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The work.of this thesis mainly presenfs.new direct computational
algorithmic solvers for real linear systems of equations (of wide banded
matrices) derived from the application of well-known finitérdifferencer
techniques to boundary value problems involving ordinary and partial
differential equations. These algorithms are for illustrative purposes
" suitable for problems, not only differential.equations with specifié
boundary conditions or two-point boundary value problems, but a wider class
of differential equations can also be treated. They are applicable for
partial differential eQuatibns where a banded matrix is obtained by using
a high-order aéproximation such as a 9point formula for the Laplace or
Poisson equation. Also the application is extendable to higher order
equations such as the Biharmonic eqﬁaﬁion.‘ Whilst one type of the
algorithm is suggested only for treating block linear systems, the other
type is also applicable to these as well as their use in the point form
applications to which they were basically proposed. The two types are
respectively named in the last chaptersof this thesis as BLOCKSOLVERs and
BANDSOLVERs,

The tﬁo SOLVERs are categorised to suit two cormmon kinds of problems,
i) subjected to periodic boundary conditions and ii) those subjected to
nbn—periodic OTr more commoniy known, Dirichlet, Neumann and Robin
conditions. Subsequently the factorisation procedure of the coefficient
matrix takes place acco;ding to the type of the condition that the
considered problem is subjected to. Precisely for a given matrix of order
N with bandwidth 2r+l, r21 (N22r+l), with type (i) the matrix is factorised
into two invertable, cyclic (or pertodic) upper and lower ma;rices of semi-
bandwidth r+l, whilst with type (ii) the obtained factor matrices are
rectangular upper and lower of size (Nx(N+r)) and ((N+r)xN) respectively,

and of semi-bandwidth r+l.



As an alternative approach to the conventional methcds (as a LU-
Decomposition), thé elements of the factor matrices are pbtained by
adopting some iterétive schemes whose‘convergence properties are
investigated, This is applicable to the BANDSOLVERs, whilst in the
BLOCKSOLYERs the factorisation procedure involves compu;ing a matrix square
root.

However, consistent with the demands of the new era of technology
where high-speed computers are introduced, and thé start pf the revolution
of micro-chips, the investigation for reliable computational methods is
extensively béoadening. Moreover, the emergence of parallel processing
machines so far shows remarkable results on reducing the execution time
for some particular numerical algorithms, although some reservationson
storage demands still exist. |

Numercus problems arise in the Mathematical Physiecs and Engineering
fields which are still encountered by Numerical Analysts and other
specialists for which no satisfactory solution procedures have been
feached and not so for the forseeable future.

Baéically, the development of computational methods takes place in
one of.two directions: to obtain the solution Zteratively or directly,
and consequently it has become customary in literature to classify the
conventional and new methods to these appropriate directions. It is known
that no method has the merit of generality, but they are valued or
preferred for certain problems according to many vital factors associated
with the use of the computer such as the amount of storage required,
computing time, levels of obtainable accuracy,... etc., and then the
advantages and disadvantages of either method may accordingly be recognised
or detected. The conventional types for both methods are discussed in

Chapter 2. Here we present a brief indication to a few methods for both



types developed in recent years.

Iterative methods have witnessed considerable advances in the last
three decades or so, in particular we refer.to thé contributions of
Frankel, Young and others in the 50's to generalise the successive over-
relaxation procedure (point form), and for the block case as given by
Varga (1962) who also contributed earlier a method of normalisation of
block systems so that a considerable reduction in arithmetic operations is
implied (Cuthill and Varga.(1959)). Other'methods for sparsé matrices may
be found in Evans (1974). For certain cases, when the coefficient matrix
of the considered linear system possess special properties some recent
methodslare suggested.

For examplé, when the matrix is symmetric and positive definite
Gustafsson (1979) presents the so-called Mddified Incomplete Choleski,
prior to that the "Incomplete LU-Decomposition” for a symmetric M—matrix
was proposed by Meijerink and van der Vorst (1977) in which both methods
are based on the idea of splitting the métrix, and in the former seeking a
suitable parameter to.accelerate the iteration process is significant and
important., Another method deals with non-negative types of matrices, as in
Neumann and Plemmonns (1978) in which their work includes a study of linear
sta;ionary itérative methods with non-negative matrices for solving singular
and consistent lineaf systems, |

In direct metheds too, the development.in a similar period has
progressed extensively, both in the theoretical and practical sides. In
the former, for instance, the error analysis for the direct method
contributed by Wilkinson has enabled the 'users' to predict or recognise
the behaviour of the method, its stability and the bounds of the accuracy
in the obtainable solution. On éhe other hand? fast methods have been

suggested, such as in (Hockney (1965)) involving Fast Fourier transforms,



sparse factorisation by Evans (1971) and his work in the recent years,
Other methods involving cyclic reduction as in Sﬁget (1974, 1977) or the
spectral resoiution methods introduced by Buzbee et ai (1970). A comparison
between point and block elimination schemes to solve block-tridiagonal
s}stems and the stability.for the latter scheme are given in Varah (1972};
for ‘the considered block matrix being symmetric and positive defi-ite it

is indicated in the same reference that Gene Golub has used the

Choleski decomposition for tﬁié particular case. A fast numerical solution
of linear systems of equations led to a block gquindiagonal coefficient
matrix using a factoring and block elimination process as proposed by Bauer
and Reiss (1972). Another type of method which deals with rather sparse
matrices is suggested by Henderson and Wassyng (1978) in which the method
exploits the zero elements below the diagonal of the given coefficient
matrix, but the method shows superiority to Gaussian elimination only when
the matrix is sparse strictly in the lower triangular part.

The presentation in this thesis is partitiomed into seven chapters
(excluding the current one) and may be outlined as follows.

In Chapter 2, the general mathematical background is included which
involves the basic concepts, definitions and theorems; in addition to some
conventional theoretical work such as, direct and iterative methods, the
contract mapping theorem and Newton's method with a few of its variants.
The chapter also covers some other topics which to a certain extent are
directly related to the procedure of the new algorithms, such as the theory
of the periodic continued fractions, the computation of a matrix.square
root by Newton's method, eigenvalue problem, etc.

As a matter of interest, the field of the applications for some of
the algorithms, the 2-point boundary value pfoblem concerning non~linear

(or linear) ordinary differential equations is chosen. In relation to this



problem, the so-called iterative-deferred-correction technique is adoﬁted.
Thus, this technique has. been covered coasiderably in Chapter 3. Also
indicated in this chapter we extend the idea of using symmetric finite-
difference formulae of high—~order (or it is called in the appropriate
chapter, high-ordér appfoximations) for the non-linear case, notably the
work carried out by Shoosmith (1973) on the linear case is referred to.

In fact, the motivation of considering such techniques is to provicde us

with the generality of the new algorithms indicated earlier, that is to deal
with matrices of any‘bandwidfht Apart from a brief indication of -the
concepfs.iﬁvolved in.partial differential equations, the description of the
discrétisation schemes to specific continuous problems via using finite-
difference approximations involve different computational molecules, is
included in Chapter 3. 1In addition, because the chapter is devoted to the
numerical solution 6f boundary value ﬁroblems, thus an abbreviated description
to some of the numerical approaches are made at the beginning, in particular,
finite element methods followed by our main interest approach in this work,
the finite-difference method.

The new suggested aléorithms are presented in two chapters, 4 and 5.
Chapter 4 includes the algorithms which are proposed for the pointwise
problems (BANDSOLVERs)., One of them is designed for the special case, when
the coefficient matrix of the considered linear system is periodic and
possesses constant elements. While the remaining BANDSOLVERs deal with the
matrices of non-constant (generally, non-symmetric) elements for both
periodiec and non-periodic cases. The extension of these algorithms to
certain skew-type matrices is also included. While Chapter 5 presents the
BLOCKSOLVERs which in fact are considered as an extension to the BANDSOLVERs
for special cases only,

The results of the numerical experimental work corresponding to the



algorithms of the last two chapters are given in Chapter 6 and 7 respectively.
In these chapters some model problems for both ordinary and partial
differential equations are introduced; in addition, a ‘considerable
discussion on the factorisation procedures applied to various common types
of matrices in which some related aspects are included such as the rate of
convergence of the involved iteration processes, etc. Eigenproblems are
discussed in Sections 6.5 and 7.4. The tested examples as a whole may
reflgct-to which type of matrices the new algorithms are ‘both practical and
applicable. |

Finaliy, the main remarks in the light of this work are concluded in
Chépter 8 with some recommendations for pursuing further investigations

and extensions.



CHAPTER 2

MATHEMATICAL BACKGROUND




2.1 BASIC CONCEPTS OF MATRIX ALGEBRA

Numerical approacheé such as finite~difference, finite element methods
(see Chapter 3) are generally based on matrix algebra which by using its
concerts the analysis of these methods or the solution‘process can be
expressed in a suitable manner. In addition, in practice, the use of
electfonic computers enables matrix algebra to be an important tool in the
application fields. 1In this presentation, we will emphasise the concepts
which are (generally) associated with the subjects throughout this thesis.

The mosﬁ important and well-known elementary concept is the matrix
which is defined to bela rectanglar array of ordered numbers and customarily

denoted by a capital letter (our consideration is merely on rezl matrices).

A matrix A is of size (mxn) if it has m rows and n columns. (Figure 2.1.1).

11 Y1277t 8 -1 Y

le fzz “““““ Tz,n-l TZ,n

' ! \ '
A

o ; :

I ! 1 '

fm,l am,Z---_ - am,n-l am,n_

FIGURE 2.1.1: A is an m%n matrix

The matrix A is said to be square (or quadratic) when m=n, and hence A is

of order n (or m). When m=1, we have a row vector, and for n=l, a colum

vector, usually denoted by small underlined letters. The ftranspose of a

. . . T > . ' .
matrix A=[ai j] is written as A and obtained by interchanging the rows
>

and columns of A, i.e. the element a; . of A becomes a, i of AT. If A=AT,
’ . 2

then A is said to be symmetrie, and anti-symmetric if A=-AT (obviously the

two concepts are applicable for square matrices only), i.e. a, .= and

=a, ,
]"J J’l
a; j=-aj irespectively. A square matrix (from now on any mentioned matrix
’ ’ )
is assumed square unless otherwise stated). A matrix A possesses an inverse,

denoted by Afl and is called a non-singular or invertable matrix (sometimes



this property is equivalent to say that A has lipearly independent columns

or rows), otherwise A is singular, On the other hand, if the determinant

of A, which will be denoted by det(A), is zero them A is singular, otherwise

-1 - !
(i.e. det{A)#0) A l does exist, and hence we have

aaL o1,

=A.-
where I is the unit (identity) matrix.

Definition 2.1.1: (Pseudo-inverse, (Strang (1976))

Given a rectangular (m*n) matrix A which may not be invertable.

. . . ‘ + .
Its "inverse'" which is denoted by A is expressed in the form

+ -
At = @ty AT
T, . . . . ..

whare A A 1s a square matrix of order n which can be inverted unless 1t is
singular.

In this thesis we shall be mainly concerned with banded matrices. .
Bandedness means that all elements beyond the bandwidth of the matrix are

zero, i.e. for a banded matrix A=[ai J.] We can state the condition

3
a, . =0 for |j-i| > ¢
. 1,]
where 2r+l is the bandwidth of A,
If A has a large number of zeros, then it is said to be sparse banded
ratriz, In this chapter we may illustrate some examples of matrices such
that the zero elements will be presented as a single zero notation, "O" and

the non-zero elements will be denoted by "X".

Two types of bandwidth for matrix A are shown in Figure 2.1.2.

X X X B X X X X 7
XXX X XXXXX 0
XXXXX 0 XXX XXX
RN XXXXXXX
A= AT T » OT ST
\\\\\\\ ‘\:\_\:-'L:"‘::\
N \\ \ ..:-“\:.“\_:..\-.,-.\
ALANRR XXX X XXX
N
0 X XK X X 0 XXXXXX
X XXX XXXXX
l_ XXX L XX XX
r=2 r=3

FIGURE 2.1.2: Banded matrices (pentadiagonal, septadiagona1)




If one half-bandwidth of a matrix is merely zero, then ﬁe have either .
an upper or Zower.triangﬁlar banded matrix. For example, U=[uij] is upper
triangular if uij=0 for i>j and L=[£ij1 is lower ;riangular, if zi.=0 for

i<j; also we have a dfagonal matrix D= dij if 4,.=0 fof all i#j and non-

1]
zero for dii (Fig.2.1.3).

3 7 x 7] X 7
XX X X X
\ \ ) 0 A Y O 0
Voo X X M. X
Ay \‘ N \\ \\
LI Y ~ ~
U = v \\ ,L = X\ \ \\ ,D = \\
Y NN \
LI X \\ \\ A \\
oy MR \\ N
‘\ x x‘ \\‘\\\ \‘ X
0 X X 0 XXX 0 X
_ %J _ X X X] L X]
r+1=3 r+l=3

FIGURE 2.1.3: Upper, lower triangular and diagonal matrices

It may be important to indicate that we shall alsc consider banded
matrices as presented in Fig.2.1.4 and consists of bandwidth 2r+l plus'fﬁwQ/Z

extra elements on each of the upper right hand and lower half hand corners.

sl
|

-

PR sl

I

FIGURE 2.1.4: Banded matrices - Periodic type




Also we shall consider rectangular upper and lower banded matrices of

bandwidth r+l, as in Fig.2.1.5.

X Xemm-- X ! [x ]
' \\O ; N
AR . X
‘—\-——.é. | 0 I\ \\. 0
\ > X\‘ i [ "'\
A l\ i ~ -~
A [ X +]_\\ RS
r ~
U = AN \\ t oy X L = 0-. - ~ o
N\ v gt - (T S
\ \ || -~ -
\‘ \{ it . \)L--.—_...-\-‘X
O A [\12 AN RN :
\\| \lnl . U ~ o :
] X! xe----%x i ~X|
;__T—_J
' r t

FIGURE 2.1.5: Rectangular banded matrices, U is nx{(n+r)
and L is {(n+r)xn. '

We may classify the type of matrices shown in Fig.2.l.4 as of periodic

type and in Fig.2.1.5 as non-periodic type. (see later chapter).

Definition 2.1.2: (Augmented matrix)

Given a system of linear equations Ax=z, of order n, the augmented

matrix is (A,Z) which has the form given in Fig.2.1.6.

- | -
iy 5 It E:m | 71
: o
I Ce-- : Vo
1 1 |
1 | ] 1 .
d o e mmme a_ oz
[ nl nn ! n

FIGURE 2.1.6: Augmented matrix

Vector and Matrix Norms

In iterative solution processes using vectors and matrices, a
measurement of convergence is usually required. Also, for direct solution
procedures where the effect of rounding errors are considered. In this

respect it is customary to measure the 'size' or magnitude of vectors and

matrices by norms,
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Definition 2.1.3:

The norm of an n-dimensional vector x, written as [[§[|, is a scalar
(or number) satisfying the following three axioms:

§
(1) |[x|]20 and 1[§J|=0 if and only if x is a null vector,

@ |lex]]=[8[l

x|| for any scalar B8 (iomogeneity condition)
(3) []EfzJ|s|]§||+]|1[|_for vectors X and y (triangle inequality).

Atso =l - Hyl) sl ixy]] - (2.1.1")

Three vector norms are commonly used, These are:

Definitionm 2.1.4:

If Eé[xi]; i=1,2,...,n, then we have

(a) infinite-norm ||x}], = max ]xi| (unt form or Chebyshev norm) (2.1.1)
i
n )
(b) one-norm |[|x}|;, = T |x], (2.1.2)
i=1 *
PR 2.} .
(¢) two-norm ||§||2 =( ] lxi[ )¢ (or Euclidean morm). (2.1.3)
: i=1 '

In fact, these norms are special cases of the general p-norm (or
HSlder norm) given by, i.e.,

Hxllp = ¢ I 1= [D7P, e, (2.1.4)
1= .

where by setting p equal to m; 1 and 2 in (2.1.4) yields the norms
(2.1.1) to (2.1.3) respectively.

Analogous to the Definition 2.1.3, we proceed to present the
definition of a matrix norm as well.

Definition 2.1.5:

A norm of a matrix A of order n, written as |]A[|, is a scalar such
that the following four conditions fulfil

(a) ||A]]»0 and ||A]|=0 if and only if A=0 (the null matrix),

() ||sa}|=|8|||a]| for any scalar B (homogeneity condition),
(c) ||A+B||s[|Al|+]|B|| for matrices A and B (triangle inequality)

and
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(@ |fas]]s]]A

l]1B]| for matrices A and B (multiplicative triangular

inequality).
The postulation of (d) in a matrix norm imposes the occurrence

of matrix products,

Below are frequently used matrix norms:

n

HAHco = max _E Iaij' (the «-norm or maximum absolute eplwrm aw)
S (2.1.5)

n
[{a]l], = max ) |a..| (the l-norm or maximum absolute row sum)
1 . . 1]

] 1=1 (2.1-6)

||A]|2 = {maximum eigenvalue of the product ATA}£ (spectral or

Hilbert norm). (2.1.7)
Another type of norm which is used is theFfrobentus nerm which is

denoted by_|]A|[F and defined as follows:

181y = ¢ 1 |y,

i,]

J,|?-)5 , (2.1.8)

Further, since most applications of matrices are accompanied by
vectors, therefore it is useful to apply the multiplicative triangular
inequality norm (Definition 2.1.5) for the produce of a matrix and vector.
Thus, for a product Ag.wé have

[axl[ < [[all [zl . (2.1.9)
This inequality relation may lead to the following definition:

Definition 2.1.6:

If matrix A and vector x have the norms ||A|| and ||x]| respectively,
then these two norms are said to be compatible provided that (2.1.9) is
fulfilled.

Definition 2.1.7:

A subordinate or induced matrix norm ||A]| is defined as follows

| ax||
||A]] = sup ——— . (2.1.10)
- b0 | x|

Sometimes (2.1.10) is written in an equivalent form, i.e.
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Hall = sup |{Ax]|

It can be shown that matrix norms (2.1;5) to (2.1.7) are subofdinéte
(i.e. they satisfy (2.1.10) or (2.1.9) to the corresponding vector norm
(2.1.1) to (2.1.3)), whilst the Frobenius norm (2.1.8) is not subordinate
to any vector norm (see Froberg (1974), Néble (1969)), Conte and de Boor
(1972), Broyden (1975}).

Definition 2.1.8:

A vector is said to be normalised if it is multiplied byla scalar in
order to pyoduge'the size of the components to numbers of value less than or
equal to 1 without changing the direction of the vecto;.

Two common ways of‘normalising a vector E?txi], i=1,2,...,n, is by
selecting a scalar B such that either:

n
1) 8 =(] xHt
i=1

or {ii) B = m?x(xi),

* X X, X 7
to obtain the normalized vector [5—3 E—,...,EEJ . Notice that for (i) the

“relation g?gfl holds.

Definition 2,.1,9: (Permutation matrix)

A square matrix is called a permutation matriz if for any of its rows

only one non~zero element is included (which is unity), for example

01 00
0O 01 0
P = 1loio00%
l 0 0 O
It can be shown that any permutation matrix, P (say), is orthogonal

(i.e. P =Pf_). Also for any matrix A, the operations of pre-multiplication,
i.e. PA and that of post-multiplication AP results in changing the order of

rows and columns respectively.
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Definition 2.1.10:

An nth order matrix A=[aij] is said to be:

(i) diagonally dominant if §  |a,.[3]a..], i=1,2,.7.,n, *
g 1 ii :
j#L
n <
(ii) strictly diagonally dominont if 7§ laijlalafgl’ i=1,2,...,n.
j=1 -
j#i {

Limit of a Sequence of Matrices and Its Convergence

(r)

A sequence of matrices A* 7, r=1,2,..., of the same dimension converges

to a gofe limit, A (say), if the following necessary and sufficient

condition is fﬁlfilled, (r)
||A—A ||-+0 as r-o,

or lim ||A(r) 1

e

=4, (2.1.11)

In fact, the result (2.1.11) does exist if Cauchy's theorem holds,
i.e. for any €>0 there must be an integer N such that

(46} _, | < ¢ for all N and s50. (2.1.12)

[1a
Obvicusly (2.1.11) or (2.1.12) can be applied for vectors as well,
(see Demidovich and Mﬁfan (1976), Kolmogorov and Fomin (1970)).

Definition 2.1.11:

In general, if a sequence of matrices {A(S)}, s=1,2,... converges to a

. . . _, 1 . . . .
limit, then matrix A(:A( )) is said to be convergent matrixz. Moreover, if
1lim A(S) is a zero matrix (null matrix) then A is said to be a zero-

g0

convergent matriz (Neumann and Plemmon$(1978)).

Definition 2.1.12:

The convergence of the sequence of vectors {EFS)} to a limit x* (say),

is said to be of order P if
1i |]§FS+1)‘Ef||
im

= k, where k is a non-negative constant.
1) | 1P

Thus, for p=2, we have quadratic convergence,
and for p=1 we have (i) linear convergence iff 0O<k<l1,

(ii) superlinear convergence iff k=0,



Remark 2,1.1:

If a non-singular matrix is symmetric, antisymmetric, diagonal, upper
(or unit upper) triangular, lower (or unit lower) triangular, Hermitian,

positive definite, then so is its inversz, (Broyden (1975)), page 39).

15
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2,2 DIRECT AND ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS OF EQUATIONS
The task of solving a linear system of equations which is usually

expressed in matrix form, i.e.

r' - - - 4
0§ Bttt o I A5 %
1 . ' '
I 1 o
: -t : ' = : > (2.2.1)
] ) ] ] . '
A e - - a X z
_nl nn] | 'n | nj
or in abbreviated form,
Ax = z ' (2.2.2)

is still a major challenge in the solution of scientific problems. The
derivation of the system (2.2.1) is basically from linear problems and non-
linear problems as well which are usually broken down into a sequence of
steps involving linear equations, and is termed sometimes a linearization
process which forms the basis of many numerical methods (e.g., see Chapter
3, or Section 2,3). As Scarborough {1955) points out there is no single
method which is best for any and all systems of equations that may arise.

In other words a éertain method may achieve quite a satisfactory solution
for (2.2.1) if it is a sparse matrix (with few npon-zero elements) as in
problems which arise in large order differential equations but unsatisfactory
if it has a dense matrix (with few zero elements) as in statistical problems
where the dimension is small,

The available approaches for solving (2.2.1) usually lie in the
following categories:

(i) Direct methods (or erxact methods)

(ii) Iterative methods (or indirect methods)

Direct methods (e.g. Cramer's method, Gatussian elimination, the method
of square root, etc....) are basically designed-to achieve an exact solution
for (2.2.1) after a fixed number of arithmetical steps.. This is true
theoretically, but unattainable in practice due to the limitation of computers

(i.e. their mantissa has a limited number of‘digits) which eventually enables
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the occurrence of rounding errors to appear in the calculation, for example
the rational number 2/3 has to be presented in a terminated form (e.g.
0.66666 for five significant digits). This is actually one of the main
drawbacks of direct methods. The accummulation of rou;ding errors is well
considered in these methods because of the alteration of the matrix A in
(2.2.2) which may destroy the initial property of the matrix (i.e. sparseness)
and ultimately have a consideratle effect on the solution. Nevertheless,
most of the computer routines for solving (2.2.2) involve direct methods
since the total amount of computational labour can be determined in advance.
For a given length of mantissa (ife. number of digits) one may be able to
preaict the bounds of the rounding error and hence determine the range of
reliability of the method. If A in (2.2.2) is dense, then the elimination
methods are preferable (Jemnings (1964)).

Iterative methods (such as Jacobi, Gauss-Seidel, Successive Over-
relaxation method, etc...) are essentially based on generating a sequence
of approximate solutions {EFS?}, s=0,1,...; for (2.2.2) and hope that thié
sequence approaches the solution Aﬁlg_provided that the inverse exists.
Generally speaking, iterative methods are considered to be reliable approaches
provided that the existence of convergence 1is assured; this is because (i)
there is no inherent inaccuracy, (ii) it is self-cofrecting, (iii) the method
is applicable to systems of any number of unknowns (Scarborough (1955)) and
(iv) the matrix remains unaltered. The criticism of these methods is mainly
based upon: (i) there are certain systems of equations i.e. ill-conditioned
one can not predict how many steps the iteration process will require to
satisfy the required tolerance (ii) unless the sufficient and necessary
condition is satisfied, convergence cannot be guaranteed. Thus, when using
iterative methods it is advisable (i) to reduce the error each Stép of the
iteration if it is possible or to determine an asymptotic factor of reducing

the error to be less than one, and (ii) to provide an error bound to the
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solution vector after a finite number of iterations (Lieberstein (1968)).
We may demonstrate some of the conventional methods of both types:

(A) Direct Methods: frequently are classified into three groups:

(Leiberstein (1968)).

(1) Determinants: as in Cramer's method which involves unnecessarily

extreme computation. For example, to solve (2.2.2) with ordef 10
requires some 70 million multiplications (Kunz (1957)), with order
50 the method requifes 1064 operations, The number of operations

involved in this method is of order (m!) if the system is of order
n (Froberg (1974))., What would be the case of a system consisting
of several thousands of equations? No computer so far can provide
enough storage and perform this large number of operations.,

(2) Inversion of Matrices: This strategy involves computing the inverse

of the matrix A in (2.3.26) explicitly, which necessitates the
solution of n systems of linear equations and hence the number
of operations is proportional to (na).

(3) Systematic Eliminations: These methods are superior to the

previoﬁs methods, The most widely used method is Gaussian
elimination which involves a finite number of transformations
(precisely one less tﬁén the size of the given éysteno that will
eliminate all éoefficients of the matrix below the diagonal and
we end up ﬁith an upper triaqgular matrix, Thus, for the system

(2,2,1) we have after n-1 transformations (Ralston (1965)):

_ . _ -
241 g - - - 41n x; ] %1
1 (U (1) (1)
392 3 — T T T T T m- - - Ay, Xy Zy
2y (2) (2) (2)
a - - - = — — = =——a b3
33 . 34~ . 3n |3 _ .3 (2.2.3)
‘-.\ \\\ - : [ l
\\\. \\\ X ' !
\\ -.\ t 1 i
\\ ~- ¢ i
‘\a(n—Z)‘~.'(n—2) b :
0 ' n-1,n-1 “n-1,n] | n-1 !
(n-1) (n-1)}
an’n_-‘ xn C Zn
L - - - -
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where --(k—l)

a(k) = a(k_l) - aik a(k-l) k=1’2,.no,n—l
ij 1j ;TFTT kj ’
kk j=k+1|oc-.n
(k-1)
(k) _ Z(k) ) i z(k-l) $ok+l, 400,00 (2.2.4)
%i i (k=1) ‘K ,
a (0)
kk a,:’ =a,.,
: 1] 1]
©)_
%1 1 J

The solution for (2.2.3) is given by

z(n-l)/a(n-l)
n o n,n

"
I

1 (i-1)_ v _(i-1)
Ty B L A

ii

xj] , 1=n=1,n~2,,4.,1,
jei+l

Alternatively the Gauss—Jorda process eliminates not only the lower
off-diagonal elements but also the upper off-diagonal elements as well.
Therefore, the final stagelof the transformatioﬁ produces a matrix of non-
zero elements gsolely on the diagenal, and hence the solution is obtained
straight-forwardly by dividing the components of the right hand side vector
by the corresponding diagonal elements, In other words, there is no need
for the back substitution gtage as in the Gausstian elimination. Furthermgre;
Gaussian elimination can be shown to be superior to Gauss-Jordan since the

' 3 3
number of operations are proportional to %— and ;— respectively, and for
large n the latter requires 50 percent more operations than the former

(Ralston (1965)).

LU-Decomposition (Triangular Factorisation)

Let the (n*n) matrices MI’MZ"°"Mk’ k=1l,...,0-1, be defined as

follows (see Ralston (1965), Goult et al (1974)),



b |

™y 9L
]
! ' AN
- ' =
H : I AN ' MZ
I ! bR
| {
. 0 .
-m 0] 1
L nl .
kth column
1
b
'\\'\
\\1 0
M = ! >
.
| ~
| ~
| 0
L —mn,k.
where for Mlz w1 = aslla11 s 52,3, 000,01,
for MZ: my = asifaz2 y 8=3,b, 004,10,

for Mk: L ask/akk s 5=K+1,4 44,11,

and the values ask'akk are obtalned at the (k-l)th step of the

transformation as illustrated in (2.2.4).

-
1
o 1
1 -
| §
td
r
{ |
oo
| i
o

L? -1

1

1
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In fact, L) k's are the multipliers of the kth step of the transformation
L)

for the Gaussian elimination method,

{(2.2,3) is equivalent to

where

If we define U such that

then (2,2,5) becomes

Since the inverse of a lower triangular matrix is another

triangular matrix (see Remark 2,1,1), then we can write

M—l

-1-1

=M My e M

-1

1

=L

Thus, the triangular matrix form

(2,2,5)

(2.2.6)

(2.2.7)
(2.2,8)

lower
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and consequently (2.2,75 yields

LU = A » (20209)
and (2,2.8) gives -1

Ux=1L z ,
or CLux=2z . E (2,2.10)

AN
The form (2.2,5) is termed triangular or the 'LU' decomposition.
Subsequently the solution of (2.2.2) by this algorithm follows from
(2.2.10) via the introduction of an auxilliary wvector, ¥y (say), such

that the system (2.2,10) will be split into two systems, i.e,

Ly =z, (2.2.11a)
Ux = ¥ » (2.2.11b)

where L is a wnZt lower triangular matrix and U is an upper triangular
matrix, It turns out that the solutionm vector X can be obtained from
(2.2.11) through forward and bazkward substitutions (i.e. by (2,2,11a)

and (2,2,11b), i.e,

17 %
iil
Y. = 2. = V. ' 3 i=2’--.,n|
i | kTik

1
(v, =} u.x)/u.,, i=n(-1)1
1 j=i+1 1 11

and

]
il

provided uii#o (i.e. U is non-singular).

For sparse matrices with special form (tridiagonal, pentadaigonal,
etec,) the factorisation (2,2,9) may be achieved by eguating both sides
g0 that a 'general' recurrence relation can be formulated mainly for
programming purposes. Fﬁrther,.the intermediate vector y in (2.2.11)
doas not reed to.be computed explicitly, for example the soluticn of the

tridiagonal system

F - 11 b
4 % Xy 5
¢ 4y 3 0 Xy by

o~ “ i 1

~ ~ ~ ! I

-~ ~ b I = !

“ \\ \\ ! 1

\\ » M ; !

~ N h :

“ -1

0 .on 1 '

L ‘@ ‘a . j%b .PQ.
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can be expreséed by the following recurrence relation (Varga (1962):

xn = gﬂ.’ , xi. = gi - Bixi+1 ’ l=1.2,...,'ﬂ._1
: ‘ i+l _
a ay _ :
where 81 = i 6:. T E i=2,3,.44yn"1 (2.2,12)
1 i i7i-1
_ b b.-c.g._
and g =L, gi._.a.l___c_l_sz«._l., i=2,3,.00,0.
1 i 171i=-1

In fact (2.2.12) is an equivalent (nested) form of the Gaussian
elimination process,

However, the LU-decomposition may be applied when the following
theorem is va}id.

Theorem 2,2,1:

A non-singular matrix may be decomposed into the product LU (where L
and U are lower and upper triangular matrices) if and only if every leading
principal submatrix of A is non-singular,

Corollary 2,2.1:

If L is unit lower triangular then the decomposition is unique,
Both Theorem 2,2,1 and Corollary 2.1.1 are given in Broyden (1975),
see also Faddeeva (1959), |

Corollary 2,.2.2:

If U is a unit upper triangular matrix then the decomposition is
unique,

Proof: Similar to Corollary 2.2.1.

The LU decomPOSition where Corollary 2.2,1 is walid is often called
Dolittle's method, whilst if Corollary 2.2.2 is valid, it is called
" Crout's method (Goult et al (1974)).
If the matrix A in (2¢2.2)7 is symmetric, then the decomposition

(2.2,9) may have a modified variant which is an economised procedure as
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far as the computational work is concerned is called the Choleski's method
(or the square-root method) which can be outlined as follows:

Since A is a symmetric matrix, then U can be replaced by LT and hence
’ \

we have | it = AL ' (2.2,13)

So, if L=[2ij], where Qij=0'for i<j, then

i-]. 2 i \

L,. = Ja,, - 2, for i=j

ii [ i3 kél ]k] ' J

) 1 [ jil ] . . } j=l’2,..o,n (202114)
L,, == J|a,, = L., %.. ] J<ign,

i] Ejj it 4 ik ik

provided 2..#0,

1]

It is worthwhile to point out that if the positive square roots in
(2.2.14) are chosen only, then (2,2,13) is a unique factorisation provided
that the matrix A is real symmetric and positive defincte. In actual fact,
this latter property may place the Choleski scheme superior to other
variants of the elimination methods (such as those.mentioned above), in
‘particular if double-precision arithmetic is used so that the square roots
of (2.2,14) are evaluated as accurately as possible. Although, the
calculation of the square roots remains one of the main disadvantages of
the Choleski method, but this may be alleviated by the decomposition LDLT=A,

where D is a diagonal matrix (Broyden (1975)).

Practical Refinement of Gaussian Elimination Process

If any of the diagonal elements of the matrix in (2.2.1) becomes
zero during the elimination process, then the final upper triangular form
will be unattainable, and hence the process will break down. Nevertheless,
to overcome such difficulty and to ensure the continuation of the
elimination process we may appiy one of two basic well known pivoting

schemes,



24

Definition 2.2.1:

(k-1)

Any of the diagonal elements in (2,1.1), i.e. A » k=lyeueyn
{where aig)=all) is termed the kth piveot. If it ié zero, then it i3 called

¥

sero pivot,
The two strategies of pivoting are mainly concerned with aveiding a
zero pivot which may arise during the elimination process.

(1) Partial Pivoting

This strategy is based on selecting an element with largest value in

modulus from the column of the reduced matrix as a pivotal element,

@

Eventually, the appropriate rows of the augmented matrix (A )} must

be interchanged.

The following example shows that the partial pivoting scheme can be

inadequate, i.e., (Williams (1973))

i

10
12

4x + 3y

3x - 2y
Any row of the above equations can be multiplied by an arbitrary
constant and hence change the pivotal row, This can be overcome by
normalizing ;he rows and thereby making them comparable in one of the two
following ways: (see Def.2,1.8):
(i) divide each row by the 1afgest element in modulus,

(ii) divide each row by the Euclidian norm of the row.

(2) Full (or complete) Pivoting

The pivotél element is chosen to be the element of largest magnitude
amongst the elements of the reduced matrix, regardless of the position of
the element in this matrix.

Both ways of pivoting can be easily illustrated in Fig.2,2,1

assuming the system (2.2,2) 4is of order 5,
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RGN

4

o
.
n-H._-;x:
T
o |

o o |[x]{[x] [x]

7
o o (EFE X

FIGURE 2,2,1: Thé two strategies (X and denote non-zero elements)

(1) for partial pivoting, any of the elements in the box can
. be taken as the pivot., If '7' is the largest magnitude,

d and Sth rows of (A(z),é(z)

then the 3r } have to be
interchanged,

(ii) for full pivoting, any of the 9 numbered elements can be
taken as the pivot. If '5' is the element of largest
magnitude, then the interchanging involves (1) the 3rd and

4th rows of (A(Z)’E(Z)) followed by (2) the 3rd and éth

columns and the corresponding unknowns as well,

The full pivoting is considered to be a satisfactory strategy but in
practice it is time-consuming for execution, In addition, since the
columns are included in the interchanging process, thon it may be difficult
to preserve the triangular form of the matrix to the final step, Also,
searching for the pivot element ﬁay take a long time, especially for large
systems of equations, Thus, the partial pivoting is, generally,
preferred in practioe and for most problems including the iterative
improvement (or residual correction) procedure (see Goult et al (1974)
Broyden (1975)).

The pivoting approach can also be applied for the LU decomposition.

However it can be shown to be unnecessary for positive definite matrices,
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(B) Iterative Methods

These methods may bé considered as an alternative to direct methods
for solving linear systemé of special properties, notably when the matrix
is sparse (elimination methods may fill-in the zero eiements with non-zero
values and/or of large dimension.

Iterative methods for solving the linear system (2.2.2) are,
:generally, based on genera.ing a sequence of approximate solution vectors

(s+1)

{i(s)}, s=0,1,2,.44, such that the approximate solution x is a linear

function.ofli(s). If this sequence does converge, then the iteration
process can be interrupted whenever the desired accuracy in the solution
is attained or an.optimal number of significant figﬁres is reached
depending on the word length of the computer. Furthermore, in contrast

to direct methods, iterative methods do not suffer from the inherent
inaccuracy in the calculation since they are always self-correcting
pfocedures where the solution at the sth step will not affect the solution
at the next step and can be regarded as an initiai solution to the (s+l)th
iteration, On the other hand, if we are seeking a solution of N-digits
accuracy, and the generated sequence of solutions is carried ouf retaining
M-digits of accuracy (M>N) then for the computation to be worthwhile the
loss of accuracy should not exceed (M-N) digits,

Three well-known iterative procedures are presented to solve (2.2.1):

(i) Jaccbi (or Simultaneous Displacements) Method

In this method, the sequence of approximate solutions can be generated

successively from the formula,

n
,x§.S+1) =.é%-.-(z]'_ - E 313 ng)): i=1,2,.,..,0 (2,2,15)
4

(ii) Gauss-Seidel (or Successive Displacements) Method

The iteration process described by this method has the form,
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‘ R ) n .

x§S+1) = El_ (z, - z a..x§3+l) - Z a..xgs)), i=1,2,,..,0
* ii b gl I jeisl M

(2.2.16)

(iii) Successive Over-Relaxation, S.0.R. (Extrapolated Gauss-Seidel Method)

This method is, basically, to accelerate the convergence of (2.2.16)
by inserting an over-relaxation factor w whose optimum value lies between
1 and 2 (sometimes the method is formed under-relaxation for O<w<l).

The computation form of this method (which was suggested by D.M. Young

(1954)) is .
(s+1) (s), 2l ey B (s)y .
X, = (l_m)x. + —""'(Z. - z a, .x, - Z a,.x. ),1=1’2’--o,n
i i a;; by 473 j=fer 473

(2,2.17)
However, the general matrix form for solving (2.2.2). iteratively

can be given by :
RS 2z e (S (2.2.18)

where the matrix A of. (2.2.2) has been split into matrices R and T such
that A=R-T, and R is non-singular matrix. Subsequently, if A is split
into three component matrices, L,D and U, i.e. A=-L+D~U, where D is
diagonal, L and U are lower and upper triangular matriceé respectively,
then on substitution of R and T in (2.2,18) as follows: .

(a) R=D, T=L+U,

(b) R=D-L, T=U,
and (¢) =w~1D-L, T=U+(JJ;1)D,
we will obtain the equivalent matrix form of the above mentioned iterative

schemes (i), (ii) and (iii) respectively, i.e.,

3:_(5+1) = D-I(L+U)_:£(s) + D-l_z_ (Simultaneous Displacement Method
(2.2.19)
§F5+1) = D-1L5(5+1)+D-1q§(s)+D-1E { Successive Displacement Method)
(2.2,20)
2O B o N (1m0 11 up™hz (5.0.R, Method)
h (2.2.21)

The three schemes can be presented by
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D oS g, . . (2.2.22)
where the <teration (or correction)rm:trix'M=R_1T and Q?R-IE (where
R,T and z are defined in (2-2-18)). ‘
In fact, the iterative scheme (2.2.22) represents the general
form of a stationary iterative process, where the matrix M remains
unchanged throughout the iteraﬁion operétion, {(if the relaxation factor
w in (2.2,21) depends upon s, then (2.2.21) becomes a non-stationary
152rativa process),
The iteration process (2.2.22) converges to a fixed point x,

(0) if the

Q§?A-1§), the solution of (2,2.2) for any initial solution x
matrix M is zero-convergent, More precisely, since any matrix is zero-
convergent if and only if its spectral radius is less than unity i.e,
P(M)<1l (Neumann and Plemmons {1978)), then a sufficient and necéssary

condition of convergence for (2.2.22) can be given by the

Theorem 2.2,2:

A necessary and sufficient condition for the iteration process (2,2,22)

(0)

to converge for any initial vector x is that all the eigenvalues of M
should be less than 1 in modulus.
Proof: (see Goult et al (1974))

Whilst a sufficient condition for convergence of (2.2.22) is merely
that ||M|[<1, since [A{g||M|| (see Section 2.4), where A refers to the
largest eigenvalue of the matrix M, This méans that it may happen in
some cases ||M||>1 but |i|<1 which guaraﬁtees the convergence of the
iteration process according ﬁo the above.stated Theorem 2.,2.2, On the
otherhand as confirmed by Theorem 2.2,2 the convergence of (2.2.22)

(O

is totally Zndependent of the choice of the initial vector, X as long

as the matrix A in (2.2.2) is non-singular, whilst it is dependent on

E(Q) if A is singular (Meyer'and Plemmens (1977)).
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The asymptotic rate of convergence of (2;2.22) is given by the Qalue
-1og]i| (Froberg (1974)) or the averagé rate of convergence for s
. . : —2n| ()| .
iterations may be given Py S , (Varga (196%)). So, for a
given non-singular linear system we can determine the rate of convergence
of the iterative algorithms (2.2.19),(2.2,20) and (2,2.21). Generally,
the Gauss;Seidel scheme yields a better rate of convergence than the Jacobi,
Moreover, sometimes it happens that the former might converge and the latter
diverge, and vice versa, (illustrated in Fox (1964), Faddeeva (1959)). For
a linear éystem which bossesses a dtagonal dominant matrix both schemes may
converge since the suffﬁcient condition (as given above) is fulfilled,
Furthermore, the superiority of the Gauss-Seidel method over the Jacobi
method is given by the following theorem:

Theorem 2,2,3:

If A in (2.3,26) is symmetric positive-definite, then the Gauss-Seidel
method always converges since all the eigenvalues of the iteration matrix
(i,e. M=(D-L)—1U) are less than 1 in modulus.

Proof: (see Lieberstein (1968), Fox (1964))

In the former reference (see page 62) there is given a counter-
example which verifies the invalidity of Theorem 2.2,3 for the Jacobi
scheme, i.e, although the matrix A is symmetric and positive definite
the iteration matrix D_l(L+U) may have eigenvalue(s) greater than 1 in
modulus.,

The convergence of the S,0.R., method depends upon the choice of over-
relaxation factor w so as to ensure the eigenvalues of the iteration
matrix M be minimised to as small as possible and <1 in modulus. |
Unfortunately, there is no general method available to locate the optimum
value of w to gatisfy this requirement. This is discussed in Varga (1962),

GCoult et al (1974), Froberg (1975) and Smith (1978), etec,
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In general, the amount of computational work involved in any iterative
method cannot always be easily determined in advance, However, it can be
shown that an iterative process requires approximatély 0(n2) operations
(mulﬁiplications and additions) per step for an (nxn) full/dense matrix.

HThﬁs, an iterative method would be superior to the conventional elimination
methods if s<%n (whefe s refers to the number of steps when the iterative
procéss is interrupted)., Obviously, for large sparse linear systems, the
number of operations may be considerably less than n2. Conrad and Wallach
(1979) proved that the number of operations can be reduced comsiderably
(25% or 507 for some iterative algorithms) by a so=called alternating
technique, This involves the combination of any two explicit iterﬁtive

procedures, such as (2,2.19) o (2.2,21) in an alternating fashion, i.e.

each step of (2.2.18) being replaced by two 'half' iterations of the form,

(s+4) _ (s)
RLE =2z + le
R =2 e x| ae0,1,2,00
where Rl—T1 = RZ-T2 = A,

Finally, we outline the residual correction procedure which aims to
improve the unacceptable solution of (2.2.2), The residual vector, r
(say) which is O for the exact solution can be shown to satisfy the
following iteration process,

P L 120,152,540, (2.2.23)

(L

b - ax®)

(0)

where X is the initial solution vector, and r is the residual

.th . .
vector at the 1 iteration,

1f the solutionqz(l), i20, is not sufficiently accurate then one

should proceed to compute the residual vector in double precision
computation form (2,2,23), and consequently solve the system (using

single precision computation),

an) = D

(2,2.24)
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(1) to produce the

for the correction vector ﬂfl) which can be added to X

'improved' solution (E(l)ﬁﬂ(l)). Further, if the factorization LU for A

is computed initially and retained, then the work to carry out the

1

iteration (2.2,23) is considerably reduced for i=1l,2,... via the process

(1)5_(1) _(1)51(1). The iterative process can be

of solving Ly and Un

terminated at a stage where no further improvement in the solution is

obtained. Meanwhile, it is important to point out that the residual

KOO

=b-Ax may have a 'misleading' concept, i.e. even if it has small
0) .
(0) is

components it does not necessarily indicate that the solution x

-

acceptable (Fox and Mayers(1977)) as for instance in ill-conditioned

(0)

equations or cases where the exact solution x is small, Thus, r and

(1 (2) (s)

the remainder of the residuals, r " ,r "",...,r must be calculated with
double precision computation (Goult and et al, (1974)). Thus, the residual

correction scheme is a reliable procedure which reduces the error in the

approximate solution and in particular whenever‘z(o) is reasonably close

to A.-l-z-.
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2.3 CONTRACT MAPPING THEOREM, NEWTON'S METHOD

let there be given a non-linear system of n (31) equations, i.e.

K =4GR

xz ¢2(X1,X2,.oogxn) » ' (2.3.1)

W oeew
|

n = ¢n(xl'x2’°"’xn) ’

where the functions ¢l,¢2;,..,¢n are defined and continuous in a given
domain G, where cXR" {(the real n-dimensional space}, If the values X%y
...,anE, then the function ¢i, i=1,2,...,n form the mapping of G onto

itself, Moreover, rewriting-(2.3a1) in the compact form,

x = 6(x) . | (2.3.2)

~ T _ . T
where X = [xl,xz,...,xn] y $ = [¢1,¢2,...,¢n] R

we may establish the following definition.

Definition 2,3.1:

The mapping ¢ in (2.3.2) is termed a contraction mapping in the
domain G if there exists‘a proper fraction L such that for any two vectors
El’EQeG their images‘i(§1) and 3(52) fulfil the following condition

| H.?L(l‘.l) - i(ﬁg)ll g L”EE{E‘.ZH y OgL<l , (2.3.3)

and L is independent of x, and x, and is commonly termed a Lipschitz

1 2
constant. The inequality (2,3.3) is known as the Lipschitz (contraction)
condition, It leads to an important theorem which is stated below.

Theorem 2,3.1:

Given a closed domain G, a constant L<l and a function ¢ to be an
contraction mapping in G satisfying the Lipschitz condition (2.3.3), then
the following statements hold true:

(i) for any irrespective choice of the initial solution‘i(o)et, the
sequence of successive solutions {Eﬁr)}, 30 and‘g(r)eh, will

converge to a limit, x* (say), And x*<G is the root of (2,3,2)

i.e, ’ 2&*“‘#(_}5*) >



(i1} the non-linear vector equation (2,3.2) has a unique solution, i.e.
x* is a sole one,

(iii) the following relationship must hold as well,

1]« 2 zD @) L ReRY
Proof:
Let s>r and hriting
TR TP N N G I e D O U NITI

(2.3.
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4)

5)

we obtain the following by applying the triangle inequality given earlier

in this chapter,

l]x(s)—x(r)||<|[x(r+1)—x(r)||+!|x(r+2)~x(r+l)[1+ ..+||x(3)_x(3'l)l .
. (2.3.
Now, by virtue of Lipschitz condition (2,3.3) we have
=P = o™ 2™
s 1™
s 105D
Al | I (2.3,

Applying the result (2,3.7) on (2.3.6), we obtain

lLz(S)ﬁﬁ(r)||S(Lr+Lr+1+...+Ls-l)[lx(l)ﬁi(O)H

=]
r._s
B Ll:% [L§(1)7§(0)|| (by using the sum formula
r of a geometric progression).
L (1__(0) . |
sl le =l (2,3.8)
Since I<l,then L'+0 as r+», Thus, for any ¢ the Cauchy inequality (2.1.12

can be applied.on (2.3.8) and hence the sequence {E(r)} has a limit

(Cf. (201 111)), i-e.,
(x)

x* = 1im x'7, and x*€G which completes the proof of
T

part (i) of the theorem,

To prove part (ii) we proceed as follows.

6)

7)

Assume that Ef*ﬁfc ig another solution of (2.3.2) different from x*, then

we have,
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[[xr-xxx || = []a(x*)-pxr) ||
SAE G Sl
or || xr-xrx| | (1-L)50 , | - (2.3.9)
since (1-L)<0, then (2.3.9) cannot hold unless x*=x**,
(s)

By letting s»~ in (2.3.8) we have x* = lim x and hence

point (iii) of the theorem is complete. "

(See Ortega and Rheinboldt (1970), Demidovich and Mergn (1976),
Henrici (1964)). |

Howevef,.according to the Theorem 2.3,1, the Picard iteratien
process for (2.3.2) i.e. |

| ‘§(k+1) = iﬁg(k)x k=0,1,... (2.3.10)
converges for a unique fixed point X*C ¢R" for any‘i(o)eﬂ. Furthérmote,
iE_G=Rn, then we hé#e global convergence for (2.3.10). Meanwhile,

Theorem 2.3,1 in this case, may be termed as the global comvergence theorem
(Ortega and Rheinboldt (1970), page 385).

We may introduce .another theorem which is asscciated with the
preceeding theorem, concerning the convergency of the non-linear equation
(2.3.10) (see Dahlquist and Bjork (1969), Demidovich and Mwurgn (1976),
Szidarovszky and Yakowitz (1978)):

Theorem 2.3.2:

Let the vector function ¢$(x) be continuous together with its

derivative Qf(zg in a bounded convex closed domain G and satisfies

o' @1l s w1, (2.3.11)
where p is a constant and
e @I ax | |22 )
8 (x = max (max ) . (2.3.12
1 €6 5 im0

(1) _(2)

1f E(O)EG and all successive approximations x ' ,x ,... also lie
in G, then the iteration process (2,3.10) converges to a unique solution

of the equation (2.3,2)).
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(N.B, this theorem is also valid for |].l|m_or | in addition to

[I"ll as in (2.3.11) and (2.3.12), but not necessarily all of them at
the same time),

Corollary 2.3.1:

The process of the Picard iteration (2.3.10) converges to the unique

solution of equation (2.3,2), 1if the inequalities
3¢, (%)

Ix,
J

n

3 uj'< 1, 3=1,2,..4sn (2.3.13)

i=1
hold true for _:_{_eG.

Newton's {or Newton-Raphson's) Method in n-Dimensions

‘We consider a non-linear system of equations,
fl(xlgngoco’xn) =0
f(X » X ,-c-'X) =0
R n (2.3.14)

+

fn(xl,xz,...,xn) =0 .

or compactly, (2,3,14) can be written in conventional vector form given

> E® =0, , (2.3.15)
T
where E = [fl.fz,o'o’fn] ’
X [x,,x X ]T
= 1PRgrec iyl o
and 0 is the null vector of the n-tuple,

Suppose that (2,3.15) has the exact solution g. By solving (2.3.13)

iteratively (using the preceding iterative procedure) we may obtain an’

approximate solution‘g(s) after s iterations, thus eventually we may write
X g (9, (2.3.16)
~ where a = [0, 30, 50a0 a‘]T and £ = [E;9E,50e05E }T
- 17727 = 1'=22* 2 gl 0

which represents the error vector of the root,
Since o is the exact solution, then it is trivial ‘to write
_F__(g-_) =0,

or from (2.3,16), we have
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rx Ve -0

(2.3.17)
By Taylor's expansion, (2.3.17) yields the following result
9F aF |
9- - E( (S) (S)) = (3{-(5)) - [ aXl( ( ))’ 2(—( )\),.'.’ _5_1_{'_(35'(3)) ] e
_ n
+ O(El,-..,an) . (2.3.18)

where 0(51,...,£n) represents the high order terms of the error values-

L TR (> order 1). By supressing this term in (2.3,18) we obtaln,

Fx (s) (s)) (s) _ 0, | (2.3.19)

where J(x) is the Jacobian matrix which involves the derivatives of

fl’f2""'fn ?ith respect to the independent variables XipXgreeasX i.e.,

af,
J(E:_) =F_'(§_)E [-a—x_].-(xl’XZ’..”xn)] s 1,3=1,2,4..,0.
J .

Assume J(x) is a non-singular matrix, thus we have from (2.3.19),

E_(S) - [J(E(S))]-]-E'(EE(S)) . - (2,3.20)

Taking EJ‘SS)”(ngH)‘Xi(S)). i=1,2

o0 eglly
and substituting (2,3,20) we obtain the so-called genaralized Newton

method , i,e,

2 L Oy, s-0,1,... (2.3.2D)

(0)

vhere x refers to the initial solution which 1s often recommended

to be taken as close as possible to the desired exact solution.
It is known that (2,3.21) is impractical for implementation purposes,

therefore it is usually converted to the equivalent form, i.e.

7 - p® R (2.3.22)

(s) (s)

which can be solved for the corraction AX and added to x to

(s+1)

produce the new approximate x

(S))

The modified form of the Newton's process is to approximate J(x

by J(E(O)), then (2,3.21) becomes.
x(s+1) - .’.‘.(S)

(0) (s).

-z )]'12(5 ) (2.3.23)

which sometimes is named as the simplified Newton method.
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A geometrical comparison between the generalized and simplified forms

" for a single variable is given in Fig.2.3.1.

(a)

(b)

g

0
F(x)
b
o
of _—— .o o L0
F(x)

FIGURE 2,3.1l: (a) Generalized Newton méthod (method of tangents)

(b) Modified simplified Newton method
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We may derive from (2.3.21) that each step of the iteration process
requires to evaluate ﬁhe follawing;
(i) the.n components of F(x), fk(xl""’xn), :zl’g’...,n?
(ii) n2 elements of the Jacobian matrix, i.e. Egé(xl,...,xn),i,j=l,2,...,n.

(1ii1) the solution of the 1ingar system (2,3,22) by a suitable method

(see previous section).

One of the procedures to economise on the amount-of work is. to avoid
computing the Jacobian at every step and instead we either (1) use the
modified Newtpon process (2.3.23), or (2) the Jacobian is evaluated once
after several steps., Both cases however may depend upon the initial guess
of the solution vector.

Generally speaking, Newton's method is still an attractive method from
the theoretical viewpoint, this could be mainly due to its quadratic
gonvergency property, where the error vectors in two successive steps of
the iteration are associated by the relation

15k 1e¢?11? , K is constant (2.3.24)
where Efj) =.£(j)11 and q is éhe exact solution,

Relation (2,3.,24) is judged to be valid as long as the initial vector
solution is sufficiently close to the exact solutioen,

Convergence of the Newtdn process and its'sufficiency conditions have
been studied and fofﬁulated by Kantorovich (see Henrici (1962),

Demidovich and Marom (1976), Brown (1962)). Also it has been discussed by
Ortega and Rheinboldt (1970) and Ostrowski (1966),

' In practice Newton's method, unfortunately, may not be considered as
an efficient and attractive computational procedure, in particular for
large systems of ndn—lingar equations where the order may exceed several
thousands (as in non~linear partial.differential equations). The main

concern in this respect is the loss of accuracy during the sclution of
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the linear system (stép (iii), page 38) by direct methods and loss of
both practical and theoretical efficiency in solving the linear system by
iteration (Lieberstein (1968))., In addition, the ameunt of computational
effort requifed by step (i) and step (ii) (page 38) is too expensive and
nay be too difficult (unléss the desired derivatives are in a simple form).
However, due to extensive investigations which have been reported in
this respect so far some modifications of the Newton's procesé have been
proposed (see Ortega and Rheinboldt (1970)). Three variants will now be

introduced,

(1) Discretized Newton Iteration
In this method (2.3,21) is replaced by the iteration (by way of a

simple illustration we choose a single variable example),

RO U O BN 1C 10 Y W ON

Ax(s)

. (2.3.25)

where Ax(s) = _(x(s)_x(s"l)

)s

\ ., df ., ' . . . .
and the derivative — ia replaced by its approximation, i.e,

dx
af f{x+ax)—£(x)
dx AX *

(2) By inserting a damping factor w such that the iteration process will

have the form E(s+l) - x(s)_m(s)[J(E(S)]'lF(E(S)) , (2.3.26)

and to ensure the norm-reducing inequality
s+l ]
e <121 (2.3.27)
to be fulfilled each step. Usually ¢ is less or equal to unity

(Hall and Watt (1976)).

(3) By shifting the origin of the Jacobian matrix. This method involves
adding the diagonal matrix Al to the matrix J, thus (2,3.21) now becomes:
D O @) (2:3.28)

where the factor A can be chosen to ensure the validity of (2.3.27).



'The modifications (2.3.25),(2.3.26) and (2.3.28) may have the
property of superlinear convergence under certain conditions or higher-

order convergence under others (Ortega and Rheinboldt (1970)).

40
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2.4 EIGENVALUE PROBLEM

Solving a linear system of equatioms, such as (2,2.2) , has already
been discussed in Section 2.2. The investigation of|the dynamic behaviour
{(i.e. the stability) of such linear systems (which arise in many physiéal
problems, e.g. in electrical or mechanical oscillations) can be based on
scalar values called the zigenvalues. For exémpie, for a vibration
problem the eigenvalﬁes give the natural frequencies of the system,

These are especially important because, if externai loads are applied at
or near these frequencies, resonance will cause an amplification of motion
making failure more likely,

Now consider an nth order system

Ax = Ax , (2.4.1)
where X is known as the eigenvalue (latent root,.characteristic nwnber
or proper number) of A and x its corresponding eigenvector etc. The n

values of A represents the roots of the polynomial which can be expanded

from the determinantal equation,

P(1) = det(A-2I) =0, (2.4,2)
In fact the matrix A also satisfies (2,4.2) as well, i,e, P(A)=0.
This is given by the following theorem:

Theorem 2.4.1: (Cayley-Hamilton theorem)

Any square matrix A is a root of its characteristic equation, If

P(l)=[ln+clkn“l+...+cn]Edet(lI—Ax), then
P(A) = A“+c1An'1

Proof: (see Faddeeva (1959}, Demidovich and Margn (1976)).

+4.etC I = 0.
n

The problem in (2.4.1) is called a standard eigenproblem an
etgenvalua problem if the eigenvalues only are required to be determined
and an eigenproblem if the corresponding eigenvectors are required as well.

These may be obtained from the homogeneous equation
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(A-ADx = 0 .

Whenever the characteristic equation (2.4.2) has simple ZEeros, l.2.
the matrix A has distinct eigenvalues, each of them possessing a unique
corresponding eigenvector, and consequently those eigenvectors are
.linearly independent the matrix is then called non-defective, (Goult ét al
(1974), page 9, Ralston (1965) page 470). Otherwise, if there exists
k1¥k2=...=Ak#Aj, lgk<jgn, ﬁhen the number of the corresponding eigenvectors
will be less than or equal to k and hence the whole set of eigenvectors of
A fail to form a base of the space since their number is less than the
order of the ﬁatrix (in this case a matrix is called a defective matrix).

Practically, (2.4.2) is not used to determine the eigenvalue(s) of
a matrix unless it is of very low—order., Before referring to an alternative
strategy we introduce the main definitions and theorems that might be
related to this thesis,

Definition 2.4,1:

.

A real matrix A is said to be

(1) Positive definite if x?Ax>0

for all non-null, real vector
(2) Positive semi-definite if X Axx0 X.
Remark 2.4,1:

A rectangular matrix A of order (ﬁxn) with linearly independent
columns, the product A:A is symmet;ic and positive definite. (Broyden
(1975), page 34).

Moreover, it can be shown that a real matrix A is positive definite,
if and only if it is sjmmetric and all its eigenvalues are positive,
positive semi-definite if they are greater than or equal to zero and

indefinite if they are negative, zero, or positive (see Noble (1969)).
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. Definition 2.4,2:

th . ' o, . . . .
The n order matrices A and B are sa;d to be similar if there is

1

a non-singular matrix P such that P “AP=B, Matrix B is said to be

obtained from matrix A by a similarity transfbrmation. or orthogonal
trangformation if P is orthogonal matrix, (i.e., if PT=P“1).

Then both the matrices A and B have the same eigenvalues and their
eigenvectors are associated with the relation Py=x, where x and y refer
td the eigenvecﬁors of A and B respectively,

The last definition is often exploited whenever the standard eigen-
problem (2.4;1) is difficult to deal with, thus by use of a similarity
transformation the standard problem can be'transferred to_the so-called
generdlised elgenprollanm, i,e,

(2" lapyx = APx
or ' | Ay = APy
where P and y are defined as in Definition 2.4.2).

Theorem 2.4.2: (Gerschgorin or Brauer's theorem)

If A=[aij] is any matrix of order n, then all the eigenvalues of A

lie within the union of the circles 0
|, i=1()n . (2.4.3)

Proof: (see Varga (1962), Noble (1969), Smith (1978)).

. . T .
Since the transposed matrix A" has the same eigenvalues as A, hence

the result of the above theorem for_AT yields (Froberg (1974))
n

Ik-ajjl g -leaijl ’ J=1(1)n . (2.4.4)
1= . .

i#j
Using result (2.1.,1) the inequalities (2.4.3) and (2.4.4) can be

- n ‘
written as (Al s } la;.] , i=1(D)m,
j=1 |

and 2
Al ¢ } |ai.| » j=1(L)n.
i=1 M
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Hence an estimate of A can be given by the results,

n
|A] ¢ max § |a,.| = |[al] - (2.4,5)
AR oo
i j=1
n W
[a| < max .E laij] = I[Alli . (2.4,6)
j i=1

If p(A) is defined such that p(A)= max|Ai|, hence the estimate of
the spectral radius of A is bounded by the @-norm or the l-norm of A,
In fact, although both norms can be computed easily in practice,

theoretically it can be shown that p(A) is bounded by any norm of A, i.e.

: p(a) < |14l . | (2.4.7)
This result follows from (2.4.1), i.e. |[ax]|=|al|[x[]=]]ax|]
s||A|L|L§|I or |A]s]|A]| provided x is non-null vector.

Determination of the Eigenvalues

In this respect two fundamental approaches are normally adopted, (i)
'if there exists two eigenvalues (not equal) of ratio less than unity in
modﬁlus, then this ratio may be made small if it is raised to a suitable
high power. Subsequently,methods based on this approach are often used
to calculate one eigenvalue of the matrix, Examples of these strategies
are the Power method, inverse iteration, etc...., (ii) to perform a
similarity transforﬁation (which is often an orthogonal transformation)
so that the matrix can be reduced to either diagonal or tridiagonal or
triangular form where the eigenvélues appear on the principal diagonal
or as a recursivg Sturm sequence, Methods based on this technique give
all the eigenvalues, such methods are Jacobi, Givens, Householder, QR
method, ete,.. . However, we are interested only in method of the first
type, thus we briefly demonstrate the follo&ing methods,

{(a) The Power Method

t . . . .
Let an n h order matrix A which possesses the eigenvalues Ai. i=1,2,444,y1
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such that there exists one of them which has the largest value in modulus

11, (say) (often tergped the dominant eigenvalue), i,e.

IA1|>|A2|2[;"3| Oo.allnl . l

Let x sEgare X be the corresponding eigenvectors of the eigenvalues

1

li such that their linear combination can be expressed as a vector y, L.e.,

n
= L oex (2.4.8)
i=1

where cyo i=1{1)n, are constant coefficients,
For any eigenvalue Ai we have from (2.4.1)

= A

<.< - ) st
X, X 1gign (2.4 Q)

Now, operating on y in (2.4.8) by A we obtain

c.AX.
i =i

Ay,

i=1

nt~13 I e~13

4 cikiii {by using (2,4.9))
n Ai :

or the iterative form after s steps, (2.4.10) may be written as

n M.
i=2 1
Ai .
Since — <l, i=2,,..,,n by the initial assumption, therefore the
1 .
second term in the parentheses of (2,4.11) tends to zero for sufficiently

(s)

large s, Subsequently, the vector p A becomes a scalar multiple of x

1
(s+1) (s)

and the ratio between the kth component, lgksn, of_z. and y tends

to %1, i.e, y(s+1)
= ?\1.

1im
R yk

The practical feature of the algorithm can be summarised as follows.

Given a vector E(s)’ the iteration process involves,
step 1 3t < ax(®
(s+1)

Step 2 Choose B = the element of largest modulus amongst the

components of z}s+l)



46

(s+#1) _ 1
(s+1) bA

Step 4 if x (S+l) _i(s) are'sufficientiy close, then halt the

Step 3 x (s+1) (normalisation stage)

procedure, otherwise repeat from step 1.

The rate of convergence depends upen the ratio -—+ {where A

2t

assumed to be the sub-dominant elgenvalue, i.e. the A, = max IAiI) being
, 2gign
very small, Obviously, the smaller the value of this ratio, the faster

cenvergence,

(b) The Inverse Power Method

Any non-singular matrix A and its inverse A_l have the same eigen-

vectors but reciprocal eigenvalues as can be noticed from (2.4.1) and

A Tx =

the gquatlon -1 x . : o (2;4'12)

P

Therefore, the smallest eigenvalue of A can be determined by
obtaining the largest eigenvalue of A—l. Furthermore, it 1s unnecessary
to compute Aﬁl explicitly since the iteration procedure can be carried out
as follows.

At iteration s, we compute

Step 1 z}S+1) = A-¥§(S) which can be written as

AZ(S+1) _ 1{'(s) _ (2.4.13)
Step 2,3,4 continue as in method (a). |
The system (2.4.13) can be solved by a suitable method (such as
thogse discussed earlief or the ones proposed in this thesis). For
example, of the LU decomposition process is used initially, then (2.4.13)
will be solved cheaply ;n each successive iteration.
Further it can be shown that.for any number p, the eigenvectors of

the matrix A-pI coincide with those of A, but its eigenvalues are Ai-p,

i=1(1)n, This is known as shifting the origin of the matrix A by the
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amount p. The shifting strategy is basically introduced to speed up the

. A :
convergence. For example, if the ratio |+~=| is not small enough (i.e.,
1 p=X. Y
. 2
very close to 1), then p can be ¢hosensuch that the ratio max 5_3£'<'T—[

' : i 1 1
which eventually accelerates the convergence, Likewise adopting the
shifting strategy for the inverse power method leads us to solve

+
a-ony St - ) (2.4.14)

instead of (2,4.15) and hence the smallest eigenvalue of A-l is given
by 1/(A=p). |
Apart from the scheme of shifting the origin which is referred to
as Wilkinson's method (1955), there are other techniques for accelerating
the convergence of the Power method such as 62-précess, Rayleigh quotient,

etc,..s (see Ralston (1965), Fadeeva (1959)).
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2,5 EVALUATION OF THE SQUARE ROQOT OF A SQUARE MATRIX

Let a matrix A of order n possess the eigenvalues Al,AZ,....An. The
characteristic polynomial which is derived from det(4-AI) is of order n
and may be expressed in the form

P(X) = (A-Af(h—lz)...(k-ll) .

By the Cayley-Hamilton theorem 2.4, matrix A is a root of its own

characteristic equation, i.e. P(A)=0, thus we have _
P(A) = (A D@AADo AR T =0, (2.5.1)
fﬁerefore the matrices AII,AZI,...,AnI are solutiong of the
matrix equation P (A)=0, Furthermore, the products of matrices in (2.5.1)
may/be zero even though no factor is zero (Hohn (1973); page 31), thus
P(A)=0 may also have other solutions apart from AiI, lgign. (See Jennings
(1964), Hohn (1973)).
We should point out that in this thesis our interest is the. square

}

root, denoted by A®, for a positive (or semi-positive) definite matrix A
satisfies the following theorem,

Theorem 2.5.1:

The matrix A of order n is a definite (i,e. positive or non-negative)

}

matrix of rank r (rgn) 1ff there is a definite matrix A® of rank r such

!)2=A-

that (A
Proof: (see Lancaster (1969), p.95).

In his paper, Laasonen (1958) recommended the use of Newton's method
for computing the square root of a matrix possessing the properties as

stated in the following theorem:

Theorem 2,5,2:

Let A denote a real square matrix with real, positive eigenvalues,

Then, the matrix iterative algorithm

(0) _
X7 = kI (2.5.2)

(D L LD | L)1
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where k is a non-zero constant, generates a sequence of matrices which

converges to the solution of

AXZ_I =0 » . 1 ) (2|5.3)

which has posgitive eigenvalues. Moreover the rate éf convergence is
quadratic,
Laasonen also suggested that if the matrix A is ﬁon-negative definite,
then AiEX can be obtained from the algorithm
1 1 -1

X.(i+1) =3 X(i) t 3 AX(i) , (2.5.4)

where the initial matrix X is as given in (2.5.,2), Therefore, the

(0)

iterative process (2,5.4) will produce an approximate solution to the

equation %2-A = O . ‘ (2.5.5)

According to the theorem (2.5.l), the solution of (2,5.3) and (2,5.5)
by the algorithms (2,5,2) and (2,5.4) respectively preserve the property

4

of the original matrix, i.e. the matrices A-5 (and A®) remain positive
(and non—negative) if A is also.

