

where the f's are given by (4.3.lla). 
i=r,r-l, ... ,2, 

i-I 
= z . + N+2-1 r (-i . I . N 2 .)e l' .L r-1+ +J ,+ -1 N-r+-J J=l • 

(4.3.l1d) 

By noting the i's and z's appearing in the relations of (4.3.11) 

are those given by the system (4.3.9a) (or the matrices r 2 ••••• r
N 

for 

the values of the i's). 

Then the system (4.3.10d) can be written in terms of the ffs and 

e's. defined in (4.3.11). in the form 

1 
1 , 

.... .... .... , , 

o 

o 

.... 
"-

f r • 1 - - - - - - f 2 , 1 

f r •2 - - - - __ f 2•2 
I 
I 

I 
I 

1 f r,N-r 
f r,N-r+l 

.... , 
I .... , 
I .... 
, " I 

f - - - - - ..£2 N 1 r,N-l , -
f - - -- f2 r.N .N 

Y1 

Y2 
I 
I 
I 
I 
I 

YN-r+1 = 
I 

e N-r+1 
I 
I 

I 

(4.3.12) 

where the elements e1.e2, •••• eN and fk •i , i=1.2 ••••• r. j=1.2 ••••• N 

are given by the relations (4.3.11c) and (4.3.I1d). 

Similarly. the 'incomplete' triangu1arization of the system (4.3.9b) 

can be performed by successive premu1tip1ication of the system by the 

matrices AN_l'AN_2 ••••• A1 which are defined as follows: 

1 ... 0 ..... ... ... , ... 1 
u2•N- l A

N
_

1 
= 1 

0 ul •N 

1 
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1 1 , 
0 0 , 

" ... ... 
"- , ... , 

'1 u2 N-2 u3 ,N-2 
, u u 

1 '\rr+l 
'1 2,N-r+1 r,N-r+1 , ... -

A = u1,N-1 u1 N u u 
N-2 , 1,N-r+2 1,N 

0 1 0 0 1 , 0 , 
1 

, 
... ,1 

1 

o , 
" ... , , 

1 
u r+1,k 

u1 ,k+r 
, k=N-r,N-r-l, ... ,r, 

0 o 
, , I 

+ + 

(k+l)th col. (k+r)th col. 

whilst the matrices A I,A· 2, ••• ,AI are defined below, 
r- r-

I o .... 
. .... ... .... ... 

A = 
r-l 

I 

o 

(r+l) th col. 

u 
3,r-1 

u l,r+l 

I .... 
.... 

(2r-l) th col. 

u _ r+l,r-l 

.... 

u 1,2r-1 

I 
.... 

o 
.... 

... I 
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(r+1)th col. (Zr-2) th. col. 

1 
0 

~ ~ 
.... .... .... u u • .... r+1,r-2 .... - r ,r-2 .... 1 0 0 .... 

A u u = 1 l,r+1 1,2r-1 , ... 
r-2 

1 1 ..... .... 
0 

.... 0 .... 1 
.... .... .... .... 

.... 1 

(r+1)th col. 
~ 

u 
r+l,l 1 0 ... o -

.... u .... 1,r+1 .... .... .... .... 0 
1\1 

.... 
1 = .... .... ..... .... .... 

0 .... .... .... .... 
.... 1 

The (N-1) successive premu1tiplications of the system (4.3.9b) (or 

its equivalent, system (4.3.8b) can be abbreviated in the form, 

(4.3.13a) 

or 1\U~ = 1\1. ' (4.3.13b) 
N-l 

where the matrix 1\ = 1T 1\. • 
. 1 1. 1.= 

Furthermore, the algebraic formulation of the transformations of the 

system (4.3.9b) which are represented by the equation (4.3.13a) can be 

introduced below. 

We define the elements g's and n's as follows: 

"-g. . 
1.,] 

= !u •• +1 . , 1-J ,] 

o , 

j~i ) 

otherwise 

i=1,2, ... ,r 
j=1,2, ••• ,r-1 

(4.3.14a) 
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j O-U1•i • for j=i ) 

1 . otherwise 
i,j=1,2, ... ,r, (4.3.14b) 

~.j 

. lU1 • for k=j } r .r 
= I (-u. 1 .lu

1 .. )st. •• +<5. <5 = =1.2 •..•• r. . l+.J .1+J ~k.J+1 . 1=1 0 • otherw1se 

where st. for s >N are defined in (4.3.14b). 
-k.S 
r 

n. = y. + I (-u. 1 .lu1 •. ) n ..• where n ;!) for all t>N 
J J i=l l+.J .1+J J+1 t 

j=N,N-l, ... ,r (4.3.14c) 

r-i 
st. • = I (-u .. 1 ./u

1 
.)st. .+£. .• k=1.2 ••••• r. 

...... k,r-~ j=l l+J+ ,r-l ,r+J .... k,r+J ...... I.<.,r-l. 

where g's are defined in (4.3.14a) 

= y • + r-1 

r-i 
I 

j=l 

i=1,2, ... ,r-l, (4.3.14d) 

Note that the u's and y's appearing in the relations of (4.3.14) 

are those given by the system (4.3.9b) (or the matrices ~_1 ••••• A1 for 

the values of the u's). 

Then the system (4.3.13) can be written in terms of the values g's 

and n's which are defined in (4.3.14). by. 

gl.l g2 .1- - - - gr 1 • xl n1 
gl 2 • g2.2 - - - - gr.2 x2 n2 

I I' I ... .... 0 .... I ... 
""gr.r-1 , I 

gr r x nr r • u , r.r+1 I = I .(4.3.15) 
... I I 

... I I ... ... 
I .... 

0 
..... I ...... ... I ... 

I I 
, I I ... 

gl.N g2,N- - ---gr.N ... u1•N ~ nN 
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where the elements n
1

,n 2, ••• ,nN and the ~,i' k=1,2, .•• ,r, i=1,2, ••• ,N 

are given by the relations C4.3.l4c) and (4.3.l4d). 
, 

Now, to complete the triangularization of the systems (4.3.12) and 

(4.3.15), we eliminate the lower and the. upper off-diagonal elements in 

the two systems respectively. Therefore, the next step is to eliminate 

the elements fk,N_j' k=j+2,j+3, •.• ,r, j=r-2,r-3, •.. ,0, of the former 

system and the elements g .. , j=1,2, .•. ,r-l, i=j+l, ... ,r of'the latter 
1,J 

system. This can be performed by the following elimination procedure: 

(i) For the system (4.3.12), 

the elimination of the elements fk,N_j' k=j+2, ••. ,r, j=r-2, ••• ,0 

requires (r-l) steps, i.e., 

for i=I,2, ••• ,r-l 

" . let k=r+1-1, 

Ri,k = -f~,N-k+l/fk,N!k+l ' 

then we have, 

(i) 
fj,N-k+l 

= f(i-l) +R f(i-l) 
i,N-k+l i,k j,N~+l' 

j=1,2, ••• ,r-i k=1,2, ••• ,r-i 

(4.3.16) 

and (i) 
e N- k +l 

h . f h· th f h 1·· . where t e superscr1pt re ers to t e 1 stage 0 tee 1ffi1nat10n 

process and f~O\f, , e(O\e are as given in (4.3.12)., 
x..,'V JV,v S s 

(ii) For the system (4.3.15), 

the elimination of the elements g .. , j=1,2, ••• ,r-l, i=j+l, ••• ,r, 
1,] 

requires (r-l) steps also, i.e., 

for i=1,2, ••• ,r-l 

A • 
let k=r+l-1 

Ri,k = -8k,/~,k , 
then we have, 

(i) 
g. k = J, 

(i-I) +R (i-I). . 
g. k . kg· ~ , J=1,2, ••• ,r-1, 
J, 1, J,K 

and 
(i) 

nk 
(i-l)+R (i-I) 

= nk i,k~ • 

k=1,2, ... ,r-i 

(4.3.17) 



Again, the superscript refers to the elimination steps, and 

(0) 
g~ v -, are as given in (4.3.15). 

As a result of the above elimination procedures (i) and (ii), the 

systems (4.3.12) and (4.3.15), become, respectively, 

1 

o 
.... 1 

f r,l 
f r,2 

I 
f r,N-r+l 

r 

f r - 1 ,1 - - - - - - - - - _f 1 , 1 

f r - 1 ,2- - - - - - ----f1 ,2 

I I 
I 

I 
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1 

I 
fIN 2----r- , -r+ f 1,N-r+2 

= e N-r+2 

and 

gl,l 

gl,2 g2,2 

I 
gl r-l , 

... 
I ... 

I " 

" 

I 

o 

u l,r+l 
.... .... 
o 

I I 
g2,N - - - -gr-l,Ngr,N 

-<----- r -----.... 

o 

.... 
.... ... ... 

I 

I 

~ 

= 

I 

nr- l 
I 

I 

(4.3.18a) 

(4.3.18b) 

and hence the triangularization of the systems (4.3.9) is complete. 
, 

By noting that the f elements of the system (4.3.18a) on the rows N,N-l, ••• , 

N-r+2 are given by (4.3.16), while the remaining f elements are as 

located in (4.3.12); similarly for the g elements of the system (4.3.l8b) 

on the rows 1,2, ••• ,r-l, are given by (4.3.17) while the remaining g 

elements are as located in (4.3.15). 
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Finally, the backward and forward procedures for the systems 

(4.3.18) yield the auxiliary vector Z of the system (4.3.8a) and the 

solution vector x of the system (4.3.8b), i.e., from the system (4.3.18a), 

we have 

y = (e -y f - Y f -y f ) I N-r+l N-r+l N-r+Z r-l,N-r+Z ••• N-l Z,N-r+Z N 1,N-r+Z 

r 
and y. = e. - I YN-k lfk ., j=N-r,N-r-l, ••• ,l 

J J k=l + ,] 

and for the system (4.3.18b), we have 

xl = l1/g1 ,1 

Xz = (I1 Z- x1g1 Z)/gz Z , , 

r-l 
- I x.g. )/g 

i=l 1 1,r r,r 

r 
and x. = (11. -

J J 
I x.g .. )/u

l 
. , 

. 1 1. 1.,J ,J 1.= 
j=r+l, •.• ,N 

f r,N-r+l 

(4.3.19) 

(4.3.Z0) 

where 11
1

,I1Z, ••• ,I1
N 

are computed in terms of the y's which are obtained 

from (4.3.19), by the relations (4.3.14) and (4.3.17). 

The computational complexity of the algorithm for the solution of 

(4.3.1)" involves approximately 0«6r-Z)N) additions and 0«6r+1)N) 

multiplications with the predetermination of the elements of matrix 

factors Land U; (the case r=l, the number can be reduced to SN 

multiplications (with 4N additions) as given by Evans and Okolie (1979». 
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4.3.3 DETERMINATION OF THE ELEMENTS OF THE MATRIX FACTORS 

Initially. we shall consider the case where the system (4.3.1) is of 
. 

periodic tridiagonal form. i.e. r=l. which has been investigated by Evans 

and Okolie (1979). In this case. the factorization of the coefficient 

matrix represented by (4.3.2) obviously yields the relations (4.3.6) which 

may be rewritten in the form 

~l ' = a 1 ,/ul ' 1 I .1 -,1. ,1-

= aO '-~l ,al '-I 
i=1,2, ••• ,N, (4.3.21) 

ul ' 
.1 ,1. ,1 ,1. 

and ul •O - ul •N• al •O " a l •N ; 

bearing in mind that a
l

•k • k=1.2 ••••• N has been replaced by u2•k according 

to the last relation of the system (4.3.6). 

If the element ~l 1 is assumed as given or determined by an efficient 
• 

procedure described below. then the elements ~l ' and u
l 

' can be easily 
,1. ,1 

evaluated by the recurrence relations (4.3.21). and hence the elements of 

the factorised matrices L and U. are determined for this special case of 

r=l. 

However. the element ~l.l can be computed in a suitable manner based 

on the theory of the periodic continued fraction. The method was 

suggested by Evans and Okolie (1979) and can be outlined as follows. 

From the relations (4.3.21). we set the index i equal to 1.N.N-l ••••• 2 

so that we obtain the relations. 

~l.l = a_l.l/ul •N • 

ul •N = aO.N-~l.Nal.N-I' i.e •• t l • l = a_l.I/(aO.N-tl.Nal.N_I) 

i,e" 

i.e., 

... 

a_l • l 

aO.Nal.N_1 

u l •N- l 

aO•N- a -t a 
O.N-I 1.N-l 1.N-2 



and so on. Therefore. the ~l.l element can be expressed in terms of the 

elements a 1 .• aO .• a
l 

.• i=1.2 ••••• N. and hence we can formulate an 
-,,1 ,1. ,1. 

infinite periodic continued fraction whose partial numerators consist 

of the off-diagonal elements of the matrix A (i.e. al" a
l 

. 1) and 
- ,1. ,1.-

partial denominators consist of the diagonal elements (Le. ao .). Le •• 
• 1. 

a_I lal N a a t- l •
2al

,ll la_l.l~'N I a l N~l 1 
-llN llN-l = I aO•N- l -

... 
aO•N - aO• l - aO•N-, .. 

a-laNalaN-l t-la2al,ll a-lalallN I 
I aO•N- l -

... I aO•N 
... 

aO• l -
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(4.3.22a) 
or 

where 

and 

= .::.u exz I 
~ ra:= 1 2 

"N I ..'JJ ~2 ~ ~l ... re::=~ 8-···13- a-··· 
N 1 2 N 1 

ex. = a 1 N . 2al N . 1 } 1. -, -1+ ,-1.+ . 
o _ 1==1,2, •• ~,N 
~. - aN' 1 1. O. -1.+ 

a k' t=-l.O.l is defined such that k=k modulo N. 
t. 

(4.3.22b) 

The linear fractional transformation of (4.3.22) can be expressed by 

(cf. (2.6.10), Chapter 2). 

T(w) 
a

2 
8 -2 

... aN -8 -w 
N 

(4.3.23) 

whose fixed points (see definition 2.6.3, Chapter 2) wl'wZ (say) are 

the zeros of the quadratic equation 

w = 
E w+E 
n-l n 

F lw+F n- n 
• 

where E.F (as indicated in Section 2.6) are given by the following 
n n 

recurrence formulae. 

E = 0 • o 

El = aI' Fl = 81 
E = 8.E l-ex.E 2 n J n- J n-
F = 8.F l-ex.F 2 n J n- J n-

} j=j modulo N. 
j=n=2,3,4, ••• 

(4.3.24) 

(4.3.25) 



By virtue of Theorem 2.6.1, if w1¥w2' then the continued fraction 

(4.2.23) converges to the value. ~(say). such that w=max(w
1

.w2). where 

w
1 

and w
2 

are the roots of the equation (4.2.24). He~ce. 
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" a 1,N\,l = w 
(4.3.26) 

or tl 1 = ~/al N 
•• E 

The convergence of the sequence {F:} occurs after a sufficient 

number of steps, when the magnitude of the difference between two 

successive approximants of the continued fraction is sufficiently small 

or satisfies the following relation, i.e., 

for the i th and (i_1)th approximants. we need the inequality 

(c is small) (4.3.27) 

to be satisfied. The sufficient condition for the convergence of the 

periodic continued fraction (4.3.22) has already been given in Section 2.6. 

We now revert to the equations (4.3.5) and consider the general case. 

where r>l, i.e. the case where the circu1ant matrix A of (4.3.1) is 

quindiagona1, septadiagona1 •••• etc. To determine the unknown coefficient 

of the Land U matrices from the non-linear equations (4.3.5) we adopt an 

iterative procedure as discussed below. 

We assume that the initial guess values 

and 

are given. 

R. (0) 
1.i ' 

R.2(0~ , 
,1 

R. (0) 
r-1.i 

i=1,2, ••• ,N 

The superscri~s in (4.3.28) (and in the discussion which 

follows) refer to the iterative step. 

(4.3.28) 

Now. whilst the u 1" i=l.2 ••••• N is given by the equation (4.3.5e) r+ ,1. , 
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(1) (2) (1) 
as pointed out earlier in this section, the u ·t U 1 ., •••• u

2 
., i=1,2, ••• ,N r,l. r-,1 ,1 

can be determined by the equation (4.3.5d). i.e •• 

( 1) 
~.i = 'It-l.i -

r-k+1 
2 

j=l 

,(0) (1) k=r.r-1 ... ' •• 2. 
" .. uk ···•· 12 N J,1 +J,l.-J 1.=, , ••• , (4.3.29) 

(0) 
where the t .. are given in (4.3.28). 

J ,1 

Furthermore, we assume that the ~(lk)' k=1.2 ••••• r are evaluated by 
r. 

considering the use of a periodic continued fraction procedure which will 

be shown later (similar to the manner of evaluating the ~1.1 in (4.3.6) or 

(4.3.21» • 

Therefore. the ~ k' k=r+1 ••••• N and u1 .• i=1.2 •••• ,N can be obtained r, ,1 

from the following recursive relations which are derived from (4.3.5a) and 

(4.3.5c), Le., 

t (1? = a . /u1(1~ i+l,2, .... r ) r,1 -r,l. ,1-r i=1,2 •••• ,N. 

and ul(l~ = a ._~(l?u(l) . - t. ~~O?u~l) .• 
• 1 0.1 r.1 r+1.1-r j=r-1 J.1 J+1.1-J 

(4.3.30) 

To calculate the first step of the iteration process we are required 

(1) (1) (1) 
to calculate the t 1 .• ~ 2 .••••• ~ ..• i=1,2 ••••• N. This may be achieved r- ,1 r-,1 1,1 

by rewriting the equations (4.3.5b) with an additional term Ek .• 
• 1 

k=r-l, ••• ,l, i=1,2 •••• ,N, i.e., 

~(O) u(l) +~(l)u(l) 
r-1.i 1.i-(r-1) r.i 1.i-r 

~(O) (1) H(l) (1) H(l) (1) 
r-2.iu1.i-(r-2) r-1.iu2,i-(r-1) r.iu3,i-r 

• • • 

+ (0) = El' r- ,l. 

+ (0) 
Er - 2 •i = 

al' -r+ ,1 

a -r+2,i 

i=l,2, •••• N. (4.3.31) 

(0) where Ek 0' k=r-l,r-2, ••• ,1, i=1,2, ••• ,N refers to the error term due 
.1 

to the 'incorrect' value of the corresponding. ~(O) k,i' 
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If we assume that ~(l? (and the u(l),s) are 'accurate' values, then 
k,1 

the relations (4.3.31) may be written as, 

~ (1) (1) +t (1) (1) 
r-1 iUl i-(r-1) r iUl i-r •• t, 

= a_ r +1 ,i 

~(1) (1) +~(l) (1) +i(l)u(l) 
r-2,iu1,i-(r-2) r-l,iu2,i-(r-l) r,i 3,i-r = a 2' -r+ ,1. 

• • 
~1(1~U1(1?_1+iZ(1?U2(1?_2+' •• +~ (_1)1 .u(_l)l +£. (l)u(l) 

,1,1 ,1.,1. r,1. r ,i-(r-l) r,i r,i-r = al' 
- ,1 

i=1.2, •••• N. (4.3.32) 

By subtracting the first equation, the second equation, up to the 

last equation 'of (4.3.32) from the corresponding equation of (4.3.31), 

we obtain the result, 

which 

(R. (0) ~ (1) ) (1) (0) = 0 
r-l,i- r-l,i u1 ,r-(r-l)+e r - 1,i 

(£.(0) _R.(l) )u(l) +0(0) =0 
r-Z,i r-2,i l,i-(r-Z) r-2,i 

• • • 

can be 

~ (1) 
r-l.i 

~(1) 

rearranged to 

= 

+ (0) 
e 1 . ,1. 

give, 

= 0 

~(O) +&(0) fuel) 
r-l,i r-1,i l,i-(r-1) 

= ~ (0) +e (0) /u (1) , 
r-Z,i r-Z,i r-Z,i l,i-(r-Z) i=1,2 •••• ,N. (4.3.33) 

• 
• • 

and R. (1) 
l,i = ~ (O? +0 (O? /u (l~ 

1,1. 1,1 1,1-1 

In fact, the equations of (4.3.31) and (4.3.33) are associated 

alternate manner. This is because we compute e(O)l . from the first 
r- ,1 

equation of (4.3.31), followed by £.(1)1 . from the first equation of 
r- ,l. 

in an 

(4.3.33); then back to the second equation of (4.3.31) to compute e(l)z . r- ,l. 

followed by ~(1)2 • from the second equation of (4.3.33); and so on. 
r- ,1 

th However, the s stage of the iterative process for determining the 

~'s and u's of the equations (4.3.5) can be summarized as follows: 



Step 1 

Step 2 

Step 3 

Step 4 

I 
.. l' (0) (0) (0) 

n1t1a 1ze '1 "'2 .••••• ' 1" i=l,2, ••• ,N. 
,1.,1 r- ,1 

(s) (s) (s) 
Obtain u .• u 1 ., •••• u

2 
. successively from the relation 

r,1 r-.~ ,1. 

(s) 
'\,i = ak- l • i -

and 
(s) 

u = a , v=1,2, •.• ,NI r+l,v r,'J 

(a) Determine ,Cs) ,Cs) ,Cs) by the continued fraction 
r,l' r,2"'" r,r 

scheme (discussed later). 

and 

(b) Determ1'ne' (s) ,(s) d (s) (s) f th 
Nr,r+l""'~r,N an u1,1 •••• ,u1,N rom e 

recurrence relations, 

i;l1,2, ••• ,r 

and 
(s) 

ul • i = 

i=1,2, ••• ,N 

Evaluate ~ks-!)and 'k(s~. k=r-l ••••• l. i=1.2 ••••• N as follows: 
,1. ,1. 

from (4.3.31) and (4.3.33) alternately. we have 

( ) (s-l) = ,(s-l) (s) 1 (s) (s) 
a l E r - l •i a- r+l •i - r-1.iul.i-(r-l)- r.iu2.i-r 

• • • 

, (s) 
r-l.i 

= I(s-l)+g(s-l) I (s) 
r-l.i r-l.i u1.i-(r-l) 

(s-l) 
E 2 . = r- ,1 

_I (s-l) (s) _I (s) . (s) _ 
a-r +2•i r-2.iul.t-(r-2) r-l.i~2.i-(r-l) 

-1 (s~ u (s~ 
r,l. 3,1.-r 

= 1(s-1)+ (s-l) I (s) 
r-2.i Er - 2• i ul •i -(r-2) 

·153 
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(s-l) (8-1) (S) (8) (8) (S) (s) 
£1' = a 1 .-Ro 1 · u1 · 1-t 2 .u2 . 2- ... -9; .u. 

,1. -,1. ,1. ,1.- ,1 ,1.- r,l. r,1-r 

Step 5 

,(s-l) (s-l) I (s) 
= ~ l' +e: l' u 1 · 1 ,1 ,1 ,1-

where i runs from 1 to N in all the above relations. 

We define £ such that 

1£1 = max (maxl£k ·1) • 
k i ,1 

Thus, if I£I::;TOL (the desired accuracy), then the iterative· 

process is halted, otherwise we repeat from step 2. 

Determination of t l'R. 2'''''R. at each step of the iteration r. r, r,r 

For simplicity, we consider N to be a multiple of r, i.e., 

N = tr, where t is any positive integer, such 

that N~2r+1 (4.3.34) 

By rewriting the equations (4.3.5a) and (4.3.5c) in the form, 

t . = a ./u
1

. r,l. -r,L ,l.-r 

1 (4.3.35) 

ul,~·= aO,l.·- L t .. u. 1 .. 
~ j=r J,1 J+ ,l.-J 

we may be able to construct r continued fractions to express the terms 

t 1,t 2, ••• ,t • For example in the quindiagona1 case, i.e. r=2, from r, r, r,r 

the relations (4.3.35) (or the first and the third equations of (4.3.7» 

t2 1 and t2 2 can be expressed in terms of periodic continued fractions , , 
as follows, 

a a -2.N-l 2.N-3 a a 
(a _ u )_ -2,N-3 2,N-5 

O,N-3 1.,N-32,N-4 (aO,N-5-"')-
• 
• • 

(a 1-.~.)_(-2,1 2,N-1) 
0, aO,N-l-'.' -

• • 
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and 

a a 
( " ) _--"2~,N,,--,,2,",,,-'!.N---,2=--___ -'r-_-"-__ _ a -", U - a a 

O,N I,N 2,N-1 (a -2 u )_ -2,N-2 2,N-4 
0,N-2 1,N-2 2,N-3 

(aO,N-4 - ••• )-. 

( _ )_ 'l..2,2 "2,N 
a 2'" ( ) 0, aO,N-'" -

• 

In a similar way by considering the two recurrence relations of 

(4.3.35) the R, l'R, 2' ••• ,R, can be expressed in the form of continued r, r, r,r 

fractions where abbreviated forms are: 

~lt ~11 "'s -6 -"" 
l,t 1,1 

and 

a R, 
r,N r,r ~3 et ~1 Br _ •• , er _ Br _ ••.. 

r,3 r,t r,l 

where 

~,i = a a 
-r,s+r r,s 

1 
Sk . = a - L 2. u. 1 . 

,~ 0,5 j=r-l J,S J+ ,s-J 

s=N-ir+k, 
k=1,2, ••• ,r 
i=1,2, ••. ,t 

and the second suffices of the a's, i's and u's are interpreted as 

modulo of N. 

(4.3.36a) 

(4.3.36b) 

The linear fractional transformation of each fraction in (4.3.36a) will 

have a form similar to (4.3.23), i.e., 



k=lt2,~ •• tr 

whose fixed points, wk ,1,wk ,2 (say), are the roots of the equation 

E l')jk-E n- n w : 
k F 1"'k-F n- n 

where E ,F (cf. (4.3.75)) are given by 
n n 

El 

E 
·n 

F n 

F : 1 o 

= ak , l' Fl = Sk,l 

= Sk .E l-ak .E ,J n- ,J n-2 

= Sk .F -a F 
,J n-l k,j n-2 ) j=j modulo(t), 

j=n=2 ,3, ••• , 
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(4.3.37) 

(4.1.38) 

(4.3.39) 

Now, if the roots of the 'quadratic equations (4.3.38) are unequal, 

i.e. wk,11Wk,2' then according to Theorem 26.1 the fraction (4.3.37) 

converges to the value, ~k (say), where ~k:max(wk,1'Wk.2)' Consequently. 

by assuming ~k as the limit of the kth (k=1,2 ••••• r) fraction of (4.3.36a). 

we write 
" aN k~k=wk r. -r+ r. 

or JI. = Ci la r.k k r,N-r+k k=1,2, ••• ·,r. (4.3.39) 

The convergence of the sequence 

and the sufficient condition for the 

(4.3.36a) is (see Section 2.6): 

1 
O<y '~-4 k,l. 

where k=1,2, •••• r, i=1,2, ••• ,t, 

and 

{:n} has been discussed earlier, 
n th 

convergence of the k fraction 

(4.3.40) 

From the experimental results we notice that condition (4.3.40) 

was satisfied at each iteration step. 

However. if N(~2r+l) is relaxed from the restriction (4.3.35) and an 

integer, J (say), is introduced such that 
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J = N-tr, (4.3.41) 

where t=l ~ , then we may conclude the following points: 

(i) for J=O, then we have the case followed by (4.3.34), which 

(H) 

implied that the lengths of the cycles of the continued 

. (4 3 36 ) 1 . h kth . f fractlons ., a were equa , 1.e. for t e fractlon 0 

(4.3.36), <lk . and i3
k 

. were such that i=I;Z, ... ,t, whilst, 
, 1 ,1-

for J"O. the only fractions of (4.3.36) related to R. 1 ..... . r. 

R, J will have cycles of length t, while the remaining r,r-

fra~tions, R. J 1""'R. • will have cycles of length t+l, r,r- + r,r 

i.e., 

for R.r,s' s=1,2, ••• ,r-J, we have <lk,i and i3 k,i' such that 

i=1,2, ••• ,t, 

for tr,s' s=r-J+l, ••• ,r, we have ak,i 

where t is as given in (4.3.41). 

and Bk .• such that 
.~ 

i=1,2, ••• ,t+l, 

(4.3.4Z) 

Finally, it is important to point out that the use of the periodic 

continued fraction procedure described above was adopted on the basis 

of the extension of the method suggested by Okolie (1978) or Evans and 

Okolie (1979) for the tridiagonal case which has been outlined earlier. 

Later. from the experimental results it was noticed without considering 

the use of continued fractions, that the iterative procedure, summarized 

by step 1, ... ,. step 5 earlier, does converge. 

In this case, the steps of the iterative procedur~ to evaluate the 

R,'s and u's coefficients of the matrices L and U respectively, can be re-

written as follows: 

Step I' Initialize 
(0) (0) (0) 

R,l ·.R.Z .•••• ,t 0' 
,1,1 r,l. i=-1,2, ••• ,N. 

Step Z' Obtain 
(s) (s) (s) 

u .•••• ,u
Z 

., u
l 

• r,l. ,1,1 
in succession from the relation 



Step 3 ' 

Step 4 ' 

(s) r-k+l 
1. (s-l) (s) k=r •••• ,2,l = ak-l,i - l: '\.,i j=l 
j,i uk+j,i-j' i=I,2, ••• ,Nil 

(and 
(s) = a v=I,2, ••• ,N,) u r+l,v r,v 

Evaluate ~k(s-.l) and' (s). . 1 2 N k 1 1 ~ ok' 1= t , ••• , 11 =r,r- , ... , 
,1 ,1 

alternately. from the relations (c.f.. (4.3.5b» 

(s-l) 
€Ok . 

,~ 

(5-1) (s) 
= a_k ·-~k· u 1 ·-k-

,1 ,1 ,l 

r-k+l 
L 

j=2 

1. (s) (s) 
k+j-l.iUj ,i-(k+j-l) 
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and (c.f. (4.3.33» (4.3.43) 

1.(s) = 1.(s:l)+€O(s:l)/u(s~ 
k,i k,~ k.~ 1,~-k 

i=1,2, ••• ,N, k=r,r-l, ••• ,l 

where the process of computing the 

h h f b ·· (5-1) suc t at, a ter 0 ta~n~ng €o • , 
r,~ 

two quantities operates 

we have to compute 1.(s~, 
r,~ 

(s-l) (5) . 
then €o 1 .,1. 1 ., •••• etc. as in step 4 which was given 

r-,l. r- ,l 

earlier. 

As in step 5 of the previous procedure. 
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4.3.4 SOLUTIO~ OF SYMMETRIC· LINEAR SYSTEMS 

We re-consider the system (4.;?1) ~ith the assumption that its 

coefficient matrix A is symmetric and possesses non-constant elements, Le., 

A,! = ~ , 

where A is a (NXN) matrix and of the form, 

A = 

a l ,l 

a2,l 

aO,2 a1 ,2 

" 

•• a 1 r, 

a2 2 a , 
" 

al ,2 aO,3 "" " 
" , " " a2 '2 " " " " " , " " 

r,2 
" 
" " " " " " " " 

a r,N-r+l 

" 

0 

... 
, 
" " 

a " " " r,l " " " " " " " " " " a " " " " " r,2 " " " " " " 
" " " " , "- . . . , 
" " " " 

, "- , 
" " " " " " " " " " 

, " " " " " " " " " " 
, 

" " " " " " " " ." 0 " " " " " " " " " " " " " " " " " " " " " " a " " " " r,N-r+l " " • " " " " " " " " " " " 
a2 N-l " " " " " " " , 

" " " " 

" " " " " 

" 
" " 

" 
" " , 
, " 

" " " 
, 

" " " " a 
O,N-l 

" al N a2 N , , a3,N" .ar,N ar ,N-r,··a2 ,N-2 al,N-l 

a2 ,N 

a3 ,N 

a r,N 

a r,N-r 
• 

a2 N-2 , 
al ,N-l 

aO,N 

In this case, the factorization (4.3.2) may be written as 

T LDL = A , 

where A is symmetric given in (4.3.44b), D is a diagonal matrix of 

the form, 

and L is a unit lower triangular matrix given in (4.3.2). 

(4.3.44a) 

(4.3.44b) 

(4.3.45a) 

(4.3.45b) 
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Thus. the system (4.3.44a) whose coefficient matrix given in (4.3.44b) 

or (4.3.45a) can be replaced by an alternative form. that is. 

LDLTx = z • (4.3.46) 

As before, we split this system into two systems with the insertion 

of an auxiliary vector. Z (say) such that 

and 

or 

LZ = ~ 

T 
DL ~ = Z 
T -1 
L~=D Z=!J.. 

. T T 
where Z:(Yl"',"YN] • !l."[11 1 ••••• I1 Nl such that 

(4.3.47a) 

(4.3.47b) 

11, = y,/d,. i=1.2 ••••• N and d, are the elements of D in 
1. 1.1 1. 

(4.3.45b) • 

Since the system (4.3.47a) is exactly the same as the system (4.3.8a). 

hence the elimination procedure discussed in subsection 4.3.2 is applicable 

to the former; subsequently we can write the final result of the 

elimination procedure given by (4.3.l8a). i.e. (by considering (4.3.11) and 

,(4.3.16) the system (4.3.47a)becomes). 

1 

1 , 
" " 

o 
" , 1 

o 

f 2-r. 
I 
I 
I 

- - - - f2 2 • I 

f N 1- -- _f2'N l' r, -r+ , -r+ I 

" " " " " " " " 

, 
I 

I I 
f2 N-l fl N-l • • 

Yl 

Y2 

= 

where e,. i=1.2 ••••• N are given by (4.3.11) and (4.3.16). 
L . 

e
l 

e2 
I 
I 
I 

e N-r+l 

(4.3.48) 

Also. the elimination procedure for the comparison system (4.3.47b) 

takes place in the same way as for the system (4.3.8b) (or (4.3.9b». 



Thus. the algebraic formulation of the elimination given by (4.3.14) and 

(4.3.17) can be applied to the system (4.3.47b). i.e. by taking. 

~ ., k=l, ••• ,r+l, i=1,2, ••• ,N in (4.3.8b) las follows 
1<.~ 

with 

u. 1 . = \C k .•. k=1.2 ••••• r} . 1<+ .~.~ '-1 2 
1.- , "",N, 

u
l 

. = 1 
. .~ 

(4.3.49) 

where \C
k 

. are the elements of the coefficient matrix of the system 
.~ . 

(4.3.47.1» (i.e •• LT). [N.B. the relation (4.3.49) can easily be 

derived by equating the corresponding elements of U in (4.3.8b) and 

of LT in (4 •. 3.47b)j. 

Hence. the relations of (4.3.14) after the substitution for the 

expressions of the u's given in (4.3.4a). can b~ rewritten as follows. 

and 

A g .. = 
~.J 

gi.N+j = { 

~.j = 

,.. 
n. = 

J 

1 • for i=j 

for j<i \C. 1 . J - ,l. 

0 • otherwise 

-1 • for j=i 

0 • otherwise 

r 
L (-L .. )It. •• +8. 

i=l ~.J+~ -1<.J+~ 

} 

where the It. for -1<.s 
r 

I). + L (-l!.. .)~.+. 
J i=l ~.J+1 J ~ 

i=1,2, ••. ,r 
j=l,2, ••. ,r-l, (4.3.50a) 

i,j=l,2, .•. ,r, (4.3.50b) 

for k=j } 

: otherwise J 

k=1,2, ••• ,r, 

s>N are given by (4.3.50b); 

.... 
where the I)t=O for all t>N 

j=N-N-l, ••• ,r (4.3.50c) 

r-i 
It. • = L (-.I.. ...)st. .+~ .• k=1.2 ..... r 
-1<.r-~ j=l 1+J oJ+r -1<.r+J -1<.r-~ 

A I). = 
J 

where the g's, are given in (4.3.50a) i=1.2 ..... r-l. 

I) • + 
r-~ 

r-i 
2 

j=l (4.3.50d) 
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where the n 1 ,n 2"" ,n
N 

are the components of the right-hand side vector 

of the system (4.3.47b). 

Subsequently, by virtue of (4.3.50) the system '(4.3.47b) becomes, 

g2,2 - - - gr,2 
" I 
I" I 

" , , 
, I 

gr.r 
I 

1 

" 

o 

" " o 

= (4.3.51) " nr 

" , , , I 
1 "N 

",.. ... d • 2 . where the n1 ,n 2 , ••• ,nN an ~,i' k=1,2, ••• ,r, 1=1, , ••• ,N are g1ven by 

the relations (4.3.50c) and (4.3.50d). 

To complete the solution procedure we should eliminate the elements 

g ..• j=1.2 ..... r-1. i=j+1 ..... r. of the system (4.3.51) as follows 
1..J 

(see (4.3.17»: 

For i=1,2, ••• ,r-l, 

" let k=r+1-i. 

then we have 

R. k = -I(.'" k i 1(." "'k 1.. -K. -K. 

(i) 
g. k 
J. 

(i-1) (i-1) 
= g. k +R. kg· "k • j=1.2 ••••• r-i 

J. 1.. J. 

A(i) 
nk = 

1 

where the superscript refers to the elimination step. and 

(0) - (OL •. (4 3 51) g. =~ • n =1) are as g1.ven l.n •• • 
At,V -x.,v s s 

(4.3.52) 

The triangu1arization of the system (4.3.51) is now complete and 

has the form. 
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gl.l Xl 
A 
nl 
A 

gl.2 g2 2 • I I , , 0 , 

x2 n2 , • 
, I 

, 
gl.r 

, 
gr.r 

A X nr r 
I 

1 
I 

= (4.3.53) , , , 
I , 

I 
I , 

gl N-l gr-l.N 0 
, 

• , 
I 

gl N ~.N---~.N 1 
• 

~ 
where the elements ni and ~,i' k=1,2, ••• ,r, i=r, ••• ,N are 

as located in the system (4.3.51). whilst the elements n .• j=1.2 ••••• r-l 
J 

and gk .• k=1.2 ••••• r-l. j=1.2 ••••• k are given by (4.3.52) • 
• J 

Finally. the solution of the system (4.3.47a) is obtained by the 

back substitution process from (4.3.48) which in fact yields exactly 

the relations (4.3.19). Whilst the solution vector x (of the system 

(4.3.47b) is obtained by the forward substitution process from (4.3.53). 

i.e., 
Xl = nl/gl •l 

x2 = (n2-xlgl.2)/g2.2 
• 
: ~l 
x = (n - L x.g. )/g 

r r i=l L 1.r r.r 

A 
X. = 

J' 
n. -

J 

r 
I x.g .. , j=r+l, ••• ,N 

i=l L 1.J 

(4.3.54) 

We now describe the determination of the elements of the matrices 

Land D given in (4.3.5a). this has, been given in section (4.3.3). 

Since the coefficient matrix A considered here is symmetric and 

is factorized by (4.3.45a). the equations (4.3.4) can be reduced to 

(r+l) equations only as follows. 

A comparison between the two factorizations of A given in (4.3.2) 

and (4.3.45a) yields. 
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T 
U ='DL 

which by equating the corresponding elements implies 

~+l,i = dftk,i+k ' i=1,2, ••• ,N, k=1~2, ••• ,r 

(and the second suffix of i is interpreted as modulo of N). 

(4.3.54) 

Hence, the equations (4.3.4) by considering (4.3.54) can be' 

reduced to the following form, 

t . d. 
r,l. l-r 

d.+i l .d. i l . 1+i 2 .d. 1

2 . 2+ ... +i .d.i . 
1. ,1. l. , 1. + ,1. 1. ,1. + r, 1. 1. r, 1. +r 

= a . 
r,~ 

= a , . 
r-1.~ 

= a
1 

. . ~ 
ao . 

,1 

1 

(4.3.55) 

where i assumes the values 1 to N in each of these equations. 

However, the iterative procedure discussed in subsection (4.3.3) 

can be applied to the equations (4.3.55); here we shall consider the 
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procedure which does not involve the use of periodic continued fractions, 

i.e. the step 1' ••••• step 4' given at the end of the previous sub-

section. 

St 1" ep 

St 2" ep 

Step 3" 

These steps become. 

'r .. l' (0)(0) (0). 1 2 N nl.tl.a l.ze 9.
1 

.• i 2 ., ••• ,t ., 1= , , ••• , • 
,1 ,1 r,l. 

Obtain d~s) • i=1.2 ••••• N as fo11ows:­
~ 

= a • /L1 + f i (s~l)i (S~lk) J. i=1.2 ••••• N. 
O.~ k=l k.~ k.~+ 

Evaluate (s-l) (s) 
€k' and i k .• i=1.2 ..... N. k=r.r-1 ..... 1 

,1 ,1 . 

alternately. (we shall rewrite the relations (4.3.43) after 

the substitution for the u's given by (4.3.54». 

r-k+1 
€k(S~l) = .-t (s~l)d~s)_ L 

.~ ~.~ k.~ ~-k . 2 

and (s) 
i

k 
. 

,~ 

J= 

(s) d (s) 
i k+j-1.i i-(k+j-1) 

t (s-l) 
j-1,i-k 

i=1,2, ... ,N, 
k=r,r-1, ••• 1. 

(4.3.56) 
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the process of computing the two quantities is as given 

for (4.3.45). 

S 4" tep Finally, see step 5 (or step 4') of the previous 

procedures. 
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4.3.5 ROUNDING ERROR ANALYSIS 

The error analysis for the algorithm solution can be discussed 

briefly as shown below. 

We shall consider the systems (4.3.8a) and (4.3.8b) (or their 

equivalent (4.3.9a) and (4.3.9b) respectively), i.e., 

L1. = .:. (4.3.57a) 

and u~ = 1. (4.3.57b) 

In fact, the system (4.3.57a) is similar to the system (4.2.62) 

from the structure of the coefficient matrix (or the locations of the 

non-zero elements) viewpoint. On these grounds, the error analysis of 

(4.3.57a) takes place in an analogous manner to the system (4.2.62) 

and ends up with similar result, i.e., 

By assuming 6L to be the perturbation in L of (4.3.57a), then 

we should obtain the following bounds for the modulus of 6L, that is 

I - -t 161 ~(2.0l)g 2 E, (4.3.58) 

where g is taken as the modulo of the maximum element during the 

elimination procedure of (4.3.57a), and the matrix E is given by 

(4.2. 77b). 

A similar analysis of subsection 4.2.7 can be applied to the 

system (4.3.57b) to derive the bounds of the perturbation in U, oU (say), 

and finally gives the result, 

where g is taken again as the modulo of the maximum element appearing 
,. 

throughout the elimination process'of (4.3.57b), and matrix E is of 

the following form (c.f. E in (4.2.77b», 



th 
r 

(r+1)th 

col. 
+ 

(N-1) (N-1)- - - (N-r+1) (N-r) 0- - -, , , 
" , 

, , " " " , " , , 
" , " , 

row+ (N-2r+1)' 0- -
I , 

(N-r) ____ (N-r) '(N-r) (N-r) 

(N-r-1) (N-r-l)_. _ (N-r-1) 
I 
I 
I 
1 

1 
E = 'I 

I I 

3 3------3 

2 2-----2 
1 1 _____ 1 

o 0------ 0 

r--.... 

" 
, 

0 , , , 
I , , , , , , 

" , , , , 
" , , , , 
" , 

" 

0-------

, 
" , " 

4 

, 
, 

4 
, , , , 

, 

-0 

I 

-0 

3', I 

I 

2 0 

1 

3 

, 2 
I , , 1 , , 

- - - 0 
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+(N-r) th 

row 

(NXN) 
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4.3.6 CONVERGENCE ANALYSIS OF THE ITERATIVE PROCEDURE APPLIED IN THE 

ALGORITHM FICM2 

, 
We shall consider the theoretical analysis of the convergence of the 

iterative procedure summarized by step 1', up to step 4' in the 

preceding subsection (which also applies to the other iterative 

procedures given earlier). Previously it was shown that the iterative 

procedure is used to determine the unknown elements of the matrix 

factors Land U of A, or, alternatively, to solve the non-linear 

equations (4.3.4) (or (4.3.5». 

After some rearrangement of (4.3.4) we rewrite the system as 

follows (where i=l,Z, ••• ,N for each equation) 

u 1 . r+ ,1. 

u ·+R.1 ·a . 1 r,.l ,1. r,l.-

Uz ·+R. l .u3 ·_l+R.Z .u4 ·_Z+ .. ·+R. _Z·u • ZR. l·a. 1 
,1. ,1 ,1 ,1. ,1 r ,1. r,l.-r+ r- ,1. r,l.-r+ 

ul +R. 1 ,L·u2 . l+R.Z .u3 . Z+···+R. l' u . lR. .a . ,1.- ,1. ,1.- r- ,1. r,l.-r+ r,l. 'r,1.-r 

R. . u
1 

. r,l. ,l.-r 

R. l'u . l+R. .u2 · r- ,1 1,1.-r+ r,l. ,1-r 

R. 2' u . 2+R. 1 .u2 · l+R. .u3 · . r- ,1. l,l.-r+ r- ,1. ,l.-r+ r,l. ,l.-r 

R.1 .ul ·_l+R.Z .uz ·_Z+R. 3 .u3 '_3+"'+R. .u . 
,1. ,1. ,1 ,1. ,1 ,1 r,l. r,l.-r 

= a r,i 

= 
(4.3.5 
al' r- ,1. 

= a r-Z,i 

= a
1 

. 
,L 

= a
O 

• 
,L 

= a -r,-i 

= al' -r+ ,1 

= a -r+Z ,i 

= al' - ,L 

(4.3.59b) 

where the second suffix of the u's is illustrated in (4.3.4). We also 

notice that the u l' is replaced by a . by virtue of (4.3.59a) in 
r+ ,1 r,l. 

the appropriate equations of (4.3.59b). 

It can easily be observed from (4.3.59b), where the suffix i runs 

from 1 to N for each equation, that the system (4.3.59b) consists of 

a) 
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2rN non-linear equations. These equations can be written compactly 

(in a vector-form of 2rN components) as 

!:. (~) = Q , (4.3.60a) 

T 

} where x = [xl ,x2'··· , x2rNl , 
T (4.3.60b) 

and F = [f l ,f 2,·· ., f 2rNl 

The vectors in (4.3.60b) may be partitioned into 2r sub-vectors of 

N components t i.e., 

x 
1 2 2r 

= [~ ,~ ""'~ 1 
and F 

1 2 2r 
= [f ,f ,···,f 1 

th k k k 
this means that the N components of the k sub-vector, ~ =[xl, ••• ,xNL 

!k=[f~, •.• ,f~l are expressed in terms of the corresponding components of 

the vectors ~ and!:. in (4.3.60b) respectively: 

k 

Xki =_ x(k-l)N+i ) 

f f i=1,2, •.• ,N, k=1,2, ••• ,2r. 
i - (k-l)N+i 

Furthermore, we now define x~ in (4.3.61) in terms of 
1 

(4.3.61) 

the unknowns 

of the equations (4.3.59b) as follows, (for i=1,2, ••• ,N) 

and 

(or 

1 
x. 

