

This item was submitted to Loughborough University as a Masters thesis by
the author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

F

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY t

LIBRARY

AUTHOR/FILING TITLE

~fIT)j-,-h _e __ _________________________ -;'--___ _

--ACC-ES-SIO-NiCOPY--NO~------ ---- --- ---- ----,----~

VOL. NO.
__ QJ tJ_'i o_S J~! _________ -- -----_ --
CLASS MARK

t- of\f\l (of'

,
'(

J
\t

• 0 • ·-....0 ,/

.-

THE DESIGN OF A FIRST COURSE

IN PROGRAMMING

by

Michael P. Brady B.Sc., H.D.E.

A Master's Thesis

Submitted in partial fulfilment of

the requirements for the award of

M. Phil.

of the Loughborough University of Teohnology

@ by

Supervisor

Local Supervisor

MAY 1986

Miohael P. Brady B.So., H.D.E 1986

Professor A.C. Bajpai,
C.A.M.E.T. and Head of the

Director of
'Department of

Loughborough Engineering Mathematics,
University of Technology.

Dr .. John O'Donoghue, Head
Thornond College, Limerick,

of Mathematics,
Ireland.

The Design of a First Course in Programming Michael P. Brady
=== --------------------------------

THESIS ABSTRACT

A course was designed to teach Top-Down programming to second

level students who had no previous computer experience. The

purposes of the course were a) to enable them to become computer

literate and b) to develop their problem-solving ability. The

course was designed to teach programming in a manner which was

independent of any particular programming language or machine.

This approach was prompted by dissatisfaction with traditional

courses which generally concentrate on the syntax and semantics

of a particular programming language, at the expense of

developing important underlying concepts.

Initially, a review of the history of programming languages was

carried out to identify the essential elements of programming.

This review found that there was general agreement about the

fundamental importance of structure and that it was not

necessary to use all of the control constructs contained in the

available languages (BASIC, COMAL and PASCAL).

Both a mini-language; containing just two control structures,

and a diagrammatic representation (structure diagrams) of the

mini-language were then designed. The chosen control structures

were IF/THEN/ELIF/ELSE for selection and a WHILE loop for

iteration. The students were trained to solve problems using

the mini-language and structure diagrams and were supplied with

translation rules to convert their solutions into COMAL.

Translation rules were also drawn up for PASCAL and BASIC.

The course was tested with girls aged 15 and 16 years in a

Dublin secondary school. These trials showed that the method

may be used successfully with students of this age .

••

· -'

.---~-.--. .. ~. . - .-.

, -

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

The Design of a First Course in Programming Michael P. Brady
-- ================

KEYWORDS

Top-Down Analysis

Structured Programming

Control Structures

Mini-Language

Structure Diagrams

Problem-Solving

Second Level Students

ACKNOWLEDGMENTS

I wish to express my gratitude to Professor A.C. Bajpai for

providing me with this research opportunity and for his support.

I also wish to thank my local supervisor, Dr. John O'Donoghue of

Thomond College Limerick, for his practical advice and for his

constant interest in the project.

I wish to thank the staff of the Holy Faith Secondary School,

The Coombe, Dublin for their co-operation. In particular I

would like to thank Sister Aideen, who made the school's

computer facilities available to me at all times. Mia Delaney.

who provided much background information, and Christina Nult;,'.

who offered many helpful suggestions 1n preparing the

manuscript.

I would especially like to thank Mari ta McGrath who helped teach

the course and whc offered much constructive advice and support.

Finally, I would like to thank my wife, Bridin, whose constant

support and encouragement were invaluable.

CHAPTER 1

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.5

4.5.1
4.5.2

4.5.3

4.6

CHAPTER 5

5.1
.5.2
5.2.1
.5.2.2
5.2.3
5.3

TABLE OF CONTENTS

INTRODUCTION 1

HISTORICAL BACKGROUND 10

I~r~uction 10
The 1950s 10
The 1960s 14
Structured Programming 15
Computers in Education 18
The Irish Situation 23

EDUCATIONAL ROLE OF STRUCTURED PROGRAMMING 27

Introduction 27
Structured Programming 28

Problem Definition 29
Top-Down Desi~n 29
Control Structures 32
Coding Style 33

Structured Programming ln Education 34

DESIGN OF A SUITABLE MINI-LANGUAGE 37

Languages for Beginners' Courses 37
The Need for a Mini-Language 39
Mini-Language Definition 41

Iterative Structures 41
Decision Structures 44
Other Statements and Structures 45

Diagrammatic Representation of Program Design 46
Flowcharts 46
Pseudocode 47
Structure Diagrams 48

Translation of Diagrams into Programming
Languages 50

Translation of Sequential Statements 51
Translation of the Conditional
Control Structure 53
Translation of the Iterative
Control Struct'lre 56

Choice of Implementation Language 58

REVIEW OF THE AVAILABLE TEXTBOOKS 61

Introduction 61
Basic ~omputer Programming for Students [51] 62

Flowcharts 62
Selection and Iteration 64
Advanced BASIC 70

Foundations in Computer Studies with
COMAL [49] 71

5.3.1
5.3.2
5.3.3
5.4
5.4.1
5.4.2
5.5
5.6.

5.7

CHAPTER 6

6.1
6.2
6.3
6.4
6.4.1

6.4.2

6.4.3
6.4.4
6.4.5
6.4.6
6.5
6.5.1
6.6

CHAPTER 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.7. 1

7.7.2
7.8
7.8. 1

7.8.2

7.8.3

7.8.4
7.8.5

7.8.6
7.9
7.9.1
7.9.2
7.10
7. 11
7.11.1

Selection
Iteration
Structure Diagrams

Structured Programming With COMAL [·50]
Iteration
Selection

Beginning CO MAL [52]
The Design and Use of Structured
Algorithms [7]
Conclusion

71
74
78
79
82
83
84

85
90

PROJECT RATIONALE 91

School and Student Background 91
Aims of the Course 95
Outline of the Syllabus 96
The Fifth Year Course 98

Developing the Concept of a Computer
System 98
Variables, Input, Assignment
and Output 98
Struct.ure Diagrams 100
The Conditional Control Structure 101
The Iterative Control Structure 102
Procedures 103

The Sixth Year Course 104
Arrays 105

Conclusion 106

IMPLEMENTATION OF THE COURSE 107

Developing the Concept of a Computer System 107
The Concept of a Variable 110
The Assignment Statement 110
Input and Output Statements 112
Structure Diagrams 113
Top-Down Method 116
The Conditional Control Structure 119

Rules for Translation of IF
Statements into COMAL 120
Boolean Operators 121

The Iterative Control Structure 125
Rules f9r Translation of Iterative
Structure into COMAL 125
Fixed Iteration vs. Indefinite
Iteration 127
General Method for Constructing
Loops 130
Loops to Add Numbers 130
Problems Involving READ/DATA
Statements 133
More Difficult Looping Problems 136

Procedures 138
Coding Style 141
Library Procedures 143

General Approach to Lllr~e Problems 145
The Sixth Year Course 151

Introduction to Arl'IlYs 151

7.11.2
7.11.3
7.11. 4

String Handling Functions
Arrays of Strings
Sorting -Arrays

CHAPTER 8 EVALUATION OF THE COURSE

8.1
8.2
8.3
8.4
8.4.1
8.5
8.6
8.7
8.8
8.8.1

8.8.2

8.8.3
8.9
8.10
8.11
8.12
8.13

Introduction
The Metanic COMAL System
The Concept of a Computer System
Variables

String Variables
The INPUT Statement
Types of Problems for Exercises
Structure Diagrams
The Conditional Control Structure

Use of an ELSE Branch in IF
Statements
The Use of 'Explicit' Boolean
Conditions
De Morgan' s Law

The Iterative Control Structure
Procedures
Arrays
Projects
The Use of Structure Diagrams in Mathematics

Chapter 9 CONCLUSIONS

APPENDIX A Programming Course Notes

APPENDIX B Some Demonstration Programs

APPENDIX C Student Projects

APPENDIX D Mathematics Course Notes

APPENDIX E How To Use The Accompanying Disk

REFERENCES

155
157
161

165

165
165
166
166
167
169
170
170
173

175

176
179
181
181
182
185
190

198

205

219

227

234

237

239

CHAPTER 1

INTRODUCTION

A recent survey of Irish schools [1] concluded that many of

our school leavers are computer illiterate. This is clearly

undesirable in a society which is increasingly influenced by

information technology and in which the rate of

technological innovation is so rapid. The need for

familiarisation with the new technology as part of the

curriculum is now generally recognised. The government has

expressed the hope that encouragement will be given to the

promotion of the study of computers as part of the school

curriculum [2] and has begun this process by including

Computer Studies modules in both the Intermediate and

Leaving Certificate programmes and by arranging for the

supply of computing equipment to all second level schools.

This view, that education should embrace the new

technologies, has been endorsed by the recently formed

Curripulum and Examinations Board [3] and by many other

bodies representing teachers at all levels of education.

The broad goal of all computer education is to provide

students with an understanding of the operation and

applications of computers and to alert them to the

limitations and difficulties associated with the new

technology. This may be achieved in a number of different

ways including Computer Studies as a subject in its own

right, computer aided learning and the use of computers as

1

tools in various subject areas. One overall aim of all such

modes of computer use is that students should develop an

understanding of computers and become competent in their

use. The achievement of computer literacy may also involve

discussion of issues such as the social impact of computers,

the history of computing, the rudiments of computer hardware

and the use of various software packages.

Computer literacy, however, must also involve some

understanding of programming, which is an integral part of

all computing. This is not to suggest that our students

should be trained as professional programmers but that

understanding of computing could not be complete without

some awareness of how programs are designed. If this

awareness is not achieved, then real computer literacy is

not possible as the student could not really appreciate how

the machine is totallY dependent on the skill of the

programmer and the accuracy of the supplied data.

Learning how to program can be an enjoyable, stimulating and

highly rewarding educational experience. It is a creative

activity requiring the integration of many skills and

requires much more active involvement on the part of the

student than the use of software packages. When programming,

the student is in control of .the machine and not simply

responding to the machine's instuctions which is the case in

using many software packages. Papert [4] has warned of the

danger of allowing the machine to program the student in

such circumstances. Programming, therefore, is likely to

help the student to develop a sense of mastery and power in

2

relation to computers which may not be achieved by any other

computer related activity. Thus the affective benefits of

learning to program may be important in the development of a

positive attitude towards computers and technology iri

general.

The importance of programming is recognised by the majority

of schools and Computer Studies (which normally includes a

large element of programming) is by far the chief mode of

computer use in schools [1]. Its importance is also

recognised by the Department of Education which has

suggested that programming should be a major element of the

current second level computer modules at both junior and

senior cycle [5,6]. This emphasis on programming is further

underlined by the Department of Education's publication of a

book on programming as an aid to the teaching of Computer

Studies [7] and by the fact that most of the software

supplied by the Department to schools consists of

programming languages (PASCAL, COMAL, LOGO and

MICRO-PROLOG) .

In addition to its contribution to the achievement of

computer literacy, learning how to program may also lead to

an improvement in general problem-solving skills. While it

is recognised that problem-solving activity can be generated

in all academic disciplines, recent developments in computer

science have produced new methodologies which explicitly

focus on the problem-solving process. Using these

techniques, it is possible to teach students how to approach

problems in a systematic and disciplined way which migbt

3

then be applied to a broad range of situations. The

relevant programming skills, which include planning, problem

decomposition, anticipation of outcomes, recognition of

relationships, testing, revising and persevering, are

applicable to many non-computer problem-solving situations.

When programming, students develop and experiment with their

own hypotheses, criticise their own work constructively and

must persevere until their solution is fully correct. The

emphasis is firmly placed on the process of solving the

problem rather than on the product (the answer). The actual

use of a computer for testing programs supplies immediate

and valuable feedback which would be unthinkable in most

other problem-solving situations.

From the students' viewpoint, problem-solving situations are

very often frustrating and time consuming. Hativa [8] has

found that undergraduate students generally do not see the

teacher's role as that of a 'skill developer' but rather

a 'transmitter' of knowledge, whose main function is

impart facts.

students see

A necessary corollary of this is

themselves as passive 'receivers'

as

to

that

of

information and may resent being asked to solve awkward

problems. It is likely that this point of view is even more

prevalent in second level schools due to the increasing

pressure of public examinations for which the acquisition of

facts is very important. In most other subjects on the

curriculum, second level students will have already

encountered an enormous number of facts and techniques that

must be remembered and understood before they can be applied

4

to problems. In many cases these basic techniques are not

well comprehended and so the learner is not in a position to

solve problems. This difficulty can be overcome in a first

programming course as the students will be starting a

completely new subject in which there is no previously

learnt body of knowledge to be remembered.

In a first programming course, non-transferable, low-level

knowledge should be kept to a minimum so as to allow the

learner to concentrate on the essential problem-solving

techniques at the heart of programming. This suggests that

a full programming language should not be used because of

the large amount of time required to learn all the syntax

and semantics of the language and because a lot of such

knowledge is not transferable to other programming

languages, or even to a different implementation of the same

language. More importantly, the need to learn all the petty

rules and regulations of a particular programming language

would distract attention from the problem-solving process

and might well defeat the whole purpose of a course intended

to develop high level cognitive skills. Dissatisfaction was

felt with the current practice in teaching introductory

programming courses which invariably seemed to concentrate

on the details of whatever programming language was most

easily implemented on the available hardware. It was felt

that the teaching of programming should not be dependent on

the available hardware as this was self defeating due to the

very wide range of languages, the numerous versions of each

language and the rapid changes taking place in this area.

5

Thus concentration on the most readily available language

could well lead to students being conversant with the minute

details of some language which was obsolete before they left

school and this was not desirable.

With this in mind a course was developed which attempted to

develop the essential programming skills but which avoided,

as far as possible, concern with the specific details of any

one programming language. This was done by designing a

mini-language which contained only the essential programming

structures and which was considered suitable for students in

the senior cycle of our second level schools. These

essential programming structures were isolated by a study of

the history of programming languages over the past thirty

years including the development of the structured

programming movement. This is outlined in Chapter 2. This

restriction of the programming language should not be

considered an impediment to 'proper' programming but rather

as an aid to structured programming. Wells [9] has

concluded that in spite of the proliferation of programming

languages, general purpose languages are converging towards

'everyday' algorithmic language with relatively few

essential constructs. It has also been cla~med by Dijkstra

[10] that the use of a small, elegant language can actually

help programmers to find algorithms that are much more

difficult to find using more extensive languages. The

educational importance

discussed in Chapter 3.

of structured programming is

6

It was recognised that some diagrammatic representation of

the programming structures was required but an examination

of the current methods used in most textbooks, described in

Chapter 5, found that none of the available methods was

desirable or suitable. A new diagrammatic representation

was then designed to match the chosen programming structures

and to represent the hierarchical nature of programs clearly

and unambiguously. Once a solution has been designed

diagrammatically, it is vital to be able to convert it into

an implementable programming

Sets of translation rules

language easily and directly.

were therefore formulated to

convert the diagrammatic solutions into the various popular

programming languages. The mini-language, its diagrammatic

representation and the translation rules are described in

Chapter 4.

Thus a complete system was developed which allowed tbe

students to concentrate on the design of solutions rather

than on the syntax of a programming language. It provided a

clear hierarchical diagrammatic representation 01' compl.eted

programs which allowed for the convenient 'translation of the

solution into any of the popular programming languages. In

short, a system was developed which allowed students to

concentrate on solving problems and which relegated the

actual implementation of solutions on a computer to a simple

'automatic' clerical task.

Avi tal and Shett;l eworth [11] have suggest.ed that t;be key t.o

fostering higber level abilities is exposure and Polya [12]

has claimed that solving problems is a practical skill which

7

is acquired by imitation and practice. This means that if

students are to learn how to write good programs then they

must be shown examples of good programming and must also be

given a broad range of stimulating and interesting problems

on which to work. To maintain motivation, students must

also feel that they are successful and this is best achieved

by ensuring that the problems they are given are within

their capabilities. The general strategy followed was to

introduce each new topic by means of a problem or a set of

problems. Solutions for these were provided by the teacher

in a step-by-step fashion, emphasising the reasons for each

step rather than presenting the solution as a finished

product. The students were then given sets of similar

problems to solve, both in class and for homework. While

many of these problems required fairlY straightforward

application of the new technique, some were sufficiently

remote from the original examples to require higher level

cognitive activity. Thus the course was based around a

large set of problems which were devised (or in some cases

adapted from textbooks) to illustrate widely applicable

programming techniques and structures. Much emphasis was

placed on students' homework which normally consisted of

solving problems diagrammatically. These solutions were

then usually implemented on the school's computers.

The students' repertoire of programming techniques was built

up throughout the course and towards the end they were given ,

moderately large problems to solve over a period of a few

weeks. All the techniques necessary to solve these problems

8

had been encountered during the course but because these

problems were larger than those previously encountered they

required more analysis and more commitment on the part of

the students. That they were very successful at these

problems was a good indication of the effectiveness of the

course. The course,

are described in

its implementation and its evaluation

Chapters 6, 7 and 8 respectively.

Conclusions are drawn in Chapter 9.