Each iteration of both the proces;es (2.5.2) or (2,5.4) involve the
solution of n2 linear equations, It is recommended that any of the above
iterative procedures should be terminated as soon as the difference

_ - - . .
between two successive solutions X(l) and X(l D

no longer decreases,
otherwise the influence of the round-off errors may be significant on
the obtained solution. Laasonen pointed out that in most cases the

influence of round—-off errors does not become serious due to the

quadratic rate of convergence of the process.
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2,6 MAIN PROPERTIES OF CONTINUED FRACTIONS

We consider in this section the b#sic theory of continued fractions
and their application which is relevant to the algorithms pfesented in
Chapter 4. A comprehensive study of continued fractions (in particular
: the_convergence theory) is due to H,S, Wall (1948)). Others such as.
Frank (1962), Blanch (1964),... etc., have contributed to develop the
theory and the_appiication of continued fractions,

Definition 2,6,1:

Consider the two variables t and w associated by the relation

to(w) = b0 +w o,
a : (2.6.1)
"_"“di— .= .
PR
where the a's and b's are real or (generally) complex numbers, and

the linear transformation of w into t is expressed in the form:

£ty (W) = tle 1,
tofiE@ = kgt [,
totltz...tk(w) = totltz....tk_l[tk(w)] , k=1,2,...
ok n-1
or Tk(m) 11‘ti(m) = jrrti[tk(w)].
i=l i=]
Now, for k==, we have from (2.6.1)
a
T (W) =b. + 1
-} 0 a
2
b, +
1 a3
b3+ = {(2.6.2a)
3.
a,
+-—J—-—-
bj+

which is called an infinite continued fraction., The abbreviated notation

for (2.6.2a) will be used and is
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a a, a
't 2 l 3 l j
T (w) =b,_ + J , . e e e (2,6.2b)
w 0 F1+ F2+ P3+ bj+
5 ook
byt 1 B oo
=173
a a, a. a, _
or T (w) '—"[a;-l-.-g-, -—j-,...,w']-,...]._ (2,6.2¢)
oo 0" b b b b.
1 2 3 b '
: bo a, :
The fractions bO =T El’ i=1,2,..., are called the zomponents or the
i
vartial quotienis of the continued fraction (2.6.2), (N.B. the partial
a,
quotients El can not be reduced), and aj,bj, j=1,2,... are called the
3

partial numerators and denominators respectively. For the case Tn(m),

n#e, i.e. n is a finite number then the continued fraction is said to be

finite or n-corponent, i,e,

Tp) =%, *|:l+ “:2+ ,i:§+ l--°[:n e

n

1 2

If the partial numerators are equal to 1, i.e, ai=1, i=1,2,..,
then (2.6.3) is said to be a simple or standard continued fraction, L.e.

+1 Il |1 l...l ]Il.
0 lb1+lb2+lb3+ lb5+

T _(w) = b (2.6.4)

Furthermore, the continued fraction (2.6.2) is said to converge

if there exists a limit (or has the valuz) v such that
n

1im || t. (@) 2 1lim T (=) = v ,
. i n
e i=1 e

This means that at a fixed point w=e under the transformations ti.i=1,2;...
as defined earlier the value of the continued fraction is a limit of an
infinite sequence of images.
: n
Similarly at the fixed point w=0, then lim Tn(0)=1im 1T-ti(0) is
_ P}-;m e i=]l
defined, The quantity Tn(o) is termed the n approximant oY gonvergent «

The zeroth (Oth) approximant is t0(0)=b0.

It is shown by mathematical induction (Wall (1948)) that

n An_ £ +An :
T ) = ] ¢, = y 1=0,1,2,,,, (2.6.5)
n . i B +B
i=1 n- n
where the quantities A .,A ,B »B_ are independent of w and can be
n-1""n""n-1""n _

evaluated by the following fimdamental recurrence formulae,
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8141 T Piatyteatia |
y J=0,1,2,.,. _ (2.6,62)
Bj+1 = bj+lBj+aj+1ijl _
and the initial values,
A,=1, B =0
! L (2.6.6b)
A =D

o. o' 0

Thus, the nth approximant, i,e, Tn(O) can be easily obtained

B =1,

from (2.6.5), i'e',
An
'I'n(O) =z

==}

- t . | )
where Ah and Bn are called the n~  numerator and denominator respectively.

Moreover for a &imple continued fraction, the recurrence relation (2.6.6a)

becomes
. . LFA.
' AJ+1- bJ+1AJ.AJ‘l

] j=0&1,2"--’ (2.6-7)
B

]

141 = P58yt
with the same initial values as (2.6,6b).

Finally, the value of the continued fraction (2.6.2) does exiét if
the following conditions are fulfilled (Blanch (1964)):

(i) At most a finite number of the denominators B, vanish,

k

(ii) Given a positive quantity e, there exists an N such that,

for nxN
An An +k
—= ~ | < ¢ for all positive k., (2.6.8)
B B .
n n+k

The implication of the validity of (2.6.8) ensures the existence of a

limit quantity T such that _ A

T = 1im~]—3-E »
> n

whereas the failure of (2.6,.8) means the continued fraction is said to

diverge or to be divergent and its value can not be assigned,
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Periodic Continued Fraction

Definition 2.6.2:

Consider the infinite continued fraction (2.6.1) in the form

a Ia J an
T(w) = "_J r—') Ib T |2 e bn+ e (2.6.9)

— - n=},2,...

- lst perlod 2nd period
The essential property of the continued fraction (2,6.9) is that
its partial numerators and denominators are periddically repeated after

n divisions, or the partial quotient-—l j=1,2,404,m, 13 repeated after
b ] H ’

*

a period of 'length' or cycle n since its previous occurrence, Thus,
equation (2,6.9) is termed an infinite pertodic continued fraction, and

its linear fracticnal transformation can be expressed by

a1 I a2 an
T(w) = " fb-—*" ese {E—ﬂuj . (2,6.10)
1 2 n _

Consequently, as in (2.6.5), we introduce (2.6,10) in the form

A w+A

T(w) = n=1
w+B !

n—-1 n .

t . .
where An,Bn refer to the n b numerator and dencminator of the continued
fraction and their values are given by the recurrence formulae (2.6,6a)

with initial wvalues Al =1, B =0

%o

We now define the fixed point of the continued fractionm,

i
o
=)

U
et
-

Definition 2,6,3:

Let the point x be such that

A X+4
n-1 n
n_1x+Bn

x=

holds true., Then there are two values of x which can be obtained by
solving the quadratic equation,

2
Bn—lx +(Bn A,n_l)x-An =0 , _ (2,6,11)
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which for ) 5%, (say), are termed the fized points of the transformation
(2.6.10). | |

Some of the algorithms adopted in Chapter 4 are associated with
the numerical evaluétion of pefiodic continued fractions., This is
basically formulated by the following theorem,

Theorem 2.6,1:

Let X, and x, be the fixed points of the transformation (2.6,10)

2
: A
where ai’bi’ i=1,2,...,0n are any complex numbers and ai#O. Let'EE be

m
the th approximant of the periodic continued fraction (2,6,9). Then

(2.6.9) converges iff X, and X, are finite numbers satisfying one of the
following two conditieons:

(1) =x,=x

12
An--l n- Al

or (ii) |z - x|>|g7— = x| » El # %y, §=0,1,2,400,0-1.
n~1 n-1 j

If the continued fraction converpes, its value is Xy

Proof: see Wall (1948), page 37.

Theorem 2,6.,2: (Equivalence theorem)

A continued fraction is unchanged in value if some partial numerator
and partialldenominator, along with the immediately succeeding partial
numerator, are multiplied by the same non-zero constant (see Blanch (1964)).

Such 'a tranformation has been termed in (Wakl (19%948)) an equipalence
transformation, |

Now, consider the following infinite periodic continued fraction

with period of 'length' n, n21l
% I % | an4J %y I o | % |

T.=IB1' S Al P an" '

By virtue of Theorem 2,6,1 due to successive transformations,

. (2.6.12)

the periodic continued fraction (2.6,12) may be expressed in a form

with unitary partial denominators, i.e.
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A YL ] Yy Ya | Y1 Y2 | Yo | |
T _‘-];——, ﬁ:—l AR [l" : il_ Ii" e I]-- L2 I Y (2-6.13)

where Yy = al/Bl ’

L

Ti

a /8, ,B;s B, and siul#d, i=2,3,...,n0.

It is proved by Blanch (1964) that ? (2.6,13) will converge to a
positive value less or equal to %-provided that any of the parfial
numerators is positive and does not exceed %, i.e.,

1f 1

0 < Yi-s %-, then T converges and 0<%5§-. (2.6,14)

Okolie (1978) or (@wans and Okalie(1979)) pointed out that the
condition (2.6.14) for the convergence of (2.6,12) can be exploited to
introduce a eyclic factorisation of a periodic tridiagonal matrik, i.e,

if o and Bi are given by the relations,

4 = a ¢ Bl = bn s

6, = ¢

B% - btak+l k=(n-i+l)mod n, i=2,3,,..,n0,
i

where ai’bi’ci' i=1(1)n are the coefficients of the periodic tridiagonal

matrix - ' —_
b c a
1. 1. 1
a, M. T~ 0
- \\ \\
\\ '\_\ \\ s . (2.6.15)
\\ ~ \\
A IR c
O ™o ~ o n-1
c “<«a™b
n n n _|

then a periodic continued fraction of the form (2.6.12) converges provided

the matrix (2.6.15) is diagonally dominant, in a sense that the

%4 1
K‘I S"z; » .i=1'2,000|n
1

Likewise, we will consider the equivalence theorem and the

inequalities

]

c,
—=
by
hold true, '
condition—(2.6.14) to introduce the method in Chapter 4 which involves

the cyclic factorization of a periodic genergl matrix of bandwidth

2r+l, r2l (see Section 2,1),



CHAPTER 3

NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS
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3.1 DIFFERENT NUMERICAL APPROACHES FQOR SOLVING BOUNDARY VALUE PROBLEMS

To deal with a suitablé appfoach to obtain the solution of certain
boundary value problemé (b.v.p.) there arise many points which should be
taken into account, i.e, the Eoundary c0nditién(s) which the problem is
subject to, the existencg and uniqueness of the solution, the stability
of the adopted approach, the level of accuracy in the solution which can
be attained, ... ete. For example, techniques such as the factorisation
of the operatérs and the use of projection operators aré suitable for
linear boundary value problems while for the non-linear boundary value
problems the non-iterative schemes which are based on continuous trans-
formation are used (Meyer (1973)).

Broadly speaking, numerical techniques.have had advantages and dis-
advantages in.practice. The Shooting (or Driving) method, for instaﬁce,
is a well known approach for initial value problems, Keller (1975) in
his survey indicated that this method accounts for nearly one third of
the work concerned with the numerical investigation of differential
equations. On the other hand the shooting method has many drawbacks due
. to the difficuities which are encountered in practice, such as 1) the
starting éolution might not be assured for the convergency of the Newton-
Raphson iteration or (and) 2) the method becomes ungtable due to its
sensitivity to any perturbation in the initial conditions (which accounts
. for .the growth of round;off error) although the numerical method is stable.
(however, the Multiple or Parallel shooting procedures are proposed to
tackle such difficulties), (Hall and Watﬁ (1976)), Keller (1968), Osborne
(1969)).

Finite element methods (variational, collocation,... etc.) and
finite-difference mgthqu are used for boundary value prob}ems. An

important exposition of the recent theoretical advances have been made
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on the methods for initial and b.v.p. are collected in Hall and Watt (1976).
Qur sole interest is the finite-difference methods which will be
discﬁésed in the next section. Whilst for the finite‘element methods

we briefly outline the following.

. Finite Element Method

The finite element method is a recent new method which has been used
widely duringithe last three decades, During this time the electronic
digital computer has progressed to the stage where it can accomplish
considerable amounts of computational work in a short timé. The method is
commonly used in engineering problems, in pafticular civil, aeronautical
'.and mechanical engineering, especially for the anélysis of stress in solid
components, Furthermore, it has been applied even to three-dimensional
problems, suﬁh as the time-dependent problems involving fluid flow, heat.
transfer, magnetic field analysis, ... etc, (Fenner (1975), Bathe and
Wilson (1976), Martin and Carey (1973)).

The finite element method is based on the idea of partitioning the
physical system;'such as structures, solid or fluid continua into small
non-overlapping subragions or elements, Each element is a basic unit
which has to be considered, Within these elements an approximation
function (in the form of polynomials or rational functions, ...etc.)
where parameters can be adjusted to ensure the existence of the continuity
of the functions in adjacent elements (Mitchell and Wait (1977)),
Moreover, an approximating function, generally, can be expressed over the

region under consideration containing N nodal points in the form

N ‘ au.

1

U(xl;ngono,xm) .g (pi(xln..,xm)ui(K1....,Km)"'qi(xlnu 'xm)'a';{""
i=1 Ayl 1

(xlgc ‘e ,xm)+ri(x1’| . ’xm)TL(xl’“' .xm)+c . 0)_'

X
2 (3.1.1)
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wheré Ui refers to the value of U(xl,,..,xm) at tﬁe npdal point i, and Pi’qi’-
I, ... ete. are known as basis functions which, in fact, are the most
important parts of the finite element method. Therefore, to construct the
basis functions many techniques are suggested in the literature such as
Lagrange, Herﬁite intérpolation formulae for polygonél regions (which can be
divided into triangular elements). For example, the simplesf form of (3.1.1)
(with the absence of tﬁe derivative terms) is when m=2, i.e. the two-
dimensional case. The function U(x,y) (SU) can be interpolated at }{s+l)(s+2)

poeints with a polynomial of order s, i.e.

1(s+1) (s+2)

U(x,y) = Ujpj(s)(x,y) : (3.1.2)

i=1

If the smallest element (the basic unit) is assumed to be the tri-
angle Py2PysPy (Fig.3.1.1), then the polynomial (3.1.2) interpolates U(x,y)
at 3 (s+1)(s+2) symmetrically placed poinps on the triangle Py+P,ysP3e For
s>1, the non-vertex points can be obtained geometrically by dividing each
side of the triangle P1sPysP, into s equal segments and-by joining the points
of subdivision by lines drawn parallel to the sides of the triangle (see Fig.

3.1.1) as an example for s=2,3).

P3
Pr I ! Py P2 P1 Py Ps P2
g=]1 _ g=2 5=3

(a) : (b) . {c)

FIGURE 3.1.1
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For any s (1), the coordinates of pj (_Epj (%,¥)), j=1,2,...,1(s+1) (s+2) |
are determine.d by the fol_lowing:
1 .
x = g(Bx) * ByXy + B3%y)

OgB, ¢s, k=1;2,3 (3.1.3)

1 k™

siven y =3By * B,y * Byyy)

Bl +i32 +B3=s.

Now, for s=1 (the linear case), we have

where Uj’ j=1,2,3 are the values of U(x,y) at the vertices pj which are

now given by N x y
pl‘ = det 1 X, ¥, /D s 1
L IR
1 x y'*
Py = det 1 x1 yl /D , . (3.1.4)
L ¥y Vi
i x vy
Py = det 1 X /D ’
11 x, Y, J
where _ -
1 X
D = det 1 9 y2
1 X3 Y3l
For s=2 (the quadratic case), we have
S 6
U(x,y) = i£1Ui¢i(x’y)

where ¢i5¢i(x,y) refer to the functions at the nodes, P> i=1,2,...,6,

in Fig.3.1.1{(b) and are given by
6, = p,(2ps7D), §=1,2,3

J .

by = 4PyP, ' , (3.1.5)
¢5 = 4PyP,y

b = 4P4P)

and PysP,sP4 are available in (3.1.4).
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For s=3 (the cubic case), we have
10
U(XQY} = Z Uo‘p-(st) ?
G it
i=1
where wiéwi(x,y) refer to the functions at the nodals pi; i=1,2,...,10 in

Fig.3.1.1(c¢), and are determined as follows,

1 ‘ .
= .(3p.-1)3p.-2), j=1,2,3
] PJ( pJ ) Ps )y ]

2
9
¥, =3 PPy Bp 7D
9
Z

bg = 5 PP, (3p,m1)
Similarly, ¢6,¢7T can bg expressed in terms of PysPs and ws,qﬁ)ln terms of
y
p3 :p1°
' Ulo(x,y) can be eliminated as follows
) 3
1 1
U,.=+ 3 U ~-= TU,
10 4 524 il 6 551 ]

However, the above procedures or others (such as the pateh test for non-
conforming cases) can be used with any of the finite element methods such as
viz. Ritz, Galerkin (or Bubnov-Galerkin), least squares, collocation,... etc.

(see Mitchell and Wait (1977)).
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3.2 FINITE-DIFFERENCE METHODS

These methods are broadly used for solving boundary value problems
which oceur in the mathemagical physics and engineering fields. The idea
is based on discretizing the continuﬁus b.v.p. in order to obtain an
approximation to the numerical solugion since the analytical solution is
either too awkward or impossible to be obtained. Unfortunately (and this
is common in the implémentation of numerical algorithms) sometimes the
numerical solution might be very poor or not acceptable at all; therefore
the discretization proceduré ought to be improved in a suitable manner
(see Section 3.3) or to increase its order (see Section 3.4).

Since most of the important physical problems (such as problems of
elasticity; vibration, heat flow,... ete,) are formﬁlated by equations
of order two (Gerald (1970)), therefore we will demonstrate using the
finite~difference scheme on this type of b.v.p. Moreover, we restrict
ourself to consider the central-difference approximations to the
derivatives, it is known Fox (1962) that such methods converge rapidly;

_ Siegia srdade

our argument is that the forward or backward/;pproximations possess the
quality of poor accuracy (for the simplest form of approximation the
latter are of order 1 versus 2 for the former). However, this propefty
cannot be exploited for any system; for instance using central-differences
for first order systems may cause problems of stability (Keller (1968),
page 105)., For this we classify two alternatives:
(i) low-order discretization which leads to a linear system of équations

with marrow bandwidth matrix,
(ii) *high-order discretization which leads to a smaller linear system

of equations with broad bandwidth matrix.
It is obvious then that the same accuracy can be achieved from a smaller

number of points.
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Now, consider the following real nen-Ilinear two-point b.v.p. for

the second-order ordinary differential equation:

NEY) Ty - £G,y(0,y () = 0, .
in the range : ' (3.2,1.2)
—0< agxghe
which has the solutidn y(x) and with Dirichlet boundary condiﬁions,
_ y(a) = 4, y(b) =B . (3.2.1.b)

The boundary value problem (3.2.1) is usually called linear
whenever £(x,y(x),y'(x)) is linear in the arguments y(x) and y'(x).

If the iAterval [a,b] is partitioned into N (an integral number)
subintervals, then the obtained interior points are xn=a+nh, n=0,1,...,N,
and Sh=b-a. (Notice that sometimés it is preferred to normalize the
range [a,b] to the form [0,1] bj setting x=(b-a)y+a, probably for
programming purposes). |

Since the purpose of the discretization process when applied to
differential equations is to replace the derivatives by their corresponding
finite-difference approximations, therefore we introduce the following
general formulae of approximation fof the first and second derivatives
which occur in the_boﬁndary problem {3.2.1), (Froberg (1974)).

At any interior point X s We have

?'(Xh)= uh-l XO(-l)t %%%%ITT- 62t+1y(xn) . ' (3.2.2)
t=
y" () = w2yt %%%%ETT TR I (3.2.3)

t=0
where & is the central difference operator, and u the average operator, i.e,

y(x+h/2)~y (x-h/2) ,

Sy (x)

py (x) = 4 (y(x+h/2)+y(x~h/2))
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Finally, we see that finite-difference methods, in general, are
reliable from the point of view of their convergency as long as the
smoothness of the functions and small mesh sizes are provided, while they

\

may diverge if the interval is too big or there exists discontinuities of

the functions (or its derivatives).
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3.3 LOW-ORDER DISCRETIZATION

The simplest common approximation to the continuous boundary value
problem (3.2.1) employingl(3.2.2) and (3.2.3) has the linearized discrete

equations:

Nh(yn) : ényn—1+8nyn+Ynyn+l - -g(xn) » LengN-1
_ _ {3.3.1)
’ yo - AD YN =B
. =2 -1
where a = -h © - }h p(xn) s
=2
Bn = 2h fq(xn)
=2 -1
g T h “+ih Tp(x ),
and p(x) and q¢(x) represents the Frechet derivation, i.e.,
p(x) = % fE(x,y(x),y"(x)) , _ (3.3.2)
, .
q(x) = gff(x,y(X),y'(x)) R (3.3.3)

and Nh(yn) is the discrete nonlinear operator for the continuous N(y).

. It is known, that the tridiagonal system of the discrete equations
(3.3.1) can be solved by many ways, e.g. by.the well-known Gauss elimination
in the compéct form as given by Varga (1962) to yield a solution which
differs from the analytical solution by an error of order h2 (Oz(hz)),
notably thié type of error is called in the literature as a global

truncation (discretization) error (En), i.e.

E

N [the difference between the exact and computed solution of Xn|

o(n’y.

Furthermore, since each discrete equation of (3.3.1) is a truncated
form of the actual derivatives, then another type of error which is
associated with each equation is considered. It is called the local

truncation (diseretization) error , T in notation we may write,

T, = Nh(yn)-N(yn) s L<ngN-1 , | {3.3.4)
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The relationship between both of the above-mentioned types of errors
'is as follows:

max [E | £ C max |[7_| , | (3.3.5)
OgagN .n O¢ngN  °

where C is a constant independent of h.

If the inequality (3.3.5) holds, then N, is called gtable and

h

consistent of order p (positive integer) provided that max ]rn|+0, where
QgngN

rn=0(hp). Thus, if N possesses these two properties, the convergence to

h
the numerical solution is guéranteed. However, the stability, consistency
and convergency have been investigated fully by Keller (1968), Pereyra (1973)

and Henrici (1962), but here we briefly outline the procedure by which

this is done for the nonlinear case only,

Let
K = max(l, g;), vhere 0<Qkeq(x), agxsh (3.3.6)
r
M. =Y (cn), X 1888 4 0 l<ngN-1,

T . . .
(where y  denotes that the derivative is of order r),

P* = max |p(x)|
0gx<b
and h g g%

Therefore, for the b.v.p. (3.2.1) we have

h2 4 2 -
= . * =
T =1z GL+2PR) + 0(RT) = 0(h%) (3.3.7)
“i.e. the local discretization error is of order 2, -and hence Nh is

consistent of order 2, Furthermore, on the assumption that the first
“derivative in (3.2.1a) isabsent (i.e, p(x)z0), then (3.3.7) can be

expressed as (Pereyra (1973)):
J

_ 2 2k+2 2k 2J+2
Tn ) Cxr2yt Y (x) b + 0Ch Y . (3.3.8)
k=1
Also, Nh is stable if the result in (3.3.5) is valid, provided

that the mesh size, h, is small and the existence and uniqueness of the

solution are proved.
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As mentioned above, the error (En) in the approximate solution is of
O(hz) which can be improved as follows:
E_ - h%6 (x ) +w0m®) , osney , - (3.3.9)
. .

where the function 6(x) is continuous and twice differentiable and -

satisfies the following b.v.p.:

2 :
" (1)-p (100" (x)=q (WO ()48 (x) = + 250"V (0)-2p (08" ()
(3.3.10)
with 8(a) = 0(b) =0 , ﬁ

where p(x),q(x) are given by (3.3.2) and (3.3.3) respectively.
Purthermore, if sz, j21, satisfy the boundary value problem (3.3.10)
which implicifly assumed the sufficient differentiability of the 8's, then

the asymptotic expression of (3.3.9) can be expressed as

K .
En = Z ej(x)hzj + 0(h2K+2) , Kz1 (3.3.11)

J
-and is of order ZK.

1

The result of (3.3.11) shows that the possibility of achieving
high accuracy by finite-difference schemes is available. Two approaches
are capable of fulfilling this task. The first, is called the Richardson
extrapolation (deferred approach to the limit or extrapolation to zero
mesh width). Starting with a coarse mesh, the procedure is based on
halving the mesh at each step of the process, which consequently increases
the dimension of the system to be solved at each step (see Reller (1968)).
The second approach is the difference correction or deferred correction

which is the only one considered in this thesis.

The Deferred Correction Method

A technique known as '"difference correction" was developed by L. Fox,
(1957), although from about 1962, the technique has become known inter-
changeably with "deferred correction'. This technique has been apblied by

Fox and others to a range of problems involving transcendental equations.
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Subsequently, this theoreticai work has been applied to give solutions
to problems requiring advanced calculus. tools arising in natural science
and engineering. TFor example, application to first order systems have been
studied by Pereyra (1966, 1967, 1968), The implement;tion of this work has
been considered by others, i.e., Daniel and Martin (1977) using Numerov's
method with deferred corrections. | |

The philosophy of déferred correction is to improve the apprbximate
solution obtainable using higher finite difference formulae by considering

the asymptotic expansion for local discretization error.

A brief demonstration for the deferred correction method can be
introduced as follows:
Reverting to the b.v.p. (3.2.1) and using the approximation formulae
(3.2.2) and (3.2.3), we have
Cyn - f(xn,yn,Cyn) =0, | (3.3.12)

where
=2..2 1.4 1l .6 1 .8
C=h € -7 *50°% “565° * )
(3.3.13)

d
c

-1 I .3 1 .5 1 7
h ~(ué - 3'“6 + 35“6 - {io TE T S

To obtain a tridiagonal system (as in (3.3.1), we should consider

the first terms of (3.3.13), and hence (3.3.12) becomes,

-1
b (yn+1 n*l) ~

-2
h (Yn+1 Zyn+yn_1)+Dyn f(xn’yn’ 7 + Dyn) =0 (3.3.14)
where ~
D=C-h 28,
{3.3.15)
’I\)'='E-h_1u6

~t
It is clear that by setting D=D=0 we obtain the system of equations
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" of which equation (3.3,1) is its linearized form,
The iterative procedure of deferred correction is basically presented

in the form:

MONNONNE (s-1) o POy D (-1
s s (5= 8 n+1 ¥ (s-
h n+1 y +yn—l) ¥ Dyn - f(xn’yn i 2 + Dy )=0
. (s) (s) .
with y = A, ¥y =B,
0 N (3.3.16)

where the superscript s refers to the number of iterations, i.e. the

(1 _(2) _(3)

obtainable successive approximate solutions are y ",y ',y "",..., and

(s)
8

is a 'good' initial starting solution to the prpcéss; also‘Dyn

. .Dyn
Now, assume y' does not exist in (3.2.1), i.e. E;O,‘therefore (3.3.16)

can be rewirtten in the simpler . form:

(s)_,. (8}, (s)) (s)

by (%) ST

) = , lsngN-1 , (3.3.17)

2}’ - f(x ’y

(1

It can be shown that the first solution y has errors of O(ha),

(s) 25+2

of 0(h

X(Z) } (Pereyra (1973)). Obviously,

of 0(h6),... and y
during the iterative process, in order to obtain high order accuracy in
the numerical solution implies the use of high order finite-difference
symeetric formulae, which means.the involvement of more neighbour points
to any interior point of the range. Symmetric formulae of high order
cannot be augmented at the grid points adjacent to the boundaries (xO and
xN), therefore the alternatives must be unsymmetric.formulaezﬂith the same
order,

However, to compute the coefficients due to using such formulae for
the implementation ﬁurpéses some automatic methods have been provided by
Pereyra (see next section).

.If the b.v.p. (3.2.1) is periodie, i.e..the boundary conditions are
of the form (3.2.47) such difficulties do not occur because the symmetric
formulae will be applicable at any grid point of the range.

The iterative deferred correction scheme involves solving a set of

©) %, ©) 4



69

non-linear algebraic equations (3.3.17) (or (3.3.16)) at each step.
Consequently, two.types of iteration are required per step (Fox (1977)),i.e.
(1)  Inner iteration - to solve a set of non-linear equations,

(ii) Outer tteration - to apply (3.3.17) (or (3.3.16)) to obtain a new
(s)

approximation, y, 83y, at stage s, by computing the correction
term Ayis—l) (say), so that_y§s+1)+Ayis-l)=y§S), where Ayn=0 at the

boundaries {(see Section 3.4).

When the non-linear equations of the inner iteration are solved usually
by Newton's method; where each step requires the solution of tridiagonél
systems {(of dimension N-1) but the Jacobian matrix would of necessity be
re—computed at each step (unless the guarantee of convergence is deéired).
‘As an initial approximate solution for Newton's method the linear inter-
polation between the boundaries (i.e. y(a) and y(b)) is recommended if no
more than (3.2.1b) information is supplied. On the other hand, if (3.2.1)
is a linear b.v.p., then the inner iteration involves one step.

Finally, it may be important to indicate that the asymptotic expansion
for the global discretization error is not necessary at all for the practical
implementation compared to tﬁe Richardson's extrapolation procedure, but for
theoretical argument only (Pereyra (1973)). While the asymptotic expansion
of the local discretization error forms the basis of the deferred correction

method, which has a form in terms of powers in h similar to (3.3.11).



70

3.4 HIGH-ORDER DISCRETIZATION

The procedure above (Section 3.3) can be extended to prove the
theoretical'justifica;idn (mainly the stability). This seems to be a very.
difficult intractable topic which has yet to be discussed fully in the
literature., In this thesis we will assume that this extension to high
order discretization is possible which eventuaily yvields a small matrix
with wide bandwidth, in order to proceed to the even more interesting
problem of determining new algorithms for obtaining the solution procedures.

High order discretization for linear two-point b.v.p. has been
investigated by Shoosmith (1973) which will be shown briefly later in this
section, o

Now, reverting to the b.v.p. (3.2.1) we consider the extension of
the previous approach discussed in Section 3.3 (including the deferred
correction technique) and for the non-uniform spacing case.

Initially, we assume that f(Ef(x,y(x),y'(x)) in (3.2.1) satisfies
the three following conditions:

(1) f is a continuous function of x,y and y' at least in the interibr
points of the considered range of integratiom, [a,b],
(ii) £ is Lipgehstzian, i.e., |

If(x!Y!Y')—f(x,z,z') |-<.Kl[y_Zl+K2 |Y""Z' |

where K; = sup £ 7,90 |
L}
(x,5,¥")
and K, = sup |f_,(x,y,y")]|

(X,Y ,Y')
provided that

(iii) fy(x,y,y') and fy,(x,y,y') exists.

Consequently, a unique solution to the b.v.p. (3.2.1) must exist.

Let hn denote the space between any two points, i.e.

hn =X 17K Q<ngN+Q-1 , (3.4.1)

and Q@ (any positive integer) is the limit of extrapolation beyond
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the given interval [é,b], and N is defined in Section 3.2.
Also, we define the operator 'L' as follows

L z

s sn’ sz.n""’gs A Yneg, Trreteg ¥ *

k,n n sl,n n+s1 k,n

We introduce the following different order types of approximation for y" and

L

y @

(1) 2nd-order discretization:

| L . =
YU T ey ne1™0,07n % 1,0%0-1 T £ ®1,0%%,n%-1,0’"n
. (3.4.2)
1 - -
y Bl,nyn+1+80,nyn+s-1,nyn—l - L(Bl,n’so,n’s-l,n)yn
(2) 4th-order discretization: .
"no_
y L(a2,n’ul,n’ao,n’a~l,n’a—2,n)yn
] (3-4.3)
t
Yy = L(BZ,n’Bl,n’BO,n’B-l,n’B-Z,n)yn
(3) 'General'-order (of order 2r, 1),
" _
y = L(Q’-r’nlar_l’nsoo . ,Uo’n,a .s .a_r+1’n,a_r'n)yn
’ (3.4.4)

B )y

T =
vo= L(Br.n’s -r+l,n'""-r,n’’n

r_l,n’ll.’Bo’n,. IO’B

In fact the coefficients o's and g's in (3.4.4) are functions of X .
They have constant values whenever the equal spacing case is considered;

for example in {3.4.2):

%1, " %-1,n " 1/h2, %0,n _2/h2
and Bl,n = _B-l,n = 1/2h, Bo,n =0,
in (3.4.3) Gyn = %om = ~1/12h°

@ n ™ %q g " 16/120% S0, ~30/12h°
and | 8y =g = Li2h,

Byn = Bay,q = 8120 ,8, =0

(cofe (3.2,2) and (3.2.3)), and h is as defined in Section 3.2).

Therefore, the discretization form of (3.2.,1) using (3.4.4) becomes
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L (ar’n'--'sdo’ns'lo’a_r’n)yn-f(xnlyn!rl (Br’ni-'C sﬁo.nbu 'lB_r’n)yn) =

y(a) = A, y(b) = (3.4.5)

i

Notice that if (3.4.5) is considered for equal spacing, then the
local discretization error is of O(hzr), otherwise the order is reduced
to one less,

]

Now, we expand yn+r"'°’yn+1 and yn—l""’yn-r by a Taylor_s

expansion as follows: 2 o y

h
Ype1 ZVp * B y 2' yn Foaee
- hi—l

= - t " o
In-1 ™ 7y hn-lyn * 27 T T v
g .=y +(h +h )y +sm(h +h )Py 4 ...
n+2 n n n+l”“n 2! n n+l” “‘n

» (3.4.6)
1

= - ' v—

yn—z Yn (hn—1+hn*2)yn * 2!( n-1" n— ) y v
1, ‘

= T
Yn+r yn+(hn+hn+i+'''+hn+r—1)yn+—2—T(hn+hn+l+'"+ +r-1) Y”
y =y =(h _+...+h )y'+—]-'—(h +...+h )2 -
n~r “n ' n-l r’n 20 -1 e’ a0t J

Hence from (3.4.5) and employing (3.4.6) we can easily obtain the following

two systems of equations in terms of the unknown a's and B's respectively:

Gr'n+ar_1’n+o . -+(10’n*¢ . .+G‘,_r+1’n+(l_r’n =0
+I " e LI N ) =
Gr,ntr,n Yoy nt1,07%-1,n5%1,n %er,n"=r,n 0
1.2 1.2, 12 1.2
Cr,n 2! r,n "'t %1,n 27 1,n %-1,n 2! -1,n "'+“-r,n 2} "=r,n
. %k k
* 1 k 1 k -1)" k (-1 k
—— +aaet — T + ass
%r,n k! r,n %1,n k! "1,n “-1,n ks -1, * +d-r n ki < ~-r,k $
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Br,n+---+80.n+ooi+8_r’n =0
k k k k k kK
Br,ntr,n "'+Bl,rt1,n+(-l) B-l,ns-l, toeot (-1 B-r,ns-r,n -
(3.4.8)
where in both (3.4.7) and (3.4.8), k=1,...,2r and § is the Kronecker
delta, i.e.
5={ ls k=2 in (3.4.7), k=1 in (3.4.9)
0, otherwise
tj 'n = hn+...+hn+j""‘1
i=1(1)r.
s . =h ,+..,.+h_ .
-i,n n-1 n=-]
Thus, we rewrite (3.4.7) and (3.4.8) in the compact form, i.e,.
VE = E_ . (304-9)
and VE = "z_' . : _ (3.4,10)

where the matrix V is of order (2r+l) and has the Vandermonde form

(1 1 R 1
Yo Y1 e Yoy Yop
2 2 . 2 2
o M ‘ Yor-1 Yor
v = * [ ] . L] ,
2r-1 2r-1
2r-1 2r~1 . .+ & Yo 1 Y
YO Yl 2r-1 2r
2r 2r 2r 2r
0 151 * ' * Yor-1 Yor
where
tr-k’ Ogksgr-1
Y © 0 , ker k=0(1)2r,
Sr-k’ r+lgksg2r

or from the definitions of t and s above and hn in (3.4.1), we

define the y's more explicitly in terms of X » as follows:
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Yy ='xn+r-k-}% s k=0(1)2r , : , (3.4.11)

The vectors E and z of (3.4.9), w and Z of (3.4.10) have (2r+l)

-~ components and have the form,

w=a o o ]T
—_ 3s 88y ,III'“
r,n O,n r,n , (3.4.12a)
3= T |
R U N PNTIT T,
-and
={0,0,2,0,.,., 0] _
| . o (3.4.12b)

z
z =[0,1,0,...,0]

The Vandé;monde systems, i.e, (3.4.9) and (3.4,10) can be solved..
for w and E_respectively by using the procedure PVAND suggested by Bjorck
and Pereyra (1970).

Equation (3.4,5) can be presented in a more accurate approximation

form (cf.(3.3.17)), that is

(s) (s) (8) (s-1)
L e - "rs =
(Cﬁr,n’ 3’3_r,n)y f(xnsyn 9L(Br’ns 'B-r,n)yn ) D(Yn )
(3.4.13)
(s is the number of iterations),
where the deferred correction term of order 2Zr+2 is defined below:
i i
D(yn) =T .; . ui,nyn+i+f(xn’yn’ .Z . Bi,nyn+i
1==] 1==]
+ L(Gr,ns-c . ’a-r,n)yn-f(xn’yn’L(Br,n" .e ;B__r’n)yn)
where j=r+l, -Q+jgngN+Q-j . - (3.4.14)

At any grid point, x_, the coefficients 3, _ and B, _ can be
o 1,0 1,n

determined from (3.4.,9) and (3.4.10) respectively; but z and zlboth
have 'zero' components and their non-zero element is as in (3.4.12b),

while the elements of the matrix V, i.e. ¥'s should be evaluated as

. follows {at any peint xn)

Yi = Fper-14k o’

By virtue of (3,4,14) it may be desired to extrapolate values of Y,

k=0(1)2r+2,
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beyond the range [a,b], up to Q points from both end points (boundarieé).

This can be accomplished by two alternatives:

(A) The Newton's backward and forward interpolation formulae (see Fererg,
(1974),  yhich can be modified into the form (Audish (1978)), (see

Fig. 3.4.1),

|
o~
=
o
7
[ -

T _
i=1(1)Q and p+1gN. ' (3.4.15)

Y_i = 'ZO d’jyj

N N+Q

—f e - —e— W W o ———

(a)

(b)

FIGURE (3.4.1a):Using the 1st of (3.4.15) to compute y_

RRRRE A

FIGURE (3.4.1b): Using the 2nd of (3.4.15) to compute yN+l""’yN+Q
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The weights ¢'s and ¢'s in (3.4.15) are obtained from (3.4.9) as
"in the same manner as for the @'s in (3.4.14) but the value of v (of the
matrix V) are obtained from the both sides of the range as follows, (at any

point outside the range)

To C e -
for ¢'s: Yj xN—j Xyn

and for ¢'s: ., = X.-X
Wy YJ 5%

3i=0,...,p-Lp is defined in (3.4,15))
1znsgQ
while the r.h.s. vector,.i.e. z, for both tﬁe $'s and Y's, will have p
components, - and has the form,
z = [1,0,...‘,0]T .
or

(B) The differential equation scheme, i.e.

L{a soeasQ_

r,n r,n)yn-f(xn’yn’L(Br SRR

> r,n)yn) = D(yn) ] (3.4.16)

Now, since our discretization procedure is of order 2r, hence we are
willing to use a '2r+l'~point symmetric formulae at the interior points
X s evesXy o Whilst imposing the same order formulae at the remainder of

he i rior points {(i.e. X ,...,X and we introduce
the 1nte P ( 1, ? r: ]iN_r )

+1, “ e ,XN_I
2r=-2 (for r>1l) extra unknowns, i,e. y-l""’y—(r-l) and Yhe1? "t -

1’
and hence we end up with N+2r-3 unknowns (assuming that Y and Yy are
given) for N-1 equations. To overcome this difficulty one must seek for
some 'practical' non-symmetric formulae (or perhaps a linear combination
of non~symmetric and symmetric formulae of order 2r-2 (see page 79).
Nevertheless, we will assume that these non-symmetric formulae are
provided, thus we may write the final form at both sides of the interval,

the approximation for y" and y' as follows:

(1) for n=1,...,r-1

" ~ A o
Yn T ar,n yn+r+'°'+ao,nyn * kgl a-k,nyn-k
' - T , (3.4.17)
R 2 T o2
or Yn Br,nyn+r+"'+80,r Yo ¥ E -k,nyn-k
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(2) for n=N+1,...,N-r+l

L oa A
"= + +o..4
Y z uk,nyn+k aO,nyn Ot-r,nyn-r
) k=n
L ) L, (3.4.18)
A a “
'o= + +,..
yn kzn SK,nyn+k BO,nyn +B-r,nyn-r

returning to (3.4.13), as indicated in the previous section, at each
step of the iterative prucedure we need to solve a system which. consists

of the discrete equations,

¢ ) = ;(ar,n,.--,a_r,n)yn-f(xn,yn.L(Br,n,---,B_r,n)yn)-n(yn) =0

: ' (3.4.19a)
with ¥y = v(a), Yy =y® (3.4.19b)

Assuming that f possesses the properties listed earlier in this
section and considering the possibility of providing the desirable
non-symmetric formulae, thus by differentiating ¢n(z) in (3.4.19b), we

obtain the following,

~ ~ af .
Aj’n = aj,n - Bj,n 55 ¢, j=r,r~1,...,0,-1,...,-n, (lgnsr-1), (3.4.20a)
2 A 5 2 _¢ i 1

= - —, - C, j=N-n,...,0,-1,...,~ -r+lgngN-
,Aj,n Uj n B_] ,n 3y’ s 1 .n, ,0,-1, »~T, (N-r+lgngN-1),

(3.4.20b)
for r>»1,
af . '

A. =0, - B —, = C s J=r,-..,1,0,-1,.-.,r, (rsnSN-r) - (3-4.20(:)

J,n J,0 j,ﬂ- By‘

where C in the above relations (3.4.20a), (3.4.20b), (3.4.20c) is

defined as

%£ , for =0
c=4{°
0, otherwise.

Thus, we can proceed to solve (3.4.19) by Newton's method as follows:
s s=-1 s-1

or R AR (3.4.21)
where the correction term AX(S-I) - EFS)'ZFS-I) ,

Ay = O at the boundaries,
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(0)

and y is preéented to be a good initial solution which is recommended
to be taken as a linear interpolation between y(a) and y(b), (Pereyra (1973)).

J, the Jacobian matrix is of order (N-1) with bandwidth (2r+1), rzl, and

has the form}

T A

A ~~
8,1 1,177 7 A1
A A A A
-1l 81,2 2,2 r-1,2 “r,2
| ‘\ N
| N N
] \\ ~ 0
~ K K ~
. A'—11:-0'2 r-1 O,r-1 - r,r-1
-r+l,r- 77 T T 7 “AD,r' '''' Ar,r
' -r,r+l - T T 7T 0,1l T T T~ r,r+l
J = ~ . ~ .
(N-1)»(N=1) N g - - N N
N\ G . r
N=-2r+ly4 ~ Zrt} ~
hY ~ : ~
RN ™ . ~
Y . N \A
~ ~
Ay N-r-1 . Ao-r-1 T 7 1,N-z-1
A-r,N*r AO,N--r -ttt Ar-l,N-r
2 ~ 2
A /3 -—--A
| =-r=N-r+l . . 0,N-r+l -2 ,N-r+l
0 \\ . ~ |
| N : N !
) ~ b ~
14 A A —--X A
r-1 A -2 Ari1 n-2 ~Ag,N-221,N-2
2 A A
L Ar,n-177 7 7 Aap,n10,8-1

Furthermore, Newton's method should converge quadratically or otherwise
the iterative procedure can be halted whenever the convergence condition

is met; for example such a condition can be shown as
[ay|] l‘ Z |Ay |2]i < ¢ (e small)
Lily = N.= 1 ‘
Now, for linear two-point b.v.p.'s with uniform mesh over the range

[0,1}, we consider N(y) in (3.2.1) as linear operator. Shoosmith (1973)

considered a high-order discretization for N{y)} and based his thecretical
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investigation on the monotone property of Nh(y) (;he discrete operator

of N(y)). If the discretization is of order 2r (r was taken up to 4 in

his work), then three approaches were suggested to tackle the difficulties

which arise at the interior points near the'boundariesﬁ

(i) Non-symmetric formula of order 2r or 2r-2,

(ii) Reduction in bandwidth near the boundary, which involves using non-
symmetric as in (i), a symmetric formulae of ordgr less than 2r or
linear gombinétions between such formulae.

(iii) A matrix polynomial which is based on formulae (3.2.2) or (3.2.3),
for exa&ple, on Sth~order éiscretization (r=4) the matrix polynomial

comes from the second derivative y" which has the form

- 1 2 1 .3 1 4
y" = ;E o+ IR 560 © | (3.4.22)
where . -
2 -1
-1 zZ -1 0
NN
N = S \\‘
0 "\\\\“1
~ ~
| -1 2]

In his paper in (Aziz (1975)) there is given an example of using
the approach (i) and (ii) above, for example, for a 6th—order discretization

(i.e. r=3), where the interior points X sX and Xy, are exempted

2% 2 %N-2

from using symmetric formulae of order 6, instead he used yg,y; and y;

chosen as follows:

"o 1 =184 - - 4
o 2(45y0 15§y1+214y2 156y3+61y4 10y5) +0Ct’) , (3.4.23)
12h
n____}-___ - - X - 4 .
vy = 2(10y0 15y1 4y2+14y3 6y4+y5) + 0¢h ) (3.4.24)
12h
and
R - - 4
vy = 2( y0+16y1 3Oy2+16y3 y4) + 0’ , _ (3.4.25)
i2h
Thus,

1 is taken as a linear

(1) at the interior point x., the approximate y

ll
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combination between (3.4.23), (3.4.24) and (3.4.25) in the form

l .
yﬂ (yl7+10y|f+y"
1. 12h2 0 | 172

-1
;'f("yo+2y1 ¥y)

Similarly, at X 1> Ve obtain

" _ -l S 4
YN-1 hz( IN-2t g Tyt OB

(ii) At the interior point, X, a fourth-order symmetric formula is
taken, as in (3.4.25) and similarly at Ky i.e.,
yro = :l(y =16y _ ,+30y, .-l6y_ ) + O(ha)
IN-2 h2 N N-1 N-2 N-4 *
(iii)

The remainder of the interior points X s n=3,...,N-3, the 7-point

symmetric formula is applicable, i.e.

1
180h2 [—2yn+3+27yn+2-270yn+1+490yn-27Oyn_l+27yn_2 2yn_31

6
+ O(h ) > n=3,--o-N-3o
Therefore from (i),(ii) and (iii) we obtain the following matrix

of order N-1 for y",

2 -1
-16 30 --16 1
12 1z 12 12 0
27 =270 490 =270 27 =2
180 ~180 180 180 180 180
~ N >~ ~
=2 N NN YL
. Tom ~
. 180 N S ‘\\ . \\ ™ N ~
=1 v s U TR TN ,(3.4.26)
h . \\ ~. ~ S ~ =2
~ ~ ~ ~ ~ 180
~ A . ~
-2 27 =270 490 =270 27
i80 180 180 180 180 180
1 -16 30 -16
0 12 12 12 12
_ b2 enx (-1

In practice the first and second rows (and the

last two rows) of (3.4.26)
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can be computed from (3.4.17) (and (3.4.18)), i.e.,

i) at X we have

8. .=0, & . =-1, &, . =2, & . =-1,

3,1

i1} at Xoy We have
-1

N o) A "
o = a = o T e o

_ =16 A
3,2 12 %202 7727 %M,27 12 o

0,2 12 T-1,2 %? ’
If the discretization of order 2r is used for periodic b.v.p.'s then
a '2r+ltpoint symmetric.formulae will be applicable at any grid point.
Therefore, if.we consider the boundary problem (3.2.1) as periodic which
meané it is subject to the periodic boundary conditions of the form,
y(a) = y(b)

— | (3.4.27)
y'(a) = y'(b)

then as a result of this condition (3.4.20¢) will be applicable at

the points X n=0,1,...,N, and hence we have (from (3.4.20c))
-r¢jsr , k is any integer . (3.4.28)

e T Ay T

Moreover, the linear system (3.4.21) will consist of N equations

and J will have the following form by virtue of the coefficients (3.4.28),
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r,N-r

Ar—l,N~-r+l

r !
1
: :
: N
A - LA A A
281 N Aor,N-1 Aoper,n-T 7 T%-1,8-1 Po,N-1 P1,N-1
. |
BT R Arwforan oA fo
[ s h" —— o
T+l
(3.4.29)

Hence, for the linear 2-peint b.v.p. under the periodic conditions

(3.4.27) the matrix polynomial (3.4.22) becomes,

4 1 ab

-1 A2 1 A 1 8
"o - — —anas
y h2(9+12“+9o”+5609) >
where
2 -1 -1
~ _ -~ ~ . 0
2 = 1\\\\'\\\'\ 1
Y ~ -
\\\\\
-1 -1 2
and the matrix (3.4.26) is given as,
(490 -270 .27 -2 _ -2 27 =270
~ e o~ -
=270~ (T~ I N 0 -2 27
-~ ~ - - -
27 & TN TN e Sl el -2
....2 ~ \\ ~~ \s \-. \"-‘
\\ - ""-_\ S -~ --\ - .
1 Y \__ ‘-..-:\\ ~ -~ '-‘. ~ o
2 "-..._ \"- . ‘-... ™~ - "“\ ‘2
~ \\ T, ~ -~ \‘
. ' ™~ T~ - =~ .
27 2 S . “;..\\:-.\-270
-270 27 -2 -2 27 =270 490

(3.4.30)
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which infact coincides with (3.4.30) up to @6;

Another example for the use of non—symmetfic formulae is for the
linear differential equatién of fb#rth order which is associated with
beam analysié (Gawéﬁﬂand Ball (1977), (1978)) who introduced the so-
called "revised' finite-difference formulae of higher order accuracy
appropriate interior points adjacent to the boundaries to replace the

conventional finite difference formulae of lower order accuracy.
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3.5 FINITE-DIFFERENCE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS

The previous sections were mainly devoted to using finite-difference
schemes for second order differential equations of one independent variable.
In this section we shall confine ourselves to differential equations of two
independent variébles; i.e. partial differential equations, and concentrate
on eqﬁations of second order,

It is well kﬁown that most mathematical models of applied engineering
problems are expressed in terms of partial differential equations which may
_ involve more than one independent variable. On the other hand, the

analytical solution for these equations, in most cases, is extremely
difficult or too cumbersome to be obtained. Thus, numerical methods are
found to be an aftractive alternative, in particular, at the present time
‘where the use of automatic digital computers are becoming widespread.

Furthermore, the experience of the past years have showed that finite-
difference methods are still powerful techniques to cbtain a reasoﬁable
solution for a wide range of applicable problems involving partial
differential equations.

The general form of the secon& order partial differential equation of
two independent variables, x and y (say), and with a dependent variable,

u (say), can be expressed in the form:

32u 82u 32u au | Ju
Lt ¢ = 4 o+ == 4 s =
a; 7t a2, 33y a3 5 34 e a5 3y agu + a, 0, (3.5.1)
‘ ax ay
Equation (3.5.1) is said to be:
(1) Linear if the coefficients a, i=1,2,...,7, are constants or

functions of one or both independent variables x andy.

(ii) Quasi-Linear if the coefficients 2:s i=1,2,...,7 are functions of

the independent variables x and y, or functions of one or both
partial derivatives, LR
X 3y
(iii) ©Non-Linear if any of the coefficients, a,, are functions of the

dependent variable, u, or its derivatives.
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(iv) Self-Adjoint if the equation (3.5.1) can be replaced by

9 2uy L 8 yau. =
ax(al(x)ax) + ay(513(y)ay) +auta =0. | | (3.5.2)

_ . 2
(v) Elliptic, if a, Aala3<0 ,

. . . 2 _
{vi) Parabolic, if a, 4a133—0,
and )

. . . 2 :

(vii) Hyperbolie, if a2“4ala3>0 ‘

Normally, equation (3.5.1) of type (v) occurs in equilibrium (or
steady state) problems whilst (vi) and (vii) occur in propagation problems
(diffusion and oscillating systems).

.Usually, the elliptic problems are claésified as of the boundary value
type since the boundary conditions aré accommodated or given round the
(closed) region, whereas the parabolic aﬁd hyperbolic equations‘are
classified as initial boundary problems, where the initial conditions are
given or/and boundary conditions supplied on the sides of the open region;
and the solution procéeds towards the open side;

Further, it is possible for an equation to be elliptic in one domain
and hyperbolic in another, e.g. gas flow at high velocities, the flow can

be subsonic at some places, supersonic at others (Froberg (1974)).

- Common examples for the above cases are:

82u Bzu
5 s C is the propagation velocity

(1) Hyperbolic - wave equation: = ;%

3x ¢ 9t

{the vibrating string)

initial condition Ogxgl (vibrating string stretched between x=0 and .

. x=1)
and the boundary condition u(x,0) = £(x) .
3
$e(x:0) = g(x).
| 3%u _ 3
(2) Parabolic - the heat equation: LI gL R
axz at

initial condition u(x,0) = f(x), Ogxgl

and the boundary condition u(0,t) = ¢(t)
u(l,t) = ¢{t)
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(3) Elliptic - the most common equations are:

2 _ 3%y . 8%
(i) Laplace equation, V u = ——% +-—*% =0, {3.5.3)
X ]
. 2 2y Bgu '
(ii) Poisson equation, V'u = =t = Elx, v}, (3.5.4)
Ix Ay

where V2 is the usual harmonic operator {or Laplacian). -

Qur consideration will be restricted to elliptic problems, in
particular Laplace and Poisson equations, since the.suggested algorithms
in Chapters 4 and 5 are proposed mainly for these types of problem.

Generaliy, the classification of elliptic problems lie in three
categories according to the boundary condition accommodated at the surface
(T(R)) of the closed domain, (three well—poSed problems):

(i) Dirichlet's Problem, where the solution u is given on T'(R) ,

(ii) Neumann's Problem, where the normal derivative (%E) is given

on T'(R), where n denotes the direction of the outward normal.

(iii) Robin's Problem, where the boundary conditions are of the type

au +B-g—: on T(R),

where a and B are given.
In the following we shall consider the application of finite-difference
techniques for partial differenfial equations.
Consider the Dirichlet problem for Poisson equation (3.5.4) which
requires to find the solution u(Eu(ﬁ,y)) satisfying (3.5.5a) inside a
certain closed domain (R) and is determined on the boundary (T'(R)) by the

boundary conditions, (3.5.5b),

3% | 3°
S+ 5 = £(x,y), (x,y) €R - (3.5.5a)
ax ay
u(x,y) = g{x,y), (x,y) ETR) . (3.5.5b)

The strategy of finite-difference methods (as indicated previously
for 0.D.E.s) are based on mapping the continuous problem to discrete ones
and replacing the indirectional derivatives by the appropriate directional
ones which they are easier for programming purposes to obtain the approximate

solution.
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We assumé that the rggion under consideration R and the boundary TI'(R)
lie in the cartesian plane xOy, Fig.3.§), and is subdivided by two groups
of straight lines parallel to Ox and Oy. The intersection of these two
groups are called the nodal (mesh, net, grid, lattice, or pivotal) points
and each point a discrete equation will represent an approximation to the

continuous derivative at that point,

y * boundarv npoint
. ’ ,/l—
S
k{ /1 , “——— . T(R)
R .
3
(x., ¥ )
Tt /
/ (/
interior point _ FIGURE 3.5.1
- . X
© h

If a uniform mesh (or equally spaced) is adopted in both directions
0x and Oy, and choose h and k to be the net spacing of grid lines in the
two direction (see Fig.3.5.1), then we may write
x, = x, + ih, 1=0,+1,+2,...
v = Yy + ik, | j=0,+1,%2,... .
Therefore the values of the function u{x,y) are approximated‘by the
points (xi,yj)E(xo+ih,yo+jk). Further; for sake of simplicity the region

)

R can be considered as a square or rectangle; and the grid point (xo,yo
coincide with the origin. Also let the two dimensions of R be a and b
length units on Ox and Oy respectively, and define the integers N and M such

that Nh=a, Mk=b. Thus, a general approximated form of the derivatives in
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equation (3.5.4) (cf. eq. (3.2.3) can be expressed at the grid poing

(xi,yj)z(ih,jk) as follows (Fox (1962)):
2

9 u,y 1,.2 1 .4 1 .6
(—3). .=~ = =68 +—38 - .. u, ., (3.5.6)
ax2 i,j h2 x 12 "x 90 x i,] _
2 .
3 u 1.2 1.2 1 .6 _
(ayz)i!j = ;E{GY 13 GY + 56-5y ...)ui,j ’ (3.5.7)

where Gx and Gy_operates on the sufficies i and j respectively, i.e.
- - = h oy o _h
ST O S I R

k k..
u(x,y + 5) - u(x,y - 5)

and du, . =u, . ,~u, .
y 1,] i,j+4 1,34

which'obviously, gives

2
i, T Yel,572%, %1, (3.5.8)
; (3.5.9)

u, . =u, , ,~2u, ,+u, . .
¥y 1i,] 1,J+1 1,] laJ-l
By ignoring the term involving of order § greater thanm 2 in both

(3.5.6) and (3.5.7) a simple, approximated form of (3.3.4) can be obtained,

i.e.
1.2 1.2 _ 2 2
gﬁﬁxui’j + 2 Gyfi,j = £(x,y)+00 ) (3.5.10)

or by virtue of (3.5.8) and (3.5.9) and assuming h=k (which is commonly

used in practice) we have from (3.5.10) the discrete equation:

- — . F . .=ua. . _7 . = - L+ L N .
ui+13j ui_lsJ AulsJ ulsJ+l ulsJ"I b fl,] Tl,J’ 0<1(N’ 0<J<M
- = e sy i=O,N for j=1,...,N-1 |
ui’j gi,j - g(lh’Jh) ’ j=0’N for i=1’ ..,N_l’ (3-5-12)

where Ti . is the local truncation error defined on page 64. The solution
’

uy ; at the point(ih,jh) can be obtained by solving the linear system (3.5.11)
] .

(where Ti f and further high order forms are ignored), which compactly can
] .

be written as Au =2z , (3.5.13)

where the vectors are of size (N-1)(M-1),
u includes the components of unknown U 5 i=1,...,N-i,'j=1,...,M-1,
I’

and z=f+g, f has the components fi 5’ i=1,...,N~-1, j=1,...,M-1,

and g consists of the values emanating from the boundary condition (3.5.12),

and the matrix A of order (N-1j(M-1) has the tridiagonal block form, i.e.
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—B ._I | —
-1 B_-I 0
S - -~
-~ ~ - .
. : ~ -~ - ~ . :
A= \\ ~ ~ ~ ’ ' (3-50143)
- '\\ ~ .
0 -1 B -I '
i ~-I B

(Notice the equations of (3.5.13) are assumed to be ordered row by row

from left to right or reversely, or column-wise), where

.—4 -1 . -y
-1 4 -1 0
\'\ \\\\“'\\
B = \\‘\\\\\ l » ' (3.5|14b)
0 TNel Y4
L -1 4

and I is the unit matrix. Both matrigces B and I are of order (N-1).
(N.B, for the case of annular regions.the derived equations may lead to
a similar block matrix A (3.5.l4a) but matrix B in (3.5.14b) has an extra
element at ﬁhe off-diagonal top right and bottom left hand corners (see
King (1976)).

It is important to notice that the solution obtained from (3.5.13)
will have accuracy (in relation to the exact solution) of O(hz), where

the local truncation error, Ti 3 of equation (3.5.11) has the form:
b

: 4 4
1 .2 3 u 9 u 2.
T, , =<5 h {(———0 ) }= am?) , (3.5.15)
i,3 12 4 (S,Yj)- ay4 (xi;l)
where x,-hgogx,+h, vy.~hgigy.+h
i i Ui i
| 1.2 3%y 2%y
or T, . = z h max ~Z % .
5] RUNR) ‘ax 3y

This last result leads us to observe that whenever h tends to 0, the error
term (which is proportional to hz), Ti,j*o’ and hence the numerical method
has the consistency (compatibility) property. However, the concepts of
consistency, stability and convergence have been defined in Section 3.3,
but the related mathematical theory (including the existance and uniquenesé

of the solution) will not be discussed for p.d.e.s (relevant references:

Smith(1978) Wendroff (1966), Fox (1962)).



90

Thé strategy of improving the accuracy:in the solution of the discrete

~ equations (3.5.11) can be vigwed from the following points:

(i) as always we can reduce the mesh, h, but this increases the
dimension of the system (3.5.13), which becomes‘too large for
'storage in the computer memory. This approach includes Richardson
(see Smith Cl978)),

(ii) including the terms éi and g& in (3.5.6) anua (3.5.7) but this will
incur the penalities of.increasing the bandwidth of the matrix
but-decreésing the size as well as introducing extreme difficulties
aﬁ the Boundaries (Comparé Figs. 3.5.2 and 3.5.3).

and

(i1i) the diagonal eleﬁents can be included in the approximation of the
derivatives to avoid going beyond the boundaries of the region (see
the molecule of Fig.3.5.4). This will not be so accurate as scheme
(ii) above but is easier. If the molecule of Fig. 3.34 is applied

to (3,.5.10) we will have a similar system as (3.5.11), but the first
1,2 '

term of the r.h.s. will be - Eh £,
L
points at the points outside
boundaries the boundaries

(1,1) ¢

i

¥arl
N
Fa
L
—~
.—l
-
=
- O
1
: \'
‘-& g g
Faot
-
o
3

FIGURE 3.5.2: Molecule of using FIGURE 3.5.3: Molecule of using
2
8 ,62 and has the 64,64.and has the
Xy Xy

form overleaf form overleaf



i-1,]

i-1,3+1

i-1,j-1 i+1,j-1

FIGURE 3.5.4: Molecule of usingnﬁi,ﬁi (on the diagonal grid)

The deferred correction technique (see Section 3.3) which was based
on expressing the local truncation error in terms of differences can be
applied for partiél differential equations provided that the solution is
well-behaved (i.e. the existance aﬁd unidueness of the solution is assumed,
‘and the appropriate functions are sufficiently differentiable). As for
ordinary differential equations, We‘can start with an initial approximate
solution, and by difference operations, evaluate the correction terms.
Therefore, these corrections can now be insertéd in the initial finite~
difference equations and the "new" equation solved on the same mesh for a
more accurate solution (Fox (1962), Smith (1978)). For example, for the
Laplace equation (3.5.3) which can be written by virtue of (3.5.6) or (3.5.7)

(where h=k) as,
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2 2 - |
LA 2y oo (3.5.16)
h™ 9x ay
4 1,.6 .6 C,
where = C = ;—{12(6 +8 ) + 0(6x+éy) eee ]

From (3.5.8) and (3.5.9) the discrete form of equation (3.5.16) is

“ui+1,j_ui-l,j+4ui,jfui,j+1-ui,j-l + C(u)i,j =0, (3.5.17)
Now we solve (3.5.17) for the initial approximate solution by setting C(u), .=0
. -
The next step is to compute C{u). ., only for the terms 54u . Géu. . by
. 1,] 1,]° ¥ 1,]

differencing every line of points in each of the two directions (0x and Oy),
and hence (3.5.17) yields an improved solution., The process can be repeated
if necessary. . |

Sc far, we have illﬁstrated how to solve the Poisson and Laplace
equations by using the five-point formula (with its computationai molecule
shown in pagé 91), (see eqs.(3.5.11), (3.5.17). Now, we demonstrate the
procedure of deriving a more accurate formula, i.e. the nine-point formula
(Fox (1962), Smith (1978), Salvadori and Baron (1955)) where the order of
the l.t.,e. is increased. |

We define the following (on the assumption that h=k for both the

Poisson and Laplace equations as before),

2
Dy = 5%
]
D = — . 3.5.18
| v ayaz ( )
and ny =m |
2 .2 2

so that the Laplacian operator Vv =D +Dy

By Taylor expansion, we have for example,
2 2

(u(x)nrdwu(s:) P Heu v )

R 1 ..d .3
(1+(h——) + -r (11-—-)2 + 3T (ba-;)

b

= e X 40w

"

u{x+h)

+ ene )u(x)

i

hence, we may write on the basis of the above result



Yix1,] Y%,]

Ll i,

ulil,jil - e 1y3
+ 2hD

u =e Ty

it2,] i,]
+ 2hD-

“hir T T M,

=]

We define Sl,S and S, as follows

2 3
S =

. . . Fou, -
1 ui+1,3 * u1~1,J J:.,_1-!-1 ¥ u;,;—l

2 T %1, 40 T Y-, T

=4, , . +tu, ., . +u, ., . +u, .,
3 uJ.+2,J u1—2,_1 u1,3+2 u1,1~2

FIGURE 3.5.5

x’Dy in (3,5.19) are defined in (3.5.18).
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(3.5.19a)

(3.5.18b)

(3.5.20)
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1%
and S3 in (3.5.20) have the distances h,/2h and 2h from the centre point

It can be easily observed from Figure 3.5.5 that the points of S

(1,3).
Therefore, by using (3,5.,19), we obtain for

4 6

- 2,2 h, 4 .2 h, 6 . 22 \
8§, = B+n"p" + v\l Zny)+ eV =37 ny)+ . U s _
§, = [4+2h2V2+.Ei(§4+4D2 )+ —-}-1--6-(v6+12v2D2 Y+,..] u [ (3,5.21)
2 : 6 xy 180 Xy [ ) i_,j [} [ a
and. :
_ 2.2 &4 4, 4 2 8 6,6 .22 J
S, = [4+4h_v +3h (v -znxy)+ 7o B (j 3v ny)+"']ui,j ,

(where ny.is'defined in (3.5.18).

we obtain the

By eliminating the temm (Diy) between S1 and SZ’

following nine-point formula:

2 1 1 .2 4 '
v ui,j = 6h2(4SI+S2 ZOui’j) 3 h™y ui,j + Tp ’ {(3.5.22)

where Vausvz(v2

u)=V2f and Tp refers to the iocal truncation error for
the Poisson equation, which is of O(ha). Further, for the Laplace
equation V2u=0, the term Tp vanishes, instead we have

2 B _ | '
¥ 45 T (431+S2 20ui,j) + TL s (3.5.23)

where TL is now of 0(h6).
Symbolically, the Poisson equation is exhibited for:

(1) the five-point formula, in the form,

-1
-1 4 -1| u=-n’s
and -1 _
(ii) the nine-point formuia in the form
<1 -4 =1 ,
-4 20 -4|u=-6h’t -2 n* VL,
-1 =& -1

Other combinations between (3.5.21) yield different formulae, for

example, S -1651 gives for the Laplace equation as (in symbolic form):

3
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-16 ‘
p2u =—te {1 -16 60 -16 1]u, , + 0(h6) ‘
12h2 . 1,1
-16
i 1 ‘

- For the Biharmonic equation which is a more complicated partial

differential equation of elliptic type and has the form:

. 2 2
Vl'u = Vz(é—i- + -a—-z)u =0
X 3y 3
2 2 2 '
=(az+az)(az+az)“
X ay 9X oy
or in symbolic notatiom,
. : -1 -1
Vau - L -1 4 =1j|-1 4 -1} u, . =0
n 1]
-1 -1
e 1 -
2 -8 2
=% |1 -8 20 -8 1l u . =0
h 1,)
2 -8 2
1

Finally, we consider the Poisson's edﬁation (3.5.5) under periodic
boundary conditions on a square {or rectangle) plane such as encountered
in Plasma_problems {see Hockney (1965). (Evans (1979) also considered
(3.5.5) 1in a square region with periodic conditions), The effect of the
periodic boundary conditions caﬁ be regarded as eﬁuivalent to the solution
.being periodically repeated in both directions Ox and Oy (or merely in one
direction.for some cases (Wood (1971))., By rewriting (3.5.11) (and
suppressing the term_T) we have

' 2

. . . ’ A
Sied, im0 T L 5 g TR By BTR el

where the region is assumed to be a unit square covered by a square
fad
grid of size h=1/N. Then the periodic boundary conditions can be

presented in the form,

e
S0 e %

f L]

] (3.5025)
£, a . . a=f, :
i+kN,i+kN 1,]
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where the k is any integer and the indices are to be interpreted modulo N,
Consequently, equations (3,5.24) with boundary conditions (3,5,25)
can be written compactly in the form
Ag =d, | (3.5.26)

where the matrix A is (§2Xﬁ2) and has the form

B -1 -1
-1 B -I; 0
Y h b
A= \".. RS S
~
\\\ RN \\\
0 SN
-I "B ~-I
-1 -I B
and
4 -1 -1]
-l 4 -1 0
b ~ ~
‘\‘ \\ \.\
B = \-\ ~
-~ ~ ~
0 RIS RS |
-1 -1 4

doA A
{NxN)
However, the system (3.5.26) has not got a unique solution{Berman and

Plemmons (1979)) since the matrix A is singular,



CHAPTER 4

NEW ALGORITHMIC METHODS FOR THE SOLUTION

-OF BANDED MATRIX EQUATIONS
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4,1  INTRODUCTION

In this chapter, we shall consider several algorithmic methods for
the solution of the linear system of equations which stem from the
discretized mathematical physics problems via the application of finite-
difference procedures. We are, as it was pointed out earlier, mainly
concerned with the type of linear system where the matrix is banded (and
may be sparse) and has constant elements, as in the algorithm of Section
4.2, for non-constant elements, as in the algorithm of Section 4.3.