1 
= u • , 

r,1 
2 x. = 
1 

r 

u l' , r- ,1 

x. = u 
1 

. , 
1 ,1 

r+1 x. = ~ • , 
1. r,1. 

r+2 
x.. = ~ l' 1. r- ,1. 

2r 
x. = 1.1 • 

1 ,1 

k 
Xi = ur-k+l,i and 

r+k 
xi = ~r-k+1,i' k=1,2, ••• ,r). 

(4.3.62) 

k Thus, equations (4.3.59b) can be rewritten in terms of x. using the 
1 
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definitions (4.3.62) as follows (after some rearrangement which includes 

defining the f~ in (4.3.61», 
1 

1 1 2r 
f. = -(x.+x. a . 1-a 1 .) 

1. 1. 1. r,l- r- ,1. 
= 0 

f 2. 2 2r 1 2r-l 
= -(x.+x. x. l+x . a . 2-a 2') 

1. 1. 1. 1- 1. r,l.- r-,l. 
= 0 

r-1 r-1 2r r-2 2r-1 r-j r+3 1 r+2 
f. = -(x. +x. X. l+x. X. 2+" .+x. X. 2+x. a. -a .)=0 

1. 1. 1. 1- 1. 1- 1. l-r+ 1. r l-r+l 1,1 

f r = r 2r r-l 2r-1 r-2 r+Z 1 r+l 
1. -(x.+x. x. l+x . X. 2+"'+x . X. l+x. a . -aO ') = 0 

1. 1. 1- 1. 1- 1. l.-r+ 1. r,l.-r ,1 

f~+l _(x~+l r -a .) 0 = x. = 1 1 1-r -r,l. 

f~+2 _(x:+2 r r+l r-l 
= x. l+x. x. -a l') = 0 

1 1 l-r+ 1. 1-r -r+ ,1. 

f~+3 _(x~+3 r r+2 r-l r+l r-2 ) 0 = X. 2+x. X. l+x. x -a = 1 1 l.-r+ 1. 1-r+ 1. i-r -r+Z,i 

2r r Zr-l r-l 2r-Z r-Z r+1 1 
= -(x. X. l+X' X. Z+X. X. 3+"'+x. x. -a 1 .) 

1. 1- 1. 1- 1. 1- 1. l.-r - ,1. 
= 0 

(4.3.63) 

In fact, it is necessary to emphasize that (4.3.63) is the 

explicit form of (4.3.60), whilst the implicit form may be given by, 

1 1 1 1 2 2 Z 2r Zr 2r 
fi((x1,x2,· .. ,~),(xl,xZ"",xN),,,,,(x1 ,x2 , ... ,~» = 0 

Z 1 1 1 2 Z Z 2r 2r 2r 
fi((x1'X2"",~),(xl,xZ, .. ·,~), ... ,(x1 ,x2 , ... ,~» = 0 

(4.3.64) 

k where each of f., k=1,Z, •.• ,2r is (generally) taken to consist of ZrN 
1 

arguments. 

The 2rN non-linear equations in (4.3.63) can be solved by a so-

called Seide1-type (or Gauss-Seide1 (Ortega and Rheinbo1dt (1970» 

iterative procedure, whose principle is that the most recent information 

obtained is immediately exploited in the following steps. The sth 
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available step of the equations (4.3.63) is as follows: 

fl « (xl) (s) (xl) (s) ( 1) (s-l) ( 1) (s-1) ( 2) (s-l) J 
i ~l ' ... , i-I ' xi ' ... , ~ ,\ xl ' ... , 

(x2) (s-1» « 2r) (s-l) ( 2r) (S-l») _ 0 = fl« 1) (s-l) 
N ' ••• ,xl ' .. " ~ - - i . Y i 

2 1 (s) 1 (s) 2 (s) 2 (s) 2 (s-l) 2 (s-1) 
L«(xl ) , .•• ,(x

N
» ,«xl) , ... ,(x· l ) ,(x.) , •.. ,(x

N
» , 

1 ~ . 1- 1 

« 2r)(s-1) ( 2r)(s-1») = 0 = f2« 2)(s-1» ••• , Xl ' ••• , x.. - . y. 
N 1. 1. 

2r 1 (s) 1 (s) 2r-1 (s) 2r-l (s) 2r (s) 
fi «(xl) , ••• ,(~» "",«xl ) , ..• ,(~ » ,«xl) , ••• , 

. (2r )(s) (2r)(s-1) ( 2ds-l) = 0 = f2r« 2r)(s-1» x'
l 

,x. , ... ,x
N
)) _. y. 

L- L L L 

(4.3.65) 

On the other hand the one-step Gauss-SeideZ-Newton method (Ortega and 

Rheinbo1dt (1970), page 220, see also Ames (1969), page 250 and Wendroff 

(1966), page 162», would take the following form: 

= (X~) (s-l) 
L 

af~r ( ___ L_« ~r)(s-l»-l 
2r YL ax. 
L 

(4.3.66) 

k where y., k=1,2, ••• ,2r are defined in (4.3.65). It is clear that the 
L 

relations (4.3.66) involve the evaluation of 2rN partial derivatives. 

(which are required for the Gauss-Seide1 Newton process, (Ortega and 

Rheinboldt (1970), page 223). 

However, the partial derivative terms of (4.3.66) can be derived 

from (4.3.63) to obtain, 



(or 

Of~ 
_1_ = -1, 1'-1 Z N 1 -" ... " 
aX. 

1 

at~ 
1 --2 = -1, i=1,2, ... ,N, 

aX. 
1 

af: 
~ = -1, i=1,2, ... ,N, 
ax. 

1 

af r +1 
i r -::-:-,=-X i=1,2, ... ,N, a r+1 i-r' x. 
1 

afr +Z r 

a 
r+Z = -xi - r +1' i=l,Z, .•• ,N, 

x. 
1 

af~r 
1 r '12 N ---2-- = -x. l' 1= , , ••• , , r 1-ax. 
1 

af~ 
1 k = -1, 

ax. 

af:+k 
1 r 

---="'+"-k = -X
1
'-r +k- 1 ' i=1,2, ••• ,N, k=l,Z, ... ,r) 

axr 
1 i 

172 

(4.3.67) 

The substitution of these terms in (4.3.66) gives the result, 

and 

(4.3.68a) 

( r+Z) (s-l) fr+Z« r+Z) (s-11/( r )(s) 
= xi + i Y i ') xi - r +1 ' 

(4.3.68b) 

• 

k k Moreover, by substituting in (4.3.68a) for f.(y.). kc1.Z ••••• Zr as 
1 1 
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defined exactly in (4.3.63). the relations in (4.3.68) now take the form. 

( 1)(s-I)_« 1)(s-l) ( 2r)(s-l) _ ) 
= x. x. + x. a. 1 a l' 

1. 1. 1. r,l- r~,l 

Zr (5-1) 
= a 1 .-(x. ) a. 1 r- tl. 1. r,l-

( 2) (5-1) _« 2) (s-I) ( 2r) (5-1) (1 ) (5) ( 2r-l) (s-l) 
= x. x. + x. x. 1 + x. a . 2 

1. 1. 1. 1.- 1. r,l.-

-a 2 .)= a 2 ._(x~r) (5-1) (x~ 1) (s)_(i r - 1) (s-l~ 
r- ,1 r- ,1 1. 1.- 1. r,i-2 

( r-l) (5)' _ ( r-l) (5-1) « r-l) (5-1) (2r)(s-l) r-2.(s) 2r-l (5-1) r-3Js) 
x. - x. - x. + x. (x. ~) +(x ) (x 

1 1. 1 1 1-1 i i-

( r+3) (5-1) (1 ) (5) ( r+2) (5-1) ) 
+ ••• + x. x. 2 + x. a. I-a 1 . 

1. l-r+ 1. r,l-r+ ,1 

= _( 2r)(s-1)( r-2)(s)_( 2r-l)(s-I)( r-3)(s)_ _ 
a 1 · x. x. 1 x. x. 2 ••• 

,1. 1. 1.- 1. 1.-. 

_( r+3) (5-1) ( 1 )(5)_( r+2)(s-l) 
x. x. 2 x. a. l' 1. l.-r+ 1. r,l-r+ 

(xr.) (5)' (r)(s-l)_« r)(s-I) (2r)(s-l)( r-l)(s) ( 2r-l)(s-l)( r-2)(s) 
= x. x. + x. x. 1 + x. x. 2 

1. 1. 1. 1. 1- 1. 1.-

+ + ( r+2) (s-1) (1 ') (s) ( r+l) (s-l) _) ••• x. x. +1 + x. a . aO ' 
1. l.-r 1. r,l.-r ,1. 

= _( 2r) (s-I) ( r-l) (5) _( Zr-l) (5-1) (r-Z)_ _ aO ' x. x. 1 x. x. 2 ••• 
,1 1. 1- 1. 1- , 

( r+2) (s-l)( 1 )(5)_( r+l) (s-l) x x. x. a . 
1-r+l 1 r.1-r 

(4.3.69) 

If we define the quantities Ek .• k=r.r-l ••••• l. i=l.2 ••••• N as 
. .1 

f r+k . 1 Z k 1 ~ E k 1 . = . ,1=, , ... ,N, = ,~, ••• ,r, 
r- +.1 1 

then by substituting in (4.3.68) for Ek . as in (4.3.70). and for 
.1 

(4.3.70) 

x~. j=I.Z ••••• 2r in terms of the uts and the ~'s as defined in (4.3.62) 
1 

we have from (4.3.68) the following result (noting that (4.3.68a) is 

replaced by its equivalent form (4.3.69», 



(s) 
u . = 

r ,l 
(s-1) 

a 1 0-~1 0 a 0 1 r-,1 ,1. r,1-

(5) (5-1) (5) (5-1) (s) (5-1) (s) 
u2 0 = a l o-~l 0 u3 0 1-~2 0 u4 0 2-"'-£ 2 oU 0 2-

,1. ,1 ,1 ,1- ,1 ,1- r- ,1. r,1-r+ 
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I 
~ (5-1) 

- r-l,iar,i-r+l (4.3.71a) 

(s) 
u

l 
0 

,1 

,(5) = ,(s-l)+ (5-1)/ (s) 
"1 0 " loe 10ul

o 1 r-,1 r- ,1. r- ,1 ,l.-r+ (4.3.71b) 

Hence, it can easily be noticed that the relations in (4.3.7la) and 

(4.3.7lb) coincide with the corresponding ones in step 2' and step 3' 

respectively of the iterative procedure given in subsection 4.303. 

Convergence Criteria 

The investigation of the convergence of the above non-stationary 

process is similar to the stationary processes discussed in Section 2.2, 

(Chapter 2), where in both cases the formulation of the equation (2.2.22) 

is required, certainly the iteration matrix of this equation (unlike the 

stationary case) varies at each.step of the non-stationary process. 

Moreover, as in the linear case (Section 2.2) the coefficient matrix is 

split into three matrices, the Jacobian matrix, J, of the non-linear 
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equations (4.3.63) is also split as follows. (at (s_l)th step of the 

iteration) • 

J (S-l) = D(s-l)_L(s-l)_U(s-l) 0 1 , s= , , ••• , (4.3.72) 

where D. Land U are non-singular diagonal. strictly lower and upper 

triangular matrices respectively. 

The Jacobian J is of order 2rN. and its partial derivatives can 

be derived from the equation (4.3.63). It can be introduced in the 

following block form. 

J l •l J l •2 J l •3 • • • J 
1.2r 

J 2•1 J 2•2 J 2•3 • • J 2•2r 

J = • • (4.3.73a) 
• • · . • 

• • • 
J J J 
2r.l 2r.2 2r.3 • • • J 

2r.2r (2rNx2rN) 

where the matrices J
k 

• k.v=1.2 ••••• 2r are of order N each. and their .v 
coefficients are determined from (4.3.63) as follows. 

J = [:f~ J, i,j=1,2 •... ,N. 
k.v x(v-l)N+j· 

(4.3.73b) 

Furthermore. since the derivatives (4.3.73b) were derived from 

(4.3.63) it can be noticed that some of the submatrices of J in (4.3.73a) 

are zero (i.e. null matrices); these are. 

J .. = 0 , j=i+l.i+2 •••• ,2r-i. i=1.2 ••••• r-l, 
1.J 

J k . = 0 . r+ .J 

J 1 . r+k. r+ +J 
} j=1.2 ••••• r-k. 

= 0 
k=l,2, ••• ,r-l. 

We note that this only applies for r>l. 

Therefore. by virtue of (4.3.74). the matrix J in (4.3.73a) 

becomes. 

(4.3.74) 



176 

J l • l 
J 
1.2r 

J 2•1 J 2•2 0 J 2•2r- l J'2.2r , ... " 
, 

I ... 
" , 

I "- " I .... 
J' 

I ... " I J J J _ -J 
r.l r.2 r.r r,r+l r.2r 

J = • (4.3.75) J J 
0 " 

r+l,!' r+l.r+l 0 ,- I I ..... 
,- I .... 

"-,- I ..... 
" J I J' ...... 

J ,/ - - - - - - _ .... J
2 

2 
2r.l 2r.r 2r.r+l r. r 

noting that the upper submatrices (including the diagonal) are diagonal 

submatrices and -J ..• i=1.2 ••••• r are unit matrices. whilst the lower 
1.1 

off-diagonal are sparse submatrices with N elements each. 

However. the iteration matrix M of the equation (2.2.22) takes 

the following form. (s-l) (5-1) (s-l) -1 (6-1) 
M = (0 -L ) U • (4.3.76) 

where D.L and U are defined in (4.3.72). 

Thus. the scheme (4.3.66) converges to a solution of (4.3.63) 

provided that the iteration matrix M(s-l) of (4.3.76) has the property 

required for the linear case (Section 2.2) (see Ames (1969), that the 

spectral radius, p(M). is less than 1. 

In this respect. we may formulate a convergent condition for the 

special case. when r=l. For this particular case. the Jacobian matrix 

J(r=l) has the form. 

J(r=l) = • 

where J. '. i.j=1.2. can be expressed from (4.3.73b) as follows: 
1.J 

(4.3.77) 



af~ 
= ..-2:. ax. 

J 
1 af. 
~ 

= ."....::-­ax. .. 
N+J 

i,j=1.2, .•. ,N 

2 where x. .. is ~quivalent to x. by the assumption (4.3.61). 
N+J J 

The derivatives (4.3.78) can be derived from (4.3.63) in the 

following manner, 

-1 

2 -x 
2 

-1 

o 

" " 

o 

"-
"-

"-
" 

o 

" " .-1 NxN 

o 
2 -x 
1 

and J 2,2 = 

o 

1 -x 
1 

o 
.... 

" " 

177 

(4.3.78) 

o 

-a 
-l,N-l NxN 

(4.3.79) 

, 
.... 1 
-~-l NxN 

(4.3.79) 

By expressing J(r=l) in terms of its coefficient matrices given 

in (4.3.79) and the splitting procedure as in (4.3.72) then the matrices 

D-L and U can be obtained in the form, 



-1 
-1 , , , , 
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-1 o 
D-L = th 

+(N+1) row (4.3.80a) 

and 

U = 

1 -x 
1 

1 -x 
2 

x3 
, 0 , 2 , 

, , 
.0, 

, 2 

~ 

(N+l) th col 
~ 

-a1 N , 
-a1 1 , 

, 

-a1 2 , , 
" 

o 

, , , 
, 1 

-~-1 (2Nx2N) 

o 

, 
" " 

-a1,N-1 

It is easy to invert the matrix (4.3.80a) which gives, 
(2Nx2N) 

-1 
(D-L) = 

-1 

1 -l/x 
2 
.... 

" 

o 

" " .... 
..... 1 
-l/x-. 

N-l 

(4.3.80b) 

th 
+ (N+l) row 

(4.3.80c) 

(2Nx2N) 



Subsequently, we can obtain M at every step in (4.3.76) from the 

product of the matrices (4.3.80b) and (4.3.80c) to give 

o 

• 
-------

M = 

I 

la 
I l,N 

o 
, 
" 
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(4.3.81) 

o 

o 

(2Nx2N) 

Due to the sparsity of M and its above structure, we can proceed to 

construct the characteristic polynomial in A (see Theorem 2.4.1, Chapter 2). 

2 

NN 
O=det(M-AI)=(-l) A 

-A 

o 

xl a1 ,N-1 
1 
~ 

(NxN) . 
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x a 
x N 1.N-2 x ••• 

2 ] 
1 . 
~-l 

(4.3.82) 

2 
By substituting for x .• i=1.2 •.•.• N from the appropriate equation of 

1 

(4 3 63) ( . h .. h fr+l). (4 3 82) h . •• 1.e. t e equat10n wtt . 1n •. • t en we obta1n. 
1 

or N 

TT 
i=l 

a a 
-1.2 1.N 

1 2 x 
(xl) 

x 

x ••• x 

= 0 

(4.3.83) 

Thus. to ensure that M in (4.3.76) possesses a spectral radius less 

than 1 in modulus for the special case (i.e. r=l). we should have the 

condition, 

N a 1 .al • 
') l/N 

N 
t-~·i, ,alii, ) l/N • 

1>' A' = ( 'TT 
- ,1 2;1 ( TT (4.3.84) 
(x~)2 -

i=l i=l x. x. 
1- 1 1 

to be satisfied at each step of the iteration. 

On the other hand. if we now assume that (x~)(s-l)=o at s=l (i.e. 
1 

the initial solution). then. 

I 
xi = aO•i • for i=1.2 ••••• N 

and on substitution in (4.3.84) we obtain 

, A 1 = ( -IT , a_I. i I ,al. i I> I IN < 1-
'laO ' aO ' 1=,1 ,1 

(4.3.85) 

Moreover. if the coefficient matrix is symmetric then (4.3.85) becomes. 

< 1. (4.3.86) 



and if the matrix is constant at the same time, these relations take the 

simpler form, i.e., 

al. 2 
~ I < 1 for any i a
O 

. 
,1 

(4.3.87) 

which can be readily identified as the condition for diagonal dominance. 
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4.4.1 ALGORITHM FIRMl 

The type of linear system of equations considered in this section is 

when the coefficient matrix is non-periodio and posse.sses real non-

constant elements. The matrix of the system (3.4.21) which is derived 

from the two-point boundary-value problem is·an example of the type of 

matrix that is under consideration with the present algorithm. 

The FI&~l algorithm differs fram the algorithms discussed in the 

previaus sectians for the periadic-type matrices in that it involves, 

(i) factarizing the caefficient matrix into two. pseuda-inverse rectangular 

upper and lawer triangular matrices and (ii) formulating a coupled system 

cansisting af underdetemined and overdetemined systems to. salve. These 

two systems will be solved in a related manner. The determination of the 

elements of the two factor matrices is completed by an iterative pracedure. 

The linear system related to. the present method is assumed to be of 

order N and has the form, 

-aO,l al,l a2, 1- - - - - - a r-l , 1 a 
r,l Xl zl 

a_ l ,2 aO,2 al,Z a Z,3- - --
__ a 

r-l,Z a x2 z2 ,r,2 
.... .... .... 0 I .... .... .... a_Z 3 ..... .... ..... .... .... I 

I , ... .... .... .... .... 
I 

.... ... ... ..... .... .... 
r+l .... .... ..... ... 

I ..... .... .... .... ... ... .... 

1 
I ... ... .... .... .... ... 
a .... ..... .... .... ... .... 
-r+l,r .... ... ... ... ... -- - .... .... 

.... ..... .... ... .... .... .... .... ... .... ... ... .... a -r r+l' . 
, ... , , ... , ..... ... , ... ..... .... ... ... .... .... = ... ..... ... .... , , , ... .... ... ... ... a ... ..... ... .... ... , ... .... , r,N-r ... ... ..... , ... ..... , ... ... ... ... ..... ..... ..... ... a ... ... ---' ..... ... ..... ... r-l N-r+l , ... ... .... ... ... I ' ... ... ... .... ... ... I ... ... ..... ..... ... ... , ... ... ... ... ... ' ... ... .... ... ..... ... al N-Z 0 ... ... .... ..... ... ..... .... , 

... .... 
..... , , ..... ... , ..... ... .... al,N-l ... , , ... , ... ..... ... ... ... ... , ..... ... 

... ' ... , 
a a . __ .a 

a-l,N aO,N 
X

N ZN -r,N -r+l,N -Z,N 

r+l (4.4.la) 



or in a compact form 

(4.4.lb) 

where the matrix operator A is an NxN non-periodic matrix, of bandwidth 

(2r+l), such that N~2r+l, r~l. 

For the solution of the linear system (4.4.1) we assume that matrix 

A can be factorized into rectangular matrices, U and L (say), such that 

UL = A . (4.4.2) 

The matrix U has dimensions Nx(N+r) and L has dimensions (N+r)xN; . 

the former matrix has an upper triangular form whilst the latter has an 

unit lower triangular form. To be precise, U and L have the following 

form, 

U = 

-<----r 

uI ,2 u2 ,2 -. - ur ,2 ur +I ,2 
o 

....."'" "" ", " ...... ,," .......... 
,,"'" "u 
", "r+l N-r 
"" "'I 

..... " ..... 'u I u 
,', r,N-r+1 r+I,N-r+l 
"" " I " " " 1'," 
"" I ..... , , 

" I ' 
, " I " 
", u 2 ,N-Il u 3,N-1 ", 

, 
o " 

o 

" , , 
"I ' u u -----u I,N I 2,N r,N 

u r+I,N-I 

u r+l,N 
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and 

(Nx(N+r») 

(4.4.3a) 



L = 

j 
r 

1 

1 

g, 
1,1 

1 

g, 
2,1 
I 

g,l 
1,2 .... 

g, .... 
2,2 
I .... 

1 I 
g, I 
r-l,1 1 

g, 1 

r,l g,1 
r,2 

"-

" 

" 

.... 
" ,.. 

" "- .... 
" .... 

" " 
" " " , 

o " g, 
r,N-r 

" .... 
" 

" " .... 
" , .... 

" " " 
, " 

" " 

g, ---g, 
r,N-r+1 3,N-2 

" .... 
" , 

0 " 

" 

g, 

" 

o 

1 

2,N-1 g,1 N , 

..... 

I 
I 

g,1 
r-l,N 

.... " g, 
r,N 

184 

(4.4.3b) 

«N+r) xN) 

For the definition of Ul,V
l

, L1+Kl see subsection 4.4.3. 

From the factorization of the matrix A defined by (4.4.2), it 

follows that the system (4.4.1) is replaced by the alternative system 

ULx = z , (4.4.4) 

whose method of solution will be discussed in the next subsection. 

Now having completed the product of the two rectangular matrices 

U and L given in (4.4.3), we can equate the obtained elements of the 

matrix A (by virtue of the relation (4.4.2» and so derive the following 

non-linear equations for determining the elements of Land U, 

u . g, • 
1,1 r,l.-r = a . ,i=r+l, ••• ,N, (4.4.5a) -r,l. 

u1 . g, l' 1+u2'g, • 1 = a +1" i=r, ••• ,N} ,1 r- ,l.-r+ ,1. r,l.-r+ -r l. 

-------------------------------------------------~-._ 4.4.5b) 
U 1 .R. • • 1+u2 .R.2 • l+"'+u .R. • = al" 1-2,3, ••• ,N 

,1. 1.,1.- ,1. ,1.- r,l. r,l.-l - ,1 

u1 .+u2 ·g,1 .+ ••• +u .R. 1 .+u .R.. 
,1. ,1,1. r,l. r-,1 r+l,1 r,l. 

= a
O 

., i=l,2, ••• ,N, (4.4.5c) 
,1 



u2 .+u3 .1-1 , 1+"'+u 1·1- l' 1 ,1 ,1 ,1.+ r+ ,1 r- ,1.+ = a1 .• i=1.2 ••••• N-1. 
.1 
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-----------------------------------------------~--------------

u .+u 1 .1-1 . = a l' .i=1.2 ..... N-r+1. r,1 r+,1 ,1+r-l r- ,1 

U r +1 ,i a • , i=1,2, ... ,N-r. 
r.1 

(4.4.5d) 

For the special cases where the matrix A of the system (4.4.1) 

is tridiagonal or quindiagonal. the matrices of (4.4.3) are of the form. 

(i) for r=1, 

U = 

(r~1) 

and 

(ii) r=2, 

and 

U = 
(r=2) 

L = 
(r=2) 

1 

1-1•1 

1-2 •1 

0 

1 

1-1•2 1 
.... 

1- 2•2 
.... 

... ... 

0 

.... ... 
.... .... ... ... .... .... .... ... 
1-2 - _ :.J 

o 

and L .. 
(r=1) 

o 
(4.4.6a) 

(4.4.6 b) 



Consequently, the equations in (4.4.5) become, for these two 

special cases, 

in case (i), 

u l ,i l '-I ,1. ,1. 

u
l 

.+u2 .i
l 

' 
,~ ,~ ,~ 

u2 . 
,1 

= al" i=2, ... ,N, 
- ,1 

ao ' 
,1 

i=1,2, ... ,N, 

i=1,2, ... ,N-l, 

and in case (ii), 

ul .i2 '-2 = a 2 ., i=3, ... ,N, 
,~ ,1 - ,1. 

Ul .il '_1+u2 .i2 i-I = al' , i=2, ... ,N, 
,1. ,1. ,1. - ,1 

U
l 

.+u
2 

.t
l 

,+u
3 

.i
2 

• = aO ., i=1,2, ... ,N, 
,1. ,1. ,1. ,1. ,1 ,1. 

u2 .+u3 ,i l . 1 = a
l 

., i=l,2, .•• ,N-l, 
,l. ,1 ,1.+ ,1 

U3 . = a
2 

., i=l,2, ••• ,N-2. 
,1. ,1. 

(4.4.7a) 

(4.4.7b) 

Furthermore, the solution of the system (4.4.1) with A symmetric 

has, for the cases of the tridiagonal and qunidiagonal matrices with 

constant,elements been the subject of investigation by Evans (1972) 

and Oko1ie (1978) respectively. The matrix equation of the two cases 

can be written as follows: 

For the tridiagonal case, 
., 

aO 
a

l Xl zl 

al 
aO a l 0 

... - ... 
.... ... .... (4.4.8a) ... , .... = 

.... ... -... .... ... ... ... .... ... ... .... ... ....a 
0 

... '.... I ... - ... I 'a 'a ~ zN I 0 

.. .... 
(4.4.8b) or A x = z , 1-

and for the quindiagonal case, 
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aO a1 
a2 xl zl 

a1 aO a1 a2 
0 

a2 
a

1 
a
O 

a1 a2 
\ \ \ \ 

\ \ \ \ 
\ \ \ , = (4.4.9a) , 

\ \ , 
\ \ 

\ \ \ , , \ , , \ , aZ \ 
\ \ \ 

0 \ 
\ 

\ \ 
\ , a

1 \ \ 
\ 

\ \ , I 
aZ at aO x

N zN 

or A2~ = Z . (4.4.9b) 

Evans. (197Z) suggested that the factorization of the matrix A1 in 

(4.4.8) can be of the form. 

where 

and 

or 

where 

1 Z -1 -ex aO(l+ex ) , , 
\ 0 I , 

1 , 
I 0 , , , 

\ \ I Q = , 
\ I Dl = , , , 

I 
, , , 

0 , ' I 

0 , -ex I , I 
'1 I-ex 

I NX(N+l) 

Z 2! ex = -2a
1
/[ao+(a

o
-4a

1
) 1 

Hence. from (4.4.10) the system (4.4.8) becomes. 

TA " D1QQ ~ = ~ 
T -1", 

QQ x = D z = _n • 
- 1-

, 

~=[n1 ••••• nN1T and ni=(1+ex2)~/ao' i=1.2 ••••• N. 

(4.4.10) 

0 

, , , 
a~ (1 +ex Z) -1 NXN 

(4.4.11) 

Oko1ie (1978) extended the idea of the factorization (4.4.10) to the 

quindiagona1 matrix; and suggested that the matrix A2 of (4.4. 7b) can be 

factorized as 
(4.4.1Z) 

where 
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1 -Cl -s , 

= 

, 
1 ' 

, 0 , , , 
0 , , , , , I , 

P = , , 
'-Si DZ , -Cl , I , 
-Cl I 0 1 -s I 

o 
I -s 1 -Cl Nx(N+Z) I 

and Cl = sa/(l-S)aZ } tl = ClaZ 1(\ +aZCl) 

Hence from (4.4,.lZ) the system (4.4.7b) becomes 

D ppT; = Z' 
Z -

T", -1,.... 
pp ~ = DZ Z = s or 

, , , , , , 

Z Z-and s.=(l+Cl +S )z./aO' i=l, ••• ,N. 
1 1 

where 
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o 

, 

(4.4.13) 

(4.4.14) 

Finally, by inserting auxiliary vectors into (4.4.11) and (4.4.14) say 

~ and i respectively, such that these vectors are defined as 

T 
~ = [Y1'···'YN'YN+1] , 

'" T x.. = [Y1'''·'YN'YN+1'YN+Z] , 

then, we may write the system (4.4.11) as, 

Q~ = !l 

and T 
Q~=~ 

and the system (4.4.14) as 
pi = S 

and 
T- _ 
p~=~ 

(4.4.15a) 

(4.4.15b) 

(4.4.16a) 

(4.4.16b) 

,The treatment of the system (4.4.15a) was considered by Evans (197Z) 

via an elimination process, ending up with relations in which each of the 

components Y1'YZ""'YN of the vector ~ is expressed in terms of its 

component YN+1' i.e. 
N-k+1 2 N-k 

Yk -Cl YN+l =nk+Cl'\+l+Cl '\+l+"'+Cl ~' (4.4.17) 

k=1,2, ••• ,N-1, 



whilst the system (4.4.l5b) yields the result, 

i-l 
x. = y.+a.y. 1+" .+a. Yl' i=l,2, ••• ,N-l 
~ 1 1-

N-l 
~ = yN+a.yN_l+···+a. Yl 

:;ow, substitutions for YN'YN-l""'Yl in (4.4.l8b) in terms of 

(4.4.l8a) 

(4.4.l8b) 

(4.4.l8c) 

YN+l , given by (4.4.17), together with (4.4.l8c), will give us the result, 

i N-l N+l N+2 2N 
~ = [nN+a.nN_l+···+a. nN_i+···+a. nI-a. nI-a. n2-···-a. nN]/ 

(1_a.2N+2) (4.4.19) 

Finally, the value of ~ having been determined, Y
N

+
l 

is obtained from 

(4.4.l8c), and then YN""'Yl are computed by the back substitution process, 

i.e., we have y. = n.+a.y. 1 ' for i=N,N-l, ••• ,2,1, 
1 1. 1.+ 

and the solution vector ~ is given by, 

X. = y.+a.x. l' for i=2,3, ••• ,N-l, 
1. 1. 1-

where, from (4.4.l8a) xl=Yl ' 

The amount of work involved in this special method is 4N additions and 

5N multiplications. 

A similar elimination procedure is extended to the systems (4.4.16) 

after the determination of the elements of the matrix P, i.e. a. and S. 

This may be done by solving a quartic equation for a. (or S) which can be 

derived from the two equations of (4.4.13), Okolie (1978) and Newton's 

method to solve the quartic equation. 

However, in analogy to (4.4.17), we can express the components Yi, 
YN of the vector Z in (4.4.16a), in terms of its last two components YN+l 

... 
and YN+2, i.e., 

..., ..., '" 
YN+1-j = cj+ej+1YN+1+ejSYN+2 • (4.4.20) 

c.=nN ·+l+a.c. l+Sc . 2' j=3,4, ••• ,N J -J J- J-

and e2=a., e.=a.e. l+Se. 2' j=3,4, ••• ,N+1. 
J r J-
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From the system·(4.4.16b), by a successive forward substitution 

process we have, 
i 

;C. ~ L e.y .. 1 ' i~1,2, ••. ,N. 
1 . 1 J 1-J+ 

J= 

(4.4.21) 

After considerable algebraic work (see Okolie (1978» we end up with 
N N 

two equations in the two unknowns, YN+l and YN+2 ' These equations are, 

where 

YN+2Rl = -(RzYN+l+R3) I YN+251 
= -(52YN+1+5) 

N 

N 2 
L c. 

j=l J 

R3 = S L e.c. 
j=l J J 

N 

R2 ~ e L e.e. 1 ' 
. 1 J J+ J= 

e.e. 2' J J+ 

N-l 
53 = S2 L e.c. 1 

. 1 J J + J= 

and the e's and c's are given in (4.4.20). 

(4.4.22) 

N '" After YN+l and YN+2 have been determined from (4.4.22), then from 

the system (4.4.la) we have, 

,... "',.., 
YN-i+l = ~N-i+l+aYN-i+2+eYN-i+3 ' i=1,2, ••• ,N 

and the vector solution ~ i~ given by (4.4.21) or from (4.4.l6b) 

and - ..., - ....., x. = y.+ax. l+Sx .. 2 ' i=3,4, ••• ,N. 1 1 1- 1-

The total amount of work required for solving (4.4.9) by the above 

approach, excluding the procedure of solving the equation (4.4.13), is 

of the order l3N multiplications and IlN additions. Okolie (1978) points 

out that this strategy is an unattractive method for the quindiagonal matrix, 

as in (4.4.9), when the coefficient matrix is symmetric and has non-

constant elements. This conclusion was based on the fact that the latter 



case leads to the solution of N quartic equations for the determination of 

the elements of the factor matrices a.,S .• 
1. 1. 

However, our alternative strategy for handling the' non-constant 

and non-symmetric matrix (of wide bandwidth) as in (4.4.1) has been 

discussed earlier for the factorization of the coefficient matrix, whilst 

the determination of the elements of the factor matrices and the solution 

of the coupled system will be considered next. 
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4.4.2 ALGORITHMIC SOLUTION OF A COUPLED SYSTEM 

The solution of the original system (4.4.1) can be investigated by 

considering its al ternative (4.4.4) which can be spli.t into underdeteI'mined 

and overdeteI'mined linear systems by inserting an auxiliary vector Z i.e. 

(4.4.23a) 

and L~ = Y.. , (4.4.23b) 

where the rectangular matrices U and L are given by (4.4.3), the vector 

. f· . [ ]T d Z cons1sts 0 N+r components, 1.e., ~ Yl""'YN'YN+l""'YN+r ' an 

the vectors z and x are both of N components as given in (4.4.1). 

This strategy of splitting the given linear system into two systems 

differs from the strategies adopted in the previous method since, (i) the 

systems (4.4.23a) and (4.4.23b) are underdetermined and overdetermined by 

r respectively, and (ii) these two systems. were solved separately in the 

previous algorithms whilst here they are treated in a coupled manner, 

so that the 'redundant' components of Z, i.e. YN+l""'YN+r are determined 

first, then the remaining components Yl""'YN' and finally the components 

xl""'~ of the solution vector are obtained. 

We shall first consider the general matrix analysis of the solution 

of the coupled system (4.4.23). Following Evans and Hadjidimos (1979) we 

consider the partitioned forms of the matrices U and L which are given on 

the right-hand sides of (4.4.3) respectively and hence we may rewrite 

(4.4.23) in the form, 

= z (4.4.24a) 

and 

(4.4.24b) 

where the matrix Ul is of size (NxN), V is (Nxr), Ll is (NxN) and Kl is (rxN), 



respectively, while the vectors 2 and Z are defined as, 
,. T _ [ T 
Xl = [yl,···,YNl , Xl = yN+l,···,YN+rl • 

The two systems of (4.4.24) can be easily converted to the form, i.e., 

'" -UlI. + VlI.=~' (4.4.2Sa) 

Ll~ " (4.4.2Sb) =I., 
,.., 

and Kl~ =X (4.4.2Sc) 

If we substitute Z from (4.4.2Sc) into (4.4.2Sa) then we have 

or (4.4.26) 

Therefore, after substituting 21 from (4.4.26), we write (4.4.2Sb) as 

-1 
Ll~ = Ul [~-VlKl~l 

-1 
or ~ = (UlLl ) [~-VlKl~l 

and finally, by rearranging this result the solution vector ~ may be 

(4.4.27) 

where I is the unit matrix of order N; noting that the relation (4.4.27) 

is valid if the appropriate matrices are invertible. 

However, our approach to determine the solution vector x unlike 

(4.4.27) does not involve computation of inverse matrices, but rather 

involves partially solving a linear system of order r to evaluate the 

unknowns YN+l""'YN+r ' followed by the back and forward substitution 

process. This can be accomplished as illustrated in detail below. 

The equivalent form of the systems (4.4.l8a) and (4.4.l8b) can be 

written respectively as, 
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and 

o Y 0 2 Y 1 2 Y 2 2 - - - - Yr 2 , " , 
'\ " \ , " , , " , , " ' ", ' , ',\ , 

" " " Y r, N-~ 
," I 

, " y , ' '\, ~ r, N-r+ 1 
, ',' I' '\ 

0 

o 
, " Y 2 , N-rl I , 

" I , 
" Y1 ,N-rt Y2,N-1 " 
'I ' 
'YO N 'Y1 N Y2 N--'·Yr N , I' , , 

"0,1 

"1,1 "0 2 , , , 
"21"12 ..... 

, '" "-1 ....., 

I "2,2 ..... ' 
I J' " 
1 I ...... .... 

o 
, 

, , , I 1 .... ...... 
Cl """........ r,l ...."" , 

" r,2 
" 

o 
" " , , 

" 

, ... , , 
... , 

" " 

, 

, .... 
" ... 

... ... 
" ... 

.... 
"0,N-1 

... .... 

"r,N-r - -- - "r,N-1 "1,N-1 "O,N 

o 

- -- - ---- -----
"r,N-r+1- - - -"2,N-1 "l,N 

" , 
" "2 N 

" I' 
" ..... 1 

" 1 ... 
... I 

'Cl 
r,N 

Xl 

x 2 . \.,~ .. 
'I 

X r+l 
I 
I 

= 
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Y1 zl 

Y2 z2 

I 

YN- r 
Z 
N-r 

= 

I 
YN zN 

YN+1 
I 
I 
I , 

YN+r 

(4.4.28a) 

Y1 

Y2 
I 

I 
I 
I 
I 

Yr +1 
I 
I 

I 
I 
I 

YN 

YN+1 , 
1 
1 
1 
I 
I 

YN+r 

(4.4.28b) 
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where Yk • = ~+l,i ' for k=O,l, ... ,r, i=1,2, ... ,N, (4.4.Z9a) 

and 

• 1 

eto . 
• 1 

~.i 

= 1. } 
i=1.2 ••••• N. 

= i k .• k=l.Z ••.•• r 
.1 

An elimination process now disposes of the elements Y
k 

.• 
d 

(4.4.Z9b) 

k=1,2, ... ,r, j=1,2, ... ,N-r, and Yk N-"' i=r-l,r-2, ... ,1, k=1,2, ... ,i 
.' 1 

of the system (4.4.Z8a) and the elements et
k 

.• k=1.2 ••••• r. j=l.Z ••••• N 
.J 

of the system (4.4.Z8b); viz. 

(1) For the system (4.4.28a). 

1 h th . h d hI' 1 th . we eave ,t e N equatIon unc ange • t en mu tIP y the N equat10n 
-Y 

by 1.N-l and add to the (N_l)th equation to obtain the new (N_l)th 
Ya N • equation and thus eliminate the 

-Y 
by 1.N-2 

YO N-l • 
new 

th ' 
(N-l) equation 

elements Yl N-l' We now multiply the 
• th . -rZ N-Z 

and the N equatIon by • and 
Y 

add 
th 

to the (N-Z) equation to obtain the new 
th O.N 

(N-Z) equation and 

thus eliminate the elements Yl N-Z and Y2 N-2' so. 
• • 

generally. to 

obtain the new (N_k)th equation. k=1.2 ••••• r-l. we multiply the 

mUltiply the (N_j+l)th equation (N-k) th "equation. k=1.2 ••••• r-l. we 
-y. 

by ),N-k 
Ya•N- k +j 

th 
• j=1.2 ••••• k and add these (k) equations to the (N-k) 

equation. thus eliminating the elements Yl.N-k.Y2.N-k ••••• Yk.N-k. 

We proceed now to eliminate r elements each time. so obtaining a new 

. th . h' f N 1 J equatIon. were J runs rom -r to • We mUltiply the (j+k)th 
-Y 

• k 1 2 by k.j equat1on, =, , ... ,r 
YO• j +k 

obtain the new jth equation. and 

Y
2 

., ••• , y .• 
,] r,] 

d dd h · th . an a to t e J equat10n to 

thus eliminate the elements Yl.j' 

The algebraic formulation of the above elimination procedure can 

be arranged as follows: 

gt.N+i = {

-I • for i=t 

o • otherwise 
}t.i=1.2 ••••• r. (4.4.30a) 

Let 
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and 
r 

g. • = L (-Y ./yo · )g. '+' k=l,2, ••• ,r, j=N,N-l, ••. ,I, 
~k,J 5=1 S,] ,J+s ~k,J s 

~ 

Z. 
J 

= 

where g. for t>N are given by (4.4.30a), and 
-k,t 

r 

YO . = 1 for all i>N, 
,1 

L (-Y .lYo ·+ );. +z. , j=N,N-l, ..• ,1, 
s=l S,J ,J s J +s J 

where ~ = 0 for all t>N. Zt 

(4.4. 30b) 

(4.4.30c) 

Thus, from the described elimination procedure which is formulated 

by (4.4.30), 'the system (4.4.28a) becomes 

YO,l gl,l g2,l - --- gr-l,l gr,l Yl zl 
~ 

YO 2 
0 

gl,2 g2 2- --- gr-l 2 gr 2 Y2 z2 , , , , , I I 
I 

" " 
I 

" 
. I , = , 

" , 
0 " I I , I , , 

YO,N-ll gl,N-l g2,N-l--- gr-l N-l gr,N-l , 
I I 

~ 

YO,N gl,N g2,f\!- - - gr-l N ., , gr,N YN zN 

YN+l 

(4.4.31) 

Then, the system (4.4.31) immediately yields the result, 

1 '" 
Y2 = Y

O 
2 (z2-YN+lgl,2-YN+2g2,2-"'-YN+r-lgr-l,2-YN+rgr,2)' 

, (4.4.32a) 
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or r 

- I YN+k~ .). 
k=l .J 

j=1,2, ... ,N. (4.4.3Zb) y. = _1_ (z. 
J YO• j .J 

For further analysis we may modify the system (4:4.32) to 

another form. Thus. if we define the quantities $ and IjJ as follows: 

1 ~ 
$. = -- z .• 

and 

J YO ' J .J 

IjJk . .J 
-1 

= --g 
YO ' k.j 

.J 

j=1,2, ... ,N, (4.4.33) 

, k=1,2, ... ,r, 

then from (4.4.33). the system (4.4.3Z) can be written in the form. 

(4.4.34a) 

or 
r 

y. = $.+ L IjJk 'YN+k' j=1.2 ••••• N. 
J J k=l .J 

(4.4.34b) 

The matrix form of the system (4.4.34) is given by. 

Yl <PI IjJl.l IjJZ 1 - - - - -1jJ 1 • r. YN+l 

YZ <P2 IjJl Z • . IjJZ.Z - - - --1J!r.2 YN+2 
I I (4.4.35a) I I 

= + I I I I 
I I I YN+r I 

1J!1.N-11J!2.N-l ----1J!r.N-l I I 

YN <PN 1/11 N • 
1J!Z N - - - - - 1J! , r,N (Nxr) 

or in a compact form. 

" " n = .2. + 1J!.!!. • 

where " T· w T 
.!!.=[Yl· .. ·.YNl and .!!.=[YN+l •• ... YN+rl • 

(4.4.35b) 

T 
.2. =[<Pl ·<P2·····<PNl . 

and 1J! is a rectangular matrix of size (Nxr). 

(II) For the system (4.4.Z8b). 

We keep the first equation unchanged. then we multiply the first 
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-" . b 1,1 equatl0n y -----
"0 1 , 

and add to the 2nd equation to obtain the new 2nd 

equation and thus eliminate the element "1 1. We nOW mUltiply the new 
-" ' . -"2 1 

2nd equation by 1,2 and the first equation by " and add to the 3
rd 

"0 2 "0 1 , , 
equation, and thus eliminate the elements "1 2 and "2 l' so, generally, , , 
to obtain 
-elk . k ,J-

. th . . 2 . h kth . b a new J equatl0n, J~ , .•• ,r we mu1tlply t e equatl0n y 

"O,j-k 
k~1,2, ••• ,j-1 and add these (j~l) equations to the jth equation, 

thus eliminate the elements "k,j-k' k~1,2, ••• ,j-1, for j~2, ••• ,r. 

l~e now continue the elimination procedure so that in the following i 

steps, where i runs from 1 up to N, we can eliminate r elements per ith 

b 
• . th 

step; to 0 taln a new 1 equation we mUltiply the (i_k)th equation by 

-elk i-k 
, , k=1,2, ... ,r 

"O,i-k 

. th . 
1. equat10n, and add these (r) equations to the 

thus eliminating the elements "1 . 1'''2 . 2'···'" . • 
,~- ,1- r,l.-r 

Finally, the elimination procedure carries over to the remaining 

h 1 . 1 h (N' k)th • b -"k,N+j-k t at we mu Up y t e +J- equatl0n y , 
" . k O,N+J-

equations, so 

k~j ,j+l, ••• ,r and j~1,2, ••• ,r and add these (k-j+1) equations to the 

('N .) th . . b . (N .) th . d h 1" +J equatl0n to 0 taln a new +J equatl0n, an t us e lmlnate 

the elements "k,N+j-k' j~j, ••• ,r, j~1,2, ••• ,r; consequently the 

elimination process for the system (4.4.28b) is complete. 

The implications of the above elimination procedure on the system 

(4.4.28b) are that (i) the (N+r)xN rectangular) coefficient matrix is 

left with the diagonal elements "0,1'''0,2' ••• '''0 N' and (ii) its (N+r)­

component vector on the right-hand side is modified; we shall denote 

f h " - ~ - ~ the new components 0 t 1S vector by Yl ,Y2 ' ••• 'YN' •• "YN+r' i.e., 
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N 

"0,1 
X· 

1 Yl ... 
"0 2 , 0 x2 Y2 

" .... .... ... ... (4.4.36) ... = ... 
0 "O,N-l ... 

"0 N xN YN --------- - -- - '-
'" . YN+l 

0 1 
I 

... 1 

YN+l 

... "" .., The components Yl .Y2 •••• 'YN+r of the vector on the right-hand side 

of the system (4.4.36) can be expressed as follows. according to the 

elimination procedure described earlier,: 

and 

j-l -et • 
.., \' ( k. l-k)"" y. = y. + L Y

J
'-k J J k=l "O,j-k 

.... 
y. = 

1 
y. + 

1 

rooa' k L ( k.1-)y' 
k=l "O.i-k 1-k 

, j =2, ••• ,r, 

, i=r+l, ••• ,N, 

, j=1,2, ••• ,r, 

where Yl 'Y2""'YN+r are as given in the system (4.4.28b). 