9

CHAPTER 2

HISTORICAL BACKGROUND
=====================

2.1 INTRODUCTION

In the past thirty years the nature of computer programming

has changed dramatically. It is intended to review the major

developments that have taken place in relation to programming

and programming languages and their uses in education. It is

not intended to present a comprehensive study of the major

programming languages but to review the important trends

with a view to isolating what is essential, what should be

taught and how it should be taught.

2.2 THE 1950s.

In the early fifties all programming was done in machine code

or assembly language [13]. Programming was considered to be a

very complex anq highly creative art and the skills of the

early programmers were directed towards overcoming the

limitations of the available hardware. These limitations

included the absence of floating point calculations, slow

processing speeds, very small memories, and restricted

instruction sets. Programs had to be written to fit into the

tiny memories and to run as quickly as possible to make the

most efficient use of the large, very expensive computers.

Programmers were prized for their ability to write tricky,

efficient code which took advantage of the particular

idiosyncrasies of the machine that they were using.

10

The mid fifties saw the beginning

level 'algebraic' languages

of

e.g.

the evolution of higher

FLOWMATIC (1955) and

MATH-MATIC (1957). These

many of the 'red-tape' issues

languages freed programmers from

of programming by allowing them

to write more sentence-oriented code, to use decimal numbers

and to avail of subroutine libraries. In effect, they allowed

programmers to concentrate more on algorithmic issues and less

on machine issues. Initially, these new languages met with a

lot of resistance in the computing community, mainly due to

the fact that they slowed processing speeds by a factor of

about ten [13].

Towards the end of the decade there was an enormous effort put

into the development of high level languages. It began with

the recognition of a basic economic problem) i.e. that

programming and debugging costs were excessive and were

growing all. the time. The response was to try to develop

languages which

machine-independent

made

and

programming

which were

easierJ which were

problem-oriented. The

three most important languages introduced in this period were

FORTRAN, COBOL and ALGOL '60.

FORTRAN was intended for use by scientists

mathematical computation. Among the

introduced by FORTRAN were [14]:

and engineers for

language concepts

1. Variables and expressions (arithmetic and boolean).

2. Arrays (whose dimensions were known at compile time).

3. Iterative

structures.

and conditional branching control

4. Programs as sets of subroutine or function segments

11

that could be compiled independently.

The committee that designed FORTRAN was unaware of many of the

issues of language design that were later to become important

such as block structure, type declarations etc. [13]. In fact,

it considered the design of the language to be a rather

trivial prelude to the 'real' problem which was the design of

the compiler. As a result, the language has subsequently been

described by Dijkstra as an efficient coding system but

one with few conceptual aids to assist the programmer [15].

COBOL was designed for business data processing, in which the

emphasis is on file-handling, with relatively little

'computing'. The designers intended that the language could

be used by novice progammers. It was

keeping it as close to natural language as

be read and understood by management

also hoped that, by

possible, it could

[16]. Hence, much

attention was given to making it easy to read, as opposed to

making it easy to write or to learn. Some important concepts

introduced by COBOL were [14]:

1. The IF/THEN/ELSE structure.

2. Separation of procedural statements from data

description.

3. Natural language style.

4. Record data structures.

FORTRAN and COBOL were immediately successful and were very

widely implemented. Even today they are among the most widely

used languages and most in-house company training courses

still use COBOL [17]. The reasons for their great success and

12

continued use are:

1. COBOL was chosen as the required language on all U.S.

Department of Defence computers.

2. There was a huge investment in applications programs

in both languages.

3. They became standardised.

The main impetus for the design of ALGOL '60 came from a desire

to allow algorithms to be written more clearly and

conveniently.

computation.

a method of

It was intended mainly for scientific

The language's defining document [18] introduced

language definition, Backus-Naur Form (BNF), which

was almost as important as the language itself. This was a huge

advance on previous language definition techniques and

initiated the idea of language as an object of study in its own

right, rather than as a tool for facilitating the specification

of programs.

were [14]:

Some of the new concepts introduced in ALGOL '60

1. Block structure.

2. Explicit type declarations for variables.

3. Scope rules for local variables.

4. Nested IF/THEN/ELSE statements.

5. Call-by-value and call-by-reference parameters.

6 .. Recursive subroutines.

7. Dynamic arrays.

However, the most important elements of ALGOL '60 were its

sense of simplicity and its conciseness. Although ALGOL '60

was never widely implemented, its style has been much more

influential in subsequent language design than either FORTRAN

13

or COBOL which have had very little impact in this area.

2.3 THE 1960s.

By 1960 the debate concerning the use of high level languages

was over. Machine coding had become the exception rather than

the rule. During the sixties very many new languages were

invented and by the end of the decade there were about 170

languages in use in the U.S. alone [19]. Approximately half of

these were designed for special purposes such as string

processing and pattern matching (SNOBOL), simulation (SIMULA,

SIMSCRIPT), education (BASIC, APL), while the rest,

including PL/1 and ALGOL '68, were general purpose languages.

In the early sixties programming was considered to consist

mainly of coding in some particular language. The notion was

common that scientific and commercial programmers, who used

different languages, should be trained separately. Not only

were languages designed for each group but each group had its

own computers [20]. As the available hardware became more

powerful the distinctions began to fade. The files that

scientists were processing were as big as those in commercial

installations, while commercial users were beginning to perform

linear regressions and factor analyses on market data.

Companies began to object to buying two sets of hardware and

employing and educating two sets of programmers.

This, combined with the general belief at that time that

programming was simple as long as the language was powerful

enough and the computer fast enough, led to the development of

14

large powerful languages which attempted to combine the

features of scientific and commercial languages. PL/1 was one

such language which was developed from FORTRAN, COBOL and

ALGOL. The idea· of separately compiled subroutines sharing

common data was taken from FORTRAN. Data structures were taken

from COBOL.

from ALGOL.

associated

and richness

Block structure and control constructs were taken

PL/1 illustrates the advantages and problems

with large general-purpose languages. The power

of such languages lead to complexity in both

language definition and language use, making verifiability and

readability of programs a major problem [14].

2.4 STRUCTURED PROGRAMMING.

By the end of the sixties the enormous advances in hardware

design and the corresponding decrease in hardware costs meant

that software had become by far the most expensive part of a

computer system. It was also acknowledged that there were very

serious problems in the area of software development. Most

software projects were taking longer to complete and costing

more than planned. Worse still, the end product was very often

unreliable. It was realised that programming was a difficult

task and that fast machines and powerful computer languages did

not make it much easier. Prior to this, large software

projects had been designed to minimise development costs rather

than total costs for the lifetime of the piece of software.

This led to a disproportionate emphasis on achieving speedy

implementation and a corresponding neglect of both the initial

problem specification and the production phase of the program,

which might involve frequent modifications. It was estimated

15

that 70% of programmers' time was devoted to the maintenance of

existing programs [21]. Maintenance and revision of software

requires that someone other than the author is capable

of understanding the original design. This was very often not

the case and large amounts of time were being spent analysing

existing code. Even at the development stage more time was

being spent debugging than on algorithmic design.

The search for programming improvements led to an analysis of

the fundamental structures of programming and a greater

emphasis on the methodology of problem- solving. Research was

directed away from the development of powerful new languages

towards control of the complexity, cost and reliability of

large programs. The new methodologies developed at this time

are usually grouped under the heading of structured

programming. Structured programming was originally considered

to be programming without GOTO statements, substituting clearer

control structures instead. It has since come to mean

designing programs in such a way that they are simple,

verifiable, reliable and maintainable. It is more concerned

with using the programmer's time efficiently than with machine

efficiency.

The first example of a structured language, PASCAL, appeared in

the early seventies. PASCAL was designed by Niklaus Wirth who

was dissatisfied with the major languages because of their

over-elaborate constructs, which were difficult to explain

logically and convincingly and which often defied systematic

reasoning [22]. PASCAL was a return to a smaller, simpler type

of language, based on the style of ALGOL '60 but providing

16

richer data structures and programmer-defined type

specifications. It could also detect many programming errors

as syntax errors because of its built-in protection against

both improper mixing of types and the assignment of illegal

values to variables. Because

has been possible to develop

of its conceptual simplicity, it

a complete formal definition of

the language [23]. The existence of this formal definition has

in turn led to the widespread use of PASCAL as a base language

for program verification research.

The techniques of structured

discussed in Chapter 3) have had

programming (which

a great impact on

are

both

academic Computer Science and on production programming.

During the seventies, facilities for structuring were added to

most of the major programming languages. However,

correctness proofs, which are the more formal aspect of

structured programming and which are of great interest to

had practically no effect computer science researchers, have

on general commercial programming. In order that a program may

be proved correct, it must be developed from control structures

that are well understood and this is a strong argument in

favour of very modest, very systematic programming

languages.

So after more than a decade of debate, academic computer

scientists are promoting the use of simpler, more systematic

and safer languages but FORTRAN,

structuring facilities

generally favoured by

added in

commercial

COBOL and BASIC (albeit with

many cases) are

users and even

still

larger

languages such as ADA are being designed. This situation has

17

been summed up by We lIs [9] , . who has observed that good

progress has been made in the area of language design, but that

progress has been less dramatic with respect to the use of

well designed languages.

2.5 COMPUTERS IN EDUCATION.

By 1962 computers were beginning to appear in third level

institutions and were being used mainly by students of Science,

Engineering and Mathematics [24]. In the early sixties there

were no Computer Science departments

students who studied computers did

in

so

universities and most

in short courses

organised by Maths/Science departments. These courses were

usually geared towards programming in FORTRAN.

One attempt to overcome this Maths/Science bias was the

development of BASIC at Dartmouth College in the early

sixties [25]. Its development was motivated by the need to

make it possible for non-experts to program without committing

themselves to a large amount of preliminary study. As about

75% of the students at Dartmouth were non-science majors, the

group which produces most of the decision-makers in business

and government, it was considered important that they should

have some knowledge of computing to help them make sensible

decisions about computers in their subsequent professional

lives. Access to computing prior to this had involved punched

cards and both intellectual and administrative hurdles. The

designers of BASIC sought to overcome these by making it an

on-line, simple to learn, interactive language. This had now

become possible due to the arrival of time-sharing and cheap

teletext terminals.

18

The language itself was a modification of FORTRAN. It was

never intended that it should be used for solving very large or

difficult problems - FORTRAN was supposed to be used for these.

BASIC was very successful because of its:

1. Simple syntax.

2. Easy operating system.

3. Cheap implementation.

4. Interactive nature.

Despite its success, BASIC was developed at a time when the

nature of programming was undergoing great changes and it

embodied structures and practices which were later seriously

questioned.

By the end of the sixties it was generally accepted that

computing was a science in its own right and Computer Science

departments began to appear in many universities. In 1970 it

was estimated that there were about 300 college degree

programmes in Computer Science in the United States [26]. The

need for discipline in programming technique was beginning to

be recognised at this time. The curriculum committee of the

Association for

recommendations on

courses . at regular

Computing Machinery (ACM) has issued

the content of college Computer Science

intervals since the mid sixties. In

general, these recommendations emphasise systematic algorithm

development and clear programming style. A 1984 document,

concerned with introductory College Computer Science courses,

strongly emphasises Top-Down design and stepwise refinement

[27]. Wirth designed PASCAL mainly as a medium for teaching

programming in a systematic manner. He maintained that the

19

language in which programming is taught profoundly influences

subsequent habits of thought, and that the concepts embodied in

the language feed back into the learner's style of problem

analysis,

develop.

exercised

influencing the way

This would indicate

in the choice of

in which problem-solving skills

that great care should be

language to be used for

introductory programming courses.

PASCAL has been very widely accepted by the third level

academic community and is currently used in most university

Computer Science courses. Up to now it has not been available

on many microcomputers and so has not been widely used in

second level schools.

Computing in second level schools began in the late sixties.

As very few schools could afford to buy computing equipment at

this time, those schools which were involved had to beg and

borrow computer time from local commercial firms and from

universities. Programs were generally prepared on punched

cards or paper tape and brought to the computer installation

in the evenings. The nature of the work done under these very

difficult circumstances depended entirely on the facilities

available rather than on any clearly defined educational

objectives. It was recognised, however, that the design of

algorithms was of fundamental importance and that high level

languages should be used wherever possible [26].

Towards the end of the seventies the arrival of affordable

microcomputers caused dramatic changes in educational

computing. Schools were now in a position to buy their own

20

hardware. The demand for computer courses suddenly increased

and schools that had no experience or expertise in computing

came under pressure to provide computer courses. When these

first micros appeared there was very little educational

software available and so teaching programming was the only

viable educational activity. As they had very restricted

memories, BASIC was the only possible programming language

and so learning BASIC became the norm for teacher in-service

courses. Consequently,

computing was in the

many teachers' first experience of

use of BASIC. Such teachers and school

administrators, who were unaware of the whole structured

programming debate, were then

decisions concerning the

programming languages.

forced into making important

choice of both hardware and

This has, unfortunately, led to the entrenchment of BASIC.

This trend is reinforced by the popular computer magazines,

many of which heavily emphasise programming in BASIC. The

hardware manufacturers compound this problem by continuing to

supply primitive versions of BASIC with their machines. This

is in spite of the fact that the original reason for using

BASIC (i.e. tiny memories) is no longer valid. The argument

most often used to justify the choice of BASIC is based on its

widespread availability and the fact that much software is

written in it. This, together with the fact that the language

most widely taught is going to be thereafter the one most

widely used, is, according to Wirth [22], "the safest recipe

for stagnation in a subject of such profound pedagogical

influence" .

21

The inadequacy of BASIC as a language for learning

programming is recognised by many educators. Efforts to

overcome the problems associated with BASIC have included the

promotion of LOGO, COMAL and the so-called structured BASICs.

LOGO has received widespread attention in the primary and

junior secondary sector. COMAL has been adopted by many

second level schools in Denmark, Ireland, Sweden, Scotland and

more recently in the United States [28]. A version of BASIC

which is almost identical to COMAL has recently been

released for the RML 380Z computer [29]. There is also a

'structured' version of BASIC available for the B.B.C.

computer. As both of these machines are widely used in

British schools, these developments are welcome.

One recent decision which may have a profound effect on the

use of BASIC in American schools is the selection of PASCAL as

the sole language to be used in the Advanced Placement

Computer Science Examination [30]. This is an examination

taken at the end of second level schooling by students who

wish to pursue Computer Science courses at third level. As

there are currently 300,000 students enrolled in

introductory, third level, Computer Science courses in the

United States [30], the demand for courses leading to the

Advanced Placement Examination is certain to be great. This

demand will have to be met by supplying courses in PASCAL at

second level which should, in turn, stimulate manufacturers

to supply versions of PASCAL for the popular school machines.

22

2.6 THE IRISH SITUATION.

Irish second level schools began using computers in the early

seventies. Much of the impetus for the use of computers in

schools has come from the Computer Education Society of

Ireland (C.E.S.I.) which was founded in 1973 by Professor

A.C. Bajpai and which has since provided the main forum for

discussion and formulation of ideas in relation to computer

education. The first Department of Education computer training

course for teachers was held in 1970. Since then, numerous

courses have been sponsored by the Department of Education,

often in conjunction with C.E.S.I. These are usually one week

courses and are held during the school holiday periods. In

addition, other institutions (universities, teachers' centres

etc.) have offered computing courses for teachers. None of

these courses (including the Department of Education's) leads

to an officially recognised teaching qualification.

Many of the teachers who have taken part in these courses are

now taking their students through the computing option on the

Leaving Certificate Mathematics course. This option, begun in

1981, was, up to 1984, the only recognised computer module in

our second level schools. The module, intended as an interim'

arrangement pending

full subject on the

the introduction of Computer Studies as a

curriculum,

hours instruction and was adopted

second year of operation [31]. In

consists of approximately 35

by about 200 schools in its

1984, a similar module was

introduced for junior cycle pupils in second level schools.

There is no written examination of either module and both

syllabii [5,6] leave much to the discretion of the teacher.

23

Therefore it is not clear what exactly is being taught but it

would seem that in most cases the tendency is to concentrate

on programming [32].

So, up to now, the principal use of computers in schools has

been to teach programming. This has stimulated much debate

about the choice of a suitable programming language for

schools. Although there were earlier attempts to introduce

low level languages [33], it seems to be fairly well accepted

now that what is needed is a high level language. The choice,

therefore, is between BASIC, LOGO and COMAL as no other

languages are widely available as yet.

Of these three, LOGO has only recently become widely available

but is already very popular in primary schools. It is likely

that its use will increase dramatically in second level

schools in the near future. BASIC, of course, is available

for every micro (at no extra cost) and so is very widely used

in second level schools. In 1981, the Department of Education

drew up an

schools which

, internal

has not

report on the use of computers in

been published [34]. It would seem,

however, from subsequent actions by the Department that

decisions were taken to promote COMAL, adopt the Apple 11

computer and postpone indefinitely the introduction of

Computer Studies as a full subject.

The decision to promote a practically unknown but very well

structured language, COMAL, was a courageous one and was

generally welcomed by those who were already involved in

~omputer education, including C.E.S. I. However, the

24

implementation of COMAL has caused many problems. The

Department of Education has assisted all second level

schools to buy one Apple computer. Each of these machines is

capable of running COMAL but if schools buy extra Apple

machines they are unable to implement COMAL on them without

fitting a Z-BO card in each new machine. As many schools are

now buying networks of from five to ten machines this large

extra expense may tempt them to revert to BASIC. Similarly,

as COMAL is supplied in ROM form for the B.B.C. computer it is

necessary to buy one for each machine and this may be

prohibitive if a large number of machines is to be bought.