The algorithms described here involve the factorization of the
coefficient ﬁatrix ihto inverted semi~banded matrices, and hence the
solution is obtained by forward and backward algorithmic processes.

Two kinds of factorization scﬁemes are adopted in this thesis, i.e,

(1) Factorization in Invertaﬁle Cyclic Matrices (FICM),
(2) Factorization in pseudo-Invertable Rectangular
Matrices (FIRM),

The FICM and FIRM algorithms are associated with periodic and non-
periodic banded matrices regpectively, Different variants of both
methods will be included in the following sections. Convergence,
stability and rounding-error analysis will be discussed for some of
these methods. The extension of the FICM and FIRM algorithms for tri-
diagonal and quindiagonal block matrices will also be given in special
cases (see Chapter 5).

The numerical applications for these algorithms will be dealt with
.in later chapﬁers. This chapter will deal only with the théoretical

derivation and analysis of the algorithms.
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4,2,1 ALGORITHM FICM1

The matrix factorization procedure described in this algorithm is
for use in the fast numerical sclution of coﬁstant banded symmetfic
linear systems, For such a special linear system, we will show that it
can be solved efficiently by the factorization of the coefficient matrix
iﬁto 2 easily inverted matrices and the solution obtained by forward and
backward substitution schemes,

We éonsider a general real linear system of the form

Ax =z (4.2.1)
where A is a'matrix of bandwidth (2r+l), r2l of order N (N>2r+l) |

and has the {general) form:

b c c. ___¢ c
0 1 r-1 r r 1
- ~ ~ ~
cl ~ ~ ~ ~ ~

" We now follow Evans (1973) and consider the factorization of A
so that (4.2,1) can be solved by simple forward and backward substitution

processes in the manner, i.e,,

Qy = 2z .
: “TL - (4.2.2)
and Cx=x
where QQT = A (4.2.3&)

and Q is defined in (4,2.3b).
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In this subsection we are interested only in (4.2.3;), that is,
a general factorization of A into Invertable Cyclic Matrices Q and QT,
where the soiution of the systems {(4.2,2) are discussed in suﬁsection
4,2,3, |

Given that the matrix Q has the general form:

—
== - = =0

V) ' —
0 -1 "r :
~
\\ \\ ~ O
~ ~ ~
N ™ N
AN \\ ~
\\ ~ \\
- - LY
~ ~ AR
Y L a
A Y \\ r
. Q = \\ ., o ’ (4-2.3]3)
o AN r-1
r 0 ~ '
[ \\ |
1
i \\ h '
~ ~ l
( N N
& \a \al
[ "1 T o ]

then by virtue of equation (4,.,2,3a), if we multiply Q by QT, and equate
corresponding elements to A, we obtain the following non~linear system

of equations to solve for the unknowns uo,al,....ur ’

+ 2 + hzz + 2. c ‘
%o T UL et Tpap T Oy 0
aq%y + @40,y +...+ar_2ar_l + G0, = ¢y
- by (4.2,4a)
%0y + a1u3 +"'+ﬂr*30r-l + I | <y
90°r B crd

or in abbreviated form (4.2,4a) can be written as
r
) izk aca. g = c:k . k:o,l,...,;- (4,2,4b)

which has to be solved to determine the (r+l) unknowns Ggalyaeeesd o
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4,2,2 TITERATIVE METHOD OF SOLUTION (GITRM)

To solve the non=-linear system (4.,2.4) we choose a generalized
iterative method, and, for reasons of algebraic simplicity, we define

the quantities A as follows:

1°%2

A

Y
+ 2 E

c, " (4.2.5)
i=1 * '

1 %
(4.2 '6)

where t and s are defined as:
r/2 -

(r+l}/2

i
H
o]
o
Pa

b (42,7

and

r/2 -

(r-1)/2

T even

r odd.

)

Now, the GLTRM method requires the following necessary conditioms
for the equations (4.2,4) to possess real roots,

AL >0 (4,2,8a)

1

and . AL >0 .

2 (4.2.8Db)

In fact, the conditions (4.2.8) do not require the matrix A to
be diagoﬁally-dominant, except for A being tridiagonal, i.e. the case
where r=1 (see Evans (1973)). We clarify this point further by

introducing two examples of banded matrices:

r=2 » [~ -

Examgle 1:

RN , (4.2.93)
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Example 2: r=3

21 -15 6 ~1 ~1 6 -15
-15 21 -156 -1 ' -1 6

~ ~ - ~ ~\ L
6 ~ ~ ~ NN ) -1

~ A .
2 ~ \\_\ N y (4.2.9b)

-1 ~ \\ \\ N \\\\ 6
) ~ NN N

6 =1 Soone Ny W15

-15 6 -1 Y16 =15 21

—

where both matrices can be derived from the an order periodic boundary

value problem (see Chapter 3), In the examples (4,2,9), ll and AZ can

easily be obtained from (4.2.5) and (4.2.6) respectively. Thus, we

1’ Al=1, A2=17 and for A,, Al=l, A2=65 and hence in both

and Az satisfy conditions (4.2,8), altﬁough the matrices

have, for A
examples Al

A1 and A2 are not diagonally dominant,
However, the only restrictions we impose upon the matrix A are (1)
that it must possess positive diagonal elements and (ii) that in each

row the diagonal element is the largest one amongst the.other elements,
ie. ¢q > 0 and cq > |ci|, i=l,2 5009, (4.2,10)
noting that A is symmetric and possesses constant elements.,

We proceed now to solve the non-linear system (4.2,.4)., Our
major interest in this respect is to modify the first equation of
(4.2.4) to a more simpler form., This modification can be accomplished
as follows,

If we multiply each equation (from the an onwards) of (4.2.4) by

2 and add to the first equation, then the first equation becomes
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2
.(0«,0+ +,..+a, )+2(a o +u1 2 ..-+ar_ o Y+2(a G-2+Ct Gatessta -2ar)

173

+...+2(aour) = co+2c1+2c2+...+2cr . (4.2.11)

In fact, the L,H.S, of (4.2.11) is the expansion of the

, 2,
expression (o +al+...+ar) , 1.2,

0

(ao+a1fn--+ar)2

2.2 2
(a1+a2+...+ur)+2(aoa1+.,.+ar*lar)

f2(a0a2+...+dr_2ar)+.--+2(a0ur? . (4.2.12)

Thus from (4.2,12) the equation (4.2,11) can be rewritten in

the form,

(u0+ul+az snet ar)z = CO+2C1+2C2+300+2Cr » o : (4-2.133)

or, by the assumption (4,2,5), we can replace the R,H.S. by 11. i.e,
(4,2.13a) becomes,

(4.2,13b)

[}
a0
-

2
(do+ul+a2+... ar)

Since A is assumed to be a positive quantity, by condition

(4,2,8a), then taking the square root of both sides of the equation
(4.2,13), we have

- o 4at

ao+ul+a2+...+ur = ill

At present we will consider the positive square root of Al'

In this case, the final form of the (modified) first equation of (4.2.4)

ata to,teseta = {(4.2,14)

is
!
: 0172 r 1°
. . , nd .
Now, taking equation (4.2.14) with the 2 equation and

subsequent aquations of (4.2.4) we can formulate a system whose

solution is that of (4.2.4). This system is
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+eaat =

ao+a1+a2 ar CO

‘ aoal+ala2+... ar—l#r = c1
Uplpta datesata _zar =<, ) - (4.2,15a)
%0% = S /

or in abbreviated form,

[}
0

Z % 0
- (4.2.15b)

r
.z ao, o = C k=1,2,4004,T
i=k

where Eb=li, and hence the first modification of the system (4.2.4)
is completed.

Now, the second modification involves replacing the 2nd equation
of (4.2.,15) by a new equation in simpler form similar to the first
.equation in the system (4.2,15). This can be done as follows.

If we square the first equation of (4,2.153), and multiply the
2nd equation, 4th equation,...(r+l)th equation, if r is odd (or the
rth equation, if r is even) of the same system by (-4) and add together

the new second equation of (4.2,15) will have the form,

(i) for r odd,

(a0+a +oy

1 2+ooo+ar)2-4(a o

0 1+Q'rl 2 +40ato r‘lur)_k(m

037 1%,

~ 2
+lli+a_r_3ar) XN A(QOGr)_ (co) "4(:1 463 X Acr

= A1-4C1-4c3-100-4cr

(E’O is defined in (4.2.15))

= (c0+2c1+2c2+...+2cr)—4cl—4c3-

---_acr
(Al given by (4.2.5))
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= c0-2c1+2c2-2c3+2c4-...+2cr_1 -2cr- (4.2,16)

The left-hand side of {4,2.16) can be simplified further by
expanding the term (a0+...+ar)2 which is given by (4.2.12), and then,

by clearing up terms, we arrive at the result,

L.H.S.

2 2 .
(Q0+al+coo+ar) -2(a0a1+...+ar_1ar?+2(u0a2+--.+ur_2ar)

: - - - _\2
~2(u0a3+...+ar_3ar)+.f. Zaga, = (ao a;*o, "oyt ar)

(4.2,17)
Thus, replacing the L.H.S. of equation (4.2.16) by its
equivalent in (4.2,17), we obtain,
( 2

ao-a1+a2-a3+...-a1) = c0—2c1+2c2-2c3+...—2cr (4,2.18)

(ii) for r even,
By following a similar procedure to the above, we can obtain the

following result,

2
(0=t 0, =0yt ar_1+ar) = ¢ m2¢ *2¢,m2¢ %0020 *2C

{(4,2.19)
Equations (4,2.18) and (4.2.19) can be combined to be written

in the form,

r 2 T
(GO a1+a2 o-o+( 1) Gr) = CO 2C1+203 -oo+( l) 2§r ’

or by using the integers t and s, given by (4.2.7), this equation,
can also be written in the form,

a0t )]2 = C +2(c +¢ Foa et

0] 2 4 25)

"2(C1+c3+. » .+c2t_1) » (4.2.20)

[(a0+a2+. . +§25)-(a1+a

3 2t-1

Since the right-hand side of (4.2,20) equals 12, given by

(4.2.6), and Ay is positive by the condition (4,2,8b), then by
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taking the square root of both sides c¢f the last equation (again we
consider only the positive square root case), we have

) = x*. (4.2,21)

u0+a +...+a25_(a1+a3+...+a2t“1 2

2

Thus, the second modified system can be obtained from (4.2,15)

by replacing its an equation by the equation (4,2,21), i,e,

i) 4

u0+a1+a tooata_ = 4 (=l1

2

—y —y - = .
G0+02+'n-+a25 al 33 e azt_l %

. (4.2,22)
}

aoaz+alas+...+ar_2ar = C2

aoaz = Cr J

Finally, by adding, then subtracting the first two equétions,

we obtain n
+...+ = C
2 925 0

) Fal
and al+a3+o||+a2t_1 = Cl ’

a_+a
o]

, . , IS O N SR I
with s and t defined as in (4,2.7) and 25 i(ll+l2), e i(kl Az).

Thus, our final form of the system, having the same solution as

(4.2.4) and (4.2,15) is:

+ + _A 3
ApTgtrestiys T G
Fal
UptegTeeetByy TG }
o+ + = ¢ l (4.2.233)
GolpTes s Tyl Oy 2
.0 = c )
17r r
or in abbreviated form
8 o
3 oy = Eb
i=0
§ N . (4.2,23b)
Cos_ = c ;
{21 2; 1 1
r
i;k aiai_k = ck 3 k=2.3,..-,r.J
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Now, an iterative solution scheme for the non-linear system

(4.2.15) can be written as

- — r— —
11 1 A | raé“,)a <
- (n-1)  (n-D) (n-1) D‘(n)
%0 @y T Or-1 1 “1
(n-1) (n-1) (n)
% T T Tee2 | %2 ©2
S ! | |
{ R (4.2,24)
0 h ! ' i
.| ]
N @ @] ]
%0 ] “r 3
| L L
and for the non-linear system (4.2,23), as
1 o 1 o T 7 [2]
______ P 0 CO
1 0 1 —----q ain) e
fmD) -y D]
0 1 r=2 oy ¢y
N |
\ | ; |
\\ " | | = : (4.2.25)
AN E { i '
]
A ' | |
0 \\ { | [
\\ i ‘ 1
@D | [ e
. o] _ LT ] _ ¥

where n denotes the number of iterations, i.e. n31l and the initial

vector g}0)=[aéo),a£0),....aio)]T is an arbitary starting solution
with GO#O, and 0 -~ rodd
P = 1 - ¥ even
with q = 1-p.

Since the systems (4.2.24) and (4.2,.25) are upper triangular in
form, then.ao,...,ur of the system (4.2.4) can be computed by a simple

back substitution process for each iteration, i,e., at step n, we have:
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ain) = cr/aé#-%)

@ _ . _ F @D @, 61 . _

aj (e, i=§+1ai-j o )/a0 \,_J r=lyeesyl f

) r . ‘
A A '
=1 (402.26)

for (4.2,24) and |

ain) = cr/aénql) . ]

r _ 1y
a}n) = (cj - Z uifﬁl)agn))/aén 1) y Jer=1,..4,2

1=j+1

']
[£]
|

c
0L](-n) A ) aé?zl (provided t32, otherwise the \
j= ] nd _

2 term = Q)

s
aén) = 86 Z é;) {provided s31, otherwise the
=1 an term = Q)

/

(4.2.27)
for (4,2,25). '

The iterative processes (4.2.26) and (4.2,27) are terminated
when the solution vector has converged to the required tolerance.

Hence the elements of matrix Q (and QT) can be determined.
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To obtain the solution of the given system (4,2.1), we first

consider the relation of (4.2.2) whose matrix form can be expressed as °

r

b

-~
b

R-~-Q

To
S

d. Oy e e = -0
07172 r
U, Ojaeea O o
071 r-1 r
N ~ N
NN N
NN
~ Y
\\‘ N N
~ ~
A
AN
RN

1 21
Y2 %

I I

| |

: |

I 1

I = i

| |

|

' !

|

| |

1 |

' !

I i
LYy =N

(4.2.28)

To solve for y, we perform an elimination process in order to

reduce Q, the matrix of (4.2.28), to a lower triangular matrix, i.e.,

we proceed to:

-

multiply the Nth equation of (4.,2,28) by —;L and add to the

(N—ljth equation to obtain a new (N--l)th

then we multiply the new (N-l)th equation by

“Q

)
equation,
~a,

and the N©
0 .

h-

equation by -—z-and add to the (N--2)th equation to obtain a

%o

new (N—Z)th equation,

. . . ' t .
This procedure is continued up to the (N-r+l) h equation,

In general to obtain an:(N—k)th new equation, we multiply the

-0

*

(N‘k"’l)th Equation by ""E]"'-' » the (N"k+2)th e.quation by -a'%.ctc’ the

0
: e T
(N-k+r)th equation by -;5 and
0
k=r. r+1 g e 'N_r+1 .

0

.édd to the (N-k)th equation, where

To obtain the remaining new equations in the rows r-1,r-2,...,1

" the procedure which is carried out is as follows:
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We multiply the (r+j)th equation by —EEIL, i=1,2,.4.,x"k, and
o
0
th . . th .
add to the (r-k)  equation to obtain a new (r-k)  equation, where

k=l'2'0.l,r_1l

The above elimination strategy can be formulated as follows:

Let
Qe _ = for jsi i=l,2,---,r,
£ . =41 (4,2.29)
Ll 0 otherwise 23=1,2,4000,"1
c ~ % for j=i
i.N+j -, . '
O ) therWlse i,j=1'2’llo ,1’.' (4.2'30)
and m, = "ai/ao .
We now form the quantities,
. S
r o’
= _ k=1{(r
fk,j - .z mifk,j+i+6 » 8= 0, otherwise
i=1 j=N,N-1,
r l.l’r
., =z, + . h =0 f N
ey zJ kélmkeJ+k’ where e or all t>!
(4.2.31a)
and r-i A~
- - 3
k,r-1i j=lmi+jfk,r+j+fk,r—i’ k=1(1)r

where the £'s are given by (4.2.29),} i=1,2,40s,r"1

r-i

e .=z .+ )} m .e . .
r-i il i+] r+j J
. (4.2.31b)
Thus, the given system (4.2,28) now has the form,
1 fmf‘:'fnl 1 il eﬂ
f t
VT2 Y2 &
| § \\ { I
| [ ! L
) ~ £ 0
P TsT b= | ! (4.2.32)
S g ! [
| t ' r 0 i
| ' ‘ i
[ i | S !
i ) i \\ i I
I 1 : O \\ 1 1
fonfan -y R I R I
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Now, we proceed to eliminate the coefficients £, , for all i>j,
. ‘ ]
i=l,..s.yr~1 as follows,
for i.-'-l,z,...,r'l, v

. A )
let k=r+l-1,

Bk

_fﬁ,k/fﬁ}i' then we have

(D) D G

J,k j,k i,k j,k 2 j=1,¢¢.’r-i }k=1,2|ooa,r_i, (4-2.33)

LD | G-, (D

and k k i,k )

. .th . . ,
where the superscript refers to the i~ gtage of the elimination

(0)_

(0). _ L
process and fz,v'fﬂ,v and e  'Se_ are as given in (4.2.32),
Thus, having completed the elimination (4,2,.33) the lower triangular
matrix in (4.2.32) is obtained and immediately the auxiliary
solution vector y is given by,
vy = e /Eyy

¥y = (&g E10 /8y

" -1 , ‘ (4,2,34)
Ve © (er - .Z Yifi,r)/fr,f
i=1
¥ .
where fi ; for igj and ej, J=lysss,x=1 are given by (4.2.33) while the
s

remaining f's are as located in (4.2.32).
(N,B, in practice one can replace the denominator in the R,H.S. of

(4.2,34) by
£. . s for jsr
1s] 3=1,2,..4,N.

, » otherwise

Then the £final relation of {4.2.21) can be used to evaluate

-
(]

Yyreessy, as ﬁell, provided that y must be CLEARED in the computer

store, i,e, the ygs set to zero).



A similar solution process is also carried out on the companion

system T

111

Qx=y | (4.2.35)

which will have the final form:

- T ¥
0 e =5 n E ol ¥ "y

]
|
i
|
}
|
|
{
|
I
1
t

Ter cwr v mm wm omm mm mn e e e o

i

i

|

'

|

)

|

|

i

|

]
N N
o i L]

1,1-J

where f's are as given in (4.2.34), and Npsesesn, are defined as follows:

N

fa)

Let ﬂk = nN_k+1a yk = yN_k+1’ k=1,2l“"N

then, 45 can be simply evaluated as e in (4.2.31), i,e,,

. - .

ﬁj = ?j + Z mka5+k’ where ﬂtzo for all t>N, j=N,N-l,...,r
A . r-i A
and A =5 .+ Yo 5 ., i=1,2,...,r-1,
r-i r-i 521 i+j 4]

Also due to the elimination procedure presented in (4.2.33) the .

quantities ﬁl""'ﬂr-l will be modified at the ith step, 1=1,2,..4,T

exactly as €rresese o Notice that we retain the notation of the

modified elements to avoid further complication.

(4.2,36)

Hence, the solution is given by the back substitution process derived

from (4,2,36), i.e,

Xy = ng/fpy

K-1 = Oy %f12) /fyn o

+ . . } (4'2037)
N-r+l (nN-r+1-fo1,r_"°-xN-r+2fr-l,r)/fr,r
1 .
and ?Cj = (nj - 'Z }KN+i-rfr+1_i’N+1_j)/a0’ ,]'-'-N-l’.',N"'r"l....,l.‘

1=r
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Again, we point out that the last relation of (4.2.37) can be used
to evaluate #N’XN—I""fXN—r+1 which has been indicated previously.

- Finally the computational complexity of the algorithm for the
solution of (4.2.1)_iu§01ves approximately O(5Nr) additions and
multiplications (where divisions are assumed to have roughly the same
consuming time as multiplications) together with the predetermination

of the a's,
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4,2,4 A POLYNOMIAL SCHEME FOR THE SOLUTION OF THE MODIFIED NON-LINEAR

SYSTEM

‘ oy t
The strategy used is to form the polynomial, p(a) of any one of the

a's, say L0 and derive the smallest zero by the Newton-Raphson method,

Let us consider the following cases for the modified non-linear

system (4,2.23),

(i)

(ii)

For r=1, the system (4,2,23) will consist of two linear equations

only, These equations are:

~
a, = c
O _ A (6.2.38)
*1" %
where Eb and Sl are defined earlier, and in this special case
are given by
& < 1odad = pe s2e (e m2e )
0 172 01 o 1
and (4.2.39)
2 oodal - b oe oyt
c; = 100 = H{ej*2e ) =(em2¢ ) )

The unknowns ¢ ,a. are obtained immediately by (4.2.38) and hence-

0" 1
we conclude that, for the system (4.2.1) being periodic tridiagonal,
(i.e. r=1) the iterative solution process is not required, i.e.
the procedure (4.2.25) (or (4.2.27}) is not applicable for this

special case,

For r=2, the system (4,2,23) consists of the following equations:

A
@y ta, = ¢y
al - Cl (4.2.40)
A, = Cy. |
The polynomial in a, can be easily formulated from the first

and the last equations of the system (4.2.40) and has the quadratic

form _ 2_A =
pla,) = 4 Co¥,te, =0, (4.2.41)

from which we can easily evaluate g, and consequently .3 with

2 0

A
=C

%1751
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(iii) ¥or r=3, the equations of the system {4,2,23) are

a4 +a =2 )
o 2 0
A
C!1+0L3 = Cl } . '
oa.+a. 0., = C (4.2.42)
027173 2
*0%3 = %3 )

The polynomial in ay can be derived from (4.2.42) and expressed

in the form of the gquartic equation,

- ba 3 2a 2 _
play) = a=Cjaste,a ¥e ca el = 0, - (4.2.43)

Furthef it can be easily seen that p(uA) will be a polynomial of
order 8, Therefore, in general we can say that

02", o1,

[}1]

P

(@)
Now, as r increases, the polynomial p(ar) becomes increasingly

more difficult to formulate and to solve and therefore alternative

solution methods have to be relied upon,

Remark 4,1

 After the completion of the work in Audish and Evans (1980) describing the
iterative method (GITRM, Subsection 4.2.5), of solving the non-linear
system (4.2.4), a direct method for a special case of the system (4.2.,4)

was presented by Berg (1981), (see Appendix A).

4

-
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4,2,5 STABILITY OF THE METHOD

The method involves, as a first step, sélvihg the non-linear set of
equations derived from the factorization of the coefficient matrix, and
then, as a final step, solving the two linear systems of equations to
produce the solution of the given system (4.2,1). Hence the stability

of the method will clearly depend upon both steps. Thus, the

investigation of the stability can be categorized into two parts:

(A) The Stability of‘the Iterative Method (GLTRM)

We have seen that equation (4,2.13b) yields two values of A,, i.e.,

1

and equation (4.,2.20) yields two values of Aé. i,e, tlé- The

of the system

o,

constant values EB of the system (4.2.15) and 26 and 31

' : . ~ : A A,
(4.2,23) are defined, ¢, in terms of Al and s and c, in terms of Al,xz,

and the positive square roots of Al,lz were taken, Therefore, by also

considering their negative square roots, we have the following possible

cases tabulated below:

Case 10 g = Ai ,

'~ Case 101 & = -Ai '
Case 11¢ E?O - !(liﬂé), 31 = i(xi-mé) ,
Case 111 e, = 5(1%-;\3). e = i(xiﬂé) ’
Case 112 & = i(-?\iﬁ\é). e = -&(Aiﬂg).
and Case 113 e = —i(liﬂé), 31 =§(-Ai+lé) .

In fact, the cases 1¢¢ and 1¢1 indicate that the modification
procedure discussed in Subsection4.2.2 leads to the formulation of two
non-linear systems instead of one (i.e, the system (4,2.15)). Also,

the cases 119 to 113 lead to the construction of the system (4.2.23)



and of three other systems related to the cases 111 to 113. The
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iterative method GITRM was not applicable to the systems associated with

cases 111 and 112 but was applicable in the other cases. We now clarify

this point further.

]

The cases 10@ and 1@l lead to values of the a's which are equal but

opposite in sign; similarly for the cases 11¢ and 113.

cases 111 and 112, the results showed that convergence was not always

Whilst, for the

possible. In addition, the condition of the diagonal element (ao) being

the largest in modulus was not satisfied by cases 111 and 112, whilst for

the remaining cases, the conditionms,

]ui|<|a0[ » for i=1,2,...,r,

(4.2.44)

was satisfied. Noting that condition (4.2.44) is similar to condition

'(4.2.10) which was imposed on the elements ¢

0

»C

17"

Let us now consider the convergent case 114,

“3C

of the matrix A.

(1) We set r=l. Then from the equations (4.2,36) we have the ratio

e ta, = €18
1o~ "1%0 °

Now, if we follow Evans (1973) and substitute & and & in terms

of Al,lz,'and then in terms of €0*¢y

(4.2, 39) we have the result,

i 4
%1 li_f_zf
(8] A1+h2
: o Ag=h
or —-:-I"-= 1 2
o

)
0 xl+2(xlx2) X,

and by using (4.2,37),

4c1

2_, 2.1
2c0+2(c0 &cl)

By putting a0=l, o)

-ch

2 2.3
c0+(c0 4c1)

a =

which coincides with the value given by Evans (1973).

and ¢

=-q, we obtain the result

0

o @s they are given in



(2)

(3)
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Now set r=2, The three equations obtained from the non-linear
system (4,2,23}, i.é. the equations (4,2,40), are the same as
those given by Evans and Hadjidimos (1978). However, they obtained
o0y {and ai) by solving the equation (4.2,41), and 8 triples

were dbtained (see Evans and Hadjidimeos (1978)), Iﬁ fact, these
triples can be easily obtained since the quadratic equation

(4,2.,41) yields 2 roots and the constant Eb of this equation has &
possible values giveﬁ-by the caseé 11¢ to 113, Two of these tripleé

lead to the optimal solutions which'coingide with cases 11¢ and 113

(or cases 1¢¢ and 141).

Finally, we set r=3, A Newton-Raphson iterative technique was used
to obtain the smallest root from the quartic equation (4.2,43). The

values of the a's, i,e.,, the solution of the system (4.,2,42) which

‘were obtained agreed exactly with those evaluated by the iterative

(8

(4.2,

method (GITRM) given in subsection 4.2,2,

The Stability of the Solvable Linear Systems (4.2.2)

We consider an example with the coefficient matrix A in the system

which is

1) being periodic quindiégonal, and choose A to be Al

defined in (4,2.9a). Hence the matrix Q defined by (4.2.3b) has the )

form, — ]
- % %1 %
\\ \\ N 0
RN Y N
\ ~ N
. \\\_ N
Q= \\ ~ \‘ (4.2045)
S \\ 0'.2 .
(NN
\\ N
(12 \(10 (11
%1 %2 %]
The elements €o*Cy and <, of the matrix A, for this special case, are:
€ = 7, ¢, = -4, <, =1
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and hence the quantities Sb and ¢, of the system (4,2,40) can be

1

evaluated, i.e., 30=§(1+J€;), €i=i(1-/€;3 since A1=l, A.,=17, Therefore,

2
the elements of the matrix Q in (4.2.45) can be determined by solving

the system (4,2,40), On the other hand, if we consider one of the

non-convergent casés in part (A), say case 111, then Eb and 31 becone,

'c‘o = Q(Ai-ké) = &(1—/1__7_3
A booby
and c, = i(k1+A2) = &(1+/€;3 .

By substituting these values in the system (4.2,40) and solving

for a_,a. and a_ we obtain the results:

0'%1 2 7
Loy = i(1+¢€33
ay = l:éiz(lifgi, a, = 1:%£?<1t/53.

Subsequently it can be easily verified that |a0|<a1 and hence
‘the matrix Q of (4.2,43) does not possess a diagonal of largest
magnitude (i,e. the condition (4.2.44) is not fulfilled). This is the
case which we for two reasons exclude from our considera;ion of this
method: (i) the convergence, as pointed out in part (A) was not assured
and hence the determination of the elements of the factorized matrix are
unattainable, and (ii) even if the polynomial or other schemes are
employed fo calculate the values of the a's such that the ineéualities
(4.244) arenot satisfied, then.the eliminatioﬁ process of solving the
systems (4.2,2), described in subsection (4.2,3), cannot guarantee to
obtain the solution to the desired accuracy due to the influence of the
growth of rounding errors,

However, in the solution of the two systems of (4.2.2), we have
used an eliﬁination without pivoting on the assumption that the conditions
(4.2.44) are fulfilled, Wilkiﬁson (1961) has shown that the Gaussian
elimination is stable against the growth of rounding error if the
diagonal element is the largest element (in_modulus) in each row.

Since, in our case, we stipulate the conditions (4.2.44) then the

algorithm is STABLE.
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4,2,6 CONVERGENCE QF THE NON~LINEAR SYSTEM
ihe genéral form of the ﬁon—linear systéms {(4.2.15) or (4.2.23) can
be written compacﬁly as | | | .
G =d | (4.2,46)
where matrix G of order (r+l) and vector d of (r+l) components (r as

defined earlier) are defined as follows:

either i
1 1 l e o - 1 ‘ R
% %pm - --- ®p-1 ‘1
G0 %17 === %2 €2
NN l i
\ . .
G = \\ S , d = i (4.2.47)
|
\
0 N |
NG i
N 1 ]
N I
o c
L 0 - N r..J
for the case of the system (4,2,13),
2’-:- o - Fa 7
1 0 1 O e = = P c0
1 0 l-o_..- q ’81
% %1----- %r-2 2
) 1 |
G = °L0\\ ver ! d = l
N I ’ : (4.2.48)
\ \\\ : |
\ '
O \\ b : I
o 1
\\\ 1 I
\\ !
i | o |- | °r |

for the case of the systeﬁ (4,2.23) (p and q as defined in (4.2.25)).
To investigate the convergence of the iterative schemes (4.2,24)
or (4.2.25) let us consider a_splitting of the matrix G, such that
G = D+U (4,2,49)

where D is the diagonal matrix comprising the diagonal elements of G,
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and U is a strictly upper triangular matrix containing the elements of G.

Then, when (4,2.49) is substituted into (4.2.46), we have

(D+U)a = 4 ,

which, after premultiplication by Dd.1 in both sides and re-arrangement,

becomes,

.._g_=D-

v Tl

Now, we introduce the vector function

86 = Boladss (@diene .qbr(g_)]T

and suppose that

e =l .

Therefore, from (4.250) and (4.2, 51), we obtain

¢(a) = D

1

d + (-D_lU)g

which involves (r+l) non-linear equations, of the form

(1} for the case (4.2.47) being considerered
S
b m A e
L r
¢, === [c. - _s0:] 5 3sr-l,...,1
~ r
b, =cCc. - zo',.
A S
(ii) for the case (4.2.48) ©being considered
N
o L]
1 r
@. = —_— [C. - Q'.-_«a.]’ j=r_1’|o|’2
I ¢ J i=§+1 173
~ t
41 = S - .E ¢Zj-1 (provided t>2, otherwise
i=2 the 2™ term = 0)
s
A
b =S~ L ¢

(4.2.50)
(4.2.51)

)

\ (4.2.52)

L (4.2.53)




Now, the iterative form for (4.2,51) can be written

(a) for the scheme (4.2.24), as,

(@ _ ., (a-1). o B
“r N ¢r(“0 ) . - .
{n) _ ( (ny (n) (n) (n-1) (n~l))
T A ' A TR AL I
_ : k=r-1,..4,1
(n) _ (ny (n) (n)
U.O = ¢O(C¢r '.ar_lj 1o |G.1 ) )

(4.2,54)
and

(b) for the scheme (4.2.25) as,

ai“? =l¢r(§g_l))
™ -y (n) (o) . (n) (n-1) (n-l))
R A o R L L R e ’
. k=r=1,004,2 |
ain) = ¢1(a£n2---sa§n).u§n))
uén) = ¢0(a§n2...,a§n),a§n))‘ ]
(4,2.553)

It can be readily seen that (4.2.54) and (4.2,55) are Seidel~
type iteration methods (Szidafovszky and Yakowitz (1978)). The
conﬁergence criteria to these two non-linear systems of equations can
bé shown below. The following analysis is based on the Theorem 2.3.2
and Corollary 2,3.1 of Chapter 2.

From the system (4.2.52) and (4.2,53)‘it can be shown that the
3¢, (@)

partial derivatives el O0<i,jgr exist. Moreover, if we consider
3
the system (4,2.52), for instance, and differentiate w.r.t, Y then

we obtain the result,

121
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3¢ - \
= = L ¢
act 2 r
o] ao
3¢ . r
3 .zl fe, - Z @, .0.] -
= . a0 ] s JEr-1,...,1 ¢ (4.2.56)
Buo . aZ 3 =i+l i-3171 \
0
and Efg‘ = E Eﬁi
dat i=1 BU‘O J

By substituting cr,...,c1 from (4.2.15) then the system (4.2.56) becomes,

9¢ -
aar = a_l- [ur]
0 0
30, _
= - 2 (0,15 J=r=1,...,1
0 0
and ' Bql)C) . L E“
¥ g gyt
Hence, we obtain
r 3¢, {(a) r o,
i= i
Z I 3 |= 2-2 ];—l Epo . (4.2.578)
i=1 0 i=1 0

Similarly, we obtain Hpseeeshy such that

r a¢i (a) roa :
i£1| "o |= 2 i§2|ag1 =u s k51,2, (4.2.57b)
ik

By applying a similar differentiation procedure to the system

(4.2.53), we obtain

B2l 1 | (4.2.582)
P = — . .2.58a
0 yop e’ :
r Qe
A 1
H, = 2 - s . A
1 123 I“ol
. r [+ 3
mo =21 |=], k=2,3,.0 001, . (4.2.58b)
i=1 %
i#k-1,k+1
r-2 @y
and M= Z.Z —=| 1
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It can be observed that, from (4.2.58a) and (4.2.57a) we have the

' o
result u - G + 2 I____]_.I
0 0 v}
. 0 )
or ‘ G < Mg+ . {(4.2.59)

Now, the sufficient condition for the convergence of the systems
(4.2.54) or (4.2.53) (ct. (4.2.26) or (4.2.27)) can be obtained by

applying Theorem 2.3.2 or Corollary 2.3.1 to give the result,
W < 1 (4.2.60)
A ,

and . M < 1. (4.2.61)

More precisely, from (4.2.57) and (4.2.58) it can be easily

~

shown that g =max(u,) or M
0] i 1 0 i

the condition required by the

=m?x(ui). Therefore, the final form for

appropriéte theorem is

0< (i) <uy <l , (4.2.62)

where the bracketed term is placed by virtue of the relation (4.2.59).
This condition for convergence was tested numerically on the results

presented in Chapter 6 (Sec. 6.2. The values obtained for M, are

tabulated for various values of r(i.e. matrices of bandwidth 2r+l), and.

presented in Table 4.1. For the initial case r=1, it can be seen that

only weak convergence can be proved,

Bandwidth Value of ip . at convergence
(2r+1) 0
{obtained from the relation
(4.2.57a))
3 5.00x10 1
5 4.17x10"1
7 3.96%10 L .
9 3.80x10" L
11 - 3.79x10" 1

TABLE 4.1
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4,2,7 ERROR ANALYSIS FOR THE LINEAR SYSTEMS INVOLVED IN THE ALGORITHM FICM1

.It is known that, because.computers cannot éerform exact arithmetic,
any numerical ﬁrocess involving a matrix system generally produces an |
approximate solution. Thus, to ensure the stability of the solution
obtained by such a process, it is worthwhile ﬁo assess the bounds of the
rounding errors which grow during the course of its implementation.

We also need to point out that-the algorithm FICﬂl involves the.
factorization of a given matrix into two matrices, Q and its transpose QT,
whose elements are determined iteratively. Therefore, the rounding error
analysis will apply eqﬁally to either of the two systems in (4.2.2), i.e.,

the bounds of rounding errors which affect the solution will be formulated
in terms of the elements of Q {or QT).

Initially, we shall assume that in binary floating point coﬁputer
arithmetid, each number, say x, is represente& internally in tﬁe form,

x=a.2 , Islal<l,

where a is the mantissa, and t the exponent which is bounded by the
binary word lengths of the given machine registers. Folléwing Wilkinson
{1963), the coﬁputed result of multiplying together two floating point
numbers x and y will be designated By £2({x,y). Then,'in general thé
conventional exact mathematical relationships can be expressed as follows,

fL{xty) = (xty)(1+€1) s

folxy) = (xy)(1+52) R (4.2.63)

and £ (x/y) = x/y(1+e3) .

Each e in (4.2.63) refefs to the rounding error_assdciated with
the respective arithmetic operation and is some Vvalue of & such that
I€|=2-t, where t is the number of Binary digits allocated to the mantissa
of the floating point number in the computer.

Now, we consider one of the two systems in (4.2.2) (since either matrix



is the transpose of

the other), say

. T'
Q X =¥
or Bx =y,
T
where B=2Q
and has the form,
P13 By, N-e+1m=-P1 N
. .
By Pay R
. ~ ~ .
. ~ . ~ b
é \‘: \_\ ! r,N
r,l\ \\\ ~ . 0
r+1,1°~ SN
B = < S e . ~ .
i \\ \\ ._“\\ \\
\\ \\ ~, \.\
~ ~ ~ ~
\\ o ~ ~~
0 ~. - S ~.
~ \\\ o \\\
~ b T =aab b
L N,N-r N,N-r+1 N,N-1 "N,Nj
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(4.2.,64)

(4.2.65a)

(4.2.65b)

The elements bi j,i,j=1,2,...,N of the matrix B in (4.2.65b) are
. »

defined as follows by virtue of the relation (4.2.65a),

b. . = a.
1,] 1-]
bi,N—r+j T Yrei-j
and
b. ., =0 for j =
1,]
also
h. . =
1,]
The

.s 1=3,3+L,...,54r,

0 for i=j+r+l,...,N,

i=1,2,...,N.
s J=i,i+l,...,r, i=l,...,r

{i+1,i+2,.. S N-r+i-1 if lgigr

i+l,i+2,...,N otherwise

j=1,2,...,N—r-1-

}i=1,o-‘,N-1

process of solving (4.2.64) is by a Gaussian elimination

)

(4.2.66a)

L (4.2.66b)

process (without pivoting), as indicated earlier. Hence, we shall follow

the backward error analysis developed by Wilkinson (1961), or (1963, page

94) for the linear system (4.2.64), whose matrix possesses zerc elements

given by (4.2.66b),

Let the triangularization steps of (4.2.64) be given by
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Ry = y & (4.2.67)
where k=1,...,N; (k=1 refers to the original system).
Then, after (N-1) transformations, i.e. at k=N, the system (4.2.67)

yields an upper triangular matrix (see Chapter 2) of the form

~ (1) (L (1) A~
b1 b1,N—r+1‘ T T bl,N
' (2) 2) (2)
®2,2 Py Nr+l === === - P2,N
~ ! |
~ 0 | 1
S l |
~ —— -
U':'B(N)= \\\. : ‘ : (4.2.68a)
SN (-r) {, (N-1)
N-r,N-r =~~~ T 777 ; N-1,N
b(N“I‘+1) b
N-1+1,N-r+1 |
0 N
™ f
-
~ I
-~ < t
~ b(N)
L N,N -~
- r ¥
Let a lower triangular matrix, say L, be defined as follows:
1 7
mz,1 1
1
3,1 M3,2 0
t N ~.
' ~ ~o
] ~ N
m +1.1 \\\ b ~
L= e RN _ (4.2.68b)
r+2,2 i S o
\\ - - = \\ \\
S - ~ < \\
~ “ \\ '\\
0 ~ ~ \\
~ ™~ ~
~ . N \\]_
| M N-r T MN,N-1 )
where m =b(k)/b(k) k=1 N-1, and b's are given by (4.2.66a)
i,k i’k k’k 9’ .,!.l,. > . L] L]
Thus it is correct to write (see Chapter 2),
w = 3WVisp | (4.2.69)

where the matrices L,U are given in (4.2.68), and §B is the perturbation

in B whose bounds we are interested in assessing.
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It has-been'shoﬁn in Chapter 2 that at the‘kth step, k>1, i.e. when

.B(k) of the system (4.2.64) is obtained, the elemeﬁt bkj"j*k;;"sN'is'

modified and b, ,'i=k,...,N is eliminated. Details of the formulation,

ik-1
of the approprlate equatlons of the whole elimination procedure are given

.in Wllklnson (1963)., Here we merely introduce the flnal {general) form of

the modified and eliminated elements which can be expressed as follows.

(1) - For igj, i=2,...,N when B(l) is obtained, ﬁe‘have the -modified.
" elements, . : )
R CONNNN DRI ¢ c2> L G- -1),
= h, m em, b - L= b, .
i,] i,j i, 1 1,j 2 2,j 1,373, i,i-171-1,5%,5
(4.2.70)

where the form ei'j refers to the summation of the rounding
. s - . nd
errors which occur during the elimination process from the 2

., t . .
"step up to the i b step, 1.e. if we let e£k2 be the error of the
. : , .

th ' - ' . :
k™ step, then we may express e, , in the form

2@, B, G ' (4.2.71)
i,i  Fi,i i,] i,i ° ' e
(2) For i>j, j=1 ... JN-1, when B(J+l) is obtained, we'have

0=b; ce.mm, b
b1, ™, 20,5, 908, T, 50 e 5

Here, the error term is expressed as

L2, 3, L GH) 4.2.73)
i, 7 %4,50,5TTy . ' o

Notiee that'in_both relations (4.2.70) and (4.2.72) the values of the
multipliers (m's) eorreSpond to.those given bf (4.2.68b).

Furthermore, since B poseesses zero eiements (given by‘(4.2.66b))
which remain zeroe, ‘except iﬁ the case of those above the diagonal in
the columms, N,N-l,...,N—r+1, then the correSponding error terms e,

1,]
equal zero _and-ei i=0 as well, 1.e.,

>
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for the relationship (4.2;71), (where igj)

1,]

and for the relatiomship (4.2.73), (where i>j)

e. . =0, j=i,i+l,...,N-r, i=1,2,...,N~r , (4.2.74a)

= 0, i=j*r-1,...,N, j=1,2,...,N~r-1 . (4.2.74b)
&) '

. is defined in floating point

e. .
1,]
Now, the computed element b,

b

using {4.2.63) as follows,

(k-1) p (k= 1))

bR
1,5 = By P
= [b (kjl) mi k-1 ékll)(l+€ )](1+€ )
. (k~1) p&=1)_ (k-1) )(1+E ) (4.2.75)

1,] M k=1 k~1,] i,k-lbk -1,3
Therefore, each e 3 in (4.2.61) and (4.2.73) can be expressed as

»

L0 | ) (ke (k1)

,J ,J ,J 1 k_]_ k- 1:_])
(&)
wp®) o Lad (k-1)
B bi’j (1+€2 * ml k- 1bk 1,3 sE )’ (by (4. 2.75))
2 L) (k1) _
= -.-.-_-_-b. -, )
1+€2 i,j i, k—l k-1,j €

It can be easily verified that the modulus of e, ; satisfies the

3

inequality given below, i.e.,

e,
k —2 1k k-1
|Eg 2! £ —IE | | ( )I I ;. k_lll é . ;]I 1!
2
s 1—|a1 (ib(k)| +lmg gl éf;lzl)l [ (4.2.76)

where |s|=max|ei|, and |e|=2-t as defined earlier.
i o
By virtue of the condition (4.2.44) matrix B possesses a diagonal

element with the largest magnitude. This implies that no piveting is

required throughout the elimination process, and hence the multipliers

have values (in modulus) less than unity, i.e., lmi k|s1. Moreover, if
- , .

(k)

we assume the maximum element (in modulus) in any B is designated by g,



129

e®) e —L_(geg)2”"

N
< (2.0D)g 2°% (say) . . (4.2.77)
Wilkinson (1963} shows this result is applicakle to all s§k2 and
L]

Ei(-J;U (1>j) as well.

]

Subsequently, by applying (4.2.77) on (4.2,71), we have (1£3)

le. lelef2 1+]efD .. 4D l
i,3 i,i i,j i,]

< 2.01g 2 5+2.01g 2 %+...+2.01g 2 F
~ (2.0D) (i-1)g 2°° ,  (4.2.78a)
and from the relation (4.2.73), we have (i>j)
(j+1)

le. .lsle.(z).|+|€.(3?|4-...+la. ’ |
1,] 1,] 1,] 1,]

< 2.0lg 2 42.01g 2 “+...+2.01g 2 ©
= 2.01jg 2°F . (4.2.78b)
Hence, by combining (4.2.74) and (4.2.78), we have deduced that

the error matrix, denoted by 8B earlier, is bounded by

|sB|s(2.00)g 2" E , _ (4.2.79a)
where E has the form - . .
0 — =~ = — == - - = - 0 0=-==-=====0 0 |
1N [ lmm e = 1 1
12 ~( ) 2
23N  STTIITIITS S
t i
e ) ;4\ S ' f ' b
row> 1 1 . | \\ \\ . : I : {
2 i ~ ~ — o -
0 1 AT ¢ | I
B2, 3 ise SO by | 4.2.79b)
RN 4 o~ o ~o U ' '
1 ~ e i ~ \\l l ' i
N N 0 (Ner-l) === (N-r-1) (N-r-1)
0= = —2N0_ (N-2r+1) (N-r) (N-r) = == (N-r)(N-r)
' . ~ 1 ’ i 1
‘ \\ \\\ . \\\ :
{ ~ o i o i
~ ~ |
i ~ \\ \\ | I
~ . < . ' 1
I “ ~
[} \\ . \\ | t - P
0~ = = = = = == = =0 @) (T - - (D) (1) ] ey
4 3

(N—2r+1)tt_lcol. (N-1) th col.
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Also, it can be shown that the augmented matrix (8B,8y) where y

is the perturbation in the vector y, is bounded as follows,

L

|(6B,5y) |<(2.01)g 2 S(E,68)
where E is giveﬁ by (4.2.79b5, and the vector §E consists of the elements
of the N colum of E (see Noble (1969, page 272)).
Finally, the bounds of |6B| in terms of l-norm can be given Below,
from the inequality (4.2.793),

-t
| 168 1}] 52018 27211,
' N-1

N(g-l) (2.0)g 2“t since ||E|!1 = Z i

< 1.0IN(N-1)g 2 © .



4.3.1 ALGORITHM FICM2

This algorithm is basically devoted to obtaining a solution for a
linear system of equations, where the matrix is periodic and possesses
non-constant elements (see Chapter 3, Section 3.4).

The FICM2 algorithm, as in the preceding algorithm, involves two
major steps; firstly, factorizing the matrix of the given system into two
cyclie matrices, and hence formulatiﬁg two linear systems of equationsﬁ
secondly; solving each of these sﬁstems via a triangularization procedure
followed by backward and forward schemes. In éddition; #he elements of
the two cyclic factorized matrices will be computed iteratively, which
involves the use of the periodic continued fraction theory as discussed
in Chapter 2,

Let the given linear system of order N be of the form

Ax =z , (4.3.1)

where the matrix A is a circulant of bandwidth 2r+l, such that

N22r+l, (r is positive integer), and has the form:
'--
a . a - -

39,1 21,1~ ===~ %-1,1 %r,1 &er,1%141,1 3
a_1,2 %,2 21,2 SN ~
I - ~ N :
PN
a

———— - |
=
-
(=1
R e—

-r+l,r

a )
-r,r+l ~ ~

a
r,N-r

3p-1,N-r+1
1

ﬂ r+l >

131



i32

The factorization of the matrix.A proposed by the pfesant‘algorithm
cénsists of evaluating the elements of a lower cyclic triangular matrix,
L (say) and an upper cyclic triangular matrix, U (say}, such that

LU= A, | (4.3.2)

where the matrices L and U ére of the semi-banded form (of order N

each) illustrated below.

i
[ o8]
/

L

b

»

w
=
-
w
/
’
TP o amoam e

A Y

P U |
P
'—l
rs
4

-~ \'\ ~
~ &% "2 —==L S8

) -~
— r,N "r-1,N 2,N "1,N

< r+l >

and
U1,1 Y2,17 7771 Ve

~ b “~ . “~

r+1 ,N-r+1 o ur,N—r+1

u
!

I ~
| T+l
!

;

t

u - U

The implication of this type of factorization is that, instead of
solving the system (4.3.1), we replace this system by the alternative

form, Wx=2z. (4.3.3)
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Consequently, the ﬁew factorization strategy has the merit of
preserving the form (and the sparsity, if it is thé case) of the original
periodic matrix, which can be considered as an advant;ge from the storage
strategy‘vieWpoint.

However, the product of the two matrices L and U having been computed
are equated with the corresponding elements of A. This procedure
eventually yields a set of (r+l) equations which formulétes the inter—

locking relations between the elements of L and U. These relations are,

A | = 3 . )
r,i l,i-r -r,1
zr-l,iul,i—r+l+£r,iu2,i-r = a-—r+1,1’.
+ . N + =
r-2,iu1,i—r+2 Rr—l,luz,lfr+l Er,x 3,i-r -r+2,1
+ : ate.at = .
1,i%,i-1"%,1%2, 12" i1V ir a1,i
‘ v, (4.3.4)
.+ . PR . PR R . . = . ?
u1,1 £1,1“2,1-1 23,1“3,1-2 Rr,lur+1,1-r aO,l
.+ . . e . . . = .
u2,1 21,1“3,1—1+ +£r—1,1ur+1,1—r+1 al,l
.t . . = .
ur,l El,lur+1,1-1 ar—l,l
ur+1,i = ar,i J

where i=1,2,,,.,N for each individual equation, and the second suffix
of the u's is interpreted as the modulo of N, i.e., for Uy k=1,2,...,r+l
. H

the suffix v is defined by

v = v modulo N.
The system (4.3.4) of (r+l) equations can be reduced to an
abbreviated fbrm'consisting of five equations (provided r>1) which will
be considered later in the further analy#is of the method. These equations

ares;
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=a ., Y} (4.3.53)

2r,iu1,i~r -r,i
r-k+l . _

D 95 i rie1) = ek, i0 K7L T2,000,0 (4.3.5b)
j=1 J=i,1 1, ] 2 .

1

R R M R [ (433
r~k+1 , .

jzl oW ioi i T Be1,ic KTTETLe2 (4.3.5d)
ur+1,i_ . = ar,i ' J (4.3.5d)

where i=1,2,...,N (and as indicatéd in the equivalent system (4.3.4)).

For the two well-known cases in the numeriéal problems quoted in
Chapter 3 where the coefficient matrix A is tridiagonal or qdindiagonai,
i.e. r=1,2 respectively, the equatioﬁ (4.3.4) becomes,

(a) for r=1 (A is periodic tridiagonal),

2,i%,1-1

-1,1
Y1,i"*1,1%, 11 = 8,1 }i=1,2,...,N, (4.3.6)
Y9, T 8,4
u = a

1,0 - %18 * Y2,0 Y28 T 3L,N

(b) for r=2 (A is periodic quindiagonal),

%9,i"1,1-2 =a,; |

21,i%,i-1"%3,1"2,1-2 : R

AU AP I PR P B S S 8 (4.3.7)
Uy i%,1%3,1-1 L1

U3 i i

=
ut
[

where Uy ) =Y n-10 Y1,0 T YLILN

(=]
1]

2,-1 = “2,n-17 Y2,0 F Y2,

n

3,-1 - "3,N-1’

and u = u = a
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Notice that for the case of the system (4.3.1) being periodic tri-
diagonal, the elements of the upper circulant off-diagonal (represented
by uz,i, i=1,2,...,N) of the matrix U, in (4.3.2), afé known by virtue
of the last equation of the system (4.3.6). In the quindiagonal case
also, the elements u3,i’ i=1,2,...,N are determined already from the
last equation of the system (4.3.7). Thus, for.the general case (i.e.
r2l), the elements of the furthest circulant off-diagonal (denoted by
ur+1,i, ifl,Z,...,N) of the factorized matrix U, in (4.3.2), are equal to
the corresponding elements of the original marrix A. This is confirmed
by equation (4.3.5¢). Hence, each of the factorized matrices L,U
includes r unknown circulant diagonals which have to be determined.

These cirgulant diagonals, i.é;, mk,i’uk,i’ k=1,2,...,r, i=1,2,...,N,
will be computed by an iterative procedure and will be discussed later

in this section, Therefore, we proceed now to solve the modified system

(4.3.3).
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4.3,2 DERIVATION OF THE ALGORITHMIC SOLUTION
The solution of the factorized matrix equation (4.3.3) can be

obtained via the insertion of an auxiliary vector, y (say) and formulating

two alternative systems (each

and U

of order N) instead, i.e.

= Z »

(4.3.8a)

]

X=X

(4.3.8b)

Both linear systems will be solved by an elimination procedure,

but whilst for the former system the elimination process starts from

t ‘ . . . .
the N B row upwards the latter takes place in the conventiomal direction.

As in the previous algorithm FICML, we shall also adopt here the

elimination-without pivoting strategy, on the grounds that the magnitude

of the off-diagonal elements are less than the magnitude of the

appropriate diagonal in each row of the matrix L in the system (4.3.8a),

and of the matrix U in the system (4.3.8b).

We now proceed to describe the triangularization procedure for the

systems (4.3.8), whose equivalent forms are:

L e e - 1] [z]
1 ra1m %21 M1 ¥y 21
2 1 ~ ] 1 I
1,2 N i 1 [
2,3 M1,3 N AN : :
i
| \\ \\ 0 \2 yl z
t \\ e r,tr r r
% 1 ~o ~ o | :
r-1,r -~ f
2 ~ ~ ~ |
r,r+l S« RGN : = |1
~ ~ ~ ~ i
\\ ~ o \\ ~ i
™ RS - \\ \\ ! *
S \_'\ \\ \\ i !
0 \\ \\\ \\ \\ | |
ol TN AN : |
~ ~ LN ~
\1 ~ o ~ 1 |
L r,N r-l,NT T 77 Fr,n o WUnd o LAy
¢ r > (4.3.9a)

and
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u U, t;meeen u u X
1,1 72,1 r,1 “r+1,l1 1 1
NN ~ \ I .i
. AN ~ A |
~ hY N N\ 0 1 1
NN b X T i
~ N\ hY
\ ~ N N s \ i
\\ ~ \ \\ l
~ \\ \\ \\ | :
N \\ \\ A Y :
N ~ - - - - h }
N\ AN N\ N H
~ ~ N AN { ¢
N \\ \ [} |
AN SO+ N-r | | =1
‘ u X
) NN r,N-r+1| |"N-r+1] |TN-r+1
\ . b
u . . N i i ]
r+1,N-r+1 \\ ‘\ t I ]
A
1 o oot ! :
i * N u |
! N < 2,81 ' 1
U, ,====U u
| Y2,N £,N "r+1,N V1,8 1 P
r >

(4.3.9b)
In fact, the eliminaﬁion process for the systems (4.3.9a) and
(4.3.9b) takes place in an analogous way to the systems (4,2.35) and
(4.2.28) respectively. Moreover, here we will adopt & matrix analysis
method (similar to the LU-Decomposition of Chapter 2) to explain the
transformation of the systems (4.,3.9) to the triangular form.
This can be accomplished as follows.
We introduce the matrices FZ,T3,...,F to be the same size NxN as the

N

matrix L in (4.3.9a), and defined in terms of the elements of L such that

— vy p— -y

1 1
-2 1 o 1 0
%

. N\
I = N Ty T = ~ 3o e




-1

1

bemner

r-t,r ‘r-2,r'""71,r
0
(k-r)thcol'. (k)th col.
+ +

Y

S

b

b

-~
~1

g b L

0

1
A Y
\\
\ 0
1
AN
Y
\
N
T = 1
N-r+2 1
b N-r33 % Nera2® !
' N
\\
0 N
~
N\

0 1
\\\\ .
\\
~1
th
<~ (k+1) row
~
~
LY

oy
Y

1

1

LS

1.
N
1
N\
~
\\
’EFr+§ 1

1
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up to Ty, which has the form,

[

(r+1)® col.

Now, by premultiplying both sides of the system (4.3.%a) by the
matrices TZ,T3,...,Tr in succession we obtain the following system

(in compact form),
I‘rrr 1,.‘.,11

-1

sousTLy =T T L2

The purpose of this strategy is the premultiplication of the

system (4.3.9a) by ', eliminates the element % by T

5 1.2 ; eliminates
L]

3

the elements L 3 and so on up to Pr eliminating the elements
’ [

2,3'21

L A . A . We proceed now to imi i.e.
1,7 2,1’ *1,r P eliminate r elements, i.e

£r,k’2r—1,k""’£l,k on the k™ row, ke=r+l,...,N-r+l, of the system

(4.3.9a) by successive premultiplication of both sides of the system

(4.3.108) by T r ..

e+l Ter2r s Ty 1
FN-r+1FN_r, " ,P3F2Ll = FN_r+1’ L ’I‘3

Then, we premultiply both sides of (4.3.10b) by the matrix

r to eliminate r-1 elements (i.e. £

Ner+2 }J, by the

),

r,N-r+2"°"£2,N-r+2

matrix T to eliminate r-2 elements {(i.e. &%

N-r+3 r,N-r+3"°"£3,N-r+3

and so on up to Iy to eliminate one element (i.e. L. N)' Hence, the
: . ,

system (4.3.10b) becomes

S T S LR LI U LA

139

Z . (413-10&)

r.z . (4.3.10b)

(4.3.10¢c)
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or . ' My = Iz , ' | (4.3.10d)
wvhere - I'= FNTN-I""’P . |
In fact the system (4.3.10d) assumes an 'incomplete' triangularized

form, and the form of matrix (TL) is illustrated in Figure 4.3.1.

< KX = = === =XX |
X HKX— = == XX
b e == = — XX
X X i1
LY 0 ||

~ R
~ 11 i

~ I {
. ! ¢

|
\\ ' I
~ l| ||
LN iy

XX

P 1
oxx- 'l
0 2% '

N I
) -~ J

1 x |

P X 1t
‘ XXX
OXX
Ommem = = 00X

L . - ,

FIGURE 4.3.1: The diagram of the matrix (I'L) of the system
(4.3.10d), where 'x'" and 'o' denote non-zero
elements., The elements denoted by o will be
eliminated when the triangularization process
is completed.

The (N~-1) transformations to the system (4.3.9a) which are

replaced by the equation (4.3.10c) can be algebraically formulated as

follows.
Let 1 s J=1
2 = el 1=1,2, 5Ty )
fmeen = Vg e o 3 i=1.2,...,001,  (4-3.11a)
0 , otherwise
-1 s j=k
Ciar = jk=1,2,...,r, (4.3.11b)
ky=j+l 0 , otherwise
1 1 if i+k=N+ly )
fk,i = jzr(-lj,i)fk,i-j+6’ § ={0 otherwise }k=1,2,...,r,
where fk ¢ for tg0 are given by (4.3.11b) r
3 .
. .
e; =z, + ) (-gj,i)ei-j’ where etzo, for all t<l

jzr J
i=1,2,...,N-r+l {4.3.11¢)
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i-1 a
fk,N+2—i - jzl('_zr*i+l+j,N+2-i)fk,N—r+1-j+fk,N+2-i W :
Pl . B
where the f's are given by (4.3.1la), ri=r,r-1,...,2,
-1
Cpe2-i T ZNe2-i T J.Zl("’%:--i+1+j,I~J+2-:‘.)eN-r+1-~j )

(4.3.,114)

By noting the 2's and z's appearing in the relations of (4.3.11)
are those given by the system (4.3.9a) (or the matrices PZ""’FN for
the values of the 2's).

Then the'system (4.3.10d) can be written iﬁ terms of the f's and

e's, defined in (4.3.11), in the form

b 0 1=~ 1 fi ¥y ®1
. fp2---—-- £2,0 1,2 | P2 e
RN A i l | I
o | | ' I q
~ { i
< i | ' i
Y1 | | | {
r,N-r i } i
| ' y _le
r,N-r+l I | N-r+l[= | N-r+l
. '\\ i ' l t
|
0 | \\\ | | 1 |
I £ ! ! |
fnwf-—__iLWJ 1,N-1 * :
______ b
] £LoN oy iy J v ] ]
(4.3.12)

where the elements e and £ ., i=1,2,...,r, j=1,2,...,N
b 4

1°%27 2%y k,i
are given by the relations (4.3.1lec) and (4.3.11d).
Similarly, the 'incomplete' triangularization of the system (4.3.9b)

can be performed by successive premultiplication of the system by the

matrices AN_I,AN_Z,...,Al wh1;h are.deflned as follows:
1 T
S . 0
\\ 1
~ Y9 N-1
AN—l - L -7 ?
: 0 . Y1,N

1



whilst the matrices Ar*

1
0 ~
.
YaN-2 Y3,n-2 -
UN-1 Y1, r+l
1 0
1 — i
1
\\ O
\\
~ u
) 2,k
U1,k+1
0 1 _
. s

k+1) P cot.

14

(r+1) th col.

“~
™1 _u2,N~r+1 _ur,N—r+1
U1, N-r+2 Y1,N
1
0 -0
- ‘1

142

» k=N-r,N-r-1,...,r,

(k+r) th col.

r-2""’Al are defined be}ow,

-1 co1.

¥
S~ 0 - 3,r-1 “r+l,r-1
* ?
1 Y1,r+1 Y1,2r-1
1
T o 0
0 !
~
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)™ o1, -2 col.

1 I v
~ 0 ‘
~ . .
> -'r,r=2 Yrel,r-2
~ 100 —— ... ~—m1—
A _ ~ u, u
—2 - 1 1,r+l 1,2r-1 e
1
1 N
L~
0 ~ 0
R -~
.
-~
. ~1]
(r+1)th col.
v
10 ... 0 - ortl,1 -
o U1, e+l
\"\
\\\ 0
AL = L
\\
\\
-
L S 1]

The (N-1) successive premultiplications of the system (4.3.9b) (or
its equivalent, system {(4.3.8b) can be abbreviated in the form,

AA....A. A AA. ...A. A (4.3.13a)

1hoe sy oyt UE = Ay N-2§-1L

or Aux = Ay , (4.3.13b)

N-1
where the matrix A = -rrAi .
- fo]

Furthermore, the algebraic formulation of the transformations of the
system (4.3.9b) which are represented by the equation (4.3.13a) can be
introduced below.

We define the elements g's and n's as follows:

u, . . s j5i
A |t I+1,] i=1,2,...,r
g. [ .-1 2 _1 (4-3.14&)
a1 1o , otherwise | 37252+t
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~u, . , for j=i

1,1 : . :
g, .. = \ 1,j=1,2,...,r,  (4.3.14b)
1,0+] (o , otherwise
3 )
% o ul,r’ for k=j
L= {=u, Jul L) . L +8,8 = =1,2,...,r,
gk’J i=] 141,37 1,143 gk’J+l 0 , otherwise

where A for s>N are defined in.(4.3.l4b),
’

. . .
N = . -u. . . . ..
rﬁ YJ izi( u1+1,J/u1’1+J)r5+1, where ntgj for all ts>N
) J
j=N,N-1,...,r (4.3.14c) -
. r—=1 .
and gk,r-i jz:]_( ui+j+1’r'i/u1,r+j)gk,r+j+gk,r—i’ k=1,2,...,r,

where £'s are defined in (4.3.14a)

r—=1
Mpei " Vi T J.El s et/ reg ) ey 2
| J |
i=1,2,...,r-1, (4.3.14d)

Note that the u's and y's appearing in the relations of (4.3.14)
are those given by the system {4.3.9b) (or the matrices AN_I,...,Al for
the values of the u's}).

Then the system (4.3.13) can be written in terms of the values g's

and n's which are defined in (4.3.14), by,

81,1 83,17~ Br 1 | 1 n
81,2 852~ ---8 Xy i)
| '\ - I I ) l
NTOT T {
i { ‘\\ 1 O : {
: f S | i I
\ ] gr,r r Ny
| . 1 r,r+l ty= (! » (4.3.15)
: : ! ' RN I :
| ] ] \\ l {
L ; RN [ *
1
[ I ! 0 \‘\ t |
| e
O g “Nu ' .
81,5 82,87~ "B N Ly ) M



145

where the elements nl,nz,...,nN and the gk,i’ k=1,2,...,r, 1=1,2,...,N
are given by the relations (4,3.l4c) and (4,3.14d).

Now, to complete the triangularization of the sfstems (4.3.12) and
(4.3.15), we eliminate the lower and the upper off-diagonal elements in

the two systems respectively., Therefore, the next step is to eliminate

.y k=j+2,343,...,r, j=v=2,r-3,...,0, of the former
k,N-J

the elements £

system and the elements 8; i i=1,2,...,r-1, i=j+l,...,r of the latter
H

system, This can be performed by the following elimination procedure:

(i) TFor the system (4.3.12),

K N-3° k=3+2,...,r, j=r-2,...,0

the elimination of the elements f
requires (r-1) steps, i.e.,
for i=1,2,..;,r—1
let Tc=r_+1-i,
Rik = "B Nekn 5 nker
then we have,

() pGeD o -D)

i,N-k+1 ~ Ti N-k+1 “i,k j,N-k+1’

and i) | G-, (i-1) :
R R A RN N I (4.3.16)
where the superscript refers to the ith stage of the elimination

0,

(0)_ . s _
process and fz 'fz,v"es és are as given in (4.3.12).

(ii) For the system (4.3.15),

the elimination of the elements-gi 5 j=1,2,...,r=1, i=j+1,...,r,
]

requires (r-1) steps also, i.e.,
for i=1,2,...,r-1
A .
let k=r+l-i
= - )
Rik ™2 /sA
then we have,

i i-1 i-1 s T .
g§t; B 8§1k )+Ri,kg§%1 ), i=1,2,...,r-1i,} k=1,2,...,r1
¥ r .

I

and Tme RE

J (4-3017)

j=1,2,...,c~ipk=1,2,...,r-1
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Again, the superscript refers to the elimination steps, and

(0) - (0)
gz,u - gz,u v g T 0

are ss . given in (4.3.153).

As a result of the above elimination procedures (i) and (ii), the

systems (4.3.12) and (4.3.15), become, respectively,
- r .
- -
! 0 fr1 o oo =i
~ £ Y -
-~ r,2 r 1,2 1,2
s
- 1 ] |
1 , L. i
!
£ l !
r,N-r+l | | .
r-1,N-r+2 - -7~ - T 77 f1,N-r+2
\\ :
Y
~ |
~ “ |
0 £
2,N-1 T1,N-1
and
hitgy T el - - il
81,1 *1 N1
. | .
81,2 82,2 |
1 ‘\ I !
t ~ i
AN i
| ~ 0 |
. ~ |
81,0-1 r-1,r-1 ! Me-1
]
gl,r- | | gr,r | :
l { * i I ul,r+l |
[ | . | ~ i i
I | ~ I
| | | ' 0 ~ 1 .
| I ~ | I
' I A u \ n
81,8 82,87 7 " "Braq,w8r N LN 5 T
< T —

g
—_

m 1
[

eN-r+2

b

(4.3.18a)

. (4.3.18b)

and hence the triangularization of the systems (4.3.9) is complete.

By notiﬁg that the £ elements of the system (4.3.18a) on the rows N,N-1,...,

N-r+2 are given by (4.3.16), while the remaining f elements are as

located in (4.3.12); similarly for the g elements of the system (4.3.18b)

on the rows 1,2,...,r-1, are given by (4.3.17) while the remaining g

elements are as located in (4.3.15).
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Finally, the backward and forward procedures for the systems

(4.3.18) yield the aux111ary vector y of the system (4,3, 8a) and the

L

solution vector x of the system (4.3.8b), i.e., from the system (4.3. 183),

we have 3
vy = eyl y
-1 T Cenoy Yty n-177F2 51
INertl = CNers1 VN-r2fr-1, Nore2 7 Ne1 52, Nere2 UL Nere2)/
fr,N—r+1
r
and yj = ej - kz yN—k+1 K,j° J =N~-r,N-r-1,...,1
(4.3.19)
and for the system (4.3.18b), we have
= 3
X = /80
xy = (ny7x18) 518, 5
: r-1
o r (4.3.20)
#r f ( izlxigi,r)/gr,r
r .
and xj = (nj - izlxigi,j)/ul,j y J=r+l,...,N J

where nl,hz,... are computed in terms of the y's which are obtained

;HN
from (4.3.19), by the relations (4.3.14) and (4.3.17).