Further, in order to express Yj , j=l,2 •••• ,N in terms of Y
k

' 

(4.4.37) 

. .., 
k=l.2, ... ,J and YN+k' k=l,2, .... r in terms of Yl .... 'YN' a large amount 

of tedious algebraic work is necessary. Alternatively it may be easier 

to re-formulate (4.4.37) by introducing some extra notations which we 

now introduce. 

We define the quantities T. k' j=l,2, ••• ,N+r for k=O.l ••••• r and 
J, 

c. 0' j=1,2, ••• ,N+r"for i=O,l, ••• ,N as follows, J,1 
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T. 0 = 1 • J. 
(4.4.38a) "k . k 

T. k = _ tJ-
"O.j-k 

for l~j-k~N. k=1.2 ••••• r 
J • 

c. 0 = 1, for j=1,2, •.. ,N+r, 
J • 

c .. = 
J • L 

1. for i=o 
s 
L T. kC ' k . k' for s k=l J. J- .L-
s 

k~lTj.r-d+kcN+1-k.i-k' 

= {i. for i<r } i=1.2 ••••• j-1 
r. otherwise provided 2~j~N+1 

{

i. for i<d } wher:_d=N+r+1-j 
for s = d th . for L-1.2 ••••• N 

• 0 erwLse provided j>.N+2 

j=1,2, •.• ,N+r. (4.4.38b) 

where the quantities T. k are given by (4.4.38a). 
J. 

It can be seen that the values of the quantities c .. in (4.4.38b) 
J • L 

are computed recursive1y in Figure 4.4.1. where we have set up a 

computational scheme to illustrate this relation. 
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T4 3 , TS,3 

TS,4 

T' N+l,l 
, 

• 

• T N+l,r-l 

T N+l,r 

t~ 
(5) e 8 8 s---@ 4 N-2 ~ N- ~ 
8 9 Q 8 s---@ e 6) 4 N-2 

I I I I I I I I 
I I I I 
I I I I I I e e B ~ @---@ 4 N-2 ~ N- ~ 

FIGURE 4.4.1: Computation of the c .. of the relation (4.4.38) 
J,1. 

For example to obtain the element cS,4 (r is assumed to be ~S), we 

add together the products of the elements on the same diagonal (j<S, i<4), 

multiply by T .• on. the column i (i=4, in this case). i.e •• 
J.1. 

c = c4• 3T 4+c 2T 3+c T +c T 1 5.4 5. 3. S. 2.1 5.2 1.05. 

and c ..• where r+l~j~N+l. is derived from the r preceding elements on the 
J,1. 

same diagonal, whilst the elements c .. on each of the rows N+2,N+3, ••• ,N+r 
J ,1. 

are associated with appropriate elements, given by the relation of 

(4.4.38b), on the rows N,N-l •••• ,N-r+l. 
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Therefore, taking the assumption (4.4.38) we can rewrite the 

relations (4.4.37) in the form, 

'" Y1 
= c1,OY1 ' 

-YZ 
= Cz , OY Z +CZ , 1 Y 1 

-Y3 
= c3,OY3+c3,lYZ+c3,ZY1 

'" Y4 
= C4,OY4+c4,lY3+c4,ZY2+c4,3Y1 , (4.4.39a) 

'" YN = ~"OYN+cN,lYN-1+cN,ZYN-Z+···+cN,N-1Yl 
and 

'" YN~l = ~+1,OYN+1+~+1,lYN+cN+1,2YN-1+···+cN+l,NYl ' -YN+2 = ~+2,OYN+2+~+2,lYN+~+2,2YN-1+···+cN+2,NY1 ' 
(4.4.39b) 

-YN+r = cN+r,OYN+r+cN+r,lYN+~+r,2YN-l+"'+~+r,NY1 

Moreover, we can write the system (4.4.39) in matrix form (noting 

that we substitute c. 0' for 1, j=l,Z, ••• ,N as defined in (4.4.38b», i.e. 
J , 

from the relations (4.4.39b) we have, 

~ 

Y1 
1 Y1 

~ 

1 YZ cZ,l 0 Y2 
,., 

1 Y3 c3,Z c3,1 .... Y3 
I = ..... ..... ..... I (4.4.40a) c4 ..... .... ..... 

I I ,3 ...... ..... .... ..... .... .... 
I I .... .... .... ..... 

I ..... ..... ..... .... 
I c I .... ..... ..... ..... .... .... .... ..... I N-1,N-2 .... .... ..... ... ..... .... .... I .... .... .... .... - , " .... cN 1: 1 YN ~,N-1 - - - _cN,3 cN,Z YN , 

or in abbreviated form, 

li= "-G.!l , (4.4.40b) 

where the vector 'Z ~ - - IT 
~=~1'Y2····'YN ' 
" . .!l 1S as defined in (4.4.35b), 

and G is an (NxN) matrix. 
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Now. recalling the system (4.4.36) we immediately obtain the 

following result. 

(4.4.41a) 

~ 

and YN+k = 0. for k=1.2" •••• r. (4.4.41b) 

..., " By substituting the values of yN+l ••••• yN+r into the left-hand 

side of the relations (4.4.39b) we have 

o = 
1 

o = 

I (4.4.42) 

By setting cN+k.O=l. for k=1.2 ••••• r as defined in (4.4.38b) and 

re-arranging the above equations. then (4.4.42) can be written in the 

mat rix form. 

~+l.N - - -- --_cN+l •3 cN+l •2 cN+l • l Y1 

~+2.N - - - - -- ~+2.3 cN+2•2 cN+2• l Y2 

= ~+3.N - - - -- ~+3.3 cN+3•2 cN+3•1 Y3 (4.4.43a) 
I I 

I I 
I I c I I 

~+r.N -- - - - - cN+r •3 c Yr N+r.2 N+r.l 
I 

I 

I 
YN 

or in a compact form, 
(4.4.43b) 

- " where the vectors ~ and ~ are as defined in' (4.4.35b) and the rectangular 

matrix H is of size (rxN). 

" 
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Now. the substitution of a from (4.4.35b) in the equation (4.4.53b) 

yields the result. 

• (4.4.44) 

The sizes of the matrices H.~.tjJ and lr as defined earlier are 

(rxN). (Nxl). (Nxr) and (rxl) respectively. and so the multiplication of 

the appropriate matrices in (4.4.44) is valid; hence with' a slight re-

arrangement (4.4.44) can be written as. 

(I+HljJ)i = -Hi. (4.4.45a) 

(where I is the unit matrix of size (rxr». 

or 

where 

and 

B[ = -i. (a linear system of order r) (4.4.45b) 

B = I+HtjJ (4.4.46a) 

d = H~ • (4.4.46b) 

The elements of matrix B=[b .. ]. i.j=1.2 ••••• r and the elements of 
L.] 

the vector d=[d.]. i=1.2 ••••• r can be determined from (4.4.46) and given 
- L 

by 

and 

b.' . = 
L.] 

N 

o + 
N 

k~lcN+i.N+l-kljJk.j • 0 

d. = 
L 

\ c • 1 k~k • i=1.2 ••••• r. L N+LN+ - " 
k=l • 

Therefore. having determined the elements by d. from (4.4.47). 
L 

the linear system (4.4.45b) can be solved to yield the vector lr (or 

(4.4.47a) 

(4.4.47b) 

the values yN+l ••••• yN+r) thus enabling the computation of the values 

yl.y2 ••••• yN from the relation (4.4.35). We then apply a forward 

..., ~ -substitution process to the system (4.4.40) to evaluate yl.y2 ••••• yN. 

Finally. the solution vector components x
l
.x

2 
••••• XN can be determined 

from the relations (4.4.4la). 
'V ,... 

It might be unnecessary to compute the values yl ••••• yN and yl ••••• yN 

explicitly. Instead we may write from the relations (4.4.35b) and 

(4.4.40b). 
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(4.4.48) 

and from (4.4.4la) we have 

-1:: 
x = D " • D~diag(aO.l, ••• ,aO.N) • ' (4.4.49) 

-Hence, by substituting ~ from (4.4.48) into (4.4.49). the solution 

vector is given by, 

-1 IY 
~ = D G f!+\ji;J.) • (4.4.50) 

Moreover, because a .=1. i=1.2 ••••• N by the assumption (4.4.29b) 
0,1 

the elements of the diagonal matrix Dare l's, i.e. D is a unit matrix 

and hence the·final expression of the solution vector ~ given by (4.4.50) 

becomes. 

where the matrices G (NxN) and lji(Nxr) are defined in (4.4.40) and 

(4.4.35) respectively; the vector i (of N components) is given in 

(4.4.35) and n is the solution of the linear system (4.4.45). 

Finally. the computational complexity of the algorithm for the 

(4.4.51) 

solution of (4.4.1) is approximately of order: (provided that the system 

(4.4.28a) is normalized first) 0[I(N-r-l)(N-l)+(r(r+5)+l)N) multiplications 

and o [I(N-r-l) (N-l)+(r(r+5)-1)N) 'additions with the predetermination of 

the elements of the matrices U and L. This result does not apply for the 

case r=l (i.e., the tridiagonal case), where the order can be drastically 

reduced to 7N multiplications and 4N additions (see Appendix B). Also 

it does not apply to the case r=2 and when the coefficient matrix is 

symmetric and constant (see the system (4.4.9a». 
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4.4.3 DETERMINATION OF THE ELE!·IENTS OF THE RECTANGULAR MATRICES U AND L 

Previously the matrix U of size Nx(N+r) has been partitioned into 

two matrices U
l 

and VI of sizes NXN and NXr respectively, as in (4.4.3a); 

also the matrix L of size (N+r)xN has been partitioned into two matrices 

L1 and Kl of sizes NXN and rxN respectively, as in (4.4.3b). These four 

matrices are, 

u u ---- ... 
1,2 2,2 

u u 
r,2 r+l,2 

" , "' " , "' "' , '"' , " , '"' , 
" "' " , , '---, 
'" ' "' "' , "' , 

" , 

, , 
, , 

"' 
, 

"' 
, , 

o 

, , 
u r+l,N-r , , , , u 

" r ,N-r+l 

o 

u r+l,N-r+l 
" u . . .... 

r,N-r+2 ......... 
I .... " 
I ..... ..... ..... 

"-
t " ......... ...... .... 

o 

U' .... 3,N-t ," .... ........ .... .... 
- - - - - ,ur,N 

, 
"' , 

, I 
, I 

"', I 
u1,N-l u2,N-l 

, 
u 

r+l,N (Nxr) 

(4.4.52a) 

(4.4.52b) 



1 

~l, 1 1 

22,1 ~ 1 

I 
I 

1,2 ... , ... 
I ... ' 

" " I " I 
I 

2' r-l,l 

~ 
r,l 

~ 

~ 

I 

I 

r-l,2 

" 
r,2 

" 

, 

" " 
" " 

... 
"' 

" " 

" " 
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0 

" "' " " " " " " " 
" " " " " " 

" " , " 
"- " " " " 

0 
1 (NxN) 

(4.4.53a) 
and 

o 

2 r,N-r+l 

" 
~r-l N-r+2--~3 N-2~2 N-121 N , '" 

" ~3,N-l~2,N " .... ... 
" " , 

" 
, , 

~3,N " ... 
" " " " I 

" .... I 
" " I " "~ " r-l,N " " ... 

~ 
r,N (rxN) 

(4.4.53b) 

The elements of the matrices U1 and Ll are determined by solving the 

equations (4.4.5) using an iterative process; whilst the elements of the 

rectangular matrices Vl in (4.4.52b) and Kl in (4.4.53b) are chosen, at 

each step of the iterative process, in a suitable manner as determined below, 

from the elements of Ul and L1 respectively. 

" We define two integers m and r such that 

N 
m = N - lrJ x r , 

and ,.. {r, if m=O 
r = m , if m~O (i.e. l~m~r-l, r>l). 

Also, we introduce a vector ~=[hl,h2, ••• ,hrlT such that, 

(4.4.54) 



and 

hI '" = r 

h = 
,.. 

s+l r-s, 
,.. ,.. 

s=1,2, ••• ,r-l (for r~2) 
.,... 

hA = r-s+l, s=,l,2, ... ,r-m (for r+s::r), r+s 

where ~ and m are defined in (4.4.54). 
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(4.4.55*) 

(4.4.55**) 

(4.4.55***) 

Hence the elements of VI in (4.4.52b) can be chosen in terms of 

the elements of U
l 

in (4.4.5Za) as follows, 

u. N . I = u. 'h ' j=1,2, ••. ,k-l,k=r+l,r, ••• ,2, (4.4.56a) 
K, -J+ K,. 

J 
and the elements of Kl in (4.4.53b) can be chosen in terms of the 

elements of ~l in (4.4.53a) as follows: 

~k,N-j+l = ~k,h.' j=1,2, ••• ,k,k=r,r-l, ••• ,1, 
J 

where the h. are given in (4.4.55). 
J 

(4.4.56b) 

To clarify the strategy of selecting the elements of VI and Kl we 

consider the following examples (for r=1,2,3, or 4): 

(1) For r=l: 

(Z) 

From (4.4.55*) we have 

hI = 1 , 

then, it follows from (4.4.56) that 

Uz N = u2,1 } , 
and ~l,N = ~l ,1 

For r=2: 
, 

In this case, m is either zero or one. 

2 or 1 respectively: 

(i) " For r=Z (m=O): 

(4.4.57) 

" Hence, from (4.4.54) r is 

from (4.4.55*) and (4.4.55**) we have 

hI = 2, h2 = 1 , 

then, it follows from (4.4.56) that, 
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u3 N = , u3,Z 

u3 N-l = u3,l' uZ,N = UZ,Z , 
and (4.4.58a) 

1.2 N = , 1.2 Z , 

1.2 N-l = 1.Z,l 1. l ,N = 1.1 Z , , 

(H) For ~=1 (m=l), 

from (4.4.55*) and (4.4.55**) we have 

hI = I, hZ = Z , 

then, it follows from (4.4.56) , that 

u3,N = u3 1 , , 

u3,N-1 = u3,2 
(4.4.58b) 

and 
1.Z,N = 1.Z 1 , , 
1.Z,N-1 = 1.2 Z , 1.l ,N = 

(3) For r=3: 

In this case m is either 0,1 or Z consequently from (4.4.54) the 

" corresponding values of rare 3,l,Z: 

(i) For r=3 (m=O): 

from (4.4.55*) and (4.4.55**) we have, 

hI = 3, hZ = Z, h3 = 1, 

then, it follows from (4.4.56) that, 

U4,N = u4 ,3 u4 ,N-1 = u4 ,Z 

u3,N = u3,3 u3 ,N-1 = u3 2 , 
uZ,N = Uz 3 , 

and, 
, 

1.3 N = 1.3 ,3 , 1.3 ,N-1 = 1.3 ,2 , 

1.Z N = 1.2,3 , 1.Z,N-1 = 1.2 Z , , , 

1.l ,N = "1,3 

u4,N-Z 

1.3,N-Z 

= u4,1' 

(4.4.59a) 

= 1.3,1' 



(ii) For ~=l (m=l), 

from (4.4.55*) and (4.4.55***) we have 

hI = 1 , h2 = 3, h3 = 2, 

then, it follows from (4.4.56), that 

and 
13,N = 13,1' 13 ,N-l = 13,3' 13 ,N-2 = 

12,N = 12,1' 12,N-l = 12,3' 

1l ,'N = 11,1' 

(iii) For ~=2 (m=2), 

from (4.4.55) we have, 

hI = 2, h2 = 1, h3 = 3 , 

then, it follows from (4.4.56), that, 

u4 ,N = u4,2' u 4 ,N-l = u4,1' u4 ,N-2 

u3,N = u3,2' u 3,N-l = u3,1' 

u2,N = u2,2' 
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(4.4.59b) 

13 2' , 

and 

13 ,1' 13 ,N-2 

12 l' 

= 1 (4.4 .59c) 
3,3' 

12 ,N = 12,2' 12,N-l = 

1l ,N = 11,2; 

, 

Subsequently we can rewrite the non-zero elements of the matrices VI 

and Kl , say for r=3 by virtue of (4.4.59) as follows: 

(a) the non-zero elements of VI as they are located in (4.4.52b), are: 

U4,1 u4 2 , u4 ,3 

u3 2 , u4 ,2 u3 ,3 u4,3 u3 ,1 u4,1 

u2,3 u3 ,3 u4,3 u2,1 u3,1 u4,1 u2,2 u3 ,2 U4,2 
A (m=O, r=3) 

,.. 
(m=l, r=l) (m=2, 

.... 
r=2) 
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(b) the non-zero elements of Kl as they are located in (4.4.53b) are: 

R.3,l R.2,2 R. l ,3 

R.3,2 R. 2,3 

R.3 ,3 

(m=O, ~=3) 

R.3 ,2 R.2,3 R.l,l 

R.3 ,3R.2,l 

R.3 1 , 

(m=l, ~=1) 

R.3,3 R. 2 ,l R.1 ,2 

R.3 1 R.2 2 , , 

R.3 2 , 

(m=2, ~=2) 

Thus, in general for any r (~1) it can be shown that the non-zero 

elements of K1 (or V1) in terms of the elements of the matrix L1 (or U1) 

are of the form, 

R.r ,l R.r - 1,2-\··R.3,r-2 R.2,r-1 R.1,r 

R. 2 - • - • - - - R.3 -1 R. r, ,r 2,r 

• 

R. r,3 R. 

R. 

R.r,r 

, , , ... , ... ... 
, I 

R. r,r-1 

" (m=O, r=r) 

r-1,4--·R.3,r R.2,l R.1,2 

r,4 - - - - - R.3 1 , R.2 2 , 
, 

R.3 2 ... ... , ... ... ... I ... R. r,l 
I 

R. r,2 

(m=2, " r=2) 

R. r - 1 l--R.3 r-3 R.2 r-2 , , , 

R. 3,r 

I 
R. r,r 

, and so up 

11 ,r-1 

R. r ,l - - - - - -9:3;r-2 R. 2,r-1 
, , 

' ... , ...... 

I 

'... I 
R.r ,r-2 

" (m=2, r=2) 

I 
R. r ,r-1 

R. 3----. r, 
, 
" , 

" 

(m=l, ~=1) 

to 

" 

- - - R.3 

" " R. 

I 
I 

I 

,r 

R.3 1 , 
I 

r,r 
R. I 
r,l 

(4.4.60) 
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In fact, the purpose of adopting this strategy of choosing the 

elements of the matrices VI and Kl in terms of the elements of U
1 

and Ll 

respectively is to enable us to express R, l'R, 2"""R, of the system r, r, r,r 

(4.4.5) in the form of infinite periodic continued fractions as was done 

previously in the periodic matrix case (algorithm FICM2, subsection 4.3.3). 

For example, if r=l (i.e., the case where (4.4.1) is a tridiagonal 

system), then from the equations (4.4.7a) and using (4.4.57) we are able 

to express £1 1 as an infinite periodic fraction similar to the periodic , 
case in FICM2 (cf. the continued fraction (4.3.22», i.e., 

a1 ,1£1,1 
_ a_l ,2al,11 a_I, 3a l, 21 a_ l ,4al,3 a_I Na1 N-l 1 , , -, aO 2 - I aO 3- aO,4- lao N-a2 1£1 1 , , , , , 

(4.4.6la) 

or ~ ~ ,ClN_l I ~ ~ ,ClN- 1 I 
a1 1£1 1 = '/\- a

2
- ... a - a - a _ .•. ,(4.4.61b) 

, , aN- l - 1 2 N-l 

and 

Cl. = a_I' lal .) i=1,2, ••• ,N-1, 
1. ,1.+,1 

ai = aO,i+1 

where 

. 
Also, for r=2 (i.e. the case where (4.4.1) is a quindiagonal system), 

from equations (4.4.7b) and using either (4.4.58a) or (4.4.58b) we are 

able to express £2 1'£2 2 as an infinite continued fraction (cf. p.154), , , 
i. e. , 

(i) if m=O in (4.4.54), i.e. N is even, then from the equations (4.4.7b) 

and (4.4.58a), £2 1 and £2 2 are expressed as, , , 

a_2,7a2,7 
(aO,5 -£1,5 u2,5)- "'(~a'::'o1.;, 2:.. • .::..C!.:.;..) ---

• 
a a 
-2,2n+1 2,2n-1 

a -£ u a £ 0,2n-1 1,2n+l 2,2n+1 2,1 2,1 

(4.4.62a) 



where 

and 

and 

N 
n = --1 

2 

u3,N-1 has been replaced by u3,l=a2,l and 

i2 N-1 by i2 1 by virtue of (4.4.S8a), , , 

a a -2,2n+2 2,2n 
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(a -i u )-a i O,2n+2 l,2n+2 2,2n+2 2,2 2,2 

(4.4.62b) 

where ~l,2n+2~1 Nand u2,2n+2=u2,N=uZ,Z .by virtue of (4.4.58a), and 

u3 N has been replaced by u3 Z=aZ Z and ~Z N by ~Z Z 
, "" 

(ii) if m=l in (4.4.54), i.e. N is odd, then from the equations (4.4.7b) 

and (4.4.58b), ~Z 1 and ~2 Z are expressed as, , , 

a a 
-3,2n+l 2,2n-1 

(a - ~ u ) -a ~ O,2n+1 l,2n+1 2,Zn+1 Z,l 2,1 

N-1 where n in (4.4.62c) is defined as n = --Z-; hence, 
(4.4.62c) 

i = Il- - R, and u = u = l,2n+1 - l,N - 1,1 Z,2n+1 - 2,N 

by virtue of (4.4.S8b), and u3 ,N has been replaced by u3 ,l=u
2
,l and 

R,2,N by R,2,l' 
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and 

(a -t u )-a t 
O,2t+2 1,2t+2 2,2t+2 2,2 2,2 

N-l 
where t in (4.4.62d) is defined as t = -Z--l, hen~e, u3•N- l has been 

replaced by u3• 2=a2•2 and !2.N-1 by !2.2 by virtue of (4.4.58b). 

Similarly. for r~3 (i.e. where (4.4.1) is a septadiagona1 system) we 

can express !3.1'~3.2 and ~3.3 as periodic fractions. again N (the order 

of the coefficient matrix) is considered and hence three cases arise due 

to the relations (4.4.59a). (4.4.59b) and (4.4.59c). Thus. in general. 

for r~l. from the equation (4.4.5) (precisely equation (4.4.5a) and 

(4.4.5c» we express the elements ~ 1'~ 2 ••••• ~ as infinite periodic r, r, r,r 

fractions as in the algorithm FICM2 (where the coefficient matrix is 

periodic). But. in contrast to the periodic case (FICM2), for the present 

(non-periodic) case. N must be taken into account. 

Now by using the same notation and the abbreviated form for the 

continued fraction as in (4.4.36). we can express! 1'~ 2 ••••• t of . r, r, r,r 

(4.4.5a) as follows, 

a ~ = 
r.1 r.l ... 

a ! = ~2.1 I 
r.2 r.2 ~ 

a t 
r,r r,r 

=~rl~r2~r3 ~rt e - e - e - •.• B -
r.l r.2 r.3 r.t 

~ ~lt~ll 
le -'" t3 - B -'" 

1.2 1.t 1.1 

~22 ~~21 B - ••• ~ e -'" 
2.2 2.t 2.1 

~r 1 t.;Jr 2 ar•t I~r 1 
B 13····/3 6 ••• 
r.1- r.2- I r.t- r,l-

(4.4.63) 



• 

where 

and 

such that t 

N = a a 
~k . 

,~ -r,s r,s-r 

1 

s=ir+k:;N, 
k=l,2, ••• ,r, 
and i=1,2 •••• ,t, 

Sk . = a - r li.. u. I 
,L O.S j=r-l J,s J+ .s 

is defined as follows, 

t (l~ , 
= l~l-l 

for calculating li. l' •••• li. r, r,m 

for calculating li. l •••• 'li. r,m+ r,r 
and m is defined in (4.4.54). 

However, the analysis of the convergence of the fractions (4.4.36a) 

applies to the fractions (4.4.36). Hence, if ~, k=1,2, ••• ,r is assumed 

to be the limit of the kth fraction in (4.4.36), we have, 
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'" li. k = w /a 1 ,k=l,2, •.• ,r. r, k r.K 
(4.4.64) 

We now proceed to determine the elements of the matrices Ul in 

(4.4.52a) and Ll in (4.4.53a). An iterative procedure similar to the 

one applied to the equations (4.3.4) (algorithm FIC!12) is adopted to 

compute these elements from the equations (4.4.5). (In both cases, the 

continued fractions are used at each step in an iterative process). 

The equations (4.4.5d) can be written in an iterative form so that 

th the ~ ., k=r+l,r ••••• 2, i=1,2 •••• ,N at the s step (s~l) are given by. 
l<,L 

and 

and 

and 

and 

and 

u l' = a 0' i=1,2, ••• ,N-~ r+,1. r,l. 
(r) 

u 1 . 1 = u 1 h • j=1.2, ... ,r. r+ ,N-J+ r+ , . 
J 

(r*) 

u(s~+u .1(5:1) 
r,L r+1.L 1,L+r-1 = a 1 0' i=1,2, ••• ,N-r+l. r- ,1. ' 

(r-l) 

(s) (s) 
u . = u , j=1,2, .•. ,r-l, r,N-J+1 r,h. 

J 
(r-1*) 

U (s) . +u(s). ,(s-.1) +u . ' (s-.1) = . 1 2 N 2 
1 "1 2 1 "2 2 a 2" ~= , , ••• , -r+ , r-,1. r,1 ,l.+r- r+,1. ,l.+r- r- ,1. 

(r-2) 

(s) (s) . 1 2 2 ( 2*) 
u l' g u I h ' J= , "'" r- , r-r- ,1. r-,. _______________ 1 ____________________________________________________ _ 

u(8~+u(s~1(s:I)+u(s~1(s~1)+ ••• +u .li.(s-l~ = a ., i=1,2, ••• ,N-2,(2) 
3,L 4,L I,L+2 S,L 2.L+2 r+1,L r-2.L+2 2,L 
(s) (8). 

(2*) 
U 3•N- j +1 = u3•h .' J=I.2, 

U(s).+u(s).,(s-.l)!u(s).,(s-.I)+ ••• +u .,(s-I). ) 
2 3 "1 I 4 "2 1 1 " 1 1 = a1 ., i=I,2, ... ,N-l,(1 ,L ,L ,L+ ,L ,1+ r+ ,1 r- ,1+ ,1 
(s) (s) 

u = u , 2,N 2,h1 
(1*) 

(4.4.65) 
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where the equations (r).(r-l) ••••• (l) are those of (4.4.5d). whilst 

those denoted by (r*).(r-l*) ••••• (2*) and (1*) are derived from the 

relation (4.4.56a); the superscript s is dropped from the relation (r) 

since no iteration is involved in this relation because it includes none 

of the other unknowns. £k.i or ~.i' 
(s-l) 

The values £k' .k=1.2 ••••• r-l. 
.1 

i=l ••••• N-k. are computed from the previous iteration step (except at 

s=l. £(0) are taken as initial guesses) and 
k.i 
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,(s-l) = ,(s-l) 0 1 2 k k 1 2 1 "k 0 1 "h • J= • , •••• , =, •.•.• r- I .N-J + k., 
(4.4.66a) 

J 
are obtained, from (4.4.56b). 

The values £ 1'£ 2 ••••• £ can be obtained from the periodic r, r, r,r 

continued fractions (4.4.63). hence we can rewrite (4.4.64) as 

£(s) = ~(s) la • 
r.k k r.k 

k=l,2, ••• ,r, (4.4.66b) 

where ~~s) is the limit of the kth th fraction in (4.4.63) at the s step 

of the iteration procedure; 

Subsequently. the £ o. i=r+1 ••••• N-r. i=l ••••• N can be determined 
r.1 

from the following recursive relations which are derived from (4.4.5a) 

and (4.4.5c). i.e. 

,(s), = a ,/u(s), r+1~~ ~N r '" , ~ ..... ~-r,1 -r,L+r 1,~+r 

Also. the equations (4.4.56) can be written in iterative form 

with additional terms Ek ' for k=1 ••••• r-1. i=1.2 ••••• N-k (c.f. (4.3.31» • 
• 1 

(s) , (s-l) + (s) ,(s) + (s-l) = ' 1 2 N 1 
u1•i +r - 1"r-1.i u2• i +r - 1"r.i Er -1.i a-r+1.i+r-1' 1= •••••• -r+ • 

(s) (s-l) + (s) £ (s) + (s) £ (s) + (s-l) = a 
ul • i +r - 2£r-2.i u2•i +r - 2 r-1.i u3• i +r - 2 r.i Er-2.i -r+2.i+r-2· 

i=1,2, ••• ,N-r+2, 

U
(s) • (s-l) + (s) • (8)+ + (s) ,(s) + (s-l) 0 

1 ' 1"1' u2 ' 1'" .••• u . 1" 0 El· = a 1 ' l'1=1,2 ••••• N-l .1+.1 .1+ 2.1 r.1+ r.1.1 - .1+ 

(4.4.67) 
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where £k(s~ .k=r-l ••••• 1. i=l.Z ••••• N-k refers to the error term due to 
.1 

the 'inaccurate' value of the corresponding ik(s~l). On the other hand • 
• 1 

if the ik(S~l) (and the u's) are assumed to be 'accurate'. then (4.4.67) 
.1 

may be written as. 

u(s~ i(s),+u(s~ ~(s~ = a i=l.Z ..... N-r+l 
1.1+r-l r-l.1 Z.1+r-l r.1 -r+1.i+r-1· 

(s) i(s) + (s~ ~(s) ,+u(s~ i(s~ = a 
u1•r +r - Z r-Z.i uZ•1+r - Z r-l.1 3.1+r-Z r.1 -r+Z,i+r-Z' 1 

i=1,2 •••• ,N-r+2 
r 

) 

(4.4.68) 

Now the subtraction of the first equation. the second equation. 

up to the last equation of (4.4.67) from the corresponding equation of 

(4.4.68) with rearrangment yields the result (c.f. (4.3.33». 

and 

i=1,2, ••• ,N-r+l 

= 9. (S-Zl~ +E(S-Zl~ /u1(s~ Z. i=l.Z ..... N-r+Z 
r-.1 r-.1 .1+r-

i1(S~ = i1(s~1)+e1(s~1) /Ul(s~ 1 • i=1.Z ••••• N-1. 
.1 .1 .1 .1+ 

1 

) 
The equations of (4.4.67) and (4.4.69) are associated in an 

(4.4.69) 

alternate manner analogous to the relations between the equations of 

(4.3.31) and (4.3.33). 

The summary of the above iterative procedure can now be outlined 

by the 

Step 1 

Step Z 

following steps. 

I ' '1' "(0)" (0) "(0) . 1 Z N n1t1a Lze ~1 ·.·Z ., ••• ,~ 1· , 1= , ,"'1 • 
,1,1 r- ,1 

(i) Obtain 9.~:;~~+1 from (4.4.56b). i.e. 

i (a-1) = 
k.N-j+l 

(ii) Determine u(s~. 
r.1 

(s-l) • 
R.k,h. ' J=1,2, ••• ,k, k=1,2, ••• ,r-l, 

J 
(s) (s) 

u 1 •••••• uZ ' successively from the r- ,1 ,1. 

following relations. 



Step 3 

Step 4 
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U(S)l . = a .• i=I.2 ••••• N-r 
r+ ,1. r,l. 

and (5) = (5) 
u 1 N . 1 u 1 h f j=1,2, .•. ,r, r+ • -J+ r+ , . 

J 

(obtained from 

(4.4.56a» , , 

(5) 
Uk •i = ak- 1,i -

r-k+l 
\' u( 5). .' (. 5-. 1) • ) ~ , i=I.Z •••• ,N-k+l 

. 1 k+J,~ J.~+k-l J= 
(5) 

U • 1 k.N-)+ 
(5) = u k.h. 

J 

, j=I.Z, ••• ,k-l (obtained from 

(4.4.56a» k=r,r-l, ... ,2. 

(i) Determine i(S) i(s) i(s) by the continued fraction 
r,l' r,2"'" r,r 

(4.4.63), and 

(n) " (5) ,(5) ,(s) d (s) (s) 
•• Deternune r.; IN ""tN an ul,l""'Ul •N r,r+l r,r+2 r,N-r 

from the recurrence relations, 

and 

= i(sh) • j=1.2 •••• ,r (obtained from 
r. . 

J r - l _ I (5) i(s-l)_ (5) i(S) 
k=luk+l •i k.i ur +l •i r,i • 

i (s) 
r .N-j +1 
(s) _ 

i
l 

• - a
O 

• 
,1 ,1. 

(4.4.56b» 

(5-1) (s) . 
Evaluate €k' and tk . , k=l,Z ••••• r-l, ~=1,2, ••• ,N-k as 

,1. ,1. 

follows from (4.4.67) and (4.4.69) alternately. we have. 

(5-1) (5) i (5-1) (5) i (5) 
(a l ) €r-l,i = a-r+l.i+r-l-ul.i+r-l r-l.i-u2.i+r-3 r,i ' 

i=1,2, ~ .• ,N-r+l 

= .(5-1)+ (s-l), (s) . 1 2 N 1 
~r-l.i €r-l.i ul,i+r-l' ~= , , •••• -r+ , 

(5-1) 
€ 2' = r- ,1. 

i(S) 
r-2.i 

(s) i (5-1) (5) i (s) 
a-r+2.i+r-2-ul,i+r-Z r-2,i-uZ.i+r-Z r-l,i-

(s) (s). 
u3 · 21 .• ~=1,2, •••• N-r+2, ,l.+r- r,1 

i=1,2, ••• ,N-r+2 

(a -1) (s-l) = a (5) 1 (s-l) (s) i (S) (5) i (S) 
~ €l,i -l.i+l-ul.i+l l.i -u2•i +l 2.i-···-ur,i+l r,i' 

i=1,2, ••• ,N-l, 

i=1,2, ••• ,N-l. 
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Step 5 We define e such that 

lel = max (max lek ·1). 
k i ,~ 

Thus, if lel~TOL (the desired accuracy), then the iterative 

process is halted, otherwise we repeat the process from Step 2. 

Finally, as indicated in algorithm FICM2, the above iterative 

process does converge without considering the use of the continued 

fractions, on the other hand, it was observed, even in this case, that 

the choice of elements of the matrices VI and K1 in terms of the elements 

of the matrices U
1 

and L1 respectively, in the manner discussed earlier 

in this subsection was satisfactory. Thus, the iterative procedure 

outlined above may be written without the use of continued fractions as: 

Step I' 

Step 2' 

Step 3' 

I . ·1· ,(0) ,(0) ,(0)·12 N 
u1t1.a1.Ze NI .'''2 .••••• N _,1.=, , ••• ,. 

,1.,1. r,1. 

(i) Obtain R-k(S-l~ 1 from (4.4.56b), i.e., 
,N-J+ 

, (s-l) =' (s-l) . 1 2 k 1 2 
"k N • 1 "k h ,J = I , ••• ,k, =" ••• , r , • -J + • • 

J 

( n) D • (s) (s) (s) (s) . 1 f 
~~ eternnne U 0' U 1 ., ••• ,u2 .• u

1 
. succeSS1.ve y rom r,l. r-,1 ,1. ,1 

the following re1ation8. 

(8) 
u l' = a • , i=1,2, ••• ,N-r, 

and 

r+,1 r,l. 

(s) 
ur+1.N-j+1 

(8) = u r+1.h. 
J 

• j=1.2 ••••• r (obtained from 

(4.4.56a» • 

(5) 
~.i = ~-l.i -

and 

r-k+1 (8) (8-1) . 
1: u.' .. R.. • k l' ~=1.2 ..... N-k+1j . 1 K+J • ~ J, ~ + -J= 

(5) 
~.N-j+1 = 

(8) 
'\.h. 

J 

(for k>l only). j=1.2 ••••• k-1. 

k=r,r-l, ••• ,l. 

Evaluate (5-1) and ,(5) k 1 2 . 1 2 N k e
k 

• "k • , =" ••• ,r, 1.= , , ••• , - as 
,1 ,1. 

follows. 

(8-1) 
€ • = 
r.~ 

(8) ,(8-1) . 1 2 N 
a_r,i+r-ul,i+rNr,i ,1.=, , ••• , -r 



Step 4' 

(b
1
) R.(s~ = R,(s-.l)e:(s:l) lu . • i=1,2 ••••• N-r 

r.~ r,~ r,1 l,1+r 

(a2) (s-l) = (s) R. (s-l) (s) 9. (s) 
e: l' a -r. i+r-1-u1. i+r-1 r-1.i -u2• i+r-2 r. i • r- ,1. 

i=1.2 ••••• N-r+1 

(b
2
) 9.(s) = 9. (s-l) (s-l) 1 (s) i=1,2, ... ,N-r+.l 

r-1.i r-1.i+e: r - 1•i u1•i +r - 1• 

• 

(b ) 9. (s) 
r 1.i 

,(s-l) (s-l)1 (s) 
= ~1' +e: 1 · u1 '+1' ,1. ,1 ,1. 

As in step 5 of the previous procedure. 

The convergence proof is similar to that discussed in subsection 4.3.6. 
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4.5 ALGORITHM FICMS 

The current algorithm deals with real linear systems, where the 

coefficient matrix is of special form, that is: constant, periodic and 

skew-syrnmetric. These type of matrices may arise in solving the transport 

equation by finite difference techniques (Evans, (1980», also in the 

solution of partial differential equations with periodic equations, as in 

Korteweg de Vries equation (Buckley, 1977». The general form of the real • 
linear system considered in this algorithm is, 

(4.5.1) 

where A is a constant periodic and skew-symmetric matrix of bandwidth 

Zr+l (r~l), and of order N (and N~Zr+l) and has the following form, 

ao a
l aZ- -

__ a 
r-l 

a a _ ___ a a_
l r .... -r -Z , .... I 

a_~ 
.... .... .... 

.... .... ..... .... 
I .... .... .... 0 .... 

a_Z 
, .... .... ..... .... • ..... .... , ..... ..... 

.... ' I .... ..... .... ..... .... "-
.... , .... a .... 

I .... .... .... .... .... -r 
..... .... .... .... ..... 

I .... .... .... 
"- ..... .... .... (4.5.Za) A= r .... .... .... -- - , --a -r+l .... .... .... , .... 

.... .... , .... .... .... , ... .... a .... .... "- ... ... ..... -r ... .... .... .... ... .... ,a .... .... .... ... .... ... r .... .... ... .... .... .... 
.... .... ... .... ..... a ... .... .... ... .... i r-... .... 

-- ... ..... ... .... .... .... .... I 
a .... ... .... .... a

Z ... ... rr .... , , ... ..... 
0 ... .... .... ... 

I ' .... .... .... ..... ... a
l ..... ... ... .... ... 

I .... .... .... ... ... .... .... ... a_
l
' a

O 
a l a2-- - 'ar 

.... a a ~a -r -r+l- - -Z 

with 
~ = -a_k ' k=l,Z ••••• r (4.5.Zb) 

Evans (1980) suggests that for a certain Toeplitz tridiagonal case 

of (4.5.1). i.e. for r=l. the matrix A in (4.5.Za) can be factorized as 

follows, 

~(r=l) = PQ , (4.5.3a) 

where 
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Yo -Y 1 Yo Yl , 0 -Y Yo 0 Yo ' 1 , , , , , , , , , , , 
p = , and Q = 

, , , , , , , , , 
0 

, , 
0 

, , , Yl , , , , , 
.~ Y 

1 0 Yl Y 

(4.5.3b) 

Then, by equating the elements of A(r~l) and the product PQ by 

virtue of (4.5.3a) leads to a quartic equation in terms of Y
o 

(or Y
l

). 

To proceed to ~he elimination process the suitable values of Y
o 

and Y
l 

(as 

proposed by Evans) are given by, 

and 

Yo = ~:5{ao+(a;+4ai)I}]! 

[o.5{-ao+(a;+4ai)!}]! Y = 1 

} 
where ao and al are the elements of A in (4.5.2a). 

(4.5.4) 

However, the efforts to extend the factorization (4.5.3) to a quin-

diagonal, septadiagonal or even more for the general case as in (4.5.2a) 

were not satisfactory, thus the alternative is briefly illustrated below 

which involves a modification of both the coefficient matrix and the right-

hand side vector except the vector solution of (4.5.1). 

The premultiplication'of the matrix equation (4.5.1) by AT yields 

the system 
Bx = ~, (4.5.5) 

where B = ATA (4.5.6), 

and v = ATz (4.5.7) 

with A given in (4.5.2a). 

From (4.5.6) it can be easily verified that B is symmetria and 

preserves the remaining properties of A, i.e. periodic and constant 

A A 
with wider bandwidth; of bandwidth 2r+l (where r=2r). This implies that 

the system (4.5.5) is exactly similar to (4.2.1) and hence algorithm FICMl 
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(section 4.2) is applicable to the system (4.5.5). Noting that the 

elements of B and v are obtained from (4.5.6) and (4.5.7) respectively as 

follows. 

Let the diagonal elements of B be ba with bl,b2, ••• ,b~ (=b 2r) the off­

diagonal elements. Then, by equating the corresponding elements on both 

sides of (4.5.6) we can obtain the elements of B, i.e. br,br_l, ••. ,bl,bO' 

These elements may be expressed in terms of the elements of A in matrix 

form as follows: 

b" -a a r r r 

b" 1 -a -a a r-l r- r-l r 
I 

1 , I 

I " 0 J 
I 1 , , 
I -a -- --a -a a

l I 1 r-l r (4.5.8) - , 
I aO 

, , aO " 
, 

" I , " 
, 

" al " " 
, 

" 
-al I " b2 

,," " 
" 

, 
-a a2 " , " 

I" " " ' " 
, 12 

bl I , , ' 
, , , , , , I 

I """ " " " f ", , " " " ba 
' , , a ___ a2 

a
l aa -al - - _-ar - l -ar (~+l)(~+l) -a r r 

~ 
where r=2r, r~l; noting that we have substituted for a_k by -~, k=1,2, ••• ,r 

due to (4.5.2b). The latter also applies to the relation (4.5.7) from 

which we determine the components v. j=1,2, ••• ,N, of the vector v given by 
J , 

r 
v. = aaz , + L ~(z. k-z , k) , j=1,2, ... ,N, 

J J k=l J- J+ 
(4.5.9) 

with 

z = z -k+l N-k+l } k=1,2, ... ,r. 
and 

It may be worthwhile to consider an example to clarify the above 

strategy of solving the system (4.5.1). We choose the simplest case when 

r=l, that is the case when A is skew-symmetric, tridiagona1 and its transpose 

T 
A has the form, 



= 

ao -a
1 , , 

a1 .... ' ........ , , ... 
... o 

.... , , 
... 

-a 
1 

o 
.... 

.... 
, .... 

.... ... ... ... , ... .... 
... ' , -a 

" " 1 

.... 

"a "a 1 0 

T Whilst the product A A matrix has the form, 

2 2 0 2 a
O

+2a
1 

-a 
... 1 ... 

.... .... ..... 
0 .... ..... .... ..... 

0 " 
.... ... ... 

2 .... .... .... ... ... .... .... -a1 
.... .... ..... .... .... ..... .... ... ..... 

ATA " " ..... ..... .... "- "- .... .... ... ... ..... ... .... ..... 

2 
-a 

1 

... ... ... 
... 

0 ... , ..... "-
2 ... .... , 

-a ... .... ... 1 "- .... ... ... "-
2 ... 2 ... 

0 -a -a 0 
1 1 
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(4.5.10) 

0 

2 
-a1 

2 (4.5.11) 
-a 

I 

'0 

... 2 2 
a
O

+2a
1 

In fact, the constant symmetric periodic quindiagona1 matrix in (4.5.11) 

is equivalent to B by virtue of (4.5.6). 

If we now recall the factorization procedure of algorithm FICMl 

(section 4.2), then B can be factorized as, 

(4.5.12) 

where, 

Q = ... .... ... 
0 ... ... a 2 ... ... , 

(4.5.13) 

a 2 .... 'a 
... 1 

a
1 

a 2 
.... aO 

The three equations derived from equating the corresponding elements 

on both sides of (4.5.12) (c.f. the system (4.2.4», can be modified to the 

form (4.2.23) which immediately yields the values of a
O

,a
1
,a

2
, i.e., 
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(4.5.14) 

and 

By recalling the system (4.5.5) we substitute for B as in (4.5.12) then 

the two alternative systems for (4.5.5) may be written as 

and 

Q.z. = ::. 
T 
Q~=.z., 

where Q is defined in (4.5.13) and vector .z. is an auxiliary vector of N 

components. 

Though the systems in (4.5.15) are similar to (4.2.2) hence their 

(4.5.l5a) 

(4.5.15b) 

solution proceeds as in subsection 4.2.3. Here we consider just one system 

say (4.5.15a) since the matrix Q is of special structure, i.e. its element a 1 

is zero (as given in (4.5.14». 

The system (4.5.15a) can be rewritten in the form, 

a o o a2 Y1 , ' , , vI 

, " Y2 , " 0 , I , , , 
I , " , , , 
I , , ' I , , " 

v2 
I 
I 

= I (4.5.16) 
I 

0 , , , , , a2 I , 
a2 

, 
'0 I , , I 

o a 2 
, 
a O YN 

By applying the elimination procedure discussed in subsection 4.2.3 to 

the system (4.5.17), we arrive at the result where (4.5.16) takes the form, 



• 

(i) for N even, 

fl +ao 

r:' f
l
+aO 0 YZ 

I 
f2 0 ao 0 

, 
0 f2 

, , = , 
" " , 0 , 

I , 
f 0 , 
n \. , 

0 f aO n YN 

where n = N/2 , 

n-j 
fj = <-az/ao) a2 , j=n,n-l, ••• ,l , 

and ~j = v/<-a/aO);j+2' j=N-2,N-3, •.• ,1 

with 

(ii) and for N odd, 

aO fl 

f2 aO 

o 

f3 

o 
I 
I 
I 

I 

f 
n 

o 

o 

f3 
I 
I 
I 
I 
I 
o 

f 
n 

, , , , 

o 

, , , , , , , 

o 

, , , , , 
a

O 

= 

N 
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~ 

vI 
N 

v2 
I 

(4.5.17a) 

'" vN 

(4.5.17b) 

'" vj ' j=1,2, ••• ,N, and fk , k=1,2, ••• ,n as defined in (4.5.17a) where 

with n = (N+l)/Z. 