There is , however, a very cheap version available for the

Commodore 64 which may be run on networks at no extra cost. So

while the choice of COMAL must be applauded, the high cost of

implementing it has tended to prevent its universal use in our

schools. At the moment it seems that schools' programming

courses are fairly evenly divided between BASIC and COMAL.

It is unfortunate that the introduction of computing into our

schools has not been guided by a coherent overall plan. In the

past, schools have been happy to accept any facilities that

they could get without really examining their educational

needs, but the falling cost of equipment suggests that schools

will soon be able to pick and choose between hardware,

software, and programming languages. It is in this context

that there is now a great need to clarify the issues

concerning computing in schools. The teaching of programming

is one such major issue which is of fundamental educational

importance and which requires serious debate. Programming

25

courses in our schools are important not just because of the

need to produce well trained computer specialists to support

our industry and economy but because they can make a major

contribution to the achievement of computer literacy and can

help towards the development of general high level cognitive

skills. This can best be achieved if the subject is

approached in a systematic way and if modern techniques of

structured programming are adopted.

If this is to be done then it is necessary to examine in

detail the techniques of structured programming and to devise

a way of presenting them which is suitable for students at

second level.

26

CHAPTER 3

EDUCATIONAL ROLE OF STRUCTURED PROGRAMMING
---­.--

3.1 INTRODUCTION

Schools are at present coming under increasing pressure from

both parents and students to provide courses in Computer

Science. Many schools are responding to this pressure by

acquiring computer equipment and providing courses in

programming but in many cases insufficient thought and

preparation has been put into the organlsation of these

courses. There is now an urgent need to examine the role of

programming in second level schools and to decide on how

it should be taught.

The teaching of programming is important because if we are

concerned with educating our pupils for maturity and to accept

responsibility for their actions as adults, then we must be

concerned with their ability to think reasonably and logically

and to act accordingly. This abi li ty, to formulate a

reasonable plan of action and to carry it through, is the very

essence of programming. The study of programming in a

systematic way can be a powerful facilitator for the

development of higher level ""skills and abilities, encouraging

an algorithmic, procedural approach to problem-solving. The

unambiguous semantics of a programming language together with

the precision of syntax required, can give our students

insight into the power of language and the care required to

communicate clearly. Moreover. these skills. if developed

27

carefully, are more widely applicable and are more permanent

than mere knowledge of specifics. and so are likely to benefit

our students' performance in other subject areas.

While we are not in the business of producing professional

programmers, we can learn from the developments that have

taken place in professional programming practice and academic

computer science during the past twenty years. The main

lesson that has been learnt

structured programming and

is that good

so, before

programming

developing

is

an

introductory course, it is necessary to review just what is

meant by structured programming.

3.2 STRUCTURED PROGRAMMING

The principal concern of structured programming is that

programs should be designed and coded in such a way as to make

them correct and easily understood. Structured programming

grew out of a recognition of the limitations of the human mind

when confronted by large problems which may involve very many

details. It is an attempt to limit the complexity with which

the programmer has to deal at anyone time. The methods used

to achieve these objectives are:

1. Careful definition of the problem to be solved.

2. Design of solutions in a Top-Down manner.

3. Use of a limited number of carefully chosen

control structures.

4. Use of a clear and consistent coding style.

28

3.2.1 PROBLEM DEFINITION

This involves

specifications of

developing and

the problem.

clarifying the exact

It maybe a fairly lengthy

process as many problems are poorly defined and ambiguous

initially. However, it is essential that due consideration be

given to this part of the programming process, as no problem

can be solved unless it is well understood. Some of the

issues that should be examined at this stage are:

1. In what form will the data be supplied?

2. Within what reasonable limits is data expected to be?

3. What errors should be anticipated and what action

should be taken if an error is found?

4. How will the end of the data be signalled?

5. May the input values be discarded after they are used

in the computation?

6. What should be done if some operation cannot be

successfully completed?

7. In what form and to what degree of accuracy should

output be provided?

8. Is there any indication of the amount of output that

will be produced?

9. What changes in the problem statement are likely to

occur during the lifetime of the program?

3.2.2 TOP-DOWN DESIGN

The structured programming debate, at least as it has taken

place in relation to education, has been mainly concerned with

the choice of programming languages and control structures.

This is a pity, as it is more important that consideration be

29

given to the overall structure of programs. Polya has

suggested that in solving complex problems it is possible to

distinguish between 'great' steps and 'small' steps [12]. In

finding a solution it is important to organise the great steps

first. Wirth has proposed a method of 'stepwise refinement'

by which a large is broken down into a few

sub-problems (' great'

problem

steps) [35] . These sub-problems are

then continuously refined if necessary, as in figure 3.1,

until each sub-problem may be considered to be trivial.

PROBLEM

LEVEL 1

LEVEL 2

FIGURE 3.1

It is usual to start with a high level, abstract program. The

level of abstraction is chosen to make the program short,

understandable and obviously correct [36], as in figure 3.2.

READ IN DATA

PROBLEM

DO CALCULATIONS

FIGURE 3.2

OUTPUT RESULTS LEVEL 1

30

Typically, the upper levels contain statements of WHAT has to

be done. These are then refined into statements of HOW it

should be done. The advantages of using this method are:

1. The overall structure takes precedence over details

and indeed should be complete before any details are

considered.

2. The most important decisions are made first.

3. The programmer's mind is focussed initially on the

problem rather than on the machine or the syntax of a

programming language. The design then proceeds FROM

the problem TO the machine.

4. Each level of the design provides a complete solution

to the problem, which may be checked by another

programmer (or by a machine), before proceeding to

the next level.

5. The complexity is reduced. The programmer only has

to consider one problem at a time.

6. If a design flaw is discovered the programmer may

start again without having to scrap a lot of

redundant code (or, worse still, patch up the faulty

code).

7. Solutions developed in this manner may be coded into

any programming language.

The basic building block of structure is the procedure or

subroutine. A

performs some

regarded as

procedure is a section of

particular task. Procedures

containers for chunks of code

a program that

should not be

but rather as

logical units, whose job it is to carry out some well-defined

31

function. It should be possible to state the purpose of each

procedure in one short sentence. If this cannot be done, then

the procedure should probably be refined further. The

collective structure of the procedures in a program is of

paramount importance and should be developed and tested before

going on to consider the structure within each procedure.

If the scope of variable names can be limited to the

procedures in which they occur, then the procedures may be

written independently without fear of variable name clashes at

a later stage in program development. Procedures written in

this manner may also be used in many different programs.

3.2.3 CONTROL STRUCTURES

The controversy over the use of control structures is usually

traced to a famous paper by Dijkstra in which he pointed out

that unrestricted use of GOTO statements led to unnecessarily

complex flow

1966, by Bohm

paths [37]. It had been proved as early as

and Jacopini [38], that any program could be

written with only two control structures,

one iterative. In his subsequent

one conditional and

work, Dijkstra has

consistently advocated the use of simpler languages and has

proposed a language that contains just two control structures

[39].

It has been claimed that the discipline imposed by using only

these basic structures improves the performance of even the

best programmers [40]. There is also some psychological

evidence to indicate that the choice of control structures

does make a significant difference in programmer performance

32

[41]. This evidence supports the maxim that the number of

bugs in any program is directly proportional to the square of

the number of GOTO statements.

The essence of a good control structure is that it has one

entry point and one exit point, with entry at the start of the

structure and exit at the end. For iteration, the FOR/NEXT,

REPEAT/UNTIL and WHILE/ENDWHILE structures meet these

requirements. For selection,

CASE/ENDCASE structures are

satisfactory.

3.2.4 CODING STYLE

both the IF/THEN/ELSE and

generally considered to be

The use of a good coding style is generally regarded as an aid

to making programs more readable. There is some evidence to

suggest that the use of a good style has only a marginal

influence on the comprehensibility of programs, but that most

programmers regard it favourably and believe that it improves

their performance [42].

style are:

1. Comments.

Some important elements of coding

Each procedure or unit should be prefaced by a brief

description of its function. Low level comments

which simply reiterate the operation of a particular

statement are of little value. Comments should

relate to the problem rather than to the program, so

that ··Find student with highest mark·· is better than

··Find maximum integer in array In addition,' long

programs should contain a 'table of contents' at the

beginning.

33

2. Identifiers

Identifiers should be

the objects that they

chosen carefully, to reflect

are intended to represent.

Each procedure should contain a list of the variables

used in it. In languages in which identifiers are

limited to one or two characters each procedure

should contain a dictionary of identifiers.

e.g. VR = VAT RATE etc.

3. Text Format.

Indentation is used to show where control structures

begin and end. This helps the reader to see the

logical structure of the program. It is especially

effective when control structures are nested. The

liberal use of spaces and blank lines is also

helpful and it is generally considered good style to

write just one statement per program line.

4. Brackets.

It is possible in most languages to write long

arithmetic and boolean statements without brackets,

as there is a fixed order of precedence for both

arithmetic and boolean operators. This, however, may

cause difficulty for the reader and is not a good

idea.

3.3 STRUCTURED PROGRAMMING IN EDUCATION.

The overall goal of structured programming is to find simple

solutions to difficult problems and to represent these

solutions as clearly as possible.

this is the idea of Top-Down design.

The key element in all of

Quite apart from the

34

world of computers, this is a skill which can be applied to a

wide variety of problems. The ability to suppress the

consideration of details until the overall structure has been

completed is important in many activities and is essential in

all complex activities.

It is likely that the majority of good problem-solvers have

always worked in this way, but up to now the method has not

been formally described. It is also likely that many good

teachers have used such methods to demonstrate problem-solving

activity for their classes but, so far, such methods have not

been considered as objects of study in themselves and have not

been explicitly taught in schools. Computer programming

provides a unique opportunity for focussing on such problem­

solving processes that is not afforded by other school

subjects. When programming, it is possible to gain insight

into one's own problem-solving strategy by examining that

strategy as a program and then observing the outcomes of that

strategy when the program is executed. By reflecting on the

outcomes it is then possible to alter or improve components of

the strategy until it is considered satisfactory.

An understanding of structured programming will also make

students aware of the existence of design criteria such as

clarity, efficiency and symmetry of structure. By designing

solutions in a Top-Down manner, it is possible to foster a

consciousness of the design decisions taken at each level.

The student will be required to critically examine, and

possibly reject, solutions which provide the correct results

but which may violate some of the other criteria. In short,

35

students will become aware that getting the right answer is

not the only goal in problem solving, but that there may be a

variety of solutions to choose from, and that some solutions

may be preferable to others.

There will be situations where students are unable to find a

complete solution to a given problem. This may be frustrating

but, if the Top-Down method is followed in these cases, the

student will find a partial solution and clarify the problem.

This should lead to the ability to know when to seek the

teacher's help and to ask specific, well-directed questions.

Introducing students to structured programming is therefore a

worthwhile educational goal because of its role in focussing

on the problem-solving process and because of the insight it

can provide into the whole area of computing. It is intended

to teach students not only how to use the method, but also to

make them fully aware of the method they are using and of its

possible application in other areas of the curriculum.

36

CHAPTER 4

DESIGN OF A SUITABLE MINI-LANGUAGE
==================================

4.1 LANGUAGES FOR BEGINNERS' COURSES.

At present there seems to be no generally accepted educational

philosophy guiding the design of programming courses at second

level. The rationale for schools' programming courses may

vary from vocational training for those who wish to pursue

careers as programmers, to an extension of the mathematics

syllabus. In many cases, however, the content is largely

determined by the available hardware and much emphasis is

placed on learning the syntax and semantics of whatever

programming language is most easily implemented. While this

is understandable in the present confused situation, it is not

the best approach and is coming under increasing criticism.

Moursound [43] has suggested that present second level courses

in the United States may be doing more harm than good and that

students who have taken such courses may be at a disadvantage

if they proceed to take a University Computer Science course.

It is often argued that the use of BASIC in second level

courses is at the root of the problem. While it is recognised

that BASIC is structurally deficient and to be avoided

whenever possible, the same problems can arise with any

programming language if the primary aim is to teach the

programming language rather than to teach programming. It is

vital, particularly for novices, to separate the task of

37

solving problems from the task of learning the rules and

regulations of a programming language. The programming

language (i.e. the implementation language) should be seen as

a tool for communicating the completed solution to the

computer, rather than as a means of finding solutions in

the first instance, and the emphasis should be firmly placed

on finding well structured, elegant solutions. In the school

situation, programs are usually written, tested and then never

used again. It is easy to overlook the importance of

structure under these circumstances, but to do so is to miss

an important educational opportunity.

While the methods of structured programming were developed to

allow programmers to deal with large complex problems, the

types of problems used in a first programming course will not

be very large or very complex. This should not be used as an

argument for postponing the teaching of structured programming

until some later stage, as these methods are just as powerful

when applied to small problems' and are likely to be

transferable to many other situations. When beginning a first

course in programming, students are usually eager and well

motivated, so that the first concepts absorbed by them are

likely to become well established and will be difficult to

change at a later stage. Therefore,

courses that help students to think

manner right from the start. It is

it is important to design

in an orderly and precise

also important to find

problems which illustrate and reinforce important programming

concepts and which are of interest to, and within the reach

of, our students. The temptation to choose problems which

38

merely demonstrate the capabilities of the particular machine

being used should be resisted.

4.2 THE NEED FOR A MINI-LANGUAGE

In designing a suitable problem-solving language, it is

important to be aware that language

expression but also an instrument

is not only a medium of

of reason. Bruner has

pointed out that language is "not only the medium of exchange

but the instrument that the learner can then use himself in

bringing order to the environment" [44]. Any language or

notation used should have the important characteristic of

relieving the learner of unnecessary work, thus allowing

concentration on the problem at hand. This can be achieved by

designing a language which:

1. Contains the minimum number of different concepts

with clear and simple rules for their combination.

2. Is easy to learn and to use.

3. Is applicable to a wide range of problems.

4. Has consistent application of the same rules in the

same way throughout.

5. Contains suitable control structures which are

available, or may be simulated,

(implementation) languages.

In short, the language should provide

framework for thinking about algorithms

in most programming

a good conceptual

and should be easily

translated into any programming language with the minimum of

translation rules.

If a course is to be designed which attempts to emphasise the

39

essentials of programming rather than the details of some

particular programming language, then a mini-language

consisting of just the vital statements should be used. Most

of the widely available programming languages contain far more

constructs than are necessary, and there is evidence to

suggest that even professional programmers use only a small

subset of their particular language a 'large proportion of the

time [45]. The two most important concepts in programming are

iteration and selection, and the choice of control structures

for these must be made with care. There are numerous control

structures available for both selection and iteration but

learning all of them confers no advantage on the student.

Indeed it may hinder the development of the underlying

concepts due to the inevitable concentration on the syntax and

semantics of the large number of structures, and the

requirement to remember the appropriate circumstances in which

to use each individual structure. Another danger associated

with this approach is that the student may be convinced that

there is nothing more to programming than knowing all about

the various control structures.

Therefore, the approach adopted was to single out one

construct for iteration and one for selection. In each case,

the most general construct was chosen so that it would work in

all situations, thus relieving the student of the need to

remember which construct to use under which set of

circumstances. Using this approach, there was also less

syntax to be learnt and this reduced the amount of specific,

low level knowledge to be absorbed, allowing for concentration

40

on the underlying concepts. This restriction also meant that

fewer translation rules were required to convert the solutions

into implementable programming languages, which was also an

important consideration.

This idea of using a mini-language for introductory courses

had been tested with undergraduates by Riley [46] and Campbell

[47]. In both cases, a subset of PASCAL was used and problem­

solving techniques were emphasised. In each case, a

significantly positive effect was noted on subsequent

performance in traditional PASCAL courses. Campbell reported

an improvement of an entire grade on average.

4.3. MINI-LANGUAGE DEFINITION

The mini-language which was designed contained very few syntax

rules and, equally important, very few translation rules for

converting solutions into programming languages.

that this restriction would encourage

It was hoped

students to

approach similar problems in similar ways, and so help them to

develop a consistent style of programming.

4.3.1 ITERATIVE STRUCTURES

The iterative structure used was WHILE/ENDWHILE as it is the

most general of those available. All FOR/NEXT and REPEAT/UNTIL

loops may be written as WHILE/ENDWHILE loops, but there are

WHILE/ENDWHILE loops which may not be written in either of the

other forms. The FOR/NEXT loop in figure 4.1 is of the most

general type possible and yet is very simply 'matched' by the

WHILE/ENDWHILE loop on the right.

4]

FOR COUNT: = N TO M STEP L

NEXT COUNT

FIGURE 4.1

COUNT:= N
WHILE COUNT <= M DO

COUNT:= COUNT + L
ENDWHILE

Another objection to the FOR/NEXT loop is the number of

variations in the way it can be written as N, M and L may be

variables or constants and may be positive or negative. The

worst aspect of all, however, is its lack of clarity because:

1. It is not clear what value COUNT has after the loop

has been executed.

2. It is not clear what happens if N = M, or if N > M

and L is positive.

3. It is not clear what happens if the values of COUNT,

N, M and L are changed within the body of the loop

(and most implementations allow this to be done!).