The computational complexity of the algorithm for the solution of
(4.3.1) involves approximately 0((6r-2)N) additions and O((6r+1)N) |
multiplications with the predetétmin#tion of the elements of matrix

factors L and U; (tﬁe case r=1, the number can be reduced to 5N

multiplications (with 4N additions) as given by Evans and Okolie (1979)).




148

4,3.3 DETERMINATION OF THE ELEMENTS OF THE MATRIX FACTORS

Initially, we shall consider the case where the system (4,3,1) is of
periodic tridiagonal form, i;e. r=1l, which has been iﬁvestigated by Evans
and Okolie (1979). 1In this case, the factorization of the coefficient
matrix represented by (4.3.2) obviously yields the relations (4.3.6) which

s

may be rewritten in the forn

YT A,iM,m
ul,i - ao,i-ll,ial,i—l i=1,2,..4,N, ' (4.3.21)
and U0 TV, A0 % %N P
bearing in migd that al,k’ k=l;2,...,N haé been replaced by u2’k according
to the last relation of tﬁe‘system (4.3.6).
If the element 21’1 is assumed as given or determined by an efficient
procedure described below, then.the elements ¢ ., and u, , can be easily

1,i 1,1
evaluated by the recurrence relations (4.3.21), and hence the elements of

the factorised matrices L and U, are determined for this special case of

r=1,

on the theory of the periodic continued fraction. The method was

However, the element % can be computed in a suitable manner based
suggested by Evans and Okolie (1979) and can be outlined as follows,
From the relations (4.3.21), we set the index i equal to 1,N,N-1,...,2

s0 that we obtain the relatioms,

2’1’1 = a—l,l/ul,N '
U N T B0, Nt R, ne1 Bees By 1 = 20y 17080 Ny NPy, -1
’ a
. ' "'1 1
[ = g lu ie€ey 2 = 2
LN G, NN * 21,1 P
4 < 2oN?1,N-1
O,.N ul,N—l
a
: . -1,1
u = a -2 a l.8, 2 =
1,8-1 = %0,N-17"1,N-171,N-2° » %401 51 N°Le1
: %0, 2 = a
XK} ' O.N-l l’N"']. 1’N_2
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and so on, Therefore, the & element can be expressed in terms of the

1,1

elements a i i=1,2,...,N, and hence we can formulate an

-1,i*%0,i'%1,

infinite periodic continued fraction whose partial numerators consist

of the off-diagonal elements of the matrix A (i.e, a , ., a, ., .) and
) "]-’l 1’1—1
partial denominators consist of the diagonal elements (i.e. a, i),_i.e.,
’
T P e | 2_1 8% ,8-1 I‘;. 31,2211 21,12, |
LN, fa; I 29, 5-1" l'ag,1 EX
&y NP, N-1 ! 2_1,2%1,1 ] 2-1,1%1,n]|
[ ag x-1" N | 2g,x
(4.3.22a)
or
o s ] a o [+
al N£1 1 = IBl-l ’BZ_I e I;N_I [Sl-i IBZ_’ raa [;N_| [Bl_! *ea (4-3.22}))
! ’ 1 2 N 1 2 N 1
where o, = @) v i42%,N-i+l

B; = 39,N-1+1

and at.k’ t=-1,0,1 is defined such that kzk modulo N,
]
The linear fractional transformation of (4.3.22) can be expressed by
(cf, (2.6.10), Chapter 2),

a o a '
2 o, (4.3.23)

T(w) =

L )

B,m By~ By ~w
whose fixed points (see definition 2.6.3, Chapter 2) W) sty (say) are

the zeros of the quadratic equation

w+E

E -1 a '
W = -i?_-[FE-‘- » : : . (4.3.24)
S 'n=1" n

where En’Fn {as indicated in Section 2.6) are given by the following

recurrence formulae,

E.=0, F =1

0 0
By =op Fp =8 (4.3.25)
B = BsBa17%%0-2 | j=5 modulo N,
Fn = Ban_l“Gan_z Jm=2|3’4'ttt'
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By virtue of Theorem 2.6.1, if wl#mz, then the continued fraction

(4.2.23) converges to the value, G(say)) such that G=max(m1,w2), where

w, and w, are the roots of the equation (4.2.24), Hence,

1 2
' a L, o = % -
L.l (4.3.26)
or b Ty .
The convergence of the sequence {fﬂ} occurs after a sufficient
n

number of steps, when the magnitude of the difference between two
successive approximants of the continued fractiom is suffiqiently small
or satisfies the following relation, i.e.,
.th ._iyth . . s
for the i~ and (i-1) approximants, we need the inequality

E; _Eina

Fi - < g {g is small) (4,3.27)
i i~1

' to be satisfied, The sufficient condition for the convergence of the

periodic continued fraction (4.3.22) has already been given in Section 2,6.

We now revert to the equations (4.3.5) and consider the general case,
where r>1,'i.e. the case where the circulént matrix A of (4.3.1) is
Quindiagonal, septadiagenal,,... etc, To determine the unknoﬁn coefficient
of the L and U matrices from the non-linear equations (4.3,5) we adopt an
iterative procedure as discussed below.

We assume that the initial guess values
(0 3
1,1 .
)

2,i°? : .
' } i=1,2,...,N (4.3.28)

L ©
and r-1,i /

are given, The superscrips in (4,3,28) (and in the discussion which
follows) refer to the iterative step.

Now, ﬁhilst the u .» i=1,2,.4.,N is given by the equation (4.3,5e)

r+l,i
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(1 @2 (D)

as pointed out earlier in this section, the u yu . .yl i=1,2 o N
P ) r iMe-1,it 000,50 peeey

can be determined by the equation (4,3.5d), i.e.,

( L SN O EP ke=r,T=1,..4,2,

l) E
T R-1,i jo el Yrtiaimi? i=1,2,...,N

1
(0 . .
where the Rj ; are given in (4.3.28).
. .

(4.3.29)

(1)

Furthermore, we assume that the 2r K k=1,2,.44,r are evaluated by
’ ’
considering the use of a periodic continued fraction procedure which will

be shown later (similar to the manner of evaluating the 2 in (4.3.6) orx

1,1
(4.3.21)).

Therefore, the Er K’ k=r+l,.,.,N and u i=1,2,...,N can be obtained
’

1,i’

from the following recursive relations which are derived from (4.3.5a) and

(4.3,5¢), i.e.,

2(1) = g /u(l)

r,i - %r,i/0,i-r * FliZseeesT

i=1,2,.00,N.  (4.3.30)
(1) _ a (1) (l) - (0) (1)

1,1 O,i r i r+1 1~r ’~r 1 J+l i=j3

and u

To calculate the first step of the iteration process we are required

@ (1)

to calculate the 2:—1,1 -2 l....,El’i, 1=1,2,+4+,N. This may be achieved

by rewriting the equations (4.3.5b) with an additional term ¢

k,i’
k=r=l,..4,1, i=1,2,,..,N, i,e.,
NORNE) COMED R '
r~1,i"1,i-(r-1) "r,i 1,i-r r-l i -r+l,1i
L0 () () VT ¢0 RN (o N
r-2 i"1 gi=(r-2) "r-1,i 1y 1-(r—1) r i 3 i-r r—2 1 -r+2,1
: R
(o) D LW ) @) LD
1 i 1 1-1 2 i 2 i=2 " Tr-1,1 r-l,i-(r—l) r i T, 1-r 1 i ~1,1

i=1,2,...,N, (4.3.31)

where eéoi, k=r-1,r-2,,..,1, 1=1,2,...,N refers to the error term due
. , .

to the 'incorrect' value of the corresponding 2(01.
]
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If we assume that 2;1; (and the u(l)'s) are 'accurate' valﬁes, then
’ L4 .
the relations (4.3.31) may be written as, _ :
LD (D (1) (1) _ "
r—l i%1 1-(r-1)+£r il,i-r . - a-r+1,i
o (D (1) +2(1) (l) 4 (D (1) = 2
r-2 i 1 i=(r=2) "r-1,1 2 i=(r-1) "r,i 3 i-r -r+2,1

(l) oD @ )

(- (L) g(l) (L
1 i l 1-1 2 ,1 2 i=-2

Feaetl .U . = a .
r-1,i r-1,i-(r-1) "r,i r,i~-r -1,1

i=1,2,...,N. (4.3.32)
By subtracting the first equationm, the second equation, up to the
last equation ‘of (4.3.,32) from the corresponding equation of (4.3.31),

we obtain the result,

@@ M M O
r-1, i r~1 i’% yI-(r= 1) r*l i .
(0) 1) 4,M w0
* r-2,1 JI'r--2,:. 1, 1-(r-2) r-2 i 0
(0) (1) (1 e (O _
4y L%, i-1 i O
which can be rearranged to give,
J1) L@ L (0 1) BN
r~-1,1 r-l i’ “r-1,i’",i-(z-1) °*
L) @ @)
fr2,1 " 2,102,100, ED T 2,000 (4.3.33)
(1) - (0) (0, (1)
and 21 i 1 1/ 1,i-1 ' )

In fact, the equations of (4.3.31) and (4.3.33) are associated in an

( )

alternate manner, This is because we compute €

(1)

i from the first
equation of (4.3.31), followed by £ -1,i from the flrsﬁ equation of
(4.3.33); then back to the second equation of (4,3,31) to compute ei %
followed by 2( ) 2,i from the second équation of (4.3.33); and so on.
However, the sth stage of the iterative process for determining the

£'s and u's of the equations (4.3.5) can be summarized as follows:



Step 1

Step 2

Step 3

Steg 4

Initialize 21(-?; L (03-’ n. . ,Zioi % ) i."‘"l’z peee 'Nl
Obtain u( ?, (s) ,...,u( ? successively from the relation
L,l r-l, 2,1 .
(s) . AN CO VO k=r,r=1,...,2,
uk.,i. ak-l,i jz___l J i u.k"'_] 1__] i=l|2.ooc’N,
sy ) .
and ur+1,v ar,v s M 1’2""’N'

(s) ,(s) (s)

(a) Determine g2 1,2 2,...,£r . by the continued fraction
]

scheme (discussed 1ater),

and

(b) Determine E( s) l,...,l(sg and u(si,...,uf & from the

recurrence relatlons,

(S) _ (s) .
r i~ / 1 i-r ? 141,2,000,r

e NON: T (s-1) (
(s) _ s),(8) s-1) ()
ulfi " aO,i r,i r+1 i-r z o

j=r-1 it .]"1'1 i-j

i=1,2’noo.N

Evaluate és'l)and l(s) k=r-1,...,1, i=1,2,...,N as follows:

from (4,3.31) and (4,3.33) alternately, we have

(ap Eiizii RS ﬁfif§“§fi-<r-1> isi gsi—
(b)) 2 ifi i = iilli 55111’ isi—(r-1)
(ay) E:--S-gﬂ = A a,i” f:s;ll isi—(r-z) "1(:)1 i éS)l-(r-n
AW
(s) (s-1), (s-l)/ (s)

(bz) £

r—2,1 'Q'r-z i r—2 i 1 i-(r=2)

153
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(=) _, L GmD ) () () | () ()

(ar-l) 1,i Sel,i C1,i T1,i-1 Y2,i 2,i=2 *** Fr,ir,i-r

o£8) L (s=D), (s=1), (s)

(o) %1 T 4,1 "1, ML

where i runs from 1 to N in all the above relations.

Step 3 We define ¢ such that
le] = max (max|e, .|) .
ki ot

Thus, if IslsTOL (the desired accuracy), then the iterative:

process is halted, otherwise we repeat from step 2,

Determination of % o2 peeerd at each step of the iteration
r,1" ' r,2 r,r

For simplicity, we consider N to be a multiple of r, i.e.,
N = tr, where t is any positive integer, such
that N»2r+1 (4.3.34)

By rewriting the equations (4.3.5a) and (4.3.5¢) in the form,

L L
L (4.3.35)
U1,i - %0,i” jér SR TS

we may be able to construct r continued fractions to express the terms
L 138 .3eee3%_ _+ For example in the quindiagonal case, i.e, r=2, from
r,1""r,2 b o .

the relations (4,3.35) (or the first and the third equations of (4.3.7))

12 1 and 22'2 can be expressed in terms of periodic continued fractions
¥ L . :
as. follows, a—z,laZ,N—l
- o a a
a = - - -2-N-1 2‘N-3
2,8-1'2,1 (35, N-1"% ,N-1% N-2’ (a - )_a-z,u-'-3a2,n-5
0,N-3 "1,N=372,N~4 (aO,N-S—"‘)-
- . - -2,1 2.N-1
(ao’l --o)

(ao'N_l--..)'

[
L]
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and
#.2,2%2,N

nk,2 "

. ) _8-2 .Naz |N"'2

(39, N 1,002, N1 )“EEZ,N-ZaZ,N*4

(g w-27%1,5-2Y2 5-3 G -
: . O'N"‘{I s

.
»
-

d2,0%2.2
NI

(a "'010)— — —
0,2 | (ao,N cus)

In a similar way by considering the two recurrence relations of

(4.,3.35) the zr,l’gr,Z""fzr,r can be expressed in the form of continued

fractions where abbreviated forms are:

PR S R U S TS B 10 B 1 IR WS B
BN-r+lTE, L 8y = By om [By 3t T B PBy,1T B, B1,1°
s . = %2,1] %2,2] %2,3 Ga.t ] 2,1 2,6 | %2,11
LN-r+27r,2 By 1= [By o7 [By 57 TTTIBy,T 1By, 1T Ba,e” B2,1”

and y
a 3 - arsl | arrz ] Ctr’3 l ar’t I .ar,IJ ar?tj ar’l I
T, Nr,T lBr,l_ 'Br,2_ lBr,3- IBr,t_ IBr,l_ IB:,t" [Br,l—
(4.3.362)
where
Gk,l - -r,s+rar,s ? s=N-ir+k,
1 k=1,2’oo"r (4.3-361))
= i=1.2,oo-,t
B, . =a, .~ 1

. L. u, .

Kyl 0,s jer-1 1,8 3+1,s-]

and the second suffices of the a's, &4's and u's are interpreted as
modulo of N,

The linear fractional transformation of each fractionm in (4,3.36a) will

have a form similar to (4.3.23), i.e.,

aenry

e et

J
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S, | %2 | e |
A e

T(wk) = k12,0001 (603037

whose fixed points, (say), are the roots of the equation

“k,1"%,2

: E _w -E :

-1"%k .
T oo (4.3.38)
n-1"k "a

where En’Fn (cf, (4,3.75)) are given by

0 o~
Ep = 9%,10 F1 " 810
B T Bk, iFn-1"%, %2 (4.3.39)

j=i modulo(t),
Fa © Bk,an-l-ak,an-Z J=2,35 0005

Now, if the roots of the quadratic equations (4.3,38) are unequal,

i.e, #mk o9 then according to Theorem 26.1 the fraction (4,3.37)
»

converges to the value, ﬁk (say), where

“k,1
) w

k k,1°%k,2
as the limit of the kth (k=1,2,.444r) fraction of (4.,3,36a),

=max (w ). Consequently,’

by assuming ﬁk

we wWrite

8. =0
ar.N-r+k r,k “%
=N ) = .
or zr’k = wk/ar,N-r+k s k=1,2,,...,r, _ (4.3.39)
. E
The convergence of the sequence {FE} has been discussed earlier,

n
and the sufficient condition for the convergence of the kth fraction

(4.3,363) is (see Section 2,6):
0 < Ye,i s%‘; . (4.3.40)

lWhEre k=1'2,.o|’r. i=l’2,.oo,t.

a.nd Yk’l'= ak’llsk’l ]

/8 g and sk i#o.

Mie,i T %, 178k, 1-10k, 10 B, i1 ,
From the experimental results we notice that condition (4.3,40)

was satisfied at each iteration step.
However, if H(a2r+l) is relaxed from the restriction (4.3.35) and an

integer, J (say), is introduced such that
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J = N-tr, | o (4,3.41)
whefe t=Pﬂ s then we may cénciude'the following points:

(i) for J=0, then we have the case followed by C4.3.34),_whicﬁ
implied that the lengths of the cycles of the continued
fractions (4.3.36a) were equal, i.e. for the kth fraction of

. and B' ; vere such that i=1,2,...,t, whilst,

k,1
(ii) for J#0, the only fractions of (4.3,36) related to 2 1,...;

(4434 36), o

zr r_J‘will have cycles of length t, while the remaining
]

fractions, % » Wwill have cycles of length t+l,

r,r=J+1%* 0 ip

i.e.,

for &_ , s=1,2,...,r=J, we have & and 8, ,, such that

T,5 k,i k,i

i=1,2,---,t,

for zr’s, g=r=J+l,44s,r, we have ak,i and Bk,i' such that

1=1,2,400,t+l,

| where t is as gifen in (4.3.41). {4.3.42)

Finally, it is important to point out that the use of the periodic
continued fraction procedure described above was adopted on the basis
of the extension of the method suggested by Okolie (1978) or Evans and
Okolie.(1979) for the tridiagonal case which has been outlined earlier,
Later, from the experimental results it was'noticed without considering
the use of continued fractions, that the iterative procedure, summarized
by step l,..., step 5 earlier, does converge,

In this case, the steps of the iterative procédurq to evaluate the
_E'S and u's coefficients of the matrices L and U respectively, can be re-

written as follows:

(0) ,(0) ()

1,12, %1

Step 1 Initialize & s 121,2,44.,N,

(s) u(8) (8D

Step 2' Obtain ur greeeayy 1oyl 1n succession from the relation
’ ’
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r-k+l

(s) _ - (s~ (s) k=r,...,2,1
u.k,i. ak."l,i jzl J l k+J l_J l=1.2.o.a’N’
. (&nd Ur+1’v = E\.r’v ’ v.—.l,.').,...,N,)
Step 3! Evaluate Eéfil) and li?i s 1=1,2,.4.,N, k=f,r-1,...,1

alternately, from the relations (c.f.. (4.3.5b))

r-k+1

s (s—l)u(s) . NOTRO! )

k i : fk,i k i 1,i-k j=2 k+3 1,1 3,1-(k+3 1)
and (c.f, (4.3.33)) , - | (4.3.43)
IQ(S) (=D, (s= 1)/ (S)

k,i k i k i 1-k ’ J

i=1,2,...,N, k=r,r=ly.a04,1

where the process of computing the two quantities operates

such that, after obtaining SEST ), we have to compute l( )
’ l

(s=1) ,(9) .
then Er-l,i’lr-l,i"'°’ etc, as in step &4 ‘which was given

earlier,

Step 4' As in step 5 of the previous procedure,
Step &,
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4.3,4 SOLUTION OF SYMMETRIC LINEAR SYSTEMS

We re-consider the system (4q?,1) qith the assumption that its
coefficient matrix A is symmetric and possesses non-constant elements, i.e.,

Ax = _z_ ] .' . (a’o3o443)

where A is a (NxN) matrix and of the form,

3,1 %1,1 %2,1° %1 frN-r+l 0 %2,8-1 %1,N

al,1 ao’2 al’ a a

2

~
3,1 %1,2 %o,3 > O h A a
’ Y

: a

r,N—-1r

©
/
/

/

/s
/
/s

r,N-r+l

\\ . ~ ~ ~ A N Z,N-Z
~ ' ~

f) seoe
'
s/
rd
V4

~ ~

2,N-1 S o N S~ o %o,n-1 21,81
~ Y

| %18 2.8 23,0 %N 3 N-r* % N-2%1,58-1 %o,N

(4.3,44D)

In this case, the factorization (4.3.2) may be written as

ot = A, | (4.3.45a)

where A is symmetric given in (4,3.44b), D is a diagonal matrix of

the form, : =

3 (4,3.45b)

and L is a unit lower triangular matrix givem in (4.3.2).
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Thus, the system (4.3,44a) whose_coefficient matrix given in (4,3.44b)
or (4.3.45a) can be réplaced by an alternative form, that is, _
| | LDLTE_ =z , S (4.3.46)

As before, we éplit this systém into two systems with the insertion

of an auxiliary vector, y (say) such that

Ly =z : (4.3.47a)
and o DLTlc_ =3 |
or tx=plyzn, (4.3.47b)

where X?[Yl"ﬂ°'YN]T! ﬂ?[nl,...,nN]T such that |
n; = yi/di’ i=1,2,...,N and di are the elements of D in
(4.3.45b).

Since the system (4.3.47a) 1s exactly the same as the system (4,3.8a),
hence the elimination procedure discussed in subsection 4.3.2 is applicable
to the former; subsequently we can write the final result of the
elimination procedure given by (4.3.18a), i.e. (by considering (4,3.11) and

(4.3,16) the system (4.3.47a5becomes),

where e i=1,2,...,N are given by (4.3.11) and (4.3.16).

- A1 7 .
1 fea-—-—---H fi1 || ey
L0 - 22 f1,2 || %2 ®2
. 1 | \ , |
~ !
N ] I
1 t | | ,
gr,N-r+1“ ‘""fZ,N-r+1, : = | ®N-r+1
N | ! *
\\ ] { ! v
0 \\ i f a !
N £ i £ t | 1
2,N-171,N=-1 : :
£.N N N

(4.3.48)

Also, the elimination procedure for the comparison system (4.3.47b)

takes place in the same way as for the system {4.3.8b) {(or (4.3.9b)).



Thus, the algebraic formulation of the elimination given by (4.3.14) and
(4,3.17) can be applied to the system (4.3,47b), i.e..by taking,

uo g k=l,seu,r+l, i=1,2,44.,N in (4.3,8b) 'as follows

R s
=1 .

i=l,2,...,N, (4.3-49)

with u,- .

1,1

where £k ; are the elements of the coefficient matrix of the system-
o1

(4.3.47b) (i.e., LT). [N.B, the relation (4.3,49) can easily be
derived by equa;ing the corresponding elements of U in (4.3,8b) and
of L' in (4,3.470)].

Hence, the relations of (4.3.14) after the subsfitution for the

expressions of the u's given in (4.3.4a), can bé rewritten as follows,

1 y, for i=j
A =' . . i=1,2,...,1‘.‘
gi,j zj-l,i s for j<i $=1.2000u0r1, (4,3.50a)
0 ' , dtherwise
-1 , for j=i
g- . = i’j=1'2,'..’r. (4.3.50b)
1,8+ 0 . otherwise
r 1, for k=j ]
gk'j ) izl(_liaj“'i)gk:j"'i*‘s’ 8= k=1’2'...’r'

0 , otherwise;

e

where the gk < for s>N are given by (4.3.,50b);
»
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r
ﬁj = nj + Z (-gi j+i)ﬁj+i » where the ﬂtEO for all t>N
i=1 ' J
J=N-N-1,.,.,r ' (4.3.50¢)
and =i A
gk,r—i = jzl(_£i+j;j+r)gk,t+j+gk,r-i' k=1,24000,r
where the g's are given in (4.3.50a); i=1,2,...,r-1,
r=-i
A
T e jél Hag,ie0

(4,3,50d)
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where the “1’”2""’”N are the components-of the right-hand side vector

of the system (4.3,47b),

Subsequently, by virtue of (4.3.50) the system'(4.3;4?b) becomes,

81,1 B2,1--- 8.1
81,2 82,2---8;,2
}
| |\\ ! | ) 0
| ~N .
i I Mo
| | AT
g1,r &2,r ,Eryr
' ' 1 | 1
§ ' l ~
| i l ~
i ! | \\
{ ! t 0 \\
] t I N
By B2,N---8rx o

-

N

» (4.3.51)

where the ﬁl,ﬁz,...,ﬂN and 8,1’ k=1,2,400,%, i=1,2,444,N are given by

the relations (4,3.50¢) and (4.3,.50d),

To complete the solution procedure we should eliminate the elements

81,
(see (4.3.17)):
 For i=1,2,4..,1-1,
N
let k=r+l-i,
Rk~ TR KBk
then we have

@) _ -1, (i-D
(1) g R, g
g.] ok gJ .4 1sng n‘ﬁ
a(l) - »{i=-1) ~(1-1)
Ny N *RKTR

» j=1,2,-|o|r—i

y 3=1,24400,r"1, i=j+1,,..,r, Of the system (4.3.51) as follows

} (443.52)

J
where the superscript refers to the elimination step, and

(0)_ (0)_

gz’v:gi’u’ns :gsare as given in (4.3.51).

The triangularization of the system (4.3.51) is now complete and

has the form,
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. ' ' T' - T
8,1 xl“ n
. ™~
81,2 8,2 %2 02
| (Y .
| . -0 ! !
! AN ' l i
~ N
%l,r : gr,r : xr nr _
‘ | —
I .
\ ! Lo =1 (4.3.53)
| - I
| 1 ~ |
| } ~ t
| } t ~ | i
1 ~ :
g, - g i
1,N 1. : =LY g NN , K
- - 1
Lgl N By 8N ‘ Ikl

where the elements 7. and B i k=1,2,.04,F, 1=F,.e.,N are
i oL
as located in the system (4,3.51), whilst the elements ﬁj, 3=1,2,04.,1-1
and 8y T k=1,2,4s4.,r~1, j=1,2,.,..,k are given by (4.3.52).
’

Finally, the solution of the system (4,3.47a) is obtained by the
back substitution process from (4.3.48) which in fact yields exactly
the relations (4,3,19)., Whilst the solution vector x (of the system

(4.3.47b) is obtained by the Forward substitution process from (4.3.53),

i.24,

=n./
1 M8

"
|

e
2 = (%8 H)le, 5

r-1 '
-1 xe /e ? (4:3.54)

r . i"i,r" " ®r,r
r i=1 ! !

W oeer
]

r

SRR

32

. . » j'-".r"'l,.g.,N
i=1 tad J

We now describe the determination of the elements of the mﬁtrices
L and D given in (4.3.5a), this has been given in section (é.3.3);

Since the coefficient matrix A considered here is symmetric and
is factorized by (4.3.45a), the equations (4.3.4) can be reduced to
{r+l) equations only as follbws.

A comparison between the two factorizations of A given in (4.3.2)'

and (4,3,45a) yields,
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T
= DL

which by equating the corresponding elements implies

uk+l,i = digk,i+k f 1i=1,2,...,N, k=1,2,,...,1 (4,3.54)
(and the second suffix of ¢ is interpreted as modulo of N),

Hence, the equations (4.3.4) by considering (4.3.54) can be

reduced to the following form,

.d, ' =3 |,
r,i i-r A % 1
.d, + .d. . = 1.
lr-l,l i-r+l Er,l 1—r21,1-r+1 ar—l,l
C.d, 4, .d. . Feeett  .d, . ) '
21,1di-1-£2,1d1—2£1,1-1 2r,:l.dl—_r'%r-_l,l-l al,l
. + -d. N + .d.' . +i00 L, . = .
di 21,1 121,1+1 22,1 1‘2,1+2 +'Q'1.",1.(1].‘!'1t:,1+1:' aO,l

(4.3.55)
where i assumes the values 1 to N in each of these equations,

However, the iterative procedure discussed in subsection (4.3.3)
can_be applied to the equations (4.3.55); here we shall consider the
procedure which does not infolve the use of periodic continued fractions,
i.e. the step 1',..., step 4i given at the eﬁd of the previous sub-

section, These steps become,

Step 1" ‘Initialize 2(0),2501,...,2(02 s i=i,2,...,N.'
. s . :
Step 2" Obtain dé ) s 1=1,2,.4.,N as follows:~
(s) [ c  (s= 1), (s=1) .
di - aO.i/L} * kzl 2k i k isk |* 1t 1,2,...,N,
Step 3" Evaluate Eéf;l) and zéfi y 1=1,2,444,N, k=r,r=1,,,.,1

alternétely, (we shall rewrite the relations (4.3.43) after

the substitution for the u's given by (4.3.54)),

NG I RO TR N OJIN O
k i oL Tkl 1-k 522 k+J-1 i i=(k+j~1)
(8_1) 1 1 2,
L. . k=r,r-1
and j=l,i~k *
(S) 2(s v, (S)/d(S)

i T M, i=k ' N (4.3.56)

s N,
eale
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the process of computing the two quantities is as given

for (4.3.45).

Step 4" Finally, see step 5 {(or step 4') of the previous

procedures,
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4,3,5 ROUNDING ERROR ANALYSIS

'The error analysis for the algorithm solution can be discussed
briefly as shown below, :

We shall'considér the systems (4.3.8a) and (4.3.8b) (or their
equivalent (4.3,9a) and (4.3.9b) resbectivgly), i.e.,

Ly = z (4.3.573a)
and S Ux = y . (4,3.57b)
In fact, the system (4.3,57a) is similar to the system (4.2,62)

frpm the structure of the coefficient matrix (or the locations of the
non—-zero elements) viewpoint., On these grounds, the error analysis of
(4.3.,57a) takes place in an analogous manner to the system (4.,2,62)
and ends up with similar result, i.e.,
By assuming 8L to bé the perturbation in L of (4.3,57a), fhen
we should obtain the following bounds for the modulus of §L, that is
|s1|s(2.000% 27°E . \ | (4.3.58)
where § is taken as the modulo of the maximum element during the
elimination procedure of (4,3.57a), and the matrix E is given byr
(4.2,77b).
A similar analysis of subsection 4.2.7 can be applied to the
system (4,3,57b) to derive the bounds of the perturbation in U; 8U (say),
and finally gives the résult, |
lsuls(2z.0)E 2°°E ,
where § is taken again as the modulo of the maximum element_appearing

) ) A
throughout the elimination process'of (4,3.57b), and matrix E is of

the following form (c.f. E in (4.2,77b)),
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(r+1)th
Coln
. . : + ‘ _
- N- - (N-r+ =) Qa2 = = = ~ R
(N-1) (N-1)- ( 1} (N-v) © 0
{ ! N ~ ~
] ~ N “ i
P < NN |
t ! N REEAN ;
' l b ~ \\ \\ {
I .
rows |(N-r)  (N-r). - —.(¥-r) ~(N-r) (N=-2r+1) 0- = —= =0
~ ~ A !
(N=r=1) (N=r=1)- .. (N=z-1) 0 ~ AN :
[ ; : 1 A 4 N i
| R N 3\ 1
t ) o | | \\ Y N 1
! : v NN 2 0
. 1 ! \ N th
= ol ! | ( \\ ~ 1 +(N_r)
] hY 1 row
| | { ! s S, .
| | o N !
3 3o m——-- 3 | “ o 3 |
] ~
32— we—-2 o2
{ N
1 1 - - -~ -1 . N 1
A Y
- 0 O=-===-==90 0———----—.__.._......__0_J

(NxN)

- Y 3
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4,3,6 CONVERGENCE ANALYSIS OF THE ITERATIVE PROCEDURE APPLIED IN THE

ALGORITHM FICM2

We shall considef the theoretical analysis of Ehe convergence of the
iterative procedure summarized by step 1', up to step 4' in the
preceding subsection (which also applies to the other iterative
procedures given earlier), Previcously it was shown that the iterative
procedure is used to determine the urknown elements of the matrix
factors L and U of A, or, alternatively, to solve the non-linear
equations (4.3.4) (or (4.3.5)).

After some rearrangement of (4.3.4) we rewrite the system as

follows (where i=1,2,.4.,N for each cquation)

ur+1,i ) ar'i 3
ur,i+£1,iar,i-1 - aiiifis;a)
Ue1,i",1%, 11702, 1% 10 =a.9,i
4,i%1,1%,1-102,1%, -2t Reea, 1Y% ire2t -1, 1%, imrel T 21,1
U1ty,1%,i-1, 1%, 12t 1Y i e by, 1 0 i = 4,1 }
gr,iul,imr ' = a—r,i
201,10, i1 r, Y2, ir T AL
2r—2,iu1,i-r+2+zr—l,iu2,i-r+l+£r,iu3,i-r‘ = firs2,i
*1,10,1-1%%2,1%, 123,193,031 My 1Y ir TAhLi
(4.3.59b)

where the second suffix of the u's is illustrated in (4,3.4). We also
notice that the ur+1,i is replaced by a]__’i by virtue of (4,3.5%a) in
the appropriate equations of (4.3.59b).

It can easily be observed from (4.3.59b), where the suffix i runs

from 1 to N for each equation, that the system (4.3.59b) consists of
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2rN non-linear equations. These equations can be written compactly

(in a vector-form of 2rN components) as

Fx =0, (4.3.60a)

where ]T

1%
!

»

= [xl,xz,...,xer

and | Fo= [t ety

T (4.3.60b)

The vectors in (4.3.60b) may be partitioned into 2r sub-vectors of

N components, i.e.,
1 2 2r
[ ]

XXy eenX

]
n

1 .2
€', ... 7]

and : F

this means that the N components of the kth sub—vector; §FEIXT,-..,X:L

k_ .k
£=[£),

the vectors x and F in (4.3.60b) respectively:

k . .
..,fN] are expressed in terms of the corresponding components of

k_

T RN+ |
KoL i=1,2,...,8, k=1,2,...,2r.  (4.3.61)
i T(e-1)N+

Furthermore, we now define x? in (4.3.61) in terms of the unknowns

of the equations (4.3.59b) as follows, (for i=1,2,...,N)

1 : . . ]
X, T U_ .
i r,L
x2 =
i r-1,i °?
T
% 1,i°
xr+1 - r (4.3.62)
i r,i?
xr+2 _
i r-1,i°
and x?r =1
1 1,1
k _ r+k _ _
(or X, = ur-k+l,i and X, zr-k+1,i’ k=1,2,...,r). J

Thus, equations (4.3.59b) can be rewritten in terms of x? using the
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definitions (4.3.62) as follows {after some rearrangement which includes

defining the f? in (4.3.61)),

1 _ 1 _ = )
£ = (xl 1_ar i=-1 “p=-1 1) - 0

2 2 2r 1 2r- '
fi h -(Xl i 171 r,i-2 r-2,1) =0

-1 r-1 2r r-2,6 2r-1 r-3 r+3 1 r+2
£, == P J X, + X, .. .+x, R . - =

i (xl -1 i~2 i Fpere2™ ar,i—r+1 al,i) 0

' 2r r—l 2r-1 r—2 r+2 1 T+l

ff s - . . +-oo+ » - + . - - . =

i (xl X %- 1 *i-2 *1 x1—r+1 % ar,:.—r aO,l) 0
fF+1 - —(x F+1xr ) ' =0 >
i i “i-r -r,i

r+2 r+2 r r+l_r-1

= - -+ - ~ =

£5 G R 1™ B Bopel 1) 0

r+3 _ _, T3 r r+2_r-1 r+l r-2_ _
£r =m0y Ko™ Kpn™N Nopdere2,i) =0
f?r = -(x?er +x 21-_lxr-h]'ﬂnzzx'_zxr«2+...+xf-+1x} a .) =0

i i 1i-1 1 i-2 i=3 1 i-r -1,1 )

(4.3.63)

In faét, it is necessary to emphasize that (4.3.63) is the

explicit form of (4.3.60), whilst the implicit form may be given by,

! 2 2 2 2r 2r 2r . \
1((X1’x2"' ’KN) (xl’XZ’“"xN)""’(xl ’XZ ,"'ny )) =0
2 2 2 2r 2r 2r _
1((x1’x2’°"’xN) (xl,xz, ,xN),... X oK,y seeesXy ) =0 :
1.1 2 2 2r 2r ry, _
((xl,xz,.. . X ) (x 2, cey N),.. ,(x1 »Xy 3o e s Xy J) =0 J
(4.3.64)

where each of fi, k=1,2,...,2r is (generally) taken to consist of 2rN
arguments. |

The 2tN non-linear equations in (4.3.63) can be solved by a so-
called Seidel-type (or Gauss-Seidel (Ortega and Rheinboldt (1970))
iterative procedure, whose principle is that the.most recent information

obtained is immediately exploited in the following steps. The sth
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available step of the equations (4.3.63) is as follows:

£ (e S, U IR AN Ly (s-1)

2o ey (3

2r (s-l).
1 ) ?

1 (S),'.',( ; §5) ((x 2)(5) N ( 2 )(s)

2) (S 1) 3

3 raay

5 ((x

2. (s~1 | - -
G Ty N R N re

£ (G D e,

2r., (s-1)

(DT el D 2(yhH )

) =0 = £y )

(s) 2r=-1, (s) 2r-1 (s) 2r)(s)

2r 1, (s) 1
fi (((Xl) ,..-,(XN)) ,--.,((X ) ""’(KN ))) ,((Kl
2r )(s) ir)(s 1),...,( ZrSs 1%) f2r((y2r)(s-1)j

L i

are sy

(4.3.65)

On the other hand the one~step Fauss—=Seidel-Newton method (Ortega and
Rheinboldé (1970), page 220, see also Ames (1969), page 250 and Wendroff

(1966), page 162)), would take the following form:

1

o]
= e - (——-(( DEYT - ehh ¢

1

) A

2
of
IO N I RENCE (D

1

2r

af .
i 2r, (s-1) - 2r,, 2r, (s-1)
- (— 2r(( ) ) fi ((Yi ) )

X i : J

2r, (s=1)

NN

(xi

where y?, k=1,2,...,2; are defined in (4.3.65). It is cléar that the
relations (4.3.66) involve the evaluation of 2rN partial derivatives .
(which are required for the Gauss-Seidel Newton process, (Ortega and
Rheinboldt (1970), page 223).

However, the partial derivative terms of (4.3.66) can be derived

from (4.3.63) to obtain,
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The substitution

and

oe!
s_1= —1’ i=1,2,.oo’N,
X,
i
o2
3_2 = —]_, l=1,2’ !NS
X,
1
afE
_1'_‘ = -1, i=1,2,00'1N’
X,
1
3f;+1
! R T 171,2,.. 0N
1
r+2
af _ r
axr+2 e T 1,2,..05N
afir
3x2r 1’ i=1 2’. T
i
afg 3f?+k
—t = -] R
Bxk ’ er+k ikl
i ' '

1, (s=1)

D = ap Vel )

G = Dy )‘5 Ly,

D = DV (hH Y

, 1=1,2,...,N; k=1,2,...,

of these terms in (4.3.66) gives the result,

GEH ) o I (BT (B (7D o F ()

(x§+2)(s) - (x§+2)(s-1)+f;+2(( :+2 (s~ 15/( E r+1)(s)
2r. (s) _ , 2r.(s- 1) 2r 2r {s-1) r .(3)

(x;7) = (x) (Gyy FAC Y .

r)

172

r (4.3.67)

L (4.3.68a)

} (4.3.68b)

Moreover, by substituting in (4.3.68a) for f?(y?), k=1,2,444,2r as
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defined exactly in (4.3.63), the relations in (4.3.68) now take the form,

1,(s-1) 2r, (s=1)

1, (s) 1, (s~1) - . F
" = @) T TG D e e D)
_ _r.2r, (s-1)
"'.ar'lgi (xi ) ar:i-—l

(XZ)(S) - (XZ)(s-l)"((xi)(S*l) (x Zr)(s 1) )(s) 2r-1 (sfl)

i i Hxg )

_(x2r)(s 1) )(s) . 2r 1)(5 1)

a_ . .
r=2,1 i r,1-2

a_ .
r,i-2

-n ‘)-_-

r=-2,1

(xz"l)(s)'=H(x§-1)(s-1)_(( r-l)(s-ll(x (g- 1) 2}5) 2r l(s 1)(r-3 s)

st x r+3)(s—1) (x i r+2)(s) +( §+2)(s-1)ar i-r+1_al,i)
- al"i_(xir)(s-l)( :-I]’-’)(s) ~( ir-l)(s-l)( i:g) CO
-( ll?+3 (s-1) 1-r+2)(3)'("?2)(Sﬁl)ar,i-rﬂ ,
@@ = (D BV (@D DG EH STV ITH (I (7D (4 ()
s GEBEVGE SO,

= 2r)(s L)( r- 1 (s) ~( 2r—1)(s 1)(x1 2) e

(x r+2, (s~1) )(s) k r+1)(s-1)

) (x

1-r+1 ryi-r ;

(4.3.69)

If we define the quantities € ., k=r,r-1l,...,1, i=1,2,...,N as

k,1
r+k

Srkel,i T =1l2yeee M, F=1’2""|r9 (4.3.70)

ki as in (4.3.70), and for
xi. 3J=1,2,444,2r in terms of the u's and the L's as defined in (4.3.62)

then by substituting in (4.3.68) for ¢

we have from (4,3.,68) the following result (noting that (4.3.68a) is

replaced by its equivalent form (4.3.69)),




W48 _p (s=1) )
r i ar-l,i gl,i ar,i-l

(S) . _2(5-1) (s) 2(s D,

Yr-1,i r=2,i "1,i “r,i-172,i r i-2

(s) _ (8'1) (S)
u2,1'. - a1 1 i Y3,i-1" 2 i Y4,i-270"7 r-2 i r i-r+2

" 174

g(s=1) () g (s=1) ()

s )
r—l 1 r,i-r+l r(4.3.71a)
28 o 2 (s D,(e) _ (=D &) _ _(s=1) (s)
1,i 1 i 2 i-1" 2 i U3,i-2 **7 r-l i ryi~r+l
L Chg VN
r i r,i—r ]
g (8) _ (s~1) _(s-1), (s) Y
r i r i r,i l,i-r '

(S) 2(s 1), (s-l)/ (s)

rll rﬂ.l rll

Y, i-r+l (4.3.71b)

(S) (5_1) (S 1)/
1 i 1 i l i

(s)
1 i-1 )

Hence, it can easily be noticed that the relations in (4.3.71a) and

(4,3.71b) coincide with the corresponding ones in step 2' and step 3'

respectively of the iterative procedure given in subsection 4.3.3.

Convergence Criteria

The investigation of the convergence of the above non-stationary

process is similar to the stationary processes discussed in Section 2,2,

(Chapter 2), where in both
is required, certainly the
stationary case) varies at
Moreover, as in the linear

split into three matrices,

cases thelformulation_of the equation (2.2.22)
iteration matrix of this equation (unlike the
each .step of the npn—stationary process,

case (Section 2,2) the coefficient matrix is

the Jacobian matrix, J, of the non-linear
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equations (4.3.63) is also split as follows, (at (s—l)th step of the
iteration), |
D D D e s, (4.3.72)
where D, L and U are non-sgingular diagonal, strictly lower and upper
triaﬁgular matrices respectively.
The Jacobian J is of order 2N, and its partial derivétives can

be derived from the equation (4.3.63). It can be introduced in the

following block form,

- . ' —

Jir I,z T3 o0 0 0 Tg0e
Taor Ja,2 2,3 0 0 0 920
J = . . » . : » (4.30733)

J J J . @ - J
| “2r,1 21,2 “21,3 25327 | 5 Nx2 )

where the matrices Jk,v’ k,v=1,2,,..,2r are of order N each, and their

coefficients are determined from {(4.3.63) as follows,
sk |
J = e —— [} i,j=1,2,...,N. (4.3|73b)
kyv X (y_1)N+j
Furthermore, since the derivatives (4,3.73b) were derived from
{4,3,63) it can be noticed that some of the submatrices of J in (4.3.73a)

are zero (i.,e, null matrices); these are,

Ji j = 0 » j=i+1’i+2’..a’2r-i’ i=1;2|noigr_1’
]

’Jr+k’j =0 (4.3.74?

j=1’2....'r-k, k=1.2’li.'r-1'

Jr+k,r+1+j =0

We note that this only applies for r>1,

Therefore, by virtue of (4.3.74), the matrix J in (4.3.73a)

becomes,



176

I Ii,2r
To.1 Ja,2 0 3,201 J2,2¢
1 o~ Ve i
[} I h S s i
!- L ~ < f
. ] . ~ ' ] i
Jr,l Jr,Z T Jr,r r,e+l - T T T 7 r,2r
I = , (4.3.75)

r+l,r r+l,r+l
0 - - i ’ f ’\~ O
! | ~
’ “ I H ~ ~
” . .
: 1 I ~
J2r,1 =T T 7T T2r,r T2r,r+l T T T '\'JZr,Zr

noting that the upper submatrices (including the diagonal) are diagonal

submatrices and -Ji i i=1,2,,4.,¢ are unit matrices, whilst the lower

]

off-diagonal are sparse submatrices with N elements each,

However, the Zteration matrixz M of the equation (2,2,22) takes

the following form,

where D,L and U are defined in (4.3.72).

M(s--l) - (D(s-l)_L(s-l))-lu(s-I) i

(4.3.76)

Thus, the scheme (4,3,66) converges to a solution of (4.3.63)

(s-1)

provided that the iteration matrix M

required for the linear case (Section 2,2) (see Ames (1969),

spectral radius, p(M), is less than 1.

of (4.3.76) has the property

that the

In this respect, we may formulate a convergent condition for the

special case, when r=1,

J(r=1) has the form,

Te=1) ~
' 2,1

where J,
1y

For this particular case, the Jacobian matrix

? (4.3-77)

3 i,j=1,2, can be expressed from (4.3.73b) as follows:



1,1

J =

1,2

J =

2,1

J = e—m————

2,2

where xN+j is equivalent to x§ by the assumption (4.3.61).

!

1,351, 20040,N

177

(4.3.78)

The derivatives (4.3.78) can be derived from (4,3.63) in the

following manner,

2,1

By expressing J(r=

1,2

o -

, and J2,2 =

NxN

o

21 N-1 NxN

(4.3.79)

\\-. 1 )
‘ -1y
C (4.3.79)

) in terms of its coefficient matrices given

in (4.3.79) and the splitting procedure as in (4.3.72) then the matrices

D-L and U can be obtained in the form,
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-1 ]
-1
N
~
\ ]
~
-1
-1 0
2_1 th
DL = X "Xy «(N+1) row (4.3.80a)
2 1
X2 "‘Xl
2 1
x —
3 )
\ N
AN 0 -\\
. \\ ~
~
\
0 \ 2 \\ 1
| B N TFN-1] (2Nx2N)
and
®+1) P o1
—_ ¥ =
T4 LN
T3,1 0
3,2
\
N |
U = b
\\ {4.3.80b)
0 T81,N-1
L. 1 (2Nx2N)

It is easy to invert the matrix (4,3.80a) which gives,

=1
. "1\
.
< .
1
L T My
-1} * = 2
(D L) -;T . —1/X
1._x3
N 0
~
'\\xi
0 X
i -1

0
—llx;
.y
-~
-~
~
~
=

« (N+1)throw

{4.3.80¢c)

(2Nx2N)
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Subsequently, we can obtain M at every step in (4,3.76) from the

product of the matrices (4.3,80b) and (4.3.80c) to give

M=

1,1 N
4,2 |
\
~
~
hY
: N
0 N
\\ .
31,8-1
x2a
1 iaN-l
xN (4.3.81)
0
xza
3 itl
x2 N
LN
\\ 2
NMxTa
1 iIN-Z .
N-1 ~ (2Nx2N)

Due to the sparsity of M and its above structure, we can proceed to

construct the characteristic polynomial in A (see Theorem 2.4.1, Chapter 2).

| N
0zdet (M-AT)=(=1) " AN

ey

X a
el

o

{NxN) -



180

2 2 2 2
=(*1)N>\N[(-1)NAN+(-1)N+1 LLEL, 2 LN, 311, <N i,N-2]
XN ' Xl‘ x2 XN—]_
(4.3.82)

By substituting for xf, i=1,2,...,N from the appropriate equation of

(4.3.63) (i.e. the equation with f;+1) in (4.3.82), then we obtain,

a a a a a a‘
kN+(-1)N+1 -1,1 1,81 -1,27i1,8N  "-1,31,1 g
oo x)? xh? (x1)?
N %4 Xy
2_1,8%1,8-2
x = 0
I
: *N-1
or , N a . .a, . '
e T hEL (4.3.83)
i=1 (xi)

Thug, to ensure that M in (4.3.76) possesses a spectral radius less
than 1 in modulus for the special case (i.e. r=1), we should have the
condition,

.a

N a“1 q
1>[a] = ¢ [ TT L
i=1 (xi)

N a . a, .
Li N 7 j=ked) | 248 Gusase
. X.

to be satisfied at each step of the iteration.

2)(5-1)

On the other hand, if we now assume that (xi =0 at s=1 (i.e.

the initial solution), then,

1 .
X, = aO,i s for i=1,2,...,H

and on substitution in {4.3. 84) we obtain

a1 = ¢ T[I 2, 23 I . LN (4.3.85)
l 1

Moreover, if the coefficient matrix is symmetric then (4.3.85) becomes,

A =« TFI---—*—I2 MW, | (4.3.86)
i=1 0 i
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and if the matrix is constant at the same time, these relations take the

simpler form, i.e.,

: 3 2
|A] = | ;—‘i[ <1 for any i . (4.3.87)
0,i

which can be readily identified as the condition for diagonal dominance.



4.4,.1 ALGORITHM FIRML

‘The type of linear system of equations considered in this

when the coefficient matrix is non-periodic and possesses real

constant elements. The matrix of the system (3.4.21) which is

from the two4point boundary-value problem is-an example of the

matrix that is under consideration with the present algorithm,

The FIRML algorithm differs from the algorithms discussed

182

section is

non-
derived

type of

in the

previous sections for the periodic-type matrices in that it involves, -

(i) factorizing the coefficient matrix into two pseudo-inverse rectangular

upper and lower triangular matrices and (ii) formulating a coupled system

consisting of wunderdetermined and overdetermined systems to salve.

These

two systems will be solved in a related manner. The determination of the

elements of the two factor matrices is completed by an iterative procedure.

The linear system related to the present method is assumed to be of

order N and has the form,

gt

+ -30,1 al’l 8.2’1.-

21,2%,2%,2%2,37 "7 " ~~%1,2 32
~ ~ ~ ~ hY N ' 0
-2,3N N0 S0 NN N N

a
i
r+l : ~ ~ ~ ~ ~ N
[}
a

~ ~ a

1,N-2

3,81

~ ~ ~ ~ ™~ \\ r’N“r

r~-1,N-r+l

L3
=]
+

-

N'

N

[ T

N

»  (4.4.1a)
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or in a compaci: form
Ax =z , (4.4.1b)
where the matrix operator A is an NXN non-periodic mdtrix, of bandwidth
(2r+l), such that N32r+1, rxl.
For the.solution of the linear system (4.4.1) we assume that matrix
A can be factorized into rectangular matrices, U and L (say), such .that
UL = A . - - (4.4.2)
The matrix U has dimensions Nx{(N+r) and L has dimensioﬁs (N+r)=N; -
the former mqtrix has an upper triangular form whilst the latter has an

unit lower triangular form. To be precise, U and L have the following

form,
< r ¥
a U, ;= === = u | ]
Y1,1 2,1 r,l r+l,1 0
U,2 9,277 == %2 Yrer,2 :
N N ~ ~ .
~ ~ ~ ~ |
“ N ~ ~ § O
~ \\ ~ u
~ N ™~ r+l,N-r
\\ \\ \\ 1
= |
v AN N ur,N-r+1 ur+1,N-r+1
~ \\ R N | ~
. .
N ~
NN AN .
0 ~ ~ ~ ~
~ N | N ~
~ b ~ ~
. u 'a ~ “u
NI O T R W CAC N r+1,N-1
~ { ~
5 N2, N T YN Yr+l,N |
(Nx (M+r) )
'
and = [Ul ! Vl] (4.4.3a)



L. +K

For the definition of Ul’vl’ 1™
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Ly
= je——=—| (4.4.3b)

1
. X
Y1,N B -
Qr—l,N
e
28 () XN)

see subsection 4.4.3.

From the factorization of the matrix A defined by (4.4.2), it

follows that the system (4.4.1) is replaced by the alternative system

ULx =

Z s

(4.4.4)

whose method of solution will be discussed in the next subsection. .

Now having completed the product of the two rectangular matrices

U and L given in (4.4.3), we can equate the obtained elements of the

matrix A (by virtue of the relation (4.4.2)) and so derive the following

non-linear equations for determining the elements of L and U,

2

u, LA,
1,i r,i-r

L
ul,i r-l,i—r+1+u2,i£r,i-r+1

a _ ,yi=r+l,...,N, (4.4.5a)

-r,i

a—r+1,i’ 1=T,..04N

.. otu, (R . o+l tu LR,
ul,i 1,i«1 u2,1 2,i-1 ur,L r,i-1

u, .+tu, &, .+...+tu_ . L . Hu . .
1,i 2,i1,i *°" "r,i"r-1,i r+1,12r,1

4.4.5b)

.y 1=2,3,...,N

a
~1,1

ao’i’ il’z,non,Nl

(4.4.5¢)



u

2,173,1 %, 1417 e, i Y1, 141

u

R At LA,
r,i r+l,i71,i+r-1

u .
r+l,1
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= a
r,

y1=1,2,...,N-r+l,

, 1=1,2,...,N-r.

(4.4.5d)

For the special cases where the matrix A of the system (4.4.1)

is tridiagonal or quindiagonal, the matrices of (4.4.3) are of the form,

(i) . for r=1,
i ¢t ]
Y1,1 %2,1 {
’ N 0 l
~
U = 1,2 S~ ! 0 and L &
1 N ~ I .
(r-. ~ ~ i (r=1)
~ ~
~ u i
0 S U2,N-1t
|
{
L- ul,N ;UZ,N_
and
Y1,1 2,1 V3,1 0 :
A ~ “
~ \ ~ |
~ o~ N ! 0
v oo 2!
(r=2) NN o
Mo u lau
0 So 3,81 Y3,N-
|
3 U8 U2,N Y3,n]
and
—1 Ay
R 1 ]
2,0 Y2
.
L = 2' M -~ = ~
(r=2) 2,2\ "'\_\ -~ -
0 T~ \"; S
T2 N |
e e e = 2..N:2.11_»N:.1:.._-
2,81 *1,5].
0 .
L 2,N]

1
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g
0
L.

(4.4.6b)




Consequently, the equations in (4.4.5) become, for these two
special cases,

in case (1),

' .ul,izl,i-l = a_l,l, i=2,...,N,

ul,1+32,inl,i = aO,i , 1=1,2,...,N, (4.4.7a)

U2,i = al,i s 3=1,2,...,N-1,
and in case {ii},

up,i%a,i-2 =a, ;s 13,00, 1

up,i%1,i-1%2 4% -1 7 2op i 12eee 0N

ul,i+u2,i£1,i+u3,122,i =3, ¢ i=1,2,...,N, +(4.4.7b)
uz,]._+u3,].“ll.1,]..+l =a i=1,2,...,N-1,

u3’i = aZ,i’ i=1,2,...,N-2. |

Furthermore, the solution of the system (4.4.1) with A symmetric

has, for the cases of the tridiagonal and qunidiagonal matrices with
constant élements been the subject of investigation by Evans (1972)
and Okolie (1978) respectively. The matrix equation of the two cases

can be written as follows:

For the tridiagonal case,

B A % Z
I
a; a; & 0 ) :
\\ \\ -~ : ,
NN e (4.4.8a)
~ ~ o~ !
\\ o . ! I
~ ~ 3 | ]
0 \\ \\ 1 : |
\\a“a !
i 1 %) v [Pw
or ax=1%2, (4.4.8b)

and for the quindiagonal caée,
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(2. a. a T [x.] EN
01 "2 1 1
| [
a, a_a, a
1 01 2 { |
| 0 |
‘ I
%1 %% az\ a :
N N\ AN \ . I {
\\\\ N \\ \\ I :
NN ‘
\\ \\\\ \\. a2 i i
0 \\ » \\ “a | |
N\ N \ 1
N Y N 1 §
] a, a, aq- _XN_ _ZN_
or : Azg =Z. _ ' (4.4.9b)
Evans, (1972) suggested that the factorization of the matrix Al in
(4.4.8) can be of the form,
' . T
Al = DlQQ . (4.4.10)
where - — 2.-1 -
1 - ! +
E . n 2o {l+e)
1 A Y 0 ! O \\ 0
N\ \\ : ~
Q= NN » By T AR
AY ! ~
O \\ \_a: 0 \\
N H \\
"1 g a (1+0t2)-.1
— 1T HNx (N+1) — 0 ~ NXN
' - 2.,.2
and o= 231/[ao+(a0 Qal) ] .
Hence, from (4.4.10) the system (4.4.8) becomes,
qung =.§
or W'z =D;'E=1n, (4.4.11)

T 2 .
where ﬂ?[nl,...,n and ni=(1+a )Qk/ao, i=1,2,...,N.

.
Ckolie (1978) extended the idea of the factorization (4.4.10) to the

quindiagonal matrix; and suggested that the matrix A, of (4.4.7b) can be .

2

factorized as _ T .
; A, = D,PE” (4.4.12)

where



1 -« -8 ¢ ] a_(1+a
\ ~ l 0
1-\\\\\ 0 :
‘\ AN \\ I 0
= \ -
P e el » Py
N i
ALY .
0 1 —a: -8 0
_ -
I_ ‘ 1 I_a —B_ Nx (N+2) L
and a = B3 /(1-8)a, , }
g = aaz/(81+aza)

Hence from (4.4.12) the system (4.4.7b) becomes

Ta o~
DZPP X =z
or PPTg = Dgl’zv= g,

where ;;[gl,...,gN]T and gi=(1+a2+8

2

N

2.-1

+£7)

~
oo e

);i/aO’ i=1, . .-,N.
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NxN-

(4.6.13)

(4.4.14)

Finally, by inserting auxiliary vectors into (4.4.11) and (4.4.14) say

y and EfresPectively, such that these vectors are defined as

T
y= [Yl’”"yN’yN'Fl] ’
o T
Y=Ly e sV Ve Taed

then, we may write the system (4.4.11) as,

Q@ =1
and Q?E =y
and the system (4.4.14) as

PF=k
and P?g'= y .

(4.4.15a)

(4.4.15b)

(4.4.16a)

(4.4.16b)

The treatment of the system (4.4.15a3) was considered by Evans (1972)

via an elimination process, ending up with relations in which each of the

COMPONeNts ¥;5¥,s+++>¥y of the vector y is expressed in terms of its

component y .. » i.e.

N-k+1
i

2
Yk

Vel T kTt My teeeta

N~k
e

k=1,2,...,8-1,

(4.4.17)



whilst the system (4.4.15b) yields the result,

o i-1 . :
x; = yi+ayi_1+...+a ¥y oo i=1,2,...,N-1 (4.54.18a)
xy = yN+ayN_l+...+aN“1yl : (4.4.18b)
—aXy = Yy . . (4.,4.18¢c)

Yow, substitutions for y_,v.. .s...,y. In (4.4.18b) in terms of
N’/ N-1 1

Te1? given by (4.4.17), together with (4.4.18c), will give us the result,
' i - N 2
Xy = [nN+anN_l+...+alnN_i+...+aN 1nl-aN+1n1-a +2n2—...-a NnN]/
- | (4.4.19)

Finally, the value of Xy having been determined is obtained from

. YN+1
(4.4.18c), and then yN,...,yl are éompqted by the back substitution process,

i.e., we have

Y-

i ='ni+ayi+l , for i=N,N-1,...,2,1,

and the solution vector x is given by,

X, = y,tax.
yl i-

i for 1=2,3,...,N-1,

1?
where, from (4.4.18a) X, =¥

The amount of work involved in this special method is 4N additions and
5N multiplications,

A.similar elimination procedure is extended to the sygtems (4.4.16)
after the determination of the elements of the matrix P, i.e. a and 8.
This may be done by solving a quartic equation for o (or B) which can be
derived from the two equations'of {(4.4.,13), Okolie (1978) and Newton's
method to solve the quartic equation.

However, in analogj to (4.4.17), we can expfess the components ?1,

}k of the vector Erin (4.4.16a), in terms of its last two components §N+1

and §N+2’ i.e.,

L -~ ~
Y1eg " cj+ej+1yN+1+ejByN+2 , (4.4.20)

where c1=EN, c2=£N_1+ac1, cj=nN_j+1+acj_1+Bcj_2, i=3,4,...,N

and e1=1, ey=a, ej=agj_1+8ej~2, j=3,4,...,N+1.
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From the system (4.4.16b), by a successive forward substitution

process we have,

3 |
R, = jzleiyi*i+1 , i=1,2,...,N, . (4.4.21)

After considerable algebraic work (see Okolie (1978)) we end up with
. L ~ N ’ -
two equations in the two unknowns, Yol and YN+2' These equations are,
~ ~F
Yns2R1 = "R R : .
' (4.4.22)
yN+231 = —(8

2N+1183)
where

=]
It

N- N-
1'+B2 z c? s, R ] Z e.e,

>
' IS S
N ' 3 Ngl

R, =8 ) e,c. , S, =8 e.e, .—q,

3751 1 521 9 J+}
5, = B+B2 W e.e S, = 82 N—le c

- L] » ’ - - - ,
2 j=1 ] 3+2 3 = j j+1

and the e's and c's are given in (4.4.20).
~ ~ .
After Yne1 and Y2 have been determined from (4.4.22), then from
the system (4.4.1a) we have,
~ -~ ~r .
INei+l ™ FNeie1 " neie2BInmgag 0 TTH 2000

and the vector solution E:ié given by (4.4.21) or from (4.4.16b)

L = L -~ - ~ + (ad
xl y].’ xz = y2 U-Yl »
-~ ~ ' -~ .
and X, = yi+axi_1+8xi_2 s 1=3,4,...,H.

The total amount of work required for solving (4.4.9) by the above
approach, excluding the procedure of solving the equation (4.4.13), is
of the order 13N multiplications and liN additions. Okolie (1978) points
out that this strategy is an unattractive method for the quindiagonal matrix,
as in (4.4.9) , when the coefficient matrix is symmetric and has non-

constant elements. This conclusion was based on the fact that the latter
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case leads to the solution of N quartic equations for the determinatidﬁ of
the elements of.the factor matrices ai,Bi.

However, our alternative strategy for handling the non-constant
and non-gsymmetric matrix (of wide bandwidth) as in (4.4.1) has been
discussed earlier for the factorization of the coefficient matrix, whilét
the determination of the elements of the factor matrices and the solution

of the coupled system will be considered next..
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4,4.2 ALGORITHMIC SOLUTION OF A COUPLED SYSTEM

The solution of the original system (4.4.1) can be investigated by .
considering its alternative (4.4.4) which can be split into wnderdeterminad
and overdetermined iinear systems by inserting an auxiliary vector y i.e.

Uy=2 : (4.4.23a)

and Ix =y, (4.4.23b)

where the rectangular matrices U and L are given by (4.4.3), the vector

. : . T
y consists of N+r componepts, 1.§., z?[yl,...,yN,yN+1,...,yN+r] , and

the vectors 2z and X are both of N components as given in (4.4.1).

This st?étegy of splitting the given linear system into two systems
differs from the st;ategies adopted in the previous method since, (i) the
systems (4.4.23a) and (4.4.23b) are underdetermined and overdetermined by
r_respectively, and (ii) these two systems.were solved separately in the
previous algorithms whilst here they are treated in a coupled manner,

so that the 'redundant' components of y,

i.e. Yne1? o yar 2T determined

first, then the remaining components yl,...,yN,'aﬁd finally the components
xl,...,xN of the solution vector are cbtained.

We shall first consider the general matrix analysis of the solution
of the coupled system (4.4.23). Following Evans and Hadjidimos (1979) we
consider the partitioned forms of the matrices U and L which are:given on

the right-hand sides of (4.4.3) respectively and hence we may rewrite

(4.4.23) in the form,

3;
' —
[U1 | Vl] -1 =z (4.4,.242a)
L
and _ Ll
L] i |
- - E = y:-v- (4-4-24b)
1 b4
b

where the matrix U, is of size (NxN), Vv is (Nxr), L

1 1

is (NxN) and K1 is (rxN),



respectively, while the vectors ﬁ_and‘i are defined as,

~ T ~ T
I = Drpeeosvgl 5 ¥y = BgpqeeeesVga ] -

The two systems of (4.4.24) can be easily converted to the form, i.e.,

v +tVy=z, (4.4.25a)
~
Lx =3, | (4.4.,25b)
and oKX =y . (4.4.25¢)

If we substitute z:from (4.4.25c) into (4.4.25a) then we have

o)
Ulz +_V1Kl§ =z

A

or BT el PR S (4.4.26)
Therefore, after substituting 31 from (4.4.26), we write (4.4.25b) as
-1
Lix = Uz,
-1
or . X = (UILI) [Eflelfj

K]_E]

and finally, by rearranging this result the solution vector x may be

expressed as, -1 -1 -1
X = [I+(U1Ll) VlKl] (UlLl) Z 5 (4.4.27)

" where I is the unit matrix of order N3 noting that the relation (4.4.27)
is valid if the appropriate matrices are invertible.

However, our approach to.determine the solution vector x unlike
(4.4.2?) does not involve computation of inverse matrices, but rather
involves partially solving a linear system of order r to evaluate the
unknowns yN+1""’YN+r’ followed by the back and forward substitution
process. This can be accomplished as illustrated in detail below.

The equivalent form of the systems {4.4.18a) and (4.4.18b) can be

written respectively as,
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» I — FS’ - —; -
Y0,1 1,1 Y2,1~==--"r,1 , 1 1
Yo0,2 Y1,2 ¥2,2----"Yr,2 | Y2 %)
N\ \ \ 0 | 1 )
AN \ N ( |
AN hY AN hY | I
NN \ h I 0 : I
N hY \ N\
N hY N AY i | i
. N\
A D e »N=11 N-r “N-r
N I
N N
AN A . T Ner+l : :
\ AN R I i
: NN Y2,1\1--1:1 ¢ \\ ! =
N 1 i
0 Ny lY N\ 1
: N I,N-rt T2,N-1 N | I
N ' | AN | !
3 Yo,N ;H,N Y2,N--Yr,N]| Ty 7, |
Iy+1
. |
'
£3: i
o '
;i TN+
(4.4.28a)
%0,1 1 "
*1,1 “o,z\ ) 5-22.. Y2
n |
a o ~ =
2,1 %1,2 N 0 , r
i o ~ ~ t l
! 2,2 N N ! :
] ' = . |
i | \\ \\\ . ] = :
. b
o! ! S A 1{*'.:+]. Y+l
r,1 G‘ \\\ ~ . h ~ ! |
r,2 ~ RN ‘ i
S e \\\ ~ *~ : |
‘\\ \\ aO’N_l i I
0 \\ ~ ~ 1 !
%, N-r = === % 51 %1,8-1 %,N| BN - MY
%, N-r+#1= — - - %2 -1 *1,N Ine1
~ ]
-~ \\ . 'Z,N |
0 ~ ! l
\\ I I
\\ | [
ur,N_ }N"‘I‘_J

(4.4,28b)
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‘where Yie,i =Wl for k=0,1,...,r, i=1,2,...,N, (4.4.29a)
»
and a. . =1, .
0,1 i=1,2,...,N. (4.4.29b)
ak,i = lk,i’ k=1,2,f..,r B

An elimination process now disposes of the elements Y 30
3
k=1,2,...,r, 3=1,2,...,N-r, and Yk N-i® i=r-1,r-2,...,1, k=1,2,...,1
,I.

of the system (4.4.282) and the elementsa 5 k=1,2,...,r, j=1,2,...,N

k,
of the system (4.4.28b); viz.

(I) For the system (4.4.28a),

we leave the NP equation unchanged, then mﬁltiply the Nth equation
~¥1,8-1
Yo,N

equation and thus eliminate the elements Yl N-1°

: 1 N ’ _ 5 N-
new (N-—l)th equation by —LN72 .04 the NtB equation by 2,872

o Yo,5N-1 h Yo,N

add to the (N-2) equation to obtain the new (N-2) equation and

t . . t
by and add to the (N-1) h equation to obtain the new (N-1) h
We now multiply the

and

thus eliminate the elements Yl,N-Z and Y2,N-2’ so, generally, to

obtain the new (N—k)th equation, k=1,2,...,r-1, we multiply the

(N-k)?h:equation, k=1,2,...,r=1, we multiply the (N-j+1)th equation
—Y. _ !

by —2NE 51,2, ...,k and add these (k) equations to the (N-k) P

Y0, N-k+j

equation, thus eliminating the elements Y1 Nk Y2 Nkt Y Nk
> ] L]

‘We proceed now to eliminate r elements each time, so obtaining a new

jth_equation, where j rums from N-r to 1. We multiply the (j+k)th

~Y. _
equation, k=1,2,...,r by —;Eﬁl——- and add to the jth equation to
th 0,3+k
obtain the new j = equation, and thus eliminate the elements Y 3
.
V2,770 e

The algebraic formulation of the above elimination procedure can
be arranged as follows:
Let ‘ -1 , for i=t

g . = t,i=1,2,...,r, (4.4.30a)
t,N+1 0 , otherwise



and

(-YS, /

j Y0,5+s)gk,j+s; k=1,2,...,r, J=N,5-1,.

'

where & ¢ for t>N are given by (4.4.30a), and
> . .