Hence, the y., j=1,2, ••• ,N for N even can be determined from (4.5.17a) 
J 

as follows, 



Y2j-l = (v2j-l-fjYl)/,,0 

" and Y2j = (V2j-fjY2)/"0 ' 

whilst for N odd from (4.5.17b) we have, 

and 

_ f
1

..... fl 
Yl (v --v )/(" --f) 

1 0 2 0 "0 2 

Y = 2 

Y2j-l 
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} j=2,~, ••• ,n (~N/2), 

j=2,3, ••• ,n (:(N+l)/2) 

Finally, the number of operations involved in solving the skew-

" symmetric system (4.5.1) via the modified form (4.5.5) is of 0(5rN+(r+l)N), 

where the first term is given in subsection 4.2.3 and the second term due 

to the relation (4.5.9), (noting that the operations involved in the 

multiplication of ATA in (4.5.6) are ignored since the elements of Bare 

obtained from (4.5.8) which require less than (2r+l)(r+l) operatings taking 

. "2 into account that some cancellations may occur). S~nce r= r, the order may 

be written in the form O«llr+l)N). For a specific case this order (of the 

general form) may be reduced considerably, as for example when r=l, the 

solution of (4.5.15) is of 0(6!N) which is slightly higher than the scheme 

(4.5.3) of Evans (1980), but the latter requires 4 square roots as given in 

(4.6.5) while FICMS for this particular case requires only 1 square root as 

given in (4.5.14). (Another important advantage of our scheme over Evans' 

scheme is that the matrix (4.5.11) is strietZy diagonally dominant when aO=O 

which guarantees the stability of the elimination process for the system 

(4.5.15» • 
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4.6 ALGORITHM FIRM4 

The linear systems considered in this algorithm are similar to (4;5.1) 

except that the coefficient matrix is non-oycZic, i.e., 

Ax = z (4.6.1) 

such that A has the form, 

A = , .-; (4.6.2) 

with ~=-a_k' k=1,2, ... ,r, r31, 

and A is constant non-cyclic and skew-symmetric of bandwidth Zr+l and of 

order N (N~Zr+l). 

The modification strategy used in algorithm FICM5 (Section 4.5) is 

applied to the system (4.6.1), that is, the premultiplication of (4.6.1). 

T by A (transpose of A in (4.6.Za» yields the system, 

Bx = v , (4.6.3) -

where B = ATA , (4.6.4) 

and T v = A Z (4.6.5) 

The determination of the components of vector~, vl,vZ' ••• ,vN' (say), 

can be achieved by using the formula (4.5.9) with different conditions, i.e., 
r 

v. = aOz. + I ~(z._k-z.+k) , j=l,Z, ••• ,N 
J J k=l J J . 

(4.6.6) 

with 
Z_k+l = ZN+k = 0 , k=l,Z, ••• ,r. 

The matrix B in (4.6.3) is of bandwidth 2r+l (=4r+l, where r=2r) and 

symmetric by virtue of (4.6.4), has the form, 



B = 

Cl1,l ClZ,l - - - - - Clr - 1,l Clr ,l b 
r 

Cl1 ,2 Cl2,2 Cl b r-1,2 r-1 
... , ... 

Cl2 1 .... ..... .... I , .... , 
I , .... .... 
I 

, .... .... I , , , ..... ... 
.... I ... ..... 

Cl r-1,i ... Cl 
.... ..... 2,r-1 

.... .... 
.... .... b' Cl Cl Cl Cl 

r,l r-1,2 2,r-1 l,r 1 .... 
...: 

b b - b1 
b

O r-1 - - - - - - ... r ... .... .... 
I ... ..... ,. ... , 
I ... 

" ... ... " I " 
... .... 

b 
... ..... 

2r-1 
... , .... ... .... 

.... 
" b1 ... , 

b2r 
.... ... .... ... .... ... '" .... .... ... " '" .... ... ... ..... .-
.... ... .... b .... .... r-1 ... .... b ... .... 

.... ... '" r "-
'b " '" 

.... ... "-
... 

... 2r-1 ..... 
b2r 

... ... 
.... ... ... " ... ... ... ... ... 

... 
0 

... ... .... ... ... ... ... ..... ... 

b b Zr-1 Zr 
.... .... 

.... " .... .... 
.... .... 

0 .... .... 
.... " .... .... 

.... .... , .... 
.... .... 

'" bZr 
b .... 

2r-1 .... 
" ..... .... 

'" .... 
.;' .... .... .... .... 

'" ..... .... 
'" " ..... " .... 

'" .... 
b1 

, 
bOo .... , , .... 

.... .... .... ... .... , .... 
.... .... .... .... .... ... 

.... b
O b1 - - - - b .... -

.... r-1 ... .... b1 Cl1 Cl2 -1- - __ Cl -12 ,r ,r r , ... , 
b:; 

... , Cl ... 
" 

Zr-1 , .... 
" .... ... ... ... ... , ... I ... ..... ... " ... ... .... .... ... ... .... , ... ... .... ... ... ... ... b Cl ..... 

"- r-1 r-1,Z ... ... .... ... b b .. - - - b Cl ... 
Zr Zr-1 Cl r-1,Z---'ClZ 1 r r ,I , 

b-
2r 

b 2r-1 
I 
I 
I 
I 

b 
r 

Cl r ,I 

Cl r -l,l , , 
I 

ClZ 1 , 

Cl1 1 , 

(4.6.7) 

N 
N 

'" 
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In contrast to the cyclic case, B in (4.6.7) has constant elements 

.... 
denoted by b

k
, k=0,1, ••• ,2r (=r) plus extra elements denoted by ~ ., 

. k, 1. 

k=1,2, ••• ,r, i=1,2, .•. ,r-k+l. The former elements are .determined exactly 

as given in (4.5.8), whilst the latter are determined by 

r col '!fins 
-

" a a - ___ a a - -- -~ 0- - - - -- 0 
k,l r-k+l r-k 1 o -1 \ 

\ 

" a r-k+l a r-k - - - a l -~ \ k,2 \ 
I \ , 

"k,3 
\ \ 

I \ 0 0 
I \ I I = , , , \ , \ 
" \ \ k,r-k 

I \ , 
" a a \ \ I 

k, r-k+l r-k+l r-k -a aO -a - - - - --a 0---0 1 1 r-l 
'--.r-' 

k 
columns 

a r 

a r-l 
I 

I 
I 
I 

al 

a
O 

-a 

-a 

I 
I 

-a 

1 

2 

r-l 

-a 
r 

(4.6.8) 

where the rectangular matrix is of size (r-k+l)x(2r+l), k=1,2, ••• ,r and 

a., i=0,1,2, ••• ,r are the elements of the matrix A in (4.6.2). 
1 

For example, "hen A is tridiagonal or quindiagonal implying that B is 

quindiagonal or ~-diagonal bandwidth respectively, i.e., 

(i) for r=l (i.e. ~=2), 

2+ 2 0 2 
-a a

O 
a l 1 

0 2+2 2 0 2 aO a
l 

-a ... ... 1 ... ... ... .... ... 
2 ... "- .... ... 

-a ... ... ..... ... 
1'" ... ... ... ... ... .... .... 

" ... ... 
B = ... ... ..... ... ... ... ... ... ... 

o 
(4.6.9) 

.... 

.... ..... 

o 

(c.f. (4.5.11», 



and (ii) for r=2 (i.e. ~=4) 

2+ 2+ 2 a
O 

a
l 

a2 
2 -a 
2 

" " " o a l a 2 
2 

-a " " 

B = 

Le. 

i.e. 

1 ..... 

-2a l a2 .......... " 
2' ..... 

-a2 " "..... "" 

" 
" " 

o 

"-

" " 

"-

" 
" 

" " 

" " 
" 

.... 
" 

" " 

.... 

" 

It is clear that B in (4.6.9) (where 

2 2 hOl 
~ll=aO+al' w 1 st in (4.6.10) (where 

2 2 2 

" 
" " 

r=l) 

r=2) 

_ 2+ 2+ 2 
all-aO a l a2, a

12
=aO +2a

l 
+a

2
, a

21
=a

l
a

2
, in 

"­
" 

" 
" 

" 

" " 

" " " 
" " " " " , 

" " 
, " 

" " 
" 

" " " " 

has an extra element, 

" 2 -a 
1 

B has 4 extra elements, 

general for r>-l, B has 2r 
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extra elements located as illustrated in (4.6.7) and determined from (4.6.3). 

Since the system (4.6.3) is similar to the system (4.4.1), the strategy 

of algorithm FIRMl (Section 4.4) can be adopted to solve the former system. 

Furthermore, the factorization of B into pseudo-inverse rectangular upper 

and lower triangular matrices can be considered as an extension to the 

cyclic case represented by (4.6.12), certainly the non-constant elements of 

B (i.e. the ~'s in (4.6.8» should be taken into account in this factorisation. 

For example in (4.6.9) matrix B may be factorised as, 
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SI CL l CL2 S2 

CLO CLl CL 2 
0 

CL l CLO , , , "- 0 "-

" " 
, CL l CL l "-, 

" " , , , 
0 " " , " 

, CL 2 "- " 
" 

, 
" " " , , 

"- "-" B = , , , 
" " " =PQ , , , I " " " , CL21 " , " " " , 

" " 0 
, , 

" " 0 "- , , 
CL 1 ICL 2 " " " \ " " " \ I " "- " , " , 

" CLO:CL l Yl - - - ___ ':z..:'l ~O_ 

o 
Y2 

(4.6.11) 

(the sizes of the rectangular matrices are Nx(N+2) and (N+2)xN respectively). 

The determination of the elements of the matrices P and Q follows from 

solving the following equations (which are derived from equating 

corresponding elements of B and the product PQ in (4.6.11), 

2 2 2 2 
SlS2+CLl+CL2 = aO+al (4.6.l2a) 

2+ 2+ 2 2 2 CL
O 

CL
l 

CL2 = aO
+2a

l 

CL
O

CL
l

+CL
l

CL
2 = 0 (4.6.l2b) 

2 
CL

O
CL 2 = -a 

1 
2 2 2+ 2 CLO+CLl +Y1Y2 = aO 

a
l 

(4.6.l2c) 

The equations (4.6.l2b) are exactly the same as derived from the 

equality (4.5.12), thus CLO,CL
l 

and CL2 are taken as in (4.5.14), i.e., 

CL = 0 
1 

_ 1 +( 2+ 2)! CLO - v: aO aO 4al 1 (4.6.13) (*) 

and _ 1 _( 2+4 2)! CL2 - 2i aO aO al 1 

On the other hand, it is necessary to point out that the factorization 

('}in (4.6.13) the sign "+" (and "-") is assumed to irrrply maxinnon 

(and minimum). 



(4.6.11) is suggested by Evans and Hadjidimos (1979) and they propose 

that 1\,1l2 and Y1 'Y2 in (4.6.12a) and (4.6.12c) respectively may be 

chosen as follows: 

III 112 
2 2 2 2! 

= = [a +a -a -a ] 
o 1 1 2 

and 
2 2 2 2! 

Y1 
= Y2 

= [a +a -a -Cl ] 
o 1 0 1 

or by substituting for "0'''1'''2 in (4.6.13), we have, 

- - [12.1:, (2+4 2)!]! 
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81 - 112 - ,aO 2
aO aO a1 } (4.6.14) 

and 
__ 1212 2!! 

Y1 - Y2 - [Iao-za0(ao+4a1) 1 

where a
O 

and a
1 

in both (4.6.13) and (4.6.14) are the elements of matrix 

B in (4.6.9). 

Furthermore, the system (4.6.3) for the particular case where B is 

a quindiagona1 matrix as given in (4.6.9), can be replaced by two coupled 

underdetermined and overdetermined by 2 and have the form respectively (by 

considering the factorization (4.6.11», 

81 o "2 Y1 
v 

1 

"0 o "2 Y2 
v 

" , 0 ,2 , 
" " , 

" " " " , (4.6.15a) , 
" = 

" " " I , 
",,""2 " I , 

" , 
" I 

0 " '0 1"2 "0 I , 
"0 ' 0 Y YN 

v 
1 1 N 

YN+l 

YN+2 
and 
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Xl Yl 

x
2 YZ 

0 I 
I 
I 
( = (4.6.l5b) 

o 
N+2 

Generally speaking, the solution of the coupled system (4.6.15) can 

be obtained following the procedure of subsection 4.4.2 (also see the 

relevant procedure of subsection 4.5.4), but because of the special 

structure of the coefficient matrices in (4.6.l5a) and (4.6.l5b) it may 

be of interest to describe the elimination procedure briefly and for one 

case, i.e. N being even. 

Let 
N 

n = '2 ' 
n-i 

fi = (-(1./(1.0) 
_ n-i = m , i=1,2, ••• ,n 

} (4.6.18) 

f 
n-i+l (N.B. for N odd n=(N-l)/2, and.=m , i=1,2, ••• ,n+l). 

1 

Then the system (4.6.l7a) can be modified to the form (c.f. (4.4.31», 

81 f l (1.2 0 Yl "1 
(1.0 0 flY1 Y2 V

2 ( , 0 I I , I I , , ( = I , I , , , 
0 f n-1Yl 

I , 
( , 

0 
, 

f n(1.2 0 I , , I I 
(1.0 0 f -n lY YN "N 

YN+l 

N+2 
where f., i=1,2, ••• ,n are given in (4.6.18) 

1 

... 
and "., j=1,2, ••• ,N are 

J 

(4.6.19) (*) 

(')for N odd, the (N+l)th and (N+2)th· ~oZumn shouZd have their first 

eZements O,f1Yl respe~tiveZy. 



defined as 
'" v. = 

J 
'" ".+m". 2' j=N-2,N-3, ... ,1, 

J J+ 

with 
,.., '" 
"N = "N' "N-1 = "N-l ' and m is defined in (4.6.18). 

Thus, from (4.6.19), we have, 

(4.6.20a) 

(4.6.20b) 

and 

Whilst the system (4.6.1Sb) can be modified to the form (c.f. (4.4.36» 

fl2 xl 

"0 0 
x2 

" 
I 

" I = .... I " 
(4.6.21) 

.... I 
" 0 .... I , 

I " "0 ~ - -- - - -- - - --
0 

where '" N 
Y1 = Y1' Y2 = Y2 ' 

- '" (S=-fl /" ) Y3 = y3+SY1 - Y 3 +SY1 2 0 
,.., 

~ 

Ys = YS+my3 - YS+my3+mSY1 
,.., '" 2 2 2 
Y7 = y7+mys - Y7+myS+m y3+m y3+m SY1 
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(4.6.Z2a) 

Y4+mY2 ' 
2 

- y6+my4+m Y2 

-v _ _ n+l 
YN = yN+mYN- 2 = yN+mYN_Z+···+m YZ ' 

~ _ j-Z j-l 
(or YZj - YZj+mYZj_Z+.·.+m Y4+m YZm j=2,3, ••• ,n) , 

_ '" n-l 
YN+Z = YN+Z+EYN = YN+Z+EYN+EmyN~Z+···+Em YZ' 

(E=-Y z'rJ.
O

) (4.6.2Zb) 

From (4.6.Z1), it '" "" is clear that both YN+l and YN+Z are equal to 

zero, thus by substituting these values into the last equations of (4.6.ZZa) 

and (4.6.22b) respectively, we obtain after a slight rearrangement, 

} (4.6.Z3) 

n-l Returning now to (4.6.Z0a) we mUltiply its first equation by m 

n-l n-Z the second by m ,the third by m ,and so on up to the last one by m; 

n-l whilst for (4.6.20b) we mUltiply the first equation by Em ,the second 

n-Z by Em ,and so on up to the penultimate one by Em and the last by E, then 

we substitute the two results in the first and the second equations of 

(4.6.Z3) to obtain the result, 
n-l 

+....!.. L 
rJ.O j=l 

n-j"'V 
m "Zj+l]-

n n 
E n-j ... L -YN+Z =- m "Zj rJ.O j=l 

L 
j=l 

or 

and 

where 

YN+l = k 1 (~ -1) 
1 1 

(provided 

YN+Z = kZ/(~Z-l) (provided 
n-l 

n-1 "" 1 \' n-j"" 
k1=m 6"1 /a 1+ - ~ m "ZJ'+l' 

rJ.O j=l 

rJ.Z 
(­

rJ.O 

, . 

n 

L 
j=l 

} (4.6.Z4) 



CL
2 n 

R.l =- I CL
O j=l 

n 

k2 
E I = 

CLO j=l 

and 
EV

l 
n 

R. = - I 
2 CL O • 1 . J= 

mn-j+lfj+mn-le/8l 

n-j'V 
m v2j 

n-j 
m f._ 

J 

, 

n 

L 
j=l 

n 
2(n-j)+1 n-1 S/ 8 - -m I m +m 1 

j=l 

2 (n-j) 
m , 

where we have substituted for f. in terms uf m as defined in (4.6.18). 
J 

Therefore, YN+l and YN+2 are obtained from (4.6.24) and then 
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returning to (4.6.20) to determine y., j=1,2, ••• ,N followed by (4.6.22) to 
J 

determine 'Y .• j=1,2 ••••• N. and finally the solution x .• j=1,2, ••• ,n 
J J 

obtained immediately from (4.6.21). i.e •• 

.. 
x. = Y./CL

O 
' j=2,3, ••• ,N. 

J J 

The number of operations of the above procedure is of 0(8N). 
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5.1 ALGORITHM FICM3 

This algorithm is proposed as a numerical solver for periodic block-

tridiagonal linear systems which are derived from the' finite-difference 

approximations to certain elliptic partial differential equations subject 

to periodic boundary conditions (see section 3.5, Chapter 3). In particular 

the type of real linear system considered in this algorithm is of the form, 

B C, C ~l =-1 , ., 
C 

, ... 0 ... ... ... 
~2 =-2 ... ... ... ... .... ... ... ... ... ... I ... (5.1. la) .... .... , = ... , ... I ... , ... .... , ... 

0 ... ... ... 
I ..... " "C , ... 
I , , 

C C B ~ E.t! 

or more compactly as, 
~ =.! , (5.1.lb) 

where each block B,C are mXm (real submatrices and each subvector x. 
--I. 

and z. partitioned corresponding to the block subvectors are of length 
--I. 

m, i.e. x.:=[x. l'x. 2""'x. IT,~.2[z. l'z. 2""'z. }T, i=1,2, ••• ,N, 
-1 1, 1, l.t~ -'1. -1., -r., -I.,m 

and A is a constant and symmetric circulant block-tridiagonal matrix of 

order mN. 

We shall consider solving the system (5.1.1) by two coupled block 

linear systems after the factorization of the coefficient matrix A into 

two circulant block matrices which are the transpose of each other. For 

this, we assume that the submatrix B is non-singular, and A is bZock 

strictly diagonally dominant with respect to the matrix norm 11.11, i.e., 

(see Varah (1972» 

211B-111 Ilcll<l, provided B is non-singular. (5.1. 2) 

The Block Factorization Procedure 

The factorization strategy which is applied to the coefficient matrix 

in (5.1.1) is similar to the point case when ral in the algorithm FICM1, 
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(Subsection 4.2.1). Thus, the factorization of the matrix in (5.1.1) 

takes the form, 

B C C Q Ql , , 
0 0 

0 C , , , \ , , , , , , , , , , , \ , , , , , , , 
, , = , , , , , , , , , , , , 0 

, 
0 , , C , , , , 

, , , 
C C B Ql 

, (5.1.3) 

where the blocks Q
O 

and Q
l 

are mXm submatrices and the three matrices on 

the right-hand side of (5.1.3) are of the same order as A. 

We now equate the corresponding elements of both sides in (5.1.3) to 

obtain the following two matrix equations, i.e., 

Q2 + Q2 = B 
o 1 

QOQl = C (or QlQO 

(5.1. 4) 

We note that the second equation and the bracketed one imply that 

Qo and Q
l 

are commutative matrices. This latter property may be exploited 

so that the following expression holds true, 

(5.1.5) 

If we now multiply the second equation in (5.1.4) by 2 and add 

or subtract to the first equation, then by virtue of (5.1.5) we obtain 

the relations, 
(QO+Ql)

2 .., } . ~ (B+2C) - B 

2 ,., . (5.1.6) 
and (QO-Ql) -(B-2C) - C 



Under the validity of the condition (5.1.2), we can define]! and 

cl as the square roots of matrices S and C respectively. Hence, from 

(5.1.6) we define the sum and difference of Q
O 

and Ql' as follows: 

Q +Q = si _ (B+2C) I o 1 

Q -Q =~! - (B-2C)! o 1 
} (5.1. 7) 

The addition and subtraction of the two equations in (5,1.7) enables 

us to 

and 

express Q
O 

and Q
1 

in the form, 

Qo = O.5[S!+C i ]:0.5[(B+2C)i+(B-2C)11 } 

Q
l 

;= 0.5 [sl_C!l =0.5 [(B+2C) 1-(B-2C) I] 
(5.1. 8) 

The computation ofS! and C! is recommended to be accomplished in 

an efficient manner, for example by adopting the iterative procedure - ." described in Section 2.5, provided that B and C satisfy the required 

property of this procedure, i.e. they must be positive definite. For 

other references which deal with the square root of a matrix see Spath 

(1967), Seofield (1973), etc. It follows immediately from (5.1. 8) that 

since (B+2C) and (B-2C) and their square roots are positive definite then 

Qo is positive definite. 

However, having determined the matrices Q
O 

and Q
l 

we now proceed 

to solve the system (5.1.1). 

The Block Elimination Procedure 

When the coefficient matrix in (5.1~) is replaced by the two 

factors given in (5.1.,), then the system can be split into block linear 

systems after the insertion of an auxiliary vector Z of length mN and 

partitioned into N sub-vectors of length m each, i.e., Z=[z1'Z2, ••• ,~]T 

(thus from (5.1.1) and (5.1.3) we write, 
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o 

and 

o 
, , , , 

" , , .... , .... 
" Ql .... 

'Q o 

= 

~ 

~l 

~2 

= 

I 

~ 

':'1 

':'2 
I 

~ 

1.1 

1.2 
I 
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(5.1. 9a) 

(5.1. 9b) 

Prior to presenting the elimination process of the system 0.1.9) it 

is essential to point out that the stability of the system is guaranteed 

if the norm-relation of Q
O 

and Q
l 

is satisfied, i.e., 

(the equality relation is excluded since it does not occur unless 

matrix C=O). Since Q
O 

is positive definite which implies that its inverse 

-1 Q
O 

does exist, the normalization of both systems in (5.1.9) is possible 

and may be constructed as follows. - -1 Q 1.1 ':'1 .... 0 
1 Q" 1.2 !2 ... ... 

I .... = .... , , "' .... "Q I .... 
0 ...... 

~ 
... I 

.... ·1 -Q ~ ~ and 

(5.1.lOa) 

-~1 Q 1.1 -Q 1 x~ -... 0 1.2 - ... Q .... 
... " ... ... ... ... = ... .... 

" ... ... ... I ... ... 
0 , ... .... I , .... Q ~ 

I ~ 

(5.1. tab) 
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for (5 • 1.9 a) and (5 .1.9b) respectively, (1 is unit matrix of order m), 

where 
- -1 Q = Q

O 
Ql }, (5.1.11) 

'" or QoQ = Ql • 
'" -1 ) z. = Qo z. 
-J -J 

f '" j=1.2, •••• N (5.1.12) or Q<8 = z., 
-J 

and 
'V -1 

} 1.j = QO l..i 
"" j=1,2, ••• ,N (5.1.13) or Qol..i = 1.. , 

3 

noticed, .. "'" ....", 
..., 

(obviously As can be the determ1nat10n of Q, z. and l..i 
-.J 

after the determination of 1.. from (5.l.10a» follows from the last three 
3 

equ~tions respectively. 

We now define the submatrices, Fl .F2 ••••• FN of order m as follows, 

F. = <-l)j+l1iN- j +1 
J 

F. = (_l)j1iN- j +1 

J 
, 

(for N 

(for N 

odd) } 

even) 
j=N,N-l, ••• ,l. (5.1.14) 

Then. the elimination process can be applied to the block-systems 

(5.1.10a) and (5.1.10b) in an analogous way to the point-case discussed 

th 
previously. (Chapter 4). obviously the process commences from the N 

equation backwards for the former system, and from the first equation 

forwards for the latter. After the elimination procedure has been 

completed for both systems in (5.1.10), taking into consideration the 

assumption (5.1.14), the systems (5 .1.9a) and (5 .1.9b) take the following 

forms, respectively, 

F
l
+l 1.1 

F2 1 1.2 
F3 1 0 • 

" I 
I " I = 
I , 

" I 
I , 

I 
I 0 

, , 
I 

I " " I 
FN 1 ~ 

(5.l.l5a) 
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and ~ 

I FN ~l i l , , z , ~z , 0 loz , , , , , , I = (S.1.1Sb) 
I F3 0 

I F
Z I 

I+Fl ~ ~ 
"" -where F .• j=l.Z ••••• N are defined in (5.1.14). the vectors z. and y .• 

J J J 

j=l.Z ••••• N are defined as follows. 
~ - } -~ = z • (S.1.16a) ~ 

z _ N~ 

j=N-l, •.• ,l z. = ~-~+l • -.J 

and ::: ~ 

j=l.Z ..... N} 

lol = lol 

- = ij-Ql.j-l (S.1.16b) loj • • 

- -where z .• y. are as given in (S.l.lOa) and (S.l.lOb) (or (5.1,12) and 
J J 

(5.1.13)) respectively. and Q as in (5.1.11). 

The solution vector can now be obtained from the forward and backward 

substitution schemes for (S.1.15a) and (5.1.15b) respectively. i.e •• 

~ } = z 
1 j=2,3, ••• ,N, (S.1.17a) 

and 
~ 

• or (Fl+I)~ = YN }. 
J=N-l.N-Z ••••• l. (5.1. 17b) 

provided that 

The solution procedure can be summarized in the following steps: 

Step 1 Compute the submatrices Q
O 

and Q
l 

from ( 5.1.8) which involves 

the computation of the square root of a matrix by Newton's method. 

Step Z 
. ,.., 

Obtain the submatr~x Q from 



Step 3 

Step 4 

Step 5 

Obtain F. from 
J j+l ' 

{

(-l) , for N odd _ ~N-j+l 
F. - sQ , 

J s = (-l)j , for N even. 

~ Z Compute z. ,z. and y. , j=l,2,oo. ,N, as follows, 
J -J -:J 

and 

Qo-Z. = z. , 
J -J 

~ - ~ -v_::::;, 
~ = ~ , Zj = !.j-Q!.j+l ' j=N-l,oo;,l 

Compute Zj'~ and ~j' j =1,2, ••• ,N, as follows 

and 

~ 

x. = ;.-F.K., j=N-l,N-2, ••• ,1. 
-J .... J IN 
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In general, the number of operations involved in the above procedure 

5 3 2 (excluding step 1) is of order O(N (1" +4m ». This may be reduced if we 

consider systems whose coefficient matrix Q
O 

in steps 2 and 5 are such 

that Q
O 

(assumed non-singular) can be decomposed into LU (see Chapter 2). 

Consequently the forward and backward substitution process (of O(m
2» 

are required for these systems and hence the number of operations reduces 

3 
to O(Nm ). 

It is possible to reduce this order further if some efficient 

techniques are used for the matrix-vector multiplications, such as the 

Fast Fourier Transform (see Coo1ey and Tukey (1965), Brigham (1974), 

Mqa,naghten and Hoare (1977». 
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If the submatrix B in equation ~.l.la) is periodic tridiagonal, 

and C is a diagonal matrix (normally, I or -I) then the above procedure 
\ 

may be reduced to the form considered by Okolie (1978) (which in fact is 

an extension of the tridiagonal point-case suggested by Evans (1973». 

For this special case, the matrix A can be factorized as follows:-

(c.f. Algorithm FICM2 with r=l) , 

B C C I L U C 
0 "-

.... , 
0 " .... 

C .... .... 0 L .... 

" " .... .... 
" .... .... "- " ... .... .... .... " ... .... .... .... = .... ... , .... 

"- "- .... ... " .... 
" ... ... .... .... .... ... .... 0 " .... ... C ...... ... , 

C 0 "- 0 
, .... " .... " , ... 

"- C 'B "L'I 'u C C 

(5.1. 18) 

where L,U and I (unitary) are mxm matrices. 

If we set C=I, then (4.5.18) yields the result, 

and 
LU = lB.} 
L+U = 

• 

Okolie (1978) defines L according to (5.1. 19) as follows, 

L = 0.5(B-(B
2
-4I) i) , provided I IBI 1>2. 

Moreover, if L is assumed to be non-singular, then from the first 

equation of (5.1.19) U can be taken as, 

U = L-1 
• 

(5.1.19) 

(5.1.20a) 

(5.1. 20b) 

Subsequently, the systems (5.1.1) can be split into two coupled' 

systems by virtue of (5.1.18) and (5.1.20), i.e., 

I L lol ~l 
L I 0 lo2 ~2 , 

"- , I 

"- .... = I (5.1.2la) ... 
"- "- I 

" "-... , 
0 .... .... , ... I 

L I It; 

and 



and L- l I 

I 

L- l I 
\ \ , , 

\ , 
o 

\ \ , \ 

o 
\ 

\ \ 
\ 'I 

\ 
\ L- l 
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= ( S.l.2lb) 

As before. when the elimination procedure is applied to (S.1.2la) 

it yields the result. (bearing in mind that the condition (5.1.10) should 

be satisfied. i.e. have it is required that I ILl 1<1 for stability). 

or 

and 

N N -1", 
Zt! = (1+s L) zN 

NN _ 
(1+s L )Zt! = ~ 

Zj = ~-sjLjZt! • j=N-l.N-2 ..... l 

sk = 11
• for k odd 

-1. for k even. 

where z. is given by 
-J 

} -~l = z 
-1 • 

and - ..., 
j=2,3, ••• ,N z. = z.-Lz. l' 

-J -.J- -r 

Similarly. for the system (4.5.2lb). if we define ~ 

and 

then the 

or 

and 

~ = LYN 

Zj = L(Zj-2.j+l)' j=N-l.N-2 ..... l. } 
solution vector x. can be obtained from the relations. 

-.J 
N N -1 

.!ol = (1+s L) 1.1 
NN ~ 

(1+s L ).!ol = 1.1 
- j N j+l .!j = Zj-s L - .!ol' j=2.3 ..... N. 

and s is define.d in (S .1. 22) • 

(5.1. 22) 

(5.1.23) 

(5.1. 24) 

(5.1.25) 

Okolie (1978) applied the spectral resolution method to the latter 

procedure which reduced the order of operations to 0(4m2N). Thus. in the 

following we shall apply this method to the procedure given earlier in 

this sdction. 
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Spectral Resolution Method 

We first describe this method in connection with the procedure above 

(from (5.1.18) to (5.1.Z5» which has been studied by Okolie (1978, 

Chapter 5) based on the work of Buzbee et al (1970). 

We assume that the eigenvalues of the submatrix Bare Al.AZ ••••• Am 

and we define a diagonal submatrix '\B (or order m) such that 

~B = diag(Al·AZ·····'m ). (5.1.Z6) 

Also we assume the submatrix Q (of order m) to be orthogonal 

(i.e. QT=Q-l) and consists of the eigenvectors of B. then the orthogonal 

transformation (see Definition 2.4.2) 

13 = QfI QT 
B 

exists. 

(5.1.Z7) 

From (5.1.27) the following results can be obtained (Okolie (1978». 

for any integer k. 

(i) Bk = QflkQT • 
B (5.1.28) 

and 

(ii) P(B) = P+(flB)QT } P(Bk)QP(flk)QT • and 
B 

(5.1.29) 

where P(B) and P(II
B

) are polynomials of degree k in the matrix B and fiB 

respectively (see Noble (1969». 

Furthermore. if we denote the eigenvalues of the submatrix L in 

(5.1.20a) by ~j' j=1.2 ••••• m and define a diagonal matrix flL such that· 

\=diag(~1.112 ..... 11m)' by virtue of (5.1.27)-(5.1.29) then L can be 

expressed as follows 

and 

where 

and 

(Okolie (1978», 

L = QflLQ
T 

} 

Lk = QflkQT • k is any integer> 0 • 
L 

• kis any} 
integer. 

(5.1.30) 

(5.1.3la) 



where Il. in terms 
J 

of A. are given by 
J 

2 I Il. = O.5(A.-(A.-4) ) 
J 1 1 
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(5.1.3lb) 

Similarly. the matrix (I+sNLN) in (5.1.22) (or (5.1.25» can be 

expressed as follows. 

N N T 1+s L • oA Q 
~ r .... 1. • (5.1.32) 

N N N N 
where A1+L = diag(l+s Ill' l+s ~2 ..... l+llm) • (=I+s ALL 

Reverting now to the solution procedure given at the beginning of 

this subsection and assuming that the submatrices B and C are commutative 

(i.e. BC=CB) which implies that B and C have a common set of m independent 

eigenvectors (Noble (1969). page 34Z). In this case the orthogonal matrix 

Q consists of columns which are the set of eigenvectors of B and C 

(Okolie (1978»,then we have. 

Let 

QTBQ = 

and QTCQ = 

AB 

AC 

-

-

diag(A l ·A2•• .. ·Am) } • 

diag(Al·AZ·····Am) 

the matrices P
1 

and Pz (of order m) be defined as 

P 1 = O.5(B+ZC) I 

= O.5(B-ZC)! } Pz 

(5.1.32) 

(5.1.33) 

then from (5.1.8). Q
O 

and Q
l 

in terms of P
1 

and Pz are given as follows. 

Qo = P1+Pz } • 
Q

1 
= P -P 1 Z 

(5.1.34) 

Furthermore. we set ~ and ~ as diagonal matrices possessing the 
1 Z 

same eigenvalues as P
1 

and Pz respectively such that 

QTp Q = 
1 

QTp Q = 
Z 

• 

Then. from (5.1. 34) and (5.1. 35). we have 

T T T 
Q ~Q = Q (P1+PZ)Q:Q f(P 1,PZ)Q = f(Ap .~ ) 

1 Z }. 

(5.1.35) 

(5.1. 36) 
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where f(Ap .Ap ) = A +A 
1.2 PI Pz 

g(Ap .Ap ) = Ap +Ap 
1 Z 1 Z 

} 
J 

(5.1.37) 

and f,g are polynomials in PI and Pz as defined in (5.1.36). 

Thus, Q
O 

and Q
I 

can be expressed in the form (for any integer k) 

T 
Q

O 
= QAQ Q 

and 

where 

and 

o 

Q
l 

= QAQ QT , 
1 

Q~ = QA~ QT • 
o 

Q~ = QA~ QT • 
1 

k k k k k 
f(A A ) - diag (al.aZ ••••• am), 

PI' Pz 

k k k k k 
g(Ap .AP ) = diag (~l.~Z •• • •• ~m). 

1 Z 

with f and g as defined in (5.1.36). 

( 5.1.38) 

and a
j 

and ~j are the eigenva1ues of Q
O 

and Q
l 

respectively. 

In addition a. and ~. are expressed in terms of 
J J 

of B) and A. (the eigenvalues of C) and are given by 
J 

A. (the eigenvalues 
J 

(see (5.1.8» 

and 

a. = 0.5[(A.+z1:.)!+(A.-2I.)!] 
J J J J J 

~. = 0.5[(A.+2I.)!-(A.-2T.)!] 
J J J J J 

) H,2, .... m (5.1.39) 

which is analogous to the form (4.5.31b). 

Similarly. if the diagonal matrix AQ is taken such that it comprises 
~ 

the eigenvalues of Q in (5.1.11). i.e •• 

thus from (5.1.38). 

or 

Q = QACfT • 
(5.1.11) and (5.1.40) we have 

AQ AQ = AQ 
o 1 

A~= (A" )-lA • 
Q QO Q

1 

(5.1.40) 

(5.1.41) 



Moreover. if Wj are the elements of Acr(i.e. the eigenvalues 

then from (5.1.41) and (5.1.39). we can express w. in terms of 0. 
J J 

and ~. as follows:­
J 

-I -1 -1 -1 w. = [(A.+2A.) +(A.-2A.) ][(A.+2A.) -(A.-2A.) ] 
J JJ JJ JJ JJ 
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..... 
of Q) 

- 2 -2 ! = A./[A.+(A.-4A.)] • j=1.2 ••••• m. 
J J J J 

(5.1.42) 

~ 

where w
j

• Aj and Aj are the corresponding eigenvalues of Ql.QO and Ql 

respectively. 

In the light of the above analysis. the 5 steps of the procedure 

given earlier may be replaced by the following: 

Step l' 

Step 2' 

Determine AQo=diag(Ol ••••• Om). 

AQ1=diag(~1·····~m)· 

and AQ =diag(wl •••• • wm) • 

from the appropriate relation in (5.1.39) and (5.1.42). 

(i) Obtain z .• j=1.2 ..... N. from 
-:J 

..... z. = 
-:J .-(H) z .• j =1.2 ..... N from 

J 

and 

(Hi) 

':::t N-f'W' 

~ = ~-QZj+l 
_ TZ 

= z.-QA-Q Q z.+l • j=N-l.N-2 ••••• l 
-J O-J 

z., j=l,2, ••• ,N, 
l 

Again. the matrix Fl+I can be diagonalized as before such that 

QT(Fl+I)Q = A = diag(~l""'~m)' 
N 

where 1l.=1+sw. , j=l,2, ••• ,m, thus 
J J 



Step 3' (i) Obtain; , j=1,2, ••• ,N from 

'" QOYj 

-or y. = 
J 

-1 T 
Q(AQ) Q 1.' 

o ~ 

(Hi) x., j =1,2, ••• ,N from 
J 
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-1~ T - :::: 
~ = (Fl+I) IN = Q (A)~ (see (iii) in step 2' above) 

::If N-j +1 T 
~ = l.,j-sQAQ Q ~ 

It is necessary to point out that the above steps involve the matrix 

vector multiplication, QT1.l in (iii) step 2' and QT~ in (iii) step 3' 

and are computed only once; consequently the above procedure is estimated 

to be of computational complexity of O(lOm
2
N) (excluding step 1'). 
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5.2 ALGORITHM FIRM2 

The system considered here is similar to the one given in the previous 

algorithm, but.is non-periodic and has the form, 

B C ~l ~l ... ... 
0 ... 

C ... ... ~2 ~2 "- " ... ... 
"- ... ... (5.2.1) .. , ... = ... ... ... , " , ... ... , 

0 "-
, ... ' C , , 
" "- I I ... C B ~ ~ 

where the submatrices B,C and the vectors x., z •• j=1,2, •••• N are as 
J -J 

defined in (5.1.1). 

The factorization of the coefficient matrix differs from (5.1.3) and 

here involves two block rectangular matrices of size 1~,x(N+l)m and (N+l)mxmN 

respectively takes the following form, 

B C QO Ql 
I QO , , 

0 0 I "- 0 C ... , , , 
Ql, "-, ... , 1 "-, , , 

0 
, ... ... 

" " 
, I .. 

" " "-

" = " I " " ... , , , 
0 " "-, 'C 0 ' . Q 1 .. Q

1 
"- Q

O ... ... 0 , 11 , , 
'Q 1 -- -0- -----Q-'c B Q 01 1 mNx(N+l)m 1 (N+l)mxmN 

By equating the corresponding elements of the tridiagonal matri"ces on 

both sides of (5.2.2) we obtain the matrix equations. i.e •• 

Q2+Q2 = B 
o 1 

QOQl = C (or Q1QO=C) 
} . (5.2.3) 

Since (5.2,.2) is exactly (5.1.4), thus the values of Q
O 

and Q
l 

are 

taken as given in (5.1.8). 
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However, the elimination process in the present algorithm is different 

to the one given in algorithm FICM3, since here we have two block under-

determined and overdetermined systems (c.f. algorithm FIRMl). These two 

systems are: 

~l 

~2 
I 

= (5.2.4a) 

I 

~ 

and 

;[1 

;[2 

= (5.2.4b) 

I I 

~ ~ 
~+l 

where 1." j=l,2, ... ,N+l, are the sub-vectors of length m as well as z. and 
J --J 

x •• 
--J 

If we now assume that the condition 0.1.10) is valid here and Q
O 

is 

defined as in Section 5.1, ( • Q-l .) h • ~.e. 0 ex~sts then t e two systems ~n 

(5.2.4) may be modified into the following forms, respectively. 

- ~ I Q 1.1 ~l , , , 0 I -" 
, 1.2 ~2 , " 10 

" " , , (5.2.5a) , , , 
" = , , 

0 
, ..... 1 , Q , 

I", I , .. 
I IQ ~ I 

~+l 

and 



I 
",' 
Q ' ... , 

, " , 
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-o '1..2 

, ' , ' = (5.2.5b) 

o 

where 

or 

or 

and 

or 

o 
,." 

, ' , ' ... ... ,- ... 
Q I 

---;;; 
Q 

-1 
Q = Q

O 
Q

1 

-QOQ = Q1 
.., -1 
z. = QO Zj , 

J 

~+1 

) 

} 'V 
, j=l,2, ••• ,N QOz j = z. 

J 

..... -1 

) '1..· = QO'1..j J 

'" j=1,2, ••• ,N+l Qal-j = y. , 
-J 

(5.2.6) 

(5.2.7) 

(5.2.8) 

Furthermore, by considering the definition of the submatrices F. in 
J 

(5.1.14) the system (5.2.5a) can be taken a step further where the off-

"diagonal" elements (Le. Q) are eliminated and then to end up with the 

following form, 

I ... ... 
" 
o 

... ... ... ... 

o 

... ... 
. I 

where F. , j=1,2, ••• ,N are 
J 

Z 
zN 

and 
~ 
z. 

J 

and z. given by (5.2.7). 
J 

= 

= 

I 
I F

N
_
1 

IF 
I N 1 

~+l 

~1 -~ ~2 
= 

:::'1 
~ 

given by (5.1.14) and 
:¥ 
z. 
J -zN 

,.., ..... ;: 
j=N-1, ... ,1 z.-Qz. 1 

J J+ 
, 

• 

(5.2.9) 

are given by 

} (5.2.10) 

Hence. from (5.2.9), 'L" j=1.2 .... ,N can be expressed in terms of 
l 

~+1 as follows, 
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(5.2.11) 

On the other hand. the elimination process on the system (5.2.5b) 

takes place such that th~ elements Q are eliminated leaving the unit matrix; 

in this respect it can be noticed the right-hand side vector is changed and 

the final form for (5.2.5b) becomes. 

I , 
"-

" 

0 

where 

and 

" 
0 , 

" "-
"-

"-
"-

- - - - -
0 

~l 

~2 
I 
I 
I 
I 

I ~ 

= 

-1 
~ 

l.2 

~ _"'::1 
y. = v.-ov. 1 ,j=1,2, ... ,N, -J ""-J '<L.J-
~ - ,...:;:y 
YN+l = IN+l-Q~ • 

} 
Y' .• j=1,2, ••.• N+l are given in (5.2.8). 
-J 

(5.2.12) 

(5.2.l3a) 

(5.2.l3b) 

Thus. it follows from (5.2.12) that the solution sub-vectors ~l"" .~. 

~ ~ ~ . 
are equal to the corresponding sub-vectors l.l •••. 'lN and Y

N
+

l 
1S the null 

sub-vector, i.e., 

(5.2.l4a) 

and 
'Z 

Q = ~+l (5.2.l4b) 

In fact, in the relations (5.2.13) we can easily express each of the 



and 

~ -
1.1 = 1.1 ' 

i2 = i2 +Qfl = 1:2 +Qil 
':Ill;, _ NZ "'" __ .... 2..., 
1.3 = 1.3+Q1.2 = 1.3+Q1.2+Q I.l 
::: _ .... ::;t ..., ".1_ ""'2.., ""3 ..... 
~ = ~+Q1.3 = ~+Q1.3+Q I.2+Q I.l ' 

But ~N+l=Q by virtue (5.2.l4b) thus from (5.2.l5a) we have 
_ ...,,.., """2""" -N'V 
-~+l = Q~+Q ~-l+ .. ·+Q I.l • 

We now substitute for y., j=1,2, ••• ,N given by (5.2.8) so that 
J 

(5.2.16) will take the form, 

or 

where 

-1 '" -1 -2 -1 "'N -1 
-QO ~+l = QQO ~+Q GO ~-l+···+Q QO 1.1 ' 

-~+l = Rl~+R2~_1+"'+~1 

N 

= L R'YN_·+l 
j=l J J 

Rj = QoQjQ~l 

I 
If we now return to the equations in (5.2.11), and multiply 
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(5.2.15a) 

(5.2.l5b) 

(5.2.16) 

(5.2.l7a) 

(5.2.l7b) 

the first equation, the second equation, up to the last equation by· 

~'~_l, ••• ,Rl respectively (or say multiply the kth equation by ~-k+l)' 

and add together we arrive at the following result after some rearrangement, 
N N _ N 

.L ~-J·+lY' = .L ~-J'+11 - <) ~-J'+lFJ')~+l 
J=l J J=l "J=l 

(5.2.18) 

But the right-hand side in the last relation is equal to -~+l 

by virtue of (5.2.l7a) thus (5.2.18) becomes, 
N . N 

~ 

-~+l = .L ~-j+l~j-(.L ~_j+1Fj)~+1 
J=l J=l 

or with some rearrangement it may be written in the form, 
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= - (5.2.19) 

Further, if we substitute for R. and F. as given in (5.2.l7b) and 
J J 

(5.1.14) respectively, then (5.2.19) becomes, 

N 

(I - L 
j=l 

~ 

(5.2.20) 

where z. is given in (5.2.20) , and s for any j of the summation operator 
J 

is defined as , for N odd 

, for N even. 

It may be possible to do further simplification in the second term of 

the left-hand side of (5.2.20) by taking into account the fact that Q
O 

and 

Q
l 

are commutative due to (5.2.3) which consequently implies the equality 

N -1 -1 
(Q=) Q

O 
Q

1 
= QlQ

O 
• (5.2.21) 

Therefore, 
Nk -1 k 

the quantity QOQ Q
O 

Q , k=1,2, ••• ,N may be modified 

as follows, 

Nk -INk -1 -1 -1 -l~k 
QOQ QO Q = Qo(QO Q{QO Q{ ••• xQO Ql)QO Q 

.. . 
• 

k times 

k times 

(5.2.22) 

Thus, by virtue of (5.2.22) the relation (5.2.20) takes the form, 

~ s'Q2(N-j+l» 
. 1 .q,+l 
J= 

(I - = -
~ -N-j+l ~ 
l.. Q z. 

j=l -J 
(5.2.23) 

and s is as defined in (5.2.20). 

However, with the system (5.2.23) (of order m) solved for .q,+l' it 

enables us to proceed for the computation of y., j=1,2, ... ,N from (5.2.11). 
J 

This is followed by considering the equations (5.2.8) d 
.... 

to etenm.ne!.j' 
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j=1,2, ••• ,N and then to (5.2.13b) to determine ~., j=1,2, ••• ,N which are 
J 

equal to the solution x. by virtue of (5.2.l4a). 
-) 

The outline of the above procedure may be briefly represented by the 

following: 

Step 1, Step 2 and Step 3 (see algorithm FICM3 in the previous subsections). 

Step 4 

Step 5 

Step 6 

Compute ~+l by solving the linear system (5.2.23). 