These problems do not arise with the WHILE/ENDWHILE' loop. The

loop control variable COUNT is explicitly incremented and so

there can be no doubt as to its value at any time before,

during or after the iteration. Likewise, the boolean

condition at the entry point to the loop is perfectly explicit

and so there is no doubt as to when the loop may or may not be

executed. This superiority of the WHILE construct is well

recognised and Metzler has reported an attempt to teach the

WHILE construct before the FOR/NEXT in BASIC, despite the fact

that the WHILE construct has to be simulated using IF and GOTO

statements [48].

42

Every REPEAT/UNTIL loop can be written as a WHILE loop by

reversing its boolean condition (Figure 4.2). The opposite is

not the case, as every REPEAT/UNTIL loop is executed at least

once because there is no guard on entry to the structure.

There are numerous situations in which a loop should not be

executed at all, and this cannot be achieved using a

REPEAT/UNTIL loop.

REPEAT WHILE NOT CONDITION A DO

UNTIL CONDITION A ENDWHILE

FIGURE 4.2

Although it is possible to write all REPEAT/UNTIL loops as

WHILE/ENDWHILE loops, this may not always be desirable from

the point of view of simplicity and clarity. In particular,

there are occasions when

CONDITION A is initialised

some

within

variable in the boo lean

the body of the loop. In

this case the NOT CONDITION A expression above would be

invalid because it contained an undefined variable. This

difficulty may be overcome by introducing another variable

(often a boolean variable) in the WHILE condition but it is

probably better to use a REPEAT/UNTIL loop instead. These

circumstances are rare and so this slight difficulty should

not be allowed to interfere with the language design.

The big advantage of the WflILE/ENDWHILE structure is that the

condition is tested before the loop is entered. This is

generally regarded as better programming practice [45].

43

4.3.2 DECISION STRUCTURES

The normal practice with decision structures is to use the

IF/THEN/ELSE structure for two-way decisions and CASE/ENDCASE

for multiway decisions. However, the CASE structure was

rejected because any list of constants in a CASE statement may

be written as a boolean expression, but the converse is not

true. Therefore the IF statement, which utilises boolean

conditions rather than lists of constants is more general:

i.e. CASE X$ OF

Conversely,

may not

a,b,c

is equivalent to

IF X$ = "a" OR X$ = "b" OR X$ = "c"

even simple boolean expressions such a~· ~.

x > 0 AND X < 10 (where X is of type REAL)

be expressed as a list of constants. The

remaining choice, therefore, was between the various kinds of

IF structures.

The most general IF structure, IF/THEN/EL IF/ELSE, was chosen

as this supports one-way, two-way and multiway decisions.

(ELIF is equivalent to ELSE IF). The use of ELIF enables

students to avoid deeply nested structures when they are not

necessary although, of course, nesting of structures is still

possible. The ELIF structure in figure 4.3 is a much simpler

and clearer representation than the nested structure. The

conditions "light is green", "light is orange" and ELSE (i.e.

"light is red") are all at the same semantic level and so

should be represented as such in the program text. This is

not possible using the IF/THEN/ELSE structure.

44

Furthermore, it is possible to explicitly state all the

conditions (i.e. avoid the use of ELSE) using the ELIF

structure and this is often desirable.

IF light is green THEN
Go

ELIF light is orange THEN
Stop if you can

ELSE
Stop

ENDIF

FIGURE 4.3

IF light
Go

ELSE

is green THEN

IF light
Stop

ELSE
Stop

ENDIF
ENDIF

is orange THEN
if you can

A major advantage of choosing these two control structures is

that they are very similar. In both cases entry to the

structure (and to any branch in the case of the IF structure)

is controlled by boolean expressions. This unity is more

satisfactory than a mixture of loop counters, lists of

constants and boolean expressions, which would be the case if

all the usual structures were introduced. This, of course,

also implies that boo lean expressions are extremely important

and must be dealt with extensively and carefully in the

course.

4.3.3 OTHER STATEMENTS AND STRUCTURES

The other statements and structures included in the

mini-language were:

1. An INPUT statement.

2. A PRINT statement.

3. An assignment statement.

4. Variables of type REAL and STRING.

45

5. READ and DATA statements.

6. Procedures.

7. Arrays.

4.4 DIAGRAMMATIC REPRESENTATION OF PROGRAM DESIGN

It was necessary to devise a system of representing the

hierarchical nature of good Top-Down designs in a manner which

could be easily translated into programming languages. This

system should not alone represent the hierarchy of the

solution but should assist the learner to discover it. It

should also, of course, be capable of supporting the chosen

control structures. There are three principal systems used to

represent algorithms in the popular textbooks. These are a)

flowcharts which are mainly associated with programming in

BASIC, b) pseudocode which is mainly used in PASCAL textbooks

and c) structure diagrams which are not as widespread and are

often associated with COMAL.

4.4.1 FLOWCHARTS

Flowcharts may be criticised on the grounds that:

1. They graphically depict ANY flow of control and

discourage the discipline necessary to maintain good

structure.

2. They force the designer to concentrate on the most

detailed aspects of the problem before the overall

design is complete.

3. The flowchart and the

semantic level and so

advantage on the reader.

program code are at the same

the flowchart confers no

4. Levels of detail are very easily mixed and confused.

~6

5. They have no provision for representing multiway

decisions.

6. There is no symbol to represent a loop.

As flowcharts

unconditional

are

jumps,

organised around conditional and

it is extremely difficult to see how a

set of rules could be drawn up to translate them into a

language which does not contain a GOTO statement. Flowcharts,

then, distract attention from the important functional

relationships in the overall design. They highlight the flow

of control at the expense of inherent structure and so are of

no value at all in helping to develop an awareness of the

importance of structure.

4.4.2 PSEUDOCODE

There are many varieties of pseudocode but most of them are a

compromise between English and PASCAL. This is a popular and

useful method of program development and does attempt to

represent the overall hierarchical nature of the solution. It

is usual to begin with a very high level description of the

solution as a list of indexed points. Each point is then

refined, if necessary, into a further list of indexed

sub-points and this process is continued until the program is

completely broken down into a set of simple sub-tasks. This

is the classic Top-Down approach but, unfortunately, may lead

to a solution spread over a number of pages of text. In

addition, there is no obvious representation (apart from the

indices) of the relationships between the various sub-tasks.

It is also an extremely 'wordy' method and is not easily

represented on a blackboard or overhead projector.

47

4.4.3 STRUCTURE DIAGRAMS.

Structure diagrams are developed in exactly the same way as

pseudocode but the finished product represents both the

hierarchy and the relationships between the parts in a

much clearer manner. They are very suitable for use in

schools because:

1. They force students to use a Top-Down design.

2. They show overall structure at a glance.

3. They are hierarchical and support the refinement

process.

4. They are very different from any programming language

and so reinforce the idea of program design as a

separate task from coding.

5. They embody very few syntax rules of their own and so

the technique of constructing them can be learnt

quickly and easily.

6. It is easy to modify the lower levels of the

diagram, without disturbing the upper levels. This

is important as problem-solving is often a trial and

error process. This flexibility should encourage

students to examine their own designs critically and

continuously.

7. At every

may help

level there is a complete solution. This

students to feel that they are making

progress and encourage them to persevere.

8. Students may have any level of design checked by the

teacher before proceeding to the next level.

9. The teacher may supply the upper levels and require

students to further refine the solution.

48

10. They may be translated directly into any computer

language, at the keyboard, by following a few simple

rules.

11. They are very suitable for use on both blackbo'ards

and overhead projectors.

A form of structure diagram has been used by Kelly [49] and

Atherton [50] but this does not adequately represent the

mini-language outlined above. A variation of these diagrams

was therefore designed to match the structures of the proposed

mini-language. A properly drawn diagram of this type is a

good reflection of one's problem analysis. It also represents

the exact ordering of the statements within the program and so

may be readily translated into a programming language.

Each diagram is a tree-like structure (the tree is upside

down) and may consist of:

(i) A ROOT box:

This contains the title of the program.

(i i) NODE boxes:

These are boxes that have been further refined.

They contain headings which may be used as REM

statements.

(iii) LEAF boxes:

These are boxes that have not been further

refined. They contain actions.

(iv) PROCEDURE boxes: ... 11 ___ ... 11

These contain procedure names.

49

(v) THE IF SYMBOL: •
This denotes the beginning and the end of an

alternative control structure. Beneath the IF

symbol, and attached to it, there must be at least

one DECISION BOX: <--------->
Each decision box contains a boo lean condition

guarding entry to a block of the IF structure.

The last box may contain the word ELSE denoting an

ELSE clause. If all of the previous conditions

have been found to be FALSE, then the ELSE branch

is executed by default.

(vi) LOOP CONTROL boxes: ()
These denote the beginning and the end of a loop.

Each one contains a boolean expression which

'guards' entry to a loop. The boxes below it, and

attached to it, contain the statements of the body

of the loop which are executed repeatedly as long

as the boolean expression is TRUE.

4.5. TRANSLATION OF DIAGRAMS INTO PROGRAMMING LANGUAGES

It was necessary to specify exactly how the diagrammatic

solutions should be translated into programming languages, as

otherwise the diagrams would be useless. This point is rather

neglected in most textbooks that use either structure diagrams

or flowcharts; possibly because of the near impossibility of

describing the translation process if all the various looping

and branching structures are used. Nevertheless. it is vitl'tl

thaT, this is done, as otherwise T,he sT,udenT, is burdened with

50

unnecessary effort which may distract from the problem at hand.

Ideally, the translation rules should be simple, unambiguous and

as few as possible, making the translation process a purely

'mechanical' one. Once the translation rules are learned, the

student should be able to write programs at the keyboard

directly from a diagram in whatever implementation language is

being used. This part of the programming process should be

viewed by the student as fairly trivial and not nearly as

important as designing the diagram in the first place.

4.5.1 TRANSLATION OF SEQUENTIAL STATEMENTS

The general method for translating any diagram into

programming language is as follows:

1.

2.

The diagram is a tree (upside down) .

The tree consists of a root, leaves and nodes. The

root is the box containing the name of the problem.

Nodes are boxes that have been further refined.

Leaves are boxes that have not been refined.

3. Starting at the root 'walk' around the tree keeping

an imaginary left hand on it at all times. Whenever

a leaf is encountered, the appropriate statement IS

written in the programming language.

written at a node.

Nothing is

a

An example of a simple diagram and the program derived from it

is shown in figure 4.4. This general scheme is the same for all

languages. Differences only arise when conditional and

iterative control structures need to be translated.

51

Program derived from diagram:

D.

E

F

G

c

Note: A and B have both been further refined and therefore are

not statements in the program. They may however be used

as REM statements because A describes the process carried

out by executing D and E, and B describes the process

carried out by executing F and G.

FIGURE 4.4

4.5.2. TRANSLATION OF THE CONDITIONAL CONTROL STRUCTURE

The start and end of a conditional structur~ is represented in

the diagrams by the symbol" .

interpreted as follows:

The example in figure 4.5 is

1. Once the structure is entered the first condition

on the left is tested.

2 a) If this is found to be TRUE then the statements

below it (guarded by it) are executed. The

other conditions in the structure are not then

tested as only one branch of the structure may

be executed.

b) If it is found to be FALSE then the next

condition to the right is tested.

3. This process is repeated until either one condition

is found to be TRUE or all the conditions have been

found to be FALSE.

CONDITION A CONDITION B CONDITION C

BLOCK 1 STATEMENTS BLOCK 2 STATEMENTS

FIGURE 4.5

BLOCK 3 STATEMENTS

It may be noted that, at most, one branch is executed but that

it 1S also possible that no branch is executed if all the

53

conditions are found to be FALSE. There is no upper limit on

the number of branches but, of course, there must be at least

one.

The diagram in figure 4.5 may be translated into the various

languages as shown in figure 4.6. The COMAL editor

automatically indents control structures as shown but in PASCAL

the indentation must be added by the programmer.

the Applesoft BASIC program it may be noted that:

With regard to

1. The 'reversal' of the boo lean conditions can be

achieved quite readily by using the NOT operator or

~. (preferably) by us ing de. Morgan' s law.

2. It is possible to derive a simpler translation

rule, which doesn't require reversal of

conditions, by using multi-statement lines.

the

This

works quite well if there are just a few statements

in each block, but fails if there are more

statements in a block than will fit on a program

line. It is also very awkward to use this method

when nested IFs are involved.

3. The editor does not allow statements to be indented

as shown, and actually removes indentation if

included by the programmer.

The style of coding used in the BASIC examples is quite unlike

the norm found in textbooks. The advantages of this style are

that control structures are clearly indicated with just one

entry point and one exit point, GOTOs are confined to jumps

within a control structure and the statements governed by any

54

METANIC COMAL APPLE PASCAL

100 IF CONDITION A THEN
110 BLOCK 1 STATEMENTS
120 ELIF CONDITION B THEN
130 BLOCK 2 STATEMENTS
140 ELIF CONDITION C THEN
150 BLOCK 3 STATEMENTS
160 ENDIF

IF CONDITION A THEN
BEGIN
BLOCK 1 STATEMENTS;
END

ELSE IF CONDITION B THEN
BEGIN
BLOCK 2 STATEMENTS;
END

ELSE IF CONDITION C THEN
BEGIN
BLOCK 3 STATEMENTS;
END;

END.

APPLESOFT BASIC

100 REM STARTIF
110 IF NOT (CONDITION A) THEN GOTO 140
120 BLOCK 1 STATEMENTS
130 GOTO 200
140 IF NOT (CONDITION B) THEN GO TO 170
150 BLOCK 2 STATEMENTS
160 GOTO 200
170 IF NOT (CONDITION C) THEN GOTO 200
190 BLOCK 3 STATEMENTS
200 REM ENDIF

B.B.C. BASIC

100 REM STARTIF
110 IF CONDITION A THEN 120 ELSE 140
120 BLOCK 1 STATEMENTS
130 GOTO 190
140 IF CONDITION B THEN 150 ELSE 170
150 BLOCK 2 STATEMENTS
160 GOTO 190
170 IF CONDITION C THEN 180 ELSE 190
180 BLOCK 3 STATEMENTS
190 REM ENDIF

FIGURE 4.6

55

particular condition

condition.

are written immediately after that

The final conditional box may contain the word ELSE, rather than

a boolean condition. In this case the last branch of the

structure is executed if all the previous conditions have been

found to be FALSE. If there is an ELSE branch in the structure,

as in figure 4.7, it may be coded into the various languages as

in figure 4.8 (see page 57).

CONDITION A CONDITION B ELSE

BLOCK 1 STATEMENTS BLOCK 2 STATEMENTS BLOCK 3 STATEMENTS

FIGURE 4.7

4.5.3 TRANSLATION OF THE ITERATIVE CONTROL STRUCTURE

CONDITION A

ACTION 1 ACTION 2

FIGURE 4.9

The diagram in figure 4.9 is interpreted as follows:

1. The condition in the round box is tested.

ACTION 3

56

METANIC COMAL APPLE PASCAL

100 IF CONDITION A THEN
110 BLOCK 1 STATEMENTS
120 ELIF CONDITION B THEN
130 BLOCK 2 STATEMENTS
140 ELSE

IF CONDITION A THEN
BEGIN
BLOCK 1 STATEMENTS;
END

ELSE IF CONDITION B THEN
BEGIN 150 BLOCK 3 STATEMENTS

160 ENDIF BLOCK 2 STATEMENTS;
END

ELSE
. BEGIN

BLOCK 3 STATEMENTS;
END;

END.

APPLESOFT BASIC

100 REM STARTIF
110 IF NOT (CONDITION A) THEN GOTO 140
120 BLOCK 1 STATEMENTS
130 GOTO 200
140 IF NOT (CONDITION B) THEN GOTO 170
150 BLOCK 2 STATEMENTS
160 GOTO 200
170 REM ELSE BRANCH
180 BLOCK 3 STATEMENTS
200 REM ENDIF

B.B.C. BASIC

100 REM STARTIF
110 IF CONDITION A THEN 120 ELSE 140
120 BLOCK 1 STATEMENTS
130 GOTO 190
140 IF CONDITION B THEN 150 ELSE 170
150 BLOCK 2 STATEMENTS
160 GOTO 190
170 REM ELSE BRANCH
180 BLOCK 3 STATEMENTS
190 REM ENDIF

FIGURE 4.8

57

2. If this is

below it

found to

(guarded

be TRUE

by it)

condition is then tested again.

then the statements

are executed. The

3. This process is continued until the condition is

found to be FALSE.

Note: If the condition is found to be FALSE on the first test

The then the guarded statements are not executed at all.

diagram in figure 4.9 may be translated into the various

languages as shown in figure 4.10.

4.6 CHOICE OF IMPLEMENTATION LANGUAGE

Although one of the chief aims of the course was to teach

programming concepts independently of any particular programming

language, it was still necessary to choose a computer language

for implementing and testing programs. The languages available

were APPLESOFT BASIC, APPLE PASCAL, METANIC COMAL (for Apple

machines) and B.B.C BASIC.