<
o
i

= 1 for all i>N,

i
-~ r ~I
zj = szl(”YS,j/YO,j+S)zj+s+zj ’ J=N,N-l,..f,1,
ar o
where z, = 0 for all t>N.
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21,

(4.4.30b)

(4.4.30c)

Thus, from the described elimination procedure which is formulated

by (4.4.30), the system (4.4.28a) becomes

N ‘ o o
0,1 V81,1 82,1 8r-1,1 Br,1 [f1
: |
0,2 1 81,2 82,2----81,2 B2 |2
N 0 ! [ ' 1
\ P ! ( [ | [
~ i : | | |
\\ Iy - | { ¢
N I ! {
N | 1 1 ! | i
0 ™\ ‘ o' ! ' '
Yo,8-11 81,8-1 82,8-1""" &r-1,8-1 Br,N-1 :
l
_ Yoou 8n BN-7- By BN [P
N+l
1
'
]
N
v
Then, the system (4.4.31) immediately yields the result,
175 4 (2=Yya181, 1 V4282,17" " Ixer-18r-1,1 TreeBr, 10
’ o
- G- - T A ),
Y2 7y, 2 Tn+181,2 T n+282, 27 I Ner-18p-1,2 T Ner Dy, 272
»
-1 (- - —eeam - )
N 7Y N TN#181 N O N+282, 8 T Ner-18r-1, N VN4 B N

0,N

(4.4.31)

r(4.4.32a)

!



or
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. : r ‘

1 ~ ind + ’
y- = — (z- - LY -)’ J=1,2,cot,N- (4’-4-321’)
P L |

For further analysis we may modify the system (4:4.32) to

another form., Thus, if we define the quantities ¢ and ¢ as follows:

$. = L
3=1,2,...,N, (4.4.33)
_1 .
and ) g ., k=1,2,...,r,
K,] Y0, ; K,J
then from (4.4.33), the system (4.4.32) can be written in the form,
= \
V1= 0, 1Y, et Yy e
Yo = ¢otbe ¥y 1t SY ottt Ly ,
2 2 "1,2°N+1 Y2,27N+2 r,2 N+? d (4.4.34a)
Yy T T W2 e Y W e
or /
r S
Yj = ¢j+ k§1¢k’ij+k’ J=1!23'--,N- (4.4.341))
The matrix form of the system (4.4.34) is given by,
R — r — - - — -
71 1 Y1 Y2,1-----Vrn TN+l
Y2 ¢2 lP].,Z '¢2,2 - '"¢r,2 IN+2
) ! i ! . ! (4.4.352a)
| e l + { | 1
, , ' ' ! '
- : Wy bV wg mmmm ¥ N+
, : 1,N-1¥2,8-1 r,N-1| LN
M _¢NJ _Epl,N Vo= Ve n I
or in a compact form,
~ . " '
n=g¢+yn, (4.4.35b)
' " T o~ T - T
where n=[y;,...,ygl" and n=lyg js-eeov, 17 5 & =[81505,.0 008,17,
and ¥ is a rectangular matrix of size (Nxr).
(II) For the system (4.4.28b),

We keep the first equation unchanged, then we multiply the first



198

%1

0,1

d

equation by and add to the 2nd equation to obtain the new 2"

equation and thus eliminate the element %, 1 We now multiply the new
- _ ? . —a _
L2 .04 the first equation by 2’} and add to the 3"
o )
| 0,2 0,1 .
equation, and thus eliminate the elements % 9 and @, 15 SO, generally,
] ' 3
to obtain a new jth equation, j=2,...,r we multiply the kth equation by
-, ' ,
—EEAJ~E-, k=1,2,...,j-1 and add these (j-1) equations to the jth_equation,
0,j-k '
thus eliminate the elements a =k’ k=1,2,...,j-1, for j=2,...,r.
»

d

an equation by

We now continue the elimination procedure so that in the following i

. . . .th
steps, where i runs from 1 up to N, we can eliminate r elements per i

step; to obtain a new ith equation we multiply the (i-k)th equation by

MLk

%0,1i-k
thus eliminating the elements a

, k=1,2,...,r and add these (r}) equations to the ith equation,
1,i-1°%2,i-27" "% i-r’

Finally, the elimination procedure carries over to the remaining
equations, so that we multiply the (N+j—k)th equation by —;Eigilji ,

: 0,N+j-k
k=j,j+l,...,r and j=1,2,...,r and add these (k-j+l1) equations to the
(N+j)th equation to obtain a new (N+j)th equation, and thus eliminate
the elements uk,N+j—k’ J=Jsseesry, Jj=1,2,...,r; consequently the

elimination process for the system (4.4.28b) is complete.

The implications of the above elimination procedure on the system
(4.4.28b) are that (i) the (N+r)»N rectangular) coefficient matrix is

left with the diagonal elements o and (ii) its (N+r)-

a sy
0,1’%,2* " **%,x’

component vector on the right-hand side is modified; we shall denote

. ~ ~ had »
the new components of this vector by YpaYgreeesYyser oY 1e€es



®0,1 X1
aO,Z O . X2

-~ {

~ i

~
~ i
~ {
RN i =

0 %0,N-1 :
IR <5 4 I 65

—
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(4.4.36)

The components'§1,;E,...,§k+r of the vector on the right-hand side

of the system (4,4,36) can be expressed as follows, according to the

elimination procedure described earlier:

-

yl = yl ’

» j=-1 O ik

y_] = yJ + Z ( @ )Y k » J_Z’-uo’r'
k=1 “0,j-k

g Y .

Yy = yl-. + X (""""'""“)Y. » 1=r+1'oo..N,

k=1

and

~ -
'yN+j yN+j

where yl’YZ""’YN+r are as given in the system (4,4.28b).

Further, in order to express ?}, i=1,2,..4,N in terms of Yy

a i-k

0,i-k

r - .
k=j TO,N+j-k

3=1,2,404,1,

(4.4.37)

k=1,2,...,j and §%+k' k=1,2,.44,T in terms of yl,...,yN, a large amount

of tedious algebraic work is necessary. Alternatively it may be easier

to re—formulate (4.4,37) by introducing some extra notations which we

now introduce,

We define the quantities Tj 1 3=1,2,..4,4N+r for k=0,1,,..,r and
]

c: 29 3=132,444,N+1,,for i=0,1,...,,N as follows,

Jsl
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T, =1,

1,0
- T i=1,2,...,N+r, (4.4,38a)
and . T, . = - L0d7K £or 165-kal, K=1,2,.00,1 -
Ik ao sk
)] .
Cj'o = l, for j=1,2,.-.,N+r,
1, for i=0 ]
s i, for i<r i=1,2,.0.,3+1
5,1 " kélTj,kcj-k,iwk’ for & = 1., otherwise| provided 2gjeN+l
f i, for i«<d where d=N+r+1—j}
T, o a1l 2.3 fOTr & = . for i=1,2,...,N
k=1 »T—d+k N+l-k,i-k _ d, otherwise provided jaN+2

3=1,2,...,N¢1, (4.4.38b)

where the quantities T. are given by (4.4.38a},

ik

It can be seen that the values of the quantities e 4 in (4.4,.38b)
’

are computed recursively in Figure 4.4,1, where we have set up a

computational scheme to illustrate this relation,
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4,1 ] T5,1
4,2 75,2
4,3 “ T5,3
17%s,4
c * 1
o » .
-? N+1,1
[ ~ \ \. '
~ bt ~ S
] ~ ~. ~ )
| \ -
RS ‘”\ \_‘ ‘s\ S TN+1,1"1

]
]
I

DO
@D
DD
DD
@ DI
@D DDE

1,

FIGURE 4.4.1: Computation of the c, : of the relation (4.4.38)

For example to obtain the element c¢ (r is assumed to be 25), we

5,4
add together the products of the elements on the same diagonal (j<5, i<4),

multiply by Tj : on the column i (i=4, in this case), i.e.,
1

°5,4 = %,375,6%%3,275,37%2,1%5,27%1,075,1

and cj i where r+lgjgN+1, is derived from the r preceding elements on the
»

same diagonal, whilst the elements cj ; on each of the rows N+2,N+3,...,N+r
»

are associated with appropriate elements, given by the relation of
(4.4.38b), on the rows N,N-1,...,N-r+l, ' '



Therefore,

taking the assumption (4.4,38) we can

relations (4.4.37) in the form,

- %,071

€2,072%%2,171 °

€3,0737%3,1727%3,271 *

%4,0747%4,1737%4,2727%, 371

and
YN-t:l

yN+2

+.n-

w0 N, 17N~1" N, 2V N2 o, -1t

= Cwa1,07n41 N1, 1IN N1, 2V 017

= S, 07w+2 N2, 19N 42, 201"

,e a+CN+1 'Ny]_ ’

ssetC
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rewrite the

b (4.4.39a)

o

N

N+2,N71 ?

'

(4.4.39)

YN+r

CN+r,0yN_+1_:+cN+r,1YN+CN+r,2yN-l+''‘+CN+r,NY1 .

Moreover, we can write the system (4.4.39) in matrix form (noting

that we substitute cj o for 1, j=1,2,...,N as defined in (4.4.38b)}, i.e,
’ .

from the relations (4,4.39b) we have,

2
v
Y3

|
|
!
|
|

N

-

or in abbreviate

where the vector

and

1

c = \\“* ~
4:3'-.. ~ - \-..,
' ~ ~ - ~
1 ~ ~ -~ -~
| Y -~ ~ ¥
c - ""'.\ - ™.
i \-\ \\.,c\'\ c\'\
_fN.N—l ——————— “N,3 “N,2 “n,1
d form,
f=ocn,
x ~ ~ T
ﬂ=§1’y2“"’yN] ’ .
7 is as defined in (4.4.35b),

(3]

is an (NxN) matrix,

— r p—
4
)
Y3
: (4.4.40a)
I .
|
|
l
1 yN‘-‘|
(4o ba40D)
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Now, recalling the system (4.4,36) we immediately obtain the

following result,

x1=al ‘;1.' \
0,1
% e |
_____________ (4.4.41a8)
R S -4
XN B aO,N yN _ ] |
and ;&+k== 0, for k=1,2,.,..,T. (4.4,41D)

. + ~ -~/ . .
By substituting the values of Yne1® Ve into thg left-hand

side of the relations (4.4.39b) we have

O = Cne1,0Mme1*Cwe1, 190 e, 2VN-17" 0 < o1 001 2 ]
O = Cns2,0 n+2%%N+2, 175 ON+2, 270-1"" O 871 & (6.4.42)
0 = cN+r,0yN+2+cN+r,lyN+cN+r,2yN-1+'''+CN+1:,NY1 * J

By setting c 1, for k=1,2,...,r as defined in (4.4.38b) and

N+k,0

re-arranging the above equations, then (4.4.42) can be written in the

matrix form,

o - o . - d -]
YN+l ‘N1, N~ T 7 T 0%41,3 Swe1,2 Snel,1f | T2
In+2 “Ne2,N— = — ==~ %N+2,3 SNe2,2 Sne2,1 | T2
- | TNe3] = |3, - “N+3,3 N+3,2 SN+3,1] | T3] (4.4.43a)
1 H i i ! |
| t l ] ' {
! I t 1 ! |
N ! R N I
YN+:J cN+r,N ______ N+r,3 "N+r,2 "N+r,l Ve
- I
I
|
R4
or in a compact form, » n
-n =s«Hn . (4.4.43b)

where the vectors E and f\: are as defined in' (4.4.35b) and the rectangular

matrix H is of size (rxN),
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pr, the substitution of ﬁ from (4,4,35b) in the equation (4.4.53Db)

yields the result,

A= -Heng] .

The sizes of the matrices H,¢,¢-and.§fas defined earlier are

(4.4.448)
(r=xN), (Nx1l), (Nxr) and (rxl) reépectively, and so the multiplication of
the appropriate matrices in (4.4.44) is valid; hence with'a slight re-
arrangement (4.4.44) can be written as,
(T+)Y = -H , - L (4aba45a)

(where I is the unit matrix of size (rxr)),

o

or - ' Qi'= -d , (a linear system of order T) . (4.4.,45Db)
where B = I+Hy . (4o4.462)
and o d=H . _ ' - _ (4.4.46b)

The elements of matrix B=[‘b.l j]’ 1,521,200, and the elements of
: s
the vector gf[di], i=1,2,...,r'can be detérmined from (4.4.46) and given

by N 1 for .i=j

bi:j T k§1CN+iiN+1“k¢k:j * 8 %0 otherwisef
133=1,2,000,r . (4.b.473)
and di. = kzlcN‘Fi,N“'l”k‘bk » J.=1,2,...,I‘. ) (4.4.471})

Thereforg, having determined the elements by dg from (4.4.47),
the linear system (4.4,45b) can be solved.to yield the véctor E:(ér
‘the values YN+1"°"YN+r) thus enabling the computation of the Valués
yl.yz;...,yN from the relation (4.4;35). We then apply a forward
substitution process.to the system (4.4,40) to evaluate ;1,?;....;?&.
.Finélly;'the solutioﬁ_vector components xl,xz,...,xﬁ can Eé determined
from the relations (4.4.41#).
| It mightlbe uhnecessary to compute the_values yl....,yN and ?i,...;?&
explicitly; Ingtead we may write from the reldtions (4.4.,35b) and- |

(4.4.40D),
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[E1)]

= Gri = c[i+¢i], (4.4,48)
and from (4.4.4la) we have

1< —
2-',D"dlag(ao,l"'°’d0,N) . (Lo4,49)

x=D
Hence, by substitutingi from (4.4.48) into (4.4.49), the solution
vector is given by,
x = D G[e+i] . (444.50)
Moreover, because ao-’i=1, i=1,2,....,N by the assumption (4,4.29b) |
the elements of the diagonal matrix D are 1's, i,e. D is a unit matrix

and hence the:final expression of the solution vector x given by (4.4.50)

becomes, x = G(E.+¢’E) . . (4.4.51)

where the matrices G (NxN) and Y(Nxr) are defined in (4,4.40) and
(4.4.35) respectively; the vector ¢ (of N components) is given in
(4.4.35) and 7 is the solution of the linear system (4.4.45.).

Finally, the computational complexity of the algorithm for the
solution of (4.4.1) is approximately of order: (provided that the system
(4.4.282) is normalized first) O[Z(N-r-1) (N-1) +(r(x+5) +1)N] multiplications
and 0[§(N-r-l) (N-1D)+(r(r+5)-1)N] additions with the predetermination of
the elements of the matrices U and L, This result does not apply for the
case r=1 (i,e,, the tridiagonal case), where the order can be drastically
reduced to 7N multiplications and 4N additions (see Appendix B). Also
it does not apply to the case r=2 and when the coefficient matrix is

symmetric and constant (see the system (4;4.9a)).
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4.4.3 DETERMINATION OF THE ELEMENTS OF THE RECTANGULAR MATRICES U AND L

Previously the matrix U of size Nx(N+r) has been partitioned into

two matrices U1

Qnd V1

of sizes NxN and Nxr respectively, as in (4.4.3a2);

also the matrix L of size (N+r)xN has been partitioned into two matrices

L1 and K1

matrices are,

of sizes N*N and rxN respectively, as in (4.4.3b).

U, e e e
1,1 Y2,1 Ye,1 Yrel,1
u ey
Y1,2 2,2 r,2 “r+l,2 0
hY N ~ ~
~ ~ \ N
~ ~ ~ ~
~ N . N
~ N N N
~ “ N
~ N \\ N
~ TN em e e . \\
Ul = \\ \\ N u\
A AN A r+l,N-r
~ N ~
N
\\ ~ ur,N-r+1
~ 1
0 \\ A i
~ AR |
u \u
1,N-1 "2,N-1
[ Y1,N
VvV, = 0
1 u
r+l ,N-x+l
Y
. N
ur,N—r+2 e
i ~ >~ o
i S~ o ~
d \'\ \“ \‘\
3,8-1 -~ ~a S s
~. ~ .
_____ ~u u
| Y2,n 0 Y3,N r,N Ur+l,N |

(Nxr})

These four

(4.4.52a)

(NXN)

(4.4.52b)
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'—l -
a1
L 1
1 *1,2 N ‘
i 1\\ \\\ 0
| { e~
l \ NG ,
= { ~
L1 7 ja ' AR
1:'-1,1 1 \\ ..\\
r-1,2 <
2 ~ ’ - -~
r,l . ~ - - - ~ S
2 RN S =
™. RN R -~ .
~ \\ ~ ~,
0 AW g ety
= r,N-r r-1,N-r+1” ""2,N-2 "1,N~1 " (NxN)
(4.4,53a)
and _
e N-r#l Pree1,-re2m~%3,n-2%2 n-1M1 N
~ -
.
RN 3, 8-1%2,5
~ ~ - I3
- RN ~ 3,N
Kl— - > I’
0 NS NY
~ ~ \1i
~ r-1,N
.
2
- r’N—(rXN)
(4.4.53b)

The elements of the matrices U, and L, are determined by solving the

1 1

equations (4.4.5) using an iterative process; whilst the elements of the

rectangular matrices V., in (4.4.52b) and K

1 1

in (4.4.53b) are chosen, at

each step of the iterative process, in a suitable manner as determined below,

from the elements of U1 and L1 respectively.

. . A
We define two integers m and r such that
N
m=N- Y xr,

and : r , if m=0
)

(4.4,54)

m, if m#0 (i.e. lgmgr-1, r>1).

Also, we introduce a vector E?[hl,h ,...,hr]T such that,

o2
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h, = T, (4.4,55%)
by = B-s, s=1,2,...,8-1 (for £32) (4.4.55%%)
and ha,. = t-stl, s=1,2,...,r-m (for Tssr),  (4.4.55%%%)

where T and m are defined in (4.4.54).

Hence the elements of V in (4.4.52b) can be chosen in terms of

1

the elements of U in (4.4.52a) as follows,

1
WeoN-3+l = Yh, 3=1,2,...3k=1,k=r+1,r,...,2, (4.4.56a)
» ] 2
j

and the elements of Kl in (4.4.53b) can be chosen in terms of the

elements of L, in (4.4.53a) as follows:

2 =1,2,...,k,k=r,t-1,...,1, (4.4.56b)

K N-jHl - ”k,hj’ ]
where the hj are given in (4.4.55).

To clarify the strategy of selecting the elements of V. and K, we

1 1
consider the following examples (for r=1,2,3, or 4):
(1} For r=1:
From (4.4.55%) we have
| Bp=1,
then, it follows from (4.4.56) that
- u '
"2, 7 2,1 | (4.4.57)
and : RI,N = 21,1

(2) For r=2: ’
In this case, m is either zero or one. Hence, from (4.4.54) £is
2orl respectively:
(i) TFor £=2 {m=0):
from (4.4.55%) and (4.4.55%%*) we have
hy=2, hy=1,
then, it follows from (4.4.56) that,



Uy N Y32
Y-l - Y3,17 Y28 Y22
and ' ' '
fan = %22
Tan-1 = %21 Mn T 2

(ii) For ¥=1 (m=1),
from (4.4.55%) and (4.4.55%*%) we have

h, =1, h, =2

2 »
then, it follows from (4.4.56), that

- 1
YN Y310
“gN-1 Y3,2 0 Yan T Y21
and
N %210
= —3 J
baon-1 "t M nT
(3) For r=3:

"

209

(4.4.58a)

(4.4.58b)

In this case m is either 0,1 or 2 consequently from (4.4.54) the

corresponding values of £ are 3,1,2:
{i) For r=3 (m=0};:

from (4.4.55%) and (4.4.55%*%) we have,

h1 = 3, h2 =2, h3 =

then, it follows from (4.4.56) that,

1,

YN T %430 Yan-1 T Y2 0 YaN-2 T
Y3 N T Y3,3 0 Y3N-1 Y320
and, Yn - Y2,3
. TanT 3,30 3 N1 T 00 B3N
fanT %23 Yan-1T
B NT g

1,3

4,17

3,1°

r(4.4.59%a)
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(ii) TFor £=1 (m=1),
from (4.4.55*%) and (4.4,55%%%) we have
h1 =1, h2 = 3, h3 = 2,
then, it follows from (4.4.,56), that

Y487 a1 Yan-1 T Y30 Yan-2 T “4,2’1
Ui T Y310 Yan-1 T Vs,
Y2, T Yane |
and ) S . | " (4.4.59D)
Ran Tt Bawer T 4,30 fan-2 T Y300 |
fan T P21 o a1 T Ay, a0
Loy T M ‘
(iii) For F=2 (m=2),
froﬁ {(4.4.55) we have,
hy =2, hy=1, hy=3,
then, it follows from (4.4.56), that,
i, Y4,20 Y4 N-1 T Y410 Y4 N2 T “4,3’W
Y38 T Y320 Y3n-1 T Y310
Y2,5 T Y2,2°
and
fan = %300 F3n-1 T Y310 fan-2 T £3,3’}(4'4'5QC)
fan T 22,20 % n-1 T Yo,
w7 L2

Subsequently we can rewrite the non-zero elements of the matrices Vl

and Kl’ say for r=3 by virtue of (4.4.59) as'fbllows:

(a) the non-zero elements of V. as they are located in (&;4,52b), are:

1
Y4,1 %,2 Y,3

U3,2 Y4,2 U3.3 Y%,3 Y31 Y4,1
Y2,3Y3,3 %,3  Y2,1 Y3,1 Y1 Y2,2 Y3,2 Y,2

(=0, T=3) (m=1, T=1) (m=2, T=2)
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{b) the non-zero elements of K. as they are located in (4.4.53b) are:

1
3,1 *2,2 %1,3 %32 %23 %11 33 %01 4,2
23,2 *2,3 23,3 %21 Sty g
23,3 3 . 23,2
(m=0, T=3) (m=1, T=1) .(m=2, £=2)

Thus, in general for any r (1) it can be shown that the non-zero

elements of K, (or Vl) in terms of the eleménts of the matrix L1 {or Ul)

1
are of the form, -
. 3
L I o WD S N B b2 Pee1,37 %3 0m1 P2 r P10
fe2=------ b3 0-1 Ya,r et S S W
~ ~ i
N R W N T
~ .
. hEN 1 i . ~ ! i
~ i ~
S [ . 21 {
r,r=1 | r,vr |
| |
nr,r zr,l
(m=0, £=r) (m=1, £=1)
=
e 3 Yar,4---F3,r *2,1 4,2
== - 231 2,2
N |
~ L ’
o : 3,2 , and so up to
~ i
~ {
~ 9 |
r,1 1
]
2r,2
(m=2, r=2)
feor Fr-1,17""%3,r-3 ¥2,r-2 #1,r-1
lp 1=~ 5;e-2 ¥2,r-1
~ ’ '
~
~< Vo3
\\ ' 1
~. '
~ ! !
r,r-2 |
. 2 = J
r,r-1 (4.4.60)
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In fact, the purpose of adopting this strategy of choosing the
elements of the métricesivl and K1 in terms of the elements of U1 and.Ll

respectively is to enable us to exXpress %r ,zr r of the system
> y

1* 7,20
(4.4.5) in the form of infinite periodic continued fractions as was done
previously in the periodic matrix case (algorithm FICM2, subsection 4.3.3)('
For example, if r=1 (i.e., the case where (4.4.1) is a tridiagonal
system), then from the equatioﬁs (4.4.7a) and using (4.4.57) we are able

to express 21 ] @ an infinite periodic fraction similar to the periodic
3 . . .

case in FICM2 (cf. the continued fraction (4.3.22)), i.e.,

. o = 2_1,2%1,1]  2-1,3%1,2] a—1,4"’1,3' a_y n%1,8-1 |
L1 la; »- | 30,3 | 3,4 3,8 %2,1%1,1
(4.4.61a)
TR O By By-1 187 By” By-1" |
where a, = a—l,i+1al,i i=1,2,...,N-1,
and B = 3,141 | .

Also, for r=? (i.e. the case where (4.4.1) is a quindiagonal systém),
from equations (4.4.7b) and using either (4.4.58#) or (4.4.58b) we are
able to express £2,1’£2,2 as an infinite continuved fraction (ef. p.l54),
i.e., |
(i) 1if m=0 in (4.4.54), i.e. N is gpen, then from the equations (4.4.7b)

and (4.4.58a), 22,1 and 22,2 are expressed as,

0 g e m2,3%2,1
2,1°2,1 o a_, .3 Y
(a _2 u . ) "'2-5 2.3 a__..T__—..
0,3°1,3%,3 " " 22,772,7
| 0,5 1,572,5" Ta, ,.-.)-
0,2°":

3_2,2n+1%2,2n-1
39, 20-1"%1,20+1Y%2, 20+1%2,1%2,1
| (4.4.62a)




as bgen replaced by u3,1 az,1 and

22,N~1 by 22’1 by;v1rtue of (4j4.58a),
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by virtue of (4 4.58b), and u
3,N

SN DY %10

‘and
—2 4 2 2 .
3,2%,2 " . )_;—1_2’65112,4
0,4 1,4 2,4 _ ' 8, a2
. (:110_,6 21,6u2,6) ( 2,8_2,6)“
R %0,8 7]
3_y on+2%2 20
(35 2n+27%1,2n+2%2, 20427 %2,2%2,2
(4.4.62b)
where 21 202 1 N and u2 2n+2 2 N 2 2 by vittue of (4 4,58a), and
3, has been replaced by u3 5= 2 9 and 22 N by 22’2.
(ii) if ﬁ=1 in‘(4.4.54), i.e. N is odd, then from the equations (4.4.7b)
and (4.4.58b), 2 2,1 and 22,2 are expressed as,
—2 3 2,1
,1%2,1 " o . )’a_2’5a2,3
0,3 "1,372,3 . a a
; (a _21 u o )_ "2,7 2’5
0,5 71,572,5" (ay 77-+0)-
2_3 2n+1%2,20-1
(g 00417 2041%, 20017 %2, 1%2,1
| ‘ | N-1 (4.4.62¢c)
where n in (4.4.62c) is defined as n = —Eu' hence, .
*Lom Ty T M and “2,20+41 = Y2, T Y21

h = :
‘has been replaced by u3’1 u‘,;-,,1 and
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and
% *2 s 2,2
2 272, 2 - (a_ N a_2’632’4
0,4 "1,472,4 a a
(a -1, u. )-"2:8°2,6
0,6 71,6 2,6 (30’8-...)-
8242?22t
(aO,2t+2-Rl,2t+2u2,2t+2)-a2,2£2,2
. . . N-1
where t in (4.4.62d) is defined as t = —--1, hence, u, \ , has been
. L4

replaced by u3’2=a2’2 and ﬂZ,N-l by 22’2

Similarly, for r=3 (i.e. where (4.4.1) is a sép;adiagonal system) we

by virtue of (4.4.58b).

can express £ o & and £ as periodic fractions, again N {(the order
3,1°73,2 3,3

of the coefficient matrix) is considered and hence three cases arise due
to the relations (4.,4,5%a), (4.4.59b) and (4.4.59¢). Thus, in general,
for rxl, from the equation (4,4.5) (precisely equation (4,4,5a) and
(4.4.5c)) we express the elements lr,l’lr,z""’zr,r as infinite periodic
fractions as in the algorithm FICM2 (where the coefficient matrix is
periodié). But, in contrast to the periecdic case (FICM2), for the present
(non-periodic) case, N must be taken into account,

Now by using the game notation and the abbreviated form for the
continued fraction as in (4.4.36), we can express Lr 1,2 2,...,2 of

» ]

(4.4.5a) as follows,

R WU B Y | ®1,3] G ] %1 | u1 2] 1,t| 1,1}«
r,1r,1 8 4T 131,2 [EL,5 [51 ¢ |31,1 By,2” S

. b = % 1] %2,2] %,3) G el %2,1] 2,2 l “2,e]%2,1]
12,2 |8y 7 By 57 [By 5T T IBy,eT [Ba 1T (BT Bz,t'|82,1'

ar,l I ar,Z I ar,3‘| c"r,.t I r,l I gr 2 l I rzt I r,l
e Br r:f—J
l I

L PP
dr,rr,r |sr’1- |Br’2- lsm- [6

v

r,t- lst,l_ IBr 2

(4.4,63)
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where
‘ @ . = a a
k,L ~I',8 ¥,5-r s=ir+keN
. 1 _ : k=1,?,...,r,
and 8 - _ and 1=%,2,...,t,

k,i a0,s _2_1 j,8 J+1 8

such that t is defined as follows,

N ' .
hﬂ o for calculaglng 2r,1’f"’gr,m

N ' . '
hﬂ 1 , for calculating ir,m+l’°"'£r,f
and m is defined in (4.4.54).

However, the analysis of the convergence of the fractions (4.4.36a)

applies to the fractions (4.4,36), Hence, if ﬂk, k=1,2,.44,r 15 assumed

to be the limit of the k™" fraction in (4.4.36), we have,

lr’k "’ wk/ar’k » k-—l,Z,...,r- (404064)
We now proceed to determine the elements of the matrices Ul in

(4,4,52a) and L1

one applied to the equations (4.3.4) (algorithm FICM2) is adopted to

"in (4.4,53a), An iterative procedure similar to the

compute these elements from the equations (4.4.5). (In both cases, the
continued fractions are used at each step in an iterative process).
The equations (4.,4,5d) can be written in an iterative form so that

the uk y k=r+l,r,.4.,2, i=1,2,,..,N at the sth step (s21) are given by,

Yret,i T ar.i’_i=1'2""’N-§ (r)
and u].'"'l JN-j+1 = Ur+1’h.’ 3=1,24000,r, (r*)
(S) (s-1) _
r,i r+1,i21,i+r-1 - ar_l i? i=1 325000, N=r+l, (r-1)
and “f-sb):—ju N “istl » J=hi2y000,1ml, | (r-1%)
RE) (S) o (s=1) (s=1) _ . 4D -
r-l it r i 1 1+r—2+ur+1,i 2,1+r=2 ar-2,i’ 1=1,2,40. 8142, (x-2)
and Sii i Eii h.? j=1,2,,44,1~2, (r=2%)
J .
(8) RONCEVIRONCEMN (s-1) _ . -
4 i l i+2" s, 112 i+2 "'+ur+1,i r=2,i+2 az,i' i=1,2,...,8-2,(2)
(S) ( ) _ *
and ug g sy % Y3, hy? i=1,2 (2%)
(S) MONCMIO PO 1 O -
3’1 1 1+1 4 l 2 +1 .00+u +1 1 r—l ],+l al’i| 1 1,2,.-..N 1’(1)
and u (S) RO : | (1%)

]
Yan T Y2 vy . (444465)

/
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whexe the equatiohs (r),(r¥1),...,(1) are those of (4.4.5d), whilst
those denoted by (x*),(r-1%),...,(2%) and (1*) are derived from the
relation (4.4.56a); the superscript s is dropped from the relation (r)

since no iteration is involved in this relation because it includes none

(s-1)
Yyt OF Y, K,i

i=l,404,8%k, are c0mputed from the previous iterétion step {except at

of the other unknowms, The values £ sk=1,2,...,1"1,

s=1, £( ? are taken as initial guesses) and
(s=1 s-1 .
Ek,N—%-I-l = Rls_’hj) » J=1,2'...’k’ k=l’2....’r"1, (4.4.663)

are obtained, from (4.4.56b),

The values 2 can be obtained from the periodic

r,l’zr,Z"°"£r,r
continued fractions (4.4.63), hence we can rewrite (4.4.64) as

(S)
r k

is the limit of the kth

(S) /a

r’k s k=1,2,...,r, (4,4,.66b)

(s)
k

where & fraction in (4.4,63) at the st step

of the iteration procedure;

Subsequently, the 2r i,_i=r+1,...,N-r, i=1,.,.,N can be determined

from the following recursive relations which are derived from (4.4.,5a)

and (4.4.5c), i.e,

RO NE) ¢ )
r i —-r,i+r l i+r ? rHlgieN-r
and 28 (8 j=1,2,440,7 (obtained from (4.4.56b)) {=
e yN=j+1 ,,Pﬁf 2 J529Cs000s o » 1,250 00,8
MO NN ONCH IMONC VRN ONCI YRR L(o)f (4e4.660)
Y,i T %0,i ™2 i 1,1 3,1 2,1 Fooo r,i“r-1,i Tr+l,i"r,i

Also, the equations (4.

with additional terms g

4,56) can be written in iterative form

for k=1"0"r-'1’ i=l’2....’N-k (c.f. (4‘3.31))’

k,i

MOS (s-1) o8 g(8), (s-1) _ . _ 1

1 1+r—1£r-1 i 2 1+r—1 r, it Er=1,i ~-r+1,i+r-1° 1=1,2,40 0,814,

(S) (s-l) () () (S) (s), (s-1) _

1 1+r—22r-2 it 2,i+r-2"r-1, it 3,i+r-2"r,i sr-2,i ~r+2,i+r=2"*
i=1,2,.co,N-r+2' }

(S) (s=1), (s) (s) (s) ,(s), (s-l) . -

1 i+171,1 iy 1+1 2,1 "'+ur 1+1£r i'f1,i T a—l,i+1’l 112500081

(4.4.67)



(s)
where sk,i

(s~1)

'inaccurate' value of the correspcndlng 2 P
’

the

i1f the 2;5 D {(and the u s) are assumed to be
’

may be written as,

() () () () _

1,i+r-1"r~1, 1 2 1+r—l r,i ~r+l,i+r~

L8 (8 (8 5 (8) ' 1+ '8) (8

Y1, r+r-2" r-2, it "2, irr-2* -1, it 3 1+r-2 T,1 ~r+2,i+r-2 '

1=l,2,...,N'r+2

1| i‘—“l,Z,...,N‘r'{“l
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Jk=r-1,...,1, i=1,2,,..,8-k refers to the error term due to
On the other hand,

taccurate', then (4.4.67)

-

(s) ,(s)

T, 1+1 r,i

(5) 2(8) (s) (s)
1 i+171,i "2, L+l 2,i Foaut

=8y g 1ThZseen Nl

s

(4.4,68)

Now the subtraction of the first equation, the second equation,

up to the last equation of (4.4.67) from the corresponding equation of

(4.4,68) with rearrangment yields the result (c.f. (4.3.33)),

J(8) (=) (s-1), (8) . ) .

r—l i r—l l r—1 1/ 1,i+r-1? 1=1,2,44.,N-r+l

o(8) (s (s-1), (s) . )

r—2 i B r-2 1 r 2 1/ 1 {+r=-2 ! 1-1’2,0--|N r+2 #
and gsi g (=), (s -1 /4 (S)+i i 2’....N . |

1 i 1 i i

The equations of (4,4.67) and (4.,4.69) are associated in an

(4.4,69)

alternate manner analogous to the relations between the equations of

(4,3.31) and (4.3.33).

_ The summary of the above iterative procedure can now be outlined

by the following steps.

o 0 0 .
Step 1. | Initialize li’) ;,1""'£§ i s 1=1'2"f°'N°
. . (s~1) ',
Step 2 (1) Obtaln Lk N-j+l from (4,4,56b), i.e.
1 -1 .
2&?N"§+1 ﬁish ) » 1=1,2,.04,k, k=1,2,.,.,2-1,
L) : (S) (S) ( ) 3
{(ii) Determine ur,if =1 L,...,uz. successively from the

following relations,



Step 3

Step 4 -
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ORI . _
r+1 i ar,i » 121,200,581
s s . . .
and 1(:-+i N_J+1 u£+i h.' J=1’2,ooo,r’ (Obtalned from
3 (4.4.562)),
ul®) - () (s=1) ., )
Y " el JEI k+3,121,1+k-1' 121,250 00,N-k+l
o8 (S)

k N-J+1 k h s j=1’2:‘--,k-l (obtained from

(4.4.568)) k.=r,r-l,|.l,2u
(1) Determine 1(51,2(53,...,1( s) by the continued fraction
(4.4.,63), and
(ii} Determine L(s) (s) (s) and u( s) (s)

r,eel Py, pe22 00 e Ner 1,170,

from the recurrence relations,

(S) a / (5)

r i Ter,i+r ul,i+r » Trlgish-x
and
§5;_3+1 zES; . j=1 2,v.0,r (obtained from (4.4.56b))
L]
o) _ . . (S) =D (8 (s)
1,1 0,1 ka1 k+1 ik,1 r+l, ite 4i *
E#aluate Eéle) and (f)  k=1,2,,..,r~1, i=1,2,...,N-k as
follows from (4,4,67) and (4.4.69) alternately, we have,
NV ~.(8) (s-1)_ (s) (s)
(@) € 4,i° a'--r+1,i+r--1 U, ier=1%2-1,17Y2, ivr=3"r,1 2
: ] 1=1|2’ [ X R] 'N-r+1
(s g (s-1), (s-1), (s) . -
(bl) gr—l,i B r—l L “r-1 1/u1.i+r-l' 1=1,2,...,8-141,
(a.) - _ ne) JLs-1)_ (s) J(8)
2 r-2 i —r+2,1+r—2 1 i+p=-2"r-2,1 ) 1+r-2 r—-1,1
s) s .
(s) _ (s 1) (s 1) (S) _
(bZ) zr—Z,i - r-2 it / +r -2 i 1 12yens,Nor2
' (1) _ () s () (s) () ()
() 81,10 = 2,070,000, Y2, ie0h2,i 70 101 Ry, 1
]_=1,2,...,N"1,
(s) (s-1), (S -1), (s) . -
(br_l) g'l 1. = 2'1 1 1 ]. / 'Y lfl’z’cuo’N 10

1 i+l
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Step 5 We define ¢ such that
|§| = m:x (m?x lek,il)' |
Thus, if [e[sTOL (the desired accuracy), then the iterative

process is halted, otherwise we repeat the process from Step 2,

Finally, as indicated in algorithm FICMZ, the above iterative
procesé does converge without conéidering the use of the contiﬁued :
fractions, 6n the other hand, it was observed, even in this case, that
the choiée of elements of the matrices V. and K. in terms of the elements

1 1

of the matrices Ul.and L1 respectively, in the manner discussed earlier

in this subsection was satisfactory. Thus, the iterative procedure

outlined above may be written without the use of continued fractions as:

(©) ,(0) o

t =

Step 1 Initialize 21’1 2,i ""’gr,i’ 1 1,?,...,N-

. . -1 .
Step 2' (1) Obtain ££TN_;+1 from (4,4,56b), i.e.,
-1 s~1 .
ﬂifN_§+1 = Ri h.)’ 1=1,2,404,k, k=1,2,...,1,
(s) (s) (S) o '8

(ii) Determine u ....,u2 u, successively from
»

r,i’ r-l i

the following relations,

(s) _ . -

r+1'i = ar,i » 1_1|2’-¢0|N r,
and

iii N—J+l iii h. °? j=1|2:ooo,r (Obtained from

(4.4.56a)),
: k+1
(s) TR (sl _
ak 1 1_ 2 ‘1k+.]|1 J’1+k_1’ 1-1’2'.g|,N k+1

and j=

(s) (s)

uk’N-j+1 - uk.h. (for k>1 0n1Y), j=1:2,oo-,k‘1,

k=r,r-l,..-,1.

Ste 3' Evaluate Eis;;) and 2(8) L4 k=1’2""ir’ i=1’2’|ourN-k as
’ ) "
follows,
(s=1) _ I CI RN I I )
(al) er!i - a—r,i+r u1’1+r r’ ’.1-1’2’l..’N r
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) o (8) _ (s—l) (s—l)/

1" "r,i r,i r,i i+r ? 1=1y25000 001
?

s L (8 (s=D_ () (s

r—l i aw-r,i+r-1 l,i+r-1"r-1,i 2, 1+r—2 ryi ’

i 1 2'...’-N r+1

(S) _ (s D, (s 1), (s) . e
(bZ) r-1,1 r-l it r-l 1/ 1,i+r-1’ 1=1,2,003N"r+l

(s-1) _ () ,(Gs=1)_ () ,(s) - _ (s} (s)
(@ ef i7" =ay s iat,i V2,001 8,17 Yy it

b ) 2$8) oy, (=1, (5)

r 1,1 1 i Tf1,1 MY1,ie1?

l

tep &4 As in step 5 of the previous procedure.

The convergence proof is similar to that discussed in subsection 4.3.6.



4.5 ALGORITHM FICM5

The current algorithm deals with real linear systems, where the
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coefficient matrix is of special form, that is: constant, periodic and

skew-symmetric. These type of matrices may arise in solving the transport

equation by finite difference techniques (Evans, (1980)), also in the

solution of partial differential equations with periodic equations, as in

Korteweg de Vries equaEion (Buckley, 1977)). The general form of the real

linear system considered in this algorithm is,

Ax

=E-’

(4.5.1)

where A 1s a constant periodic and skew-symmetric matrix of bandwidth

2r+1 (r2l), and of order N (and N22r+1) and has the following form,

a. 4, dpm e ~.a a
0\ 1 2 r-1 r
.y
a_l“*,_
Y ~ ~
3_2 -~ ".,.
‘ -~ . Y
~ ~ "'"\
| ~ ~
~ ~
! ~ ~ ~ ™
i ~ -
== )
A a_r_!_l‘. -~ - -~
a ' ~ ~
- - ~
-~ ~
-~ -~
- -~ —
-~ ~
. Y~
e
a S
RN 0
{ ~
{ -
a, 4w a
1 2 .r
with

*x

el
S
el
.~
~
\
- —
~
oy ~
TA
-~ s
-
A
— ~
~
-~
oy
ol
Y
~
-~
.-.-a—k ’

k=1,2,...,r

-1 ..2
~
~
-
L “
~ .
e
- ~
L o
-~ Y
S
- - - S
- -~
- -~
~ \\
-~ ~ -~
-~ ~ ~
o~
\\ ~
~
-~ ~
~ -~
-
~ ~ ~
- -~
-~
~ ~ ~ ~
-~ ™~ . ~.
Y -~
~ ~ ~
~a a . - —a a
-r =-r+l -2 -1

-1

a
{
!
\
|

a

-Tr

H

H
L

B @ el @
=N

Q

(4.5.2a)

(4.5.2b)

Evans (1980) suggests that for a certain Toeplitz tridiagonal case

of (4.5.1), i.e. for r=1, the matrix A in (4.5.2a) can be factorized as

follows,

where

A=) =79 >

(4.5.3a)
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Yo s Yo Yl\ )
- Y
1 Yo_ 0 oL o
™~ ™~ N N
S .
P = S DO and Q= ' AN
~
' \\ -~ O ~ ~
0 \\ \\s . . \\ Yl
- 1% 251 - Yo

(4.5.3b)

Then, by equating the elements of A and the product PQ by

(r=1)

virtue of (4.5.3a) leads to a quarEic equation in terms of Yo (or Yll

To proceed to the elimination process the suitable values of Yo and Yy (as
proposed by Evans) are given by,
Yo = [0:5{a0+(a§+ﬁai)%}j£
. (4.5.4)
and v, = [0.5{-a +(arsa) !}

where a, and a; are the elements of A in {(4.5.2a).

However, the efforts to extend the factorization (4.5.3) to a quin?
diagonal, septadiagonal or even more for the general case as in (4.5.2a)
were not satisfactory, thus the alternative is briefly illustrated below
which invelves a modification of both the coéfficient matrix and the right-

hand side vector except the vector solution of (4.5.1).

The.premnltiplication'of the matrix equation (4.5.1) by AT yields

the system Bx = v, (4.5.5)
where . ' B = ATA ; o (4.5.6}
and o ' v = AL, , ' (4.5.7)

with A given in (4.5.2a).

From (4.5.6) it can be easily Verifiédlthat B is symmetric and
preserves the remaining properties of A, i.e. periodic and constant
with wider bandwidth; of bandwidth 2#41 (where ?=2r). This implies that

the system (4.5.5) is exactly similar to (4.2.1) and hence algorithm FICM1
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(section 4.2) is applicable to the system (4.5.5). Noting that the
elements of B and v are obtained from (4;5.6) and (4.5.7) respectively as

follows,

Let the diagonal elements of B be bo with bl’bZ""’b? (EbZr) the off-

diagonal elements. Then, by equating the corresponding elements on both

sides of (4.5.6) we can obtain the elements of B, i.e. b%,b?_ b.,b

1777720205

These elements may be expressed in terms of the elements of A in matrix

form as follows:

%A'_ :a ] _a'.‘
r ' r ‘ r
b1 Tl TR 21

l N
| o 0 f
l - e - -3 a
| = 1\ r l r 1 (4.5.8)
a ~ . a
x ~ -
£ al\ h \\ N a]-
b N0 N~ 0 -
2 a2 N \\ N \\ 32
b (AEENEN N . N !
1 N N ~ i
! A Y \\ by \\ ~
. t \\ \\ . ~ \ \\ [}
%0 | | 3p— == 82 31 89 TR = =Ty TR @ G 7R

where %=2r, r2l; noting that we have substituted for a_y by ~a s k=1,2,...,r
due to (4.5.2b). The latter élso applies to the relation (4.5.7) from

which we determine the components vj i=1,2,...,N, of the vector v given by
: . ]

r .

vj = aozj + kélak(zj_k-zj+k) s J=1,2,...,N, | (4.5.9)
with

z =z

"kl Nkl k=1,2,...,r.
and z =z

It may be worthwhile to consider an example to clarify the above
strategy of solving the system (4.5.1). We choose the simplest case when
r=1, that is the case when A is skew-symmetric, tridiagonal and its transpose

AT has the form,
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a. =-a a
o "1, 1
a ~ ~ O
-~ \\ \\
~ '
T ' \\ \‘ \\' ' - ‘
= ~
Alr=1) | SN (4.5.10)
0 \\ ~ . \_al
. ~ ~
- ~
B! 1 %

Whilst the prbduct ATA matrix has the form,

-2 2 2 2 -
ra_+ o - -
ao 2al . al . a:L 0

ATy - ~ ~ O~ o O~ (4.5.11)

0 a(2)+2a§_

In fact, the constant symmetric periodic quindiagonal matrix in (4.5.11)
is equivalent to B by virtue of (4.5.6).
If we now recall the factorization procedure of algorithm FICML

‘(section 4.2), then B can be factorized as,

B(=ATA) = QQ" , C(4.5.12)
where, . _
0. G, O
(o I
L N 0
~ - ~
\\ ~ ~
~ \x \\ .
Q= PR (4.5.13)
0 b \\\ ) .
Gy ~ ‘0:1
Y
1 %2 %o.

The three equations derived from equating the corresponding elements
on both sides of (4.5.12) (c.f. the system (4.2.4)), can be modified to the

form (4.2.23) which immediately yields the values of R i.e.,
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q1=0 3
- max(ia T (a2+4a2)} | '
a, = max(z{a *(ag+4a))*]) (4.5.14)
oo loo=o 2 204 | |
and a, = min(z[a t(agt4a)®]) .

By recalling the system (4.5.5) we substitute for B as in (4.5.12) then

the two alternative systems for (4.5.5) may be written as
W=v (4.5.15a)

and Qx =y, |  (4.5.15b)
where Q is defined in (4.5.13) and vector y is an auxiliary vector of N
components.

Though the systems in (4.5.15) are similar to:(4.2.2) hence their
soiption proceeds as in subsection 4.,2.,3. Here we consider just one system

say (4.5.15a) since the matrix Q is of special structure, i.e. its element o

1
is zero (as given in (4.5.14)).
The system (4.5.15a) can be rewritten in the form,
ag 0oy Y1 V1
hY N \\
AR 0 ! V2
N 1 l
hY ~ I I
- N Y
N\ - \\f\ [ = | (4.5.16)
\\ hY \\ : :
\ ALY
0 \\ ~ (12 ; |
h |
LY v o ! |
R | i
.0 a, agl [yl v

N.
By applying the elimination procedure discussed in subsection 4.2.3 to

the system (4.5.17), we arrive at the result where (4.5.16) takes the form,



where

with

J

n‘_-
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(1) for Neven,
E *ay ¥y vy
0 fFyte Y2 2
' !
f2 0 % 0 i |
.
i - -
o i AN "= (4.5.17a)
I I hY | }
N\
i ) N | |
j \ , |
! | 0 A ~ | I
fn 0 N . ' ]
0 £ A ' l
o ~
- n 0-- -YN- -VN-
where n=N/2,
£, = (-ay/a)™ ey, jmminl,..l,l
and 3} = vj+(—a2/a0)33+2, j=N-2,N-3,...,1 ,
~F ~ _
with Vg S Vy oo Vi1 T Vel
(ii) and for N odd,
[+ fl yl vl
| 1
0 £ o
2 0\ 0 I |
| { -
£3 O N V=t (4.5.17b)
N
0 f. TN l |
t l3 ~ N | I
: i ~ i [
¢ N . t |
l
G 0 . l l
f 0 N i |
n Ay | |
A i
0 f ‘o ~
L n O_ _yN_ "VN"
-~

V., j%1,2,...,N, and £ , k=1,2,...,n as defined in (4.5.17a)

(N+1)/2.

Hence, the yj, j=1,2,...,N for N even can be determined from (4.5.17a)

as follows,
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¥ = vll(fl+a0) > Yo F Vz/(fl"'ao) ’
Vas1 = (\? . -f.y Yo ’ ‘
2j-1 2j-1 73717770 §=2,3,...,n (3N/2),

and T (vzj-ijz)/ao .
whilst for N odd from (4.5.17b) we have,
il £
TR AR AVICICE A
0 0

¥y = (v fzyl)/a0 s

Vos _( ._-f.y)/a ,
25-1 7 V25-17"572 j=2,3,...,n ((¥+1)/2)

and V25 = Gy E iy o i

Finally, the number of operations involved in solving the skew—
symmetric system (4,.5.1) via the modified form (4.5.55 is of 0(5?N+tr+1)N),
where the first term is given in subsection 4.2.3 and the second ferm due
to the relation (4.5,9), (noting'that the operations involved in the
multiplication of ATA in (4.5.6) are ignored since the elements of B are
obtained from (4.5.8) which require less than (2r+1)(r+l) opefatings taking
into account that some cancellations may océur). Since ??Zr, the order may
be written in the form O((llr+1)N). TFor a specific case this order (of the
general form) may be reduced considerably, as for example when r=1, the
solution of (4.5.15) is of 0(6iN) which is slightly higher than the scheme
(4.5.3) of Evans (1980), but the latter requires 4 square roots as given in
(4.6.5) while FICM5 for this particular case requires only l.squaré root as
given in {4.5.14). (Another important advantage of our scheme over Evans'
scheme is that the matrix (4.5.11) is strictly diagonally dominant when a0=o

which guarantees the stability of the elimination process for the system

(4.5.15)).
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4.6 ALGORITHM FIRM4

The linear systems considered in this algorithm are similar to (4.5.1)

except that the coefficient matrix is non-cyelie, i.e.,

Ax =z, (4.6.1)
such that A has the form,
a, a ---a
0 1 2 ~
-~
"'1 \\ ~ O
~ ~ .
a ~ ~ ~
2N ~ -~
H ~ ~ ~
{ ~ ~ ~ ~
a A T ~ : ;
A= -r\ \\ \\ ~ ~ ? ,‘, (4-6-2)
T~ N ir
~ ~ ~ ~ é
% ~ ~ -~ 2
~ ~ ~ ~
0 ~ NOoNL M a
. ~ . \\\ ~. \\\ 1
a -—a a. a
— -r -2 =1 "0-

with ak=-a_k;.k=1,2,...,r, rzl,
and A is constant non-cyclic and skew-symmetric of bandwi&th 2r+1 and of
order N (Nx2r+l).

The modification strategy used in algorithm FICMS (Seétion 4.5) 1is
applied to the system (4.6.1), that is, the premultlpllcatlon of (4.6.1).

by A (transpose of A in (4.6.2a)) ylelds the system,

Bx = v , ' (4.6.3)
where B=aa, (4.6.4)
and v=2aTz, | (4.6.5)

The determination of the components of vector v, Vys¥aseeesVies (say),
can be achieved by using the formula (4.5.9) with different conditions, i.e.,

v, = agz, Ilak(zj-k_zji-k) s, 3=1,2,...,N (4.6.6)
. k= . .
with
Z_k+1 = ZN+k = 0 [ k=1,2,'-oc,rl

The matrix B in (4.6.3) is of bandwidth 21+1 (=4r+1, where T=2r) and

symmetric by virtue of (4.6.4), has the form,



1,1 2,1~ =7~ 7 r-1,1 r,1 r 2r=-1 "2r
o o b R RN
1,2 72,2 r-1,2 "r-1 ~ ~
~ ~ t | ~ ~
%2,1 N RN I I RN S 0
} \'\ ~ \\ ! | \\ ~
¢ ~ oD I | RN N
i ~ ~ ~ .
. ~ ~ \al | h b2r
%-1,1 N N 2,1 b N
o o Y a., S a b’ s 2rl AN
r,1 ‘r-1,2 ~~~ = “2,r-1 "1,r "1 _ P s ™o ~
~
: ~ ~ ~
br br—l ------- by b0 ™o P N ~
| \\. ~ \\ > -~ . ~ ” ~ b
| ~ \\ ~ ~ b - ~
| ~ . ‘\ b 1 “ .\ b
b21"‘1 = -~ \\ ~ 0'\ \\ |
~ .
b \\ ~ ~ ~ /bl \\ \\ |
2r ~ ~ ~ - ~ ~
~ ~ ~ ~ - ~ . ~ f
\\ \\ \\ \b t ® h b \b !
- . -=---=b
\.\\ \\ r 1\ \\ 0 1 -1 b
~ - T ~ \\
N b, 1 T e °1 %, f2,r-17 7 T %12 ¢
b2 ~ ~ \\ b a ~
r ~ ~ ~ % 2r-1 ~ ~ o
~ e ~ ~ -~ 7y~ ~ >
~ ~ N | ~ ~ ~ !
0 RO NS I NN N
_ \\ “~ \\ ~ ! ~ ~ ~ |
~ \\ ~ b o \\ \\ a
\b. by ~ r-1 "r-1,2 « ~
R by - b > ~ o
L 2r “2r-1 r l‘.',]. r-1,2 *\az’l

(4.6.7)

62¢
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In contrast to the cyclic case, B in (4.6.7) has constant elements

denoted by bk’ Kk=0,1,...,2r (=Q).p1us extra elements denoted by % i;
. . . 3

k=1,2,...,r, i=1,2,...,r-k+1l., The former elements are .determined exactly

as given in (4.5.8), whilst the latter are determined by

r columns
= - » ‘ o - e
k,1 el Zpk TT T TR TR Q7 Tt )
\
; - _—— - = I
%, 2 dk+l Prk ] ak\ N !
i | ! \ |
a. | A \
ky3 { ' \ 0 0
l =1 | I \ i
i ' \ A
1 I ! A \ i
a . | ! ! \ \ A
k,r-k I ! ¢ \\ \ I
’ ] | \ \\ .
ak,r-k+1 Bpk+l -k - —- -a, 3, B S a4 0---0
L 0 S . —r ]
k
columns

-, |

(4.6.8)

where the rectangular matrix is of size (r-k+1)x(2r+1), k=1,2,...,r and

a;, i=0,1,2,...,r are the elements of the matrix A in (4.6.2).

For example, when A is tridiagonal or quindiagonal implying that B is

quindiagonal or 9-diagonal bandwidth respectively, i.e.,

(i) for r=l (i.e. 7=2),

~2 2 ‘
a0+a1 0 1

L

(c.f. (4.5.11)),

(4.6.9)
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and (ii) for r=2 (i.e. T=4)

-2 2

O 2 a3,
a a2+2a§ g

a

12

a
_,2
4 2a,a,

1 2

2 2
+231 5
a

i e

2
+a2-

. (4.6.10)
It is clear that B in (4.6.9) (where r=1) has an extra element,

+a

A 2
172 3o

i.e. 11—a§+ai, whilst in (4.6.10) (where r=2) B has 4 extra elements,
2 2 2, 2

i.e. 11"32+a1+32, alz—a0+Za +a2, Uy 173125, in general for r2l, B has 2r

extra elements located as illustrated in (4.6.7) and determined from (4.6.3).
Since the system (4.6.3) is similar to the system (4.4.1), the strategy

of algorithm FIRM1 (Section 4.4) can be adopted to solve the former'system.

Furthermore, the factorization of B into pseudo-inverse rectangular upper

and lower triangular matrices can be considered as an extension to the

cyclic case represented by (4.6.12), certainly the non-constant elements of

B (i.e. the ¢'s in (4.6.8)) should be taken into account in this factorisation.

For example in (4.6.9) matrix B may be factorised as,
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E I
Bl ay o, ! 82
Gy @y @y | a; %
v D 0 : AN 0
\ . L
\ \\ N i * al\ S
Y N | 0 ~ \\
(
A \\ \ I a2 N \‘\ N
N\ A Y ~ N ~
B = AN ~OON N =PQ
VRS AT TN
NN 2 NN
A Y ~
[ NN
0 \\ “1!“2 O \\ \\ \\
A ~
| ~ \\\\
- %1 Y| %%
- 72.
(4.6.11)

(the sizes of the rectangular matrices are Nx(N+2) and (N+2)XN respectively).
The determination of the elements of the matrices P and Q follows from
solving the following equations (which are derived from equating

corresponding elements of B and the product PQ in (4.6.11),

2 2 2 2
8182+u1+a2 = ao+a1 (4.6.12a)
2.2 2 _ 2.2
ao+a1+a2 = a0+Za1
a0a1+a1a2 =0 " {(4.6.12b)

=—2 V
%0%2 %

2.2 2.2 |
a0+a1+Y1Y2 = a0+al_ ' (4.6.12¢)

. The equations (4.6.12b) are exactly the same as derived from the

equality (4.5.12), thus ¢ and o, are taken as in (4.5.14), i.e.,

1 2
al =0
1 2., 2.4 (*)
%y = §{a0+(a0+4al) ] _ (4.6.13)
S P S
and @, = E[ao (a0+4a1) ]

On the other hand, it is necessary to point out that the factorization

*
( )in (4.6.13) the sign "+" (and "=") is assumed to imply maximum

(and minimum).
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(4.6.11) is suggested by Evans and Hadjidimos (1979) and they propose
that 31,32 and Y15y in (4.6.12a) and (4.6.12c) respectively may be

chosen as follows:

s g o [aPraleglog?1}
By = By = [agraj=ai—ay)
v o alen2og2y2
and Yy =Yy = lagraymagmoy
or by substituting for a al,a in (4.6.13), we have,
By = [a +—a (a +4a 2)£]£
(4.6.14)
_ -_1_2 2 LN
and Yy =¥y = 333 o(ao+4a )]

wﬁeré a, and 3 in both (4.6.13) and (4.6.14) are the elements of matrix
B in (4.6.9).

Furthermore, the system (4.6.3) for the pa%ticular case where B is
a quindiagonal matrix as given in (4.6.9), can be.replaced by two coupled

underdetermined and overdetermined by 2 and have the form respectively (by

considering the factorization (4.6.11))},

K | B 7 v
B 0% 1 £ B
a 0 i y v
0 \_2\ 0 | 2 |2
\\ \\\ l I | .
NN | : = (4.6.15a)
\\ NN | {
N Moo |
~ NN 2' {
~ |
N N { | :
A ~
0 ao ¢ :az : G
! “ 1 271 |n [ n
Tery |
Yne2)

and-



8y
0 o
“~
~
Gz ~ A
~ ~
b
~ ~
Clz ~ Y
o L)
~ - N
~
e
i ~

ey —}-{ - - -
1 7
%9 Y9
| '
0 | .t
C
: -
-~ . ] :
o { ‘
i iy N
az 0; yN+1
YZ_ L N+2-
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(4.6.15b)

Generally speaking, the solution of the coupled system (4.6.15) can

be obtained following the procedure of subsection 4.4.2 (also see the

relevant procedure of subsection 4.5.4), but because of the special

structure of the coefficient matrices in (4.6.15a) and (4.6.15b) it may

be of interest to describe the elimination procedure briefly and for ome

case, i.e. N being even.

Let

n

f.

1

]

N
2
(-

>
n-i . n~i
azlao) =

i+l

, i=1,2,...,n

(N.B. for N odd n=(N-1)/2, and f.=m" ' -, i=1,2,...;0+1).
1 .

(4.6.18)

Then the system (4.6.17a) can be modified to the form (e.f. (4.4.31)),

where fi’ i=1,2,...,n are given in (4.6.18) and gj’ j=1,2,...,N are

|
{
|
!
{
|
1
I
[
[
[
1

flaz 0
¢ im
_ .
' l
L I :
! [}
0 fn—lYl
fnaz 0
0 fn 1Y

r" — g —
Y1 21
¥y )

{ }

I

N

|

|

' |

! I

! J
Iy ™
YN+l
N2

4.6.19)

(*) th th " ar
for N odd, the (N+1)"" and (N+2)"" columm should have their first

elements O,f}yl respectively.
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with

Thus, from (4.6.19),

and

Whilst the system (4.6.15b) can be modified

where

~ ~r .
\3 = \3+m\3+2, j=N-2,N-3,...,1,
VN TV Vw1
we have,
1 ~
Y 'B'l' O mYeq) o
1 ,~ '
¥ E; (v3 f2a2YN+1) ,
oo = (T f ay )
N-1 7 g weTn%2lne
1 ~
¥, ;5 (v2 f1Y1YN+2) ’
- ‘—1_ ~
yl{. U.O (V4 f2Y1YN+2) b
D S
Iy T a Oy 10

\

LI

=V and m is defiped in (4.6.,18).

(4.6.20a)

(4.6.20b)

to the form (c.f. (4.4.36))

r A el 2 m
By %1 Y1
%o 0 %) 72
Y 1 |
N | _ |
. =
~ | |
N i
~ i
0 N ' '
- ! ¢
__________ %} "™ N
. ¥y
N+1
0
n ' i T N+2]
. ~ .
- -~ — -
Y3 = Y48y, = yptey; (6=-8,/a) ,
~ ~ 2 2 2
= = +
Y7 = YWY 2 Yy tm y3+m yqtm 8y,
. . = ‘my. . Z Y, .+m b ™
YN-1 T Y13 T Y- -3

n-2
y5+m

(4.6.21)
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n-1

~ _ ~ = 2 n-1
I+t - Tl N1 T e TR Ygegteeetm ygtme T8y,

= j—z j-2 . :
(or Y93-1 y2j-1+mY2j-3+"'+m vy Ty »j=2,3,...,n+1l) ,

¥ =y, +o§, =y, +my (4.6,22a)
4 4 2 74 2
~ ~ _ 2
Vo = Yo'y = YeTW MYy
~ ¥ ': . . N n+l
~J '_2 --1 .
(Or Yzj = Y2j+my2j_2+.. .+m-] y4+m-] Yzm J=293,---,n) .
Ine2 YN+2+EYN = YN+2+eyN+emny2+.,,+5m Vs s |
(e==v,70,) ) (a.6.22p)

. . ~ ~
From (4.6.21), it is clear that both YN+l and Yyap 2T equal to
zero, thus by substituting these values into the last equations of (4.6.22a)

and (4.6,22b) respectively, we obtain after a slight rearrangement,

2 n-1. n-1
-y = my, .+ Yy, te..tm oy tm Oy, ,
N+1 N-1 N-3 3 1 (4.6.23)

n 11
- = + +
yN+2 syN+smyN_2 .« tEM YN £m yz s

Returning now to (4.6.20a) we multiply its first equation by mp—l .

the second by mn-l, the third by mn-z, and so on up to the last one by m;
whilst for (4.6.20b) we multiply the first equation by smp_l, the second
by amn-z, and so on up to the penultimate one by em and the last by e, then

we substitute the two results in the first and the second equations of

(4.6.23) to obtain the result,

n-1.~ 1 nZl n-j-~ % T n-j+1 n-1
Vel [m evllﬁl + E; jzl m v25+1]- (E; jzl m " fj+m 8/81)YN+1’
n —in £Y n
Ine2 T éi. 321 = JV?-J' ) (;El j§1 il Wyep o
or yN+i = kl/(ﬂl-l) (provided 21¥lj , 4.6.20)
and Vo2 = kzl(lz-l)n_iprovided Ezﬁl)
where k1=mn—1633/81+ L ] m '53;j+1 E

% j=1
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o n . . n .
P R N Y R RGPS
Loy i 1 ) 1

0 J=l J=l
n .
£ -]
k=S 7 iYL,
2 0.0 =1 | 2]
v, & : ey, D .
- 2 (n=
and 2,2 =G—}- z mn' Jf, z a__;[. Z o (n J) .
O j=1 ] O j=1

where we have substituted for fj in terms uvf m as defined in (4.6.18).
Therefore, Vel and Yyeo 3Te obtained from (4.6.24) and then

returning to (4.6.20) to determine yj,'j=l,2,...,N followed by (4.6.22) to

determine ?}, j=1,2,...,N, and finally the solution xj, i=l,2,...,n

- obtained immediately from (4.6.21), i.e.,

xp = ¥y/By s

yj/ao , 3=2,3,...,N,

X.
J
The number of operations of the above procedure is of Q(8N),



CHAPTER 5

NEW ALGORITHMIC METHODS FOR THE SOLUTION

OF BLOCK MATRIX EQUATIONS
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5.1 AL,GORITHM FICM3

This algorithm is propbsed as a numerical solver for periodic block-
tridiagonal linear systems which are derived from the' finite-difference
approximations teo certain elliptic partiai differential equations subject
to periodic boundary ;onditions (see section 3.5, Chapﬁer 3). 1In particular

the type of real linear system considered in this algorithm is of the form,

(B ¢ E -xw -zj
~ . -1 =1
SO n |z
\\\\ bR ] [}
~ ~ \\ . = 1 (501;1&)
~ 0N - |
\\ \\ \“ ' l
0 \\ \\ . ' f
\\\ \ |
¢ ¢ Blla] . LA
or more compactly as,
Ax = z , (5.1.1b)

where each block B,C are m*m (real submatrices and each subvector Ei

and z; partitioned cqrresponding to the block subvectors are of length

. ) T T,
my fees X 2[Ry 10Xy greens®y 10EE[Z; 102; oaeeenzy 1y 151200001,

and A is a constant and symmetric circulant block-tridiagonal matrix of
order mN.

We shall consider solving the system (5.1.1) by two coupled block
linear systéms after the factorization of the coefficient matrix A into
two circulant block matrices which are the transpose of each other, For
this, we assume that the submatrix B is non-singular, and A is block
strictly diagonally dominant with respect to the matrix norm 1ol Leeay
(see Varah (1972))

2||B-1|| ||C]]<1, provided B is non-singular. 5.1.2)

The Block Factorization Procedure

The factorization strategy which is applied to the coefficient matrix

in (5.1.1) is similar to the point case when r=1 in the algorithm FICM1,
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(Subsection 4.2,1). Thus,'the factorization of the matrix in (5.1.1)

takes the form,

- - - .
B C, (ﬂ Q 9 T Q, Q
AN 0 N 0 ~ 0
C ' N Q1 ~
\\ \.\ \\ N A . ~ ~
NN _ A ~ ~
~ A Y \\ - N\ \\ \\ \\
\\ \\ \\ O ~\ \ ~ \\
.
0 NN C \\ Ql 0 ~ N
AN N SooaN
;.C C o 91 QO.I - Ql QO.
[ 2 2 7
WY U WY
~ ~
Q0Q1 N \\\
= \\ N N . 5.1.3)
SN N
O -\\ \\ Q]-QO
NN 2,2
%% DU WY

where the blocks Q0 and Q1 are mxm submatrices and the three matrices on
the right-hand‘sidé of (5.1.3) are of the same order as A.
We now equate the corresponding elements of both sides in (5.1.3) to

obtain the following two matrix equations, i.e,,
G+l =8
. ' (5.1.4)
QR =€ (or @@, =0
We note that the second equation and the bracketed one imply that
Qo and Qi are commutative matrices. This latter property may be exploited
so that the following expression holds true,

)2 = q2720,Q,+Q] . (5.1.5)

(Q0+Q1
If we now multiply the second equation in (5.1.4) by 2 and add

or subtract to the first equation, then by virtue of (5.1.5) we obtain

the relations, (Q0+Q1)2 = (B+2C)

H
ay =

. "(5.1.6)

ad Qg-ap” = (8-20)



Under the validity of the condition (5.1.2), we can define %i and

)

Lol -~ .
C* as the square roots of matrices B and C respectively. Hence, from

(5.1,6) we define the sum and difference of Q0 and Ql,as follows:

4 3
:

Q*Q = B (B+2C)

. (5.1.7)
(B-ZC)i

-Q =70
QO Ql
The addition and subtraction of the two equations in (5.1.7) enables

us to express QO and Ql in the form,

Q= d.S[EQJEi]50.5[(B+2C)i+(B-ZC)i]

© (5.1.8)
and - Q = 0o5[Bi-'éil20.5[(B+ZC)5-(B—2C)§]
The computation of'ﬁi and'ﬁi is recommended to be accomplished in

an efficient manner, for example by adopting the iterative procedure
described in Section 2,5, provided that B and C satisfy the required
property of this procedure, i.e. they must be positive definite. For
other references which deal with the square root of a matrix see Spath
(1967), Scofield (1973), etc, It follows immediately from (.l.8) that
since (B+2C) and (B-2C) and their square roots are positive definite then
Q0 is positive definite.

Howevér, having determined the matrices QO and Q1 we now proceed

to solve the system (5.1.1).