,.., :::: 
Compute z., z. and v., j=1,2, ••• ,N as follows, 

-) -) "-J 

QJ:j = ~j , j=1,2, ••• ,N, 
'Z ,., ~ _ ...,z 
z" = ~" z. = z. - Qz. l' j=N-l, ••• ,l 
--" --" -) J ) + -and - . l.j = zj-Fj~+l' )=1,2, ••• ,N. 

... -Compute v. and y. (=x.) as follows: 
"-J -J-) 

where 

,.., 
Q"x.. = y. , j=1,2, ••• ,N 

v-J -J 
~ --~ (x.=)v. = y.-Qy. l' j=2,3, ••• ,N, 

-) "-) ) )-<11' _ 

(~l =) = 1.1 = 1:1 

The order of operations involved in the above procedure (excluding 

step 1) is approximately of O(N(~3+4m2» which is an improvement over 

that given by 1saacson & Keller (1966). 

Finally, we point out that the spectral resolution method discussed 

in Section 5.1, can be applied to the system (5.2.1), provided that 

the conditions required by this method are fulfilled. Obviously, we can 

apply this method on the system (5.2.23), for example, and using the same 

notation, we obtain, 

(I - = -
N 

L 
j=l 

",N-j+1QT;;)" 
"(,a- z. 

Q -) 

where the orthogona1 matrix Q and the diagonal matrix AQ are as defined in 

the previous section. Thus, by adopting 

the previous procedure may reduce the order 

approximate 1y. 

the spectral resolution method 

of operations to O(9m
2

N) 
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5.3 ALGORITHM FICM4 

As an extension to the system considered in algorithm FICM3 

(Section 5.1), we shall consider here a periodic block-quindiagonal 

linear system of the form, 

B .... C ... D .... D C ~l ~l , ... , 
C, , .... , 

D !.2 ~2 
, 0 , ... , , ... , ... , 

D, ... , ... , I , , 
" ... , .... , 

"- (5.3.1) ... , , ... .... = , , , , .... .... .... ... ... , , ... 'D .... .... , .... , , .... 
D , 'c 0 , .... , , , , 
C D , D' C 'B 

~ ~ 

where the coefficient matrix is a constant symmetric circulant b1ock-

quindiagonal matrix of order rru~, B,C,D are real block sub-matrices of 

order m and each sub-vector x. and z. has m components such that 
4. 4. 

T T 
x.=[x. 1"" ,x. 1 , z. =[z. l'z, 2"" ,z. 1 • 
-I.~, 1,m -1 1, L, 1,m 

Also, it is assumed that the coefficient matrix is block-diagonally 

dominant with respect to the matrix norm 11.11 i.e., 

2"B-1"("cII+IID")~1, provided that B is non-singular, 

(5.3.2) 

The factorization of the block-quindiagona1 matrix in (5.3.1) under the 

condition (5.3.2) is assumed to take the form, 

BeD, D C Qo Q1 Q2 , ... , 
0 ' , ' 0 c "" " D 

... " " " , , " 
,,"'" " ..... , , , 

D, ,,', ...... , ' ... = 
" 

, , 
'" ... "'" " " , , , , " "..... ... , , 

" ..... ..... _', "D 0 
, , Q2 " ..... ..... , , , 

D 0 ' ',,, 'c Q2 
' 'Q 

" " " 1 , " C D ' DC B Ql Q2 Qo 

Qo Q2 Q1 , 
Q1, " 0 Q2 , 

" Q ' , 
2, , "-

"-
, 

" " 
, , 

" "- , 
0 , " 

, , , 
" ... Q; Q1 Qo 
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Q~+Qi+Q; Q
1
QO+Q2Q1 Q2QO QOQZ QOQ

1
+Q

1
QZ ... "- .... 

QOQ1+Q1Q2 "- " " QOQZ "- .... 0 .... 
" " ... 

QOQ2 
... .... ... " .... " 

... ... "-
"- "- .... "-"- ... ... .... ... " .... 

"- ... .... = .... .... 
.... " ... " ... 
" .... ... .... 

QZQO ... .... .... ... .... 
QZQO 0 "- " 

... 
Q

1
QO+QZQ1 

... ... ... ... 
.... .... ... ... ... 

QZ Q2+Q2 Q1QO+QZQ1Q2QO QOQZ QOQ1 +Q1 QZ 0+ 1 2 

(5.3.3) 

where the submatrices QO,Q1 and QZ are each of order m. 

By equating the two b1ock-quindiagona1 matrices in (5.3.3), and 

comparing corresponding elements yields the following relations, 

Q~+Qi+Q; = B 

Q1QO+Q2QO = C (or QOQ1+Q1QZ=C) (5.3.4) 

and Q2QO = D (or QOQZ=D) 

Although, the system (5.3.4) consists of matrix equations, it can 

be reduced to a simpler form similar to the quindiagona1 point case (i.e. 

when r=Z) in the algorithm FICM1 (see subsection 4.Z.1 or subsection 4.2.4 

equation (4.Z.38», this is due to the fact that the expression, 

- 2 2 2- -
(QO+Q1+Q2) = QO+QZ+(Q1QO+QZQ1)+(QOQ1+Q1QZ)+QZQO+QOQZ ' (5.3.5) 

holds true by virtue of the commutative property of the matrices 

(Q1QO+QZQ1) and (QOQ1+Q1QZ)' QZ and QO which are confirmed by the second 

and third equations respectively of (5.3.4); 

Thus, the equations (5.3.4) under the validity of (5.3.5) can be 

replaced by the following equation (see subsection 4.2.1), 

QO+Q Z = O.S{[B+Z(D+C)] i+[B+2(D-C)] i} = G 

Q1=0.S{[B+2(D+C)]i_[B+2(D-C)]!} 

Q2QO=D (or QOQZ=D) 

(5.3.6) 

in order to determine the submatrices QO,Q1 and Q2' provided that the 

matrices [B+2(D+C)] and [B+2CD-C)] are positive definite and their roots 
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are defined, notably by the strictly inequality (5.3.2). 

It is clear from (5.3.6) that the submatrix Q
l 

is determined already, 

whilst Q
O 

and Q
2 

are defined as follows: 

QO 
= O.5(C+[C

2-401l )} 

O.5(C-[C
2-401 1) , Ilc2 11>41Ioll, 

(:'.3.7) 
and Q2 

= provided 

where G is a constant matrix defined in the first of (5.3.6). 

In fact, the choice of QO (or Q2) in the form defined in (5.3.7) 

does satisfy the quadratic matrix equation in Q
O 

(or Q2) derived from 

the first and the last equations of (5.3.6), i.e., 

(5.3.8) 

taking into account the commutative property of the matrices QO and Q2' 

It is assumed the same procedure of Section 2.5 is app1ieab1e here 

to evaluate the appropriate square root matrix in (5.3.6) and (5.3.7) as 

long as the relevant matrix is positive definite. This implies eventually 

that QO is positive definite. 

Two Alternative Block Systems for (5.3.1) 

When in the system (5.3.1) the coefficient matrix is replaced by its 

two factors given in (5.3.3), we can formulate the following two systems 

where coefficient matrices are of upper and lower circu1ant block type 

respectively, i.e., 

QO Q1 Q2 l.1 ~1 
" " " 0 l.2 ~2 .... .... , 

" " 
, , 

" .... , 
" , , 

.... , , 
(5.3.9a) " 

... , = , , , 
.... , .... Q 

0 ........ 2 
.... " 

Q2 ' 'Q I 
" 1 I I 

Q1 Q2 
'Q ~ ~ 0 
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rq 
0 Q2 Ql ~l l.l ... 

Q2 Ql "', ~2 l.2 , 
Q' , 0 2 .... ... ... ... , 

.... ... , 
.... ... , ... ... = (5.3.9b) .... , .... 

l 
... , ... ... 

"- ... ... ... , , 
0 

... ... ... , , ... , 
.... ... , , ... , Q2' Q

l 
Q

O y 

where the subvectors l.l ,l.2' .. "L{; are of length m each. 

We now adopt the following elimination procedure for the above systems, 

taking into account that the stability of the procedure is ensured as long 

as IIQo 11 is greater than IIQll1 and IIQ211. 

Since Q
O 

is positive definite as was pointed out earlier (which 

implies that Q;l does exist), the systems (5.3.9a) and (5.3.9b) can be 

normalized so that they would take the following forms respectively, 

~2 

= (5.3.10a) 

~ 

y z 

and 
I 

= (5.3.lOb) 

where the unit matrix I is of order m, 
.., -1 - -1 

1 
Q1 = QO Q1 

, Q2 = QO Q2 (5.3.11) 
"- .., 

or QOQ1 = Q1 
, Q

O
Q

2 
m Q

2 
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~. and {f., j =1,2, ... ,N are defined as in (5.1.12) and (5.1.13) 
-J ""-J 

respectively. 

As shown in the previous section, the implication of the elimination 

procedure is to get rid of the off-diagonal elements, precisely the sub-
'Y ,.., 

matrices Ql and Q2 in both systems of (5.3.10). We confine ourself to 

the algebraic formulation of this procedure. This may require the 

introduction of the submatrices F. and G. (each of order m), i=l, 2, ••• ,N, 
1 1 

"-and the sub-vectors z. (each of length m), i=1,2, ••• ,N as follows, 
-1. 

,.. "'" -'" 
~-1 = ~-l+(-Ql)~ 

(unit matrix) for ... '" = = 
j=l 

{~ F. (-Q1)Fj +l +(-Q2)Fj +2+H, where H (null matrix) otherwise J r '0< j., 
'" - Q1,for j=l G. = (-Ql)Gj +l +(-Q2)Gj +2+K, where K = 

J 
o (null) otherwise 

'" = ij+(-Q/~+1+(-Q2)ij+2 and z. 
-j 

j=N-2,N-3, ••• ,1. (5.3.12) 

-where z., j=1,2, ••• ,N are the components of the right-hand side vector 
-J ... -in (5.3 • lOa) and Ql and Q2 are given by (5.3.11) • 

Hence the sys tem (5.3 .1Oa) takes the form, 

G1 
.... 

F1 1.1 !.l 

F2 G2 
.. 

1.2 !.2 

F3 ~3 r 0 I , 
I I " = 

I , I 
I " I , 
I , I 

• 0 , 
I , 

I , I "-
FN GN 

'r It. z 

where F. ,G. and 
J J 

'" z., j=1,2, ... ,N are given in (5.3.12) .• 
J 

Further, we eliminate G1 so that (5.3.13) would result in a 

triangular form, that is, 

(5.3.13) 
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Fl 1.1 " ~l 
FZ 

GZ 
A 

1.Z ~Z 

F3 G3 I 0 
A 

\ Y3 ~3 
I I I I , 
I \ I I (5.3.l4a) I \ = 

I I 
I 

, 
I \ I 

I 0 , I 
I , I 
I \ I 

I ,.. 
FN FN I ~ ~ 

,.. -1 

} where Fl = Fl-G1GZ FZ 
, 

,. ,.. -11\ (5.3.l4b) 
and ~l = zl-G1GZ Zz , 

provided GZ is non-singular. 

The components of the auxiliary vector, Yl.' ••• 'YN can be obtained from 

(S.3.l4a) by the forward substitution scheme, i.e., 
,. ~ 

Fl1.l = ~l ' which is solved for 1.1 

and GZ1.Z = ~2-F21.l ' which is solved for 1.2 

whilst ~;' k=3,4, ••• ,N are obtained from, 

" ~ = zk-(Fk1.l +Gk1.2) • 

Similarly, if we 

~ 
and ~ as follows:~ 

"-
where 1..' 

J 

" ~ 
1.1 = 1.1 
"" - ""',... 1.2 = 1.2+(-Ql)1.l 

j=1,2, ••• ,N are defined in 

~ " -1" 
~ = ~-G1GZ ~-l ' 

(5.3.l6a) 

(5.3.15) 

(5.3.l6a) 

then the system (5.3.l4b) can be reduced to its final form where the 

coefficient matrix now has an upper triangular form, i.e., 
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- ,.. 
I G FN ~l 1.1 , N 

I I " , 
~2 1.2 , I I , 0 I I , 

I , , I = (5.3.l6b) , I , 
0 I G3 F3 

" G2 F2 I ~'H 
" I ~ 
Fl ~ ~ 

1\ J\ ~ ,... 
where Yl""'YN- l and ~ are given by (5.3.16a) and Fl in (S.3.14b). 

Finally, the components of the solution vector, ~l""'~ can be 

determined by a backward substitution process derived from (5.3.l6b) and 

is given by. " ,.. 
Fl~ = ~ • which is solved for ~ 

and " G2~_1 = ~_1-F2~ • which is solved for ~-l 

whilst~. k=N-2 ••••• 1 are obtained from. 
(5.3.17) 

~ = ~-(GN-k+l~-l+FN-k+l~) 
The solution procedure can be summarized in the following steps: 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Compute the sub-matrices QO.Ql and Q2 from (5.3.6) and (5.3.7) 

which involves the computation of the square root of a matrix by 

Newton's method. 

'" -Obtain Q
1 

and QZ from (5.3.11). 

Obtain F. and G .• j=1.2 ..... N from (5.3.12). 
J J 

~ ,., 
Compute z .• z. and v .• j=1.2 ..... N as follows: 

-J -J .LJ 

,." 

Q~j =~j' 
A 
z. from (5.3.12) 
-J 

and y. from .(5.3.l5).. 
-J 

'" ,. Compute v .• v. and x •• j=N ..... 1 as follows: 
"'-J "-J -J 

.... 
Q~j = 1.j 

,.. 
1.. from (5.3.16a) 

J 
and x. from (5.3.l6b). 

-J 
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The number of operations involved in the above procedure (excluding 

step 1) 1'S 0(.338 m
3

N) .• Aga1'n 1'f the f1'rst system 1'n step 4 and step 5 (wh1'ch , 

solves for Z, and y, respectively) are solved efficiently such that the 
-J -J 

coefficient matrix QO is factorized just once, then the complexity order 

3 2 
may be brought down to 0«12m +2m )N), 

It may be possible to extend the spectral resolution method discussed 

in Section 5,1, (for the periodic block-tridiagona1 system) to the 

periodic block-quindiagonal system represented by (5,3,1), This extension 

may occur under some restrictions imposed· on the relationship between the 

submatrices B,C and D in (5.3,1). For example, it is required that (i) B 

and C commute, and their product to commute with D, (ii) Band D commute, 

and their product to commute with C, or (iii) C and D to commute, and their 

product to commute with B. This is equivalent to the statement any two of 

three matrices B,C,D to commute, and their product also to commute with the 

third matrix. Subsequently, the desired condition may be formulated as 

(i) BC = CB and DBC = BCD , 

(ii) BD = DB and CBD = BDC (5.3.18) 

(iii) DC = CD and BDC = DCB 

If any of the conditions of (5.3.18) are fulfilled, then we conclude 

that the three submatrices have a common set of m independent eigenvectors, 

and thus it is possible to construct an orthogonal matrix Q (see section 

5.1), whose columns comprise of the set of eigenvectors of B,C and D. 

(N,B. if D is a unit matrix, then Q is restricted to Band C, similarly 

for B and C also), such that, 

QTBQ = AB - diag(Al,···,Am) 

QTCQ = AC - diag(~l"" ';'m) (5.3.19) 

QTDQ = 
diag6l ,··· '~m) = ~ -

== where A,·;A, ,A" j=1,2, ••• ,m are the eigenvalues of B,C and D respectively. 
J J J 
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Hence, by following a similar procedure as given in Section 5.1, 

we can express the eigenvalues cri ,cri and i\ of the submatrices QO,Ql and Q2 

respectively, in terms of the eigenvalues of B,C and D as given in (5.3.19). 

This is given as follows, taking into account that Q
l 

is given by (5.3.6), 

Qo and Q2 by (5.3.7). 

".(or ~.) = 0.25{[A.+2(~.+~.)1!+[A.+2(~.-X.)1!}+ (or -) 
1 1. L L L' 1. 1. 1. 

(5.3.20) 

In fact, the determination of these three eigenvalues, could replace 

step 1 of the procedure in the present subsection, and the continuation of 

the remaining steps can proceed in an analogous way to the appropriate steps 

for the periodic block-tridiagonal case (see Se.ction 5.1). 
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5.4 ALGORITHM FIRM3 

The type of linear systems considered in this algorithm are non-

periodic b1ock-quindiagonal, which in fact, are similar to (5.3.1), 

except that the coefficient matrix is non-circulant, i.e., 

B C 0 ~l ~l ... .... " .... 0 C .... " " ~2 ~2 ... ... "- .... ... ... 
0 .... .... .... ... I I .... .... ... .... I ... 

"- .... .... ... I (5.4.1) ... .... ... .... = .... .... .... ... ... I 
.... .... .... .... ... 0 .... ... ... ... ... ... .... .... ... 

0 
... ... .... 'C ... ... .... I , 

'D 'c ... 
B z 

where the coefficient matrix is a constant and symmetric block-quindiagona1 

matrix of order mN, with B,C,O real block-submatrices of order m and each 

sub-vector x. and z. has m components as in (5.3.1). 
-1 -1. 

It is assumed that the matrix in (5.4.1) is a block-diagonally 

dominant which can be ensured as long as the inequality (5.3.2) is true. 

By taking this property into account, we proceed to factorize the block-

quindiagona1 matrix in (5.4.1). The factorization of this matrix takes 

place in an analogous way to the procedure adopted in algorithm 

FIRH2 (Section 5.2) to obtain two rectangular block matrices of size 

mNX(mN+2m) and (mN+2m)xmN respectively, or precisely the coefficient matrix 

of (5.4.1) can be factorized as follows: 

B C 0 .... 0 ...... ... 
C .... " .... 

...... ,,"', 
D ....... ...... ' ....... , 

.... "" " ..... = " ,,'" " 'D ..... ....." .... 
.... ,,"" " ..... ....""" ... C ...... '" 

O ......'" ... 0 C B 
mNx(mN+2m) 
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(rnN+2m)XrnN 

Q2 Q2+Q2 
0+ 1 2 Q1QO+Q2Q1 Q2QO ... ... .... 

QOQ1+Q1Q2 .............. 
.... ..... ..... ..... 0 ... .... .... ..... .... .... .... ..... .... QOQ2 

... .... 
= .... ..... , ..... 

..... .... ... .... , (5.4.2) .... .... .... .... ... ..... ... ... ... Q2QO ... ... .... ... 
..... .... ..... ..... ... .... .... .... ... ... .... ... ... Q1 QO +Q2Q1 ... ... 0 .... ... ... ... , 

'(l+Q2+Q2 , Q
O

Q
2 QOQ1+Q

1
Q

2 o 1 2 

where the submatrices QO,Q1 and Q2 are each of order m. 

It can be readily noticed that by equating the corresponding elements 

of the two b10ck-quindiagona1 matrices on both sides of (5.4.2) leads to 

three matrix equations to be satisfied. These equations are exactly as 

given in (5.3.4), thus QO,Q1 and Q2 can be determined from (5.3.6) (for 

Q1) and (5.3.7) (for QO and Q2). Also we shall assume as in Section 

5.3, that Q
O 

is non-singular and the value of its norm exceeds the value 

of the norm of both Q1 and Q2 so that the stability of the following 

elimination process is guaranteed. 

First of all, we replace the given block system (5.4.1) by two 

alternative systems whose coefficient matrices are, respectively, the 

'upper' and 'lower' block triangular factors given in (5.4.2). These two 

systems which are overdetermined and underdetermined by 2m have the 

following form respectively, 



Qo Q
l 

Q
2 , , , , , , , 

0 , , , , , , , , , , , , 
, , 'Q 

, " 2 
, 'Q 

0 " 1 , 
, Q 

0 

and 

Ll 

I 
L2 

I 
I 
I 
I 
IQ2 
I 
I Ql Q2 

I 
I 

~ 

Zt!+l 

:l'N+2 

~l 

~2 
I 
I 
I 
I 
I 
I 

I 

~ 

= 

= 

~l 

~2 
I 

I 

~ 
~+l 

Zt!+2 

270 

(5.4.3a) 

, (5.4.3b) 

where the sub-Vector components of the auxiliary vector, Ll' ••• 'Zt!+2 are 

each of length m. 

Since Q
O 

is assumed to be non-singular, the systems (5.4.3a) and 

(5.4.3b) may be modified to have the following form respectively (c.f. 

the systems in (5.2.5b)), 

'" -I Q
l 

Q
2 , , , 

, " () , " \ , ' , , " , , ' , , , , , , 
" " '", 

" ' 'Q I , ' 2 
O ,'''''' ."'" " 'Ql I ~2 _ 

',I : Ql Q2 

and 

I 

I 
," 
I 

= , (5.4.4a) 



where 

or 

Also. 

or 

and 

or 

o 
" " " " " " " , " ,,"- " 

"Q' Q 'r 
- - - - - - - - 2-,V.-.;:;-

Q
2 

Q1 
'" 
Q2-

o 
~ -1 
Q1 

= QO Q1 
'" QOQ

1 
,;, Q1 • 

we have -1 N 

z. = QO z. • -J -J 

-Q2 

~1 

~2 
I 
I 

= 

-1 = QO Q2 
~ 

QOQ2 = Q2 

N 

j=1.2 ••••• N Q~j = z. • -J 

'L1 ... 
'L2 
I 
I 
I 
I 
I 

} 

I ..., -1 
'L' = Q y. • J -J 

• j=1.2 ••••• N+2. } '" Qo'i..i = 'Lj 
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(5.4.4b) 

(5.4.5) 

(5.4.6) 

(5.4.7) 

Further. we reconsider the sub-matrices F .• G. and the sub-vectors 
J J 

A 
z •• 
-J 

j=1.2 ..... N as defined in (5.3.12) (but the third term H in F. and K 
J 

in G. are discarded). then 
J 

'" '" the off-"diagona1" elements (Le. Q1 and Q2) 

in the sys tem (5.4. 4a) can be eliminated such that this system would 

assume the form. 

I I F G
1 " , I 1 'L1 ~1 

"- I F2 G2 
.. 

" 0 1.2 ~2 

" 
I I I I , I I I = I (5.4.8) , 
I I I , I I , I F
N

_
1 

G
N

_
1 0 

, 
, I 

I 
I " I I FN GN ~ ~ I 

~+1 

~+2 

To express Yj' j=1.2 ••••• N in terms of ~+1 and ~+2' i.e. from 

(5.4.8) we have. 
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A 

Z1 = ~1-(F1~+1+G1~+2) 

Z2 = 12-(F2~+1+G2~+2) 
(5.4.9) 

~ -Then in system (5.4.4b) after eliminating the elements Ql and Qo of 

the coefficient matrix, the final form of the system becomes 

r " 
" ~l 1.1 

"-
1\ 

" 0 ~2 1.2 
"- I I 

" I I 

" I I 

" I = I 

" I I 
, 

"-
0 ... I I 

... I I 

'r ~ 

~ ~ 

(5.4.10) 

- - -- --- ~ 

0 
~+1 
" +2 

" -where 1.1 = Z1 ' 
1\ ...., - "" 
1.2 = 1.2+(-Q1)1.1 

(S.4.11a) 

/'to _ """" """" 1.j = 1./(-Q1)Zj-1+(-Q2)1.j-2 ' j=3,4, ••• ,N, 
" __ " "V 1\ 

~+1 = ~+1+(-Q1)~+(-Q2)~-1 

and } (5.4.11b) 

- - ... where Q1,Q2 and 1.., j=1,2, ••• ,N+2 are as defined in (5.4.4b). 
. J 

Thus, it follows from (5.4.10) that the solution sub-vectors ~1' ••• '~ 

... " are equal to the corresponding components, Zl' ••• '~ and the redundant sub-

/>. " vectors ~+1 and ~+2 are null (i.e. of zero components), i.e., 
/'. 

~1 = 1.1 ' 

" ~2 = 1.2 ' 
(5.4.12a) 

1\ 

~=~, 
1\ 

} with Q = YN+l ' (5.4.12b) 
and Q = ~+2 
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On the other hand. in order to proceed to further the analysis we 

introduce the matrices R. (of size mxm). j=O.1.2 ••••• N to be defined by 
J 

(unit) • - } Ra = I R1 = -Q • 1 (5.4.13) 
'" '"" and R. = (-Q1)Rj - 1+(-Q2)Rj _2• j=2.3 •.••• N 

J 
~ . 

where Q
1 

and Q
2 

are given by (5.4.5). 

Thus. from (5.4 . 11 a) we can express each of the Ij in terms of I:
1

.Z2 • 

'" ... ,Z., i.e., 
J 

(5.4.14a) 

" ,.. and from (5.4.14b) ~+1 and ~+2 can also be expressed in the form. 

1 (5.4.14b) 

Ao 

where R .• j=1.2 ••••• N are as given in (5.4.13). and the R. are defined by 
J J 

" -R. = (-Q2)R. l' j=1.2 ••••• N. J J- . 
(5.4.15) 

"". ) But ~+1~+2=Q by Vlrtue of (5.4.12b • thus by substituting for 

these values in (5.4.14b), with some rearrangement we obtain. 

• } (5.4.16) 

... 
where R. and R •• j:1.2 ••••• N are given in (5.4.13) and (5.4.15) respectively. 

J J 

Moreover. we substitute for Z. as given in (4.5.93) in terms of ~. 
J J 

in both relations of (5.4.16). to yield the result. 
-1 -1 -1 -1 

-QO ~+1 = R1Qa ~+R2QO ~-l+···+~QO ~1 ) (5.4.17) 
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If we now premultiply both sides of each equation in (5.4.17) by 

QO and introduce the j=1,2, ••• ,N such that 

j=1,2, ••• ,N, (5.4.l8a) 

" where R. and R. are as given earlier, or T. may be computed recursively, 
J J J 

i . e. , 

,.. 
and T. from the relations, 

l 

,j=2, ••• ,N 

then the two equations of (5.4.17) can be written in the form, 

-XN+l = T1XN+T2XN_l+···+T~1 } ,.... ,. 
-XN+2 = T1XN+T2XN_l+···+TN~1 

(5.4.19) 

(5.4.20) 

Further, we premultiply the first equation by TN, the second by TN-
l 

and so on up to the Nth equation by Tl (or the kth equation by T
N

-
k

+l , 

k=1,2, ••• ,N) in (5.4.9) and a similar mUltiplication takes place with 

" ,.. 
TN- k+l , followed by substituting for the terms TN-k+l~ and TN-k+l~ 

k=1,2, ••• ,N in the first and second relation of (5.4.20) respectively, 

then these two relations after some algebraic simplifications may be 

Or in a simpler form, the latter equations can be written as 

} (5.4.2la) 



Z75 

where the matrices El ,EZ ,SI ,SZ (each of size mxm) and the vectors ~l and 

~Z (each of length m) are given by 

and 

N 

El = L T.FN_· 1 
· 1 J J+ J= 

N 
L T.GN_· 1 

· 1 J J+ J= 

N 

~l = L T'~N . 1 • 1 J -J+ J= 

v = -Z 

N ,.. 
L T'~N_'+l 

j=1 J J 

, 

N" 
LT.FN • 1 . 1 J -J + J= 

N '" 
I'T.G . 

.f. J N-J+1 
J=1 

In matrix notation, the system (5.4.Zla) takes the form 

(5.4.21b) 

(5.4.ZZ) 

which is of order Zm and can be solved for XN+l and XN+z provided that 

the coefficient matrix is non-singular. 

However, having determined XN+l and XN+z 

j=l,Z, ••• ,N can be determined from (5.4.9),. 

from (4.5.106), the ~., 
J 

followed by using (5.4.7) 

to determine i.., j=l,Z, ••• ,N. 
J 

Finally, the i., j=l,Z, ••• ,N can be obtained 
J 

from (5.4.lla) which in fact are equivalent to the solution ~l""'~ 

by virtue of (5.4.lZal 

The summary of the above procedure can be abbreviated in the following 

steps: 

Step 1 and Step 2 (see the corresponding steps i.n Section 5.3). 

Step 3 

Step 4 

Compute F. and G., j=l,Z, ••• ,N from (5.4.Z) 
J J 

terms H and K must be ignored). 

'" " Compute z., z., 
J -J 

j-l,2, ••• ,N as follows, 

and ~. from (5.3.1Z). 
-J 

QJ'j - !.j 

(noting that the 
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A 

Step 5 Obtain T. and T., j=1,2, ••. ,N from (5.4.19). 
J J 

Step 6 Solve the linear system (5.4.22) whose elements can be computed 

from (S.4.2lb) and hence ~+l = ~+2 can be determined. 

Step 7 b · '" ,.. o taln y., y. and v. (or x.), j=1,2, ••. ,N as follows, 
-J -J L J J 

y. from (5.4.9), 
-J - from (5.4.7) , Y.... 

J 

'" from (5.4.lla) , y. 
J 

"-
and x. = Y.... by virtue of (5.4 .12a) • 

-J J 

The number of operations involved in the above procedure (excluding 

40 3 2 
Step 1) is of order O«-rm +8m )N). As pointed out in the previous 

algorithm, if z. (in Step 4) 
J 

the coefficient matrix (i.e. 

operation may be reduced to 

-and Y.... (in Step 7) are evaluated such that 
J 

Q.) is factorised once, the order of the 
J 

0(13m3+10m2)N). 

If the submatrices B,C and D of the given system (5.4.1) satisfy the 

appropriate conditions incidated in Section 5.3 (in particular, the 

conditions (5.4.7), then it may be possible to adopt the spectral resolution 

method to the system (5.4.1). In this case the above procedure can be 

converted analogous to the ones discussed in the previous subsections (see 

Section 5.2), for example Step 1 would involve the computation of the 

eigenvalues of QO,Ql and Q2 which in fact are given by (5.3.20). 

Finally, we briefly outline the case where the linear system (5.4.1) 

possessed a slightly different coefficient matrix such 'that the first and 

last diagonal submatrices are different, i.e., 
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Bl C D 2:.1 ':'1 
C B C D 2:.z ':'2 
" , " " 0 , 

D " " " 
I , ,,, ' I ,," , ,"'" I ,," """ " " " = I . (5.4.Z3) , " , 

" " " " , I 
" " " " " I 

" " " " .... I " " " " D 

" " " ' I 

0 ' "c 'B 'c I 
" , 
" D C B2 ~ ~ 

Such a system occurs in the finite difference discretisation of a 

fourth-order elliptic partialddifferential equation (whose special case 

is represented by the Biharmonic equation, see Chapter 7). 

In this particular case, the factorization (5.4.2) is suggested to 

take the form (c.f. (4.6.11)) 

C 

B 

D 

C D o " ........ , 
D ' ... ,," , 

.... ..... ..... " ...... " ...", " "..... " ........ 
" ..... "'" ..... "'D 

...... ....."" .... ..... ,',', 
" .... C' B ... c 

" o 
... D C B2 

-13 Ql Q2 
" 0 QO" \ , , , 
" ' ' 0 ", ' , , , 

, , ' I 
" " Q21 

O "'Q I Q 
" I, Z 

'Q
O 

I Q
l 

y , 

(5.4.Z4) 

which is consistent with the structure of the given matrix. A comparison 

of terms yields a system of non-linear matrix equations of the form, 

and 

Z Z 
13o+Ql+QZ = Bl 

Z Z Z 
Q

O
+Q l +Q2 = B 

Ql QO+Q2 Ql = C (or QOQl+QlQZ=C) 

QZ~ = D (or QoQZ=l) 

Z Z 
QO+Ql+Y€ = BZ • 

(5.4.Z5a) 

(S.4.2Sb) 

(S.4.2Sc) 
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In fact, the system (5.4.25b) is treated exactly as (5.3.4) whilst 

the four sub-matrices B,o,Y and £ may be determined as follows: 

either by choosing B=QO' Y=Q2 and then from the relations (5.4.25a) and 

(5.4.25c) we have, 

(5.4.26) 

and 

which have to be solved for 8 and £ respectively, provided that 

Qo and Q
2 

are non-singular matrices, 

or by setting B=o, Y=€ and then from (5.4.25a) and (5.4.25c) we have 

with } (5.4.27) 

provided that the square roots of the appropriate matrices are 

defined. 

Thus, the factorization procedure for the system (5.4.23) involves 5 

matrix square roots if the scheme (5.4.27) is considered. 

The elimination process now can continue such that the coefficient 

matrices of the systems (5.4.3a) and (5.4.3b) must be replaced by the 

relevant ones from (5.4.24). Then, the remaining steps of the elimination 

process are carried out as before provided that the submatrices B,o,y 

and £ must be taken into account which in fact does not require major 

modification. Note that the FIRM3 algorithm has been programmed on the 

basis of system (5.4.23) rather than (5.4.1) for'more general application 

purposes. 
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5.5 ALGORITHM FICM6 AND ALGORITHM FIRMS 

The two algorithms in Section 4.5 and 4.6 may be extended to the 

block case and for the special case when the coefficient matrix is 

constant and skew-symmetric, tridiagonal (periodic or non-periodic 

respectively). In fact, the block systems under consideration are of the 

form, 

or 

and 

or 

B C -C , "', 
-C.... .... 

C 

... '" ... o ... ", , , , .... 
.... .... .... 

o 

C 

" " 

'.......... " ....... , .... , .... 
.... ..... ..... C " , 

" " -C 'B 

Ax = z 

-C ........ 
" " .... , .... .... o 

' ................. 
.... " .... 

" " .... ...... " " 
" " ..... .... .... .... C 

.... " o 
" , 

-C B 

I 

~ 

= 

= 

.!l 

.!2 
I 

I 
I 
I 
~ 

.!l 

.!2 

, 
I 

~ 

, (5.5.la) 

(5.5.lb) 

(5.5.2a) 

(5.5.2b) 

where the submatrices and subvectors in both systems are each of size 

(mxm) and (mxl) respectively (see Section 5.1 or 5.2), 

The first algorithm (i.e. FICM6) deals with the periodic case which 

is represented by the system (5.5.1), whilst the other algorithm (i.e. 

FIRMS) deals with the non-periodic case which is represented by the system 

(5.5.2). 

The modification strategy of the given system adopted in both 

algorithm FICMS and FIRM4 (Sections 4.5 and 4.6) can be applied to the 

systems (5.5.1) and (5.5.2) respectively, that is we premultiply both 
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sides of each system by the transpose of its coefficient matrix to yield 

the result, 

(i) for (5.5.1), we have 

or 

where 

T T 
AA:!,=Az, 

G.:s=~, 

G = AT A , 

(5.5.3a) 

and T T 
v = A z =' [~l '~2'" .. ~l , 

(5.5.3b) 

(5.5.3c) 

(5.5.3d) 

and 

(ii) for (5.5.2), we have 

or 

wwhere 

and 

H2:. = .!:!. , 

H = 'ATA: , 

(5.5.4a) 

(5.5.4b) 

(5.5.4c) 

(5.5.4d) 

Moreover, it can be easily verified that G in (5.5.3c) and H in 

(5.5.4c) are symmetria block matrices, quindiagonal periodic and non-

periodic respectively (c.f. (5.3.1) and (5.4.1)), then' the (5.5.3b) and (5.5.4b) 

may be written explicitly in the form respectively, 

and 

o ... ... .... o ...... ..... .... .... ........ .... ..... 2......... ...... .... -c ......... .... ..... .... ... ..... ...... ..... 
...... ............... .... ..... .... ' ..... 

o 
o 

2 -c 

........... .......... ......... ..... ..... ..... 
......... ........ .... ............. _C2 

.... ........ ..... 

o ..... ......... .... 

......... ..... ................ 0 
........ 2'.. ... 2 2 

-c 0 B +2C 

2:.1 ~l 

2:.2 ~2 
I I , , 

== I , (5.5.5) , 

= 

.!:!.l 

.!:!.2 
I 

I • (5.5.6) 
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Noting that the subvectors v. and u. by virtue of (5.5.3d) and 
-J --.J 

(5.5.4d) can be given by 

v. = Bz. + C(z. l-z . 1) , 
-J -J -r -J+ 

(5.5.7) 

with ~ - 41 , =-1 - 41+1 

and u. = Bz. + C(z. l-z . 1) -J -j -j- -J+ 
(5.5.8) 

with ~ = 41+1 = 0 

If we assume that N is even, then it can be noticed that the system 

(5.5.5) is equivalent to the following two systems: 

BZ+ZCZ _CZ _C2 
xl :!1 

_c2', 
, 

..... 0 '::3 :!3 , , , 
...... ..... , , 

~5 :!5 , , , , , , 
I (5.5.9a) , " = ..... , , 
I ..... , , ..... , 
I , ..... 

0 
..... , , 

I , , 
..... ' cZ .... I 

.... ' - I 

_C2 .... 2 ~2+Zc2 I I 
-C ~- :YN-

-BZ +ZCZ _cZ _CZ 
-Z :!Z 

Z ..... , 
-C ..... , 

0 ~ ~ .... 
..... ..... ..... 

..... ..... , 
2!() ~ , , , .... = (5.5.9b) , , I I 

..... ..... , , ..... ..... I I , ..... , I , , ..... 

0 " ..... , , 
I , " , ..... 'Z , , -C I " _C2 '2 B2 +2C2 I 

-c ~ ~ 

and the system (5.5.6) is . also equivalent to the following two systems: 

B2+C2 _C2 
~l ~l 

_C2 B2+ZC2 _C2 
~3 ~3 ... , ... 0 , " ..... ~5 , .... 

" 2.s .... , .... I (5.5.lOa) .... = I .... .... I .... .... , I ... .... ... 
.... .... , I 

.... ... .... I 0 .... , .... ... I 
" 

, 
'z B2+ZCZ ' 2 I -C -C 

_C2 B2+C2 I 

~-l ~-l 
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~2 .!;!.2 

, , , 0 , , 
" , , , , , , 

~ .!4 
~ ~ I 

I , , , 
, , , I 

I I (5.5.l0b) , , , 
, , , , , , , , , , 

, 2 
, 

0 B2+2C2 '2 -C -c 

I 
I 

-c 2 B2+C2 

where the four systems are of order~~/2 each (whilst for N odd the 

systems (5.5.9a) and (5.5.l0a) are of orderm(N+l)/2 each and the systems 

(5.5.9b) and (5.5.l0b) are of ordermN=m(N-l)/2 each). 

In fact, the two systems in (5.5.9) which possess the same 

coefficient matrix can be solved by the procedure of algorithm FICM3 

(Section 5.1). In this case the submatrices of the factor matrices in 

(5.1.3) would 

that 
and 

(5.5.11) 

Similarly for the systems in (5.5.10) which are solved by 

adopting the procedure of FIRM2 (Section 5.2), exce:>t that the 

factorisation of the coefficien~ here is slightly different, i.e. from 

(5.5.l0a) (or (5.S.l0b» we may factorise the matrix as follows, 

, , 
2 

-C , , , , , " 
" 

, 

, 

, 
" 

" " 
o " " , , 

, 

, 2 
-c 

, , , , 

o 

, , 

p 

= 

Q
l 

QO Ql 
\ \ o 

o 

\ \ 
\ \ 

\ \ 
\ \ 

\ ' 
\ '-

\ , 
\ \ , 

\ 
\ Ql ' , , 

, Q I R 
0, 

~lxm(M+l) 
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" 
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" \ 
\ , , , 

\ 
\ , 
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o 
(5.5.12) 

, 

The tridiagonal matrices on both sides of (5.5.12) yield the following 

results by equating their corresponding matrix elements, i.e., 

p2+Qi = B2+c2 (5.5.l3a) 

Q2+Q2 = B2 +2C2 

} o 1 (5.5.l3b) 2 2 
QOQ1 = -c (or Q Q =-C ) 1 0 
Q2+R2 = B2+C2 (5.5.l3c) 0 

However, the system (5.5.l3b) yields the result (5.5.11) (c.f. 

(5.2.3), whilst the submatrices P and R are obtained from (5.5.l3a) 

and (5.5.l3c) respectively such that, 

and 

P = (B2+c2-Qil! , 

R = (B2+c2-Q~1! , 
} 

provided that the appropriate square roots exist. 

(5.5.14) 

In this respect the elimination procedure in Section 5.3, when applied 

to the systems (5.5.10), the submatrices P and R in the factor matrices 

(5.5.10) must be taken into account. 

Finally, algorithm FICM6 (or algorithm FIRMS) will have an extra 

amount of \lork in excess of algorithm FICM3 (or FIRl12) due to (5.5.7) 

(or (5.5.8» which requires 2m2N operations. 



CHAPTER 6 

APPLICATIONS TO ORDINARY DIFFERENTIAL EQUATIONS 
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6.1 INTRODUCTION 

The application of the algorithms presented in Chapter 4 which are 

proposed for the point form, will be discussed here, and we may refer to 

these algorithms as B~~DSOLVERS. As the factorisation processes involved 

in these algorithms yield a set of non-linear equations, the criteria for 

convergence has to be studied from the practical application point of view. 

In this respect we shall denote the maximum tolerance at which the 

appropriate iterative process is terminated by e
f 

<this applies to step 4' 

in subsection 4.3.3 and 4.4.3). In addition, some numerical examples for 

both periodic and non-periodic 2-point boundary value problems are 

considered which may reflect to a certain extent how far the application 

of the new algorithms can be considered to be worthwhile. 
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6.2 ON THE IMPLEMENTATION OF THE PROCEDURE GITRM (Subsection 4.2.2) 

The GITRM procedure has been presented as two schemes represented by 

the systems (~.2.24) (or (42.26» and (4.2.25) (or (4-.2.27». These two 

schemes were tested for values of r=1.2 ••••• 20, i.e. thus yielding matrices 

of bandwidth 3,5,7, ••• ,41, with matrix elements c
O

,c
1

, ••. ,c
r

' as defined 

in the system (4.2.1) (given by the expression of even powers of the 

central operator 0). For lk=(_1)k+2(~r), k=r-1, •••• 0, r3l ·we choose the 

diagonal element Co as, 

c = k(2 

° 
r 
L c.) , 

i=l ~ 
(k>l) 

(for r odd, the elements ck ' k=O,l, ..•• r. were multiplied by -1). 

(6.2.1) 

From the results it was found that for scheme (4.2.24) the maximum 

modulus error of the aO,al, ••• ,ar (the elements of the matrix Q in 

(4.2.3b». between two consecutive iterations, is improved in general by 

one decimal for every 2 iterations. Whilst for scheme (~.2.25) apart 

from the first few iterations, one iteration is sufficient to give one 

further decimal place each time. 

Moreover, for small r (r>l) the number of iterations using (4.2.25) 

does not exceed a half of those required by the scheme (4.2.24) and this 

is supported theoretically by the result given in the relation (4.2.59). 

It was noticed also by choosing Co in (6.2.1) with small k the 

convergence becomes slower. in other words the closer k is taken to 1 the 

rate of convergence (if any) decreases. For example for r=2 and r=3 with 

k=7/6 and 21/20 respectively (which is the case for the matrices (4.2.9a) 

and (4.2.9b» converge in 19 and 39 iterations respectively with a 

maximum error of 0(10-11). 

Other tests were made on the cases where the magnitude of the ratios 

between Cl and Co appears to exceed cos(rr/(r+2» where no convergence 
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occurred. The failure of the convergence (to a real solution) in such 

cases is supported by the conclusions suggested by Berg (1981). As a 

result, the conditions given in Appendix A may be considered as necessary 

conditions for the convergence of the iterative procedure GIT~~. 

Finally, an interesting application also occurs in the field of 

digital communication. To optimise the number of levels to be used in AM 

. (Amplitude Xodulation) for the most noise-tolerant operation, a particular 

detection method has to be selected when dealing with the samples of the 

received waveform and a digital filter is used to perform the required 

correlation (Passas (1979». 

The output 'of the filter is related to the input signal via the' 

following matrix system involving the non-linear equations: 

o 

a-----r 

where iT refers to the correlation sequence. 

and 
T 

a are the sample values of the filter input. 

The equations (6.2.2) can be rewritten compactly in the form, 

aTA =!l . 
Then, taking the transpose of (6.2.3), we obtain the equations 

(6.2.2) 

(6.2.3) 

ATa = i , (6.2.4) 

which has to be solved for ~, the filter characteristics. In fact, 

(6.2.4) is exactly similar to the system (4.2.4). 
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6.3 NON-LINEpR EQUATIONS INVOLVED IN FICM2 (AND FIRM1) 

The procedure of solving the non-linear equations (4.3.4) (and (4.4.5» 

i terati ve ly which has been discussed in subsection 4.). 3 (and subsection 

4.4.3) was tested on various types of banded and block matrices (the latter 

type applies to FIRM1 only, see Chapter 7). The vital point in this 

respect is to decide whether the new factorisation strategy for the given 

matrix exists. This in fact is associated with the occurrence of the 
'1St" 4ere. 

convergence of· the iterative process( Many examples have been studied, 

a few are presented below. 

Since the following examples consist of symmetric matrices with 

constant elements it may be convenient to refer to the periodic matrix A 

of (4.3.1) and its factor matrices L and.U in (4.3.2) in the abbreviated 

£orms:-

L (0,9. , ••• ,9,1,1,0) 
r r 

and Ur (0,u1 , ••. ,ur +l ,0) 

respectively. 

(of semibandwidth r+l), 

(of semibandwidth r+1) 

Example 6.3.1: For r=Z, A2 is taken as, 

A
Z

(0,1,-16,k,-16,1,0), with k=45,35,34,33,3Z,31 

which leads to LZ and Uz to be given as, 

LZ(0,9.Z,9.1 ,1,0), UZ(0,u
1

,u
Z
'u

3
,0) , 

where £l'9.Z and u
l 

are given in Table 6.3.1 and u
Z

=9.
1

U
1

, u
3

=1 

(see subsection 4.3.4). 