It is clear from the coded examples that both COMAL and PASCAL

support the chosen structures in a very clear manner. With both

of the BASICs the structures have to be simulated. The

conditional statement is particularly tedious to construct in

BASIC. This is not due to any fault in the chosen control

structure but because both BASICs are structurally deficient

languages. Applesoft BASIC is particularly bad as it does not

support any control structures, apart from the IF/THEN

conditional statement (with no ELSE branch) and the FOR/NEXT

loop. Neither does

appallingly bad

it support procedures. It also

editor, which is another

has an

important

consideration. B.B.C. BASIC is slightly more structured and has

58

METANIC COMAL

100 WHILE CONDITION A DO
110 ACTION 1
120 ACTION 2
130 ACTION 3
140 ENDWHILE

APPLESOFT BASIC

100 REM STARTLOOP

APPLE PASCAL

WHILE CONDITION A DO
BEGIN
ACTION 1;
ACTION 2;
ACTION 3;
END.

110 IF NOT (CONDITION A) THEN GOTO 160
120 ACTION 1
130 ACTION 2
140 ACTION 3
150 GOTO 100
160 REM ENDLOOP

B.B.C. BASIC

100 REM STARTLOOP
110 IF CONDITION A THEN 120 ELSE 160
120 ACTION 1
130 ACTION 2
140 ACTION 3
150 GOTO 100
160 REM ENDLOOP

FIGURE 4.10

59

a good editor. It supports procedures, the REPEAT/UNTIL loop

and the IF/THEN/ELSE conditional statement. This latter

structure is not much of an improvement on the Applesoft IF/THEN

statement as the complete statement must be written on one

program line.

The choice of language then was between METANIC COMAL and APPLE

PASCAL. This was an easy decision as the operating environment

of COMAL is simpler. It was feared that learning how to

manipulate the PASCAL editor, filer, compiler etc. would take up

most of the available time, leaving no time for the real purpose

of the course, i.e. solving problems. It was also felt that an

interpreted language, rather than a compiled one, was better for

beginners. This was because their initial efforts were sure to

contain many errors and the interpreter could give them

immediate feedback. COMAL is particularly good in this respect

as it checks the syntax of each line as it is typed and reports

any errors found. It also performs a pre-RUN check on each

program to ensure that all control structures are properly

nested and closed. If any error of this nature is found then it

is reported by the system. In effect, this means that any

program which can be RUN is free of syntax errors and so if the

desired result is not achieved it can be assumed that there is a

logical error. This knowledge, combined with the system-forced

indentation, is helpful when debugging programs. A further

reason for choosing COMAL was that it allows external library

procedures to be incorporated into programs in a very simple

manner.

60

CHAPTER 5
=========

REVIEW OF THE AVAILABLE TEXTBOOKS
--

5.1 INTRODUCTION

A review of the currently available textbooks for second level

courses was carried out before developing the course materials.

The purposes of this review were:

1. To see if such textbooks might be suitable for the

course.

2. To gain some insight into what are the accepted

norms for such courses.

3. To show how the mini-language and the structure

diagrams can be used to solve the problems that are

used in these books and to compare the solutions

developed in this way with those in the books.

4. To find problems that might be used in the course.

Five books were reviewed [49,50,51,52,7]. Two of these [49,51]

are the current best-sellers in Irish second level schools. The

other two COMAL books [50,52] were reviewed briefly because

COMAL was the chosen implementation language. The final book

[7] was reviewed because it has been distributed to all second

level schools by the Department of Education and is concerned

with TOP-Down programming, structure diagrams and COMAL.

61

5.2 BASIC COMPUTER PROGRAMMING FOR STUDENTS [51]

In the preface of this book the authors state that it was

"produced with the object of enabling students of. all age groups

to communicate with computers using what is often regarded as

the easiest and quickest computer language to learn - BASIC".

In chapter 1 (p.9) they state that "the process of making an

algorithm acceptable to a computer is called programming",

These two statements would suggest that the emphasis of the book

is on coding in BASIC and this is indeed the case. In the early

chapters there is no clear distinction drawn between

problem-solving, coding and editing. Most of the examples given

are designed to show how BASIC statements such as READ, LET and

PRINT work, rather than to solve any stated problem.

5.2.1 FLOWCHARTS

Initially, flowcharts are used

page 100 they are discarded.

to develop programs but after

In the rest of the book, if an

algorithm is developed before coding, it is done by writing a

sentence describing each section of the program. In most cases,

the finished program is presented without any preliminary

discussion of the algorithm. Figure 5.1 (from p.51) is a

typical example of the way in which flowcharts are used in the

book. The flowchart is an exact, statement by statement,

replica of the code and so is of little value. Even in such a

simple problem, the structure diagram allows the programmer to

seek a solution in a Top-Down manner. The completed diagram

(figure 5.2) also tells us much more about how the problem was

approached.

62

,

\
!

Create a program which reads a number of h'~~;s ";'d minutes fro~' dai~'
as a pair of values, calculates and prints the total number of minutes.
e.g. 5,2 = 5 hours and 2 minutes. The dummy value used is minus hours
(-H).

Solution

READ FIRST
SET OF DATA

DO CALCULATION

A:= (H*60) + M

N

30

START

y
H<O?

STOP

20

10 READ H,M

20 IF H<OTHEN BO

30 LET A=H.60 + M

40 PRINT H,M,"=",A

50 GOTO 10

60 DATA 5,2,3,45,15,16,32,4,24,0

70 DATA 4B,O,-5,O

BO END

FIGURE 5.1

LOOP TO PROCESS ALL
THE DATA AND PRINT RESULTS

OUTPUT RESULT

PRINT A

FIGURE 5.2.

READ NEXT
SET OF DATA

READ H, M

63

The problem in figure 5.3 (from p.53) is re-solved using the

mini-language and a structure diagram in figure 5.4 The

structure diagram illustrates the overall approach to the

problem in a clearer fashion and is much easier to understand.

The code developed from the flowchart involves four jumps and

does not indicate where the loop begins and ends. This may be

contrasted with the BASIC program derived from the structure

diagram:

10 READ A
20 REM STARTLOOP
30 IF A < 0 THEN 70
40 IF A >= 40 AND A <= 50 THEN PRINT A
50 READ A
60 GO TO 20
70 REM END LOOP

In figure 5.5 (from p.90) it is impossible to understand how the

solution works without examining the flowchart in minute detail.

This, in turn, indicates that in developing the solution it was

necessary to consider all the minor details first and then build

them up to arrive at the overall solution. This approach

confers no advantage over coding the program directly in BASIC.

This is in marked contrast to the structure diagram (figure 5.6)

where it is obvious from the first few lines that the program is

accepting positive numbers from the keyboard, searching the data

for each one and terminating when a negative number is input.

5.2.2 SELECTION AND ITERATION

As the stated purpose of the book is to teach BASIC, there is

little attention paid to the underlying programming structures.

There is no clear distinction drawn between looping and

branching. This is because both are introduced together in

chapter 4 for the purpose of showing how the GOTO statement

64

Design a program to read an unknown quantity of values in the range
o to 100 and to print those in the range 40 to 50 inclusive. Anegative
value is to be used to terminate the data.

Solution

START·

FIGURE 5.3

RANGE

10 READ A

15 DATA47.B.42,75.41.39.95.-2

.20 IF A<O THEN 60

25 IF A<40 THEN 50

30 IF A>SO THEN 50

40 PRINT A

50 GOTO 10

60 END

INITIALISE LOOP TO READ ALL'THE NUMBERS
AND TO TEST EACH ONE

READ A

A >= 40 AND A <= 50 READ A

PRINT A

FIGURE 5.4

65

A set of data compriSIng a staff number, name and job description is
pro\'ided for each of a number of employees. Create a program which
finds the job description of an employee whose staff number is entered
from a terminal.

Generalize this program to repeat the process until the value 0 is input
for the staff number. .

Flowchart Program

START

N=O? y

STOP

A=O? y

N N=A?

10 PRINT "ENTER EMPLOYEE NUMBER"

15 PRINT "ENTER 0 TO END"

20 INPUT N

25 IF N=O THEN 420

30 READ A

40 IF A=O THEN 100

50 READ TS,JS

60 IF N=A THEN 80

70 GOTO 30

BD PRINT N;TS;" HAS JOB ";JS

90 GOTO 400 .

100 PRINT "NO SUCH EMPLOYEE"

130 DATA 16,"JOE SMITH","CLERK"

380 DATA 76B,"ALAN HUGHES","DRIVER"

390 DATA 0

400 RESTORE

410 GOTO 10.

420 END

FIGURE 5.5

66

INITIALISE

INPUT N

SEARCH DATA FOR
VALUE EQUAL TO N(OR 0)

READ A

READ T$, J$

READ T$, J$

A = N

N > 0

RESTORE THE
DATA POINTER

INPUT N

READ A

PRINT T$, J$

OUTPUT RESULT
OF THE SEARCH

FIND REASON FOR
LOOP TERMINATION.

PRINT "NOT
ON THE STAFF"

FIGURE 5.6

67

works. It is felt that this approach is unwise as looping and

branching are vital concepts and the GOTO statement exists

merely to facilitate coding of loops and branches in BASIC.

The first program in the book that contains a loop (from p.46)

is as follows:

10 READ H, R
20 LET P=H*R
30 PRINT P
40 GO TO 10
50 DATA 6,1.20, 7, 1.40, 5, 0.80
60 DATA 4, 1.50
70 END

This program contains an infinite loop and cannot terminate

properly. The authors discuss the 'workings' of the program in

detail and indicate that it will eventually terminate with an

'out of data' error. This is bad programming practice and an

unsatisfactory way to introduce the important topic of loop

construction. The FOR/NEXT loop is introduced in chapter 5. It

is not emphasised that the FOR/NEXT structure is designed for

looping situations in which the number of iterations is known in

advance. In fact, it seems that the authors do not believe this

is the case as they give three examples illustrating how to

tamper with the structure, one of which is as follows:

10 FOR I = 1 TO 20
15 READ X
20 IF X = 0 THEN 50
25 IF X > 100 THEN 40
30 LET C = C + 1
40 NEXT I
50 (rest of program)

This is clearly not a FOR/NEXT situation at all as the loop is

terminated either when I exceeds 20 or when X=O. The structure

of this program fragment could be improved as in figure 5.7.

This would result in the following code:

68

1:=1

10 LET 1=1
20 LET C=O
30 READ X
40 REM STARTLOOP
50 IF (X=O) OR (1)20) THEN 100
60 LET 1=1+1
70 IF X <= 100 THEN C=C+l
BO READ X
90 GOTO 40

100 REM ENDLOOP

C:=O READ X

1:=1+1 X <= 100

C:=C+1

FIGURE 5.7

X<>O AND
1<=20

A further point to note about the listing from the book is that

the authors fail to initialise the variable C. This practice is

carried out throughout the book, the assumption being that

uninitialised variables will have zero value. While this is

true for most BASIC implementations, it is not good practice and

would not work with most other languages.

No problem specification is given for this program fragment, or

for the other ones which tamper with the FOR/NEXT structure, and

no explanation is given for coding them in this way. The

69

motivation seems to be to demonstrate not only how the

statements of BASIC work but also to show how they may be

'fooled'. The student, however, is left with the impression

that programming consists of mysterious tricks.

Boolean operators {AND, OR, NOT} are introduced {p.58} as

"additional facilities". A truth table is shown for each

operator and some trivial examples are given. These examples

are used merely to illustrate the truth tables and none are in

solutions to stated problems. It seems that the authors do, in

fact, regard boolean operators as "additional facilities" as

they do not use them in their own programs. If, however, it is

realised that selection and iteration are the fundamental

structures in all programs, and if both of these -structures are

'guarded' by boolean expressions, then these expressions and

their construction with boolean operators are of vital concern.

5.2.3 'ADVANCED' BASIC.

Towards the end of the book there is a section {Chapter 15} on

'Advanced' BASIC. This is not, as one might expect, a chapter

about solving very difficult problems with BASIC but one in

which additional {and somewhat rare} BASIC statements are

described. This emphasis on language 'facilities' at the

expense of problem-solving is, however, consistent with the

general approach of the book. These 'advanced' facilities are:

A. The IF/THEN/UNLESS STATEMENT {p. 264}

" B. The' FOR UNTIL STATEMENT {p. 266}

C. The FOR WHILE STATEMENT {p. 266}

These are merely looping and branching statements and can easily

be constructed using simpler, more common statements. The

70

impression given by this chapter is that, to become an

'advanced' programmer, it is merely necessary to learn how more

statements work. This is not so, as being a good programmer

involves analysing problems in a disciplined, systematic way and

detailed knowledge of numerous programming language statements

is not much help in this regard.

This book was considered to be unsuitable for the purposes of

the course, for the reasons outlined above.

5.3 FOUNDATIONS IN COMPUTER STUDIES WITH COMAL [49]

The preface of this book contains six stated aims, four of which

concern 'general' computer appreciation. The other two are:

1. To develop an appreciation of structured

problem-solving.

2. To develop skill in COMAL programming.

Most of the book is devoted to these two aims. The first two

chapters fail to make a clear distinction between

problem-solving, editing and disk management. These are all

introduced together without any attempt to emphasise key

concepts such as variables, assignment statements and input

statements.

5.3.1 SELECTION

The first decision structure introduced is the IF/THEN/ELSE

structure. This is represented in the structure diagrams by a

decision box containing·a boolean expression with two branches

leading out of it. These branches are marked YES and NO

respectively. The branch marked YES is executed if the boolean

expression is TRUE and the branch marked NO is executed if it is

71

FALSE. This arrangement often leads to situations in which it

is necessary to go the bottom of a diagram before accomplishing

a task at the first level, as the author concedes in the example

(on p.42) concerning conversion of singular nouns to plurals

(see figure 5.8).

In the alternative diagram (figure 5.9) all the decisions, which

are of equal importance, are represented at the same level of

the diagram. This is a neater, easier to follow representation

of the solution. This method is also more conducive to

'Top-Down' thinking as the decision is taken at a certain level

of the diagram and does not intrude on lower levels if there are

any.

This author's solution is then coded in COMAL (on p.43), using

four nested IF/THEN/ELSE structures. On the following page it

is remarked that the "need for multiple selection arises fairly

often" and an IF/ELIF coding of the same problem is given. This

is a simpler, clearer coding as there is really only one

mUlti-way decision to be made, rather than four separate two-way

decisions. This is reflected much more clearly by the

alternative diagram presented here than by the diagram in the

book.

All the remaining problems in the chapter involve multi-way

decisions and are treated in either of two ways:

1. Solved using nested two-way decisions and coded

using IF/EL IF.

2. Solved using one multi-way decision (like the one

suggested here) and coded using the CASE structure.

72

INPUT
SINGULAR

NOUN

ADDR~N TO FORM
PLliRAL

CONVERT
SINGULAR NOUN

. TO PLURAL

NOUN = CHILD?

NO

NOUN = MOUSE?

YES
NO

OUTPUT
ANSWER

PLURAL .,= MICE NOUN = OX?

INPUT NOUN$

NOUN$ =
"CHILD"

PLURAL$:=
"CHILDREN"

PLURAL ,= OXEN

NOUN$ =
"MOUSE"

PLUHAL$:=
"MICE"

PLURAL,=WOMEN

FIGURE 5.8

PLURAL

NOUN$ =
"OX"

PLURAL$:=
"OXEN"

FIGURE 5.9

NO

NOUN = WOMAN?

NO

ADDS
TO FORM
PLl!RAL

PRINT PLURAL$

NOUN$ =
"WOMAN"

PLURAL$:=
"WOMEN"

PLURAL$:=
NOUN$+"S"

73

Towards the end of the chapter (p.55), a problem is shown to

illustrate how the CASE statement can be very clumsy. The

program is then coded using the IF/EL IF structure to show how it

is superior to the CASE structure. In all, three different

methods of making decisions are shown. This is unhelpful,

especially when it is conceded that in certain circumstances two

of these may be very unsuitable. This may leave students

confused about which structure to use and will almost certainly

lead them to employ mixtures of these structures when dealing

with larger problems. It would seem that the author was more

concerned with giving a full description of COMAL and less

concerned with developing a structured approach to

problem-solving.

5.3.2 ITERATION

Chapters 4, 5 and 6 are concerned with looping and introduce the

REPEAT/UNTIL, FOR/NEXT and WHILE/ENDWHILE structures

respectively. The first problem introduced to demonstrate the

REPEAT/UNTIL loop is to find the mean of a list of positive

numbers which are input.

the end of the input.

A negative value is used to indicate

The diagram for the solution (figure

5.10) does not clearly suggest the structure of the solution and

gives no indication of how the problem was analysed. It

presents the statements in the same way as a program

merely

listing

would. An alternative using the Top-Down method is suggested

(figure 5.11).

The solution in the book (figure 5.10) is not strictly correct

as it does not take account of the fact that there may be no

positive input. This is a general feature of solutions that

74

FIND
MEAN

SUM ,= 0 COUNT ,= 0 INPUT MEAN ,= Sl'M OUTPUT

INITIALISE

SUM:=O
COUNT: =0

SUM: =
SUM + MARK

MARK

SUM ;=
SUM ... MARK

COUNT ,=
COUNT. I

FIGURE 5,10

LOOP TO ACCEPT
NUMBERS & FIND MEAN

INPUT
MARK

COUNT: =
COUNT + 1

INPUT
MARK

FIGURE 5,11

MARK> =0

COl'!>:T MEAN

OUTPUT THE
RESULT

COUNT>O

MEAN: =
SUM/COUNT

PRINT
MEAN

75

employ the REPEAT/UNTIL structure. In very many problems there'

are circumstances in which the actions inside the loop should

not be executed at all. To guard against this, the boolean

expression controlling the loop must be placed at the start of

the loop. This means that the WHILE/ENDWHILE structure should

be used.