The Block Elimination Procedure

When the coefficient matrix in (5.1.1) is replaced by the two
factors given in (5.1.3), then the system can be split into block linear
systems after the insertion of an auxiliary vector y of length mN and
partitioned int6 N sub-vectors of length m each, i.e.,‘z;[xl,zz.....zN]T

(thus from (5.1.1) and (5.1.3) we write,

240
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. - - _
% \Ql\ 0 4] i"‘-l.1
~ \\ Ly E2
NN ' |
\\ ~ | i A
N~ N v = (5.1.9a)
\\ \\ | l
0 ‘\\ ? | |
*Q Ly Y
- = b — - =
and
- - _ - - -
Q 3] 4
Q "~
l\ N 0 -2 zQ
N |
~
\\ AN : = i (5.1.9b)
~ ~ | .
U t
SO i !
0 . . \Q . i e |
_ Qoj &) (I

Prior to presenting the elimination process of the system (3.1.9) it
is essential to point out that the stability of the system is guaranteed
if the norm-relation of QO and Q1 is satisfied, i.e.,

oyl < Hegll

(the equality relation is excluded since it does not occur unless

G.1.10)

matrix C=0). Since Q0 is positive definite which implies that its inverse

Q;]' does exist, the normalization of both systems in (5.1.9) is possible
and may be constructed as follows,
E— a-' 7 ] M~ ]
z
o 4 =1
I 2~ L %
T~ g \ ‘. (5.1.10a)
Q 0 ~-1 ' E"
and L. - s..lN. . -
. | Q 21 L
1 = g
Qs
~ ~ ‘ |
N ! ! 1 .
~ | (1l (5.1.10b)
t i
0 "_\' t ~|
L Q I L%, .
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for (5.1.9a) and (5.1.9b) respectively, (I is unit matrix of order m),

where - -1
‘ Q=0Q.Q
‘VO 1 ' ' (5.1.11)
or QOQ = Ql ] )
~ =1
Z " % % ]
or - O QpE =z =2, f' (5.1.12)
. N~ -1
and o zﬁ = QO Zj |
,Or ' Qo’lvj =Zj| j=1’2,oou3N . (5-1-13)

As can be noticed, the determination of 6,12% and'zj (obviously
after the determination of Xﬁ from (5.1.10a)) follows from the last three
equations respectively,

We now define the submatrices, Fl’FZ""’FN of order m as follows,

03I for N odd)

F,
]

¥,
J
Then, the elimination process can be applied to the block-gsystems

j=N,N=1,,.051.  (5.1.14)

I

(_1)JaN-J+1

, (for N even)

(5.1.10a) and (5.1.10b) ip an analogous way to the point-case discussed
previcusly, (Chapter 4), obviously the process commences from the Nth
equation backwards for the former system, and from the first equation
forwards for the latter, After the elimination procedure has been

completed éor both systems in (5.1.10), taking into consideration the

assumption (3.1.14), the systems (5.1.9a) and (5.1.9b) take the following

forms, respectively,

= = "| ™ A .‘1
F1+I 7 zl %l
o 1 Li |%
F I '

3 N 0 | :

| \ (|- (5.1.15a)

{ N |

N |

| . \\ i |

| 0 A | |

¢ \\ i ol
K o] (A
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and — - - - 1
I ' i 1% 1
~ o~
. .l X o
\\ 0 ‘ |2 lz
\\ . ] | ] .
A 1 | {
o ' l = : (5.1.15b)
- ' | 1
I | F2 1 .
L - I+F¥- _ENJ ;ﬁﬁ_

L
~

) ~
where Fj, j=1,2,...,N are defined in (5.1.14), the vectors Ej and yj,

§=1,2,+44,N are defined as follows,

N o : (5.1.16a)
g‘j = g’j_“%'f'l ’ j=N-l,o.o,1

and 21 = y_l
~j = ~j_alj-1 s 3=1,2,00esN | (5.1.16b)

wherg Ej ';j are as given in (5.1.10a) and (5.1.10b) (or (5,1,12) and
(5.1.13)) respectively, and Q as in (5.1.11),

The solution vector can now be obtained from the forward and backward
substitution schemes for (5.1.15a) and {(5.1.15b) respectively, i.e,,

1z -

(Fl+I) Z; » OF (15‘11—1)}11 =z,

£
L
and 3:_N
L

provided that (F1+I)_1 exists,

j=2!3b."lN! '(5.1.173»)

n

z.-F,

-1y v
(F, +I) , or (F.+D)x_ =7
! XN L EN N j=N—1)N-2l“0lls (5.1.17b)

The solution procedure can be summarized in the following steps:
Step 1 Compute the submatrices Qo and Q1 from ( 5.1.8) which involves

the computation of the square root of a matrix by Newton's method.

Step 2 Obtain the submatrix 5 from

QR = Q
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Step 3 = Obtain Fj from jel
‘ wN=j+1 (-1). y, for N odd

Fj = sQ » S 7 (—1)J s for N even,

Step 4 Compute 2%'-j and zj y J=1,2,444,8, as follows,
Z

z 3 .._ - .
EN N » j i-,_'j '—j"’l H J_N 1""!1

and

Step 5 Compute j’zj and Eﬁ’ j=l,2,...,N, as follows

~

~ ® 2 .
y"‘l - y_l ] ‘Zj = y_j Qy_j__l’ J_233"°°’N!
and o~

+ =

X = ToFn SNLN-2,. L

In general, the number of operations involved in the above prdcedure
(excluding step 1) is of order O(NG%m3+4m?)). This may be reduced if we
consider systems whose coefficient matrix Q0 in steps 2 and 5 are such
that QO (assumed non-singular) can be decomposed into LU (see Chapter 2),
Consequently the forward and backward substitution process (of O(mg))‘
are required for these systems and hence the number of operations reduces

3

to O(Nm™),

It is possible to reduce this order further if some efficient
techniques are used for the matrix-vector multiplications, such as the

Fast Fourier Transform (see Cooley and Tukey (1965), Brigham (1974),

Mq@;naghten and Hoare (1977)).
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If the submatrix B in equation (5.1.1a) is periodic tridiagonal,
and C is a diagonal matrix (normally, I or -I) then tpe above procedure
may be reduced to the form considered by Okolie (1978) (whiqh in fact is
an extension of the tridiagonal point-case suggested by Evans (1973}).

For this special case, the matrix A can be factorized as follows:-—

(c.f., Algorithm FICM2 with r=1),

B C\ (l'-1 1 LI{U C 0
~ ~
C\\ ~ L. 0 ~ ~
~ ~ -
~ \\ \\ ~ \\ ~ -~
~ N ~ = ~ . \\
~ ~ \\ \ \\ ~ ~
\\ ~ \C \\ N\ 0 \\ ~
0 ~ \\ 0 ~ \\ e
c “ ¢ B MLova|le >
G.1.18)

where L,U and I (unitary) are mxm matrices,
If we set C=I, then (4,5.18) yields the result,
Li=1I

. . (5.1.19)
and L+U = B

Okolie (1978) defines L according to (.1.19) as follows,
L= 0.5(3-(32—41)%, provided ||B|[>2, (5.1.20a)
Moreover, if L is assumed to be non—singular, then from the first
equation of (5.1.19) U can be taken as,
U=1L . G.1.20b)
Subsequently, the systems (5.1.1) can be split into two coupled '

systems by virtue of (5.1.18) and (5.1.20), i.e.,

I ARFA N
L I b z
<N 0 2 2
~ > 1= |1 (5.1.21a)
~ “\\ 1 |
e ] '
0 \\ s i t
LI %y E2Y

and
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. (5.121b)

As before, when the elimination procedure is applied to (5.1.21a)
it yields the result, (bearing in mind that the condition (5.1.10) should

be satisfied, i.e. have it is required that ||L|[|<l for stability).

_ N _N,=1la
Iy =@+l 7y 1, for k odd
NN o~ k
or (s L3y = Zy 5 =1-1, for k even,
T N1 Ne
and xj 53 SLXN,JNI,N 23000yl
(5.1.22)
where E is given by
zZ, =z . (5.1.23)
e b d .
and _z_j = ij_LEj_l’ 3_2’3’000:N
Similarly, for the system (4.5.21b), if we define zj
Iy N (5.1.24)
d Y. = L(y.-¥. ), j=N-1,N-2 1
an .Zj IJ lj+1 ’ s sesesly
then the solution vector zc_J can be obtained from the relatioms,
- N N, -1 )
X = (I+s L) 2]
' N_N ~
or (I+s L )?51 Ly b (5.1.25)
~  J N=j+l1 .
and X, = ,~5 L X =2,3 eselN
% XJ X J=2s3, sy ‘

and s is defined in (5.1.22),
Okolie (1978) applied the spectral resolution method to the latter
procedure which reduced the order of operatiomns to O(AmzN). Thus, in the

following we shall apply this method to the procedure given earlier in

this sdction.
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Spectral Resolution Method

We first describe this method in connection with the procedure above
(from (5-1.18) to (5.1.25)) which has been studied by Okolie (1978,
Chapter 5) based on the work of Buzbee et al (1970).

We assume that the eigenvalues of the submatrix B are kl,kz,...,km
and we define a diagonal submatrix AB (or order m) such that

Ap = diag(d 2y 0eensd ), | (5.1.26)

Also we assume the submatrix Q (of ordef.m) to be orthogonal
(i.e. QT=Q“1) and consists of the eigenvectors of B, then the orthogonal
transformati;n (see Definition 2.4.2)

3 - o0 (5.1.27)
exists,

From (5.1.27) the following results can be obtained (Okolie (1978)),

for any integer k,

(5) B = ane’, | (5.1.28)
and.
(i1) P(B) = P+(A)Q"

,. (5.1.29)
and P(Bk)QP(A:)QT

where P(B) and P(AB) are polynomials of degree k in the matrix B and AB
respectively (see Noble (1969)),

Furthermore,'if we.denote ﬁhe eigenvaiues of the submatrix L in
(5.1.20a) by “j’ j=1,2,444,m and define a diagonal matrix AL such that-
AL=diag(u1.u2,...,um), by virtue of (5.1,27)-(5.1.29) then L can be

expressed as follows (Okolie (1978)),

L=0AQ . (5.1.30)
and Lk = QA:QT ; k is any integer > O '
where .

At P(Ai) i dlag(ué'ui’...’uﬁg } (5.1.31a)
and AL = P(AB) E diag(ul’“Z"“'”mR , kis any

integer,
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where uj in terms of Aj are given by

PN |
uj = O.S(Ai (Ai $)%) , (5.1.31b)

Similarly, the matrix (I+s' L) in (5.1.22) (or (5.1.25)) can be

expressed as follows,

T

I+sN.LN = QA_ _Q° , ' _ (5.1.32)

I+

where A z diag(1+sNu l+SNu2,.;.,1+ﬂ2) s (EI+SNAL).

I+L 1’
Reverting now to the solution procedure given at the beginning of

this subsection and assuming that the submatrices B and C are commutative

(i,e. BC=CB) which implies that B and € have a common set of m independent

eigenvectors (Noble (1969), page 342)., In this case the orthogonal matrix‘

Q consists of columns which are the set of eigenvectors of B and C

(Okolie (1978)),then we have,

T ' .
Q BQ = A = dlag(k ,A ’.l.,l ) .
T B 1 2 m . (5’1.32)
and Q CQ = AC = dlag(hl’k?.’.“’)\m)
Let the matrices P1 and P2 (of order m) be defined as
- 4
Pl - 0.5(B+2C) . . (5 11033)
P2 = 0.5(B-20)i
then from (5.1.8), QO and Q1 in terms of P1 and P2 are given as follows,
Q. = P_+P _
o 12 . | (5.1.34)
Q =FF

Furthermore, we set AP and AP as diagonal matrices possessing the
1 2

same eigenvalues as P, and P, respectively such that

1 2

T

QrQ-=

. '_AP1 . | (5.1.35)
QPr,Q = APZ '

Then, from (5.1.34) and (5.1.35), we have

Q"q 0 = QT(r#2,)Q2T£(2 ,B,)Q = £(A, ;)
12 1 (5.1. 36)

T T _~T
Q050 = Q' (2;P,)00 8(2;,B))Q = 5lfp ohp )
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where f(Apl’APz) = AP1+AP2
. (5.1.37)
g(ho JAL ) = A +A
By PR |
and f,g are polynomials in P and P2 as defined in (5.1.36).
| Thus, QO and Q1 can be expressed in the form (for any integer k)
T
0
T
Ql = QAQ Q ,
1 f (5.1.38)
k k T
0 ’
: k kT
and Ql =QrQ ,
Q J
where
Ag = _f(Ak ,A? ) = diag (GT,UE,...,UE),
0 ' 1 2 :
k k k — qs k k k
a.nd_ AQI g(API,APZ) = dlag (51,52,.--,Em),

with £ and g as defined in (5.1,36),
and Uj and Ej are the eigenvalues of Qo and Q1 respectively,
In addition dj and Ej are expressed in terms of Aj (the eigenvalues
of B) and i} (the eigenvalues of C) and are given by (see (5.1.8))
o, = 0.5[(Aj+21j)5+(xj-235)i] |
and £, = 0.5[ (42X -0, -2T 0 Y 1=hZeeeem (5:3:39)
1 J ] J J
which is analogous to the form (4.5,31b),
Similarly, if the diagonal matrix A~ is taken such that it comprises

Q

the eigenvalues of aﬁin (5.1.11), i.e.,

7=, (5.1.40)
thus from (5.1.38), (5.1.11) and (5.1.40) we have
AL A=A
Q0 Q Ql
-1
or Av= (A ) A . _ (5.1.41)
Q QO Ql
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Q

Moreover, if mj are the elements of A~ (i,e, the eigenvalues of'a)
then from (5.1.41) and (5.1.39), we can express mj in terms of Uj

and Ej as follows:- !

W,

TRY T4 T 34 Y
X, +2X, ) 24 (X, =22, A #20,)3-(x 2],
R R L B A A e L Rt

- 2 =24 ) '
X, /N, +(A5=4) =1,2,0.. .1.
ARSI ol P L e IPPRL | (5.1.42)

where mj, Aj and Xj are the corresponding eigenvalues of a;,Qo and Ql
respectively, '

In the light of the above analysis, the 5 steps of the procedure
given earlier may be replaced by the following:

Step 1' Determine A =diag(o. ,..4,0 ),
e 2 Q, 1 w?

AQl=diag(El' se ’Em) »

and A~ -‘-diag(ml. ‘e .U.\m) >

Q :
from the "appropriate relation in (5.1.39) and (5.1.42),

Step 2' | (i) Obtain:z'_j, i=1,2,...,N, from
~ _1 "'1 T
Z; =Q05_j=Q(AQ) Qz.
; 4]

-
(ii) zj, j=1,2,4444N f£rom

= ~
E.N =EN ’
Z. = 2.-07.
R J+1T~
- e d .= - -
= E_j-QAQOQ -z-j+1 y J=N-1,N-2,...,1

and
(iii) st 3=1,2,...,N,
' g
(F1+I)1 =2 .

Again, the matrix F_+I can be diagonalized as before such that

1
QT(F1+I)Q = I = diag(ul,...,um).

where 1.|j=1+s=ar.ul;I s J71,2,40.,m, thus
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-1z
-2-1 (F1+I) .z_l

- QT<K>'1qéfl .

Xj =E’J—SQAQ Q 1 ’ J 2yvae, N,

Step 3° (i) oObtain E; s J=132,0444,N from

L Y Q(AQO) QY »

(ii) ij, j=1,2,44.,N from
2
Ly T4
2 ~
L 7 47
= F. A~ Q5. -, i=2,3,000,N )
= lj_Q Q"OQ lj_ls J=23 3500030,
{iii) xj, 3=1,2,.04,N from
. -12 _ T, « .~  ian s .
X T (F +I) XN = Q (A)QZN (see (iii) in step 2' above)
It is necessary to point out that the above steps involve the matrix
vector multiplication, QTZI in (iii) step 2' and QTxN in (iii) step 3'
and are computed only once; consequently the above procedure is estimated

to be of computational complexity of O(IOm?N) (excluding step 1'),
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The system considered here is similar to the one given in the previous

algorithm, but is non-periodic and has the form,

B
~

C
“~

- —X =
-1
%
[
|
|
i
Bj .ENa

2
2

(5.2.1)

.

where the submatrices B,C and the vectors Ej’ Ej' j=1,2,...,N are as

defined in (5.1.1).

The factorization of the coefficient matrix differs from (5.1.3) and

here involves two block rectangular matrices of size MNX(N+1)m and (N+1)mxm¥N

respectively takes the following form,

%

L % . ]
0 | O Ql-. \\.\ O
| ~ ~
Nt 0 S~ -
\\Ql I ----- - -\_Q} _Qg
Qo' Ql-me(N+1)fn_ 0 19N +1 ) mxmN
QIQO
R 0
~
-~ S ‘
S R \\\ ’ (5.2.2)
0.0, Q°Q%+q?
o Q%
mN xmN

By equating the corresponding elements of the tridiagonal matrices on

both sides of (5.2.2) we obtain the matrix equations, i.e.,

2 2
Q0+Q1 -

QOQ1 =C (or Q1Q0=C)

B

.

(5.2.3)

Since (5;2,2) is exactly (5.1.4), thus the values of QO and Q1 are

taken as given in (5.1.8).
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However, the elimination process in the present algorithm is different

to the one given in algorithm FICM3, since here we have two block under-

determined and overdetermined systems {c.f. algorithm FIRM1l), These two

systems are:

M~ {
QO Q1 '
~ A {
~
\‘\\ 0 !
~ N | O
\\ A
N \\ l
NN Q
0 NV
. ~ ]
a % |Q1.
and
QO,\
Ql ~ 0
~ ~
~ ~
~ “~
\.\ \.\
0 \\ \\
________ 4%
0 Q)

L2
I
|
|

In

I+l

— -

(5.2.4a)

(5.2.4b)

where xj, j=1,2,...,N+1, are the sub-vectors of length m as well as j% and

X.
=3

If we now assume that the condition (5.1.10) is valid here and QO is

defined as in Section 5.1,

(5.2.4)

[

and

L I-II po—
Q\ 3 I'].
AN \\ 0 ! 12
SN 10
NN
NN {
\ ~
A A Y '
\\ * -~ |
0 NQ
~ -~
1.,Q]

(i.e.

I

|

!

[

I

[
a1

—

Q*l

0

Z

~

1
%2
|
[
|
i

z,
N

-

exists) then the two systems in

may be modified into the following forms, respectively.

(5.2.5a)



where

or

or

and

or

B 7 [x.]
a™ 4
N
Q\ . 0 %
N \~\ :
L
N " 1
N I
0 N \‘\ BR
\\—\,\ '
Q N

Q= q)'q
Q2 = q,
~ -1
ZJ = QO ZJ >

% = % 4

QY =75 » i=1,2.

]

e oy N+1

Furthermore, by considering the definition of
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(5.2.5b)

(5.2.8)

(5.2.7)

(5.2.8)

the submatrices Fj in

(5.1.14) the system (5.2.5a) can be taken a step further where the off-

"diagonal" elements (i.e. Q) are eliminated and then to end up with the

following form,

where Fj’ j=1,2,...,N are given by (5.1.14) and ;j are given by

and

and E} given by

|
0
| F2
\\ |
\\ IF
“ FN—l
Ty5

¥
S
-~ ~ >
Z. = Z.7\YZ,
j i %5
(5.2.7).

+i] Z
bo) Z,
i =1
| 9
| -
| Z
| ]
Lo+l

s (5.2.9)

(5.2.10)

Hence, from (5.2.9) , ¥.» 3=1,2,...,N can be expressed in terms of

ey 28 follows,

3
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b

=7 - ]
zF ¥
= 2 Fivn
q (5.2.11)
= ATl |

On the other hand, the elimination process on ﬁhe system (5.2.5b)

takes place such that the elements Q are eliminated leaving the unit matrix;

in this respect it can be noticed the right-hand side vector is changed and

the final form for (5.2.5b) becomes,

where

and

r

% ¥,
x ¥
< 0 2 7
> '
NS o= i (5.2.12)
~ | !
~ ! 1
I ﬁ\] |
0 4 | L+ 1]
L 4
> ~ oy . (5.2.13a)
lj = Z.j—QXj_l » J_1929---,_N’ '
Va1 = e Wy o (5.2.13b)

. 1=1,2,...,8+1 are given in (5.2.8).

o)
[ W)

Thus, it follows from (5.2.12) that the solution sub-vectors Kyseeea Xy

. x ¥ g .
are equal to the corresponding sub-vectors Fyseeerdy and Yns+1 18 the null

sub=vector, i.e.,

and

IR

271 o b - (5.2.14a)

0=F,, - : (5.2.14b)

In fact, in the relations (5.2.13) we can easily express each of the

- Lnd o d Lol L3
. 1n terms of yl,yz,,..,yj, 1.e.,
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e ) ~ N e
Y3 = Y3ty = Y3tQ,*Qy; s
~ Lo ~ ~ M wDy v r (5-2-15&)
Yy = 4005 = LRt
';v" = ~ +~'~ + + + N"].-\.
Iy = Iyt Wy Yoo Ty J
d E =5 40y +62~ + ¥6N~
an Tger T Lye LY Ty Ly (5.2.15b)

But §N+1=9 by virtue (5.2.14b) thus from (5.2.15a) we have

Fay = 6£N+52§N_1+. ..+‘QN‘-§_'1 . (5.2.16)
We now substitute for ?3, j=1,2,...,N given by (5.2.8) so that
(5.2.16) will take the form,

-1 - ~N =1
05 ryay = W 05 gyt Ry,

or  “Zyyp T RIytRo¥y e tRgY
. (5.2.17a)

J“E':l yN_J +1 ’

oot . : (5.2.17b)

where R.
]

If we now return to the equations in (5.2.11), and multiply
the first equation, the second equation, up to the last equation by
th .
Ry RN 1200y respectively (or say multiply the k® equation by RN—k+1)’

and add together we arrive at the following result after some rearrangement,
q N n N
LAy T LBy T Ol Rl (5.2.18)

But the right-hand side in the last relation is equal to Y+l

by virtue of (5. 2 17a) thus (5 2.18) becomes,

Ine1 Z RN-J+1—j-( Z RN-J+1 J)ZN+1 ?

or with some rearrangement it may be written in the form,
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N N -
-3 . F.) =- 7 . 1Z. . _ (5.2.19)
(e e 7T L gty | e
Further, if we substitute for Rj and Fj as given in (5.2.17b) and

(5.1.14) respectively, then (5.2.19) becomes,

~N-j+1_-1~N- 3+1

N—_] +l""
o011,

.2.20
2 (5.2.20)

(I -

o1t

IIMZ

j=1

where EJ. is given in (5.2.20) , and s for any j of the summation operator

is defined as ‘ (—1)J+1 , for N odd

s = .
(-1)7 , for N even.

It may be possible to do further simplification in the second term of
the left-hand side of (5.2.20) by taking into account the fact that QO and
Q1 are commutative due to (5.2.3) which consequently implies the equality

~ -1 -1
Q) Q,Q =99, . (5.2.21)
k -1k .o
Therefore, the quantity QOQ QO Q" , k=1,2,...,N may be modified

as follows,

~k =1~ k -1 -1 -1k
Q Q Qy @ = QO(Q QIXQO Qpx ‘“XQOIQ]_)QO Q
k times
-1 - ~1k
= (200 05 % -+ QT
k times
-1 -1 -1, ~k
= (@ QX Qp -+ %G 0T (by (5.2.21))
=T = _ (5.2.22)
Thus, by virtue of (5.2.22) the relation (5.2.20) takes the form,
N : N e :
- ISPy . - TS (5.2.23)
j=1 =1 1

and s is as defined in (5.2.20).
However, with the system (5.2.23) (of order m) solved for a1’ it
enables us to proceed for the computation of yj, j=1,2,...,N from (5.2.11).

This is followed by considering the equations (5.2.8) to determine z.,
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. ¥ . .
j=1,2,...,N and then to (5.2.13b) to determine zﬁ, j=1,2,...,N which are
equal to the solution Ej by virtue of (5.2.142).

The outline of the above procedure may be briefly represented by the

following:

Step 1, Step 2 and Step 3 (see algorithm FICM3 in the previous subsections).

Step 4 Compute by solving the linear system (5.2.23).
ookep B TN+l y

- Step 5 Compute 2&, 2% and Z;s j=1,2,...,N as follows,

Qozj = ZJ~s i=1,2,...,N,
EN = EN’ _z_j = zj - sz"'l’ j=N-1,...,1
and _y_j = zj-FjiN"']., J 1! ’ "!N

Step 6 Compute E% and zj ( §j) as follows:

~F

%

zj s 3=1,2,...,N
(§j=)§_j = ?j‘afj_ls j=293’-'-:N’

F o~
- where  (x,=) = .5y -

The order of operations involved in the above procedure (excluding

3+4m2)) which is an improvement over

step 1) is approximately of O(N(gm
that given by Isaacson & Keller (1966).

Finally, we point out that the spectral resolution method discussed
in Section 5.1, can be applied to the system (5.2.1), provided that
the conditions required by this method are fulfilled. Obviously, we can
apply this method on the system (5.2.23), for example, and ﬁSing the same
notation, we obtain, |

Y op2(N=3+1) T N

(I - ) sqA Q) =~ 7 o
sy Q Iy+1 i&1

N-j+1 T

- Z.

g V%o

where the orthogonal matrix Q and the diagonal matrix Aa are as defined in

.the previous section. Thus, by adopting the spectral resolution method

the previous procedure may reduce the order of operations to 0(9m2N)

approximately.
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As an extension to the system considered in algorithm FICM3

(Section 5.1), we shall consider here a periodic block-quindiagonal

linear system of the form,

B'\C\D.\
oSN LN
“~ Y
C\\ - -~ \‘ 0
~ ~ o~ ~
Do ~ ~ ™ ~
~ ~ -~
~ ~ ~ ~ -~
LN ~ ~ ~
™~ -~ ~ ~
\\ ~ ~ ™~
~ ~ -~
- N ~
D 0 S
- ~
D ~

EX
—
1

|

- am w ===y

'R

ey
=2
|

LI

2
'
!
I
|

2

(5.3.1)

- where the coefficient matrix is a constant symmetric circulant block-

- quindiagonal matrix of order mN, B,C,D are real block sub-matrices of

order m and each sub-vector X, and z; has m components such that

X. =[x X T
X, 1,100

zZ., =|2Z. z, casyZ,
1’m] i | [ l,l_’ 1’23 *

i,m

]

.

Also, it is assumed that the coefficient matrix is block-diagonally

dominant with respect to the matrix norm |I.|l i.e.,

2||B-1||(||C||+||D|!)sl, provided that B is non-singular,

(5.3.2)

The factorization of the block-quindiagonal matrix in (5.3.1) under the

condition (5.3.2) is assumed to take the form,

BCD_ - b ¢] [Q, Q, 2,
L N ~ 1 2\
c ™ N T 0 D N N \ 0
-~ \\\\\\ NN ~
D \\\ S s = A N
~ L S N N ~
NN NN ~ N ~
NN NN . N
D R T ~
0 “~ \\ \\ N 0 \\\\
D NN cl 1Q N
_ \\ \\\\ 2 “
C D “Dc Bl |9 Q

-

Q
Q

LN

1

-
Q, Q
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2.2 .2

L. : N
Qo*“Ql"Q\z QIQO'?ZQI 0,0, Q% %Y Y9,

WG~ N Q2
QOQZ A ~ \'\ h -~ ™
Y

- N ~ . o S (5.3.3)

~ ~ -~ \ Q2Q0

QY 0 o Tl S Q%rYy|
~

R, ~ 202 2
_§1Q0+Q2Q1Q2Q0 2,2, QOQlleQZ Q0+QI+Q2-

where the submatrices QO,Q1 and Q2 are each of order m.
By equating the two block-quindiagonal matrices in (5.3.3), and

comparing corresponding elements yields the following relations,
2.2 2

Q0+Q1+Q2 = B
Q,Qy*Q,Qy = € (or QyQ;#Q;Q,=C) | - (5.3.4)
and Q2Q0 =D (or Q0Q2=D)

Although, the system (5.3.4) consists of matriz equations, it can
be reduced to a simpler form similar to the quindiagonal point case (i.e.
when r=2) in the algorithm FICMl (see subsection 4.2.1 or subsection 4.2.4
equation (4.2.38)), this is due to the fact that the expression,

(070, 40,7 = Q2+277(Q,Q3+Q,0,)7(QgR;+Q, 0,042,850, » (5.3.5)
holds true by virtue of the commutative property of the matrices
(Q1Q0+Q2Ql) and (Q0Q1+Q1Q2), Q2 and Q0 which are confirmed by the second
and third equations respectively of (5.3.4).

.Thus, the equations (5.3.4) under the vali;ity of (5.3.5) can be
replaced by the following equation (see subsection 4.2.1),
QO+Q2 = 0.5{[B+2(D+C)]*+[B+2(D-C)]5} =G
Ql=0.5{[B+2tD+C)]£-[B+2(D—C)]i} (5.3.6)

Q2Q0=D (or QOQ2=D)-.

in order to determine the submatrices QO,Q1 and Qz, provided that the

matrices [B+2(D+C)] and [B+2CD-C)] are positive definite and their roots
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are defined, notaﬁly by the strictly inequality (5.3.2).
It is clear from (5.3.6) that the submatrix Q, is determined already,

whilst Q. and Q, are defined as follows:
0 2

"

% 0.5+ [e2-4p1})

and _ Q2

3.7)

i

O.S(G-[Gz-éD]%) , provided [|02|]>4|ID||,
where G is a constant matrix defined in the first of (5.3.6).

In fact, the choice of QO {or Qz) in the form defined in (5.3.7)
does satisfy the quadratic matrix‘equation in QO (or QZ) derived from
the first and the last equations of (5.3.6), i.e.,

Q3-6Q,*D = 0 (or Q3-Q,C+D)=0) , | (5.3.8)

taking into account the commutative property of the métrices Q0 and Q2°

It is assumed the same procedure of Section 2.5 is applieable here
to evaluate the appropriate square root matrix in (5.3.6) and (5.3.7) as
long as the relevant matrix is positive definite. This implies eventually

that Q, is positive definite.

Two Alternative Block Systems for (5.3.1)

When in the system (5.3.1) the coefficient matrix is replaced by its
two factors given in (5.3.3), we can formulate the following two systems
where coefficient matrices are of upper and lower circulant block type

respectively, i.e.,

- - - r-
Y ~ ~
AN T N 0 Iy
~ ~ ~
\\\\ \\ )
SN YL = , (5.3.9a)

F-- - §




where the subvectors 11,12,..

Y \\ »
~Q @ Q.

.,X_N

[

X

<1

1
b}

i
!
1
H
l
I
I

]

Yy

are of length m each.
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R (5.3.9b)

We now adopt the following elimination procedure for the above systems,

taking into account that the stability of the procedure is ensured as long

as ||Q0|l is greater than l|Q1|| and IIQZII.

Since QO is positive definite as was pointed out earlier (which

implies that Q;l does exist}, the systems (5.3.9a) and (5.3.9b) can be

normalized so that they would take the following forms respectively,

and

1 Q, q,
) 1\ :{

where the unit matrix I is of order m,

or

Ld —

! ~ o1

R

QY =

Q » 90, =0,

(5.3.10a)

(5.3.10b)

(5.3.11)



263

gj and zj, i=1,2,...,N are defined as in (5.1.12) and (5.1.13)
respectively.

As shown in the previous section, the implication of the elimination
procedure is to get rid:of the off-diagonal elements, precisely the sub-
matrices 61 and a; in both systems of (5.3.10) . We confine ourself fo
the algebraic formulation of this procedure. This may require the
intro@uction of the submatrices Fi and Gi (each of ofder m), i=1,2,...,N,
and the sub-vectors gi (each of length m), i=1,2,...,N as follows,

~ ~ - \

FN=Q1’ G'n=Q2! £N=ZN!

P, = CADFRRT,, 6 1 = (06, B, = e +(Q)Z

~ -~ I (unit matrix) for j=1
F, = (_Ql)Fj+1+(-Q2)Fj+2+H’ where H = 0 (null matrix) otherwise_
I, for j=2

Q
I

i (_Ql)Gj+1+(_Q2)Gj+2+K’ where K = {Q),for j=1
0 (null) o;herwise
~ ~ e ~ .

j=N-2,8-3,...,1. (5.3.12)
where g&, j=1,2,...,N are the components of the right~hand side vector
in (5.3.10a) and a& and Q2 are given by (5:3.11).

Hence the system (5.3.10a) takes the form,

_ . .
F& 1 [ 2y

F, G 2} zy

| |
F3 6 I, 0 l , ,
: | AR : = | , (5.3.13)
{ ~ ‘

L |

i : 0 _ A i !
F ¢ ~1] ly 2

N N < 1y 2y

where Fj,Gj and ;5, j=1,2,...,N are given in (5.3.12).
Further, we eliminate G1 so that (5.3.13) would result in a

triangular form, that is,
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’?1 ] 5
F, G ¥ z
F. G, I : Z
I N 0 s %3
N
o N b= ! , (5.3.14a)
| ) \\ : |
1 N\ |
: ! 0 \\ ' '
i i |
L F Yoty 2
NN 1 By B
h F. = F.-G.G_1F
where F1 = F,=6G, F, } 5.3 145)
FS A -1A e Je
and _51 = z1 G1G2 22 s

provided G, is non-singular.
The components of the auxiliary vector, Yyreees¥y can be obtained from

(5.3.14a) by the forward substitution scheme, i.e.,

~ ~
=2 i i A
Flzl 25 s which is solved for ¥
~ ,
and Gy, = z,-F,y, , which is solved for y
222 2 2 (5.3.15)
whilst zk;.k=3,4,...,N are obtained from,
A
Y = A By *6dy) - J

Similarly, if we define the sub-vectors 31’22""’EN’§1’£2""’EN

and §N as follows:—
. A~ w
b4 b
fad ~ ~ ~
I, = )y
A _ Moo -0 Pm .3.16
¥ Zj+( Ql)yj~1+( Qz)yj-z y 3=3,4,...,N { (5.3.16a)

where ¥., j=1,2,...,N are defined in (5.3.16a)
' _ A Sl :
Ty = Iy61% Iy » J

then the system (5.3.14b) can be reduced to its final form where the

coefficient matrix now has an upper triangular form, i.e.,
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e - pas P~ —
T “N E;N % o]
o
. [ % b2
N 0 | i H [
N Pl { I
\ | ' } - i
. | ) = . (5.3.16b)
~ ! { i
r {
0 1 G3 3 ) Au
2 ! -1
L SUNCE I
here 9 ¢ al iven by (5.3.16a) and F. in (5.3.14b)
where ¥y ,...,y , and y,. are glvgn_ y (5.3.16a) an Fl in (5.3. J.
Finally, the components of the solution vector, KyseresXy can be
determined by a backward substitution process derived from (5.3.16b) and
is given by, ~ _8 . . T
FIEN Iy which is solved for EK-N
T V A L -
and GZEN-I = XN—I_F2§N » which is solved for X1
whilst X k=N-2,...,1 are obtained from, r (5.3.17)
~
e = I Oy Ty J

The solution procedure can be summarized in the following steps:
Step 1 Compute the sub-matrices QO’Ql and Q2 from (5.3.6) and (5.3.7)
‘which involves the computation of the square root of a matrix by

Newton's method.
SteE. 2 Obtain Ql' and Q2 from (5.3.11).
Step 3 Obtain Fj and Gj’ j=1,2,...,N from (5.3.12).

Step 4 Compute -;—j ’gj and Xj’ j=1,2,...,N as follows:

g—j from (5.3.12)

and z_j from -(5.3.15).

Step 5 Compute Ej ’ij and Ej’ j=N,...,1 as follows:
-~
%ol = X
o)
Xj from (5.3.16a)
and Ej from (5.3.16b),
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Tﬁe number of opefations involved in the abové procedure (exc¢luding
step i) is 0&%? m3N).. Again, if the first system in step 4 and steb wahich
solveg for E; and ij reépéctively).are solved efficieﬁpiﬁ such ;hat the
coefficient matrix QO ié_factorized juSt once, then the complexity order

2ron?)w) .

may be brought down to O((lﬁm
If may be possible to extendlthe spectfal_resdlutioﬁ method discussed
in Sectioﬁ 5.1,. - (for thé pefiodic'block—tridiagoﬁal syétem) to the
ﬁeriﬁdiﬁ block¥§uindiagona1 systém pepresentéd Sy (5.3.1). This:extension
méy occur under some resfrictions impqsed-on the felationship betweeu.fhe
_submatriCes B,C and D in (3.3.1). For example, it is required that (i) B
and C commute, and their produét to commute with D, (ii) B and D commute,
aﬁd théi¥ product to commute with C, or (iii) C and D to .commute, and their
product.to commute with B. This is équivalent to the statement any tw§ of
thrée matrices B,C,D to commute, and their product also to commute with the

third matrix. Subsequently, the desired condition may be formulated as

(i) BC

CB and DBC = BCD ,

~
=
e
-
=
o
[}

DB and CBD = BDC , (5.3.18)

DCB .

I

(iii) DC = CD and BDC .
If.any of the cdnd{tions of (5;3.18) arelfulfilled, ﬁhen we coﬁclude
that the three submatrices have a common set of m independent eigenvectors,
and thus it is possibie to construct an érthogonal matrix Q (see section
5;1), whose éolumms'comprise of the set of eigenvectors of B,C and D.

(N.B."if D is alﬁnit matrix, then Q is restricted to B and C, similarly

for B and C also), such that,

T i - ) . c

Q'BQ = Ay = diag(hyserssd)
T - . -— ' - ' o

qcq = Ac =.d1ag(A1,..,,Am) . | (5.3.19)
T ) = . - . = -

Q DQ - AD - dlag(llg LI ) ,Am)

—

where_ljjij,kj, j=1,2,...,m are the eigenvalues of B,C and D respectivélya
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Hence, bj followiﬁg_a similar procedure as given in Section 5.1;
_ﬁe can express the eigeﬁvaiués oi,51 and 5; of the sgbﬁ#triées QO,Q1 and Q2_
respectively, in terms of the éigenvalues-of B,C and D as given in (5.3.19).
Thls is glven as follows, taklng into.account that Q1 is given by (5.3.6),

Q, and Q, by (537)

-—

ciA = 0.5{[A.+2("-X.+7\.)]'%—[X.-I-Z(:A.-'):.).]%}.
'ai'(gr 5,) = o. zsm +2(x X, )}%m +z(;\ Mk e (or - (5.3.20)
0.5(10:5 2, +z(x 3105 20,7, )]*] 4%, ",
In fact, the determination of thése three eigenvalues, could replace
step 1 of the proéedure in the présent subséction, and the continuation‘of

the remaining steps can proceed in an analogous way to the appropriate steps

for the periodic block-tridiagonal case (see Section 5.1).
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The type of linear systems.considered in this algorithm are non-

periedic block—quindiégonal, which in fact, are similar to (5.3.1),

except that the coefficient matrix is non-circulant, i.e.,

(9]
o

~ - r- -
.31 2]
% 2
| :
| — 1l
! N
f |
| )
1 ]
LN 2y

R (5.4.1)

where the coefficlent matrix is a constant and symmetric block-quindiagonal

matrix of order mN, with B,C,D real block-submatrices of order m and each

sub--*.arector.';_t:_i and z; has m components as in (5.3.1).
It is assumed that the matrix in (5.4.1)

dominant which can be ensured as long as the inequality (5.3.2)

is a block-diagonally

is true.

By taking this property into account, we proceed to factorize the block-

quindiagonal matrix in (5.4.1).

The factorization of this matrix takes

place in an analogous way to the procedure adopted in algorithm

FIRM2 (Section 5.2) to obtain two rectangular block matrices of size

mN¥ (mN+2m) and (mN+2m)*mN respectively, or precisely the coefficient matrix

of (5.4.1) can be factorized as follows:
o — - \ —
B €D QU QY |
N N N 0
NN NN \'\ 0 |
NN N N NN |
D N NN ~ NN ~
~ \ ~N \\ \\ - N \\ \\ l
SON UM N N N
~ L ~ ~ D A \\ Q'
~ \\ \\ N Y 2*
SN \\ *C 0 ~ Q,0Q
0 N3 Mool
~
L pcel L *Qp, @ U

mNx (mN+2m)
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QO\
Q, ~
1 ~
S~ 0
QZ \\\ \\\
~
\\\ \\ \\\
\\ \\ \\\
0 . \\ \\ \\
. . ~ o
_________ % % %
QZ Ql
0 Q
— ‘ —-(mN+2m)XmN_
-2 2 2 —_
Qo"Ql“Qz\ %40, quo\
~ S ~
Q0Q1+Q1Q2 . < \-\ ~ - 0
-~ ~ ~
Qe |~ > . ~
= 0 2 “~ ~ ~ .
- ~ - ~ ~ - ~o s (5.4.2)
~ ~ ~ -~ -~ \Q Q .
h ~ = ~ ~ -~ \.\\- 270
Y S~ -~ ~
~ ~ ~
Y100, 0.0,+Q.Q, Q2+>+?
B 0°2 071 172 0 1 2__

vhere the submatrices QO,Q1 and Q2 are each of order m.

It can be readily noticed that by equating the corresponding elements
of the two block-quindiagonal matrices on both sides of (5.4.2) leads to
three matrix equations to be satisfied. These equations are exactly as
given in (5.3.4), thus QO’Ql and Q2 can be determined from {(5.3.6) (for
Ql) and (5.3.7) (for Qo and Qz). “Also we shall assume as in Section
5.3, . that QO is non-singular and the valpe of its norm exceeds the value
of the norm of both Ql.and Q2 so that the stability of the following
elimination procesé is guaranteed.

First of all, we replace the given block system (5.4.1) by two
alternative systems whose coefficient matrices are; respectively, the
'upper' and "lower' block triangular factors given in (5.4.2).  These two
systems which are overdetermined and underdetermined by 2m have the

following form respectively,
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N \\ \\ l XZ z:2
\\ AS \\ 0 ! 1 _'
\\ \\ \\ { : |
NN N | i = 1 . (5.4.3a)
AS
NN ! 1 !
~ Y Q2 ]
h \‘Q IQ ’ t
. | |
0 \\ 1 | 2 I {
i QO |Q1 de Iy __E‘N_
In+1
A
and . - - -~ -
Q [, 2]
A Y
Q, ~ 0 2.9 b))
Q \\ \\\ | I
2 SN 1 )
. _
SN ! = ! , (5.4.3b)
\\ \\ \\ | |
O \\\\\\\\.\ . ; !
___________ RO B Iy
QY N1
L %] T2

where the sub—vector components of the auxiliary vector, Yyoeees¥y,p 3T
each of length m.

Since Qo is assumed to be non-singular, the systems (5.4.3a) and
(5.4.3b) may be modified to have the following form respectively (c.f.

the systems in (5.2.5b}),

"aaal ~r ~r p— -~ ™~
I Ql\ Qz\ ! 1y %1'|
\\ N N N ! b2 T}
\ ~ A Y | '
NN ! | ‘
\\ \\\ N ' { = I . (5.4.4a)
NN N | | t
\\ \\ Qz { | |
~ \“‘ 1™~ 1
0 \\_ Q]. : 82 - ' t
- Cad
_ N T I S B
’ Ine1
[ In+2]

and



where

or

Also, we have

or
and

oY

= 2
Z; = Q 2
%35 T
v Q-ly
I %

Qoié =¥, 3TL2, .. W2

] j=1,2, o-o,N

]

% b
) b4
! i
| i
| = i
| [
1 4
| §
e
Ly
-1
Q% @

[N oy SR S —

-+
(=

IM
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(5.4.4b)

(5.4.5)

(5.4.6)

(5.4.7)

Further, we reconsider the sub-matrices F.,Gj and the sub-vectors

g%, j=1,2,...,N as defined in (5.3.12) (but the third term H in F, and K

in Gj are discarded), then the off-""diagonal" elements (i.e. 61 and aé)

in the system (5.4.4a) can be eliminated such that this system would

assume the form,

B e wm oem mme e e e

To express yj, j=1,2,...,N

(5.4.8) we have,

bo =

N-1

H] b = am.= iz ]

Q== 0
N

o
5
et

=z
L.

+1

T Fm -

+{

Z

A
Z

A

1

2
i
§
t
]
A
z

=N

—

- (5.4.8)

in terms of I+l and Yye2® i.e. from



A
AL \
¥y = 2 (P Y *C o)
M~ -
Z2 = E2 (F21N+1+G21N+2) !
= 2 -(F +G )
Iy = BTV e onde2 J
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(5.4.9)

Then in éystem (5_.4.4b) after eliminating the elements 31 and QO of

the coefficient matrix, the final form of the system becomes

—y - Ty S

i

X ¥y
\\ ;1 §1
\\ 0 |_2 '-"2
~N I i
“ [ '
M. 1= |t
| ]
0 N | |
\\ i 1
R B :
0 Pt
- ' S
where ;_1 = El ,
) N . L
12 = 22+(“.“Q1)11 >
N _-v A -~ A .
Xj - Xj+( Ql)Zj_1+( Qz)zj_z P | '3!49--‘-,N,
" o~ ~ N ~ A
: T = Tyt CQL % }
N -~ . ~ ~
and Insp = XN+2+(-Q2)XN , |

where 61,6; and g&, j*1,2,...,N42 are as defined in (5.4.4b).

(5.4.10)

(5.4.11a)

(5.4.11b)

Thus, it follows from (5.4.10) that the solution sub-vectors KyseoerXy

. A ~
are equal to the corresponding components, FireesTy and the redundant sub-

N o . -
vectors yo. . and Yyap 2T null (i.e. of zero compone_nts), i.e.,

Fal
5554
N
25
_ N
Ny
with _O__ = ;N"']. s
and 9_'= XN+2 .

(5.4.12a)

(5.4.12b)
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On the other hand, in order to proceed to further the analysis we

introduce the matrices Rj'(of size m*m), j=0,1,2,...,N to be defined by

R. = I (unit), R, = -Q, , _ . ,
° 11 } (5.4.13)
and : Rj = ('Ql)Rj_1+(—Q2)Rj_2, 1=2,3,...,N

vhere a; and a;‘are giﬁen by (5.4.5).
Thus, from (5.4.113) we can express each of the ij in terms of E&;EQ,
s .
'f’zj’ i,e.,
QY _ 1
X-l X-l ’ .
~ o~ + T A
Iy = Ip*RYy o
A ~ ~ ~
= 5.4.14
Y3 = Y3t 0*RY, ’ ( 2)

~ ~ - -~ ~
Y4 = L RY RV, RY

~ -~ ~ ~ ~ - .
Ty = IgtR Yy Ro¥go® e o Ryody 0 )

and from (5.4.14b) £N+l and £§+2 can also be expressed in the form,

A ~ o ~ ~~
= + -
Iner = Tt IRy TRy
N
ez = 1N+2+R1y +Rz-N -1 “'+R1\L-1 ’

where Rj’ j=1,2,...,N are as given in (5.4.13),'and the §5 are defined by

(5.4.14b)

Rj = (-Qz)Rj__l,__]=l,2,...,N. (5.4.15)
N N . . »
But XN+1=XN+2_9 by virtue of (5.4.12b), thus by substituting for

these values in (5.4.14b), with some rearrangement we obtain,

- = Y +R ovo+ .
I+l -1 RN-l } (5.4.16)

A~A »

A S AR S

R .
where Rj and Rj’ j=1,2,...,N are given in (5.4.13) and (5.4.15) respectively.

Moreover, we substitute for i& as given in (4.5.93) in terms of zi
in both relations of (5.4.16), to yield the result,
-1 S -1 -1
"% Zyer T M W% Lyt R L

-1 P T | A -1 > (5.4.17)
" Tyez = B9 IR Iyt Ry 4y
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If we now premultiply both sides of each equation in (5.4.17) by

Fo
Q0 and introduce the matrices Tj’ Tj’ j=1,2,...,N such that

- -1
A -1 [ =1,2,...,N, (5.4.18a)

A

where Rj and Rj are as given earlier, or Tj may be computed recursively,
i.e., -1 SR ) W
T, = (-QQuT, 1 +(-QQ )T, , 5 §=2,...,N

- 1 .
with T.=I, T. = -Q.Q
. . 0" "1 170 . (5.4.19)
and Tj from the relationms,

T. = (-QQ.DT, . (=(-Q-1Q)T.), j=1,2,...,N
i 2% t5-1 o /157 1512, N,

then the two equations of (5.4.17) can be written in the form,

Iner T Tt Tody-pte ety

”~ ~ ~ .

ez = T¥ytTodn-1 ety

(5.4.20)

Further, we premultiply the first equation by T,,, the second by T

N

and so on up to the Nth equation by Tl {or the kth equation by TN-k+1’

k=1,2,...,N) in (5.4.9) and a similar multiplication takes pldce with

N-1

A A
TN-k+l’ N-k+1%% and TN—k+lzk

k=1,2,...,N in the first and second relation of (5.4.20} respectively,

followed by substituting for the terms T

then these two relations after some algebraic simplifications may be

written in the form

N N N
~
-XN+1 - jEITjEN-j+1 (jlejFN—j+l)zN+l (jElTjGN-j+1)ZN+2
N . N "N
A A ~ oy .
Ty T LT (L T 0 T T

Or in a simpler form, the latter equations can be written as
- + =
B Diyeg * 512 = Y

B lnert 8y D =%, »

(5.4.21a)
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where the matrices E,,E_.,S 32 (each of size mxm) and the vectors v, and

1°72°71° 1
v, (each of length m) are given by
N N A
3
E, = J T.F_. , E,= }JT.F .,
1 5=1 j N-j+1i 2 521 j N-j+l1
N N .
s, = ) T.G . , = Y T.C ...,
1 3=1 j N-3+1 2 = j N-j+1
N ' (5.4.21b)
A ' :
v, = Z T.z. . ’
1 j=1_‘]N_]+1
NAA
= . . . J
and Yy jleJzN-J+1

In matrix notation, the system (5.4.21a) takes the form

BT S (fwe1| |42

EZ SZ-I _ +2 Y5

’ (5.4.22)

which is of order 2m and can be solved for and Ine2 provided that

I+l

the coefficient matrix is non-singular.

However, having determined Iyl and Iy

i=1,2,...,N can be determined from (5.4.9), followed by using (5.4.7)

+2 from (4.5.106), the zj,

to determine E&, j=1,2,...,N. Finally, the 25’ j=1,2,...,N¥ can be obtained
from (5.4.11a) which in fact are equivaleqt to the solution KyseenaXy
by virtue of (5.4.12a)

The summary of the above procedure can.be abbreviated in the following :
steps:

Step 1 and Step 2 (see the corresponding steps in Section 5.3).

StéE 3 Compute Fj and Gj’ j=1,2,...,N from (5.4.2) (noting that the
terms H and K must be ignored).

Step 4 Compute 2;, 2%, j=1,2,...,N as follows,
Z. =z,
%55 7 &
and 25 from (5.3.12).
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Step 5 Obtain T, and %j, j=1,2,...,N from (5.4.19).
Step 6 Solve the linear system (5.4.22) whose elements can be computed

from (5.4.21b) and hence can be determined.

Iy+1 T Ly

Step 7 Obtain Zj’ i& and §5 (or xj), j=1,2,...,N as follows,
v from (5;4.9),
iﬁ from (5.4.7),
?5 from (5.4.11a),

and E; = gg.by Virtue.of (5.4.12a).

The number of operations in&olved in the above procedure (excluding
Step 1) is of order 0((£§m3+8m2)N). As pointed out in the previous
algorithm, if E} (in Step 4) and z% (in Step 7) are evaluated such that
the coefficient matrix (i.e. Qj) is factorised once, the order of the
operation may be reduced to 0(13m3+10m2)N).

If the submatrices B,C and D of the given system (5.4.1) satisfy the
appropriate conditions incidated in Section 5.3 (in particular, the
conditions (5;4,7), then it may be possible to adopt the spectral resolution
method to the systeﬁ (5.4.1). 1In this case the above procedure can be
converted analogous to the ones discussed in the previous subsections (see
Section 5.2), for example Step 1 would involve the computation of the
eigenvalues of QO’QI and Q2 which in fact are givep by (5.3.20).

- Finally, we briefly outline the case where the linear system (5.4.1)
possessed a slightly different coefficient matrix such that the first and

last diagonal submatrices are different, i.e.,
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TB'1 ¢ D 7 %] N
€ B eR % %
D N~ N 0N N 0 |
~ \ ~ ~ \\
~ \ ~ N N

|

i i
i I

N w0 N ~ | = { . (5.4023)
NN N NN i
NOoN N NN ' '
~ ~ A N ~ l

LS N ~ ~N D i I
N \\ h \\ 1 !
0 N\ CYB C | l
N ' |

D C Byl X Zy

. - e . S

Such a system occurs in the finite difference discretisation of a
fourth-order elliptic partialddifferential equation (whose special case
is represented by the Biharmonic equation, see Chapter 7).

In this particular case, the factorization (5.4.2) is suggested to

take.the form (C.fo (4-6,11))

— T \ -T -
B, C D -8 Q, Q 8
1 1\ 2\ | Q, Q
C B CD 0 NN 1 0
~ ~ > \ t N 0
D ~ -~ ~ \\ \ \ \ Q2 Q]_ A
~ ~ A Y o N \ ~ | 0 N\
~ ~ ~ A A N
~ \\ ~ \\ ~ \\ \\ \\ | \\ hY N\
~ ~ =
AR \\\\\ D NN q2| N \\ .
\\ \\ \\ ~ \\ \\ ! N \ \\
C B °C N
N N | RN
u D e BL W v % Y Y
0 Q Y
(5.4.24)

which is consistent with the structure of the given matrix, A comparison

of terms yields a system of non—-linear matrix equations of the form,

B<S+Q§+Q§ =B, (5._#.25a) |
Q2r?+d = B

Q,954Q,Q; = € (or QQ,+Q,Q,=C) (5.4.25b)
Q,Q, = D (or Q,Q,=1)

and Q3+Qi+ye = B2 . (5.4.,25¢)
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In fact, the system (5.4.25b) is treated exactly as (5.3.4) whilst
the four sub-matrices 8,8,y and € may be determined as follows:
either by choosing B=Q0, Y=Q2 and then from the relations (5.4.25a) and

{5.4.25¢) we have,

) _
*Qy) (5.4.26)

it
Q)

Q06 Blﬁ(Q

I

O N N

and Q€ BZ-(Q
which have to be solved for & and & respectively, provided that

and are non-singular matrices
0 2 g

or by setting B=§, y=¢ and then from (5.4.25a) and (5.4.25¢) we have

- } y o 2 2.4
_.3. = 6% = (B,-Q]Q)) _ (5.4.27)
with Yé = E£ = (Bz'Qg'Qi)i

provided that the square roots of the appropriate matrices are
defined.

Thus, the faétorization procedure for the system (5.4.23) involves 5
matrix square roots if the scheme (5.4.27) is considered,

The elimination process now can continue such that the coefficient
matrices of the systems (5;4.3a) and (5.4.3b) must be replaced by the
relevant ones from (5.4.24). Then, the remaining steps of the elimination
process are carried out as before provided that the submatrices 8,8,y
and € must be taken into account which in fact does not require major
modification, Note that the FIRM3 algorithm has been programmed on the
basis of system (5.4.23) rather than (5.4,1) for more general application

' purposes.
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5.5 ALGORITHM FICM6 AND ALGORITHM FIRMS

The two algorithms in Sectiom 4.5 and 4,6 may be extended to the
block case and for the special case when the coefficient matrix is
constant and skew-symmetric, tridiagonal (periodic or non-periodic

respectively). In fact, the block systems under consideration are of the

form, - _ L
B\ C\\ -G % 51
-~
C& ~ . 0 % )
~ ~ ~ [ |
\\ \\ \\ |
\\ \\ \\ ' = t ’ (5.5.13)
hEUREN ~ |
0 SN e ' I »
\\\\ |
¢ I I £ | %]
or . AE = E (SnS.Ib) .
-_ —— . -
and 'B\ C\ [ E3) 2z,
- ~
C\\ ~ ~ O l{'2. 52
NN ! i
\\ NN \ |
~
\\ \\ ~ = ’ (5.5.23)
~ ~
0 NN ¢C | )
~ ~ 1 1
R -V B
or Kﬁ =z, (5.5.2b)

where the submatrices and subvectors in both systems are each of size
(mxm) and (mXi) respectively (see Section 5.1 or 5,2),

The first algorithm (i.,e, FICM8) deals with the periodic case which
is represented by the system (5.5.,1), whilst the other algorithm (i.e.
FIRM5) deals with the non-periodic case which is represented by the éystem
(5.5.2),

The modification strategy of the given systém adopted in both
algorithm FICM5 and FIRM4 (Sections 4.5 and 4,6) can be applied to the

systems (5,5.1) and (5.5.2) respectively, that is we premultiply both



280

sides of each system by the transpose of its coefficient matrix to yield

the result,

(i) for (5.5.1), we have T T

A=Az, (5.5.3a)
or Gx = v , {5.5.3b)
where G = ATA s (5.5.3¢)
and - v = AI = [v,,v v ]T (5.5,34d)

. _— K 1’_2’-l"_N » L )
and
(ii) for (5.5.2), we have aTn AT
A'Ax = Az , (5.5.4a)
or Hx = u , (5.5.4b)
wwhere H = KTK . (5.5.4c)
and u= ZFZ z [u,,u ]T (5.5.44d)
u 2= _1|_2"|o,‘$1 ade

Moreover, it can be easily verified that G in (5.5.3c¢c) and H in
(5.5.4¢) are symmetric block matrices, quindiagonal periodic and non-
periodic respectively (e.f. (5.3.1) and (5.4.1)), then the (5.5.3b) and (5.5.4b)

may be written explicitly in the form respectively,

o

B%+2c o -c? -* 0 7 rE] (V.7
-~ “ \\ ~ N 2 =1 -1
0. ™« RN ] -C X Yy
2~ 0~ ~ > | 1.
=C ~ ~oT
~ ~ ~0S I |
~ “ ~ ~ - ~ ~ \\\ { i
~ \\ \'\ \\ \\ 2 ] = l » (5.5-5)
. ~ L - | .
~ ~ S RS S c : I
Y
-Cz 0 = ~ - \\ o -~ \0 1 1
S I 1
. O 'Cz -02 0 Bz+?.CfJ x| Yy
and ' al
2 =2 My " M.
B2ec> 0 -C % =1
0, 822¢? 0 -c 0 % b,
_CZ ~ N ~ ~ \\ ' !
Soove YN b= (L (5.5.6)
~ ~ ~ ~ N | |
~ ~ ~ SN i f
~ N - ~ ~ “~ \\ 2
\\ \\ b N —C ' I
~ ~ ™~ I '
0 s S8Rt Yo | .
~ ] ]
| -C2 ] I32+C2 Jd Lxg -BN




281

Noting that the subvectors Xj and Eﬁ by virtue of (5.5.3d) and

(5.5.4d) can be given by

with

and

with

If we assume that

{(5.5.5) 1s equivalent to

§2+202

L.

¥y = By Clziza)
2o T iy v A G I

4y = Pz Clzgziy) o
20 T Eye1 T 9.

N

2

-C

..(;2\\ h

~

~

\\2
-C

~ =C

B2+2CE

the following two systems:

(5.5.7)

(5.5.8)

is even, then it can be noticed that the system

(¥ 7]

I3

t.|n<

{(5.5.9a)

]
1

¥
<

""——""""J\q 15 'L

s (5.5.9b)

<

L

and the system (5.5.6) is_also equivalent to the following two systems:

%2+C
—C2

2

B

2

02

+2C2 -C

N
~
~
AN
~ ~
\\ \\
) \} 2\\\2
~
-c2 B%y2ct ¢
2
_2 2

e lc]
'—l

(WS )

(5.5.10a)

lé“-——--——df“



§2+C2 .--C2
2
-C B2+2C -02
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N N\ N
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\ . N
N ~ N
. \\\ N
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0 —02 B2+2C
i -"
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o o]
24 LA
.o
e %
} = 1 (5.5.10b)
| ' '
| E
2| f
2 2| 14 !
| =N

B +C

L

&

where the four systems are of ordermN/2 each (whilst for N odd the

systems (5.5.92) and (5,5,10a) are of order m(N+1)/2 each and the systems

-(5.5,9b) and (5.5.10b) are of order mN=m(N-1)/2 each).

In fact, the two systems in (5.5.9) which possess the same

coefficient matrix can be solved by the procedure of algorithm FICM3

{(Section 5.1), In

(5.1.3) would take
QO
Q

and 1

Similarly for

this case the submatrices of the factor matrices in

the form (c.f. (5.1.8)),

0.5{B+(32—4cz)5] ,

0.5[B-(82-4cH) ]

provided that ||B||>2|[cC|].

(5.5.11)

the systems in (5.5.10) which are solved by

 adopting the procedure of FIRM2 (Section &

.2), excent that the

factorisation of the coefficient, here is slightly different, i.e. from

(5.5.10a) (or (5.5.10b)) we may factorise the matrix as follows,

-]32+C2 -02 .
-C2 B2+ZC -Cz
A Y \ N
N\ TN N 0
N N\ N
\ \ N
\ . \
N\ N N
N\ \ =
\\ . \\
0 \\ \\ \\
\ .
-C2 B2+2C2 -C?
: 2 2 2
- +
i C B C_
mMxmM

-
000

Fd
(=T
e o o = o o am — o = = ——

Rl
"M (M+1)
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P [ P2+Q2 Q.Q
1,1 9
Q Qo\ Q% Qo+\Q1 %
QN 0 \ \ \ 0
\ \ \
N . N
NN \ NN (5.5.12)
A
AN \ - N N\ \
\ \ = AN \ \
N N A \\ A Y
N \
0 \\\\\ 0 \ 2\ 2 \\
‘Ql 'Q, Pl P
St 5 R | 00, o]
' (M+ 1) m’.(ll'[f{ mMx mM

The tridiagonal matrices on both sides of (5.5.12) yield the following

results by equating their corresponding matrix elements, i.e.,

P2+Q§ = 82,2 (5.5.13a)
Q3+Qi = B2+2C2 . :

. ) (5.5.13b)
Q) = =€° (or Q=€)
ngz = p2ac? (5.5.13c)

However, the system (5.5.13b) yields the result (5,5,11) (e.f.
(5.2.3), whilst the submatrices P and R are obtained from (5.5.13a)
and (5.5.13¢) respectively such that,

2.2 2.4
P=[Bec-q 1", (5.5.14)

I

and R $2+02-Q3]% ,
provided that the appropriate square roots exist,

In this respect the elimination procedure in Section 5.3, when applied
to the systems (5.5,10), the submatrices P and R in the facta: matrices
(5.5,10) must be taken into account.

Finally, algorithm FICM6 (or algorithm FIRMS) will have an extra

amount of work in excess of algorithm FICM3 (or FIRM2) due to 65.5.7)

(or (5.5.8)) which requires 2m2N operations,
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6.1 INTRODUCTION

The application of the algorithms presented in Chapter 4 which are
proposed for the point form, will be discussed here, and we may refer to
these algorithms as BANDSOLVERS. As the factorisafion processes involved
in these algorithms vield a set of non-linear equations, the criteria for
convergence has to be studied from the practical application point of view,
In this respect we shall denote the maximum tolerance at which the
appropriate itérative process is terminated by €¢ (this applies to step &'
in subsection 4.3.3 and 4.4.3). In addition, some numerical examples for
both periodic and non-periodic 2-point Boundary value problems are
considered which may reflect to a certain extent how far the application

of the new algorithms can be considered to be worthwhile.
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6.2 ON THE IMPLEMENTATION OF THE PROCEDURE GITRM (Subsection 4.2.2)

The GITRM procedure has been presented as two schemes represented by
the systems (£.2.24) (or (4.2.26)) and (4.2.25) (or (4.2.27)). These two
schemes were tested for values of r=1,2,...,20, i.e. thus yielding matrices

of bandwidth 3,5,7,...,41, with matrix elements c »C s a8 defined

O’CI""
in the system (4.2.1) (given by the expression of even powers of the

central operator §). For é(-l)k+2(2r); k=r-1,...,0, rzl we choose the
%% k

diagonal element ¢. as,

0

T
¢y = k(2 ) c.) , (k1) (6.2.1)
i=1

(for r odd, the elements ¢, , k=0,1,...,r, were multiplied by -1).

k’
From the results it was found that for scheme (&.2.24) the maximum

modulus error of the o o {(the elements of the matrix Q in

0%
(4.2.3b)), between two consecutive iterations, is improved in general by
one decimal for every 2 iterations. Whilst for scheme (4.2.25) apart
from the first few itgrations, one iteration is sufficient to give omne
further decimal place each time.

Moreover, for small r (r>l) the number of iterations using (§4.2.25)
does not exceed a half of those required by the scheme (4.2.24) and this
is Supported theoretically by the result given in the relation (4.2.59).

It was noticed also by choosing c. in (6.2.1) with small k the

0
convefgeﬁce becomes slower, in other words the closer k is taken to 1 the
rate of convergence (if any) decreases. For example for r=2 and r=3 with
k=7/6 and 21/20 respectively (which is the case for the matrices (4.2.9a)
and (4.2.9b)) converge in 19 and 39 iterations respectively with a

maximum error of 0(10—11).

Other tests were made on the cases where the magnitude of the ratios

between ¢y and ¢, appears to exceed cos(w/(r+2)) where no convergence
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The failure of the convergence (to a real solution) in such

cases is supported by the conclusions suggested by Berg (1981). As a

result, the conditions given in Appendix A may be considered as necassary

conditions for the convergence of the iterative procedure GITRM,

Finally, an interesting application also occurs in the field of

digital communication. To optimise the number of levels to be used in AM

(Amplitude Modulation) for the most noise-tolerant operation, a particular

detection method has to be selected when dealing with the samples of the

received waveform and a digital filter is used to perform the required

correlation (Passas (1979)).

The output of the filter is related to the input signal via the

following matrix system involving the non-linear equations:

-
a
0\
a ~
1 ~
~ ~
a ~ ~
Iz\:\ N
~
(aosals---sar) | ~ ~
l ~ ™
| ~
~
t
l
A = = — —= — —a
T

T .
where ¢ refers to the correlation sequence.

and g? are the sample values of the filter input.

.

= (¢O,¢1’°°'9¢'r)!

(6.2.2)

The equations (6.2.2) can be rewritten compactly in the form,

atA=g' . (6.2.3)
 Then, taking the transpose of (6.2,3), we obtain the equations
ala = ¢, (6.2.4)

which has to be solved for a, the filter characteristics.

(6.2.4) is exactly similar to the system (4.2.4).

In fact,
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6.3 NON-LINEAR EQUATIONS INVOLVED IN FICM2 (AND FIRM1)

The procedure of solving the non—liﬁear equations (4.3.4) (and (4.4.5))
iteratively which has been discussed in subsection 4.3.3 (and subsectioﬁ
4.4.3) was tested on yarious types of banded and block matrices (the latter
type applies to FIRM1 only, see Chapter 7)., The vital point in this
respect is to decide whether the new factorisation strategy for the given
matrix exists. This in fdct is associated with the occurrence of the

: . used hRere ‘
convergence gf-the iterative process{ Many examples have been studied,
a few are presented below. '

Since the following examples consist of symmetric matrices with

constant elements it may be convenient to refer to the periodic matrix A

of (4.3.1) and its factor matrices L and U in (4.3.2) in the abbreviated

forms:-
Ar(O,ar,...,al,ao,al,...,ar,O) (of bandwidth 2r+1}, (6.3.1)
L (0,2.,...,2,1,0) (of semibandwidth r+l),

and Ur(O,ul,...,ur+1,0) ‘ (of semibandwidth r+l) -

respectively.

Example 6.3.1: For r=2, A, is taken as,

2

AZ(O,I,-lﬁ,k,-l6,1,0), with k=45,35,34,33,32,31
which leads to L2 and U2 to be given as,
L2(0,22,21,1,0), U2(0,u1,u2,u3,0) .
Wherg 21,22 and‘u1 are given in Table 6.3.1 and u2=£1u1, u,

(see subsection 4.3.4).

=1

/
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k 2y ) !