/ 

(6.3.1) 
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k i1 i Z u
1 

45 -4.0316417989x10-1 2.5849100710x10-2 3.8686065377xlO 

35 -5.9816996880x10-1 3.883759057Zx10-2 
2.5748750220x10 

34 -6.3479727020x10-1 4.1313953443xlO-2 2.4204897298xlO 

33 -6.7956808383x10-1 4.4356979461xlO- 2 2.2544366460x10 

32 -7.3745480935x10-1 4.8317944364x10-2 2.0696244702xlO 

31 -8.2148142904x10-1 5.4121317910X10-2 1.8477007556x10 

TABLE 6.3.1 

The number of iterations to achieve convergence yields a maximum 

error, Ef , of the given order are tabulated in the following table. 

k 45 35 34 33 32 31 

No. of iterations 15 24 27 29 36 51 

O(Ef ) 10-10 10-10 10-9 10-9 10-9 10-9 

TABLE 6.3.2 

Example 6.3.2: For r=3, A3 is taken, 

A
3

(0,-2,27,-300,k,-300,27,-2,0), with k=1200,900,600,570,560,551, 

which leads L3 and U3 to be 

L3(0,i3,i2 ,i1,1,0), U3(0,u1,uZ,u3,u4'0), 

where i 1,i2,i3 and ui are given in Table 6.3.3 and U2=i1
u

1, U3=i2u1 and 

u
4 
=-2. 

k i 1 i2 i3 u1 

1200 -2.6097047668x10-1 2.3580141069x10-2 -1. 7811079753 x10-3 1.1228965497x103 

900 -3.6618180301x10-1 3. 31320471 71 x10-2 
-2.5226515759x10-3 7.9281658200x102 

600 -7.0529687886x10-1 6.4040471205x10-2 -5.0052330722x10-3 3.9958179193x10
2 

570 -8.2579955744x10-1 7.5048859332x10-2 
-S.9213829335x10-3 

3.3775893618x10
2 

560 -8.9525011488x10-1 8.1396970187x10-2 -6.4576426521x10-3 3.09710S4221x102 

551 -1.0246225541 9.3218778579 x10-2 -7.4722213562x10-3 2.6765802395x102 

TABLE 6.3.3 
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The number of iterations where convergence occurs and yields an 

error E
f 

of the given order are given in Table 6.3.4 .• 

k 1200 900 600 570 560 551 

No. of iterations 11 13 28 46 61 ~ 104 

O(E
f

) 10-9 10-10 10-9 10-10 10-9 * TABLE 6.3.4 

Example 6.3.3: For r=4, A4 is taken as 

A4 (0,1,-8,28,-56 ,k,-56, 28,-8,1,0), with k=140, 75,74·,73,72,71, 

which for k=140 implies that the factor matrices L4 and U
4 

are 

where 

. L4 (0,9-4 ,9-3 ,9-2 ,9-1,1,0), U4 (0,ul,u2,u3,u4,u5'0), 

9-l=-3.82670l525lXlO-l'~2=2.l24624773lxlO-l, 

~3=-6.506742ll95xlO-2'~4=8.5420248957xlO-3, 2 u
l
=1.1706826l00xlO , 

The number of iterations with the corresponding O(E
f

) involved in 

the evaluation of the elements of L4 and U4 are tabulated in Table 6.3.5. 

k 140 75 74 73 72 

No. of iterations 20 37 29 26 29 

O(e;f) 10-9 
10 -7* 10 -5* 10 -4* . -3* 

10 

('no improvement was obtainable in further iterations) 

TABLE 6.3.5 

71 

no.convg. 

-

In Example 6.3.1 it can be noticed that when k decreases the modulus 

of ~l'~2 increases whilst ul decreases (see Table 6.3.1). Similar remarks 

apply to Example 6.3.2 (Table 6.3.3). Further, for k=55l the modulus of 

9-
1 

gets greater than the diagonal elements of L3 which are unity. One 

of the consequences of the latter case may imply no guarantee for the 
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stability of elimination process involved in the solution procedure. 

Again, this case arises in Example 6.3.3 except for k=140. 

On the other hand, the largest value of k apart from the first few 

iterations one step (as in Table 6.3.2 and 6.3.4) or two steps (as in 

Table 6.3.S) are sufficient to yield a one decimal place improvement. 

Also, it is observed that the rate of convergence decreases as k does, 

-4 for example with k=SSl (Table 6.3.4) to attain an Ef of order 10 and 

-6 
10 requires 68 and 104 iterations respectively, or even divergence 

may occur as in Table 6.3.S (with k=7l). 

Thus, in general by having a small difference between the diagonal 

element a
O 

and the summation of the off-diagonal elements of Ar in (6.3.1) 

may imply a 'poor' (or inaccurate) factorisation or non-existant (i.e. the 

case where no convergence is attainable); otherwise, when 

(c.f. (6.Z.1» is rather large the factorisation of A is possible;bearing 
r 

in mind that it is not necessary for A to be diagonally dominant (although 
r 

it is a convenient case). This remark may be generalised to the non-

constant case, i.e. when the matrix A is as defined in (4.3.1) and we 

conclude that its factorisation may occur in the form defined as given in 

(4.3.Z) if each of its rows possesses a diagona~ e~ement (a
O 

• say) greater 
,1 

than the summation of the off-diagona~ e~ements (s. say); this also may 
1 

depend upon the bandwidth of the matrix (i.e. the size of r), for example 

(a
O 

.-s.) being 1 for the 01lindiagonal case (r=Z) may be a reasonable limit 
,1 1 . 

(see for example Table u3.1,.k=31) whilst for the case r=4 may not be 

sufficient (see for example Table 6.3.S, k=7l) , and with r=3 it might be 

sufficient but a 'poor' factorisation may be expected (see for example 

Table 6.3.4, k=55l). 

The above discussion may be extended to the case where A
Z

,A
3 

and A4 

in the previous examples are non-periodic matrices, provided that the 
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diagonal elements are large enough to satisfy the condition indicated above. 

Whilst for the case where the diagonal elements are at 'critical' values 

(i.e. the cases where slow (or no) convergence may occur in the periodic 

case) the results show a better and more satisfactory convergence rate for 

the non-periodic case. For example, Table 6.3.6 presents the results of A4 

(in Example 6.3.3) as being non-periodic, and by comparing them to the 

corresponding periodic case in Table 6.3.5 it is clear that .for all values 

of k the convergence exists with maximum attainable order of error (and 

faster), though the value of Itll exceeds 1 here as well with all values of 

k, excluding k=140. This is related to the property that the spectral 

radius of the iteration matrix of the factorisation process may approach 

and exceed unity for various values of k. This is clarified further by 

"' considering the quindiagonal matrices A2(0,1,-4,k,-4,1) and A
2

(0,1,-4,k,-4,1,0) 

which refer to periodic and non-periodic forms, respectively. While 

convergence was possible to yield an e
f 

of 0(10-4) for A2 with k=6.2 an E
f 

0(10-9) 
~ 

0(10-6) of for A2 with k=6.05 and an e
f 

of for k=6.01. Whilst in 

A2 with the last two values of k, the convergence was not obtainable and it 

is clear that A2 is 'close' to becoming singular. This fact is supported by 

increasing the size of the matrix where slower convergence would be expected. 

k 140 75 74 73 72 71 

No. of iterations 16 41 45 50 54 75 

O(E
f

) 10-10 10-10 10-10 10-10 10-10 10-10 

TABLE 6.3.6 (A
4 

non-periodic) 

The above discussion is not suggested only for the particular afore-

mentioned examples, but also for the matrices involved in the numerical 

examples included in the following section. 
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6.4 NlllERICAL EXAt1PLES OF 2-POINT BOUNDARY VALUE PROBLEMS 

The examples considered are for the 2-point boundary value problem 

concerning the second-order ordinary differential equation (linear and non-

linear) involving periodic and non-periodic conditions (details of the· 

definition of the problem are given in Chapter 3). 

Examp le 6.4.1 

Y"_41T 2Y _- . 2 (1 . 2 ) sin21Tx Sln TIX +31.n 1fX e , 

y(O) = y(l). y'(O) = y'(l). 

which has the true solution: 

Example 6.4.2 

y"-4y = -4sin2x-5sinx. 

sin21Tx y = e 

y(a) = y(b). y'(a) = y'(b). a = -1T/2. b = 31T/2 • 

wi th the true solution:: y = 0.5(sin2x+sinx). 

Example 6.4.3 

" 3 sin21Tx 2 2 . 2sin21Tx y -y-y -e [41T (cos 21Tx-s1n21Tx)-e -1] =0. 

y(O) = y(l). y'(O) = y'(l). 

with the true solution: sin21Tx 
y = e 

(Pereyra (1973). Daniel and Martin (1977». 

Example 6.4.4 

2 
y"-(l-y )y'-4y 5 

. 3 = - Slnx-cos x , 

y(O) = y(21T). y' (0) = y' (21T) • 

with the true solution: y 

(Pereyra (1968» • 

ExamEle 6.4.5 

y" 3. ( .2) = Y -S1nx 1+s1n x • 

= sinx. 



y(O) = y(21T) , y' (0) = y' (21T) 

with the true solution: y = sinx. 

(Pereyra (1968),(1973». 

Example 6.4.6 

" (31T )' (2 (31T» yx y -cos Z-x y -y- y -ycos Z-x -1 e = 

y(O) = 1, y(l) = 0.1, 

. . xy 
Wl th the true solutlon: y = e , y =l!.nO.1. 

(Shoosmith in Aziz (1975». 

Example 6.4.7 

1 3 y"--z(y+x+l) = 0 , 

y(O) = y(l) = 0 , 

with the true solution: 

(Pereyra (1973». 

2 y = - -x-I. 2-x 

293 

o , 

Prior to the discussion we refer to the notation list below in Table 

6.4.0 which are related to the appropriate tables of this section, and may 

be used in the following discussion. 

N=number of mesh points 

BNDM=bandwidth of the matrix being used 
(=2r+l, r:;l) 

* refers to 
-10 

10 or less 

the Euclidean norm 

TABLE 6.4.0: Notations used in Tables 6.4.1-6.4.7 

The aforementioned examples were solved by the iterative deferred 

correction procedure discussed in Chapter 3, using both low and high-order 

discretisation (LOD and HOD) schemes (Sections 3.3 and 3.4 respectively). 
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The linear systems involved in this procedure are represented by the matrix 

equation (3.4.21) whose coefficient matrix (i.e. the Jacobian) is referred 

to as the non-periodic case whilst the Jacobian for the periodic case is 

defined in (3.4.29). Subsequently, these systems were treated by the 

appropriate algorithm according to the related case, i.e., the algorithm 

FICMl was used in Examples 6.4.1 and 6.4.2, FICM2 in Examples 6.4.3-6.4.5 

and FIRMl in Examples 6.4.6 and 6.4.7. 

From the programming and computational work viewpoint, the periodic 

case (Examples 6.4.1-6.4.5) seem to be easier and more economical than the 

non-periodic case (Examples 6.4.6 and 6.4.7). This may be due to: 

i) algorithm FIRMl requiring more operations and larger storage 

space than FICMl or FICM2, and 

ii) the periodic problem (which in our case the solution is required 

(*) 
over the whole range) ., does not involve any extrapolation 

procedure or difficulties at the grid points near the boundaries 

as in the non-periodic case. 

What is meant by the difficulties is mainly when the HOD scheme is adopted, 

the high-order finite difference formulae cannot be applied at the grid 

points near the boundaries. Thus the use of suitable non-symmetric 

formulae (see Section 3.4) is required, otherwise the aim of implementing 

HOD may not be achieved. As the search for such formulae seem to be a 

difficult task, it was imprudent to proceed to consider the non-periodic 

Examples 6.4.6 and 6.4.7 with the HOD scheme. In addition, the extra-

polation procedure raised another difficulty with employing HOD since 

«)It is possible to ~ork on half of the integrated range as in Example 6.4. ~ 
~hich reduces the amount of computational ~ork by one half. (Pereyra(1968)). 

This may not be the case if high-order discretisation is used! 
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extrapolation by the differential equation (3.4.16) was impractical and 

using the alternative scheme represented by (4.3.15), inspite of its 

practicality the question of choosing an 'optimal' order was faced in 

order to achieve a better tolerance, in particular when the value of BNDM 

is greater than 5. However, with BNDM=5 by keeping the order of extra-

polation unchanged in the successuve solutions seems to be a reasonable 

approach (Audish, (1978». 

The above stressed points, i.e. the extrapolation and forming a 

'suitable' Jacobian (near the boundaries) have their consequences on the 

convergence of Newton's Method and on solving (3.4.21) by the FIRMl 

algorithm. For example, in Example 6.4.7 (Table 6.4.7) for the three 

cases N=10,20 and 40 although the first solution, ~(l), of BNDM=5 is an 

. (2) (3) (4) 
improvement to BNDM=3, however for the successive solutLons (~ ,~ ,~ ) 

it is not so. On the other hand, the factorisation involved in FIRMl was 

not accurate enough; for instance in BNDM=3 with N=20,40 the obtained E
f 

after 61 iterations was of 0(10-4) and 0(10-3) respectively, and it changes 

-3 -2 
to 0(10 ) and 0(10· ) respectively for BNDM=S. The effect of an inaccurate 

(or poor) factorisation by FIRMl on Newto.n' s convergence can be clearly 

noticed in the Zinear-boundary value problem (Example 6.4.6, Table 6.4.7, 

see the brackted numbers). For N=20, the factorisation was achieved up to 

E
f 

of 0(10-4), whilst this order comes down to 0(10-1) with N=40, and the 

method fails with BNDM=7. In the light of the above non-periodic example 

it seems that unsatisfactory results were obtained, but it would be 

inadequate to conclude that the HOD scheme (and FIRMl implicitly) is 

completely unbeneficial unless other factors (as indicated earlier) 

involved are alleviated or overcome. Whilst in the periodic case, the HOD 

scheme (and the related algorithms FICMl and FICM2) showed quite reasonable 

results. 
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On applying algorithm FICM2 to the periodic non-linear Examples 6.4.3 

6.4.5 we may draw the following conclusions. 

One of the best of the three examples that the factorisation procedure 

involved in FICM2 worked perfectly is Example 6.4.4. whose results are 

shown in Table 6.4.4. From the theoretical point of view. for a given r. 

h . l' . h d f d . " (2) (3) (k) t e succeSS1ve so ut10ns Wlt e erre correctlons, 1.e. ~ ,~ , ... ,~ , 

k~2. should coincide (or at least possess error tolerances of the same 

order) with the first solu~ion ~(l) (i.e. no deferred correction) of the HOD 

scheme for values of BNDM equal to 2(r+l)+l. 2(r+2)+l ••••• 2(r+k-l)+1. 

respectively. This is justified in Table 6.4.4; for example with r=l. N=20. 

40 or 80 the solutions in the first row and first column have the same order 

of accuracy I Isl I. Also there is no significant difference between the 

corresponding ratios in the following two types. (i) the ratios of 

in ~ (k). k~2. for N=20 and 40 (or N=40 and 80) for BNDM=3 and (ii) the 

ratios of 11811 in ~(l) for the same BNDM in N=20 and 40 (or N=40 and 80). 

Precisely. from Table 6.4.4. with BNDM=3-the ratios of 11 11
' (1) (2) 

s 1n ~ .:t.. • 

Z(3) with N=20 to the corresponding ones with N=40 are respectively 4.01. 

15.86 and 62.92(*). whilst the ratios of Ilsl I in ~(l) (with BANDM=j. j=5.7) for 

N=20 and N=40 are respectively (according to j) 15.99 and 63.76. 

It was noticed (for N=20.40.80) that Newton's method·takes 4 iterations 

for the first solution. ~(l) for all cases of HOD (i.e. BNDM=3.5.7.9.ll) 

whilst the successive solutions takes 1 or 2 iterations. Now. in this 

respect the question may arise as to what is gained by using the HOD scheme? 

For this particular example (in which the first derivative is inclusive) 

it can be observed from Table 6.4.4 that with N=40. BANDM=3. for instance. 

accuracy Ilsl I of 0(10-
10

) is achieved in the 4th correction in which it 

(*)Aooording to the theory, the ratios must be 4,16,64 (Pereyra (1968)). 
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involves a total of 11 Newton's. iterations pZus the implementation of the 

iterative deferred correction procedure, whilst' the same accuracy is 

obtained in the first solution with BNDM=9 and involves 4 Newtons iterations 

only, without involving the deferred correction procedure. Similarly with 

~=20, BNDX=3, where the 5
th correction produced an accuracy lis 11 of 0(10-9), 

whilst for B~~M=ll leads to an accuracy I IEllof 0(10-10) in the first 

solution. This remark is, generally, applicable to the other non-linear 

periodic Examples 6.4.3 and 6.4.5 whose results are tabulated in Table 6.4.3 

and 6.4.5 respectively, although the factorisation of FICM2 was not as 

accurate as in Example 6.4.4. 

Also, the application of the HOD scheme to the linear periodic 

Examples 6.4.1 and 6.4.2 using algorithm FICMl led to satisfactory results. 

It should be mentioned that in these two examples the procedures of higher 

order matrix polynomials represented by the relation (3.4.30) was applied 

AlO 
up to n (i.e. up to BNDM=ll). The results of both examples are listed in 

Table 6.4.1 and 6.4.2 respectively, from which it verifies the practicability 

of HOD and FICMl as well. For the latter, in the iterative procedure GITRM 

(see subsection 4.2.2) the relevant convergence occurred in 10 iterations 

for BNDM=5, 14 for BNDM=ll (BNDM=3 is excluded since (2.2.27) scheme was 

used), both with N=20, whilst with N=40 or 80 just one or two extra 

iterations for the corresponding BNDM were required. Besides that the 

ratio of al/a
O 

(the elements of matrix (4.2.3b» was less than 1 in 

modulus, except in Example 6.4.1 with N=80 and BNDM~7, for which it 

turned out to be slightly greater than 1. Whilst the Newton's method 

(as expected) required 1 or 2 iterations in all cases. 
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1 Icll=Nor~ of Error in the Successive Solutions 
N BNDM (1) (2) (3) (4) (5' 

1.. 1.. 'L 'L 1.. ) 

3 6.4340 
-3 

1. 80 xlO- 4 3.29 xlO-'5 
4.97 xlO 

-6 
1.45 xlO-6 

5 3.55 xlO 
-4 

3.80 xlO-5 6.86 xlO-6 1. 71 xlO-6 
5.38 xlO 

-7 

20 7 3.97xlO 
-5 

7.17 xlO 
-6 

1.79 xlO 
-6 

5.63x10 
-7 2.14xlO- 7 

9 7.25xlO 
-6 

1.8hl0 
-6 

5.70 xl0 
-7 

2.17x10 
-7 

9.58xlO 
-8 

11 1. 81 x10 
-6 -7 

5.73 xlO . 
. -7 

2.18x10 9.64 x10 
-8 

4.80xlO 
-8 

3 1.61XlO-3 1.l9xlO -5 5.7 xlO 
-7 

2.4lxlO 
-8 

2.04xlO 
-9 

5 2.32x10 
-5 

6.98xlO 
-7 

3.5Bx10 
-8 

2.67xlO 
-9 3. 35 xlO-10 

40 7 7.09x10 
-7 

3.64x10 
-8 

2.77xlO 
-9 

8.73xlO-10 
* 

9 3.65x10 
-8 

2.73xlO 
-9 3.65xlO-10 

* * 
11 2.74xlO 

-9 3.27x10-1O 
* * * 

3 4.00xlO 
-4 

6.98x10 
-7 

9.19xlO 
-9 

2.08x10 
-9 

7 .13x10-1O 

5 1. 4 7x 10 
-6 

1.14x 10 
-B 

1. 36xlO 
-9 6.34x10- l0 

* 
BO 7 1.15x10 

-8 
1.32x10 

-9 
4.25x10-1O 

* * 
9 4 .12xlO -10 * * * * 

11 * * * * * 
TABLE 6.4.1 

11 € 11 :Norm of Error in the Successive Solutions 
N BNDM 

1..(1) (2) yO) 1..(4) (5) 
1.. 1.. 

3 5.82xlO 
-3 

2.05xlO 
-4 

1.48xlO 
-5 '-7 

9.93xlO 7.34xlO 
-8 

5 2.89 xlO-4 1. 76XIO-5 1.20xlO-6 8.73XlO-B 6.61XlO-9 

20 7 1. 78xlO 
-5 

1.22xlO 
-6 

8.B2xlO 
-8 

6.67xIO 
-9 

5. 23xlO-1O 

9 1.22xlO 
-6 

8.83xlO 
-8 

6.67xIO 
-9 

5.34xlO-1O 6 .01xlO-11 

11 B.B3xlO 
-8 

6.68xlO 
-9 

5.2BxlO-10 5.66 x10-11 4 .11xlO-11 

3 1. 4 7XIO-3 
1.30xlO 

-5 
2.43x10 

-7 
4.14xlO 

-9 1.3BxlO-10 

5 1.B8XlO-5 
2.94xlO 

-7 
5.14xlO 

-9 
1.55xlO-1O 

* 
40 7 2.95XIO-7 

5.13xlO 
-9 

1.41XIO-10 
* * 

9 5.l2X lO-9 1.30xlO -10 * * * 
11 1.09 X lO-10 

* * * * 
3 3.69 XIO-4 

8.1BxlO 
-7 

3.83xlO 
-9 

4.65xlO-10 
* 

5 1.19XIO-6 
4.66xlO 

-9 
4.29xlO-1O 

* * 
BO 7 4. 72XlO-9 4. 11xlO-lO 

* * * 
9 5.16xIO- 10 

* * * * 
11 * * * * 

I 

* 
TABLE 6.4.2 



N BNDM 

20 

40 

80 

N 

20 

40 

80 

3 

5 

7 

9 

11 

3 

5 

7 

9 

11 

3 

5 

7 

9 

11 

BNDM 

3 

5 

7 

9 

11 

3 

5 

7 

9 

11 

3 

5 

7 

9 

11 
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11 ell =Norm of Error in the Successive Solutions 

(1) (2) 
Z Z 

1. 14xlO -2 
-4 1 

4.44xlO 

4.36xl0-5 

7 .61xl0-6 

-6 
1.88xlO 

2.79xl0· 3 

-5 
2.86xl0 

-7 
7.71xl0 

-8 
3.83xl0 

-9 
3.13xl0 

-4 
3.93xl0 

-6 
1. 81xl0 

-8 
1.23xl0 

* 
* 

2.00xI0-4 3.58XI0-5 

4.16xI0-5 7.19xI0-6 

7.53xI0-6 1.85xl0-6 

1.87xl0-6 15.86xI0-7 

5.89xl0- 7 12.22<10-7 

1. 23xI0-::' 6.17Xl0·7 

7.60Xl0- 7 3.73xl0-8 

3.81XI0- 8 2.94xI0-9 

2.86xl0-9 5.81xl0-10 

8.18xl0- 10 * 
7.68xl0-7 1.47xl0-8 

1.26XI0-8 8.91xl0-9 

5.70xl0-9 3.84xl0-9 

* * 
* * 

TABLE 6.4.3 

(4) 
l. 

5.16Xl0-6 

-6 
1.77xlO 

-7 
5.78xlO 

-7 
2.22xl0 

-8 
9.83xl0 

2.50xl0- tl 

3.21xl0-9 

3.10xl0-10 

7.38xI0-9 

2.42xl0-9 

* 
* 
* 

(5 ) 
l. 

1. 48x 10-6 

5.52x I0- 7 

2 .18X lO- 7 

9. 77xl0-8 

4.89xlO-8 

2.09xI0-9 

1.41xl0 -9 

2.03xl0 9 

* 

1 lell=Norm of Error in the Successive Solutions 

Z 
(1) z (2) l. (3) 

Z 
(4) 

l. 
(5) 

2.21xl0 
-3 3 .60xl0-5 8.62XlO-7 3.83xl0 -8 5.lOxl0 -9 

3.95 xI0-5 7.90XI0- 7 1.68xl0 -8 3.60xl0-1O 
* 

7.97xl0 
-7 1.70xI0-8 3.88xl0-1O .* * 

1. 70xl0 
-8 3.81xI0-1O 

* * * 
3.73xl0-1O 

* * * * 
5.51xl0 

-4 2.27xl0 -6 -8 1. 37xlO 1.54XI0-1O 
* 

-8 
2.47xl0_ 1.25xl0-8 8.53xl0-11 

* * 
1. 25xl0 -8 7.73xI0-11 

* * * 
1. 11xl0-10 

* * * * 
* * * * * 

1. 37xI0-4 
1.42xl0 

-7 2.59 xI0-1O 
* * 

-7 1.54xl0 2.29xl0-1O 
* * * 

2.72xl0-1O 
* * * * 

* * * * * 
* * * * * 

TABLE 6.4.4 
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Ilell:Norm of Error in the Successive Solutions 
N BNDM 

X-(1) (2) X-(3) X-(4) X-(5) 
1.. 

3 1.7BxlO 
-3 1.B2XlO-5 6.67xlO- 7 5.79xIO-B 1.15x10 -B 

5 2.32xlO 
-5 3.62xIO- 7 

6.32xlO 
-9 6 .B4xlO-11 

* 
7 

-7 
6.35 xlO-9 1.05XlO-1O 20 3.66xlO * , * 

-9 9. 74xIO-11 
I 

9 6.34x10 * * 
I 

* 
11 9.11XlO-11 

* * * * 
3 

-4 1.l5xlO -6 -B -10 ! 
* 4.50xlO 1.07x10 3.3BxlO I 

-6 5.B3x10-9 1.B2XIO-1O 5 1.48xlO * * 
40 7 5.80xlO-9 2.73xlO-1O 

* * * 
9 2.26xlO-1O 

* * * * 
11 * * * * * 

3 1. 13xlO -4 7. 25 xlO-8 6 .03xlO -10 * * 
5 9.29xlO 

-8 1. 7lxlO-10 
* * * 

80 7 * * * * * 
9 * * * * * 

11 * * * * * 
TABLE 6.4.5 

N BNDM 11 e 11 :Norm of Error in the Successive Solutions 

X-
(1) 

1.. 
(2) 

1.. 
(3) 

3 1.40XIO-4 (4) 3.29XIO- 7(2) 2 .0BxlO -9 (2) 

20 5 7.92xlO-6 (4) 1. 81xlO -6 (2) 7.04X10-7 (2) 

7 7. 73x10- 7 (4) 1.68xIO-7 (2) 5.89XIO-8 (2) 

3 3.56xlO-5 (6) 2.02XlO-8 (4) 8.l6xlO-11 (2) 

40 5 5.33xIO-7 (6) 1.20XIO-7 (2) 4.68XIO-8 (2) 

7 No convergence 

TABLE 6.4.6 
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11 e 11 "Norm of Error in the Successive Solutions 
N BNDM (1) (2) (3) r(4) 

Z Z Z 

10 3 5.03x10-4 2.7x10-6 2.01xlO-6 6.62xlO-7 

5 1.11xlO -4 I 2. 94XlO-5 1. 11x10 -5 4.29 X10-6 

-4 -7 -8 -9 
20 3 1. 29x10 2.23x10 1.24x10 2.87xlO 

-6 2.31"10-6 -7 -7 
5 9.31x10 8.71x10 3.09x10 

, -5 ' -8 4.54XlO-1O 
* 3 3.29x10 1.39x10 

40 -7 -7 -7 -8 
5 7.02x10 1.60x10 6.31x10 2.22xlO 

TABLE 6.4.7 
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6.5 APPLICATION OF FIR.'ll ON EIGENPROBLEMS 

Various types of matrices are considered in this section. for which the 

difference hetween the diagonal element and the summation of the off-

diagonal elements in each row may be negative or non-positive. 

Furthermore. we shall confine ourselves to apply the Inverse Power 

Method (IPM) as discussed in Section 2.4 to deal with the eigenprob1ems 

under consideration. This method basically involves the determination of 

the dominant eigenva1ue. A-1 (say). of the inverse of a non-singular matrix. 

-1 
A. via the use of equation (2.4.12) which yields A when an iterative 

process is applied as follows: 

Step 1 : A (s+1) (s) 
1. = x 

Step 2: S(s+l) = ma:-c ly~s+l)1 • 
i ~ 

(6.5.1) 

Step 3: 
(s+l) 1 (s+l) 

x = 1. • - S(s+l) 

and Step 4: 11~(S+l)_~(s) 11 < e: (given tolerance) • 
where vector x is the corresponding eigenvector of A. s=0.1.2 ••••• 

x(O) is chosen as a unit vector. Then the smallest eigenvalue in modulus 

of A is obtained immediately. 

Algorithm FIRM1 is used to solve the linear system of Step 1. notably 

the factorisation of A=UL (see subsection 4.4.1) takes place once only at 

s=O. An illustrative example of applying IPM is given in Example 6.5.1 

below. 

Example 6.5.1 

Let matrix A bea septadiagonal matrix (i.e. r=3) of size (11x11) as 

given in (Gregory and Karney (1969». 



A = 

5 

2 

1 

1 

1 1 2 

-9 The factorisation of matrix A is performed with 8
f
=0(10 ) (see 
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Section 6.1) and 57 iterations are required to yield U and L. Whilst the 

number of iterations involved in the steps (6.5.1) is 12 to produce 

-9 
A . =0.52282285 with £=0(10 ) (see Step 4 in (6.5.1» and hence this agrees· m1n 

up to 8 significant figures with one given in the indicated reference. The 

obtained approximated values of A and its corresponding eigenvector ~ were 

checked by comparing the output results ofAx(12)=A . x(12) in which both 
mln-

agree up to at least 7 significant figures (see Table 6.5.1). 

ROW OF Ax (12) A . x (12) 
- mln-

1 -1.35176607xIO-l -1.35176604xlO-l 

2 2 .61141151xlO-l 2 .61141145xlO-l 

3 -3.69309336xlO-l -3.6930934~xIO-l 
4 4 .52309712xlO-l 4.52309729XlO-l 

5 -5.04485985xlO-l -5.04485951XIO-l 

6* 5.22282240xlO-l 5.22282285 xlO-
l 

* Rows 7,. .•• 11. as 5 ••••• 1 respectiveZy. 

TABLE 6.5.1 

Shifting Strategy 

It has been indicated in Section 2.4 that shifting the origin of matrix 

A, viz. A-pI (I unit matrix, p is a positive real number), is usually 
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adopted to accelerate the rate of convergence. A reverse result may be 

expected if (A+PI) shift is considered; we shall refer to the latter 

strategy as positive shifting as a distinguishable concept to the former. 

The sole reason behind considering this unusual strategy is to make 

algorithm FIRMl applicable to certain forms of matrices. The following 

example may clarify this point further. 

Example 6.5.2 

Let matrix A be 

5 -4 1 

o 
A , , ... , ... (6.5.2a) = ... ... "- , , ... ... ... ... , 

1 ... , ... ... "- , 
0 

, , , ... 
"- ... ... 6 -4 "- , ... , 

'1 --4 5 (10X10) 

whose eigenvalues are given by, 

, 16. 4 ( k1T ) 
Ak = S1n 2(N+1) , k=l, 2, ••• ,N, (Gregory & Karney (1969» 

(6.5.2b) 

It was noticed .that the factorisation of matrix A in its present 

form cannot be achieved by FIRM1 (c.f. A2 at the end of Section 6.3), but 

it can be obtained if the positive shifting strategy is adopted. Thus, 

A in (6.5.2) is shifted to 

A+pI, with p=0.4 or 0.5, (6.5.3) 

Then the procedure (6.5.1) is used on the matrix in (6.5.3), 

th bearing in mind that the s step of the iteration A. is defined as 
m1n 

1 
= e (s) 

- p, (6.5.4) 

where e is as defined in (6.5.1) • 

Subsequently, it was observed, as expected, that the number of 

iterations involved in factorising the matrix (A+pI) is decreased as p 



is increased (81 and 40 iterations for p=0.4 and p=0.5 respectively, with 

-9 Ef=O(lO », and conversely for the number of iterations of the procedure 
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(6.5.1), i.e. A . =0.006563274 to an accuracy of 0(10-9) is obtained in 23 
mln 

and 27 iterations for p=0.4 and 0.5 respectively. This value of A . 
mln 

coincides with the first 8 significant figures of the value obtained by Al 

in (6.5.2b). 

On the other hand, another alternative strategy may be applied to the 

matrix A in (6.5.2a), where no shifting is considered, viz. 

Permutation Matrix Strategy 

If a permutation matrix P (see Definition 2.1.9) of order 10 is 

chosen as follows: 

th where ~ are column-vectors, each of 9 zero components and the k 

componen t is 1. 

(6.5.5) 

Since the matrix P is orthogona1 (see Definition 2.1.9), the orthogona1 

T 
transformation (see Definition 2.4.2) implies that P AP and A share 

similar eigenvalues whilst any eigenvector of the former matrix, ~ say, 

is defined as Px=v. Subsequently, the procedure (6.5.1) may be replaced 

by: 

Step l' : pTAZ(S+l) = ~(s) , 

Step 2' : same as in (6.5.1) , 

Step 3' : v (s+l) = 
I (s+ 1) 

S (s+1) I. 
(6.5.6) 

Step 4' : same as in (6.5.1) 

th 
·Clearly, at the s step of the above procedure the eigenvector of 

A is computed from, 

x(s) = p-lv(s) = pTv(s) • (6.5.7) - -
Now, the numerical results showed that pTA is factorisable, and 75 

-8 
iterations are sufficient to produce cf=O(lO ). Whilst procedure (6.5.6) 
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at s=5 was sufficient to give A • =0.006563283 which may be improved if €f 
m1n 

is decreased further. It should be noticed that matrix pTA is treated as 

r=4 (i.e. of bandwidth 9). since the fourth off-diagonal (above and below) 

includes non-zero elements. 

Fortunately. matrix A in (6.5.2a) with small size was not sufficiently 

awkward to use the above strategy. otherwise in the light of some attempts 

in this respect lead one to believe that the generalisation of this 

strategy for any size may be possible if further investigation is pursued. 

On the other hand. another interesting application of the latter 

strategy (or a combination of both of the above strategies) on singular 

matrices such as the one given in Example 6.5.3 below. 

Example 6.5.3 

Let a tridiagona1 matrix A be singular and defined as 

2 -2 

-1 2 -1 0 
A = -1 2 -1 

0 
-1 2 -1 

-2 2 
(5x 5) 

where A . =0. and choose a permutation matrix Pas. 
mn 

where~. k=1 ••••• 5. vectors are defined likewise in (6.5.5). 

(6.5.8) 

(6.5.9) 

T 
Therefore. having matrix P A formulated and treated as a quindiagonal 

matrix (i.e. r=2) for similar reasons indicated in Example 6.5.2. the 

procedure (6.5.6) can now be applied. However, the obtained factorisation 

of pTA to C
f
=0(10-8) is achieved in 32 iterations whilst (6.5.6) should be 

-9 8 
taken one step only. thus at s=O A . =4.58 10 (and S=2 .18 >10 ) and the m1n 

components of its eigenvector are of 0(10-
10

); if s is increased, the 

rounding errors rapidly dominate the value of A. But s may be increased if 

T 
a shifting strategy is adopted to P A in which the number of iterations 



required for the factorisation of pTA+P1 is decreased; also this number 

may be reduced to less than half for values of P in the range l<p<l.8. 

No optimal value of p was obtainable due to the special structure of the 

matrix (for example, with p=0.4 or 0.6 the factorisation fails). A 

further point which may be considered as an advantage of the shifting 

strategy for this particular matrix A in (6.5.8), the coefficient matrix 

of the system (4.4.45a) involved in the applied algorithm is nearly 

singular only with p=O. 

307 



CHAPTER 7 

APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS 
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7.1 INTRODUCTION 

To distinguish the algorithms presented in Chapter 5 from those in 

Chapter 4 (i.e. BANDSOLVERs) will be generally referred to as BLOCKSOLVERs. 

A block factorisation for some well-known block matrices (tridiagonal and 

quindiagonal types) will be considered. Also, applications of BLOCKSOLVERs 

to numerical examples, such as the Laplace, 2nd order Elliptic and Biharmonic 

equations are included. For some of these examples a co~parison between 

the appropriate BLOCKSOLVER and BANDSOLVER (FIRMl) is made. 
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7.2 ON THE FACTORISATION INVOLVED IN BLOCK SOLVERS 

The block tridiagonal and quindiagonal matrices considered here are 

respectively of the form, 

B C Bl C D , , 
0 " "- 0 C " "- C B C D 

"- "- , , --"- "- "- , - -Al = "- "- and A2 = D_ , - -- -" "- , - - - -"- -- -" "- "-
, -- D 

" "- "- - - -"- - -0 "- "- 0 
, - 'B 

, 
"- "- C 'D C C , "-

"- , 
C B D C B2 

where the sub-matrices in both Al and A2 are of size (mxm). Factorisation 

of Al and A2 is assumed to take place as given in Chapter 5, in which the 

factor matrices of the former include the sub-matrices QO,Ql and the latter 

include the submatrices S,o,QO,Ql,Q2'Y'~. Each of these sub-matrices is of 

order m. Furthermore, each sub-matrix in both Al and A2 will be assumed as 

of non-periodic type (unless it is stated) and abbreviated as in Section 6.2. 

We now consider the following two examples related to Al and A2 

respectively. 

Examp le 7.2.1 

Consider Al such that its sub-matrices are defined as follows: 

(i) B(0,-1,4,-1,0) and C=-I(I unit matrix) , 

(ii) B(O,-l,k,-l,O) and it is periodic, with k~4, C=-I, 

(iii) B=4I, C(O,-l,O,-l,O) 

and 

(iv) B(0,-4,20,-4,0), . C(0,-1,-4,-1,0) 

(both (iii) and (iv) taken from Gregory and Karney (1969». 

N.B. The eigenvalues of Al for the case (i) and (iv) are given respectively 

by the formulae 

A •• = 4-2(cosi!r + cosh), i=1,2, ••• ,p-l, j=1,2, ••• ,q-1. (7.2.1) 
1J p q 

where p-l is the order of the sub-matrices Band C and (p-l)(q-l) is the 
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order Al' (Smith (1978». 

A •. = 20-8cosk8-Bcosj8-4cosk8cosj8 
1J 

(7.2.2) 

where 

is of 

8~ • k.j=1.2 ••••• m. and m is the order of Band C while Al m+l 
2 

order m (Gregory and Karney (1969». 

Example 7.2.2 

Consider A2 such that its sub-matrices are defined as follows: 

(i) 59 -16 1 
.... .... 

-16 60 ...... ... 
0 ... 

.... .... .... .... 
1 ... "- .... .... 

"- .... .... .... C -161. D I. ... .... ... ..... • = = .... .... .... "- .... .... .... .... ... .... .... ..... ... .... .... 1 ... ... .... ... .... ... ... .... ..... 

0 1 -16 60 -16 

1 -16 59 

B-1 

and 

(ii) as given in the system (7.3.30) (next section). 

It should be noticed that the aforementioned examples have been 

selected such that the matrices Al and A2 are block-diagonally dominant 

(see Section 5.2 and 5.4) in which the required condition for the 

appropriate algorithm is fulfilled. 

As far as the factorisation is concerned two essential points will be 

stressed. the computation of the matrix square root (MTXSQRT) and the 

properties of· the submatrices QO.Ql in Example 7.2.1 (or the relevant ones 

in Example 7.2.2). 

In Example 7.2.1. the two MTXSQRTs involved in the iterative process 

to determine Q
O 

and Ql (see (5.1.8» require on average 5 or 6 iterations 

for m=5 (the order of QO and Ql) and increase by 1 or 2 iterations for m=lO 

or 20. The highest number of iterations is related to the (positive 
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definite) matrix B+2C which possesses weaker diagonal elements in 

comparison with the matrix B-2C. For this type of matrix, obtaining its 

square root (using the method of Section 2.5 and single precision) becomes 

critical as m increases. For instance, for m=20, when MTXSQRT was computed, 

it was multiplied by itself and then compared to the original matrix. The 

zero elements of the original matrix appeared to be of 0(10-6)_0(10-8) in 

the product. In such cases, either double precision has to be used or an 

alternative method of computing MTXSQRT is recommended. 

In the cases (i)-(iv) of the current example some common properties of 

both submatrices Q
O 

and Q
1 

exist. QO is strictly-diagonally dominant. Q
O 

and Ql are symmetric matrices. I IQol 1>1 IQ11 I, this is a vital property 

since it is associated with the stability of the elimination process involved 

in the solution (see Section 5.1 or 5.2). The two norms IIQol I and I IQ1 1 I 

do decrease and increase respectively as m increases (even if the appropriate 

MTXSQRTs are evaluated accurately). This is related to the changes in the 

elements of Q
O 

and Q1. The diagonal and off-diagonal elements of QO 

decrease and increase (in modulus) respectively as m increases; whilst for 

Q
1 

all its elements increase (in modulus). These changes may become 

significant for large m in which the stability of the elimination process 

will be affected seriously. 

In Example 7.2.1 (ii), where the sub-matrix B is periodic, both QO and 

Q
1 

are circu1ant matrices with constant elements. For instance, for k=6, 

Q
O 

and Q
1 

have the following form (for m=lO), 



synnnetric 

and 

synnnetric 

where ao = 2.3919486932 , 

a
1 

= -0.2171539811 \ 
a

2 
= -0.0113295412 b2 

a
3 

= -0.0013152862 , b
3 

a4 
= -0.0002109688 b

4 

as = -0.0000734897 b
5 

The matrices QO,Ql have a similar 

= 

= 

= 

= 

= 

'a o 

-0.0393190914 

-0.0056939231 

-0.0009577176 

-0.0001823602 

-0.0000684475 

property for k=S, 

312 

whi Is t for ],-=4, 

the matrix B+2C becomes singular and its square root could not be attained. 

In Example 7.2.1(iii), the elements of both Q
O 

and Q
1 

are zero on the 

. s t rd th nd I th th 
following off-dlagonals; the 1 ,3 ,5 , . .. ,etc. for QO,2 ,~ ,6 , .•. etc. 

for Q
1 

as well as its diagonal. 

We now consider Example 7.2.2, where the factor matrices include the 
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main sub-matrices, QO,Ql and Q2; in addition to the other four sub-matrices 

e,~,y and E (see the factor matrices in (5.4.24». As indicated in Section 

5.3 the determination of QO,Ql and Q2 involves 3 MTXQRTs (see (5.3.6) and 

(5.3.7». The remarks relating to the MTXSQRT indicated in Example 7.2.1 

also apply here; the matrix of weak diagonal elements is B+2C+2D to which 

the highest number of iteration is related (7 to 8 iterations). Also, the 

general properties of the submatrices in the previous example are applied to 

QO,Ql and Q2' in particular the norm-relation, IIQol 1>1 IQll 1+1 IQ2 11 is valid. 

As QO,Ql and Q2 are the solution of the matrix non-linear system (5.4.25b) in 

which each of its three equations should be satisfied by the solution matrices. 

The results showed that this is true for Example 7.2.2(i), whilst for Example 

7.2.2(ii) where the sub-matrix C (of the original matrix A
2

) is tridiagonal, 

the solution matrices QO,Ql and Q
2 

do satisfy the first and the last equation 

of the system (5.4.25b) and its second equation is satisfied as follows. The 

two matrices (QOQl+QlQ2) and (QlQO+Q2Ql) have some common equal elements but 

opposite in sign, thus by adding the two matrices yields 2C. 

Finally, the computation of the sub-matrices 8,8,y and E by the scheme 

(5.4.26) was preferred to (5.4.~7). This is because the latter required 2 

MTXSQRTs which makes the factorisation procedure uneconomical and not 

accurate enough in comparison with the former; in addition the two relevant 

matrices (see (5.4.27» may not be positive-definite matrices. However, in 

general, as long as the matrices QO and Q2 in (5.4.26) are non-singular (as 

in our case) the first scheme is recommended. 
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7.3 NUMERICAL EXAMPLES 

The boundary value problems considered here involve the Lap1ace second 

order elliptic and Biharmonic equations. Their relevant results will be 

discussed in Section 7.4. Some of the problems were solved by both the 

appropriate BLOCKSOLVER and the BANDSOLVER (FIRMl). 

It should be noticed that in the following examples, a square mesh of 

length h is used, and a row-wise scheme is adopted in the solution process. 

Example 7.3.l(i) 

The Laplace Equation on a rectangular region can be stated mathematically 

as g2u = a2
u + a2

u = 

ax2 a/ 
with Dirichlet boundary conditions, 

o , 

u(x,O) = 0, u(x,lO) = 0 

u(O,y) = 0, u(20,y) = 100 

(from Gerald (1978». 

} 
Equation (7.3.1) can be replaced by applying a 5-point finite 

difference formula (see Section 3.5), by the difference equation, 

1 
Z(u. 1 .+u. 1 .+u .. l+u .. l-4u .. ) = O. 
h 1+ ,J 1- ,J 1,J+ 1,J- 1,J 

(7.3.1) 

0.3.2) 

(7.3.3) 

In order to compare with results given in the given reference, we 

have chosen h=2.5 only; hence from equation (7.3.3) with the conditions 

(7.3.2) a linear system of 21 equations is obtained and has the form, 

4 -1 -1 u
l 

0 ... ... ... 0 
, ... ... ... , , 

-1 ... x ... I I ... ... I ... ... ... ..... u
7 

100 -1 ... , ... x , , , , 0 ... ... 
"' 

, , (7.3.4a) ... , ... .... I 
, 

... ... ... x .... u14 = lOO ... .... ... ... "' -1 ... x 
"' "' 

I 0 ... ... , ... '-1 
, 

0 ... .... .... I .... ... "-... ... , 
I 

, 
-1 

... 
-1 '4 100 u

2 

(N.B. only the elements denoted by x are zero), 
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or its equivalent block form 

(7.3.4b) 

where B and Care 7x7 matrices, each sub-vector is of length 7, whose 

components can easily be recognised from (7.3.4a). 

Example 7.3.1(ii) 

The Lap1ace equation (7.3.1) on a unit square n (say), and subject to 

the Dirich1et's boundary condition, 

u(x,O) = f(x) = x(l-x) , O~x~l 

) u(x,l) = o , (7.3.5) 

u(O,y) u(l,y) = 0 , O~y~l 

The anaZyticaZ solution of (7.3.1) under the boundary conditions 

(7.3.5) is given by, 

where 

(BVdak et al 

u(x,y) = I [e sinh(k~(l-y)) 
k=l k sinh(k~) 

Ek = {o8/(k~)3 for k odd, 

, for k even, 

(1964)) • 

sin(k~x)l ' (7.3.6) 

Z By partitioning the region & into m equal squares, each of length h 

(i.e. h=1/(m+1)), we can replace the Lap1ace equation (7.3.1) by two types 

of finite-difference equations, that is by, 

(i) using the 5-point formula, we have 

1 
Z(u. 1 .+u. 1 .+u .. l+u .. 1-4u .. ) = o , i,j=1,2, ... ,m, 

and 
h 1+,] 1- oJ 1,]+ loJ- loJ 

(7.3.7) 

(ii) using the 9-point formula (see Section 3.4), we have 

1 
-Z(4u. 1 .+4u. 1 .+4u .. 1+4u .. l+u . 1 . l+u . 1 . l+u . 1 . 1+ 6h l+,J l-,J 1.J+ 1,)- 1+ ,J+ 1- ,J+ 1+ .J-

+u. 1 . 1) = 0, i,j=l.Z, ••• ,m. (7.3.8) 
1- ,J-
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Any of these two equations under the boundary conditions (7.3.5) 

lead to a block tridiagonal system of the form. 

B C ~l -=-1 , " 0 , 
c ..... , 

~z -=-z , " , , " , 
" " = I (7.3.9) .... 

" 
.... , 

" , " , 
" 

0 
.... " 'C , " .... " " " C 

I 
B u z 

-m -m 

where the sub-matrices and the sub-vectors are of size (mxm) and (mxl) 

respectively. Moreover B.C and z. are defined as follows. 
-J. 