Another problem dealt with in this chapter is to find the value

of 7!. The program is as follows. (All REM statements have

been removed).

70 FACTORIAL:= 1
80 N:= 7
90 REPEAT

100 FACTORIAL:= FACTORIAL * N
110 N:= N - 1
120 UNTIL N = 0
130 PRINT "7! = "; FACTORIAL
140 END

It may be noted that it is not necessary to write a program to

calculate 7!, as this can be done with a simple print statement,

It must therefore be assumed that the

author intended this program to be generalised to find N!. The

given program is correct and does calculate 7! ; but, if it is

generalised to calculate N! (where N is input), it will fail

when N is given the value ZERO. The reason for this is again

due to the nature of the REPEAT/UNTIL structure. The loop is

not guarded properly and entry is allowed when N has ZERO value.

This would lead to the loop being executed infinitely, because N

is decreased inside the loop, and so "UNTIL N = 0" can never

become TRUE.

It is just as simple to write a progrnm for this problem which

will work under all circumstances, assuming that the input is

76

valid (which is a separate issue). This of course involves a

properly guarded loop and the WHILE/ENDWHILE structure.

10 INPUT N
20 FACTORIAL:= 1
30 WHILE N>l DO
40 FACTORIAL:= FACTORIAL * N
50 N:= N-1
60 ENDWHILE
70 PRINT FACTORIAL

The loop is not executed at all if N=O (or if N=l) and so

FACTORIAL retains its original value of 1, which gives the

correct answer for both O! and 1!.

The FOR/NEXT loop is introduced in chapter 5. It is emphasised

that this structure is only suitable where the loop is to be

executed a fixed number of times. The 7! problem is recoded

using a FOR/NEXT loop but still cannot be generalised to find N!

as it contains the line:

90 FOR COUNT:= 7 DOWN TO 1 DO

If this were generalised it would be:

90 FOR COUNT:= N DOWN TO 1 DO

It is not clear what would happen here if N had the value 0 or 1

as both '0 DOWN TO l' and '1 DOWN TO l' are meaningless.

The WHILE/ENDWHILE loop is introduced in chapter 6. It is

remarked (on p.88) that "the WHILE loop is more general than the

REPEAT loop" and that every REPEAT loop could be recast as a

WHILE loop, but not the other way round". The author does not

point out that the same may be said of the FOR/NEXT loop. (This

is demonstrated in chapter 4 of this thesis). The use of the

REPEAT loop is then justified. because it is "often a more

natural way to express iteration and may make programs easier to

77

read". It is not clear what "natural" means in this context but.

it is probably fair to assume that it is concerned with clarity

of expression. No examples are given to illustrate this claim.

In another example (on p.138) the author uses WHILE/ENDWHILE for

a fixed iteration loop. While this is perfectly correct, it is

likely to lead to confusion for students who have been told that

the FOR/NEXT loop is the one to use under these circumstances.

The treatment of both selection and iteration involves too many

programming constructs and so distracts from the most important

issue, i.e. problem-solving. All the problems in these chapters

can be solved using the WHILE/ENDWHILE loop and in many cases

the solutions are more general and clearer. Even if all the

other loops are to be introduced, the WHILE/ENDWHILE loop should

be introduced first as it is the most general. It also

encourages a Top-Down approach as the loop control condition is

usually constructed before the body of the loop is written.

This in turn encourages the student to construct the condition

very carefully.

Boolean operators are almost totally ignored and are dealt with

in less than half a page (p.141). This indicates that the

author does not consider boo lean operators to be important and,

in fact, they are not used very much in subsequent programs. No

attempt is made to show how these operators may be combined to

build up powerful conditional expressions.

5.3.3 STRUCTURE DIAGRAMS

Throughout the book, structure diagrams are used to develop

solutions before coding them in COMAL: A typical example,

78

involving the calculation of income tax, appears on page 24

(figure 5.12). This diagram is very wide and not very deep.

This is an important characteristic of most of the diagrams in

the book, indicating that a Top-Down method has not been used.

The diagram in figure 5.12 is a direct restatement of the

program listing and appears to have been derived from the

listing rather than vice versa. The alternative solution

(figure 5.13) gives a much clearer idea of how the problem was

approached.

A later problem (figure 5.14) concerns finding the smallest

positive power of 2 ~hat exceeds a given (input) number. This

solution contains no output statement and is obviously not a

Top-Down solution. There is also an unnecessary variable

(POWER) which makes the solution quite difficult to understand.

The alternative (figure 5.15) is much simpler.

It would seem, from the examples presented here and the others

in the book, that the diagrams are extremely 'close' to the

coded COMAL programs. Because of this, they tell us little more

than the program listing and so are of relatively little value.

While this book is closer to the type of course being developed

than the previous one, it was considered unsuitable because of

the lack of a proper Top-Down approach and the confusion caused

by the presentation of all the looping and branching structures.

5.4 STRUCTURED PROGRAMMING WITH COMAL [50]

This book is intended to be a ··suitable introduction to problem

analysis and programming for a complete beginner or for someone

who knows BASIC". It would seem, however, that the book is

79

INPUT
SALARY

INPUT
SALARY

INPUT
STATUS$

CALCULATE
INCO~IE

TAX

:::::::-
INPUT

MARITAL
STATUS

YES

TAXABLE
,= SALARY-

1,2400

MARRIED?

FIGURE 5.12

TAX

FIND
TAX

-

--.::::::::::
TAX

,= 35 • TAXABLE
100

NO

TAXABLE
,= SALARY-

[1200

- .

OUTPUT
TAX

PRINT
TAX

FIND TAX:=

~T~A;:X:;A.:.;;B;;L:::E:::. _______ ~:TAXABLE * 0.35

STATUS$ =
"MARRIED"

TAXABLE: =
SALARY - 2400

FIGURE 5.13

STATUS$ =
"SINGLE"

TAXABLE: =
SALARY - 1200

BD

INPUT
GJ\'E~ NUMBER

N

INPUT N

FIND LEAST
POWER OF 2

GREATER THAN N

I:-':DEX ,.0 POWER ,. I

rOWER ,.
POWER. 2

FIGURE 5.14

LOOP TO FIND
REQUIRED INDEX

INITIALISE

DO
WHILE POWER

<oN

Ii'ZDEX :=
INDEX + I

PRINT
INDEX

INDEX:= 0 INDEX:= INDEX + 1

FIGURE 5.15

81

geared very much towards someone who knows BASIC, or some other

programming language, reasonably well. The author assumes

knowledge of many of the initial concepts and so there is a very

skimpy treatment of variables and of the assignment statement.

The examples given at this early stage concern both the use of

string processing statements and the use of string variables to

simulate records. This is not suitable for a complete beginner.

Similarly, some of the sample programs given in the initial

stages are extremely complex and often involve control

structures and COMAL statements which have not yet been

mentioned in the book (e.g. p.32). This tendency to use COMAL

statements before they have been explained is a serious flaw and

also occurs with conditional expressions (p.29), procedures

(p.36) and boolean operators (p.61). In many cases new ideas

are introduced with over-complex examples, e.g. conditional

structure (p.58), CASE statement (p.72) and arrays (p.76).

5.4.1 ITERATION

The FOR/NEXT loop

REPEAT/UNTIL loop.

is introduced first, followed by

The author recognises that the REPEAT

the

loop

"has a defect" and warns of the danger of·· an unexpected zero

case" (p.122). Despite this, the REPEAT/UNTIL and FOR/NEXT

constructs are used most of the time because .. these structures

often express the sense of what is being done in terms that

people can more readily appreciate" (P. 128). The WHILE/ENDWHILE

construct, which is acknowledged as being ··more general" and

"safer··, is reserved for special cases where no other construct

is possible. It is strange that the FOR/NEXT and REPEAT/UNTIL

constructs should be considered 'easier to understand' than the

82

WHILE/ENDWHILE. There is no evidence to support this and it is

difficult to see how anyone of the constructs should be more

difficult to understand than the others.

5.4.2 SELECTION

The IF/THEN/ELSE construct is introduced first for two-way

decisions and the CASE statement is used for mUlti-way

decisions. The ELIF construct is introduced later for multi-way

decisions "which do not convert naturally into discrete sets of

values", i.e. for special cases. There is only one example

p.130) to illustrate its use and it is only used twice in

remainder of the book.

(on

the

Unlike the other textbooks reviewed, there is a reasonably

detailed treatment of boolean operators, although de Morgan's

Laws are not mentioned. However, the author also makes the

distinction between inclusive and exclusive OR, which is, at

best, irrelevant. Once the rules for constructing a truth table

have been given, there is no need for this distinction, as it

may lead to confusion. Indeed the author has confused himself

on this very point and makes the misleading statement that "OR

leads to a true compound statement if both simple statements are

true" (p.63).

Throughout the book the author uses the 'post holes' problem to

illustrate various points. It would have been preferable to

have used problems that could actually be programmed on a

computer. Most of the worked problems are analysed by listing a

few points under the heading Problem Analysis/Program Design and

this is usually followed directly by the coded program.

83

Structure diagrams are introduced but only used to solve three

'computable' problems in the whole book. The motivation for

introducing the diagrams is not clear as the author does not use

them himself.

This book is not suitable for the proposed course as it assumes

a certain knowledge of BASIC, does not use structure diagrams in

a desirable way and only uses the two most important and general

control constructs (WHILE/ENDWHILE and IF/THEN/ELIF) for

'special cases'.

5.5 BEGINNING COMAL [52]

This book was written by one of the designers of COMAL and

claims to be ··not only about COMAL; it is also an introduction

to structured programming in general". The book is accompanied

by a disk containing numerous programs, listings of which are

given in the book. The whole focus of the book is on showing

how COMAL statements work, using the given programs. There are

numerous exercises, most of which involve running and editing

these programs. There are also numerous very trivial questions

which merely ask the learner to supply the line-number of some

particular statement or statements from the given listings.

Structure diagrams are used occasionally, but always to

illustrate the structure of a program which has already been

written. They are not used as tools for developing solutions

but as devices for illustrating program listings by suppression

of detail. The exercises which involve the diagrams all consist­

of 'filling in the blanks' in an incomplete diagram by checking

the program listing.

84

The treatment of control structures is similar to that of the

other COMAL books. For iteration, the FOR/NEXT loop is

introduced first, followed by the REPEAT/UNTIL and finally the

WHILE/ENDWHILE. In the supplied programs the FOR/NEXT and

REPEAT/UNTIL structures predominate. For selection, the

IF/THEN/ELSE construct is used for two-way selection and the

CASE/ENDCASE construct is used for multi-way selection.

Amazingly, the IF/THEN/EL IF structure is not mentioned anywhere

in the book. As in the previous book, the treatment of boolean

operators is very skimpy.

This book is not concerned with solving problems. All the

material, exercises etc. are concerned with trying to

understand, edit and modify given programs. All of these

programs must be taken as 'given' as there is no problem

specification for any of them. Because of this, the book has

very little relevance to the course described here, although it

may be of value to those seeking an understanding of the way in

which COMAL statements work.

5.6 THE DESIGN AND USE OF STRUCTURED ALGORITHMS [7]

This book was issued to all second level schools in the country

"as an aid to the teaching of computer studies". The aim was to

.. report on the des ign and use of structured algorithms". It is

geared more towards teachers' needs than towards students' and

assumes familiarity with the ideas of input, output and

assignment. The first chapter describes the historical

development of structured programming and this is followed by an

excellent chapter outlining the general features of structured

programming, including Top-Down design. The remainder of the

85

book consists of programming examples using structure diagrams.

The appendix contains COMAL programs for each of the structure

diagrams.

The authors state that they wish to ··present structured

programming as a method which is systematic and which produces

easily understood and logical algorithmic solutions to

problems". This is not achieved however, as the book contains

major flaws which render it of little value:

1. Despite the excellent description of the Top-Down

method, the problems are not solved in a Top-Down

manner (apart from a few introductory

'non-computer' problems).

2. All of the COMAL looping and decision structures

are used and there is no set of translation rules

given to convert the diagrams into COMAL. The

result of this is that many of the COMAL programs

bear very little relationship to the diagrams from

which they were derived.

3. In many cases diagrams and programs are given

without any problem specification.

Two examples will illustrate these points:

1. The diagram in figure 5.16 is an algorithm for

··searching a list of numbers for a target number··.

On page 34 it is stated that the first level of a

solution should be "concerned with WHAT must be

done rather than HOW it must be done··. It is

patently obvious that the first level of this

solution does not describe what must be done and

86

in fact, totally meaningless by itself.

Practically all the programming examples in the

book are carried out in this style. This

particular example also contains an unnecessary

boolean variable. An alternative Top-Down solution

using the proposed mini-language is given in figure

5.17.

2. A diagram is given (p.67) to solve the problem of

converting a given exam percentage into a grade.

The diagram and the associated program (p. 151) are

in figure 5.18. While the supplied program does

actually provide the same output as the diagram, it

does so by a different process. There is nothing

in the diagram which is equivalent to line 40 of

the program. Neither do the values in the CASE

structure bear any resemblance to those in the

conditional statement in the diagram.

This practice occurs throughout the book and is a direct

consequence of the lack of a set of translation rules for

deriving the program from the diagram. There are no translation

rules because it would be extremely difficult to devise a

coherent set of rules to cover all the control structures used

in the book.

The fact that the diagrams are badly organised, badly translated

and not Top-Down means that this book, apart from the

introductory chapters, adds nothing to our understanding of

systematic problem-solving and structured programming.

87

SPECIFY
TARGET

., ; .;

READ
VALUE

SET FOUND
TO FALSE

BOOLEAN-FIND

WHILE
NOT FOUND'"
AND NOT EOD

PRINT
"FOUND"

SET FOUND
TO

TRUE j

FIGURE 5.16

INPUT TARGET

LOOP TO READ VALUES
AND COMPARE WITH TARGET

VALUE < > TARGET
AND NOT EOD

READ TARGET

VALUE=TARGET

PRINT "FOUND"

FIGURE 5.17

PRINT

--..,.--.-

IF fOUND
= TRUE

"NOT FOUND"

1·-·

PRINT RESULT

FIND REASON FOR
LOOP TERMINATION

VALUE<> TARGET

PRINT "NOT FOUND"

88

INPUT

MARK
-, ..

>- 85

GRADE=A

MARK TO GRADE

MARK OUTPUT

GRADE

GRADE=B GRADE=C GRADE=D GRADE=E

~io

GRADE=F I GRA~G I
0010 //PROGRAM TO CONVERT PERCENTAGES TO GRADES
0015 //PROGRAM C 4.8
0017 CLEAR
0020 INPUT" ENTER MARK 0 TO 100 ": MARK
0030 //CONVERT MARK TO A VALUE IN RAllGE 1 TO 8
0040 GRADE:=INT«MARK+5)/15)+1
0050 CASE GRADE OF
0060 WHEN 1
0070 PRINT "NG"
0080 WHEN 2
oogo PRINT "F"
0100 WHEN 3
0110 PRINT "E"
0120 WHEN 4
0130 PRINT "D"
0140 WHEN 5
0150 PRINT "C"
0160 WHEN 6
o 170 PRINT "B"
0180 OTlIERWISE
01g0 PRINT "A"
0200 ENDCASE
0210 END

FIGURE 5.18

89

5.7 CONCLUSION

It would seem from the books reviewed here that the general

practice in schools' programming courses is to emphasise the

semantics of the chosen programming language, while paying

relatively little attention to general problem-solving

strategies. In all cases the authors used most of the available

control structures, although there was a consensus that the

WHILE/ENDWHILE and the IF/ELIF structures were the most general

of those available.

used much less often

structures. Although

Despite this, these two structures were

than the other looping and branching

structure diagrams were used in most of

the books, they were not used in a proper Top-Down manner in any

of them. It appears that structure diagrams are seen as devices

for representing programs that have already been written, rather

than as aids to problem-solving. It was possible to solve every

problem in these five books using the mini-language and in the

majority of cases the solutions were

general than those in the books.

better, clearer and more

No book was found to be

suitable for the proposed course but many interesting exercises

were found and these were adapted for subsequent use in the

course.

90

CHAPTER 6

PROJECT RATIONALE

6.1 SCHOOL AND STUDENT BACKGROUND

The course was taught over a two year period, '83/'84 and

'84/'85. The initial course was implemented in each year with

different groups of fifth year students (all aged 15 or 16 years

at the start of the course) and the continuation course was

implemented just once, with sixth year students. The courses

will be referred to as the fifth year course and the sixth year

course respectively.

The courses were implemented at the Holy Faith Secondary School,

The Coombe, Dublin. This is a non fee-paying, girls' school run

by the Holy Faith order of nuns. The school is situated in the

Liberties of Dublin, an old and historic area close to the city

centre, in which the school-going population is declining. The

area is currently beset by many social problems such as

unemployment, drug abuse and vandalism. Many of the children in

the school have had close contact with such problems. The

population of the school is decreasing rapidly, falling from 665

in '78/'79 to 400 in '84/'85. The pupils in the school are all

from working class backgrounds. Many of them live in inner city

apartment blocks and most of the rest commute from large council

estates on the outskirts of the city. This lat.ter group ar,e

mostly children of parents who originally lived in the vicinity

of the school.