45 | -4.0316417989x10 - 2.58_49100710x10'2 3.8686065377x10

35 | =5.9816996880x10 | | 3.8837590572x10"2 | 2.5748750220x10 ’
34 | -6.3479727020x10° 1 | 4.1313953443x10"2 | 2.4204897298x10

33 | -6.7956808383x10 1 | 4.4356979461x107 % | 2,2544366460x10

32 | =7.3745480935x10 - | 4.8317944364x10 > | 2.0696244702x10

31 | -8.2148142904x10 1 | 5.4121317910x10"2 | 1.8477007556x10

error, €

TABLE 6.3.1

The number of iterations to achieve convergence yields a maximum

s of the given order are tabulated in the following table.

f
k 45 35 34 33 32 31
No. of iterations 15 24 27 29 36 51
[ O(e,) 101910011067 {107 | 107 | 107
TABLE 6.3.2
Example 6.3.2: For r=3, A_ is taken,

3

4,(0,-2,27,-300,k,~300,27,-2,0), with R=1200,900,600,5?0,560,551,

which leads L and U, to be

3 3
L3(0,13,22,21,1,0) ’ U3(0,u1,u2,u3,u4,0) ]

where 21,£2,£3 and ui are given in Table 6.3.3 and u2=21u1, u3=£2u1 and

u4=-2.
k 2’1 2,2 2.3 ul

12001-2.6097047668x10 L | 2.3580141069x10 2 |~1.7811079753x10 2 11.1228965497x10°
900|~3.6618180301x10™ | 3.3132047171x1072 |~2.5226515759x10 > |7.9281658200x10°
600|-7.0529687886 x10 * | 6.4040471205x10 2 |-5.0052330722x10 2 |3.9958179193x10°
570]-8.2579955744x10"F | 7.5048859332x10 % |-5.9213829335x10 > [3.3775893618x102
560[-8.9525011488x10 F | 8.1396970187x10" 2 |-6.4576426521x10" 2 |3.0971054221 x10°
5511-1.0246225541 9.3218778579x10 2 1-7.4722213562x10 - 12.6765802395x10°

TABLE 6.3.3
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The number of iterations where convergence occurs and yields an

error £, of the given order are given in Table 6.3.4.

£
m 1206 ] 900 | 600 | 570 | 560 | 551
No, of iterations {{ 11 13 28 46 61 68 104
JC 107 | 1070 | 107 | 107° | 1070 1075
TABLE 6.3.4

Example 6.3.3: For r=4, A4 is taken as

4,(0,1,-8,28,~56,k,~56,28,-8,1,0), with k=140,75,74,73,72,71,

which for k=140 implies that the factor matrices L, and U, atre

4 4
. L4(092’4:£3’22!21!130); U4(03u13u29u3su4!u5:0) s
vhere 21=-3.8267015251x10"1,£2=2.1246247731x10'1, |
23=-6.5067421195x10—2,£4=8.5420248957x10_3, u1=l.1706826100x102,
u2=21ul, u3=22u1, u4=23u1 and u5=1.

The number of iterations with the corresponding O(Ef) involved in

the evaluation of thé elements of I, and U, are tabulated in Table 6.3.5.

4 4
k 140 75 74 73 72 71
No. of iterations } 20 37 29 26 29 |no.convg.
0(e,) 1077 {1077 107" | 107 107 -

(*no itmprovement was obtainable in further iterations)
TABLE 6.3.5
In Example 6.3.1 it can be noticed that when k decreases the modulus

of 51,22 increases whilst u, decreases (see Table 6.3,1). Similar remarks

1
apply to Example 6.3.2 (Table 6.3.3). Further, for k=551 the modulus of
21 gets greater than the diagonal elements of L3 which are unity. One

of the consequences of the latter case may imply no guarantee for the
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stability of.elimination process involved in the solution procedure.
Again, this case arises in Example 6,3,3 except for k=140.

On the other hand, the largest value of k.apart frdm the first few
iterations one step (as in Table 6.3.2 and 6.3.4) or two steps {as in
Table 6.3.5) are sufficient to yield a one decimal place improveﬁent.
Also, it is obséfved that ﬁhe rate of convergence decreases as k does,
for example with k=551 (Table 6.3.4) to attain an € of order 10“4 and
10__6 requires 68 and 104 iterations respectively, or evén - divergence
may occur as in Table 6.3.5 (with k=71).

Thus, in generai by haﬁing a small difference between the diagonal
element a and the summation of the off-diagonal elements of Ar in {(6.3.1)

0

may imply a 'poor' {or inaccurate) factorisation or non-existant (i.e. the
. r

=2 X a,)

0 41 L

(c.f. (6.2.1)) is rather large the factorisation of Ar is possible;bearing

case where no convergence is attainable); otherwise, when (a

in mind that it is not necessary for Ar to be diagonally dominant (although
it is a convenient case). This remark may be generalised to the non-—
constant case, i.e. when the matrix A is as defined in (4.3.1) and we
conclude that its factorisation may occur in the form defined as given in
(4.3.2) if each of its rows possesses a diagonal element (aO,i say) greater '
than the swmmation of the off-diagonal elements (si say); this also may
depend upon the bandwidfh of the matrix (i.e. the size of r), for example
(aO,i-Si) being 1 for the cuindiagonal case (r=2) may be a reasonable limit
(see for example Table §3.1,k=31) wh?lst for the case r=4 may not be

- sufficient (see for example Table 6.3.5, k=71); and witﬁ f=3 it migﬁt be
sufficient but a "poor' factorisation may be expected (see for example
Table 6.3.4, k=551).

The above discussion may be extended to the case where A.,A, and A

273 4

in the previous examples are non-periodic matrices, provided that the
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diagonal elements are large enough to satisfy the condition indicated above.
Whilst for the case where the diagonal elements are at 'eritical' values
{i,e. the cases where slow (or no) convergence may occur in the periodic
case) the resulté show a better and more satisfactory convergenée fate for
the non-periodic case. For example, Table 6.3.6 presents the results of A4
(in Exaﬁple'6.3.3) as being non-periodic, and by comparing them to the
corresponding periodic case in Table 6.3.5 it is clear that .for all values

of k the convergence exists with maximum attainable order of error (and
faster), though the value of 121] exceeds 1 here as well with all values of

k, excluding k=140. This is related to the property that the spectral

radius of the iteration matrix of the.factorisation process may approach

and exceed.unity for various values of k. This is clarified further by
considering the quindiagonal matrices Az(O,l,—A,k,-4,1) and X;(O,l,—4,k,—4,1,0)
which refer to periodic and non-periodic forms, respectively. While

of 0(10'4) for A, with k=6.2 an ¢

£ 2 f

- ~ . - )
of 0(107Y) for A, with k=6.05 and an ¢, of 0(10 8y for k=6.01. Whilst in

A2 with the last two values of k, the convergence was not obtainable and it

is clear that A, is 'close' to becoming singular. This fact is supported by

convergence was possible to yield an €

2

increasing the size of the matrix where slower convergence would be expected.

k 140 75 74 73 72 71
No. of iterations 16 41 45 50 54 75
0(e,) 10710 | 10710 10710 15710} 19710] 1710

TABLE 6.3.6 (A4 non-periodic)

The above discussion is not suggested only for the particular afore-
mentioned examples, but also for the matrices involved in the numerical

examples included in the following section.
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6.4 NUMERICAL EXAMPLES OF 2-POINT BOUNDARY VALUE PROBLEMS

The examples considered are for the 2-point boundary value problem
concerning the second-order ordinary differential equation (linear and non-
linear) involving periodic and non-periodic conditions (details of the -

definition of the problem are given in Chapter 3).

Example 6.4.1

y"-&ﬁzy = sin2wx(1+$in2ﬂx)e51n2ﬂx,

y(@ =y(l), y'(0) = y'(1),

. . sin2wrx
which has the true solution: =a T

Example 6.4.2

y'"-4y = -4sin2x-55in¥s

y(a) = y(b), y'(a) = y'(b), a = -n/2, b = 31/2 ,

with the true solutior y = 0.5(sin2x+sinx).

Example 6.4.3

Y"—y-y3—e31n2ﬂx @ﬂz(cosZZﬂx-sin2wx)-3231n2“x-1]=o’
y(@ =y, y'(0) = y'(1),
with the true solution: y = es1n2wx.

(Peréyra (1973), Daniel and Martin (1977)).

Example 6.4.4

y"—(l—yz)y'—Ay = -Ssinx~c033x s
y(0) = y(Q2m, y'(©) =y'(2m) ,
with the true solution: y = sinx%.

(Pereyra (1968)).

Example 6.4.5

. 2
y" o= y3-sinx(1+sln x) ,
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y(0) = y(2m) , y'(0) = y'(2m) ,
with the true solution: y = sinx,

(Pereyra (1968),(1973)).

Example 6.4.6

y"-cos(%;x)y'-y-(Yz—Ycos(3§x)-1)er =0 ,
y(0) =1, y(1) = 0.1,
with the true solution: y = eXY, y =4n0,1,

{(Shoosmith in Aziz (1975)).

Example 6.4,7

Y"—%(y+x+l)3 =0,
y(@©) =y(1) =0,
with the true solution: y = E%; -x-1.

(Pereyra (1973)).

Prior to the discussion we refer to the notation list below in Table
6.4.0 which are related to the appropriate tables of this section, and may

be used in the following discussion.

N=number of mesh points

BNDM=bandwidth of the matrix being used
(=2r+1l, rz1)

* refers to the terms which are of order 10_10 or less

2
lel] = m[z |y (S y {2y

» the Euclidean norm

TABLE'6.4.0: Notations used in Tables 6.4.1-6.4.7

The aforementioned examples were solved by the iterative deferred
correctionprocedure discussed in Chapter 3, using both low and high-order

discretisation (LOD and HOD) schemes (Sections 3.3 and 3.4 respectively).
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The linear systems involved in this procedure are represented by the matrix

equation (3.4.21) whose coefficient matrix (i.e. the Jaccbian) is referred

to as the non=-periodic case whilst the Jacobian for the periodic case is

defined in (3.4.29). Subsequently, these systems were treated by the

appropriate algorithm according to the related case, i.e., the algorithm

F

a

ICM1 was used in Examples 6.4.1 and 6.4.2, FICM2 in Examples 6.4.,3-6.4.5

nd FIRM1 in Examples 6.4.6 and 6.4.7.

From the programming and computational work viewpoint, the periodic

case (Examples 6.4.1-6.4.5) seem to be easier and more economical than the

non—periodic case {(Examples 6.4.6 and 6.4.7). This may be due to:

i) algorithm FIRMl requiring more operations and larger storage
space than FICM1 or FICM2, and

ii) the periodic problem (which in our case the solution is required
over the whole range)(*), does not involve any extrapolation
procedure or difficulties at the grid points near the boundaries

as in the non-periodic case,

What is meant by the difficulties is mainly when the HOD scheme is adopted,

the high-order finite difference formulae cannot be applied at the grid

points near the boundaries., Thus the use of suitable non-symmetric

formulae (see Section 3.4) is required, otherwise the aim of implementing

HOD may not be achieved. As the search for such formulae seem to be a

difficult task, it was imprudent to proceed to consider the non-periodic

Examples 6.4,6 and 6.4.7 with the HOD scheme. In addition, the extra-

polation procedure raised another difficulty with employing HOD since

(*)

*

It 18 possible to work on half of the integrated range as in Example 6.4.5,
which reduces the amount of computational work by one half (Pereyra(1968)).
This may not be the case if high-order discretisation is used!
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extrapolation by the differential equation (3.4.16) was impractical and
using the alternative scheme repreéeﬁted by (4.3.15), inspite of its
practicality the question of choosing an 'optimal' order was faced in_
order to achieve a better tolerance, in particular when the value of BNDM
is greater than 5. However, with BNDM=5 by keeping the order of extra-
polation unchanged in the successuvé solutions seems to be a reasonable
approach “(Audish, (1978)).

The above stressed points, i.e. the extrapolation and forming a
'suitable' Jacobian (near the boundariés) have their consequences on the
convergence of Newton's Method and on solving (3.4.21) by the FIRM1
' algorithm. For example, in Examplg 6.4.7 (Tabie 6.4.7) for the three

(D

cases N=10,20 and 40 although the first solution, z_l , of BNDM=5 is an

(2) (4)

3
,z( ),x )

it is not so. On the other hand, the factorisation involved in FIRMl was

improvement to BNDM=3, however for the successive solutions (y

not accurate enough; for instance in BNDM=3 with N=20,40 the obtained P
after 61 iterations was of 0(10“4) and 0(10-3) respectively, and it changes
to 0(10_3) and 0(1072) reSpectively.for BNDM=5, The effect of an inaccurate
(or poor) factorisation by FIRMl on Newton's convergence can be clearly
noticed in the Zinear—boundary.value problem (Example 6.4.6, Table 6.4.7,
see the brackted numbers). For N=20, the factorisation was achieved up to
€¢ of 0(10-4), whilst this order comes down to 0(10-1) with N=40, and the
method fails with BNDM=7, In the light of the above non-periodic example
it seems that unsatisféctory results were obtained, but it would be
inadequate to coneclude that the HOD scheme (and FIRM1l implicitly) is
completely unbeneficial unless other factors (as indicated earlier)
involved are alleviated or overcome. Whilst in the periodic case, the HOD

gcheme (and the related algorithms FICM1 and FICM2) showed quite reasonable

results.
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On applying algorithm FICM2 to the periodic non-linear Examples 6.4.3
6.4.5 we may draw the following conclusions., |

One of the best of the three examples that the factorisation procedure
inyolved in FICM2 worked perfectly is Example 6.4.4, whose results are
shown in Tabie 6.4.4. From the theoretical point of.ﬁiew, for a given r,

. (2 3 k
Y( ),X( )’._ X( )

the successive solutions with deferred corrections, i.e. .y ,

k22, should coincide (of at least possess error tolerances of the same
order) with the first soluéion 1(1) {(i.e. no deferred correcticn) of the HOD
scheme for values of BNDM equal to 2(r+1}+l, 2(r+2)+1,...,2(r+k-1)+1,
respectively. This is justified in Table 6.4.4; for example with r=1, N=20,
40 or 80 the solutions in the first row and first column have the same order
of accuracy ||e|]. Also there is no significant difference between the
corresponding ratios in the following two types, (i) the ratios of

(k), k22, for N=20 and 40 (or N=40 and 80) for BNDM=3 and (ii) the

(1)

in ¥
for the same BNDM in N=20 and 40 {(or N=40 and B80).

Precisely, from Table 6.4.4, with BNDM=3 the ratios of ||s[[ in z(l),zﬁz),

X(3) with N=20 to the corresponding ones with N=40 are respectively 4.01,

(*)

ratios of |l|e]| in gy

15.86 and 62.92 , whilst the ratios of [[s[l in z(l) (with BANDM=j, i=5,7) for
N=20 and N=40 are respectively (according to j) 15.99 and 63.76.
It was noticed (for N=20,40,80) that Newton's method takes 4 iterations

(1)

for the first solutiom, y for all cases of HOD (i.e. BNDM=3,5,7,9,11)
whilst the successive_soluﬁions takes 1 or 2 iteratioﬁs. Now, in this
respect the question may arise as to what is gained by using the HOD scheme?
For this particuiar example (in which the first derivative is incluéive)

it can be observed from Table 6.4.4 that with N=40, BANDM=3, for instance,

accuracy |lef| of 0(107% is achieved in the 4" correction in which it

* .
) According to the theory, the ratios must be 4,16,64 (Pereyra (1968)).
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involves a total of 11 Newton's iterations plus the implementation of the
iterative deferred éorrection procedure, whilst' the same accuracy is
obtained in the first solution with BNDM=9 and involves 4 Newtons iterations
only, without involving the deferred correction procedure, Similarly with
N=20, BNDM=3, where the Sth correction produced an accuracy Ile]]'of 0(10—9),
whilst for BNDM=11 leads to an accuracy [lel]of 0(10—10) in the first
solution. This remark is, generally, applicable to the other nqn—linear
periodic Examples 6.4.3 and 6.4.5 whose results are tabulated in Table 6.4.3
and 6.4.5 respectively, although the factorisation of FICM2 was not as
accurate as in Example 6.4.4.

Also, the application of the HOD scheme to the linear periodic
Examplés 6.4.1 and 6.4.2 using algorithm FICML led to satiéfactory results,
It should be mentioned that in these two examples the procedures of higher
order matrix polynomials represénted by the relation (3.4.30) was applied
up to ﬁlo (i.e. up to.BNDM=11). The results of Both examples are listed in
Table 6.4.1 and 6.4.2 respectively, from which it verifies the practicability
of HOD and FICMI as well. For the latter, in the iterative procedure GITRM
(see subsection 4,2,.2) the relevant coﬁvergence occurred in 10 iterations
for BNDM=5, 14 for BNDM=11 (BNDM=3 is excluded since (2.2.27) scheme was
used), both with N=20, whilst-with N=40 or 80 just one or two extra
iterations for.the‘corre5ponding BNDM were required. Besides that the
ratio of allao (the elements of matrix (4.2.3b)) was less than 1 in
modulus, except in Example 6.4.1 with N=80 and BNDM37, for which it |
turned out to be slightly greater than 1., Whilst the Newton's method

(as expected) required 1 or 2 iteratioms in all cases.



298

BNDM

||e[|=Noerm of Error in the Successive Solutions

1(1) 1(2) 1(3) z(4) Z(SJ
3 16.43x1070 | 1.80a07% | 3.29.207 5.97,10°0 |1.45x07°
5 | 3.55x07" | 3.80x107° |6.86,d0°° [1.71x07% |5.38:a07
20| 7 |3.9707 | 7.17x107% | 1.79.07% |5.63x07 |2.14x10"7
9 | 7.25x107° | 1.81x107% |5.70:07" |2.17x077 |9.58x10"°
11 | 1.81x0°% | 5.73x077 | 2.18x1077 | 9.64x10"% | 4.80x07°
3 [ 1.61x107° | 1.19x107° | 5.7x077 | 2.41x10"% | 2.04x107°
5 | 2.32x07 | 6.98x1077 | 3.58x107% | 2.67x107° | 3.35x10 1°
40 7.09%10°7 | 3.64x10"C _2.77x1o'9_ 8.73x10 10 *
9 | 3.65x1078 | 2.73x107° | 3.65x1071° x *
11 | 2.74x10"° | 3.27x107° x * *
3 | 4.00x107% | 6.98x1077 | 9.19x107° | 2.08x10 > | 7.13x10" 0
5 | 1.47x107% | 1.14x107% | 1.36x107° | 6.34x1071° x
so| 7 |1.15%x1078 | 1.32x107° | 4.25x107%C % *
9 {4.12x10710 * * * *
11 & & X * *
TABLE 6.4.1
o [|e]|=Norm of Error in the Successive Solutions
X(l) 1(2) 1(3) X.(A) z(5)
3 | 5.82x107> | 2.05x207% | 1.48x107° | 9.93x1077 | 7.34x10"8
5 | 2.89x107 | 1.76x107 | 1.20x107® | 8.73x1078 | 6.61x107°
20| 7 | 1.78x107° | 1.22x107® | 8.82x1078 | 6.67x1077 | 5.23x10710
9 | 1.22x107® | 8.83x1078 | 6.67x1077 | 5.34x1071% 6.01x10" 11
11 | 8.83x107% | 6.68x107° | 5.28.1071°] 5.66.10" Y 4.11x107}!
300 1.47%1073 | 1.30x107° | 2.43x1077 | 4.14x10"° | 1.38x10"1°
1.88510™° | 2.94x10~7 | 5.14x10"7 | 1.55x10710 *
40 2.95%10"7 | 5.13x107° | 1.41x10710)  « *
9 |5.12x107° | 1.30%1071° * * *
11 | 1.00x1071° x x % X
3| 3.69%10™% | 8.18x10"7 | 3.83x107° | 4.65x10"1° *
5 | 1.19%107% | 4.66x10™° | 4.29x1071° * *
go| 7 {4.72¢107° | 4.11x1071° x * *
9 | s5.16x10" 10 * X x x
11 * * * * *

TABLE 6.4,
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BNIDM

|le]|=Norm of Error in the Successive Solutions

z(1) 1(2) 1(3) 1(4) X(S)
3 1 1.14x107% | 2.00x107% [3.58x10™° | 5.16x10°° | 1.48x107°
5 | 4.26x107% | 4.16%107° | 7.19x107° | 1.77x107% | 5.52%1077
20| 7 | 4.36x107 | 7.53x107° [1.85x107® |5.78¢1077 | 2.18x1077
9 | 7.61x107% | 1.87x10™% |5.86x1077 | 2.22x1077 | 9.77%107°
11 | 1.88x107% | s.89x1077 [2.22¢1077 | 9.83x107% | 4.89x1078
3 | 2.79x107° | 1.23x107° |6.17x10 ° | 2.50x10™° | 2.09x107°
s | 2.86x10™> | 7.60x1077 [3.73x107% | 3.21x107° | 1.41x10"°
sof 7 | 7.71x0077 | 3.81x10°8 2.94x107° | 3.10x10710 x
9 | 3.83x1078 | 2.86x107° |5.81x10710 * x
11 | 3.13x107° | 8.18x10 1° * * *
3 {3.9%310°% | 7.68x1077 [1.47x10"8 | 7.38x107° | 2.03x10 "
5 1 1.81x107° | 1.26x1078 8.91x10™° | 2.42x107° x
gol 7 | 1.23x107% | 5.70x107% | 3.84x10"° * *
9 * * * * *
11 *‘ * * * *
TABLE 6.4.3
l{e||=Norm of Error in the Successive Solutions
N |BNDM z_(1) ‘2(2) | X(B) z.(4) X(S)
3 | 2.21x107> | 3.60x107° |8.62x10" |3.83x107° | 5.10%107°
5 | 3.95x107° | 7.90x1077 |1.68x10"° | 3.60x10"1° x
20| 7 | 7.97x1077 |1.70x1078 | 3.88x10710 | % %
9 | 1.70x107% [3.81x10710| % * *
11 | 3.73x10710 % % * %
3 | 5.51x107% | 2.27x107% [ 1.37x10°% | 1.54x1071° *
5 | 2.47x10°% [1.25%1078 | 8.53%x1071L * *
s 7 | 1.25%1078 [7.73x107 1) * * *
9 1.11x10 © * * ok *
11 * * * F3 ®
3 | L.3mx10? | 1.4a2x1077 | 2.50%107 10 * *
5 | 1.54x1077 | 2.29x10710 * % *
80 2.72x10710 * * * *
9 * * - * * *
11 * Tk * * *

TABLE 6.4.4
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||E|IENorm of Error in the Successive Solutions
N | BNDM
(1) (2) (3) (4) (5)
b bA z Y b
3 | 1.78x107° | 1.82x107 | 6.67x107 |5.79x10™% | 1.15%10"%
5 | 2.32x107° | 3.62x1077 | 6.32x107° |6.84x107M %
20| 7 3.66x10" " | 6.35%x107° | 1.05%10" 0 * *
9 | 6.34x1077 | 9.74x107 11 % % "
11 9.11x10 1 * * * *
3 | 4.50x10°% | 1.15x107% | 1.07x1078 | 3.38x1071° %
5 | 1.48x107% | 5.83%107° | 1.82x1071° * *
40 5.80x10 0 | 2.73x10 10 % x x
9 | 2.26x107101 & * % *
11 * % * * *
1.13x10 * | 7.25%10 © | 6.03x10 O * *
5 1 9.29x107% | 1.71x10710 * # *
80 * ® * * *
9 * * * * *
11 * * % * *
TABLE 6.4.5
N |BnDM |le|[=Norm of Error in the Successive Solutions
1 2 3
Z( ) X( ) Z.( )
- -4 -7 -9
| 3 ] Ll.40x1077(4) [3.29%1077(2) | 2.08x10 °(2)
20| 5 7.92x10 %4 |1.81x107%(2) 7.04x10'7(2)
7 7.73x1077 4) | 1.68x1077(2) | 5.89x10"2(2)
3.56x10 2(6) |2.02x10 2(4) | 8.16x10 F1(2)
sl 5 | 5.33%1077(6) |1.20x1077¢2) | 4.68x10"2(2)
7 No convergence

TABLE 6.4.6



BNDM

|]e]{=Noxrm of Error in the Successive Solutions

1 3 3 7

Z() X() Y.() z()
o] 3 5.03x10°% 1 2.7x107°% | 2.01x107% | 6.62x1077
5 11.11x10°% | 2.94x107° | 1.11x10™° | 4.29x107°
20! 3 1.20x10°% | 2.23x1077 | 1.24x1078 | 2.87x107°
5 [9.31x107% | 2.31x107 | 8.71x1077 | 3.09x1077
w0l 3 3.29%x10°° | 1.39x10 2 | 4.54x10" 10 £
5 17.02x1077 | 1.60x1077 | 6.31x20"7 | 2.22x10"2

TABLE 6.4.7

3o1
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6.5 APPLICATION OF FIRM1 ON EIGENPROBLEMS

Various types of matrices aré considergd in this section, for Which the
difference hetween the diagonal element and the summation of the off—
diagonal elements in each row hay be negative or non-positive.

Furthermore, we shall confine ourselves to apply the Inverse Power
Method (IPM) as:di5cussed in Section 2.4 to deal with the eigenproblems
under consideration. This method basically involves the determination of
the dominant eigenvalue, A_l (say), of the inverse of a non-singular matrix,
A, via the use of equation (2.4.12) which yields A-l ﬁhen an iterative

process is applied as follows:

_ ) 1
Step 1: A_(S+l) _ E‘a) ’
Step 2: B(S+1) = max Iy(5+1)| s
' - (6.5.1)
. (s+1) _ 1 (s+1)
Step 3: X = i L s
and Step 4: Ilﬁfsfl)fi(s)]| < € (given tolerance) , J

where vector x is the corresponding eigenvector of A, s=0,1,2,...,

(O

is chosen as a unit vector. Then the smallest eigenvalue in modulus
of A is obtained immediately.

Algorithm FIRML is used to soive the iinear system of Step 1, notably
the factorisation of A=UL (see subsection 4.4.1) takes place once only at
s=0. An illustrative example of applying IPM is given in Example 6.5.1
below.

Example 6.5.1

Let matrix A be a septadiagonal matrix (i.e. r=3) of size (11x11) as

given in (Gregory and Karney (1969)),
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— o tal
w o~

(11x11)

The factorisation of matrix A is performed with ¢ =0(10_9) (see

f
Section 6.1) and 57 iterations are required to yield U and L. Whilst the
number of iterations involved in the steps (6.5.1) is 12 to produce

lmin=0.52282285 with E=0(10-9) (see Step 4 in (6.5.1)) and hence this agrees

up to 8 significant figures with one given in the indicated reference. The

obtained approximated values of X and its corresponding eigenvector x were

a2, (12

in which both
min—

checked by comparing the output results of Ax

agree up to at least 7 significant figures (see Table 6.5.1).

ROW OF Ax(12) 3 . x(12)
- min—
1 | -1.35176607x10 % | -1.35176604x10"*
2 2.61141151x10 © | 2.61141145%10 1
3 | ~3.69309336x10 " | -3.69309348x10 "+
4 4.52309712x10 L | 4.52309729x107"
5 | ~5.04485985x10 1 | -5.04485951x10 "
6x | 5.22282240x107F | 5.22282285%107 "

*
Rows 7,...,11, as 5,...,1 respectively.

TABLE 6.5.1

Shifting Strategy

It has been indicated in Section 2.4 that shifting the origin of matrix

A, viz, A-pI (I unit matrix, p is a positive real number), is usually
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adopted to acceleratg the rate of convergence. A reverse result may be
expected if (A+pI) shift is considered; we shall refer to the latter
strategy as positive-shif%ing as a distinguishable‘concept to the fbrmer.
The sole reason behind considering this unusual strategy is to make
algorithm FIRMl applicable to éértain forms of métrices. The following

example may clarify this point further.

Example 6.5.2

Let matrix A be

5 -4 1 ]
-4 6~ 0
~ ~ ~
i ~ \\ . \\,
A = RS P P N : (6.5.2a)
\\\\\\\\\\\\\ 1
0 So N6
~1 e
— ' & 5—(10><].0)
whose eigenvalues are given by,
. 4, km
A = 16 sin (ETE:TT)’ k=1,2,...,N, (Gregory & Karney (1969))

(6.5.2b)
It was noticed that the factorisation of matrix A in its present

form cannot be achieved by FIRML (c.f. A at the end of Section 6.3), but

2
it can be obtained if the positive shifting strategy is adopted. Thus,
A in (6.5.2) is shifted to
A+pI, with p=0.4 or 0.5, (6.5.3)
Then the procedure (6.5.1) is used on the matrix in (6.5.3),

bearing in mind that the sth step of the iteration lmin is defined as

Aéii = ;?%7 -, - (6.5.4)
where 8 is as defined in (6.5.1).

Subsequently, it was observed, as expected, that the number of

iterations involved in factorising the matrix (A+pI) is decreased as p
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is increased (81 and 40 iterations for p=0.4 and p=0.5 respectively, with
af=0(10-9)), and conversely for the number of iterations of the procedure
(6.5.1), i.e. Amin=0.006563274 to gn accuracy of O(IOf?) is obtained in 23
and 27 itera;ions for p=0.4 and 0.5 respectively, This value of Am'

in
coincides with the first 8 significant figures of the value obtained by Al
in (6.5.2b).

On the other hand, another alternmative strategy may be applied to the

matrix A in (6.5.2a), where no shifting is considered, viz.

Permutation Matrix Strategz'

If a permutation matrix P (see Definition 2.1.9) of order 10 is
chosen as follows:

P=le) e,y 25852858258

where e, are column-vectors, each of 9 zero components and the k

component is 1.

(6.5.5)
th

Since the matrix P is orthogonal (see Definition 2.1.9), the orthogonal
. . s s . . T
transformation (see Definition 2.4.2) implies that P AP and A share
gsimilar eigenvalues whilst any eigenvector of the former matrix, v say,

is defined as Px=v., Subsequently, the procedure (6.5.1) may be replaced

by:
Step 1': PTAZ(S+1) = 2‘3) . )
Step 2': same as in (6.5.1) ,
- (s+1) 1 (s+1) y (6.5.6)
LIS = e———
Step 3': v B(S+1) Y »
Step 4': same as in (6.5;1) . J

th _ S,
‘Clearly, at the s step of the above procedure the eigenvector of

A is computed from,

x(S) - P*lx(S) - P?E(S)

. (6.5.7)

Now, the numerical results showed that PTA is factorisable, and 75

iterations are sufficient to produce €f=0(10_8). Whilst procedure (6.5.6)
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at s=5 was sufficient to give Amin=0.006563283 which may be improved if €g
is decreased further. It should be noticed that matrix PTA is treated as

r=4 (i.e. of bandwidth 9), since the fourth off-diagdnal (above and below)
includes non-zero elements.

Fortunately, matrix A in (6.5.2a) with small size was not sufficiently
awkward to use the above strategy, otherwise in the.light of some attempts
in this respect lead one to believe that the generalisation of this
strategy for any size may be possible if further investigation is pursued.

On the other hand, another interesting application of the latter
strategy (or a combination of both of the above strategies) on singular

matrices such as the one given in Example 6.5.3 below.

Example 6.5.3

Let a tridiagonal matrix A be singular and defined as

2 =2
1 21 O
A= -1 2 -1 _ (6.5.8)
-1 2 =1
0
..2 2-

{5%5)
where Amin=0’ and choose a permutation matrix P as,
P=1le,e,e,8, 35] . (6.5.9)

where‘gk, k=1,...,5, vectors are defined likewise in (6.5.5).

Tﬁerefore,-having matrix PTA formulated and treated as a quindiagonal
matrix (i.e. r=2) for similar reasons indicated in Example 6.5.2, the
procedure (6.5.6) can now be applie&. However, the obtained factorisaﬁion
of PTA to ef=0(10_8) is achieved in 32 iterations whilst (6.5.6) should be
taken one step only, thus at s=0 Amin=4.58 10_9 (and B=2.18X108) and the
components of its eigenvector are of 0(10_10);.if s is increased, the
rounding errors rapidly dominate the value of A, But s may be increased if

. T, . . . .
a shifting strategy is adopted to P A in which the number of iteratioms
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required for the factorisation of PTA+QI is decreased; alse this number
may be reduced ts less than half for values of p in the range 1l<p<l.8.
No optimal value of p was obtainable due to the special structure of the
matrix (for example, with p=0.4 or 0.6 the factorisaﬁion fails); A
further point which may be considered as an advantage of the shifting
strategy fof this particular matrix A in (6.5.8), the coefficient matrix
of the system (4.4.45a) involved in the applied algorithm is nearly

singular only with p=0.



CHAPTER 7/

APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS
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7.1 INTRODUCTION

To distinguish the algorithms presented in Chapter 5 from those in
Chapter 4 (i.e. BANDSOLVERS) will be generally referred to as BLOCKSOLVERs. .
A block factorisation for some well-known block matrices (tridiagonal and
quindiagonal types) will be considered. Also, applications of BLOCKSOLVERs
to numerical examples, such as the Laplace, 2nd order Elliptic and Biharmenie
-_equations are inclﬁded._ For some of these examples a coqparison between

the appropriate BLOCKSOLVER and BANDSOLVER (FIRM1) is made.
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7.2 ON THE FACTORISATION INVOQLVED IN BLOCKSOLVERS

The block tridiagonal and quindiagonal matrices considered here are

respectively of the form,

B, C_ B, ¢ D 7
. N ) D
CooN N 0 C B C D
\\ ~ . ‘-.: \‘-“-._‘
A = NS and A, = Da ~ ™ ‘,__“-\""..,_ .
1 \\ ~ \\ 2 . "-.":."-. T~
~ \\ > A B D
O ~ \\\ "'- ‘\""“"“
SN € 0 ~p C B C
- -
L C B L D C BZ'

where.the sub-matrices in both Al and AZ are of size (mxm). TFactorisation

of Al and A2 is assumed to take ﬁlace as.given.in Chapter 5, in which the

factor matrices ofithe former include the sub-matrices QO’Ql and the latter.

include the submatrices B,S,QO,QI,QZ,Y,E. Each of these sub-matrices is of

order m. Furthermore, each sub-matrix in both Al and A2 will be assumed as

of non-periodic type (unless it is stated) and abbreviated as in Section 6.2.
We now consider the following two examples related to A, and A

1 2
respectively.

Example 7.2.1

Consider Al such that its sub-matrices are defined as follows:

(i) B(0,-1,4,-1,0) and C=-I{I unit matrix) ,

{i1) B(0,~1,k,-1,0) and it is periodic, with k>4, C=-I,
(iii) B=4I, c¢(0,-1,0,-1,0)

and

(iv)  B(0,-4,20,-4,0), C(0,-1,~4,-1,0)

(both (iii) and (iv) taken from Gregory and Karney (1969)).

N.B. The eigenvalues of A, for the case (i) and (iv) are given respectively

1
by the formulae

Aj ® 4-2(coslpﬂ+ cos-’lql), i=1,2,...,p=1, §=1,2,...,9-1. (7.2:1)

where p-1 is the order of the sub-matrices B and C and (p-1)(g-1) is the
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order Al, (Smith (1978)).

Aij = 20-8cosk8-8cosjb-4coskBcosjh (7.2.2)

T , ' . ' .
where G=E:T y k,j=1,2,...,m, and m is the order of B and C while Al

is of order mz (Gregory and Karney (1969)).

Example 7.2.2

Consider A2 such that its sub-matrices are defined as follows:

(i) 59 -16 1
=16 60 > \\ 0

~ S0 N0 G e , C=-16I, D=1,

and
(ii) as given in the system (7.3.30) (next section).

It should be noticed that the aforementioned examples have been
selected such that the matrices A1 and A2 are block-diagonally dominant
(see Section 5.2 and 5.4) in which the required condition for the
appropriate algorithm is fulfilled.

As faf as the factorisation is concerned two essential peints will be
stresse&, the computation of the matrix square root (MTXSQRT) and the
properties oflthe submatriées QO’Ql in Example 7.2.1 (or the relevant ones
in Example 7.2.2).

In Example 7.2.1, the two MIXSQRTs involved in the iterative process
to determine QO and Qi (see (5.1.8)) require on average 5 or 6 iterations
for m=5 (the order of Q0 and Ql) and increase by 1 or 2 iterations for m=10

or 20. The highest number of iterations is related to the (positive
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definite) matrix B+2C which possesses weaker diagonal elements in
comparison with the matrix B-2C, For this ﬁype éf matrix, obtaining its
square root (using the method of Section 2.5 and single precision) becomes
critical as m increases. For instance, for m=20, when MTXSQRT was computed,
it was multiplied by itself and then compared to the original matrix. The
zero elements of the original matrix appéared to bé.of 0(10&6)—0(10-8) in
the product. In such cases,either double precision has to be used or an
alternative method of computing MIXSQRT is recommended.

In the cases (1)-(iv) of the current example some common properties of

is strictly-diagonally dominant. Q

0

both submatrices QO and Ql exist. Q 0

and Q1 are symmetric matrices. ||Q0||>]|Q1||, this is a vital pfoperty
sinﬁe it is associated with the stability of the elimination process involved
in the solution (see Section 5.1 or 5.2). The two norms |]Q0|| and l]Qlll
do decrease and increase respectively as m increases (even if the appropriate
MIXSQRTs are evaluated accurately).. This is.related to the changes in the
elements of Q0 and Ql' The diagonal and off-diagonal elements of QO
decrease and increase {in modulus) respectively as m increases; whilst for
Q1 all its elements increase (in modulus), These changes may become
significant for large m in which the stability of the elimination process
will be affected seriously.

In Exgmple'7.2.1 (ii), where the sub-matrix B is periodic, both QO and
Q1 are circulant matrices with constant elements, For.instance, for k=6,

QO and Ql have the follewing form (for m=10),



% %1 %y %3 %y 5 3 3 By
LN NN ~ N ~ »
~ ~ ~ ~ ™ ~ \\ 32
~ ~ ~ ~ ~ \\
N < s N N2y
X ~ \\ \ ~ ~ - . ~
~ ,\\\\ . \‘\\ \'\ 34
<
a ,\\ ~ \.\ ~ . a5
QO = ~ : ~ ~ ~ :
O NO N S a,
. ~ <« N .
symmetric . N ~ 3,
N ~ a5
~
\.\ a;
~
_ 0]
and
b0 b1 b2 b3 b4 b5 b4 b3 b2 bl
~ ~ o N ~ ~ ~ \\ b
“~ \.\ L \‘\ \\\ \-\ ~ 2
N NN S T -
~ N N T
~ ~ N ~ ~ \\. b
~ ~ ‘\\ ~ 0~ ~ &4
\'\ \\\ ~ ‘\\ ~ \bs
N
= ™~ ~ \\ ~ \_b
Q, = <N ~ 4
1 . RS ~ . ~ b
symmetric ST . 3
~ ~ b
2
-
~ . bl
where a, = 2.3919486932 , b, = -0.4252634457 ,
a1 = -0.2171539811 , bl = -0,0393190914 ,
32 = —-0.0113295412 , b2 = -0.0056939231 ,
a3 = -0.0013152862 , b3 = -0.000957?176 R
a4 = =0,0002109688 , b4 = =0.0001823602 ,
_a5 = —=0,0000734897 , b5 = =0,0000684475 .

The matrices QO,Q1 have a similar

property for k=5, whilst for k=4,
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the matrix B+2C becomes singular and its square root could not be attained.

In Example 7.2.1(iii), the elements of both QO and Q1 are zero on the

following off-diagonals; the 1St,3

for Q1 as well as its diagonal,

rd _th
+3

sseesetc, for QO,an, th

th
4,6 ,..

etc.

We now consider Example 7.2.2, where the factor matrices include the
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main sub-—matrices,.Qo,Q1 énd Qz; in addition to the other four sub-matrices
B,8,y and £ (see the factor matrices in (5.4.24)). As indicated in Section
5.3 the determination of QO,Ql and Q2 involves 3 MTXQRTs (see (5.3.6) and
(5.3.7)). The remarks relating to the MTXSQRT indicated in Example 7.2,1
also apply here; the matrix of weak diagonal elements is B+2C+2D to which

the highest number of iteration is related (7 to 8 iterations). Also, the
general properties of tﬁe submatrices in the previous example are applied to
QO’QI and Q,» in particuiar the norm-relation, ||Q0||>||Q1||+|1Q2|1 is valid.
As QO’QI and Q2 are the solution of the matrix non-linear system (5,4.25b) iq
which each of its three equations should be satisfied by the'solufion matrices,
The results showed that this is true for Example 7.2.2(1), whilst for Example
7.2.2(ii) where the sub-matrix C_(of the original matrix A2) is tridiagonal,
the solution matrices QO,Ql and Q2 do satisfy the first and the Iasﬁ equation
of the system (5.4,25b) and its second equation is satisfied as follows. The
two matrices (Q0Q1+Q1Q2) and (Q1Q0+Q2Q1) have some common equal elements but
opposite in sign, thus by adding the two matrices yields 2C,

Finally, the computation of the sub-matrices B,8,Y and ¢ by the scheme
(5.4.26) was preferred to (5.4,27). This is because the latter required 2
MIXSQRTs which makes the factorisation procedure uneconomical and not
accurate enough in comparison with the former; in addition the two relevant
matrices (see (5.4.27)) may not be positive-definite matrices. However, in
general, as long as the matrices QO and Q2 in (5.4.26) are non-singular (as

in our case) the first scheme is recommended.
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7.3 NUMERICAL EXAMPLES
' The boundary value‘problems'considefed here involve the Laplace Qecond
order elliptic and Biharmonic'equations. Their relevant results ﬁil} Eé
diééussad in Section 7.4. Soﬁe-of the problems'were éoiﬁéd by both the
apprbpriate BLOCKSOLVER and the BANDSOLVER (FIRML).
It should be noticed that.in the.following examples, a square mesh of

length h is used, and a row-wise scheme is adopted in the solution process,

Example 7.3.1(1)

The Laplace EQuation on a redtanguiar region can be stated mathematically

: 2 2

as - . : V2u=.a._1.1.+.?._l*‘.=0_’ - : C(7.3.1)
2 2
x” By

with Dirichlet boundary conditionms,

0, u(x,10) =

- u(x,0) = =0 ‘ :
(7.3.2)
u{0,y) = 0, u(20,y) = 100 :
(from Gerald (1978)). |
Equation (7,3.1) can be replaced by applying a 5~point finite
'diffefence formula (see Section 3.5), by the_difference'equation,'
l—(u; LHu, o oLtu, L ootu, . o=bu, ) = 0. .(7.3.3)
.]12 1"'193'_ i-1,3 1,341 1,371 1,3 ‘

In order to compare with results given in the given reference, we
 have chosen h=2,5 only; hence from equation (7,3.3) with the conditions

(7.3.2) a linear system of 21 equations is obtained and has the form,

4 -1 -1 1, 0
S ™~ S o 0 | :
—1\ f\\ ® ‘\\ : f
-1 - X\\\\\\ _\\\ L:? 180 . _ .
\\ ~ \,;\ ~ ‘\\ : ’ ; . (7.3.43)
\\ \'-. \\ X .\_1 ull: = 100 i o
\\ 3 ~ ~ BN 0
~ . \\\\\\\"’1 i :
0 "\\. .\\-\\".\ : 1
g ~1 -1 74 UZL 100

(N.B. only the elements denoted by x are zero), .
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or its equivalent block form

B ¢ O
C B C u. | = (7.3.4b)
0 C B '

‘where B and C are 7x7 matrices, each sub-vector is of length 7, whose

components can easily be recognised from (7.3.4a).

Example 7.3,1(ii)

The Laplace equation (7,3,1) on a unit square R (say), and subject to

the Dirichlet's boundary conditiom,

It

u(x,0) = £(x) = x(1-x) , 0sxgl

u(x,1) = 0 , (7.3.5)

u(0,y) = u(l,y) =0 , Osysl
The analytical solution of (7.3.1) under the boundary conditions

(7.3.5) is given by,

sinh{kn (1-y))

u(x,y) = X [Bk sinh(km)

k=1

sin(kﬂx)], (7.3.6)

where 3
8/(kn)” , for k odd,

0 , for k even,
(Buelak et al (1964)).

By partitioning the region K into m? equal squares, each of length h
(i.e, h=1/(m+l1)), we can replace the Laplace equation (7.3.1) by two types
of finite-difference equations, that is by;

(i) wusing the 5-point formula, we have

1

iy . .+ » ta, . +u, . "li' « .
hz(u1+1,3 Ui-1,370,541 0,0,
and (7.3.7)

) =0 y 1,3=1,2,.44,m,

(ii) using the 9-point formula (see Section 3,4), we have

(4
éh

4u

e . st4u, . .44u, , t4u, . 4w, ., tu, ., Htu, . , .+
u1+1,_'| 1-1,] 4“1.J+1 4u1,_]—1 u1+1,J+1 u1-1,J+1 u1+1,J"1

+ui‘1pj-1) =0, i!j=1!2s0009m0 (7-3-8)



Any of these two equations under the boundary conditions (7.3,.5)

lead to a block tridiagonal system of the form,

C
~
~

(~ -
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B u z
~ ~ 0 -1 —1

C < . u z
\\ ~ \\ -2 —2

\\\\ \\ 1 = : (7-3-9)
~ \s. \\ 1

o SN ] I

: S N 11 I

C B u z
L_ 4 o L0, |

where the sub-matrices and the sub=-vectors are of size {(mxm) and {(mx1l)

respectively, Moreover B,C and z; are defined as follows,
{(a) for the finite-difference equation (7.3.7), we have
- -
4\ 1\\ 0
=1 \\ \\
B = ST s C==1 (I unit matrix) (7.3.9a)
S \\
~ ~ =1
0 = P
| - |(mxm)
. _ T
and EH._AQ » for i=1,2,...,0-1, z é [zm,l’zm,Z"'°'zm,m]
where z . =x.(1-x.) = jh(1-jh), j=1,2,...,m
m,] ] ] (7.3.9%)
and
(b) for the finite-difference equation (7.3.8) we have
20 -4 7 =4 -1 0 N
b Y -
-4\\ \\ O -1 \\ \.\ .
B = > : O = ~ ~ \\
\\\\\\\ ¢ RN RN
PN \-4 RS ~ -1
0 \\'\\ 0 \\ -
L _‘.4 20— {mxm) - -1 —4- {mxm)
(7.3.10a)
. T b
and z; - 0, for i=1,2,...,m~1, Em z [zm,l’zm,Z""’zm,m] .
where zm,j = xj_l(l-xj_1)+éxj(l-xj)+xj+1(1-xj+1), x0=xm+1=0, }

= (j-DhQ~-G-1)h)+4jh(1-jh)+(F+Dh(1-(j+1) k),

j=1,2,c-o,m,

(last term=0 for j=m). ]

(7.3.10b)
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Example 7.3.2(i)
The linear 2nd order Elliptic Equation expressed by the form,

32 32
| = + =3 -au = £(x,y) , (7.3.11)
Ix oy
on a unit square, Ix(say), subject to the boundary conditions
u =0 on the boundaries of R (7.3.12)
and the exact solution is given by
u = 2(x2-x)(c052ﬂy-1), Osx,ygl , (7.3.13)
(Rice et al (1980)),
By virtue of (7.3.13), f(x,y) iﬁ (7.3.11) have the form,
£(x,y) = 2(cos2ny~1) B-a(xz-x)]-8ﬂ2(x2-x)c052wy ,
(7.3.14)

and with o=2, we have
2 2,2
£(x,y) = 4(cos2r-1) [8~(x"-x)]-8n" (x -x)cos2ny,

Since the partition of the T is assumed to take place as in Example

7.3.,1(ii), the application of the 5~point formula would enable us to

replace equation (7.3.11) under the boundary conditions (7.3,12) by the

= hzf. AN
1,]

difference equation,
: 2
=(10+2h)u, .
( )ulsJ ;
(7.3.15)

: . +ou, .~u, .ootu, .
4ui+1sJ 4u1—133 ul’J+1 uan-l
i,jml,z,.f.,m,

where fi 3 is the discretised form of f(x,y) in (7.3.14), i.e.
) , :
= f(Xi.Yj), h=1/(m+1).

fi’jzf(lh,Jh)
Then, equation (7.3.15) ‘immediately yields a block tridiagonal

system of the form,
E 7 [ul] ER
B\ C\\ . 0 'E'l ‘E"]. .
NN u, 2, |
\\ \\ \\ ] = § . (703.16)
R ~ | !
- \\ ‘\C t 1
0 RESRR ' 1
| DRV E I Y

where B,C and z; are defined as follows,
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ST 0
—4\\ ~ 2
B = SN, » k = 10+2h° , ¢ = -I, (7.3.17a)
- Y ~
\\ \\\-4
0 \"*.,_ e
B . -4 kJ(me)
d z [z z Z T h that
an 2 = 1,17%,2°00 i,m] suc at,

2 ‘ (7.3.17D)
zi 3 = =h fi,j_’ 1,]71,2, 400 ,m,

Example 7.3.2(ii)

We now reconsider the problém of Example 7.3.2(1) with the periodic
boundary conditions in the y-direction, i.e. we have, equation (7.3,11)
subject to the boundary conditions,

u(0,y) = u(l,y} = 0, Ogysl,

u(x,0) = u(x,1) - (7.3.18)

i
Qa
=]

~~
b

-
o]

St

2,0 =2
Under these conditions the solution of the grid points 31,...,35
(Figure 7.3.1), is the same at the points 1,...,,5 respectively, (on
assumption m=5, h=1/6). |
'. Ya

1234 5

(1,1)

(0,00 731 32 33 %35 > %

FIGURE 7.3.1: Periodic boundary conditions in the
y=direction

Thus, by following the procedure of the previous example, instead

of the system (7.3,16), we should obtain,
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~ c o R
AN 0 Hi &
N u, z
\\ “ ~ "T '_I'2
\\\\ \\ | = 1 (7-3019)
TN NN t | .
L " i
0 \\ \\ ! '
c Nc B & 2N
where N=m+1, B and C as given in (7.3.17a), and z; is defined as
2, = [Z z . YR Y] ]T
- i, 1*7i,2? *“i,m ’
: ) 2 . .
and z]._’j = =h fi,j’ i=l,2,.044,N, j=1,2,44.,m

(c.f. (7.3.171)).

Example 7.3.2(iii)

We consider the Elliptic Equation expressed by
2 2

2_% + 3_% -%u=0, (7.3.20)
ax Ix

on a square region bounded by -lgxgl, -1gygl, with boundary conditions
of the form,
(i) u=0 on y=1, =-1gxg1,
(ii) u=1 on y=-1, .-lsxsl,
3u r (7.3.21)

(1ii) o

1

-lu on x=1, =-l<y<l
(Robin's conditions)
au

(iv) == fu on x=-1, =-l<y<l

[

(smith (1978)).
Since the problem (as indicated in the above reference) is symmetric
at x=0, the scolution is considered only on half of the region (i.e.

Figure 7.3.2, the dotted-region is ignored).

> 3
u=0
.- (L, 1)
1
) §E=—iu
: o
1(0,0) §
|
. | S =1
Soclution is symmetric (0,-1) ¢

at x=0 FIGURE 7.3.2
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The current problem was treated with both 5-point and 9-point finite-

difference formulae (see Section 3.5) which respectively yield the

following difference equations, ‘

2 .
ui+1,j+ui-1,j+ui,j+1+ui,j-1 (4+32h )ui,j = 0, }:1,2,..,,m,
j=1,2,...,N,
(5-point formula) (7.3.22)
and
Blag %o, 570, 540, -1 T (U e e, e YL -
+u._1 .-1)-20(32'6h2)u- . = 0, i=1,2,oo-,m,
171,53 1,1 j=1,2,..-,N-
(9-point formula) (7.3.23)

where h=LKm—1), N=2m-3,

Any of the two equations (7.3.22) or (7.3.23) under the appropriate

boundary conditions in (7.3.21) [bearing in mind that %%

approximated by (u, L-u, .)/2h] yields a block tridiagonal system of
i+l,3 i-1,j

at x=1 is

the form, _ _ _ . _
5.5 Y N EA
ARG 0 u p4
sl N =2 =2
\‘\ ~ ~ d i .
\\‘\ o : = : ’ (7.3.24)
> . | {
0 ~ ~ ~ | ' -
“~ ~
\\ e 1 |
_ C B | My Zy

where B,C and z; are defined as below.

{a) for the finiﬁe-difference equation (7.3.22), we have

ann

and

) SN , k= 4+320°%,
- ~ “~ - I3
\‘~:f“:;\‘_1 = I(mxm) {I unit matrix)
L -2 k+h—(mxm)

z. = 0,
—1 —

i=1,2,...,N-1, the m components

of

N

are 1l's,
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and (b) for the finite-difference equation (7.3.23), we have,

"k -8 i EAY) 7
~4 k -4 . | -1 -4 -1
\\\\ \\ 0 ~ N \\
~ \\ \\ \\ \\ \\
B = T » C = ~ ~ ~
\\ \\ \\ \\ \\ \\
0 \\\ RS \\ . 0 \\ . ~
-4 k-4 SR V|
| -8 kt+4h] (mxm) B -2 —4+h]|
and z, =0, i=1,2,...,N;! z_ = [6,6,...,6,6-h]"
_i Pl » sty H] __N 3 LI ] 2 -
Example 7.3.3 (Fourth-order elliptic p.d.e.)
Consider the Biharmonie Equation expressed as,
6 oty 22 >
viw=22s LI 2= r(x,y) , (7.3.25)
4 2, 2 4
X 9x 9y 3y

in the unit square B, subject to the condition,
u = n.Vu = 0, on the boundaries 3R , (7.3.26)
where n is the wuntt véctor normal and r(x,y) is a prescribed function
on B, For .
 rGruy) = 813y2(1oy) 243x (1mx) 24 (6x2=6x+1) (By2-63+1)] | (7.3.272)
the exact solution is known to be,
u = xz(l—x)zyz(l—y)z', . (7.3.27b)

and for - 4
r(x,y) = (2n) [4cos2mxcos2ny~cos2nx—cos2nyl , (7.3.28a)

the exact solution is given by,
u = (l=-cos2rx) (l-cosZny) . (Bauer and Reiss, (7.3.28b)
5 . (1972))
By partitioning the region B into m" equal squares, each of length
h (i.e. h=1/(m+l1)), equation (7.3.25) can be replaced at the grid points

by the difference equation derived from applying the 13-point finite-

difference formula (see Section 3.5), i.e.,
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)+2(

.+ . oatu, . tu, La, oL, . P s 38 . 4FU, . . .
u1,J+2 u1,3-2 u1-2,1 u:L+2,_'| ul—l,J+1 u1+1,3+1 u1-1,3*1+u1+1,3-1)

Fu, . tu, o L, . ..
Y ,3-1%-1,5 1, 50720, 5

i,j=1,2,...,m, (7.3.29)
~where ri’jzr(lh,Jh)=r(xi,yj).
The latter equation under the boundary conditions (7.3.26) leads

to the block quindiagonal system of the form,

) I M ]
By ¢ D Y 3}
C.\B\ C\I)\ 0 u, z,
D N N N \ |
~ AN ~\ ~ | |
N N ~ . \\ t I
\\\\\\ NN i = ‘ . C(7.3.30)
~ SN \\ 1 \
N \\\\\\ \\ ' !
0 '\\ \\\ \\ D | 1
» ]
“ptcBNe | *
i
- D ¢ B2-J .l_lm .Em.
where the sub-matrices and Ei are defined as follows,
21 -8 1 ] -8 2 ]
~ ~
-8 20 -8 1_ 0 2 v N 0
- > -~ ~ \ hY N\
B = «~ S o ~ ~ s C = ~ ~ \\
\.\\ - ~ ™. N N ~
~ 0 ™~ \\ e N ~ N
~ ~ ~ ~ - N
~ ~ ~ ~ ~ N N
“~ ~ ~ ~ \1 \ N \
\\ ~ ~ \\ 0 \\ \\ A
Y -
0 <18 “20 -8 NN
A N\
_ : 1 -8B 21-‘(m><m) - 2 —8“(mxm)
B1 = B2 = B+I, D= I(mxm) » (I unit matrix) ,
T
and z; [21,1’21,2’ ’zi,m] .
4 . .
z, =hr s L,3=1,2,...,m
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The BLOCKSOLVERs used to solve the problems of the previous section

were as follows: Example 7.3.1(i) and (ii), Example 7.3,2(i) and (iii)

vere solved by FIRM2, Example 7.3.2(ii) by FICM3 and Example 7.3.3 by

FIRM3,

All these examples, except Example 7.3.2(ii), were solved by the

BANDSOLVER (FIRM1). Since the factorisation procedure involved in the

. FIRM1 algorithm has not been discussed for the type of matrices included

in the above example, it may be worthwhile to discuss it first.

As the considered matrix is factorised into two rectangular matrices

given in (4.4.3), here we are interested only in the matrices L

1

and Ul (of

size NxU) givén in (4.4.53a) and (4.4.52a) respectively (see subsection 4.4.3).

In the system (7.3.4a), as the coefficient matrix is of order N=21 and r=7

(i.e. of bandwidth=2r+1=15), L, and U1 have the following form,

1
.
\\
N o
~ \1
2 ey
2,1 _ ~' 71
: \'\ ') \\
L = RS IS BTN
1 { i A \\ \\
L 1 2,1~ 1
7,1 - [ ; - \\R‘ 1
b | -
\\2‘77 I \\ 1,72’ '\\
X Y, 5 P
7,1 2,7 _ -
. ]
LY -~
|
0 ~o_ !
\\2
| . 7,1
4 U =LTD (D=diag(d,s-+.sdosd.seeisdoyeesyd
an 1 1 EE- RS A et At LA ey A

)

3

.
o
\\
~ o ~.
~ ~
\‘ S
g £
2,6 L7 dixen)
(7.4.1)
(7.4.2)

where &, veesh, o and d,, i=1,2,...,7 are given in Table 7.4.1 (notice
i,l’ i,7 i

that only their approximated values are tabulated). In this particular

example we may conclusde the following remarks.
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(*1) In any off-diagonal of L, in (7.4.1), the elements are repeated in a

L

cycle of length 7 (or in general, of length equivalent to the order of

the relevant sub-matrices involved in the coefficient matrix as in

(7.3.4b)).
(*2) The off-diagonal elements of L, are all less than 1 in modulus.
(*3) As shown in Table 7.4.1,'21 i and 27 I i=1,2,...,7, have the largest
» »

magnitudes amongst the remaining off-diagonals; or in general, the off=~
diagonals which match those of the non-zero elements in the original
matrix, possess the largest value in modulus (note that even in the

first off-diagonal ¢ is the only element of low order which matches

1,7 .
the zero elements in the original matrix, denoted by x in (7.3.4a)).

(*#4) The diagonal of U, in (7.4.2) is of largest element (in magnitude) than

1
the off-diagonals (see di in Table 7.4.1).

In Example 7.3.1(ii) and Example 7.3.2(i) since the coefficient matrix
is symmetric, remark (*1) is applicable; whilst in Example 7.3.2(iii), the
sub-matrices B (or both B and C) in (7.3.24) are non-symmetric, no regular
repetition occurs in the elements of the factor matrices. This is applied
to Example 7.3.3 due to the sub-matrices B, and B, in (7.3.30).‘ However,
the main conclusionsto draw from applying FIRM1 in these examples are:
(**1) The factorisation procedure to yield the two factor matrices was

achieved with very high accuracy (i.e. €¢ (see Section 6.1) was

10)-0(10—12). For instance, this accuracy was

obtained up to 0(10
achieved in 56, 30 iterations for the system (7.3.16) and (7.3.24)
whose coefficient matrices are of order 121, 135 respectively;
whilst for the order 25,35 respectively the relevant number of

iterations reduce to nearly half, The slowest convergence was

observed in Example 7.3.3 in which the factorisation procedure to
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yield Ef=0(10-10) requires 195 iterations since the coefficient
' matrix was of order 121,

(*%2) A further illustration related to the femarks (*2)~(*4) can be
pointéd out as follﬁws: |
The maximum maggitude of elements of Ll(maxlki,j[, say) does not
grow much- as N (the order of Ll) increases; whilst the minimum
magnitude of the diagonal elements of Ul(minlul’il, say) does not
degrease as much, For instance, in Example 7.3.2(i), maxlzi’j[so.SG
and min|u1’i]27.7 for N=25; whilst for N=121.max|£i’j[50.6 and
minlul,i]27. Moreover, the values U g oscillate in a rather |
'narrow' range whose upper bound is slightly larger or smaller than

the maximum elements of the diagonal of the original matrix.

Example 7.3.3 is excluded since for N=121, 10$|u1 i|517.8.
b

 The above remarks may lead to conclude that FIRML is applicable to the

block systems and it is more efficient than its applications in Chapter 6.

On the other hand, in general, both the BANDSOLVER (FIRM1) and the
appropriate BLOCKSOLVER yield very close results for the same example.
For instance, the equivalent systems (7.3.4a) and (7.3.4b) were solved by
FIRMl and FIRM2 respectively and their numerical results are given in
Table 7.4.2. 1In this table the results of both solvers agree up to at
least 8 significant figures; in Table'7.4.3 which belongs to Example
7.3.2(i11) the solutions given by‘the two solvers for the system (7.3,24)
(for h=1l/8, using the 9-point formula) agree up to 9 or 16 significant-
figures. This was the case, generall&, in the remaining examples that:
were teﬁted.

A further discussion of the results is based én.theoretical principles
(see Section 3.5), that is, an improvement in the computed solution may be

obtained by,
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(a) reducing the mesh size, or
(b) apflying a high-order finite~difference approximation,

Let for a given mesh h 1(h) be the pointwige error which is defined as
the difference between the exact and the computed values,.divided by the
maximum value of the exact solutidn.

According to .part (a) above, we have the following results: in

Example 7.3.2(i), r(hl)=2.546x10'2, r(h2)=6.217x10'3; r(h3)=3.435x1o'3 for

h,=1/6, h,=1/12, h,=1/16. In Example 7.3.2(ii), T(h1)=8.27x1o"3,
T(h2)=2,OGXIO_3, for h1=1/10, hé=1/20. The ratio of T(hl):T(hz) in the

two examples is 4.1 and 4.0l respectively; where in theory it must be 4
since the truncation error of the 5-point finite-difference approximation

is of O(hz) in both examples., - The truncation error of the 13-point formula
has the same order as used in Example 7.3.3, and the appropriate ratios,

for hL=1/6’ h2=1/12, for the problem (7.3.27) is 4.07 whilst for the problem
{(7.3.28) it is 4.61. Moreover, for the former problem 7(1/26)=1.137% and

for the latter problem t(1/26)=0.987% as given in Bauer and Reiss (1972), in
whlch both may be expected for h=1/12, 5.307 and 4.607 respect1ve1y, whllst.
the correspondlng results obtained by FIRM]1 for the same mesh are 5.29%7 and
4.697.

In Example 7.3.2(iii), the two solutions obtained for h=1/4, 1/8
coiﬁcidé with one decimal place at least (see Table 7.4.3). Also, in this
example the 9-point formula wheré trunéation error is of O(hé) was used,
and since no exact solution is given, the only check possible was made by
substituting the obtained results in the finite difference equations which
were all satisfied to quite good accuracy. Since the 9-point formula for
the Laplace equation hés the truncation error of O(h6) (see Section 3.5,

equation (3.5.23)), then in Example 7.3.1(ii) using this formula the obtained
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values for h=1/6 or h=1/12 to at least 3 and 5 decimal places respectively
with the analytical solution (see Table 7.4.4).

It should be stressed in referring to the Zmner linear systems
involved in the rectangular factorisétion, i.e, the systems (4.4.45a),
(5.2.23) and (5.,4.22) which relate to FIRMl, FIRM2 and FIRM3 respectively,
show no problem arises in solving them, In particular, their coefficient
matrices (for the above tested examples and the eigenproblems mentioned
below) possess a property such that the diagonal elements have the largest
values in modulus,.

Finally, the BANDSOLVER (FIRML) has been applied to eigenproblems
which involve block matrices, and has.showed remarkable results iﬁ
comparisén to its application in Section 6.5, in a sence that no
restrictions or modifications for the considered mgtrix are required.
Moreover, the ordirnary shifting, A-pI, p20 is applicable here with

1pM
suitable values p. For example, using the IMP’procedure {6.5.1) for the
matrix (a) Al of Example 7.2.1(1) and (b) Al of Example 7.2,1(iv) where
eigenvalues are given by the relations (7.2.1) and (7.2.2) respectively,
the related numerical results are: for (a) where the matrix A is 64x64
and its submatrices are of order 4, at step s=35 (see procedure (6,5.1),
and s=16 for p=0 and p=0.3 respectively, A . =0.416019810, 0.416019811

which agree up to 8,9 siﬁnifidant figures with A, of (7.2.1) (noting

11
that the appropriate factorisation is achieved in 30,62 iterations
respectively to yield ef=0(H51%, see Section 6,1), And kor (b) where Al
is (100x100) and its submatrices are of order 10, for p=0, only s=13
iterations were required to give lmin=0.96560535201 which coincide up to 8

with kll given by (7.2.2) (noting that sf=0(10-12) is obtained in 64

iterations),



i i1 24,2 2,3 .4 % .5 .6 Y10 | %

1 3,16 10| —3.54x107F | -3.55x10 | -3.52x107 % | ~3.41x107t | -2.99x107 | -2.03x1073| 3.3:1
2 || -1.55%1072| -1.89x1072 | -1.91x1072 | -1.70x1072 | -1.13%1072 | -4.75x20"> | -4.0sx1073| 3.25
3 || -7.09x103| -8.62x1073 | -7.95%x107° | -5.11x107 | -9.40x1072 | -0.78x1077 | -7.68x107°| 3.24
s || -3.54x107%| ~3.86x1073 | -2.54x1073 | -1.89x10 % | -2.0ax107% | -1.97x207%] -1.55x1072| 3.24
5 || -1.61x10 2| ~1.28x107> | -4.16x107% | -4.45x107% | -4.45%1072 | -4.24x1072 | -3.48%107°%} 3.26
6 || -5.48x107%| -1.04x1071 | -1.09x1071 | -1.10x107t | -1.09x107t | -1.05x1071 | -8.98x107%| 3.33
7 | -3.02x107}| -3.08x107 1 | -3.09x101 | -3.00x107% | -3.07x107% | -3.01x1071 | -2.70x107} 3.70

TABLE 7.4.l: {Example 7.3.1(i))

Y1 ) U3 Y N e Yy
0.353006809 { 0.913176676 | 2.010311261 | 4.295717748 | 9.153168404 | 19.663176677 ) 43.210149666
0.353006808 { 0.913176673 | 2.010311258 | 4.295717744 | 9.153168400 | 19.663176674] 43.210149665

c | o0.3530 0.9132 2.0103 4.2957 9.1531 19.6631 43.2101
Ug Yy "o Uy 92 Y3 Yia*
0.498850563 | 1.289388634 | 2.832350620 | 6.019391327 | 12.653779192 | 26.289388634 53.3177421992
b { 0.498850561 | 1.289388631 | 2.832350616 | 6.019391322 | 12.653779188 | 26.289388631 | 53.177421990
c | 0.4988 1.2894 2.8323 6.0193 12.6537 26.2893 53.1774
TABLE 7.4.2

a ~ The solution obtained by BANDSOLVER (FIRM1)

b - "

1t

c-

L1

m

BLOCKSOLVER (FIRMZ)

is given in the indicated reference

=u

=u

2,...,‘021 7

8¢
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3/4

0.0000562995
0.0000562995
0.000090

0.0000558657
0.0000558657
0.000090

0.0000543862
0.0000543862
0.000087

0.0000514268

0.0000514268
0.000082

0.0000465857

0.0000465857
0.00075

1/2

0.0002403647
0.0002403647
0.00036

0.0002387827
0.0002387827
0.00036

0.0002331488
0.0002331488
0.00035

0.0002212026
0.0002212026
0,00033

0.0002006908
0.0002006908
0.00030

0.0009691313

0.0009641157

0.0009450124

0.0009007474

0.0008190410

1/410.0009691313 | 0.0009641157 | 0.0009450124 | 0.0009007474 | 0.0008190410
0.00137 ‘0.00136 0.00133 0.00127 0.00115 c
0.0038902621 | 0.0038761131 | 0.0038166768 | 0.0036599547 | 0.0033383168

0 [0.0038902621 | 0.0038761131 | 0.0038166768 | 0.0036599547 | 0.0033383168
0.00513 0.00511 0.00503 0.00482 0.00439 c
0.0155959289 | 0.0155626382 | 0.0154018550 | 0.014880837 | 0.0136429355

-1/4]0.0155959289 [ 0.0155626382 | 0.0154018556 | 0.0148880833 | 0.0136429355
0.01920 0.01916 0.01895 0.01831 0.01677 c
0.0624606771 | 0.0624031560 | 0.0620691542 | 0.0606442325 | 0.0560123561

-1/2|0.0624606770 | 0.0624031560 | 0.0670691542 | 0.0606442325 | 0.0560122561
0.07175 0.07168 0.07130 0.06968 0.06439 c
0.2499687334 | 0.2499134754 | 0.2495246098 | 0.247068277 | 0.2321389585

-3/410,2499687334 | 0.2499134753 | 0.2495246097 | 0.247068276 | 0.2321389584
0.26791 0.26785 0.26745 0.26514 0.25006 c

iy 0 1/4 1/2 3/4 1

a - Solution of the system (7.3.14) for the 9-point formulae, obtained by

BLOCKSOLVER (FIRM2) for h=%

b - Solution of the system (7.3.14) for the 9-point formulae, obtained by

BANDSOLVER(FIRM1) for h—l

8

¢ - Solution of the system (7.3.14) for the 9-point formulae, obtained by

FIEM] or FIRMZ, for h=

m—

4

TABLE 7.4.3 (Example 7.3.2(iii))



5/6

0.006123393
0.006123269
0.006121436

0.010599873
0.010599666
0.010596554

0.012236138
0.012235904
0.012232351

0.010599873
0.010599666
0.01096554

0.006123393
0.006123269
0.006121436

4/6

0.013973997
0.013973699
0.013969347

0.024172722
0.024172249
0.024165125

0.027894559
0.027894038
0.027886084

0.024172722
0.024172249
0.024165125

0.013973997
0.013973699
0.013969347

3/6

0.025793079
0.025792445
0.025783326

0.044524883
0.044524016
0.044510830

0.051328646
0.051327760
0.051314127

0.044524882
0.044524016
0.044510830

0.025793079
0.025792445
0.025783326

2/6

0.045085576
0.045084311
0.045061685

0.077357653
0.077356220
0.077333954

0.088932984
0.088931771
0.088913354

0.077357653
0.077356220
0.077333954

0.045085876
0.045084311
0.045061685

1/6

0.078205588
0.078200647
0.078121486

0.131793333
0.1317%91677
0.131767811

0.150461130
0.150460097
0.150445413

0.131793333
0.131791677
0.131767811

0.078205588
0.078200647
0.078121486

¥i

1/6

2/6

3/6

476

5/6

a = Analytical solution

b - Solution of (7.3.9)

. 1
(with h~12)

c - Solution of (7.3.9)

(with h=%0

TABLE

obtained from (7.3.6)

using the 9-point formula and solved by FIRMI1

using the 9-point formula and solved by FIRM1

7.4.4: (Example 7.3.1(11) Solution)

330



CHAPTER 8

CONCLUSIVE REMARKS AND FURTHER INVESTIGATIONS
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PART (A)

The main conclusions associated with the new algorithmic-solvers‘for

the banded linear systems of equations are:

1. The factorisation involved in the pointwise procedures (i.e. the
BANDSOLVERs) differ from the convehtional and well—known.direct
techniques (such as LU-Decomposifion)'in a sense that the elements
of the factor matrices are obtained by an iterative scheme.