(a) for the finite-difference equation (7.3.7). we have 

and 

where 

and 

B = 

4 -1 
"" 0 

-1' "" " , 
.... " " ,," , ," " 

" 1 ............... -o .... -1' 4 

• C = -I (I unit matrix) (7.3.9a) 

(mxm) 

-1 ~ m,. m, rn,m 
T 

z. =.2. • for i=l.Z ••••• m-l. z " [z l'z z ..... z l} 
z . = x. (I-x.) = jh(l-jh). j=1.2 ..... m 
m.] ] ] (7.3. 9b) 

(b) for the finite-difference equation (7.3.8) we have 

B = 

and 

where 

ZO -4 -4 -1 
" , 

-4 ...... ..... .... ,,, , 
.......... , .... 

o 
c = 

" , 
l' -. - .... ..... .... " , , 

o 

o 

Z. 
-J. 

.... " .... 
' ......... ~4 " .... , 

':..4 20 (mxm) 

= Q ' for i=l,2, ... ,m-l, z 
-m 

" " , 
" " " .... .... .... -1 

" " , " -1 -4 
o 

(mxm) 
(7.3.l0a) 

T 
" [z l'z Z ... ·,z 1 , rn, rn, m,m 

z . 
m,] ] - ] - ] ] ] + ] + m+ = x. l(l-x. 1)+4x.(1-x.)+x. l(l-x. 1)' xO=x 1=0,) 

(j-l) h (1- (j -1) h) +4j h (l-jh) +(j + 1) h (1-(j + 1) h) , 

j=1,2, ... ,m, 
(last term=O for j=m). 

(7.3. lOb) 



Example 7.3.2(i) 

The linear 2nd order EZZiptia Equation expressed by the form, 

a2
u a2

u 
4--Z + --Z -au = f(x,y) 
ax ay 

on a unit square, l?c (say), subject to the boundary conditions 

u = 0 on the boundaries of l?c 

and the exaat solution is given by 

2 u = 2(x -x) (cos2ny-1) , O~x,y~l , 

(Rice et a1 (1980». 

By virtue of (7.3.13), f(x,y) in (7.3.11) have the form, 

2 2 2 f(x,y) = 2(cos2ny-1) [8-a(x -x) r8n (x -x)cos2ny , 

and with a=2, we have 

2 2 2 f(x,y) = 4(cos2n-1) [8-(x -x)]-8n (x -x)cos2ny. 
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(7.3.11) 

(7.3.12) 

(7.3.13) 

(7.3.14) 

Since the partition of the ~ is assumed to take place as in Example 

7.3.1(ii), the application of the 5-point formula would enable us to 

replace equation (7.3.11) under the boundary conditions (7.3.12) by the 

difference equation, 

2 2 
4u. 1 .+4u. 1 .-U .. l+u .. 1-(10+2h )u .. = h f .. , 

1.+ ,] 1- ,] 1,J+ 1,J- 1,J 1,J 

i,j:;::1,2, .•• ,m, 

where f .. is the discretised form of f(x,y) in (7.3.14), i.e. 
1.,J 

f .. !f(ih,jh) = f(x.,y.), h=1/(m+1). 
1.03 1. J 

Then, equation (7.3.15) 'immediately yields a block tridiagona1 

system of the form, 

B C u
1 ~1 , .... 

0 .... .... 
C .... 

~2 ~2 , .... , , .... .... , 
"- I = , 

.... , .... I , , , , , , ' C I 

0 
, , , , , , , u z , C ' -<Il -<Il 

where B,C and z. are defined as follows, 
-1. 

(7.3.15) 

(7.3.16) 
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k -4 0 .... ... ... ... -4 .... .... 
... .... ... 

.... .... ...... • k = 10+2h
2

• C = -I. (7.3.17a) B = 

and 

.... ... ... ... ... 
.... ....... -4 

......... ... .... 
.... -4 k 

(mxm) 
o 

T 
z. _ [z. l'z. 2 ••••• z. 1 such that. 
-I. 1, 1, I.,m 

z. • 
1.J 

= -h2f .. " i,j=1,2, ••• ,m. 
1.J 

Example 7.3.2(ii) 

) (7.3.17b) 

We now reconsider the problem of Example 7.3.2(i) with the periodic 

boundary conditions in the y-direction. i.e. we have. equation (7.3.11) 

subject to the boundary conditions, 

u(O.y) = u(l.y) = 0, O~y~l. 

u(x.O) = u(x.1) } (7.3.18) 

dU = 1.!!.(x 1) • 
O<x<l. 

ay(x.O) ay • 

Under these conditions the solution of the grid points 31 ••••• 35 

(Figure 7.3.1). is the same at the points 1 ••••• 5 respectively. (on 

assumption m=5. h=1/6). 

y 

1 234 5 (1,1 ) 
6 10 

(0,0) 31 32 333435 x 

FIGURE 7.3.1: Periodic boundary conditions in the 
y-direction 

Thus. by following the procedure of the previous example, instead 

of the system (7.3.16). we should obtain. 



B C C ~l !.l .... " 0 C .... " !.2 .... " ~2 " .... " " .... ..... I = I 

" ..... " I , .... 
.... .... .... , I 

.... .... " C , I 
0 .... " , .... , , 

C "c 'B ~ ~ 

where N=m+l. Band C as given in (7.3.l7a). and z. is defined as 
-J. 

z. = [z. l'z. 2 ..... z. JT .• 
-I. 1. 1., l.,m 

and 2 
z .. = -h f .. , i=1,2, .•• ,N, j=1,2 .... ,m 

1.,J 1.,J 
(c.f. (7.3.l7b». 

Example 7.3.2(iii) 

We consider the Elliptic Equation expressed by 

a2
u a2

u --- + --- -32u = 0 , 
ax

2 
ax

2 
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(7.3.19) 

(7.3.20) 

on a square region bounded by -l~x~l, -l~y~l. with boundary conditions 

of the form, 

(i) u=O on y=l, -l~x~l. 

(ii) u=l on y=-l, -l~x~l, 

au (7.3.21) 
(Hi) -= -Iu on x=l. -l<y<l 

} (Robin's conditions) ax 

(iv) au !u on x=-l, -l<y<l -= ax 

(Smi th (1978». 

Since the problem (as indicated in the above reference) is symmetric 

at x=O. the solution is considered only on half of the region (i.e. 

Figure 7.3.2, the dotted-region is ignored). 

Solution is symmetric 
at x=O 

y 

u=O 
,----- (1,1) 

:(0,0) 
I 

.- - (0,-1) u=l 

FIGURE 7.3.2 

au 
~-!u 
ax 
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The current problem was treated with both 5-point and 9-point finite-

difference formulae (see Section 3.5) which respectively yield the 

following difference equations, 

2 
u. 1 .+u. 1 .+u .. l+u .. 1-{4+32h )u .. ~ 0, i=1,2, ... ,m, 

1+ ,] 1- ,] 1,J+ 1,J- 1,J. 1 2 N 
J=" ... " 

(5-point formula) (7.3.22) 

and 
4{u. 1 .+u. 1 .+u •. l+u .. l)+{u. 1 . l+u. . l+u. 1 . 1 1+,] 1-,] 1,]+ 1,J- 1+ ,J+ 1-1,]+ 1+,]-

+u. 1 . 1)-20(32'6h
2

)u .... O. i=1.2 ••••• m. 
1.- ,]- 1.,1. j=1,2 ..... N. 

(9-point formula) (7.3.23) 

where h=l/{m-l). N=2m-3. 

Any of the two equations (7.3.22) or (7.3.23) under the appropriate 

boundary conditions in (7.3.21) [bearing in mind that au 1 • - at X= 1S ax 
approximated by {u'+l .-u. 1 .)/2h] yields a block tridiagonal system of 

1 ,J 1-,] 

the form, 
B C, , 

" 0 C " .... 
.... ..... ..... 

.... " .... 
..... .... .... 

.... " .... 
..... .... , , , .... " 

, 
0 

.... ... 'c , , ... , 
, C ... B 

where B.C and z. are defined as below. 
-1 

~l ~l 

~2 ~2 
I I , = I 
I I 
I I 
I 

~ z 

(a) for the finite-difference equation (7.3.22). we have 

k -2 

-1 k -1 0 .... , , 
.... .... .... 

4+32h2, 
, " , 

k B .... .... .... • = = , .... , 
... , .... , , " C = I 

0 ... ... , (mxm) , 
-1' k 

, 
-1 

-2 k+h (mxm) 

(7.3.24) 

(I unit matrix) 

and z. = Q, i=1.2 ••••• N-l. the m components of ~, are l's. 
-1 -,., 
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and (b) for the finite-difference equation (7.3.23), we have, 

k -8 -4 -2 

-4 k -4 -1 -4 -1 , , , 0 0 
"- "-

, 
" ... ... ... ... ... ... "- "- ... ... , ... "-B = ... ... , C 

, , , , , = ... , ... , ... , , ... ... 
0 

, , , , , , , , ... , , , , 
'-4 

, ... 0 , , 
k -4 -1 -4 -1 

-8 k+4h (mxm) -2 -4+h (jn>qn: 

and ~ = Q, i=1,2, ••• ,N;' ~ = [6,6, ••• ,6,6-h)T 

Example 7.3.3 (Fourth-order elliptic p.d.e.) 

Consider the Biharmonic Equation expressed as, 
4 2 4 

n4u = ~ + 2a u + ~ = ( ) 
v 4 2 2 4 r x,y , 

ax ax ay ay 
(7.3.25) 

in the unit square ~, subject to the condition, 

u = n.'Vu = 0, on the boundaries a~ , (7.3.26) 

where n is the unit vector normal and r(x,y) is a prescribed function 

on E<. For 

2 2 2 2 2 2 
r(x,y) = 8[3y (l-y) +3x (I-x) +(6x -6x+l)(6y -6y+l») , (7.3.27a) 

the exact solution is known to be, 

2 2 2 2 
u = x (I-x) y (l-y) , (7.3.27b) 

and for 4 
r(x,y) = (2n) [4cos2nxcos2ny-cos2nx-cos2ny) , (7.3.28a) 

the exact solution is given by, 

u = (l-cos2nx) (1-cos21TY) • (Bauer and Reiss, (7.3.28b) 
(1972) ) 

• D' 2 • By partitioning the reglon ~ lnto m equal squares, each of length 

h (i.e. h=l/(m+l», equation (7.3.25) can be replaced at the grid points 

by the difference equation derived from applying the l3-point finite-

difference fornula (see Section 3.5), i.e., 
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u .. 2+u .. 2+u • 2 .+u. 2 .)+2(u. 1 . l+u . 1 . l+u . 1 . l+u . . ) 1,J+ 1,J- 1-,J 1+,J 1-,]+ 1+,]+ 1-,]- 1+1,]-1 

4 
-8(u. '+l+u •. l+u . 1 .+u. 1 .)+20u .. = h r •. , 1,J 1,J- 1- ,] .1+ ,] 1,J 1,J 

i,j=1,2, ... ,m, (7.3.29) 

where r .. =r(ih,jh)=r(x.,y.). 
1,] 1 J 

The latter equation under the boundary conditions (7.3.26) leads 

to the block quindiagonal system of the form, 

where the 

B 

and 

Bl C D ~1 
C B C D, ~2 , 

" " , 0 D 
, , , 

" , " , , , 
" 

, , , , 
"-

, , , 
" " " "- , , 

" 
, , , , 

" 
, , , , 

0 "-
, 

" 
, , , , , D , , , , 

'D'C'B' C 

D C B2 u 

sub-matrices and z. are defined as 

= 

-1 

21 -8 1 

-8 20 -8 1, 0 , "- ... , 
... , "- ... ... , "- ... ... " ... , , , ... ... "- , , ... ... , , ... 

"- ... , , "- ... "-... "- , 
"- 'I ... ... 

" ... " " 
0 

... 
... 1~8 '20 

... 

1 -8 

D = I 
(m ><m) 

T 
= [z. l'z. 2, .. ·,2. 1 , 1, 1., 1,m 

2. • 
1,] 

h4r .. , i,j=1,2, ... ,m. 
1,] 

-8 

21 

~1 

~2 

= (7.3.30) 

I 
z 
'""1Il 

follows, 

-8 2 
" " 2 

, 
0 " " " " " " " C = " " " " " , , 

" " " " " " , 
0 " " " " " '2 " 

, 
" " 

(m ><m) 
2 -8 

(mxm) 

(I unit matrix) , 



323 

7.4 NUMERICAL RESULTS AND DISCUSSION 

The BLOCKSOLVERs used to solve the problems of the previous section 

were as follows: Example 7.3.l(i) and (ii), Example 7.3.2(i) and (iii) 

were solved by FIRM2, Example 7.3.2(ii) by FICM3 and Example 7.3.3 by 

FIRM3. All these examples, except Example 7.3.2(ii), were solved by the 

BANDSOLVER (FIRMl). Since the factorisation procedure involved in the 

FIRMl algorithm has not been discussed for the type of matrices included 

in the above example, it may be worthwhile to discuss it first. 

As the considered matrix is factorised into two rectangular matrices 

given in (4.4.3), here we are interested only in the matrices Ll and Ul (of 

size N>N) given in (4.4.53a) and (4.4.52a) respectively (see subsection 4.4.3). 

In the system (7.3.4a), as the coefficient matrix is of order N=2l and r=7 

(i.e. of bandwidth=2r+l=15), Ll and Ul have the following form, 

and 

L = 
1 

1 

"-
1-' "-

1,1.... ..... ...... 
...... 1 , 

Jl.2,1 
·1 ........ 
I , 
1 ' Jl. 2 7 , 
1 1 

!L7 1 1 
'... 1 

... I 
' ... 1-7 7 , 

o 

1 

... 
Jl.2 ,1 ' , ... 1 

; .......... ... .... t 1 .... 
I ......... 1,7 R.. ....... 
I ... 1,1 

1-7 1 1-2 7 ... , '......... , , ... ... , 
I' 
I ... 

... 

o 

... ... ... ... ... , ... , ... ... ... , ... , ... , , 
9'0 6 
~, 

... , ... ... 
(2l x 2l) 

!L1 , 7 1 

(7.4.1) 

(7.4.2) 

where JI.. l""'JI.. 7' and d., i=1,2, ... ,7 are given in Table 7.4.1 (notice 
1., 1., l. 

that only their approximated values are tabulated). In this particular 

example we may conclusde the following remarks. 
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(*1) In any off-diagonal of Ll in (7.4.1). the elements are repeated in a 

cycle of length 7 (or in general. of length equivalent to the order of 

(*2) 

(*3) 

the relevant sub-matrices involved in the coeff~cient matrix as in 

(7.3.4b». 

The off-diagonal elements of Ll are all less than 1 in modulus. 

As shown in Table 7.4.1. i l • and i7 .• i=1.2 ••••• 7. have the largest 
,1 ,1 

magnitudes amongst the remaining off-diagonals; or in general. the off-

diagonals which match those of the non-zero elements in the original 

matrix. possess the largest value in modulus (note that even in the 

first off-diagonal i
1

•
7 

is the only element of low order'which matches 

the zero elements in the original matrix. denoted by x in (7.3.4a». 

(*4) The diagonal of U
l 

in (7.4.2) is of largest element (in magnitude) than 

the off-diagonals (see d. in Table 7.4.1). 
1. 

In Example 7.3.1(ii) and Example 7.3.2(i) since the coefficient matrix 

is symmetric. remark (*1) is applicable; whilst in Example 7.3.2(iii). the 

sub-matrices B (or both B and C) in (7.3.24) are non-symmetric. no regular 

repetition occurs in the elements of the factor matrices. This is applied 

to Example 7.3.3 due to the sub-matrices Bl and B2 in (7.3.30). However. 

the main conclusions to draw from applying FIRM1 in these examples are: 

(**1) The factorisation procedure to yield the two factor matrices was 

achieved with very high accuracy (i.e. E
f 

(see Section 6.1) was 

obtained up to 0(10-10)_0(10-12). For instance. this accuracy was 

achieved in 56. 30 iterations for the system (7.3.16) and (7.3.24) 

whose coefficient matrices are of order 121. 135 respectively; 

whilst for the order 25.35 respectively the relevant number of 

iterations reduce to nearly half. The slowest convergence was 

observed in Example 7.3.3 in which the factorisation procedure to 
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-10 
yield Ef=O(lO ) requires 195 iterations since the coefficient 

matrix was of order 121. 

(**2) A further illustration related to the remarks (*2)-(*4) can be 

pointed out as follows: 

The maximum magnitude of elements of Ll(maxl~ .. I, say) does not 
1,] 

grow much as N (the order of L
l

) increases; whilst the minimum 

magnitude of the diagonal elements of Ul(minlul,i l , say) does not 

decrease as much. 

and minlul . 1~7.7 
,1 

For instance, in Example 7.3.2(i), maxl~ .. 1~O.56 
1,] 

for N=25, whilst for N=12l maxl~ .. 1~O.6 and 
1,] 

minlUl . 1~7. Moreover, the values ul . oscillate in a rather 
,1 ,1 

'narrow' range whose upper bound is slightly larger or smaller than 

the maximum elements of the diagonal of the original matrix. 

Example 7.3.3 is' excluded since for N=12l, 10~lul . 1~17.8. 
,1 

The above remarks may lead to conclude that FIRMl is applicable to the 

block systems and it is more efficient than its applications in Chapter 6. 

On the other hand, in general, both the BANDSOLVER (FIRMI) and the 

appropriate BLOCKSOLVER yield very close results for the same example. 

For instance, the equivalent systems (7.3.4a) and (7.3.4b) were solved by 

FIRMl and FIRM2 respectively and their numerical results are given in 

Table 7.4.2. In this table the results of both solvers agree up to at 

least 8 significant figures; in Table 7.4.3 which belongs to Example 

7.3.2(iii) the solutions given by the two solvers for the system (7.3.24) 

(for h=I/8, using the 9-point formula) agree up to 9 or 10 significant 

figures. This was the case, generally, in the remaining examples that 

were tes ted. 

A further discussion of the results is based on theoretical principles 

(see Section 3.5), that is, an improvement in the computed solution may be 

obtained by, 
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(a) reducing the mesh size, or 

(b) applying a high-order finite-difference approximation. 

Let for a given mesh h T(h) be the pointwise error which is defined as 

the difference between the exact and the computed values, divided by the 

maximum value of the exact solution. 

According to part (a) above, we have the following results: in 

-2 -3 -3 
Example 7.3.2(i), T(h

l
)=2.546xlO ,T(h2)=6.217x10 , T(h

3
)=3.485 XlO for 

h
1
=1/6, h

2
=1/12, h

3
=1/16. In Example 7.3.2(ii), T(h1)=8.27xlO-3, 

-3 T(h
2

)=2.06xlO , for h1=1/10, h2=1/20. The ratio of T(h
l
):T(h

2
) in the 

two examples is 4.1 and 4.01 respectively; where in theory it must be 4 

since the truncation error of the 5-point finite-difference approximation 

is of 0(h2) in both examples. The truncation error of the l3-point formula 

has the same order as used in Example 7.3.3, and the appropriate ratios, 

for h
1
=1/6, h

2
=1/12, for the problem (7.3.27) is 4.07 whilst for the problem 

(7.3.28) it is 4.01. Moreover, for the former problem T(1/26)=1.13% and 

for the latter problem T(1/26)=0.98% as given in Bauer and Reiss (1972), in 

which both may be expected for h=1/12, 5.30% and 4.60% respectively, whilst 

the corresponding results obtained by FIRMI for the same mesh are 5.29% and 

4.69%. 

In Example 7.3.2(iii), the two solutions obtained for h=1/4, 1/8 

coincide with one decimal place at least (see Table 7.4.3). Also, in this 

example the 9-point formula where truncation error is of 0(h4) was used, 

and since no exact solution is given, the only check possible was made by 

substituting the obtained results in the finite difference equations which 

were all satisfied to quite good accuracy. Since the 9-point formula for 

the Laplace equation has the truncation error of 0(h
6

) (see Section 3.5, 

equation (3.5.23)), then in Example 7.3.1(ii) using this formula the obtained 
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values for h=1/6 or h=1/12 to at least 3 and 5 decimal places respectively 

with the analytical solution (see Table 7.4.4). 

It should be stressed in referring to the inner linear systems 

involved in the rectangular factorisation, i.e. the systems (4.4.45a), 

(5.2.23) and (5.4.22) which relate to FIRMl, FIRM2 and FIRM3 respectively, 

show no problem arises in solving them. In particular, their coefficient 

matrices (for the above tested examples and the eigenproblems mentioned 

below) possess a property such that the diagonal elements have the largest 

values in modulus. 

Finally, the BANDSOLVER (FIRMl) has been applied to eigenproblems 

which involve block matrices, and has showed remarkable results in 

comparison to its application in Section 6.5, in a sence that no 

restrictions or modifications for the considered matrix are required. 

Moreover, the ordinary shifting, A-pI, p~O is applicable here with 

suitable values p. For example, using 
J~ 

the ~procedure (6.5.1) for the 

matrix (a) Al of Example 7.2.l(i) and (b) Al of Example 7.2.1(iv) where 

eigenvalues are given by the relations (7.2.1) and (7.2.2) respectively, 

the related numerical results are: for (a) where the matrix Al is 64x64 

and its submatrices are of order 4, at step s=35 (see procedure (6.5.1), 

and s=16 for p=O and p=0.3 respectively, A • =0.416019810, 0.416019811 
m1n 

which agree up to 8,9 significant figures with All of (7.2.1) (noting 

that the appropriate factorisation is 

-12 
respectively to yield £f=O(10 ), see 

achieved in 30,62 iterations 

Section 6.1). And for (b) where Al 

is (100x100) and its submatrices are of order 10, for p=O, only 5=13 

iterations were required to give A . =0.96560535201 which coincide up to 8 
m1n 

with All given by (7.2.2) (noting that 8
f
=0(10- l2) is obtained in 64 

iterations). 
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-1 

-3.02xlO 

u . 
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a 0.353006809 

b 0.353006808 

c 0.3530 

u
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a 0.498850563 

b 0.498850561 

c 0.4988 
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TABLE 7.4.1: (Example 7.3.1(1)) 

u
2 

u
3 

u
4 

u
5 

u
6 

u
7 

0.913176676 2.010311261 4.295717748 9.153168404 19.663176677 43.210149666 

0.913176673 2.010311258 4.295717744 9.153168400 19.663176674 43.210149665 
0.9132 2.0103 4.2957 9.1531 19.6631 43.2101 

u
9 u

10 ull u12 'l1 u 14* 

1.289388634 2.832350620 6.019391327 12.653779192 26.289388634 53.3177421992 
1.289388631 2.832350616 6.019391322 12.653779188 26.289388631 53.177421990 
1.2894 2.8323 6.0193 12.6537 26.2893 53.1774 

TABLE 7.4.2 

a - The solution obtained by BANDSOLVER (FIRM1) 

b - .. .. .. .. BLOCKSOLVER (FIRM2) 

c - .. .. is given in the indicated reference 

* u15 ~ u
1

' u15 ~ u 2,···,u21 ~ u7 W 
N 
(Xl 



3/4 

1/2 

1/4 

0 

1-1/4 

H/2 

3/4 

IX x' 
~ 
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0.0000562995 0.0000558657 0.0000543862 0.0000514268 0.0000465857 a 

0.0000562995 0.0000558657 0.0000543862 0.0000514268 0.0000465857 b 

0.000090 0.000090 0.000087 0.000082 0.00075 c 

0.0002403647 0.0002387827 0.0002331488 0.0002212026 0.0002006908 a 

0.0002403647 0.0002387827 0.0002331488 0.0002212026 0.0002006908 b 

0.00036 0.00036 0.00035 0.00033 0.00030 c 

0.0009691313 0.0009641157 0.0009450124 0.0009007474 0.0008190410 a 

0.0009691313 0.0009641157 0.0009450124 0.0009007474 0.0008190410 b 

0.00137 0.00136 0.00133 0.00127 0.00115 c 

0.0038902621 0.0038761131 0.0038166768 0.0036599547 0.0033383168 a 

0.0038902621 0.0038761131 0.0038166768 0.0036599547 0.0033383168 b 

0.00513 0.00511 0.00503 0.00482 0.00439 c 

0.0155959289 0.0155626382 0.0154018550 0.014880837 0.0136429355 a 

0.0155959289 0.0155626382 0.0154018556 0.0148880833 0.0136429355 b 

0.01920 0.01916 0.01895 0.01831 0.01677 c 

0.0624606771 0.0624031560 0.0620691542 0.0606442325 0.0560123561 a 

0.0624606770 0.0624031560 0.0670691542 0.0606442325 0.0560122561 b 

0.07175 0.07168 0.07130 0.06968 0.06439 c 

0.2499687334 0.2499134754 0.2495246098 0.247068277 0.2321389585 a 

0.2499687334 0.2499134753 0.2495246097 0.247068276 0.2321389584 b 

0.26791 0.26785 0.26745 0.26514 0.25006 c 

0 1/4 1/2 3/4 1 

a - Solution of the system (7.3.14) for the 9-point formulae, obtained by 

BLOCKSOLVER(FIRM2) for h~ 

b - Solution of the system (7.3.14) for the 9-point formulae, obtained by 

BA.'lDSOLVER(FIRm) for h-~ 

c - Solution of the system (7.3.14) for the 9-point formulae, obtained by 

1 FIR}!l or FIRM2, for h-4 

TABLE 7.4.3 (Example 7.3.2(iii» 



0.006123393 0.010599873 0.012236138 0.010599873 0.006123393 a 

5/6 0.006123269 0.010599666 0.012235904 0.010599666 0.006123269 b 

0.006121436 0.010596554 0.012232351 0.01096554 0.006121436 c 

0.013973997 0.024172722 0.027894559 0.024172722 0.013973997 a 

4/6 0.013973699 0.024172249 0.027894038 0.024172249 0.013973699 b 

0.013969347 0.024165125 0.027886084 0.024165125 0.013969347 c 

0.025793079 0.044524883 0.051328646 0.044524882 0.025793079 a 

3/6 0.025792445 0.044524016 0.051327760 0.044524016 0.025792445 b 

0.025783326 0.044510830 0.051314127 0.044510830 0.025783326 c 

0.045085576 0.077357653 0.088932984 0.077357653 0.045085876 a 

2/6 0.045084311 0.077356220 0.088931771 0.077356220 0.045084311 b 

0.045061685 0.077333954 0.088913354 0.077333954 0.045061685 c 

0.078205588 0.131793333 0.150461130 0.131793333 0.078205588 a 

1/6 0.078200647 0.131791677 0.150460097 0.131791677 0.078200647 b 

0.078121486 0.131767811 0.150445413 0.131767811 0.078121486 c 

l7< 1/6 2/6 3/6 4/6 5/6 x. 
1 

a - Analytical solution obtained from (7.3.6) 

b - Solution of (7.3.9) using the 9-point formula and solved by FIRM1 

(with h..2-) 12 

c - Solution of (7.3.9) using the 9-point formula and solved by FIRMl 

(with hi-) 

TABLE 7.4.4: (Example 7.3.1(ii) Solution) 
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CHAPTER 8 

CONCLUSIVE REMARKS AND FURTHER INVESTIGATIONS 
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PART (A) 

The main conclusions associated with the new algorithmic solvers for 

the banded linear systems of equations are: 

1. The factorisation involved in the pointwise procedures (i.e. the 

BANDSOLVERs) differ from the conventional and well-known direct 

techniques (such as LU-Decomposition) in a sense that the elements 

of the factor matrices are obtained by an iterative scheme. 

2. In relation to the preceding point, the solution of a special set 

of non-linear equations derived from equating the elements of the 

factor matrices' product to the corresponding elements of the 

original matrix, is accomplished iteratively (precisely, by 

adopting the so-called Gauss-Seidel-Newton scheme (sub-section 

4.3.6). 

3. The factorisation techniques involved in the block-case (i.e. in 

the BLOCKSOLVERs), explicitly seem to be a direct procedure to 

obtaining the sub-matrices of the block-factor matrices. Implicitly, 

an iterative process (precisely, the Newton's method) is involved 

to compute the required matrix square roots. In this respect, it 

should be emphasised that computing the matrix square root as 

accurate as possible is essential, since it is a vital step in the 

factorisation procedure. 

4. The factor matrices possess the property of preserving the 

structure of the original matrix (the bandwidth and the sparsity 

(if any», i.e. no 'fill-in' is created beyond the outer off­

diagonals of the given matrix. Although this is true for the 

BAND SOLVERs when they are applied to the block matrices, but the 

factor matrices produced, in contrast to the original matrix, their 

elements in-between the diagonal and the outer off-diagonal (which 
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correspond to the zero elements of the original matrix) do 'fill­

in' with small numbers. 

5. The formulation of the BAND SOLVERs raises the question of adopting 

High-Order Discretization techniques for the second-order non­

linear (or linear) 2-point boundary value problems. This seems to 

be practical for these problems under periodic conditions, in 

particular with the existence of the new algorithms (i.e. FICMl 

and FICM2) 

6. Generally speaking, both the BAND SOLVER (FIRMl) and the BLOCKSOLVERs 

have shown quite satisfactory results from their application to 

partial differential equations (Chapter 7). Also, the applications 

of the former have been extended to eigenproblems (Section 6.5, 

7.4); whilst the latter in the light of factorisation results is 

believed to be applicable to eigenproblems associated with block­

matrices (as the types given in Chapter 7). 

7. The BANDSOLVERs and BLOCKSOLVERs (in Chapters q,~respectively) 

associated with skew-matrices involve mainly a modification which 

transfers the considered skew-matrix to a symmetric one and then 

the solution procedure is pursued as in the relevant solver for a 

symmetric matrix. 

8. Will the new algorithms (or some of them) have a superiority or 

are they competitive with other methods? In fact, it is inadequate 

to judge the question on abstract grounds alone, just on the basis 

of the obtained results from the tested numerical examples or 

other 'artificial'examples. The answer, however, is· connected with 

the other factors, such as the amount of storage required and the 

running-time which both for programming reasons have not been 

considered, included or measured in this work. In particular, 
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by noting that all the solvers' procedures have been programmed in 

a generalised form which consequently requires a considerable 

storage area, notably this can be reduced considerably for certain 

cases where the given matrix possesses a special structure. 

Finally, the new factorisation techniques which include, obtaining 

pseudo-inverse rectangular matrices iteratively, matrix square roots, etc., 

may require further theoretical justification and· the continuation of further 

related studies may take place in the light of the points outlined in part 

(B) below. 

PART (B) 

It is suggested that the following points be considered for further 

investigation: 

1. The solution of the set of non-linear systems of equations involved 

in the BANDSOLVERs may be obtained by a direct solution or 

strategies to improve the rate of the convergence of the present 

iterative scheme, or to use other faster alternatives. 

2. Referring to point 4 of part (A), it may be interesting to pursue 

improving the BANDSOLVER (FIRMl) when it is applied to block­

matrix systems so that the indicated 'fill-in' can be alleviated 

or overcome. 

3. In the Biharmonic equation (Example 7.3.3, Chapter 7) in order to 

apply a 25-point finite difference formula, it is suggested that 

the appropriate BLOCKSOLVER (FIRM3) may be extended to a septa­

diagonal block solver, or probably to matrices of wider bandwidth. 

This might be proceeded by treating the non-linear matrix 

equations obtained in an analogous manner to the pointwise non-
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linear equations involved in FIRMl (i.e. GITRM procedure for r~3). 

4. Can any of the new algorithms be applied on the new parallel 

processing machines? If they can, this may increase the 

creditability of the algorithm(s); in particular for those 

algorithms which take a considerable time in converging to the 

solution such as the case of the Biharmonic equation using 

BANDSOLVER (FIRMl) or in other steps of the solution procedure. 
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We. shall rewrite the system (4.2.4) in the form given in Berg (1981). 

For this. we assume n=r+l. r~l (as defined in Section,4.2). and define x •• a .• 
1 1 

. i=l, ... ,n as follows, 

a. 1 :::I.X. 
1- 1 

c. = a. 
1 1 

} i=1,2, ... ,n, 

where ai-I' ci _l • i=1.2 ..... n are the elements of the system (4.2;4). 

(A.l) 

From (A.l) and taking al=l (Berg (1981» the system (4.2.4) becomes. 

2 2 2 2 
xl +x2 +x3 +'.' ,+xn = 1 

xlx2+x2+x3+",+xn_lxn = a2 

x1xn_l+x2xn 

xlxn = a 
n 

(A.2) 

The direct method suggested by Berg (1981) to solve the system (A.2) 

to yield real solutions is discussed below. 

For the special case. if the values a2.a3 ••••• a
n 

satisfy the following 

equality. Le •• 

'itn = n!l [(n-k)COs~:l + , k=1,2, •.. ,n-l , 

and 

then the solution of the system (A.2). i.e. xl ••••• xn (xl>O) is uniquely 

determined and has the form. 

xi = /n~l .h 
s1rr---="1 , n+ , i=1',2, ... ,N . 

is negative. then' a • t=3 ..... n in (A.3) should be 
t . 

(A.3) 

(A.4) 

(A.S) 

(N.B. if a2 in (A.4) 

multiplied' by (_l)t-l 

i-l 

and hence x .• i=1;2 ••••• n in (A.S) is multiplied by 
1 

(-1) as well). 

The derivation of (A.S) and (A.3) is as follows. 

The method of Lagrange is used to determine the extreme value of a2 

under the first equation of (A.2) as a condition;. thus from the first and 
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the second equations of (A.2) we may write. 
_ .. 2 2 . 2 

F = XIX2+X2X3+"'+Xn_lXn-A(Xl+X2+"'+Xn) 

Now to determine the stationary values of F we start with differentiating 

F with respect to xl .x2 •.••• ,xn successively· to obtain the result 

(A.6' ) 

if we now define 
x 0 (A.6") o = xn+l = • 

then (A.6") can be written as a single difference equation. i.e •• 

Berg (1981) indicates that this eigenvalue problem possesses n . 

solutions. These can be determined in the following manner. 

Let ASt (A is a constant) (A.8) xt = • 
and substitute in (A.7) to yield the result 

e2-ZAe+l = 0 • (A.9) 

The quadratic equation (A.9) possesses two roots. e
1

.e2 (say); hence 

from (A.S) we have the general solution. 

(A.lO) 

where Al andA2 are constants; 

Consequently from (A~lO) and conditions (A.6") we obtain the relations 

and 

o = Al +A2 
o = A en+1+A en+1 

1 1 2·2 

From these two equations we have 

·or 

Therefore. from 

o = A (en +1_en +1) 
1 1 2 

e1 n+1 1 i2j1T r=-(-) = = e • where j=1.2 ••••• n. i=>,-1. e2 

(A.11) we obtain 

i2j1!/(n+1) 
e 

(A.ll) 

(A.12) 



and from the quadratic equation (A.9) we have 

9
1

9
2 

= 1 

and 

Hence from (A.12) 

91 + 9
2 

= 2L 

and (A.13) we have 

9 = eij~/(n+1) 
1 j=1,2, ... ,n 

_ i=H . ) 
and e = e-ij~/(n+1) 

2 - -

Then, from (A.14) and (A. IS) A can be expressed as 

A = t(Sl+62) = t(eij~/(n+1)+e-ij~/(n+1» 

1( j~ •• ;~ j~" j71 
= -2 cos-+1 +1s10"-.:-+1 +cos-- -1s1n--) n _ n n+l _ _ n+1 

hence the n eigenvalues are given by 

:.. ~ Aj - cosn+1 ' j=1,2, ... ,n, 

h 'l h th t f th' (- d' the J' th w 1 st t e S componen 0 e e1genvector correspon 1ng to 

eigenva1ue) is given by 
x(j) s s 

= A
1

91+A292 s 
= A (eisj~/(n+l)_e-isj~/(n+l» 

1 

2 ' ,;s~ 1 2 = 1Al Sl.n;:t:r , s= , , ••• ,ne 

s1'nce ~- , 2 jS1T _ n+1 Now, [. S1n 1 - -2- , 
_ - s=l n+ 

then by substituting x(j?into the first equation of (A.2) we have 
s n 

(2 ' A ) 2 '" ,2 j S1T - 1 1 1 [. S1n. -+1 -
- - s=l' n 

which yields the result by virtue of (A.17), 

(2iA1)2 = n:1 

. or 
(2iA1) =! n:l 

Hence substitution this result in (A,16) we obtain 

(j) K -. jS1T 
Xs = ~n+l S1n n+l ,s=1,2, ... ,n. 

Further, if we substitute x(j) given by (A,IS) into the second, - s-_ 

the third etc, up to the nth equation of (A,2) and apply the following 

formula, 
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(A.l3) 

(A.14) 

(A. IS) 

(A.16) 

(A.17) 

(A.1S) 



n-k 
L • • (k) n-k· k cos (n+l)x)sin(n-k)x S1nsx 81n s+. x c ----2 cos x - 2 sinx sal 

we obtain for X=j1T /(n+l) the following 

a. = ---- (n-k) cos~ + 1 [ k· 
K+l n+l n+l 

relations, 
• k+l • ] S1nn+l J1T. . , 
• . l1T 

s1n--:-
l n+ 

Thus, by settingj=l, the relations (A.18) and (A.19) implies (A.5) 

and (A.3) respectively. 

On the other hand, for k=l (A.19) yields the result, 
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l!...: . 2 a2, = cosn+1 ' J=l, , ... ,ne (A.20) 

Since the maximum· of a2 in (A.20) is at j=l, then Berg (1981) concludes 

that the neaessary aondition for solving (A.2) in the real domain is 

(A.2l) 

Further, he points out that for the remaining values of ~, k=3,4, ••• ,ri., 

it isneaessary that, 

I~+ll ~ cosN:2 (A.22) 

~th. N=[n~l] for k~2 so that (A.2) is solvable ~n a real domain.· He 

adds also that both (A.2l) and (A.22) are not suffiaient for the real 

solvability of (A. 2). 

However, for the case n=3 (i.e. the coefficient matrix iscircu1ant 

and quindiagonal Berg (1981) gives the sufficient and necessary conditions, 

which are equivalent to those. given by Evans and Hadjidimos (1979), 

By inverting these inequalities we obtain the necessary and. sufficient 

conditions. so that (A.2) possesses real solutions, 
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Thus, the maximum of la
2

1 and la3 1 are _1 __ and -21 respectively and . . 12"" 
which coincide with the results.obtained from (A.21) and (A.22) (with N=l) 

respectively. 
, 

Finally, baCk to the system (4.2.1), after its normalization, the 

coefficient matrix will be left with unity values on the diagonal and the 

non-zero elements become citco' i=l, ••• ,r. In this ·case, the factorization 

(4.2;3a) implies a non-linear system similar to (A.2) (taking the assumption 

into account). Thus, the. condi tion~ (A.21) and (A.22) may be considered 

as necessary conditions for the iterative method (GITRM, Subsection 4.2.2), 

. to obtain the real solution of (4.2.4a). 
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The algorithm FIRMl for the tridiagonal case, i.e. r a l can be reduc~d 

as follows. 

From the relations (4.4.30), we have 

. (B .1) 

with gl,N+l = -1 , j=N,N-l, ... ,l. 

and rj m (-Yl,/YO,j+l)~j+l+Zj (B.2) 

with 
.... 
ZN+l = O. 

Then, (4.4.32) implies 

1 "" 
Yj = YO,j(Zj-yN+lgl,j) 

} j=l,2, ••• ,N. (B.3) 

The system (4.4.28b) becomes, 

1 xl Yl 
a

l 
1 x2 Y2 

1 0 
, 

a2 ... I ... 
a 3 

... , ... = (B .4) ... ... ... ... I I .... ... I I ... ... 
I ... ... I 0 ... ... I 

I 
"aN- l I x

N . , 
- --Cl I 

0 N YN 

(where aO .=1, i=l,2, ••• ,N, as in (4.4.29b) and. we take a.=a
l 

., i=l,2o" .,N). 
,1 1. ,1 

From (B.4) we can obtain the following realtion 

X
2 

= y
2
-a

l
x

l (B.5a) 

x. = y,-a. IX, ·1' j=2,3,.".,N 
J J J- J-

and (B.5b) 

Now, from (B.5a) we obtain after substitution, 
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Xl = Yl 

X2 a Y2-al xl= Y2- a1YI 

X3 = y3-a2x2 a Y3~a2Y2+a2aIYl 

= Y· -a Y +a a y. + +(-1· )N+I y . 
~ N N-I N-I N-l N-2 N-2 ••• aN_laN_2···al 1 

Multiply (B.6) by aN' then from (B.5b) we have 

where 
~ = aN 

~-l = aNaN_l = aN_I~ 

m. = a.m.+l • 
J J J 

so 

If we multiply y. by m. in (B.3). then we have 
. . J J 

or 

m.y. = m.</>. + m'WI 'YN I' j=1.2 ••••• N. 
JJ JJ J.J+ 

When these are substituted in (B.7). and rearranged then we obtain 

N N 

= I m.</>. + I m'WI 'YN 1 
. j=l J J j=l J .J + 

N N 
= I m.</>./(l- I m,wl .) 

j=t J J j=l J .J 

and hence y .• j=1.2 ••.•• N can be obtained from (B.3) and the solution 
J " " 

vector x .• j=1.2 ••••• N from (B.5). " 
J 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

Thus. the amount of work is reduced to the order of: 7N multiplications 

and 4N"additions (including the normalization of (4.4.3a»; this can be 

reduced further if the coefficient matrix is. constant and symmetric (see 

the system (4.4.8a»." 
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The attached procedures are written in ALGOL 68' (and the tested 

programs have been run on the ICL 1904S, in the Computer Centre; at 

Loughborough University). These are: 

Cl: (Algorithm FlCMl) 

GENSYM - solves the system (4.2.1), and involves the following steps: 

(i) the procedure GITRM to solve the appropriate non-linear 

,equations, 

and (ii) procedure BACKFORD to perform the forward and backward 

substition schemes. 

C2: (Algorithm FICM2) 

PRDSYS - solves the 'system (4.3.l)'which includes the relevant 

factorisation and elimination procedures. 

C3: (Algorithm FIRMl) 

NONPDUL - performs the factorisation (4.4.2)" 

BACKFORD -solves the system (4.4.4) 

C4: (Algorithm FICM3) 

,GENSYSBLK - solves the system (5.1.1) and involves two procedures: 

(i) GITRMBLK - computes the submatrices Q
O 

and Q
1 

of the system 

(5.1.4), 

and (ii) BACKFORDBLK - solves the two systems (5.l.9a) and (5.l.9b). 

cs: The Iterative Deferred Correction procedure (Chapters 3 and 6) for 

2-point boundary value problems with periodic conditions in which 

either PRDSYS (i,e. FICM2) or GENSYM (i.e. FICMl) is used. The 

program is 'an extended and modified form to the one given in 

Audish (1978). 



Cl 

'm:~ 
'PROC' GITRM= (' REF' [) 'REAL' C, BET'rl'>,) 'VOID' : 
'BE::;Itl' 

'IN·r'N='UPB'C: 
[Il:N]'REAL'ALPHA, 

CC,EPS: 
CC: =C: 
'REAL'SS:=0,PP:=0: 
'I:-IT'NN:= (N r ('ODD'N! l!~» '/'2: 

'FOR'I'TO'N'DO'SS'PLUS'C[I]: 
'FOR'I'TO'NN'DO'PP'PLUS'C[2*I~I] : 

'REAL'ZI,Z2: 
ZI:=SQRT(C[0)+2*SS): 
Z2:=SQRT(C[01+2*(SS-2*PP»: 
C[0):=(ZI+Z2)/2: 
C[l) :=(Zl-Z2)/2: 
'PROC'~AXN~=('REF' [) 'REAL'X,'REF' 'REAL'MAX) 'VOID': 
(MAX:=0.0:'FOR'I'FRO~' 'LWB'X.'rO"UPB'X'DO' 

'IF"ABS'X[I»'ABS'MAX'THEN'MAX:=X[I) 'FI'): 
, IN'r'NUM:=0: 
'BOOL'ACTIVE:='TRUE': 
'REAL'SUM, 

SUMBT, 
SUMBTT,· 
EPSMAX, 
TT: 

'WHILE'ACTIVE'DO' 
'BEGIN' 

NUW P.LUS ' I: 
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PRINT«NEWLINE,"L EVE L *****************",NUM,NEWLINE» 
'IF'N=1 
'THEN'ALPHA[~) :=BETTA[0) :=C[0): ALPHA[l]:=BETTA[l] :=C[l] 
'ELSE' 
'FOR'I'FROM'0'TO'N'DO'ALPHA[I] :=BETTA[I] :'C~EAR'aETTA: 

BETTA[N) :=C[N]/ALPHA[0]: SUMBT:=0: 
SUMBT:=BETTA[N]: . 
SUMBTT:=('ODD'N1BBTTA[N] 10) : 

. 'FOR'J'FROM'N-I'BY'-I'TO'2'DO' 
'ilEGIN' 

SUM:=0: . 
'FOR'I'FROM'J+I'TO'N'DO'SUM'PLUS'ALPHA[I-J]*BETTA[I] : 
BETTA[J]:=(C[J]-SUM)/ALPHA[0): 

SUMSTT'PLUS'('ODD'J!BETTA[J] 10): 
su~aT'PLUS'BETTA[J) 

'END I: 
BETTA[l):=C[l]-SUMBTT: 
3ETTA[0j :=C[0]-(SUMBT-SUMBTT) 
'FI' ; 
EPS~AX:=0: 
'FOR'I'FROM'0'TO'N'DO'EPS[I]:=BETTA[I)-ALPHA[I): 
MAXNM(EPS,EPSMAX): . 

PRINT«NEWLINE,"ALPHA BETTA& EPS ARE: ",NEWLINE,ALPHA,NEWLIN 
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BE~TTA,NEWLINE,EPS,NEWLINE» ; 

'FOR'K'FROM'il'TO'N'OO' 
(TT:=0: 'FOR'J~FRO~'K'TO'N'Db'TT'PLOS'aETTA[J-K]*BETTA[J]: 

PRINT( (NEioILINE,TT," ",CC[K]," ",C[Kj,NEi'lLINE» 
) : 
'IF'NUM>60'OR"ABS'EPSMAX<10&-12'THE~"CTIVE:='FALSE"FI' 

'END' 
'END';'C' 0 F G I T R M 'C' 

'PROC'BACKFORD=('REF'[] 'REAL'ALPHA,'REF'[] 'REAL'Z,X) 'VOID': 
'BEGI~' . 