91

In general the girls in the school are not ambitious. Most are

from large families (on average 4 or 5 children) in which there

is no academic tradition. Neither is there any tradition of

women working outside the home or of aspiring to a career. Very

few of the girls go on to third level education. For a girls'

school of its type there is a good range of subject options at

senior level, although these are being curtailed as the school

population drops. The number taking higher level papers at

Leaving Certificate level in Mathematics and Science subjects is

very small and falling:

Mathematics

Physics

Chemistry

Biology

approx. 2%

2%

10%

20%

The school acquired its three micro-computers, two Apples and

one B.B.C., early in 1982. Dissatisfaction with a traditional,

BASIC, programming course, taught in '82/'83, prompted the

design of the present course. For this earlier course all

students who applied were admitted. The majority of those who

applied had no idea of what was involved and there was a very

high dropout rate (60%). All of the students in the lower two

streams dropped out so it was decided to seek applications for

the present course from the two higher streams only. An

informal selection procedure was

subjective evaluation by staff members

used, based mainly

but also taking note

on

of

,performance in the Intermediate Certificate examination. The

object was to choose the most aule and hardest working students,

as it was felt that the course, being a non-exam course, would

require considerable commitment on the part of those

92

participating. Seventeen students were chosen in the first year.

and fifteen in the second. In each year two students dropped

out, in all cases after just a few weeks. These students were

among the weakest of each group, confirming that this type of

course is best suited to more able students.

As very few of the staff have any interest in computing, the

machines have not been used extensively apart from the

programming courses. No 'computer culture' has developed as

yet. In 1985 however, seven more computers were purchased and it

is planned to use these extensively to teach programming, word

processing, spreadsheets, databases etc. in the coming years.

In the first year of the course the machines were located in a

large open room with virtually free access. The students

developed a rota system for themselves. They divided into

groups of two to five students and each group had priority

access to the machines after' school on one appointed day each

week. They

were cases

usually worked for about an hour, although

of students being locked in because they

there

became

absorbed in their work The machines were also available at

lunch time (35 minutes) and morning break (10 minutes). They

were also allowed access before school in the mornings. and

during any free classes that might arise due to teacher absence

etc. These relatively free conditions meant that some students

spent up to eight hours a week working at the machines,

the average was about one or two hours.

while

Unfortunately, due to security problems, access had to be

restricted during the second year. The computers were relocated

93

~.

in a small room beside the staff room and quite a distance from

the students' own classroom. This room was kept locked at all

times and even though the students were allowed access as in the

previous year, they were now required to get a key from a

teacher or from the office. This resulted in a dramatic decline

in machine use, the only regular use being after school in the

evenings. These after-school sessions were further restricted

to forty five minutes duration.

Two forty-minute periods per week were allotted to each course.

This gave a maximum of about forty hours instruction per year

but this was never achieved due to half-days, teacher absence,

house examinations etc. The actual time spent on each course

was approximately thirty five hours. Attendance by the students

averaged.about 80%. For the first few weeks of the fifth year

courses a good deal of class time was spent at the machines. As

the students became more confident, less time was spent on

practical demonstrations until, eventually, practically all

instruction took place away from the machines. The main tools

used to deliver the material were overhead projector slides and

student handouts. Exrunples of these handouts are shown in

appendix A.

In an earlier survey, carried out by their career guidance

teacher, many of the students who undertook the course had

expressed an interest in computer-related jobs. None of them,

however. had any idea of what computing involved and had only a

very vague grasp of the difference between, for example, the

work of a programmer and the work of a computer operator. Many

had acquired the idea that a computer was all-powerful and knew

94

everything. For these reasons, it was felt that learning

programming would give them valuable insight into the way in

which computers work and would also help them to develop

self-confidence in their use.

It was also noticed from teaching mathematics in the school over

a period of years that students were very much inclined to

up when faced with even moderately difficult problems. If

give

the

solution was not immediately apparent, the normal reponse, even

from the more able students, was to accuse the teacher of not

having taught them how to solve that particular type of problem.

It was felt that this response was at least partly due to low

self-esteem and low expectations. By using a very systematic

Top-Down method that could be appliedto numerous different

problems, it was hoped that this problem could be overcome.

6.2 AIMS OF THE COURSE

1. To teach important concepts of modern

development including Top-Down design.

algorithmic

2. To introduce students to systematic problem-solving.

3. To develop an appreciation of the need for a systematic,

structured approach to solving problems.

4. To give students practice in developing and validating

their own ideas.

5. To develop the ability to make logical decisions and to

discuss ideas intelligently.

6. To develop a positive attitude towards work and

problem-solving.

7. To develop initiative, creativity and perseverance.

8. To develop the capacity to apply existing knowledge.

95

9. To develop consciousness of the learning process.

10. To develop an appreciation of the need to think and write

clearly.

11. To build confidence in the students' own abilities.

12. To demystify the computing process.

13. To develop confidence in the students' ability to use and

control a microcomputer.

14. To develop an appreciation of the precision of

communication afforded by a computer language.

15. To develop an awareness of the capabilities and

limitations of microcomputers.

6.3 OUTLINE OF THE SYLLABUS

Problem-Solving Concepts.

1. Top-Down design and stepwise refinement.

2. Procedural abstraction.

3. Algorithm representation in graphical form.

4. Methodology for approaching large problems.

Programming statements and structures.

1. The idea of a variable (both Real and String).

2. Input, Output and Assignment statements.

3. Read/Data statements.

4. Boolean expressions and operators. de Morgan's Law.

5. The conditional statement.

6. The iterative statement.

7. Procedures.

8. Some simple system functions (i.e. INT, RND etc.).

9. Arrays.

96

Coding Style.

1. Use of suitable variable names.

2. Use of suitable procedure names.

3. Use of indentation to emphasise structure.

4. Documentation techniques. Internal program comments and

suitable screen prompts for the user.

5. The need for easily readable screen output.

Basic Computer Concepts.

1. Description of a computer system in terms of processor,

memory and input/output devices.

2. Evaluation of programming languages.

3. Translation of programming languages into machine-usable

form by assemblers, compilers and interpreters.

In developing a syllabus the most important elements were

problem-solving concepts and programming structures. Coding

style was also considered to be important because of its

relevance to communicating clearly. It is impossible to work

with a computer without some concept of how it functions and so

a basic· mental model of the computer system had to be

established in the initial stages. The topics were not taught

in the order listed above. The order is described in section

6.4. This syllabus is in accord with the report of the ACM

Curriculum Committee Task Force; and is actually a subset of the

syllabus recommended as a first course for Computer Science

majors [27].

97

6.4 THE FIFTH YEAR COURSE

This section sets out the order in ,~hich the principal topics

were taught and the objectives to be achieved through each

section.

6.4.1 DEVELOPING THE CONCEPT OF A COMPUTER SYSTEM

The purpose of this section was to help the students to build a

simple mental model of a computer system to enable them to carry

out disk management and program editing tasks ..

Objectives.

Students should be able to:

1. Start up COMAL when:

a) The machine is OFF.

b) The machine is running some other software.

2. Catalog a disk in either drive.

3. Load programs from disks in either drive.

4. List and run programs.

5. Use the system editing features (AUTO, RENUMBER

etc.) as required.

6. Edit programs:

a) Insert and delete lines.

b) Correct syntax' errors.

c) Add and delete characters on any program line.

d) Use the 'ESC' key as required.

6.4.2 VARIABLES, INPUT, ASSIGNMENT AND OUTPUT.

The overall purpose of this section was to develop the concept

of a variable and to make the students aware of how variables

98

can be manipulated to solve simple problems involving input,

assignment and print statements only.

Objectives.

Students should be able to:

1. Distinguish between

variable names.

valid and invalid COMAL

2. Distinguish between string and numeric variable

names.

3. Write syntactically correct input statements,

incorporating appropriate user prompts.

4. Write syntactically correct assignment statements

for both string and numeric variables.

5. Write syntacticallY correct print statements in the

following forms:

a) Print a string constant.

b) Print the value of a variable.

c) Print the value of a variable with an

explanatory prompt.

6. Find and correct syntax errors in short programs

involving just these three types of statement.

7. Find and correct logical errors in such programs.

8. Trace the values of variables in such programs.

9. Predict the output from such programs for given

input values.

10. Design algorithms using these statements to solve

simple problems on topics with which they are

already familiar (i.e. area, volume, profit & loss

etc.).

99

11. Implement these algorithms on a machine.

12. Design clear screen displays and helpful input and

output prompts for such programs.

6.4.3 STRUCTURE DIAGRAMS

The diagrams are essentially a tool for assisting students to

analyse problems in a Top-Down manner. Therefore it was

essential that they were able to construct and interpret the

diagrams before any difficult problems were encountered.

Objectives.

Students should be able to:

1. Place a given set of statements into their correct

positions in a diagram to solve a stated problem.

2. Write a list of statements in the correct order

from a given diagram.

3. Fill in the blanks in a diagram describing a

familiar process.

4. Draw diagrams to represent solutions to simple

input/assignment/output type problems.

5. Find diagrammatic solutions for slightly more

difficult problems involving three or four levels

but requiring just these three types of statement.

6. Translate these solutions into COMAL.

7. Write COMAL programs from supplied diagrams.

8. Explain the overall meaning of more complex,

teacher-supplied diagrams.

100

6.4.4 THE CONDITIONAL CONTROL STRUCTURE

This, the first control structure, is of extreme importance and

shouid not be introduced until the students are very familiar

with all the previous material.

the end of the first term.

In both years this was towards

Objectives.

Students should be able to:

1. Recognise the symbol used in structure diagrams to

identify the start/end of conditional statements.

2. Recognise the boxes used in structure diagrams to

contain the boolean expressions of IF structures.

3. Translate structure diagrams containing conditional

expressions into COMAL.

4. Predict the output from such diagrams for given

input values.

5. Place the correct statements from a supplied list

into the appropriate boxes in a partially completed

diagram for a specified problem.

6. Recognise situations in problem specifications that

necessitate the use of a conditional statement.

7. Find and correct syntax errors in programs

involving conditional statements.

8. Find and correct logical errors in such programs.

9. Use structure diagrams to solve simple problems

requiring conditional statements, and translate

these solutions into COMAL.

10. Evaluate simple boolean expressions for

values of the variables involved.

given

101

11.. Evaluate complex boolean expressions containing

boolean operators for given values of the variables

involved.

12. Find the converse of any boolean expression.

13. Construct boolean expressions for conditions

specified in words.

6.4.5 THE ITERATIVE CONTROL STRUCTURE

This, the second control structure, was introduced shortly after

the start of the second term in each year. The idea of a loop

is absolutely central to programming and so, as in the case of

the other important concepts, considerable effort was devoted to

establishing the important principles before considering more

challenging problems.

Objectives

The students should be able to:

1. Recognise the symbol used in structure diagrams to

indentify the start/end of a loop.

2. Translate structure diagrams containing loops into

COMAL.

3. Trace the value of a variable through numerous

iterations of a loop.

4. Trace the value of the boolean expression

controlling a loop through numerous iterations of

the loop.

5. Predict the output, for given input values, from a

program containing a loop.

102

6. Place the correct statements, from a supplied list,.

into the appropriate boxes in a partially completed

diagram for a specified problem involving a loop.

7. Recognise situations in problem specifications that

necessitate the use of a loop.

8. Distinguish between situations which require

'fixed' iteration loops and those which require

'indefinite' iteration loops.

9. Find and correct syntax errors in programs

involving loops.

10. Find and correct logical errors in such programs.

11. Write the general outline for any program involving

N iterations of a loop, i.e. 'fixed' iteration.

12. Write the general outline for any program which

uses a loop to add (or multiply) a list of numbers.

13. Solve simple problems involving loops and translate

these solutions into COMAL.

6.4.6 PROCEDURES

The purpose of this section was to teach the students how to

approach larger problems than had been considered so far and to

impress on them the importance of the internal organisation of

solutions to such problems.

Objectives

The students should be able to:

1. Recognise the symbol used in structure diagrams to

represent a procedure.

2. Translate structure diagrams containing procedures

into COMAL.

103

3. Predict the flow of control in COMAL programs

containing procedures.

4. Recognise situations in problem specifications in

which the use of procedures would be advantageous.

5. Find and correct syntax errors in COMAL programs

containing procedures.

6. Find and correct logical errors in such programs.

7. Use the ENTER command to utilise library procedures

supplied on disc.

8. Use the LIST command to store their own library

procedures on disc.

9. Write the general outline for any menu-driven

program.

10. Solve problems using procedures.

6.5 THE SIXTH YEAR COURSE

A group of six girls who had completed the fifth year course,

and who had expressed an interest in pursuing the subject

further, took part in the sixth year course. As the Apple

machines were being used by the second group of fifth years, a

COMAL ROM chip. was acquired for the B.B.C. machine which was

then exclusively available for the sixth years. This

arrangement was not without its drawbacks as the COMAL ROM was a

pre-production model with no documentation whatsoever. This was

not a very serious problem as only a subset of COMAL was used

and this subset did not differ very much from the Apple version.

The lack of a disk drive was a much more serious problem and

even though one was ordered at the beginning of the year it was

not delivered until near the end of the first term. As all the

i04

students were preparing for the Leaving Certificate examination,·

they had very little time, apart from the two scheduled classes

per week, to work at this course. For this reason, it was

decided that most of the classes would be of a workshop nature

with the minimum of formal instruction. The students generally

worked on problems in small groups and the teacher was available

to advise at any time.

The overall aim of this course was to allow the students to

further develop the skills that had been acquired in the first

year and to give them confidence in their own problem-solving

abilities. It was originally planned to run the course for the

complete year and to cover the topics of arrays and files,as

well as giving them some experience in the use of

databases, wordprocessors and other packages.

spreadsheets,

However, the

pressure of their examination work in other subjects forced the

termination of the course midway through the year, and ruled out

most of these topics.

arrays.

6.5.1 ARRAYS

Eventually, the only topic covered was

Arrays were the central focus of the sixth year course. The

concept of an array is vital but was considered to be too

difficult to be dealt with in the limited time available for the

fifth year course.

Objectives.

The students should be able to:

1. Recognise situations in which the use of an array is

appropriate.

105

2. Dimension both numeric arrays and string arrays

correctly.

3. Write simple programs to READ values into an array and

to PRINT them out.

4. Find and correct syntax errors in programs involving

arrays.

5. Solve simple problems involving the use of arrays,

including the linear search of an array.

6. Describe the bubblesort algorithm for an array.

6.6 CONCLUSION

The principal difficulties of the target group of students were

identified as lack of confidence and motivation in relation to

mathematical and scientific subjects, in addition to an almost

total lack of appreciation of the whole computing process.

Despite this, a number of students had expressed interest in

computers and related careers. Therefore, topics were chosen,

and ordered, to meet both the perceived needs of the group of

students and to comply with the most recently recommended norms

of introductory College Computer Science courses.

106

CHAPTER 7

IMPLEMENTATION OF THE COURSE
--

7.1 DEVELOPING THE CONCEPT OF A COMPUTER SYSTEM

Each student was given a sheet (appendix A, p.206) containing

instructions for starting up COMAL. This was demonstrated at

the keyboard and the students were then encouraged to carry out

the same procedure in small groups. After describing the Apple

keyboard an attempt was made to establish the mental model of

the system shown in figure 7.1. This model was discussed using

an overhead projector and then reinforced by requiring the

students to load and run a number of short, teacher-written

programs.

INPUT DEVICE e .g. keyboard

CPU ,

I MEMORY ~ ~ PROCESSOR 1 I. , EXTERNAL ,
STORAGE

e.g. disl{

1
OUTPUT DEVICE e.g. screen

FIGURE 7.1

107

A distinction was made between immediate execution mode and

deferred execution mode. Immediate commands are executed

directly by the processor, while deferred commands are stored in

memory and are only executed when required. Some of the

simple COMAL direct commands were demonstrated (PRINT, CLEAR)

and then a short sample program which merely printed a name and

address on the screen was keyed into the computer. This was

then used to illustrate the commands RUN, LIST and NEW. It was

also used to demonstrate how extra lines could be added to the

'middle' of a program and how a line of a program could be

changed by simply retyping it. Instructions for carrying out

some other simple editing tasks were also supplied on the

students' sheets and these methods were all demonstrated in

class.

After the first few sessions the students were asked to write

ten very simple programs, (appendix A, p.207) all of which only

involved the CLEAR and PRINT statements, and to implement these

on the machines. These were done over a period of two weeks and

were completed very satisfactorily by all the students.

The limited editing skills

sufficient to allow the

that had been acquired by now were

students to work at the machines

unsupervised. The section on variables (see 7.2) was completed

before dealing with disk management and more sophisticated

editing skills. Lists of these more advanced disk and editor

commands were drawn up on two reference sheets which were given

to each student. For the sake of clarity, ALL the formats for

each editor command were listed alongside an explanatory note,

108

rather than the more terse but common format adopted by the user

manual:

i.e. LIST 20 line 20 is listed

LIST 20,50 lines 20 to 50'are listed etc. ,

rather than,

LIST [<start>] [,<end>]

This was done because it was felt that the majority of students

would have difficulty with such an unfamiliar format, that it

added to the air of mystery that surrounds computers in the

first place and that each variation would have to be explained

regardless. All of the editor commands were demonstrated on a

machine, as were all of the disk commands with the exception of

LIST/ENTER. (This is an alternative to SAVE/LOAD by which files

are stored as a string of ASCII characters and can be recalled

from disk without disturbing the contents of memory. The

principal purpose of this feature is to allow for the retrieval

of library procedures which may be used in numerous programs.