2., 1In relatién to the preceding point, the solﬁtion of a speciai set
of non-linear equations derived from equating the elements of the
factor matrices' product to the corresponding elements of the
original matrix, is accomplished iteratively (precisely, by
adopting the so-called Gauss-Seidel-Newton scheme (sub-section
4.3.6). |

3. The factorisation techniques involved in the blbck—case (i.e. in
the BLOCKSOLVERS),.explicitly seem to bé_a direct procedure to
obtaining the sub-matrices of the block-factor matrices. Implicitly,
an iterative process (precisely, the Newton's method) is involved
to compute the required matrix square roots. In this respeét, it
should be emphasised that computing the matrix square root as
accurate as possible is essential, since it is.a vital step in the
factorisation procedure,

4, The factor matrices possess the property of preserving the
structure of the ofiginai matrix (the bandwidth and the sparsity
(if any)), i.e._no 'fill-in' is created beyond the outer off-
diagenals of the given matrix, Although this is true fér the
BANDSOLVERs when they are applied to the block matrices, but the
factor matrices produced, in contrast.to the original matrix, their

elements in-between the diagonal and the outer off-diagonal (which
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correspond to the zero elements of theroriginal matrix) do 'fill-
in' with small numbers.

The formulation of the BANDSOLVERs raises the question of adopting
High-Order Discretization techniques for the second-order non-
linear (or linear) 2-point boundary value problems. This seems to

be practical for these problems under periodic conditions, in

- particular with the existence of the new algorithms (i.e. FICM1

and FICM2)

Generally speaking, both the BANDSOLVER (FIRM1) and the BLOCKSOLVERs
have shown quite satisfaqtory resﬁlts from their application to
partial differential equations tChapter 7). Also, the appiications
of the former have been extended to eigenproblems (Séction 6.5,
7.4); whilst the latter in the light of factorisation results is
believed to be applicable to eigenproblems associated with block~
matrices (as the types given in Chapter 7).

The BANDSOLVERs and BLOCKSOLVERs (in Chapters 4,5 respectively)
associated with skew-matrices involve mainly a modification which
transfers the considered skew;matrix to a symmetric one and then
the solution procedure is pursued as in the relevant solver for a
symmetric matrix.

Will the new algorithms gor some of them) have a superiority or

are they competitive with other methods? In fact, it is inadequate

to judge the question on abstract grounds alone, just on the basis

of the obtained results from the tested numerical examples or

other 'artificial'examples. The answer, however, is- connected with
the other factors, such as the amount of storage required and the
running~time which both for programming reasons have not been

considered, included or measured in this work. In particular,.
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by noting that all the solvers' procedures have been programmed in
a generalised form which cbnsequently requires a considerable
storage area, notably this can be reduced considerably for certain

cases where the given matrix possesses a specilal structure,

Finally, the new factorisation techniques which include, obtaining
pseudo-inverse rectangular matrices iteratively, matrix square roots, etc.,
may require further theoretical justification apd-the continuation of further
related studies may take place in the light of the points outlined in part

(B) below.

fART (B)

It is suggested that the following points be considered for further

investigation:

1, The solution of the set of non-linear systems of equations in@olved

" in the BANDSOLVERs may be obtained by a direct'solution or
strategies to improve the rate of the convergence of the present
iterative scheme, or to use other faster alternatives.

2. Referring to point 4 of part (A), it may be interesting to pursue
improving the BANDSOLVER (FIRM1) Qhen it is applied to block-
matrix systems so that the indicated 'fill-in' can be alleviated
or overcome.

3. In the Biharmonic equation (Example 7.3.3, Chapter 7) in order to
apply a 25-point finite difference formula, it is‘suggestédrthat
the appropriate BLOCKSOLVER (FIRM3) may bé extended to a septa-
diagonal block solver, or probably to matrices of wider bandwidth.
This might be proceeded by treating the non-linéar matrix

equations obtained in an analogous manner to the pointwise non-
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linear equations involved in FIRM1 (i.e. GITRM procédure for r23);
Can any of the new algorithms be applied on the new parallei
processing machines? If they can, this may increase the
creditability of the algorithm(s); in particular for those
algorithms which take a considerable time in converging to the
solution such as thé case of the Biharmonic equation using

BANDSOLVER (FIRM1) or in other steps of the solution procedure.
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we shall rewrlte the system (4.2.4) in the form glven in Berg (1981)
For thlS we assume n=r+1 r>l (as deflned in Sectlon 4 2), and define xl,al,

”ti 1,...,n as follows,

i-1 i i=1,2,..:,m, . gy
c. =7 L Do E ' o R S
R N ¥ ‘ ‘ ‘
where al i, 1, i=1 2,...,n are the elements of the system (4 2. 4)

hf From (A.1) and taklng a =1 (Berg (1981)) the system (4 2. 4) becomes,

xf+x§+x§+..;+xi .; rh =1 Y
'x1x2+x2+x3+... nFI#h‘%:éz 5 . S
= - N RV % 8
*1*n | - = %n . :i

The dlrect method suggested by Berg (1981) to solve the system (A 2)
to y1e1d real solutlons is dlscussed below.

For the spec1a1 case, if the values 32’33’ .;,ah satisfy the foilowing

equallty, 1.e.,
ak+1‘e -%I'(n—k)coszw o+ __ ol - ,'ksi;z,..};n—l s . ‘(A.3)‘

a0 5 o aw

then the solutlon of the system (A 2), i.e. xl,...,x (x >0) is unlquely

-determlned and has the form,

in

o [ o o :
. Hxi = +1 Slrr*':f oy l=1‘,2,...,N7. . o .(A..S)'

(NsB. if.az in (A 4) 1s negat1ve, then at, t= 3,.;.,n 1n (A.3) shoulo be ”
‘.:muitiﬁliedlby_(-l) and hence-xi, 1?1'25---?n.1n (A,S).ls mult1p11ed by-.
| (—1)if1'es well). l - - -
| .lfhe der{vetion'of (A 5) end:(h 3) is as foiiows
. The method of Lagrange is used to determlne the extreme value of a2 :

lunder the f1rst equatlon of (A 2) as a condltlon"thus ‘from the flrst and



f'the seeend equatisﬁs of (A.2) we ﬁay'ﬁrite,:"
I S 2.2 . a2 .
F = x1x2+x2x3+... xn lx A(x1+x2+...+xn)'._

'--_ Now to determlne the statlonary values of F we start with dlfferentzatlng'

-F w1th resPect to X

1’x2""’xn succe351ve1y to obta1n the result
_ t£1 e xz+(x1+x3)_+‘(_xz+x4)-lf..‘.+{xn_2'_l-.xn)+x -1 ZJ\(X +x2+,,.+xn) = 0,
‘ " (A.6")
" if we now define R P o : : z S
’ o - : . . . - . "
then (A.6") can belwritten'as‘a single difference equation, i.e.,
-Berg (1981) 1nd1cates that thlS e1genvalue problem possesses n.
fsolutlons. These can be determlned 1n the follow1ng manner. :‘;_ .
Let ‘ X£'= A8 ”(A'is a constaet)-, e (A.8)
 'shd substitute inI(A,7) te_jield'the result
efamesi =0, R ¢ W)
" 'The Qﬁadretic equation (A.9) possesses two roots, © 1, (say) hence-s
- from (A;B)rﬁe haveftﬁe:genefalISOIUtion,
'x1-=' et + A et. Ll Lo o (A.lO)e

ot 11 272!
where A and A2 are constants. L

Consequently from (A 10) and condltlons (A 6") we. obtaln the relatlons _

o 0 =8y = -
R L e n+l, , .o+l
end 0 Alel 0"
:fFrom these two equatlons we have
) _ oo+l _n+l,
0= Al(e1 =8, )
ST 8y a1 RUIT R S
Jor .- Q;O " =1=-2e"""" , where.j=1,2,...,n, i=v-1. - (A1)
L Y L . : R g
Therefore, from (A 11) we obtaln i ~
8, T - o _ o B
61_= 123n/(n+1) B S S aa)

2



and from the quadratic equetion (A.9) we have

- o e192 - 1
end. o '.‘ 91 +0, = 2‘? .
o .Hence from (A 12) and (A 13) ve have
| | 8 = 13“/(n+1) R
el. . . 3=1,2,...,0 _
:'ahd o .-3.‘  : *.l92 = e%ijﬂf(ﬁ+1)_ | ?i=z:I .

. Then, from (A 14) and (A 15) A can be expressed as.

A = S(0.46,) = 5{ RELIC VR *13ﬂ/(n+1))

o= —{cos——— +151nl——+cos——~.-131n———0

n+l :
‘hence the nreigenvalues.are g1ven by '

R . '.n- .
Aj = COS‘I]],'I-—I ,.J=1,2,oeo,n.,

whilst the s#h component of the eigenvector (cpfreSPUﬁding to the jth

~

eigenvalue)=is.éiven by

G a0
xs A191+A262 ,
_ Al( 1sJ1T/(n+1) -1SJ11'/(n+1))
. 5 jsT _ .
| = 21A1 ™I s=1,2,...,n.
_ ‘ A . .
' Now‘since, ;‘H o X 51n2 l%% n;l y
o 5= 1)

‘ then by substltutlng x;J
. (ZlA) Z .A2- JSTT'_

+1
s=1
wh1ch ylelds the result by v1rtue of (A. 17),
2 |
(2 A ) 'n"‘l o

50? t _li. -ehﬂ ; (21A )= /r‘?'

Hence substltutlon th1s result in (A 16) we Obtaln .

Y /C ,191 ,s‘=‘1',z,;.‘.',n'.-

H

: Further, if we substltute-x

1nto the f1rst equatlon of (A. 2) we have l

glven by (A. 18) 1nto the second

Ca7

(4.13)

(A.14S e“

(A15)

-(A;iej_‘J

(A7)

a8y

_ the third etc. up to the nth equatlon of (A 2) and apply the f0110w1ng R

formula,



- C ! ;7_?348;f;¢

. . ‘n-k

Y sinsx sin(s+k)x‘e ak coskx ;.cos(n+1)x)51n(n-k)x-
sol . R 2 T 2 sinx

~we obtain for x=jm/(n+l) the following relations,

..5k+1 =n+l (‘?fi‘?'°55%'* @)
Thus, by settlng J-l the relatlons (A 18) and (A 19) 1mp11es (A 5)
' and (A, 3) respectlvely. | _

| On the other hand, ‘for k—l (A 19) ylelds the result, | _

| a, = cos&%i , J-l,2,.r.,n. ‘_a::'_'” _ 23.__” ;(A.20) 
Since'the:maxihuﬁjof aé in_(s.ZO):ishat'jéi, then herg (1931)c0hciuoes 
- ;ﬁat the necessary condition.fbrlsoiving (A.Z)?in ths real dbmain-is |

.Ia < cos—— (A 21) e

| .2|_* ;n+1'.-". | | _
‘Further, he p01nts out that for the remalnlng values of ak, k~3 4, ..,n, :
it is necessary that | : C | . , _
' ' Iak+1| COSE:E 'i ".h . f. _ ‘h ' ' (Alzzl
-_wmth N*E———] fbr k>2 8o that (A 2) is solvable in a real domdin. He o
© adds also that both (A.21) and (A. 22) are not suffwzent for the real

solvabzlzty of CA 2}
' However, for the case n=3 (1 e. the coeff1c1ent matrlx is- c1rcu1ant .
'and qu1ndlagona1 Berg (1981) glves the suff1c1ent and necessary condltlons,

fwhlch are equlvalent to those glven by Evans and Hadjldlmos (1979),

-1 1, .1 o
la2l @ f ; for “5533 5
|a2| S iz, 3(1-2a4) for l<a3~§-; o

By 1nvert1ng these 1nequ311t1es we obtaln the necessary and suff1c1ent

condltlons, so that (A 2) possesses real solutlons;'
|a2| 2\ a, 4(1+/1 2a ) for o<|a2|< .
l(i—fl—Za )sa < (1+f{ 23 ) for —<|a |<
4T T T2 2 '

O



‘fjeﬁ3£§ L;{

. 2 ,
_ wh1ch c01nc1de with the results obtalned from (A 21) and (A.22) Cw1th N-l)

Thus, the maxlmum of ]a [ and la | are' 1 and -respectlvely and
: 2 3 Vi
2 .
:re8pect1ve1y.i
Flnally, back to the system (4 2. 1), after 1ts normalization, the
: EOeff1c1ent matrlx will be 1eft,w1th un1ty values on the d1agona1 and the

'non-zero elements bec0me c. /co, 1-1,...,r.. In thlS case, the factor1zat10n_

'?::(4 2 3a) 1mp11es a non-llnear system 31m11ar to (A 2) (taklng the assumptlon  _f

'}1nto account) Thus, the cond1t10ns (A 21) and (A 22) may’ be con31dered
~as necessary condltlons for the 1terat1ve method (GITRM Subsectlon 4 2 2),

'e;to obtaln the real solut1on of (4 2. 4a)
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The algorlthm FIRMI for the trldlagonal case, 1 e.. r=1 can be reduced |
as follows. |
From the‘relatiOng (4'4 30), we have
‘J ( Yl J/TO 3+1)gl _]+1 I i (_B.']') '
_1 ’ - : 7. ‘ j=N,N"1’oa o.,l‘-

,§+10%541%25

Swith g1,N+1 |
Camd L F - -1y s /YO (8.2)
“?ith. o “?%+1 = 0. | |
Then, (4,4.32) implies .
s 1 _
Yj' YO'J( —yn+lgl’3) ; .5?1;2,:.;,N..“ o ‘Q: (B.B)
RIURAW R o o

The S§éﬁem (4.4}28b)5beComes,

R A
]
ol 0 ! ] |
. ~ 1 ¥
a3 . - . | = l (B.zlr)
. ~ \ ~ -\ . o : 1 . .
~ -~ e 11 :
0 -~ L. 1 ¢
nN_l 1 XN ) :

—_ - e == e = == - —a-- LS v
SRR . e UN)

(where ao’i=1;‘ié;?2,..},N,_aslin (4,4.295)1and,we-take ui=a1’i?,i§1,2;g,;,N)f

Ffdmf(3.4) we- can obtain the folldwiﬁg ;ealtipq
R R e
| %27 yZfalxl S o SR ;x", ' l(3f53)-- 
1’ 3=2,3,...,N

X, =
S YJ J 1 J

and (B.5b)

NN T yN+1

Now, from (B.5a) we obtain after subétitution,



s

VIS
II.

171

ol
]

2 =Y 1 1 ;Yz’ Qlyi‘

37 y3_.2 2 Y3 zyz %2%1%1

xﬂxn yh-aN'1yN71faN;}aN‘2YNf2+".+(f;) : uN_laN_z.,.ulyl-

N (8.6)
Multlply (8. 6) by ay then fromr(B 5b) we have _‘_
Yy oy = BBy Ty Y et D R L
where . ' |
o “‘N “N_ |
| mN—l;’ NON-1 © N-lmN
If we multlply y by m in (B.3), then we have
"5 J¢J k! JyN+1 BT
.. When these are subst1tuted in. (B.7). and rearranged then we obtaln
e Imee Do
| N+1 jm1 ] ; j=1 J 1,3 N+1
o _ N N -
or Ve = L6 /(- T m ¢1 ) (B.9)

'end hence y , J =1 +2,+..,N can be obta1ned from (B. 3) and the solutlon.
:,ﬂvector xJ, J=1 2,...,N from (B 5) |
| Thus, the amount of work 1s reduced to the order of: 7N mult1p11cat1ons
‘_and AN add1t10ns (1nc1ud1ng the normallzatlon of (4 4. 3a))° thls can be.
‘reduced further if the coeff;c1ent matrix 1s,eonstanr and symmetric (see

‘the'syerem,(4;4;8a)).
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"l The‘attached procedures are‘writteﬂ‘lh7ALGOL-68:(and the_tested';

programs have been run om‘the ICL 1904S. in the Computer Centre, at .. -

[n
[ p*)
L1

‘rLoughboromgh‘UniVersity)."Ihese areﬁ,h'

(Algorlthm FlCMl)

-GENSYM - solves the system (4 2. 1), and involves the follow1ng steps.

‘(i). the procedure GITRM to solve ‘the approprlate non—lrnear '
: ‘“equatlons,
and (ii) procedure BACKFORD to perform ‘the forward and backward

f'substltlon schemes.' -

(Algor1thm FICMZ)

'PRDSYS - solves the system (4 3 1) whlch 1nc1udes the relevant .

-factorlsatlon and e11m1nat10n procedures.

‘(Algorlthm FIRMI)

) NONPDUL - performs the factorlsatlon (4 4, 2)

BACKFORD -solves the.system (4.4.4)

L(Algor1thm FICMB)

‘_GENSYSBLK - solves the system (5.1. 1) and 1nvolves two procedures

(1) GITRMBLK - computes the submatr1ces Q and Q1 of the system
(5 1.4), |

and (11) BACKFORDBLK - solves the two systems (5 1. 9a) and (5 1 9b)

.The Iteratlve Deferred Correctlon procedure (Chapters 3 and 6) for

'2-po1nt boundary value problems w1th perlodlc condltlons in Whlch

elther.PRDSYS.(1;e.'FICM2) or GENSYM (i.e. FICM1) is used. The

program is an extended and modified form to the one given in

Audish (1978).
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*PROC" GITR% (' REF []'REAL'C BETPA) VOID‘? :‘

PINT'N=' UPB C'

[8: N] !

cCi=c;

REAL'ALPHA,
~ CC,EPS;

'REAL'SS:=8, pp -a-- S .
‘INT'NN:=(N~('ODD' N'l'ﬂ)) / 2-- .
"FOR'I'TO'N'DO'SS! PLU"'"{I],

_'POR'I'TO'NN' DO'PP'PLUS'C[2*I- i]
‘REAL'Zl 22;

C[ﬁ]
Cf{1]:

SQRT(C[G]+2*SD)

=SQRT(C[@]+2* (S5~ 2*PP))-

=(z21+22)/2;
=(21- 22)/2'

! PROC' MAXNM= (" REF' []’ REAL' x,'REF"REAL MAX) VOID"
. (MAX:=2.0;'FOR'I'FROM' 'LWB'X'TO''UPB'X'DO"'
~ VIF''ABS'X[I]>'ARS'MAX'THEN' MAX: =X{I]'FI" )
'INT'NUM:=0;
YBOOL'ACTIVE:="TRUE';
- 'REAL'SUM, .

~SUMBT,
SUMBTT,:
EPSMAX,
TT: .

 'WHILE'ACTIVE'DO'
VBEGIN'

NUM'PLUS'1; | | |
PRINT( (NEWLINE,"L E V E L oAd*RRA KA AR RF A AR ,NUM, NEALINE) )
"IFTN=1

. VTHEN' ALPHA[@]--BETrA[@] clal- ALPHA[I]:=BETTA[1]:=C[1]

'ELSE' - -

':'FOR I'FROM' G‘TO N'DO" ALPHA[I] BETTA{I},"CEEAR'aETTAg]“'

'BETTA[N]°-C[N]/ALPHA[G}, SUMBT-=G,_
 SUMBT:= BETTA[N], _
SUMBTT:=('0ODD' N:BETTA[M]'Q) -
'FOR'J 'FROM'N l'BY' 1'TO 2'00':;
'BEGIN! : ‘
. 5UM:=0;
"FOR'I' FROW'J+1‘TO N'DO'SUM! PLUS'ALPHA{I-J]*BErrA[I],
8ETTA(J}): -(C[J]-SUM)/ALPHA{%], A
SUMBTT' PLUS'( oDp! J'BETTA{J]'B)-"
'SUMBT'PLUS BETTA[J] '

MDI" '. : ‘ ’ )
BETTA[1}:= [1]-suMstr; - '
3ETTA[@):=C[d ]-(SUMBT SUMBTT)-.
.o 'FIYy o : o
. EPSMAX:=8:

TFOR'L’ FROM‘G TO'N'DO EPS[I]"BETTA[I]—ALPHA[I],
MAXNM(EPS,EPSMAX); -

PRIVT((VENLINE, ALPHA BETTA& EPS ARB'_ ,NEWLINE ALPHA NEWLIN
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BETTA NEWLINE EPS NEWLINE))

'FOR'K'FROM'2'TO'N'DO' ' ' ' :
~ (TT:=@; 'FOR'J'FROM'K'TO'N' DO'TT" PLdS'BErTA[J K]*BETTA[J].-
o PRINT((NENLIN& PRI sCCIR)," ", C[KR],NEWLINE))

) 3 :

'iF! NUM)GB'OR"ABS EPSHAX(lG& lZ'THEV ACTIVE--'FAL:E"FI'
" 'END' : , .
'END'°‘C J F GIT R M 'C'

_ "PROC BACKFORD*('REF [] REAL ALPHA,'REF [] REAL'Z X)'VOID'-'
Lo 'BEGIWN' . - :

"INT'R='UPB'ALPHA;

'INT'N="UPB'X;

{1:R, l.N+R] REAL'F-

{1.N+R] REAL'E;

“[1:R}'REAL'M; o

C'FOR'IY TO R'DO! M[I] -ALPHA[I]/ALPHA[B]:

.- 'EOR I'TO'R'DO" :
o e 'FOR'J'TO?R-I‘DO{ F{I,J]: -(J)I'B'ALPHA[I -31); '
_'FOR'I'TO’ R'DO"FOR'J'TO' 'DO'F[I N+J] =(I= J'-ALPHA[alta)-
MFOR'I'TO'R'DO'E([N+I]:

. YREAL'SUM,SUME; e
"FOR'J'FROM'N'BY'-1'T0'R'DO!
'BEGIN' \
- : - auws =0
e .. . ... .'FOR'K' TO'R" Do
R - '3EGIN'
| SUM:=0; ‘
“SUME' PLUS'M[K}*E[J+K],‘ o -
*FOR'I'TO'R'DO'SUM'PLUS' w[I]*F[K J+I],
P[K,J] :=SUM¥(J= K'ALPHA[e]la) P
IENDl, -
.E[J]--SUMn+Z[J]
END';

FOR'I'TO'R-1'DO"
'BEGIN' '
'FOR'K'TO'R'DO’
'BEGIN'
SUM:=0; .-
'FOR'J ' TO'R=I'DO’ 3UM" PLUS'M[I+J]*F{K R+J],
., FIR,R-I] :=3UM+F {K,R-T]
".END'. .
. SUME:=8; T
~ VFOR'J'TO'R-I'DO'SUME' PLUS'M[I+J]*E[R+J]
E[R- 1]-~suwa+z[R 1]
'END';
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'BOOL'OK:="'TRUE';
. VINT'COUNT:=8,KdAT; . .
[1:R-1,1:R-1] 'REAL' RATIO;
 CLEAR'RATIO;
"WHILE'OK'DO'

'3TGIN'
- COUNT'PLUS'1;
" KHAT:=0;

-‘KHAT'-R+1 COUNT; . '
'FOR'K ' TO'R-COUNT'DO"
'BEGIN' . | |
RATIO[COUNT K] :=-F [RHAT, K]/F[KHAT KHAT];
~ 'FOR'J'TO'R-COUNT'DO'F[J,K] 'PLUS 'RATIO [COUNT, KI*FIJ, KHF

RIS
: : . EIK}! PLUS RATIO[COUNT K]*E{KHAT}
—'END" ‘ .
f VIFY OUNT R- 1'THLW JK. 'EALSE"FI' oo
 END'; RS
"'REAL'SUMY:

[1:N]'REAL'GAMMA;

‘[~R+1:N] *REAL'Y;

"CLEAR'GAMMA; 'CLEAR'Y; - ' : o
'FOR!I'TO'N'DO'GAMMA[I] :=(I>RIALPHA[Z] LF(I,I]);
'FOR'J'TO'N'DO" S o

"3EGIN'
VINT'KR:=0;
SUMY:=0;

_ '"FOR'K'TO'R' DO (KR: ——R+K+J 1; |
L suMy’ PLUS'(J>R'Y[K]*F[K J]'Y{KR]*(KR)G'F{KR J]'(
)y _ :
o e R o
© O Y[J]:=(E[J]-SUMY)/GAMMA[J])
'END'; T . a

. - 'REAL'SUMK;
[1:N] '‘REAL'YH;
[1:N+R] '"REAL'ETAH; o ‘ SRR
"FOR'I'TO'N'DO'YH[I]:=Y[N—I+1]} 
'FOR'I'"TO'R'DO! BTAH[N+I]‘-@- o
'FOR‘J'FROH N'BY'-1'TO'R'DO" e
V(DUME =@ 'FOR'K'TO'R" DO SUME’ PLUS'W[K]*ETAH[J+K},
“,‘ETAH[J] SUWL+YH[J]), :
'FOR'I'TQ'R-1'DOY '
(SUME' P:;'FOR'J'TO'R-TI" DO'SUHE PLUS‘M[I+J]*ETAH[R+J]
ETAH[R- I}'-SUHE+YH[R I}) ’ _ _
PINT'NUM:=3:
fBOOL ACTIVE:='TRUE';
"WHILE'ACTIVE'DO'
- '"BEGIN' ‘ .
"NUM'PLUS'1;: ' . :
'FOR'T'TO'R-~ NUM DO ETAH[T] PLUS'RATIO{NUM T]*ETAH[R+1—NUM]
VIF'NUM= R l'THEN ACTIVE-*‘FALSE"FI'
"YEND';
[1:N]'REAL'K:.
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'FOR'I'TO'N DOEK{I]--ETAH[N I+1] ‘ _ R
- [1:N+R] 'REAL'XX; 'CLEAR'XX- e SRS R
'REAL'SUMXX; - '

'FOR'J'"FROM' N BY'-I TO 1'00'
'BEGIN'
SUMXY:=8; -
. 'FOR'I'FROM'R'BY'-~ 1'ro'1'no'
- sumxx PLUS (T<N=R+LIXX[N+I- R]*F{R+l I N+l ~J]
= 'XXIJ+I]*F[I N+1- J]).
XX[J] :=(X[J] SUMXX)/aAHMA[ﬁ+1—J],
: L X{TY —XX[J] -
‘ 'END!' :
ND'-'“'O F  8ACKFORD 'C'.

'PROC'G"NSYM (° REF'[]'REAL'C 'REF'[]'REAL'Z.X)'VOID!:
'BEGIN' : N - S
'INT'R="' UPB
{3z R]'REAL ALPHA' A o
V'FOR'I'FROM'3'TO'R" DO ALPHA[ l:=1;"
GITRM(C ALPHA) ; '
- [1:R]'REAL'BB; ' '
'FOR'I'TO'R" DO'BB[I] ALPHA[I]/ALPHA[@], - B ' ‘
' PRINT((VEWLIWE,"RATIOS ALPHA[I]/ALPHA[Z],I 1, 2,... ARE".NEWLINE

BB,NEWLINE,NEWLINE, NPWLINE)),
'BACKFORD (ALPHA, 2, X)
 'END';'C'OF GENSYM'C'
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'PQOC PRD:YS=( REF [ ! REAL %, REF []'REAL Z, X)'VOID" .
CYBESIN' s
'INT N=2'UPB" A;‘
R=1'UPB'A;

o VINT'Ti= EHTIER'(N/R),
SINT'RM:=N-T*R; .
[1:R,1:N]'REAL’ L,
' .. EPS;
[1:R+1,1:N]*REAL'U;

~ [1:N]'REAL'EPSX;
[1:R]'EAL'VECEPS;

. 'REAL'ZPSMAXK;

L YREAL'3UM, SUME;
NINDTHUM:=D;
'350L'OK:="TRUE" ;.

'FOR'R'TO'R’ DO’

]
C ¥

FOR! I TO! N DO L[( I] —A[K'L]/AEQ I1; o
o _ .

UFOR'I'TO'N'DO'LIK,T]:=120823;
'C'INITIAL VALUES FOR L[l,]...L[R -1,] 'c"

: 'FOR I'TO'N'DO!' U[R+1 I]: -A[R,I];
'"WHILE'OK'DO' o :
TBESIN'
NUATPLUZ'Y:. ' A .
BRI qr((v HLIVE,“L E VEL *****f******" NUM,NBWLINE}):
FOR'K'FROM'R'3Y'-1'TD'1'DO' - - ‘ o T
'FOR' I'ro N'DO' . .

S - (SUM:=0; 'FOR'J! TO'R-K+1'DO'SUM' PLUS ' L[J, II*U[K+J I“T(“ '
=Jyis '

U[{X,I]:=A[K-1,I]-SUM};
TFOR'K'FROM'R  '8Y'~1'TO'1'DO°
{ ' I ' -
. . . " YPOR'I'TO'N'DOY.. . e
o ~ (SUM:=8;'FOR'J' TO'R- K+1 o' UM'pLusrL{K+J-1,11*U[J,INT(N,I-
C(R+I-1))): |

_EPS(K, I]-*R[ K,I]-30M); | ' :
'FOR'I'TO'N' DO'L[K I]'PLUS EPS[K I]/U[l INT(N 1 K)]
AR : .

YPOR! K'TO'R'DO" :
“( 'CLEAR'EPSX; EPSMAX: -a-

. EPSX:=EPS{K,l; .
MAKNM (EPSX, EPSMAX) ¢
VECEPS [K] : SEPSMAX

_ PRLQT((VENLIVE, 'L LN”N&EPS ARE",NLWLLNB L, NLRLIVB EPS, VnHLINEf

PRIVT((NEWLINE,“U VALUES ARE',NEWLINE U VEWLIWE)),
"MAXNM(VECEPS, EPSMAX);

x_|.'£€'NU!>61 *OR''A3S'EPSMAX<1da~ 12 THEN' OK *'FALSE"FI"
: END*; , L o o
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"PROC TRNGMTX“C'REF [, ] REAL F FS, 'REF'[]'REAL!E;'REF![lﬁnzaL'ES)!vOI
DY R : _ AR R
'BEGIN' -] o _ ‘ _

" VINT'R=1" UPB F,“ , e

o7 N='UPB'ESy o S

'BOOL'OK:='TRUE"';
- VINT'COUNT:=3,KHAT; o

. [1:R-1,1:R-1} 'REAL" RATIO-

'CLEAR'RATIO; ST T e

;" "WHILE'OK' AND a>1 Du" e e P

'BEGIN"
COUNT PLU" 1“

KHAT R+1 COUNT‘ : ‘
. "FOR'K'TO'R~-COUNT' DO’
'3EGIN’
‘RATIO[COUNT,K] ~F[KHAT K]/F[KHAT KHAT], : '
'FOR'J'TO'R~COUNT'DO'F [J,K] 'PLUS RATIO[”OUNT K]*F[J KHAT],
E[K]'PLUS RATIO[COUVT K]*E[KHAT] ' :

'ENDY;
'ifpt COUNT R- l'THBW OK"'FALSE"FI'
'END" :
FS: =F'

"FOR'L'TO'N'00'E5[ 1] : =E[I}.'
"END'; 'C'OF  TRNGMTX'C' |

[1:N]'REAL'ZY;ZY:=2
{l:N]'REAL'Y; -
[1: R,-R+l N} 'REAL'F;
.[ R+1 N]! REAL'E 223

'.fFOR I'To" R DO' : ' ‘ '
'FOR'J'TO'R-1" DO'F[I N- J+l}-‘(J I'l"J(I‘L{I =T J+l]'8
~ 'FOR'J'TO!R'DO' - ..
o 'FOR'K'TO'R'DO! F[K —J+1] (J-K!-llﬂ),
'FOR'I'TO'R'DG'E[-I+1]: R S
' '‘FOR'I’ TO'N-R+1'DO';'

'BEGIN' ‘
FOR'K' TO R! DO'
C(8UMi=0;

- TFOR'J FROMR'BY' - i 'TO'1'D0" -
: SUM'PLUS' (=L{J, I} *F[K,I- J])-"
F[K I]:=SUM+(I+K= N+1'1'G) :
Ve oo
 SUME: =6; . ’ R
‘'FOR'J'FROM'R' BY'-l 'O DO SU%E‘PLUS'( L[J I]*E{I-J]),
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o E[I]=-2[1]+SUME
'FOR'I'FROM'R’ BY' -1'To" 2 Do
'BEGIN'
FOR'K'TO'R'DO’
(3UM:=F[K,N+2-I]; o A
- 'FOR'J'TO'I-1'DO'SUM' PLUS (- L[R I+1+J N+2- X]*F[K,N R+1-J

, F[K N+2- -I]:=80
Yo _
SUME: -Z[q+2 I], ' ' '
'FOR'J'TO! I l'DO SUﬂE PLUS'( L[R I+1+J N+2 I]*E[N R+1 J]

E[N+2 I]"SUHE
'END'-

.. [L:R,1:N]'REAL'FF, FS"CLEAR FF-'CLEAR FS;
- {1:N]'REAL'IS;
"FOR'K'TJ'R' DO’
 YFOR'I'TO'H'DO'FF{K, 1] : —F[K N~ I+11,
TFOR'I'TO'N'DO'22[1] :=E [N~ 1+1] 1
- TRNGMTX (FF,FS,22,29) ;
'FOR'K' TO'R'DO’ o '
~ 'FOR'ITO'N'DO'F[K, I]--FS[K N-I+1];
TFOR'I'TO'N'DO’ Z[I]--ZS[NﬂI+1],-‘ :
" REAL'SUMY;
“[1:N] 'REAL'BB;.
'CLEAR'Y;
'FOR'I'TO'R' DO'BB[N+1- I]'-F[I N+1 I1;

'FOR 1 TO N- R DO'BEB(I]: —1'

L . 'FOR'J'FROM' v'ay' 1'70"1" N
mEee (3UMY:58; '
L ~ 'FOR'I'FROM'R' BY'—l TO'l'DO‘SUMY PLUS' Y[N+I R]*F[R+1 I J],
Y[J]--(Z[J] SUMY)/BB[J] o
Yi

VFOR'I"' TO'N' DO' ' e
(3UM:=Y[I];'FOR'K'TO" R DO SuM! PLUS‘L[K I]*Y[INT(N I K)],
. PRINT((NEWLINE,SUM," - ZY[I])))
- " {1:R,1:N+R]'REAL'G,GG;
- [1:N+R] *REAL'YY; 'CLEAR YY; .
{l'Rl'REAL'W- B : '

FOR'I'TO'R' DO'- : s ‘ ' '
'"FOR'J'TO'R~1" DO'G[I J]-~(J< I'U[I—J+1 J]'G), .
YFOR'I'TO'R'DO''FOR'J'TO'R'DO" G[I N+J]-~(J I'-U[l 11'3)
'FOR'I'TO'R'DO'YY[N+I]:=0; :
“'FOR'J" FROM'N'BY'—I TO'R'DO"
s 'FOR K'TO'R'DO"
(SUM:=08; '
: 'FOR'I TO'R Do
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-~

SUM'PLUS'(( U[I+1 J]/U[l INT(N I+J)])*G[K I+J]), N
. G[K,J]: SUﬂ+(K“J'U[1 R]!B)}, : : :
"SUME+=8;

'FOR'I TO R' DO SUME PLUS ( U[I+1 J]/U[l INT(N I+J)]}*YY[I+\

| ,_YY[J] ‘Y[J]+aUME
'END'; ,
~ 'FOR'I'TO'R-1'DO’
~'BEGIN' . e
'FOR'K'TO'R'DD"
(SUM:=G{K,R~I]; |
'FOR'J'TO'R-1 Do'suw PLUS" (- U[I+J+1 R- 1) /U1, R+J])*G[K R-

_ G[K R-I]: SUH),
. SUME:=Y[R-I];

'FOR'J TO'R~-T' DO SUME PLUS'( U[I+J+1 R-I]/U[l R+J])*YY[R+J:

YY{R- I] =SUME
END'; .. |
\J’G =G;- : s
TRNGMTX (GG ,G, YY, Y)L
'REAL'3UMX;
"CLEAR'BB; 'CLEAR'X; L
'FOR'I'TO'R! DO'BB[I] =G[I,I]; AR
'"FOR'I'FROM'R+1' TO'N DO'BB[I]:=U[1,1];
"FOR'J“TQ'N'DO'
(SUMX:=8; ' _
'FOR'K'TO'R'DO'S3 UWX‘PLUS'X[K]*’[K SR
CXI3) 2=(Y(J] SUMX)/BB[J] :
). .

YEND';'C' OF PRDS Y s"c'
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| 'PROC'NONPDUL (" REF [,]'REAL'U 'REF'[,] 'REAL'L, 'REF'{,]'REAL'A) 'VOII
'BE"IV' ,
VINT'N=2'UPB'A,
- .. R=1'UPB'A;
YINT'T:='ENTIER' (N/R} S ‘
'INT'RM:=N-T*R; =~ . .~ IR T
C[L:R]VIND'SPAREVEC; . :
'PROC'GETSPVEC= 'INT RM 'REF'[]?INT!X)'VOID'#‘
'3EGIN' L R ‘
'INT'COUNT:=1,K,R;RK;
© R:='UPB'X;
RK:=(RM= UIR'RH)'
X{l]--—RKo ’ ' .
'FOR'J"FROM'RK-1" BY'—I'TO 1 DO! (COUNT'PLUS 1 X[COUNT] J):
S 'IF'COUNT<C R'THEN' ' :
- 'FOR'J'FROM' R BY'—l TQ ?“+1 oo! (COUVT'PLU l:X[LOUNT]1=J)
S ' 'FI' . : . oo -
3“'END"'C OF GETSPVEC 'C'
GETSPVEC (RM,SPAREVEC) ;

- [1:R,1:N]'REAL'EPS;
- [1l:N] *REAL'EPSX:
[1:R] '"REAL'VECEPS;
'"REAL'EPSMAX; o
P "REAL'SUM;
. VINT'NUM:=0; L
'BOOL'OK:='TRUE';
C'FOR'K'TO'R'DO!
_ 'C'\ . ' |
: : 'FOR'I'TO'N' DO L[K I):=A[¥X,I]1/A(@,1I];
—— Ll oL :
' "FOR'I'TO'N' DO L{K,I):=13; . ' :
o 'C'INIrIAL VALUES FOR L[l ]...L[R 1

,_'FOR'I'TO N-R'DO'U[R+1,I] :=A[R;I]; -
. 'FOR'J'TO'R' DO'U[R+1 N~ J+1]--U[R+1 SPAREVEC[J]]
'"WHILE'OK'DO" § |
© YBEQIN'. |
o NUM*PLUS'1l; . . B 1
PRINT((NENLINE,"L E v E L AkXKARXXEXNRT NUM,NEWLINE)) ;
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-'FOR'&}FROM'R BY'-l'ro 1 DO' _ _
('FOR'I'TO'N-K+1'DO' '
' (3UM:=8;. 'FOR'J'TO'R- x+1'00'suw PLUS‘U[K+J I]*L[J I+K 11
CUIK,Il:=A[R=1,I}1-SUM): =
'FOR'J'TO' K—l'DO U[K,N- J+1] U[K SPAREVEC[J]]
oy o -
. 'FOR'K! FRO% R 'ay' l'TO 1'00"
{
 TFOR! 1 TO'N K100 S _ o
(SUM:=0; 'FOR'J'TO'R- K+1° Do'buw PLU L[K+Jfl,I]*U[J,I+K]{
EPS[X, 11 =A[-K, I+K]-SUH). o '
'FOR'I'TO'N-K'DO' L[K 1] PLUS EPS [K,I1/U(1, I+K]
)
'"FOR'S3 FROM 3'TO'R- l'DO"FOR'J'TO'R s DO'.
(L{R-S,N=-J+1] :=L[R~S,SPAREVEC[J]]: -
: EPS[R-S,N-J+1] :=EPS [R-S, SPAREVEC[J]])
_'FOR'K'TO'R'DO' : :
( 'CLEAR'EPSX; EPSMAX =0;
. . EPSX:=EPSI[X,]; _
Ca . MAXNM({EP3X,EPSMAX):
Vn»EPS[K} EPSMAK
)l' ' . ‘ )
PRINT((NENLIVE,“L LNEN&EPS ARE“,NENLIVE L,NEWLINE, EPS NEWLINE)

-

PRINT((NENLINE,"U VALUEa ARE“,NEWLIWE U, NENLINE))

-

WAXV%(VE“EPS EPSWAX), '
-~ 'IF'NUM>51 'OR"ABS'EP;MAX<10& 12 THEN OK'='FALSE"FI'
'END'
'END';'C'OF NONPDUL 'C"

;.

'PROC'BACKFORD (! REF [ 1 REAL'GAH ALH *REF'[] 'REAL'X,2) 'VOID':
- 'BEGIN' . “ o ' o -
- YINT'R=1'UPB'GAH,
‘ ‘N=2'UPB'GAH;
[a R 1: N+R]'REAL GA, -
. AL;
o [1:N, 1 R] REAL'PSI;
[1:N] 'REAL'PHI; _
[1:R,1:N+R]"® REAL'G-'
'*CLEAR'SG; S .
{1: N+R} REAL' zz- o : - oot
[1:R]'REAL'M; o ‘ .
'*CLEAR'GA; 'CLEAR' AL°'CLEAR'ZZ;" : : ' , ‘
'FOR'K'FROM'#'TO'R'DO' (GA[K,1:N]: ~GAH[K ] AL[K 1:N} :=ALH[K,]);
'FOR T'TO'R'DO' (G[T,N+T] :=-1:GA[D, N+T] A
FOR'J'FROM'N' BY'-l TO'l DO*
”-'BE IN' ' ' ,
JMFOR'K'TO'R' DO w{K]-z-GA[K J]/GA[G J+K],‘
ZZ[J]'=Z[JI. o



'FOR'K'TO'R'DC! ' ,'_".q . ST
'‘BEGIN' A '
22(J)" PLUS'M[K]*ZZ[J+K], ‘ ]
" 'FOR'S'TO'R'DO'G [K J)! PLUS'M[:]*G{K J+S]
. 'END" o
'END’'; . -
'FOR'J'TO? N DO
'BEGIN' : :
- PHI[J]: ZZ[J]/GA[B Jl: _ oL .
'*FOR'K" TO R' DO'PSIIJ K].:=-G[K,J]1/GA[3,T]
'‘END'; N e
{1:N+R,3: R]'REAL T |
[1:N+R,Q: N]'REAL'C-

'INT'D,

D,‘

"FOR J'TO'N+R'DO" .
C1POR'K'TO'R'DO’
'IF*J-K>8 'AND' J-K<= N

lcl

"THEN'T[J,K]: --AL[K J- K]/AL[G J- K]
rce

THEN'T[J,K}: =-AL[K,J-K]

"PI'; - -

: C[l 8):=T[1,0]):=1; .
~ 'FOR'J'FROM'2'TO'N+R'DO'
- 'BEGIN’
C[J,0]: —T[J l]-—l
"FOR'I'TO' (J<= N+l'J I‘N)'DO'
(
- Cla, I].
'IF'J<= N+1
'THEN' S'“(I<R'I’R)' o
- 'FOR'K'r0's'D0'CiJ, I} PLUS T[J K]*C[J -K,I- K]
-'ELSE D:=N+R+1-J; ‘ N o, o
- 8:=(IKD!I!D); ' ' ' o
.~ 'POR'K'TO' s DO'C[J I]'PLUS'T[J R- D+K]*C[N+1 K, I K] -
IFII Co- . K
) ,
‘"END';
-[1:R,1:R}'REAL" CPSI
fl: R] 'REAL'CPHI,
YH;
'REAL'SUM; - ‘
'"CLEAR' CP:I;'CLEAR CPHI-
[l:N] '"REAL'Y; '
'FOR'I'IO R'DO’
FOR'J'TO'R'DO" ' ' ‘
'FOR'K'TO'N'DO’ CPSI[I J}'PLUS C[N+I N+l- K]*PSI[K J],

_ 'FOR'I'TO'R' DO'CPSIfI,I]" PLUS 1; '

" 'POR'I'TO'R'DO' S S
JFOR'K'TO'N'DO'CPHI[I] PLUS -C[N+I N+l K]*PHI[K], AR
PRIVT((NEWLINE "CPSI & CPHI ARE",NEWLINE,CPSI, NEWLINB CPHI)).

'IF'R=1'THEN' YH[l]-*CPHI[U/CPSIll 1] ‘
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: 'ELSE"'C bOLVE LINEAR SYSTEM (A V=B) WHERE A »PSI,V%YH;BécPE
¢y ‘ e S
o S N :OLVE:YS(CPSI CPHI YH) '
|FII.
TFOR! S'TO‘N‘DO'
_V3EGIN'
.;" Y[a] =PHI[S]; . . e L
) 'FOR'K'TO'R' DO'Y[:]'PLUS'P:I[:, ] *YH {K}
' 'END'- e

[1: N] REAL'YK; e
FOR'I'TO'N'DO" |
'BEGIN®
YK[I]:=Y[I); - - ' '
- ' 'IF'I)l'THEﬁ"FOR'J FROM'I 1 BY'-l TO'l DO YK[I] PLUS® Y[I-J]*
clI,d) -
. UFII. -
g o :
X[I]:=YK[I]/AL[O,I]
lcl ) . .
X[1]:=YK[I]
'END® . ) .
'END'-'C OF BA CKFO R pD'c'



"f'PRoc BACKFORDBLK—I'REF [ 1 REAL Qa Ql,,REF [ 1 REAL'Z X)! vorn'-g-¢
TBEGIN' , - '
YINT'M=1' UPB Zy -

; u=2 UPB'Z; . o
© {1iM,1:N,1:N§'REAL'F;
(1:N,1: N] REAL'MX,E,
[ . ' ' QIrQKo '
3,
8,y
ZEROWTX
[l.M 1: N] 'REAL'YK,
YH'
ZK,
ZH,
_ SRR € T
' [1 N,1: 11 REAL" VV, 
[1 N] REAL VR.
L VLo
*'CLEAR ZEROMTX. ' ' '
'CLEAR'E;'FOR'I'TO'N'DO'E[I, 11--1' '
C INVMTX(Q0,QI);'C* INVERT MATRIX oe QI xnvsass OF Qa
QK.—PRODUCT(QI Ql); :
'FOR'I'TO'M'DO"
( V[ 1] 'Z[I ]l :
=PRODUCT (QI,V);:
ZK[I 1 =v[,1]

) 3 I f"n SRR

' F[w.,}-=QK ﬂx -SUBﬂTX(ZERcMTx QK) ; ZH[M,]-=ZK[M;];
"FOR'I'FROM'M-1'BY'-1'TO'1" DO' . A
( S:=F[I+1,,1;
- S:=PRODUCT (MX,S);
-~ P[Lss}=2=8;
< V[ ,1):=ZH[I+1,];:
- V:=PRODUCT (MX,V);
Vv([,1]:=2K[L,};
. Ve:=ADDMTX(V,VV); -
i’ZH[I,l:=V[,l].
. S:_F[]-!r]a
. Bi=ADDMTX(E, s);
F[]-frl -Bt .

VR:= zq[l 13 B F[l, e ' B ' :
. +SOLVESYS({B,VR,VL):'C". OLVE LINERR SYSTEN B(VL) Vt{ oL
- ¥[1,]:=VL; . o o
'FOR'K'FROM'2'TO'M! DO
( V[, 11:=Y[1,]; \
- B=F[K,,]: -
V"PRODUCT(B V) P
:=SUBHTX{VV,V):
Y[K;]:=V[}II: 

)3 . T
. "FOR'I'TO'M'DO’
0 vL)e=Y[I,];



s

, +=PRODUCT(QI,V): o Co R
CYK[I,le=vV[,1] -~ . S AU
YH[1,]:=YK[1,); '

'*FOR'K'FROM'2'TO'M'DO’
( VI[,1]:=YH{K-1,1; V:=PRODU”I(MX V)
VY1) i=YK[K,] Vs ADDMTX\V VV),
» YH[K,):=V[,1}
© )¢ -

VR:=YH[M,];8 8:=F[1,,]; o : ~“'-. S
SOLVESYS (B, VR,VL); 'C’ SOLVE LINEAR SYSTEM B(VL) ot
X[#,] :=VL; ‘ .

'FOR'K'FROM'M-1" BY‘—l 0! l'DO'
o VL) =X (M, '
- Bi=F[M~K+l,,];
" V1=PRODUCT(B,V):
vi,1]):=YH[K,];
Ve:=SUBMTX(VV,V):
- X[K l —V[ 1]

L ) '
"END"'C'OF BACKFORDBLK'C'

*PROC'G IrRMBLK ( REF'[, ] REAL'B c QG Ql) VOID':
. YBEGIN'
CYINT'8=1'UPB'B: -
[1 N,1:N)'REAL'BB,CC,D;
D:=ADDMTX(C,C);
BB:=ADDMTX (B, D}
CC:=SUBMTX(B,D):
88:=SQRTMTX(B8) ;
. e CCi=3QRTMTX (CC) ;
e QB =ADDMTX (BB,CC)
S ‘ Ql: —SUBMTX(BB cC); ' '
- 'FOR'I'TO'N’ DO"FOR J! TO'N Do'(Qa[I J]? TIHES 3.5; Ql[I J] TIMES'Q

'END"'C'OF GITRHBLK C'

5)

.

CPBEGIN' . .
M INT'M=1" UPB Z,_
N=2'UPB'Z;
[1:N,1:N]'REAL'QA,Q1;
[1:N,1:N}'REAL'E,D;
'REAL S1,52; :
GITRMBLK(B,C,Q9, Ql),
‘ INFMTXNM(QG,:I),INFMTXNH(QI 52), ‘
: J'IF'S2>S1'THEN'E:=Q8; QB.—Ql Ql'“E FI"
= BACKFORDBLK(QE Ql,z,X) |
~ YEND';'C'OF GENSYSBLK'C'

'PROC‘GENoYSBLK ( REF [ 1 REAL 8, +Cy 'REE'[,]fREALiz,xy'VOID{;
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5

'BEGIN“ < P
' 1C'2~-POINT B.V.P. WITH PERIODIC CONDITIONS !c'_,
CVINT! PRJBNO,.w o
[1: 4] pqoc'( REAL','REAL! 'REAL ) REAL'FNV,
. - ' - DFZV,.
PR ' DFYV;
[1 41 PROC'( REAL S REAL axabryv ‘ '

EXALroyv-'
[1 4] REAL' XAV, -

XBV;. , ‘ _
'?Cﬁ.PROBLEH 1: D2Y-¥- Y 2 EXP(SINZPIK)[4*PI 2(COa2PIX 2- SIN2PIX)-
A ' EXP(Z;IN2PIX) 1) ‘¢!
FNV([1]: =('REAL'X,Y, YD) REAL"( Y+Y*Y*Y+EXP(SIN(2*PI*X))*(4*PI*PI*(
COS(Z*PI*X) 2=~ SIN(Z*PI*X)) EXP(Z*SIN(Z*PI*X)) 1))

. DFZV[1]:=('REAL'X,Y,YD)'REAL':(0); -
~ DFYY[1]:=('REAL'X,Y,¥D) 'REAL': (1+3%¥*y);
EXACTYV[1]: -( REAL' X) REAL': (“XQ(;IN(Z*PI*X}))
. XAV[1]:=0.2; :
XBV{l}:=1.0;

'C' PROBLEM 2: D2Y=Y"3- SIN(X)(1+bIN(X) 2) I \
FNV([2]) :=('REAL'X,Y,¥YD) 'REAL': (Y 3~ SIN(X)*(1+SIN(X) 2)):
DFZV([2}:=('REAL'X,Y,¥D) 'REAL':(9);

DFYV{2] :=("REAL'X,Y,YD) 'REAL': (3,08*Y"2);
EXACTYV[Z]:=(fREAL’X)fREAL':(SIN(X))}
Xav([2]:=8; . R :
 XBV([2]:=2.8*PI;

- 'C' PROBLEM 3: 021+4Y=3SIN(X) Kol | :
FNV[3]):=('REAL'X,Y,¥D)"' REAL"(4*Y 4*SIN(2*X) 5*SIN(X)),
. DPZV{3]:={" REAL'X Y, YD) 'REAL': (3);
DFYV([3):=('REAL'X,Y,YD) 'REAL": (4); T
EXACTYV[3]:=('REAL'X) 'REAL": (3. 5*(SIN(2*X)+2* IV(X})),
XAV{3}:=-3.5*PI;
XBV{3]:=1.5*PI;

e PROBLEM 4: D2Y-(1-Y Z)YD 4Y--551N(X) -COS(X)"3 e -
- FNV[4]:=('REAL'X,Y,¥D) 'REAL': ((1=Y*Y¥) *YD+4*Y~ S*SIN(X)-COS(X) 3),-;;-

DF2ZV[4):=('REAL'X,Y, YD)‘REAL'-(I—Y*Y}, S L
_DFYV[4] :=('REAL'X,Y, YD) 'REAL': (=2*Y*¥D+d4) ;-

EXACTYV[4]:=(" REAL'X) REAL': (SIQ(X))._

XAV{4):=0.08; .

XBV{4]:=2.8%P1;

1PROC ' PVAND= ( REF [l'REAL ALPHA X, B) vorn'f
*BEGIN'

VINT'N='UPB' ALPHA-. ‘ .
_'FOR'K'FROM'@'TO'N'DO'X[K]: —B[K];
'FOR'K'FROM'#'TO'N~-1'DO’ -

“'FOR'J'FROM'N'BY'=1"'TO'K+1" DO'

_ x[J] PLUS' {~-ALPHA[K] *X[J-1]1);

" 'FOR'K'FROM'N=- l'BY'-l'TO'ﬂ'DO"

'BEGIN'
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'FOR'J'FROM™K+1'TO'N'DO'X [J] 'DIV'(ALPHA[J]-ALPHA[J K- 11),.
'FOR'J'FROM'K'TO'N-1'DO'X[J} 'PLUS' (-X[J+1])

1END' _ ,

i'EiD" 'C' OF PVAND 'C'-

VPROC!RECHULT= (* INT'N, ' REF® 'REAL'X) REAL}:ﬁ-
C({N=311 | X*RECMULT(N-1,X) ) )3 )

'PROC'INT=('INT'N, I) INT"{'INT Ke=I;K' PLU (I(l'N"I)N'-N'Z))'
*PROC' ﬁA(QM ('REF []'REAL'X,'REF''REAL'MAX)"' VOID" ‘

(MAX:=2; 'FOR'L'FROM''LAB'X'TO' 'UP3'X'DO" S

' 'IF"ASS'X{I]> ABS'MAX PHEN MAX -X[I] FI' )'

'WHILZ' READ(PROBNO) ; PROBNO#8'DO'
VBEGIN' R . BT
'PRIC' ('REAL', 'REAL', 'REAL') 'REAL'FN:=FNV[PROBNO] ;
*PROC' ('REAL','REAL','REAL') 'REAL'DF2:=DFZV[PROBNO] ;
'!PRoc'('REAL';’REAL','REAL')'REAL'DFstoFyv[PRoaNo];
_ 'PROC'('REAL') 'REAL'EXACTY:=EXACTYV [PROBNO] ; :
'REAL'XA:=XAV[PROBNO], o
- XB:=XBV [PROBNO] ;

'C' MAIN LOOP 'C

-~ 'CHAR'CHAR;
VINT'N,
‘ . RMAX;
SVINT'RB; .. ' ' DR
: 'WHILE'READ((NEWLINE CHAR)) CHAR#"\" 'DO!
'BEGIN® :
- 'REAL'EPS; S
;READ((EPs;RMAX));
- [3:RMAX] "INT'RC,
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L

RE;”;'“‘ o
. 'YFOR'I'TO'RMAX'DO' READ{(RE[I],RC[I].,QQII])}):
"RE[3):=RC[@]:=8; . . o -

QQ{d]:=1; - :
'WHILE' READ(V) ;N#0 'DO!

'BEGIN'

- [-28:N+20) 'REAL'X; | :
| "BRINT( (NEPAGE, "PROBLEM NUMBER®, PROBNO NENLINE)),
- 'REAL'H:=(XB-XA)/N; |

 PRINT( (NEWLINE,"STEPSIZE TAKEN IS: " ,H, NENLINE)),
'FOR'I'FROM'-20'TO'N+28'DO" x[r]-—xa+1*a-

RB:=0; ) _ '
'"WHILE'RB<S'DO'
'BEGIN' o
" *REAL! TRICK-
_RB'PLUS'1; o
[-RB:RB,1:N}" REAL' GAMMAT,
BI: '
, 'PROC FINDCEF3IPTS=('INT'I,'REF'[, ] REAL A, B} VOID'°
'BEGIN' '
' [d: 2*RB]'REAL ALPHAPVD BD1Y, BD2Y Rl R2,
'CLEAR'BDIY"CLEAR BDZY'

BD2Y[2] :=2;
BD1Y[1]:=1; ' '
: "FOR'K ' FROM' RB -1 BY' 1'To" g DO'ALPHAPVD[RB -1- K] *X[I+K+
11-X[1I]; :
- 'FOR'K'FROM'G'TO'RB- 1 DO'ALPHAPVD[RB+1+K] -(X[Il X[I K
-1]); . ‘
L ALPHAPVD[RB] :
PVAND(ALPHAPJD RZ,BDZY);
PVAND (ALPHAPVD,R1,BD1Y); o B _
_ ('FOR'K'FROM'-RB'TO'RB' DO’ (A[K 1 -R2[RBfK]:B[K,I]:=R1[R
S B-K]) | . R
: | 'END"'C'O F FINDCF3PTS 'C°
SRR *.-_"PROC SPX=('INT' I,'REF'[]'REAL Y, 'REF'[, ]'REAL A,'REF"REAL'
TY'VOID': o _ _ . ‘
_ © o 'BEGIN!
. OVINT'J;T:=0: : '
: _'FOR'K! FROM'~RB'TO RB‘DO‘(J -I+K J PLUS'(J<1'wr-J>w1-N'a)
- _ . R , T PLUS Y[J]*AIK I})
'END';'C'O F SPX e N
'FOR'I'TO'N’ DO'FIVDCFBPTS(I,uAﬂWAI BI):
ol o N
- 'PRINT((NE&LINE,"GAMWAI IS",NEHLIME,uAHMAI,“BI IS **%" NEWLI

BI NENLINE)),
_.ICI - ' : _
J=PRINT(( NUMBER OF STEPS IS “,N NENLINE)),,

_fPROC_DIFFCORR=( INT'R, REF I] REAL Y DIFCORVEC) VOID"



E,

_ we

WBEGINY

[G 2*R+21} " RBAL RLPHA. o
' C20FDLPVD,
Cl1OFDCPVD,
..3D2Y,
- BDlY;

'CLEAR BD2Y°'CLEAR BDlY"
BDZY[2] =2;8DlY[1]: -l-
TFOR'I'TO'N'DO! ‘ B '
., 'BESIN' 1CY PIND DIFFCOR OF IST & ZND DIF et
'REAL'S:=0,
YD:=0@,
- TTl:=4,
. TT2:=8; o o
”'CLEAR CZOFDCPVD, 'CLEAR'C1OFDCPVD;

- 'FOR'K'FROM'3'TOQ'2*R+2'DO"

ALPHA [K] : =X [I-R=1+K]-X[I];
PVAND (ALPHA, C20FDCPVD, BD2Y) ;
PVAND (ALPHA,C1OFDCPVD, 8D1Y) 3

'FOR'J! FROM‘—R-I'TO'R+1'DO'-
'BEGIN' _
'INT T= (I+J>V'I+J ~N1:
I+J<1'I+J+N'
' I+J)J . * ‘ .
o SstpLus'yY{T ]*C2OFDCPVD[J+R+1];
CYD'PLUS'Y[T ]*ClOFDCPVD[J+R+l]
'END'- ' ‘ o
SPX(I,Y,BI, TTl), ‘
SPX(I1,Y, GAWMAI +TT2)

“DIFCORVEC[I]‘" —S FN(X[I] Y1}, TT1)+FN(X[I],Y[I] YD)+“T2
_ 'END' :
'DIFCORVLC{@] =DIFC ORVEC[W] . ‘ ,

B 'PRINT(("DIF CORRE;TION OF ORDE R ",2*R+2,_ARE:",NEWLIN

DIFCORVEC NENLINE))

"END'f :

.'PROC JACOBIWTX ('REF" []’REAL Y REF [ ] 'REAL' A) VOID"

'BEGIN'

'REAL'Y DASH, DFZI'

. YPOR'I'TO'N'DO"

VYBESIN'

" Y DASH:= ﬂ'
aPX(I Y,B1,Y DASH), _

-~ DFZI: —DFZ(X[I},Y[I] Y DASH), o
_'FOR'K'FROM'-RB TO'RB'DO'A[K,I]: GAMMAI[K I] BI[K II*DFZI

A[G I} PLUS'-DFY(X[I] Y[I] Y DASH)
'END'

'END';'C' O F JACOBIMTX. 'C'

' PROC 'FFORNEWT= ('REF' [] 'REAL'Y, VECF, DIFCORVEC) 'VOID' "



o

"BEGIN' ‘

' 'REAL'TT1,TT2;
'FOR'I'TO'N! DO'
'BEGIN'

TT1:=TT2: ﬂ
SPX{I,Y,GAMMAL, TTZ)
-8PX(I.Y,BI, TTl)p-

VECP[L]: TTZ FN(X[I],Y[I] TTI) DIFCORV C[I}"
'END' &

VEND'p .

' PROC vswraOL—( REF' [} REAL Y, DIFCORVEC"REF BN REAL'B,'INT'
e R o R : o 'REAL EPS) vo
~ID': - ' . R - oo _

' ' 'BEGIN'f- T

a: N]'REAL DELY"

[lL:N]'REAL'VECF;

'REAL'T:=MAXREAL, | |

S:=MAXREAL; t . R
*FOR'QQ’ PO"IF'CHAR*"C“ '"THEN'29'ELSE' (R=2!23!1)‘'FI'
'WHILE'S)>N*EP3"2' AND' (S>EPS'OR'S<T) ' DO
IBEﬂINI : ’ : N

'I'"S' ) Lo

. -FFORNEWT(Y, VECF DIFCORVBC),‘ : : ‘

' “'IF‘R-B'OR'CHAR#“X" 'THEN' JACOBIdTX(Y B) FI".
‘IF''ODD'RB . '
'THEN''FOR'I'TO'N’ DO VECF[I] TIWES'—l' ‘

o ' ‘ " 'FOR'K'FROM' - ~-RB'TO'RB' DO"FOR I TO N Do B[K I] TId

ES'-1 . \ . .

‘ PRDSYS(B VECF DELY{1l: N]) ‘ '
R , . 'C'OR SOLVE THE SYSTEM BY GENSYM, I E FICWl 1IF POSSIBLE !
c! , S

ZDELY{G]'-DELY[N],_
' 5:=0;
'FOR'I'FROM'@'TO'N’ DO':
- 'BEGIN! -
S'PLUS'DELY[I] 2;
Y(I}" MINUS'DELY[I]
TEND';

PRINT((NEWLINE,“NENTON ITERATION",QQp“NOD‘ oF DELTA Y‘"
S SQRT(S/(N+1))))
'END"

"END’;

'C* INNER LOOP 'C’
[8:9] 'REAL'Y,
DIFCORVEC,
'REAL'Z2Z,

- s88;



-'.~

~[-RB:RB, 18] REAL'A'

AFOR' R FROM 3 ro RMAX Do
'BEGIN' .
'REAL'TT: MAXREAL,‘
. 538:=MAXREAL/3;
~ 'FOR'QLI'TO'QQIR]" A
" 'WHILE'SS>N*EPS™2  'AND'SS<TT/2
'3EGIN' . o , :
TT:=55:
CVIF'R=8
" *THEN' S
- 'FOR'I! TO'N po'
'BEcIN' '
: DIFCORVEC{I]'—G-

{1y,

. R NEWLINE) ) ;
_'IF'R>3'AND'Ql>=1

'THEN'SS —ﬂ,

S

”'DO'_

'C'INITIAL VALUES FOR NPNTON,D PROCEDUR”"C[

, 2*RC[R] +1,"AND"

S 403K
END'; Y[@] Y[N} R
‘PRINT(("Y 15 : ;NENLIVE Y,NEALINE) )
'ELSE’ DIFFCORR(RC[R]+RB 1 YY, DIFCORVEC)
IFIl.'
. 'IF'R>D -
C _YTHEN' . ‘ ‘ ' '
: ‘ ' PRINT((NENLINE NENLINE “DIFFERBNCE ”ORQECTON ERROR ¢
RDER",
2*RC[R] +2," {TERMS UP TO DELTA"
, : _ _ - e
L 2*RC[R]+2," )"  NEWLINE,"N=",N,NEALINE))
YRFIY o . o
NEWTSOL (¥ ,DIFCORVEC,A,R,EPS) ; SSS:=0;
; _ . PRINT( (NEWLINE," :
APP,SOLN - _ L ]
R ' CORRECTION o ERROR" ,NEWLINE)) ;
~'FOR'I'FROM'Q! TO'N Do - Lo
- 'BEGIN' ‘ '
*IF'R>0'THEN' YY[I]'*Y[I] -YY{1j]' FI';
- 2ZZ:=EXACTY(X[I]) Y[I},
"S§SS'PLUS'22272; ? L
PRINT(("X[", I.“l-",X[I],“Y[“,I."]=“,Y[I])):
'IF'R>D o : L
-~ YTHEN'PRINT(YY[I]) ,
,-H'ELSE PRINT(”‘ - -" oy
'FI'y o SR
o PRINT((ZZZ NEWLINE))
"END';
'PRINT((VENLINE,"ERROR IN Y HAS NORM*********"
- ; SQRT(SSS/(N+1)),NEWLINE)),
L_PRINT((NEHLINE,"EXPECTED ERROR 1S:

,RECMULT(2¥R+4}
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- 'FOR'I'FROM'@'TO'N'DO'SS'PLUS' (YY[I]"2);
PRINT( (NEWLINE,"CORRECTION IT. NO.",Ql,
_"NORM OF COR. ",SQRT(SS/(N+1))))
|FII._ - : ) . .
PRINT((NENLINE,"EXACT SOLN. IS:" +NEWLINE))
"'FOR'I'FROM'Q'TO'N' DO'PRINT((EXACTY(X[I]))

)':.'
PRINT((NENLINE NEWLINE NE&LINE)),

C¥Y:=¥

] o PRINT(("****************************************“ NENL
. 'END' 'C1OF. INNER LOOP 'C' . .

'END' 'C*OF LOOP WHICH INCREASES R3 'C!

'END' 'C' OF LOOP WHICH READS N 'C' :
. 'END' 'C' OF MAIN LOOGP 'C° '

‘ 'END' 'C' OF PROBNO LOOP 'C°
'END' ' o

*FINISH'