'INT'R='UPB'ALPHA: 
'INT'N='OPB'X: 
[l:R,l:N+Rj'REAL'F; 
[l:N+R]'REAL'E: 
[l:R]'REAL'M; 

. 'FOR'I'TO'R'DO'M[I] :=-ALPHA[I]/ALPHA[0]; 

, FOR' I ' 'ro ' R ' DO ' 
'FOR'J'TO'R-l'DO' F[I,J] :=(J>I!0!ALPHA[I-J]): 
'FOR'I'TO'R'DO"FOR'J'TO'R'DO'F[I,N+J]:=(I=J!-ALPHA[a]!0): 

'FOR'I'TO'R'DO'E[N+I] :=0: 

'REAL'SUM,SUME: 
'FOR'J'FROM'N'BY'-l'TO'R'DO' 
'BEGIN' 

5UME:=0: 
'FOR'K'TO'R'DO' 
'SEGIN' 

SUM:=0; 
SUME'PLUS'M[K]'E[J+K]; 
'FOR'I'TO'R'DO'SUM'PLUS'M[I]*F[K,J+I]: 
F[K,J] :=SUM+(J=K!ALPHA[0] !0) 

'END' ; . 
E[J] :=SUME+Z[J] 

I END '; 

'FOR'I'TO'R-l'DO' 
'BEGIN' 

'FOR'R'rO'R'DO' 
'BEGIN' 

SUM:=0: 
'FOR'J'TO'R-I'DO'3UM'PLUS'M[I+J]*F[R,R+J) ; 
F[K,R-I) :=SUM+F[K,R-I] 

'END' ; 
SUME:=0; 

'FOR'J'TO'R-I'DO'SUME'PLUS'M[I+J]*E[R+J) : 
E[R-I] :=SUME+Z[R-I] 

'END' ; 



. T) : 

» 

'BOOL'OK:='TRUE': 
'INT'COUNT:=0,KHAT: 
[l:R-l,l:R-l]~REAL'RATIO: 

.. 'CLEAR' RATIO: 
'WHILE'OK'DO' 
'BEGIN' 

COUNT'PLU5'1: 
KH.I\T: =0: 
KHAT:=R+I-COUNT: 

'FOR'K'TO'R-COUNT'DO' 
'BEGIN' 

RATIO[COUNT,K]:=-F(KHAT,K]/F[KHAT,KHAT]: 
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'FOR'J'TO'R-COUNT'DO'F[J,K] 'PLUS'RATIO[COUNT,K]*F[J,KHI 

E[K] 'PLUS'RATIO[COUNT,K)*E[KHAT] 
'END' : 
'IF'COUNT=R-I'THEN'OK:='FALSE"FI' 

• END' : 
'REAL'SU~Y: 
[I:N] 'REAL'GAMMA: 
[-R+l:N] 'REAL'Y: 
'CLEAR'GAMMA: 'CLEAR'Y: 

'FOR'I'TO'N'DO'GAMMA[I] :=(I)R!ALPHA[0] !F[I,I]): 
'FOR' J' TO.' N' DO' 
'BEGIN' 

'INT'KR:=0: 
SUMY:=0; 
'FOR'K'TO'R'DO' (KR:=-R+K+J-I; 

SUMY' PLUS' (J)R! Y [K] *F [K,J] ! Y [KR) * (KR)0! F [KR,J] !! 

) : 
Y[J] :=(E[J)-SUMYI/GAMMA[J] 

'END' ; 

'REAL'SUMK; 
[l:N] 'REAL'YH: 
[l:N+R] 'REAL'ETAH; 

'FOR'I'TO'N'DO'YH[I) :=Y[N-I+l]; 
'FOR'I'TO'R'DO'ETAH[N+I] :=0: 

'FOR'J'FROM'N'BY'-l'TO'R'OO' 
(SUME:=0;'FOR'K'TO'R'DO'SUME'PLUS'M[K]*ETAH[J+K]: 

ETAH[J] :=SUME+YH[J]I ; . . 
'FOR'I'TO'R-I'DO' 

(SUME:=0;'FOR'J'TO'R-I'DO'SUME'PLUS'M[I+J]*ETAH[R+J] : 
ETAH[R-I] :=SUME+YH[R-I]l: 

'INr'NUM:=il; 
'BOOL'ACTIVE:='TRUE'; 

'WHILE'ACTIVE'DO' 
'BEGIN' 

NUM'PLUS'l; 
'FOR'T'TO'R-NUM'DO'ETAH[T] 'PLUS'RATIO[NUM,T]*ETAH[R+I-NUM] 
'IF'NUM=R-l'THEN'ACTIVE:='FALSE"FI' ' 

, END' ; 
[I:N]'REAL'K; 
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'FOR'I'TO'N'DO'K[I):=ETAH[N-I+l): 
[l:N+IU'REAL'XX: 'CLEII.R'XX: 
'REAL'SUMXX: 

'FOR'J'FROM'N'BY'-l'TO'l'DO' 
'BEGIN' 

SUMXX:=0; 
'FOR'I'FROM'R'BY'-l'TO'l'DO' 

SUMXX'PLUS'(J<N-R+l!XX[N+I-R]*F[R+l-1,N+l-J] 
!XX[J+I]*F[I,N+I-J]): 

XX [J] : = (K [J] -SUMXX) /GM1MII. [~+l-J]; 
X[J] :=XX[J] 

, END' 
'END';'C'0 F 311.CKFORD 'c' 

'PROC'GEN5YM=('REF'[] 'REII.LiC,'REF'[J'REII.L'Z,X) 'VOID': 
'3EGIN' . 

'INT'R='UP3'C; 
[ll:R] 'REAL'ALPHA; 

'POR'I'FROM'J'TO'R'DO'ALPHA[I]:=l: 
GIrRM(C,ALPHII.) ; 
[1: R) 'REAL' BB; 
'FOR'I'TO'R'DO'BB[I):=ALPHA[I)/II.LPHII.[0] ; 
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PRINT ( (NEW LINE , "Rll.TIOS ALPHA [I] /II.LPHII. [0] ,1=1,2, ••• M II.RE", NEWLINl 

BB,NEWLINE,NEWLINE,NEWLINE»: 
BACKFORD(II.LPHII.,Z,X) 

'END':'C'OF GENSYM'C' 



C2 

'PROC'PROS'lS"('REF' [,I'REAt.'~,'REF' [I'REAt.'Z,X) 'VOID': 
't3E;;I~' .ko 

'INT'Ii/=2'UPB'A, 
.. R=l'UPB'A; 

'I~T'T:='ENTIER'(N/R): 
.' INT' R!-I: =N-T* R; 
[l:R,l:NJ'REAt.'t., 

EPS; 
[1:R+1,1:NJ'REAt.'U; 
[1:NJ'REAt.'EPSX; 
[1 :RJ' :'l.E.AL'VECEPS; 
'RE;L'::P5~T\X; 

I aE~L f 3U:1, SU:1E; 
'I:H'L,U!l:=~; 
'300t.'OK:='TRUE'; 

, FO" ' K' TO' R' j)O' . \: ' 
, FO R ' r "ro ' N ' DO ' r. [K , I 1. : =; [ K, I] / A [ ~ , I J ; 

'e I 

'FOR' I 'TO'i~'DO' t.[K, 11 :=UHlJ'il; 
'C'INlrIAt. VALUES E'OR t.[l,J ••• L[R-l,1 'C' 

, E'OR' I 'TO' N ' DO' U [R+ 1, I J : =11. [R, I J ; 
'WHlt.E'OK'DO' 
'BEGIN' 

~~U~4 ' PLU3 ' 1 ; 
?:'l.:NT((NEWLINE,"L EVE L ~***********",NUM,NENLINE»; 

'FOR'K'PROM'R'3Y'-l'rO'1'j)O' 

357 

, FOR' I ' ro ' N ' j)O' • 
(SUM: =0 '; .' E'OR' J '.TO' R-K + 1'00' SUM' PLllS' t. [J , I] * U [K +J , INT (N , : 

-J) i ; 
U [K , I) : =11. [K -1 , I] -S UM) ; 

'E'OR'K'E'ROM.'R 'BY'-l'TO.'l'OO' 
( 
'E'OR'I'rO'N'DO'_ 
(SU!-I:=0;'FOR'J'TO'R-K+l'OO'SUM'PLUS'L[K+J-1,I]*U[J,INT(~,I' 

(K+J -1) ) ) ; 

. • 

EPS [K, IJ :=A[-K, II-SUM) ; . 
, E'OR' r 'TO' N' DO' L [K, I) 'PLUS' EPS [K, I1 Iu [1, INT (N, I -K) J 

) ; 
'FOR'K'TO'R'DO' 

. ( 'CLEAR'EPSX;EPSMAX:=0; 
EP5X:=EPS[K,] ; 
~AX~M(EPSX,EPS!-l;X) ; 
V~CEPS[K]:=EPSMAX 

) ; 

PRINT((NEWLINE,"L t.NEN&EPS ARE",NEWLINE,L,NEWLINE,EFS,NENLINE) 

PRINT((N~~LINE,·U VALUES ARE",NEWLINE,U,NEWLINE)); 
'MAXNM(VECEPS,EPS~AX); 
'IF'NUM>61 'OR"A3S'EPSMAX<10&-12'THEN'OK:='PALSE' 'PI' 

t E~O' ; 
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'PROC 'TRNGMTX= to REF' [ ,1 ' REAL' F, FS, , REF' [j 'REAL '. E, 'REI'" [j 'REAL' ES) 'vor 

'BEGIN' 
'INT'R=l'UPB'F, 

N='UPB'ES: 
'BOOL'OK:='TRUE': 
'INT'COUNT:=0,KHAT: 
[I:R-I, I:R-I] 'REAL'RATIO: 
'CLEAR' RAnO: 

'wHILE'OK'AND'R>I'Du' 
'aEGIN' 

COUNT'PLUS'I: 
KHAT:-"': 
KHAT:=R+l-COUNT: 

'FOR'K'TO'R-COUNT'DO' 
'BEGIN' 

RATIO[COUNT,Kj :=-1" [KHAT,Kj IF [KHAT,KHATj : 
'FOR' J' 'ro' R-COUNT' DO' 1" [J, K] 'PLUS' RATIO [COUNT, K] *1" [J, KHl\T1 : 
E[K] 'PLUS'RArIO[COUNr,K]*E[KHAT] 

, END' ; 
'IF'COUNT=R-I'THEN'OK:='FALSE"FI' 

, END' ; 
FS:=F; 
'FOR'I'TO'N'DO'ES[I] :=E[I] 

'END':'C'OF TRNGMTX'C' 

[I:N] 'REAL'ZY:ZY:=Z; 
[ I : N] 'REAL' Y; . 
[I:R,-R+I:N] 'REAL'F; 
[-R+l:N] 'REAL'E,ZZ; 

'FOR'I'TO'R'DO' 
'FOR'J'TO'R-l'DO'F[I,N-J+l] :=(J=I! l! :J<I!L[I-J,N-J+I]!(l): 

'FOR'J'TO!R'DO' 
'FOR'K'TO'R'DO'F[K,-J+1]:~(J=K!-1!0); 

'FOR'I'TO'R'DO'E[-I+l]:="'; 
'FOR'I'TO'N-R+l'OO' 
'BEGIN' 

'FOR'K'TO'R'OO' 
(5UM:=0: 

'FOR' J' FROM' R' BY' -1 'TO' I 'DO' . 
SUM' PLUS' (-L [J , I] * 1" [K, I-J] ) ; . 

F[K,I] :=SUM+(I+K=N+1!l!0) 
) : . 

SUME:=0: 
'FOR'J'FROM'R'aY'-l'TO'l'OO'SUME'?LUS' (-L[J,I]*E[I-J1); 



) ; , 
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E[I)~:=Z (1) +SUME 
.' END'; 
'FOR'I'FROM'R'BY'-l'TO'2'DO' 
'BEGIN' 

'FOR'K'TO'R'OO' 
(SU~:=F[K,N+2-I) ; 

'FOR'J'TO'I-l'OO'SUM'PLU5 ' (-L[R-I+l+J,N+2-I)*F[K,N-R+l-J 

F[K,N+2-1):=SUM 
) ; 
SUME:=Z[N+2-I); . 

'FOR'J'TO'I-l'OO'SUME'PLUS' (-L[R-I+l+J,N+2-1)*E[N-R+l-J) 

E[N+2-I):=SUME 
, END' ; 

[l:R,I:N) 'REAL'FF,FS;'CLE~R'FF;'CLEAR'FS; 
[1:N)'REAL'Z5; 

'FOt{' K' 'ro' R' DO' 
'FOR'I 'TO'N 'DO'FF[K, I) : =F [K,N-IH); 

'FORII'TO'N'OO'ZZ[1) :=E[N-I+l); 
TRNGMTX(FF,FS,ZZ,ZS) ; 
'FOR'K'TO'R'OO' 

'FOR'1'TO'N'DO'F[K,I) :=FS[K,N-I+l); 
'FOR'I'TO'N'DO'Z[I):=ZS[N-I+l); 

'REAL'SUMY; 
[1:N)'REAL'BB; 
'CLEAR' Y; 

'FOR'I'TO'R'DO'BB[N+I-I) :=F[I,N+I-I); 

'FOR'I'TO'N-R'DO'BB[I) :=1; 

'FOR'J'FROM'N'BY'-l'TO'I'DO' 
(.3U'lY:=iil; 

'FOR' I ' FROM"R ' BY' -I' TO' l' DO' SUMY' PLUS' Y [N+I -R) * F [R+I-I , J) ; , 
Y[J) :=(Z[J)-SUMY)/BB[J) 

) ; 

'FOR'I'TO'N'DO' 
(SUM: =Y [ I) ; , FOR' K I TO' R' DO' SUM' PLUS I L [K, I) *y [INT (N, I'-K) ) ; 
,PRINT( (NEWLINE,5UM," ' .. ,ZY[I)); 

[l:R,l:N+R)'REAL'G,GG; 
[1:N+R)'REAL'YY; 'CLEAR'YY; 
[1:R)'REAL'W; 

'FOR'I'TO'R'DO' 
'FOR'J'TO'R-l'OO'G[1,J) :=(J<=1!U[I-J+l,J) !0); 

, FOR' I 'TO' R' 00 ' , FOR' J ' TO' R 'DO' G [ I , N+J) : = (J=1 ! -U [1, I) ! ::l) ; 
'FOR'1'TO'R'uO'YY[N+1):=0; 

'FOR'J'FROM'N'By'-I'TO'R'DO' 
'BEGIN' 

'FOR'K'TO'R'DO' 
(5UM:=0; 

, FOR' I 'TO' R ' DO ' 
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SUM'PLUS'«-U[I+l,J]/U[l,INT(N,I+J)])*G[K,I+J]): 
G[K,J]:=SUM+(K=J!U[l,R]I~»: . 

.. SUMEt··=\l : 
'POR'I'TO'R'DO'SUME'PLUS' (-U[I+l,J]/U[l,INT(N,I+J)])*YY[I+; 

YY[J] :=Y[J]+3UME 
I END'; 
'FOR'I'TO'R-l'DO' 
'BEGIN ' 

'FOR'K'rO'R'DO' 
(SUli: =G [K, R-I 1 : 

'FOR'J'TO'R-I'DO'SU~'PLUS'(-U[I+J+l,R-II/u~l,R+JI)*G[K,R-

G[K,R-II :=SUM): 
SUME:=Y[R-I): 
'POR'J 'TO' R-I' DO'SUME' PLUS' (-U[1+J+1, R-I)/U [l,R+J) *YY[R+J: 

YY[R-I):=SUME 
'END' : 

GG:=G; 
TRNGMTX(GG,G,YY,Y) : 

'REAL'SUMX: 
'CLEAR'BB:'CLEAR'X: 

'FOR' I 'TO' R'DO' BB[I] :=G[I, 11: 
'FOR'I'FROM'R+l'TO'N'DO'BB[I) :=U[l,I]: 
'FOR'J'TO'N'DO' 
(SUMX:=~: , 
'FOR'K'TO'R'DO'SU~X'PLUS'X[K)*G[K,J) : 
X[J) :=(Y[J)-SUMX)/BB[JI 

) 
'END':'C' 0 F P R D S Y S 'C' 
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C3 

'PROC' NONPDUL= ( 'REF' [ ,] 'REAL' U, 'REF' [ ,] 'REAL' L, 'REF' [, ]' REAL' A) 'VOIl 

, BEGIN,' 
'INT'N~2'UPB'A, 

R=l'UP3'A: 
'INT'T:='ENTIER' (N/R): 
'INT'R!"I:=N-T*R; 
[l:R]'INT'SPAREVEC; 
'PRaC 'GE'rSPVEC= ( , INT' RM,' REF' []' INT' X) 'VOID' : 
'BEGIN' 

'INT'COUNT:=I,K,R,RK: 
R:='UPB'X; 
RK: = (RM=IH R! R'I) ; 
X[I] :=RK: 

'FOR'J'FROM'RK-I'BY'-l'TO'I'DO' (COUNT'PLUS'l;X[COUNT]: =J); 
'IF'COUNT< R'THEN' 
'tOR'J'FROM'R'BY'-I'TO'~M+l'DO' (COUNT'PLU5'I;X[COUNT] :-J) 
'FI' 

'END';'C'OF GETSPVEC 'c' 
GErSPVEC(RM,SPAREVEC) ; 

[I:R,I:N]'REAL'EPS; 
(l:N)'REAL'EPSX; 
[l:Rj'REAL'VECEPS: 
'REAL'EPSMAX: 

'REAL'SUM; 
'INT'NUM:=0; 
'BOOL'OK:='TRUE': 

'FOR'K'TO'R'DO' 
'c" 

, FOR' I 'TO' N ' DO' L (K, I I : =A [K, I) /A [0, I I ; 
'C' ' 

'FOR'I'TO'N'DO'L(K,I]:=l~; 
'C'INInAL VALUES FOR L(l,l ••• L(R,] 'C' 

'FOR'IfTO'N-R'DO'U(R+l,I] :~A[R,I]: 
'FOR'J'TO'R'DO'U(R+l,N-J+l] :=U(R+l,SPAREVEC(JJ1; 

'WHILE'OK'DO' 
'BEGIN' 

NUM'PLUS'l; 
PRINT«NE~LINE,'L EVE L ************",NUM,NEWLINE»; 



. , 

'FOR' ~~FROM' R' BY' -1 "ro' l' 00' 
('FOR'I'TO'N-K+1'00' 
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(SUM:=0:. 'FOR'J'TO'R-K+1'00'SUM'PLUS'U[K+J,I]*L[J,I+K-l] 
U[K,I] :=A[K-l,I]-SUM): 

'FOR'J'TO'K-1'DO'U[K,N-J+1] :=U[K,SPAREIlEC[.J]] 
); , 

'FOR'K'FROM'R 'BY'-1'TO'1'DO' 
( 

'FOR'I'TO'N-K'DO' 
(5UM:=0; 'FOR'J'TO'R-K+l'DO'SUM'PLUS'L[K+J-1,I]*U[J,I+K];' 
EPS[K,I] :=A[-K,HK]-Sml): 

, FOR' I "ro' N -K ' DO' L [K, I] 'PLUS' EP5 [K, I J Iu [1, HK] 
) : ' 

'FOR'S' FROM' 11' TO' R-l 'DO' 'FOR' J '. TO' R-S' 00 '. 
(L[R-S,N-J+l] :=L[R-S,SPAREIlEC[J]]:· 
EPS[R-S,N-J+1]:=EPS[R-5,SPAREIlEC[.J]]) : 

'FOR'K'TO'R'DO' 
( 'CLEAR'EPSX; EPSMAX:=0: 

) ; 

EPSX:=EPS[K,J: 
M'XNM(EP3X,EPSMAX); 
IlBCEPS[K] :=EPSMAX 

PRINT((NE~LINE,"L LNEW&EPS ARE",NE~LINE,L,NEWLINE,EP5,NEWLINE) 

PRINT((NEWLINE,"U VALUES ARE",NEWLINE,U,NEWLINE)) 

MAXNM(VECEPS,EPSMAX); 
'IF'NUM>61 'OR"ABS'EPSMAX<10&-12'THEN'OK:='FALSE"FI' 

'END' 
'END':'C'OF NONPDUL 'C' 

'PROC 'BACKFORO= ( , REF' [ ,] 'REAL' GAH, ALH, , REF' [] 'REAL' X, Z) 'VOID' : 
'BEGIN' 

'INT'R=l'UPB'GAH, 
N=2 'UPB 'GAH: 

[lI:R,l:N+R] 'REAL'GA, 
AL: 

[l:N,l:R] 'REAL'PSI: 
. [l:NJ 'REAL'PHI; 
[1:R,1:N+R] 'REAL'G; 
'CLEAR'G; 
[l:N+R]'REAL'ZZ: 
[1:RJ'REAL'M; . 
'CLEAR'GA:'CLEAR'AL;'CLEAR'ZZ: 

'FOR'K'FROM'il'TO'R'DO' (GA(K,l:N] :=GAH[K,J ;AL[K,l:N] :=ALH[K,J); 
'FOR'T'TO'R'DO' (G[T,N+T] :=-1;GA[0,N+T] :=1): . 

'FOR'J'FROM'N'BY'-1'TO'1'00' 
'BEGIN' 

.'FOR'K'TO'R'DO'M[K] :=-GA[K,J]/GA[0,J+KJ: 
ZZ [J] :=Z [J] : 



'FOR'K'TO'R'DO' 
'BEGIN' 

zz [JI 'PLUS'M[KI *ZZ [J+KI; 
'FOR'S' 'ro' R ' DO' G [K, J I 'PLUS' to! [S 1 *G [,<,J +S] 

lEND" . 
'END' ; 
, FO R ' J ' 'ro ' N ' DO ' 
'BEGIN' 
PHI [J I : = Z Z [J 1/GA [ \l , J 1 ; 

, FOR' K 'TO' R' DO ' PS I [J , K 1 : =-G [K, J j/GA ['3, J 1 
'END' ; 

[1:N+R,0:Rj'REAL'T; 
[1:N+R,Il:Nj'REAL'C; 
'IN'T'D, 

5; 

'FOR'J'TO'N+R'DO' 
'POR'K'TO'R'DO' 

'IP'J-K>0'AND'J-KC=N 
'C' 
'THEN'T[J,Kj :=-AL[K,J-Kj/AL[Il,J-Kj, 
'C' ' 
'THEN'T[J,Kj:=-AL[K,J-Kj 
• FI " ; 

C[I,llj :=T[I,llj :=1; 
'FOR'J'FROM'2'TO'N+R'DO' 
'BEGIN' 

C [J , 111 : =T [J , Ilj : = 1 ; 
, POR ' I "ro' (J C =N + I ! J -1 !N) 'DO' 

( , 

C[J ,Ij :=Il; 
'IP'J<=N+I 
'THEN'S:=(ICR!I!R) ; 

'POR'K 'ro's' DO'C[J, Ij'PLUS'T[J ,Kj *C[J-K, I-K1 
'ELSE'D:=N+R+l-J; 

S:=(I<D!I!D) ; • 
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'POR' K "TO'S' Do'e [J, Ij' PLUS 'T [J, R-D+Kj *C [N+I-K, I-KI 
'PI' 

" "END'; 
[l:R,I:R1'REAL'CPSI; 
[1:R1'REAL'CPHI, 

YH; 
, REAL' SUM; , 
'CLEAR'CPSI;'CLEAR'CPHI; 
[l:Nj'REl\.L'Y; 

'POR'I'rO'R'DO' 
'FOR' J' 'TO' R' DO' 

, FOR' K' TO 'N' DO 'CPS I [ I , J I 'PLUS' C [N+ I, N+ l-K 1 *PS I [K, J) ; 
'POR'I'TO'R'DO'CPSI[I,Ij 'PLUS'l; , 
'POR'I'TO'R'DO' 

'POR'K'TO'N'DO'CPHI[Ij'PLUS'-C[N+I,N+l-Kj*PHI[K); , 
PRINT((REWLINE,"CPSI & CPHI ARE·,NEWLINE,CPSI,NEWLINE,CPHI); 

'IP'R=l'THEN'YH[lj :=CPHI[1)/CPSI[I,lj 
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'ELSE' 'C'SOLVE LINEAR SYSTEM (A V2B) ,WHERE A=CPSI,V=YH,B=CPf 
I' C ' .;.'. 

SOLVESYS(CPSI,CPHI,YH) 
• F I I : 

'FOR'S'TO'N'DO' 
'BEGIN' 

Y[S] :=PHI[S]: 
'POR'l('TO'R'DO'Y[S] 'PLUS'PSI[S,K]*YH[K] 

'END' : 

[1 :N]'REAL'YK: 
'POR'r'TO'N'LlQ' 
'BEGIN' 

YK [ I j : =Y [ I j : 
'IF'I>l'THEN"FOR'J'FROM'I-l'BY'-l'TO'l'DO'YK[Ij 'PLUS'Y[I-Jjj 

C[I,Jj 
I FI' : 
'C' 
X[I] :=YK[I)/AL[0, I] 
'C' 
X[II :=YK[Ij 

'END' 
'END':'C'O F BA C K FOR D'C' 
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'PROC'6ACKFORDBLK=('REF' [,l'REAL'Q0,Ql,'REP' [,)'REAL'Z,X) 'VOID': 
'BEGIN' . .. 

'INT'M=l'UPB'Z, 

N=2 'UPB' Z : . 
[l:M,l:N,l:N+'REAL'F: 
[l:N,l:N)'REAL'MX,E, 

OI,OK, 
e, 

·S, 
ZEROMTX: 

[1 :M, 1:NI'REAL'YK, 
YH, 
ZK, 
ZH, 

Y: 
[1 :N, 1: 1I'REAL'VV, 

[ 1 : NI' REAL' VR, 
VL: 

v: 

. 'C LEAR' Z EROMTX: 
'CL~AR'E:'FOR'I'TO'N'DO'E[I,II:=1: 

INVM'rX(Q0,QI): 'C' INV~RT !'1ATRIX Oel,QI=INVERS~ 
QK:=PRODUCT(QI,Q1) : 

'POR'I'TO'M'OO' 
( V[,ll:=Z[I,11 

V:=PRODUCT(QI,V) : 
Z K [ I , I : =V [ , 1 J ' 

) : 

OF Qel' 'c' 

• 

F[M"J :aQK:MX:=SUBMTX(ZEROMTX,QK) :ZH[M,I :=ZK[)1,J: 
'FOR'I'FROM'M-1'BY'-l'TO'l'DO' 
( S: =F [I+ 1" J : 

S:=PRODUCT(MX,S) : 
F[I,,):=S: 
V[ ,11 :=ZH [I+l, I: 
V:=PRODUCT(MX,V) : 
VV[ ,1J :=ZK[I,I: 
V:=ADDMTX(V,VV) : 
ZH[I,I :=V[,ll 

) : 
S : =F [1, , I : 
B:=ADDMTX(E,S) : 
F [1" I : =B: 

VR:=ZH[I,1 :B:=P[1"J: 
SOLV~SY'S(B,VR,VL):'C'SOLV~ LINEAR SYST~M B(VL)=VR 'C' 
Y [ 1 , I : =VL: 
'FOR'K'FROM'2'rO'M'DO' 
( V [,11 : =Y [ 1 , I : 

B:=F[K,,]: ' 
V:=PRODUCT(B,V): 
VV[,11 :=ZH[K,1: 
V:=SU8rlTX(VV,V) : 
Y [K, I : =V [ ,1) 

) : 
'FOR'I'TO'M'DO' 
( V [ ,1) : =Y [ I , I : 



) ; 

VV:=PROOUCT(QI,V); 
YK I I , ) ~ =VV I , l) 

YH 11 , ) : =YK I 1 , ) ; 
'FOR'K'FROM'2'TO'M'OO' 
( V[,l] :=YH[K-l,] ;V:=PRODUCT(MX,Vl; 

VV[ ,l] :=YK[K,) :V:=I\ODMTX(V,VV): 
YH [K , ) :=V I , l] 

) ; 

VR:=Yfl [M, 1 :B:=F [1,,) ; 
SOLVESYS(B,VR,VL):'C' SOLVE LINEI\RSYSTEM 3(VL)=VR 'c' 
XIM,] :=VL; -
'FOR'K'FROM'M-l'BY'-l'TO'l'OO' 
( VI,l] :=XIM,); 

) 

B:=FIM-K+1,,] : 
V:=PROOUCT(B,V); 
VV I , l] : =YH I K , ) : 
V:=SUBMTX(VV,V): 
X I K, ) : =V I , 1] 

'ENO':'C'OF BACKFORDBLK'C' 

'PROC'GI'rRMBLK=('REF' [,J 'REAL'B,C,Q0,Ql) 'VOID': 
"BEGIN' 

'INT'I!l=l'UPB'B: 
Il:N,l:N] 'REI\L'BB,CC,O: 

O:=I\ODMTX(C,C) : 
BB:=ADDMTX(B,O): 
CC:=SUBMrX(B,O) : 
BB:=SQRTMTX(BB) : 
CC:=SQRTMTX(CC) : 
Q0:=ADDMTX(BB,CC) : 
Ql:=SUBMTX(BB,CC) : 
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'FOR'I'TO'N'DO"FOR'J'TO'N'OO'(Q0II,J] 'TIMES'~.5:QIII,J] 'TIMES'0 
5) 

'END':'C'OF GITRMBLK'C' 

'PROC'GE:NSYSBLK=(' REF' I, J 'REAL',B,C,' REF' [, J 'REAL' Z, X) 'VOID': 
'BEGIN', 

,'INT'M=l'UPB'Z, 
N=2'UPB'Z: 

[1:N,1:Nj'REAL'Q0,Q1: 
[1 : N , 1 : NI' REAL' E , 0: 
'REAL'Sl,52: 

GITRMBLK(B,C,Q0,Ql): 
INFMTXNM(Q0,Sl) :INFMTXNM(Ql,S2): 
'IF'S2>Sl'THEN'E:~Q0:Q0:=Ql:Ql:=E'FI': 

BACKFORDBLK(Q0,Ql,Z,X) 
'END' ;'C'OF GEN5YSBLK'C' 



cs 

'BEGIN' ..:.-
'C'2-POINT B.V.P.WITB PERIODIC CONDITIONS 'c' 
'INT'PR-:l3NO; 
[1:41 '~ROC' ('REAL','REAL','RE~L') 'REAL'FNV, 

DFZV, 
DFYV; 

[1: 41 ' ~ Roe' ( , REAL') , REAL' E XAC'rYV , 
EXACTDYV; 

[1 : 41 ' REAL' x.1\. V, 
XBV; 

'C' PROBLEM 1: 02Y-Y-Y-2-EXP(SIN2PIX) [4*PI-2(COS2PIX-2-SIN2PIX)-
EXP(2SIN2PIX)-1] 'c' . 
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FNV[11:=('REAL'X,Y,YO) 'REAL':( Y+Y*Y*Y+EXP(SIN(2*PI*X»*(4*PI*PI*( 
COS(2*PI*X)-2-SIN(2*PI*X»-EXP(2*5IN(2*PI*X»-1» 

OFZV [1] : = (' REAL' X, Y, YD) 'REAL' : (0) ; 
OFYV[1] :=('REAL'X,Y,YD) 'REAL': (1+3*Y*Y); 
EXACTYV[11 :=('REAL'X) 'REAL':(EX?(SIN(2*PI*X»); 
XAV [11 : = 0 • ;3 ; 
xeV[11 :=1.0; 

'C'·PROBLEi"I 2: D2Y=Y-3-SW(X) (1+SIN(X)-2) 'C' 
FN\T[ 2] : = ( , REAL' X, Y, YO) 'REAL' : ( Y- 3-5 IN (X) * (1 +S IN (X) - 2) ) ; 
DFZV[2] :=('REAL'X,Y,YD) 'REAL': (0); 
DFYV[2] :=('REAL'X,Y,YD) 'REAL':(3.0*Y-2); 
EXACTYV[21 :=('REAL'X) 'REAL':(3IN(X»; 
XAV[21 :=0; . 

. XBV[2] :=2.0*PI; 

'C' PROBLEM 3: D2!+4Y=35IN(X) 'C' 
FNV[3] :=('REAL'X,y,YD) 'REAL':(4*Y-4*SIN(2*X)-5*5IN(X»; 
DFZV[31 :=('REAL'X,Y,YD) 'REAL': (0); 
DF YV [ 3) : = ( , REII.L' X, Y , YD) , REAL' : (4) ; 
EXACTYV[31 :=('REAL'X) 'REAL': (J.5*(SIN(2*X)+2*SIN(X»); 
XAV[3]:=-0.5*PI; 
XBV[31 :=1.5*PI; 

'C' PROBLEM 4: D2Y-(1-Y-2)YD-4Y=-5SIN(X)-COS(X)-3 'C' 
. FNV [4] : = ( , REAL' X, Y , YD) 'REAL' : ( (1-Y*Y) *YD+4 *y -5 *SIN (X)-COS (X) - 3) ; 

OF Z V [41 : = ( , REAL' X, Y , YD) 'REA L' : (1-y* Y) ; 
DFYV[41 :=('REAL'X,Y,YD) 'REAL': (-2*Y*YO+4); 
EXACTYV[4] :=('REAL'X) 'RE.I\.L': (SIN(X»; 
XI\V[41 :=0.0; 
XBV[4] :=2.0*PI; 

'PROC'PV.I\.ND=('REF' [I 'REAL'ALPHA,X,B) 'VOID': 
'BESIN' 

'INT'N='UPB'ALPHA; 
, FOR' i{ , FROM '.0 'TO' N' DO ' X [K] : =8 [K 1 ; 
'FOR'K'FROM'0'TO'N-l'DO' 

'FOR'J'FROM'N'BY'-1'TO'K+l'DO' 
X[JI 'PLUS' (-ALPHA[Kl*X[J-lll; 

'FOR'K'FROM'N-1'BY'-1'TO'a'DO' 
'BEGIN' 

. 



'FOR' J' FROr{rK+1' TO' N' DO' X [J) 'DIV" (ALPHA [J)-ALPHI\ [J-K-1) ) ; 
'FOR'J'FROM'K'TO'N-1'DO'X[J) 'PLUS' (-X[J+1) 

'END' 
'E~D': 'C' OF PVAND 'C' 

'PRce 'REC"IUL'r= (' INT.' N,' REP' 'REAL' X) 'REAL' : 
( (N=all ! X·REC:-IULr(N~l,X) ) ): 

, PRoe ' lIlT= ( , I !'IT , N , I) , INT' : ( , INT' K: =1 : K 'PLUS' (I < l! N! : I>N! -N! ") ) : 
'PROC',~A,{:IM= (' REF' [) 'REAL' X,' REF" REAL'I1AX) 'VOID': . 
(:1AX:=": 'FOR' I' FROM' 'L>'IB' X "ro" TJP3')(' DO' 

'IF' 'A3S' X [I) > 'ABS' MAX "rHEN' MAX: =X [I) 'FI') ; 

'WHIL~' READ(PROBNO) :PROBNO~0'DO' 
'BEGIN' 

'PR)C' ( 'REAL' , 'REAL' , 'REI\L') 'REAL' FN: =FNV [PROBNO) : 
'PROC' ('REAL','REAL','REAL')'REAL'DFZ:=DFZV[PROBNO): 
'PR0C' ('REAL','REAL','REAL') 'REI\L'DFY:=DFYV[PROBNO): 
'PROC'C.'RE-AL') 'REI\L'EXACTY:=EXACTYV[PROBNO); 

'REAL'XA:=XAV[PROBNO) , 
XB:=K3V[PROBNO) : 

'C' M A 1NL 0 0 P 'C' 

'CHA« 'CHAR:. 
'INT'N, 

RMAX: 
'INT'RB: 

'WHILE'READ«NEWLINE,CHAR» ;C8ARt"\" 'DO' 
'BEGIN' 

.' REAL' EPS; 
READ«EPS;RMAX» ; 

'[\l:RMAX) 'INT'RC, 
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RE, 
QQ; 

, FOR' I ' TO ' RMAX ' DO' REII.D ( (RE [I) , RC [ I) , QQ [ I) ) ) ; 
RE[~) :=RC[~l :=3; 
QQ[0) :=1; 
'WHILE' READ(N) ;Nt0 'DO' 
'BEGI~' 

[-20:N+23) 'REAL'X; 
'PRINT«NE~PAGE,"PROBLEM NUMBER",PROBNO,NEWLINE»; 
'REAL'H:=(XB-XA)/N; . 
PRINT«NEWLINE,"STEPSIZE TAKEN IS: ",H,NEWLINE»; 
'FOR'I'FROM'-20'TO'N+23'DO'X[I):=XA+I*H; 

RB: =111; 
'WH I LE' RB< 5 ' DO' . 
'BEGIN' 

'REAL'TRICK; 
RB'PLUS'l; 
[-RB:RB,l~N)'REAL'GAM~AI, 

BI; .' 
, PROC ' FINDCF 3PTS= ( , I NT' I , , REP' [ , ) 'REII.L' 11.. B) 'VOID' : 
'BEGIN' 

[0:2*RB) 'REAL'ALPHAPVD,BD1Y,BD2Y,R1,R2; 
'CLEII.R'BD1Y;'CLEAR'BD2Y; 
BD2Y[2) :=2; 
BD1Y[1] :=1; 
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'POR'K'PROM'RB-1'BY'-1'TO'III'DO'ALPHAPVD[RB-I-K) :=X[I+K+ 
l)-X[I); 

-1) ) ; 
'FOR'K'FROM'3'TO'RB-1'DO'ALPHAPVD[RB+l+K):=-(X[I)~X[I-K 

ALPHAPVD[RB) :=0; 

B-Kj) 

T)'VOID': 

. • 

NE, 

PVAND(ALPHAPVD,R2,BD2Y) ; 
PVAND(ALPHAPVD,R1,BDIY) ; 

. 'POR'K'PROM'-RB"rO'RB'DO' (A[K,I) :=R2[RB~K) ;B[K,I) :=Rl[R 

'END';'C'O P FINDCF3PTS 'C' 
, PROC 'SPX= ( , INT' I ,.' REF' [) 'REAL' Y, 'REP' [ , ) 'REAL' A, , REF' , REAL' 

'BEGIN' 
'INT'J;T:=0; 
'POR'K'FROM'-RB'TO'RB'DO' (J:=I+K; J'PLUS' (J<1!N!:J>Nl-N!0) 

T'PLUS'Y[J)*A[K,I) 
'END';'C'O F SPX 'C' 

'POR'I'TO'N'DO'PINDCP3PTS(I.GII.~MAI,BI) ; 
'C' . 
PRINT«NEWLINE,"GAMMAI IS·,NEWLINE,GAMMAI,"BI IS 

BI,NEwLINE» ; 
'C' 
PRINT«"NUMBER OF STEPS IS ·,N,NEWLINE»; 

***",NEWLI 

'PROC'DIPFCORR=('INT'R,'REF' [) 'REAL'Y,DIFCORVEC) 'VOID': 



E, 

. , 

" BEGIN"i 
[0:2*R+2]'REAL'~LPHA, 

C20FDCPVD, 
C10FDCPVD, 

SD2Y, 
'BD1Y; 

'CLEAR'BD2Y;'CLEAR'BD1Y; 
BD2Y[2] :=2;BD1Y[1] :=1; 
'FOR'I "ro' N' DO' 
'BEGIN' 'C.' FIND DIFFCOR OF 1ST & 2ND OH' 'c' 

'REAL'S:=0, 
YD:=0, 

TT1:=0, 
TT2:=0; 

'CLEAR'C20FDCPVD; 'CLEAR'C10FDCPVD; 
'FOR'K'FROM'0'TO'2*R+2'DO' 
~LPHA[K] :=X[I-R-1+K]-X[I]; 

PVAND(ALPHA,C20FDCPVD,BD2Y) ; 
PVAND(ALPHA,C10FDCPVD,BD1Y) ; 

'FOR'J'FROM'-R-1'TO'R+l'DO' 
'BEGIN' 

'INT'T~(I+J>N!I+J-N! : 
I+J( 11 I+J +N! 
I +J) ; 

S'PLUS'Y[T ]*C20FDCPVD[J+R+l]; 
YD'PLUS'Y[T ]*CIOFDCPVD[J+R+l] 

,lEND' ; 
SPX(I,Y,BI,TTl) ; 
SPX(I,Y,GAMMAI,TT2) ; 
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DIFCORVEC[I]:= -S-FN(X[I] ,Y[I] ,TTl)+FN(X[I] ,Y[I] ,YD)+TT2 
, END' 

;DIFCORVEC[0]:=DIFCORVEC[N] 
;PRINT«"DIF. CORRECTION· OF 0 R D E R ",2*R+2,"ARE:",NEWLIN 

DIFCORVEC,NE~LINE» 
'END' ; 

. ' PROC 'J~COB PITX= ( , REF ' [] .' REAL' Y , , REF' [ ,] 'RE~L' A) 'VOID' : 
'BEGIN' 

'REAL'Y DASH,DFZI; 
'FOR'I "TO' N' DO' 
'BEGIN' 
Y DASH:=0; 
SPX(I,Y,BI,Y DASH); 
DFZI:=DFZ(X[I] ,Y[I],Y DASH); 
'FOR'K'FROM'-RB'TO'RB'DO'A[K,I] :=GAMMAI[K,I]-BI[K,I]*DFZI 

A[0,IJ 'PLUS'-DFY(X[I] ,Y[I],y DASH) 
'END' . 

'END';'C' 0 F JACOBIMTX 'C' 

'PROC 'FFORNEWT= ( 'REF' [] 'REAL' Y, VECF, DIFCORVEC) 'VOID' : . 



. R, 

ID' : 

ES'-1 

C' 

'BEGIN ,."., 
'REAL'TT1,TT2: 
'FOR'I'TO'N'DO' 
'BEGIN~ 

'1'1'1: =TT2: =~: 
SPX(I/y,GA~MAI,TT2) : 
SPX(I.Y,BI,TT1) : 
VECF[Ij :=TT2-FN(){[I] ,Y[I] ,TT1)-DIFCORVEC[I] 

'END' 
I END' ~. 
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'PROC' IlEWT.3OL= ( 'REF' [] 'REAL' Y, DIFCORVEC', 'REF' [,] 'REi>.L' 3, , INT' 

'BEGIN' 
[~:N] 'REAL'DELY: 
[1:N] 'REi>.L'VECF: 
'REAL'T:=MAXREAL, 

5:=~AXREAL: . 

'REAL'EPS) 'vo 

'FOR'QQ"ro' 'IF'CHAR="C" 'THEN'20'ELSE' (R=eJ!2eJ!1) 'FI' 
'WHILE'S)N*EPS"2'AND' (S>EPS'OR'S<T) 'DO' 
'BEGIN' . 

1':=S: 
FFORNEWT(Y,VECF,DIFCORVEC): 
'IF'R=0'OR'CHARI"){" 'THEN'JACOBI!TX(Y,B) 'FI': 
'IF' 'ODD'RB . 
'THEN"FOR'I'TO'N'DO'VECF[Il'TIMES'-1: 

'FOR 'K 'FROM' -RB' TO' RB' DO' , FOR' I 'TO' N 'DO' B [K,I] 'rI,~ 

'FI 11 .. 

PRDSYS(B,VECF,DELY[1:N]) : 
'C'OR SOLVE THE SYSTEM BY GENSYM,I.E.FICMl,IF POSSI3LE ' 

DELY[~1 :=DELY[Nl: 
s:=e: 
'FOR'I'FROM'B'TO'N'DO' 
'BEGIN' 
S'PLUS'DELY[Il"2: 
Y[I] 'MINUS'DELY[I] 

'END' : 
··PRINT«NEWLINE,"NEwTON ITER.r;'1'ION",QQ,"NOP.:~ OF DE LT!'. Y" 

SQRT(S/(N+l» » 
.'END' 

I END': 

'C' INN ER LOO P 'C' 

[~:NJ 'REAL'Y, 
DIFCORVEC, 
":iY: 

'REAL'ZZZ, 
SSS: 



RDER" , 

, 

APP.S0L~ 

H) , 

[-RB:RB,l:~)'REAL'AI 

'FOR'R'FROM'0'rO'RMAX'DO' 
'aEGI~' 

'REAL'TT:=MAXREAL, 
SS: ="AXRE~LI3: 

'FOR'Ql'TO'QQ[R) 
'WHILE'SS>N*EPS'2 
'3EGI~' 
TT:=5S1 
'IF '.R=0 
'THEN' 

'FOR'I'TO'~'DO' 
'aEGI~' 

DIFCORVEC[I) :=0: 
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'A~D'SS<,TT/2 '00' 

'C' I~ITrAL VALUES FOR NEWTO~,:; PROCE'JUR£ 'C '. 
1'[1] :=1 

'END': 1'[eJ):=Y[NJ 
lPRINT{{"Y IS: ",~EWLI~E,1',NEWLINE» 

'ELSE'DIFFCORR{RC[R)+RB-l,YY,DIFCORVEC) 
• F I' : 
'IF'R>~ 

'THE~' 
PRINT{{NEWLINE,NEWLINE,"DIFFERENCE COR~ECTON ERROR 0 

2*RC[R)+2,"(TERMS UP TO DEL'rA.",2*RC[RJ+l,"AND" 

2*RC[R)+2," )",NEWLINE,"N=",N,NEWLINE» 
• F I' : 
NEWTSOL{Y,DIFCORVEC,A,R,EPS) 1 555:=eJ: 
PRINT{ (NEWLINE," 

CORRECTION 
'FOR'I'FROM'0'TO'N'DO' 
'BEGIN' 

ERROR",NEWLINE») : 

'IF'R>0'THEN'1'Y[I) :=Y[I)-Y1'[I]'FI': 
ZZZ:=EXACTY(X[I])-Y[IJ: 

. SSS'PLUS'ZZZ'2: 
PRINT( ("X[" ,I,"J =" ,X[I] ,"Y[" ,I,"J =" ,Y[I]»: 
'IF'R>0 

'THEN'PRINT(1'Y[I) 
'ELSE'PRINT(" 
, FI t : 

PRINr({ZZZ,NEWLINE» 
I END I: 

" ) 

PRINT( (NEWLINE,"ERROR IN l' HAS NORM*********", 
SQRT{SSS/(N+l» ,NEWLINE»: 

PRINT{(~EWLINE,"EXPECTED ERROR IS: ",RECMULT(2*R+4, 

NEWLINE» 1 
'IF'R>3'AND'Ql>=1 
'THEN'SS:=0: 



INE) ) 

'rO~~I'FROM'0'TO'N'DO'SS'PLUS' (YY[I)-2); 
PRINT( (NE;.ILINE, "CORRECTION IT. NO.'" ,Ql, 

"NORM OF COR. ",SQRT(SS/(N+l)))) 
, rI ' ; . 
PR!NT«NEWLINE,"EX~CT 50LN. IS:",NEWLINE)); 
'FOR'I'FROM'0'rO'N'DO'PRINT«EX~CTY(X[I)))); 

PRINT«NEWLINE,NEWLINE,NEWLINE)) ; 
YY:='i 

• END' ": 
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PRINT«"****************************************",NEWL 

'END' 'C'OF INNER LOOP 'C' 
'END' 'C'OF LOOP WHICH INCREASES R3 'C' 

'END' 'C' OF LOOP WHICH RE~DS N 'C' 
'END' 'C' OF MAIN LOOP 'C' 

'END' 'C' OF PROBNO LOOP 'C' 
'END' 
'FINISH' 

J 