This is not relevant to the early part of the course).

No specific exercises were given on the use of these commands

but evaluation was carried out by informal observation of the

students working at the computers. Very few problems arose in

this area, indicating that all students were able to save, load

and edit programs without difficulty. Whether they were using

editing the editor in an efficient manner and using all of the

facilities is another matter and may require some further

investigation.

109

o

7.2 THE CONCEPT OF A VARIABLE

The idea of a variable is the first crucial programming concept

and must be well understood before progressing to conditional

and iterative statements. Variables were described as boxes in

the computer's memory which have two characteristics, a name and

a value (figure 7.2).

23.94 value

PRICE name

FIGURE 7.2

The rules for valid variable names were given to each student

(appendix A, p.210). After some discussion of these rules,

many examples of valid and invalid variable names were displayed

on an overhead projector and the students were required to state

whether each one was valid or not.

7.3 THE ASSIGNMENT STATEMENT

Assignment was described as 'putting values into boxes' and

'giving values to variables'. A detailed description of the

syntax and semantics of the assignment statement was given to

each pupil (appendix A, p.210). It was emphasised that the left

hand side must contain only a variable name and that the right

hand side must contain an expression whose value is then given

to the variable on the left. It was pointed out that all

variables in the right hand expression must have some initial

value or else the whole statement would be meaningless. After

110

some examples which illustrated these points, numerous programs

containing only assignment statements were displayed on an

overhead projector. The students were required to calculate the

value of each variable at the end of each program. They were

instructed to set up a named box for each variable and to write

its value inside the box (figure 7.3).

10 X 4
20 Y 2 * X
30 Z X + Y
40 P X + (3 * Y) + Z

X 4 Y 8

Z 12 P 40

FIGURE 7.3

Slightly more difficult examples were then used in which the

values of the variable were changed by the program (figure 7.4).

This was to reinforce the idea that a variable can only have one

value at a time. In these cases the old value was crossed out

and the new value was written beside it in the box.

10 P 0
20 P P + 1
30 P 2 * P
40 R 10
50 R R + P
60 P R + P
70 P R + P
80 R P - R

P \\ \ '2\ ~ 26

R ~ § 14

FIGURE 7.4

111

These problems were all done very well and caused no difficulty;

indicating that the meaning of the assignment statement was well

understood. None of the examples given at this stage performed

any recognisable task, (it is very difficult to devise a useful

program with only assignment statements), so the following

example was shown before considering the input statement:

10 PRINCIPAL := 1000
20 RATE := 12
30 TIME := 3
40 INTEREST := (PRINCIPAL * RATE * TIME) I 100

This program fragment suggests the purpose of the assignment

statement and was generalised after the introduction of the

INPUT statement.

7.4 INPUT AND OUTPUT STATEMENTS

The INPUT statement was introduced by showing a demonstration

program which utilised INPUT statements. This program was

discussed with the class and then the necessary syntax rules

were given. The class was then given numerous problems, which

required INPUT statements, to solve and to implement on the

computers. This proved to be quite unsatisfactory and many of

the students encountered difficulties with the idea of INPUT.

In the second year the students were· given numerous

demonstration programs to run for themselves before the INPUT

statement was actually introduced. This was much more

satisfactory. These difficulties are discussed in chapter 8.

The use of variables in PRINT statements caused no such

difficulties. The approach was that items in quotation marks

were literally written on the screen but items without quotation

112

marks were taken to be variables and so their values were

written instead. This was readily accepted.

There are many problems that can be solved with just input,

output and assignment statements, many of which are identical in

structure. For example:

1. Input the length and width of a rectangle and

output its area.

2. Input the radius of a sphere and output its volume.

Many examples of this nature were completed successfully by the

students in each year.

7.5 STRUCTURE DIAGRAMS

It was decided to use a number of very familiar, non-computer

algorithms to establish the use of diagrams before any computer

algorithms were encountered. No formal description of the

diagrams' syntax was given at this stage but worksheets were

given at each session to be completed during the last five or

ten minutes of the class.

The first example given was a description of how to make a phone

call (figure 7.5):

ENTER THE
PHONE BOX

LIFT THE RECEIVER &
WAIT FOR DIAL TONE

FIGURE 7.5

PLACE MONEY
IN THE SLOT

DIAL THE
NUMBER

113

It was explained that the four boxes in the second row \~ere a

description of the statement in the top row and that they should

be carried out from left to right to achieve the desired effect.

After this minimum of explanation the students were asked to

complete similar examples, all concerning familiar activities.

Their task was to assign a given list of statements to the

appropriate boxes in a diagram. A typical example is shown in

figure 7.6:

SHOPPING

1. Go to the shop
2. Go home
3. Pay for the items
4. Choose the items
5. Get money

FIGURE 7.6

The first worksheet contained six such problems and was

completed, with no errors, by all the students.

Even though these particular algorithms were trivial, they were

very useful because they introduced the idea of a structure

diagram in a simple manner. They also reinforced the need to

get statements into the correct order and to write these

sequences of statements horizontally. The next step was to

introduce diagrams with two levels and these were also completed

easily and correctly by all the students. The final stage 1n
. .,,:

this process was to give partially completed diagrams without a

list of the missing statements. In some cases they were

114

required to fill in only second level statements but in others

they were given the second level solution (or most of it) and

were asked to fill in a blank in the first level. This latter

type of exercise is important as it forces students to think

'procedurally', i.e. it requires them to consider the overall

purpose of a group of statements. An example of this type of

problem is given in figure 7.7.

GET OUT
OF CAR

OPEN
TANK

LEAVE
GAHAGE

GET IN
CAR

FIGURE 7.7

The missing statements at the second level are 'put petrol in

tank' and 'pay for petrol'. All of these second level

statements then constitute·the action 'buy petrol' and this is

the required first level statement.

When all of these worksheets were completed, over a period of

two weeks. the topic of Top-Down design was introduced more

formally. The first 'computer' problem solved with a diagram

115

concerned the cost of laying a path around a rectangular garden

(figure 7.8). This type of problem was familiar to the students

from their work in junior cycle mathematics. The diagram for

this problem may seem very complex at first sight but is quite

simple if read correctly. The method is to cover all but the

top level of the solution with a blank page. A check is then

made to confirm that the statements at this level constitute a

complete solution to the stated problem. When this is done the

blank page is moved down to the next level of the diagram. A

check is then made to ensure that the statements at this level

are correct refinements of the statements at the first level.

This process is repeated until the whole diagram has been read.

7.6 TOP-DOWN METHODOLOGY

In solving problems with structure diagrams the students were

encouraged to ask themselves the following questions, based on

those suggested by Polya [12], at each level:

1. What am I trying to find?

2. What must I know to find it?

3. a) Am I given what I need to find it?

b) Can I calculate what I need to find it?

If these questions are consistently applied, the result is

always a well organised Top-Down solution. Consider the

following example :

Write a program to calculate nett pay if gross pay,

tax free allowance (TFA) and rate of tax are input.

The solution to this problem (figure 7.9) may Le derived as

follows:

1. Trying to find nett pay.

116

INPUT LENGTH, WIDTH FIND _ PRINT
PATHWIDTH,PRICE,VATRATE PATHCOST PATH COST

FIND FIND PATH COST
NETCOST VAT NETCOST + VAT

FIND NETCOST VAT :=
PATHAREA PATHAREA * PRICE NETCOST * VATRATE

FIND FIND PATHAREA : =
BIGAREA LAWN AREA BIGAREA - LAWN AREA

BIGLENGTII :=
LENGTH + (2 * PATHWIDTH)

BIGAREA
BIGLENGTH * BIGWIDTH

BIGWIDTH
WIDTH + (2 * PATHWIDTII)

FIGURE 7.8

LAWN AREA :=
LENGTH * WIDTH

117

2. Must know gross pay and tax due.

3. a) Gross pay has been input.

b) Must find tax due.

Question 1 supplies the first level solution and questions 2 and

3 give the second level solution. Question 3b naturally leads

to a repetition of these questions and a refinement of the

statement FIND TAXDUE:

INPUT GROSSPAY,
TFA, TAXRATE

FIND
TAXDUE

INCOME

FIND
NETPAY

PRINT
NETPAY

NETPAY
GROSSPAY - TAXDUE

TAXDUE := FIND
TAXABLE TAXABLE * (TAXRATE I 100)

TAXABLE :=
GROSSPAY - TFA

FIGURE 7.9

1. Trying to find tax due.

2. Must know taxable income and tax rate.

3. a) Tax rate has been input.

118

b) Must find taxable income.

This constitutes the third level solution and again question 3b'

leads back to question 1 and a refinement of FIND TAXABLE.

1. Trying to find taxable income.

2. Must know gross pay and TFA.

3. a) Gross pay has been input.

b) TFA has been input.

This is the level 4 solution and completes the analysis.

The programming exercises given with this section were changed,

as the ones given in the first year were too difficult (appendix

A, p.212). Six new homework problems (appendix A, p.213) were

given. These seemed to have been set at the correct level and

were answered very well.

7.7 THE CONDITIONAL CONTROL STRUCTURE

It was pointed out that there were many problems that could not

be solved by purely 'sequential' algorithms and that many

solutions require choices to be made. Printing all the positive

numbers from a list of positive and negative numbers vias cited

as an example. In this case a choice, to print or not to print,

must be made for each number in the list. The choice is made by

examining a condition, i.e. is the number greater than zero?

The first diagram used (figure 7.10) concerned the problem of

printing the greater of two numbers. This diagram was discussed

in detail. The boolean conditions controlling access to each

branch were described as 'guards' which had to be TRUE before

that branch could be executed. The rules for translating

119

diagrams containing conditional statements into CO MAL were

given and this program fragment was then coded.

A > B B > A A = B

PRINT A PRINT B

FIGURE 7.10

PRINT "THE SAME"

7.7.1 RULES FOR TRANSLATION OF IF STATEMENT INTO COMAL:

1. "Walk" around the structure in the same way as

described in chapter 4.

2. On the first encounter with the • symbol write

the word IF, followed by the first condition,

followed by the word THEN (all on one program

line) .

3. Write the statement(s) that are guarded by the

first condition on the line(s) immediately after

it.

4. On subsequent encounters with the • symbol write

the word ELIF, followed by the next condition,

followed by the word THEN (all on one line).

5. Write the statement(s) that are guarded by this

condition on the line(s) immediately after it.

6. On the final encounter with the • symbol write

the word ENDIF (on a program line of its own).

120

The COMAL fragment derived from the diagram in figure 7.10 is

the~efore as follows:

100 IF A > B THEN
110 PRINT A
120 ELIF B > A THEN
130 PRINT B
140 ELIF A = B THEN
150 PRINT "THE SAME"
160 ENDIF

The students were then given several simple problems, requiring

conditional statements, for homework. In each case they were

required to draw a diagram and write a COMAL program.

7.7.2 BOOLEAN OPERATORS

To introduce boolean operators, each student was given a .sheet

containing information, examples, truth tables and problems.

Each operator was introduced by a simple non-computer example as

follows:

IF IT IS FINE AND THE POOL IS OPEN, JOHN WILL GO SWIMMING.

IT IS FINE THE POOL IS OPEN DOES HE GO SWIMMING?

TRUE TRUE YES

TRUE FALSE NO

FALSE TRUE NO

FALSE FALSE NO

This table was filled in with the help of the class and then a

more formal truth table was drawn up:

Exp, 1 Exp.2 Exp.1 AND Exp, 2

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE j.'ALSE FALSE

Then, again with the help of the class, a general statement

about the AND operator was drawn up:

Exp.1 AND Exp.2 is TRUE

only when Exp. 1 is TRUE and Exp.2 is TRUE

Similar examples were used to introduce the OR and NOT

operators.

The next stage was to present 'real' boolean expressions, which

they were required to evaluate for given values of the variables

involved, as in figure 7.11. Numerous examples of this type

were done in class. Initially, the examples involved only one

operator but later examples involved combinations of two or

three operators. The students were very accurate when

evaluating these expressions and seemed to enjoy working on

them. A homework sheet containing about fifty such examples

involving AND, OR, and NOT was assigned and they.were asked to

do ten particular examples from this. Most of the class did all

the problems. on the sheet and most had all the answers correct.

x = 1 2 1 2 1
Y = 1 1 2' 2 3

X > 1 AND Y > 1

X > 1 AND Y < 2

X = 2 AND Y = 2

X < Y AND Y = 2

X > Y AND Y <> 1

FIGURE 7.11

When evaluating complex boolean expressions, the students were

discouraged from trying to comprehend the totality of the

expression but were shown how to approach the task of evaluation

in a systematic way. This involved writing the value (T or F)

of each part beneath the expression and then using the

previously defined rules for combining these values. This may

be illustrated by the following example:

Evaluate the following expression for X = 2.

(X < 10 OR X > 20) AND (X MOD 2 = 0 AND X MOD 3 <> 0)

= (T OR F

= T

=

) AND (

AND

T

T AND T)

T

Up to this the emphasis had been on evaluating given expressions

and this had been learnt very well by all the students.

However, the really important skill in programming is to

construct boolean expressions. This was approached by using a

COMAL program which simulated a game in which two dice are

thrown. A win was defined as either:

a. The two dice are the same.

or b. The sum of the dice exceeds nine.

10 11 DICEGAME SIMULATION
20 11
30 11
40 CLEAR
50 RANDOM
60 DIE1 := RND(1,6)
70 DIE2 := RND(1,6)
80 SUM := DIE1 + DIE2
90 11

100 PRINT "SCORE ON FIRST THROW IS ";DIE1
110 PRINT
120 PRINT "SCORE ON SECOND THROW IS ";DIE2
130 11
140 11 NOW MAKE DECISION ABOUT THE PRIZE
150 11
160 IF SUM > 9 OR DIE1 = DIE 2 THEN
170 CURSOR 1,20
180 PRINT "YOU HAVE WON A PRIZE !!!!"
190 ENDIF
200 11111111111111111111111I111111I111111I111I11
210 END

123

The program was discussed in class to ensure that everyone

understood how it worked. The students were then asked to alter

the program to simulate ten new games in which the definition of

a win ~las changed as follows:

1. Sum exceeds 7 or both dice are twos.

2. Both dice are even.

3. Both dice are odd.

4. Both dice are bigger than 4.

5. At least one die is bigger than 4.

6. DIE1 is bigger than 3 and DIE2 is less than 3.

7. One die is bigger than 3 and the other one is smaller

than 3.

8. Both dice are equal and both are less than 5.

9. Neither die is smaller than 3.

10. The sum does not exceed 8 and neither die is less than

3.

This type of exercise was useful as it allowed the students to

focus exclusively on the boolean expression without having to

'consider the other parts of the program. These exercises were

done very well with an average of 80% accuracy. Many of the

errors were syntax errors. In particular, they were inclined to

write A = B = C instead of A = BAND B = C but this type of

error, which is detected by the COMAL interpreter, did not

persist after they had implemented a few such programs on the

machines.

1 ~~4

7.8 THE ITERATIVE CONTROL STRUCTURE

It was pointed out that many problems required the same basic

steps to be performed on different sets of data and that it

would be very wasteful to write the same code for each data set.

The example of printing the squares of the first twenty numbers

was cited. It was suggested that it would be possible to write

a separate routine for each of the numbers but that this would

be out of the question if the first two thousand numbers had to

be processed. The problem could be solved, however, by allowing

a section of the program to be executed twenty times, processing

a different number each time. The diagram in figure 7.12 was

then shown and discussed. The round box was. described as the

'loop control box' and the boolean condition inside it was

called the 'loop guard'. The meaning of the diagram was

discussed at length and the similarities between the iterative

and the conditional statements were stressed (the chief

difference is that the condition is tested again after the

guarded statements have been executed). It was emphasised that

all variables in the loop guard must be initialised before the

condition is tested (hence the need to set COUNT = 1 initially).

It was also emphasised that the programmer must ensure that the

condition eventually becomes FALSE to avoid the loop being

executed infinitely.

7.8.1 RULES FOR TRANSLATING ITERATIVE STRUCTURE INTO COMAL

1. On the first encounter with the loop control box

write the word WHILE, followed by the loop guard,

followed by the word DO (all on one program line).

2. Write the statements that are guarded by the loop

.ruard.

INITIALISE

COUNT 1

SQ.UARE : =
COUNT * COUNT

PRINT
SQUARE

FIGURE 7.12

LOOP TO WRITE
THE SQUARES

COUNT <= 20

COUNT
COUNT + 1

3. On the second and final encounter with the loop

control box write the word ENDWHILE (on a separate

program line).

The COMAL fragment derived from figure 7.12 using these rules

is as follows:

100 COUNT := 1
110 WHILE COUNT <= 20 DO
120 SQUARE:= COUNT * COUNT
130 PRINT SQUARE
140 COUNT:= COUNT + 1
150 ENDWHILE

Similar problems were then solved by the students, using

structure diagrams, in class. These were then coded in COMAL

for homework and implemented on the machines without any

difficulty.

126

7.8.2 FIXED ITERATION VS. INDEFINITE ITERATION

These problems illustrated a very important routine which occurs

frequently in later problems, i.e. to execute a loop a. fixed

number of times (fixed iteration). Using a WHILE loop thisrnay

be done in a number of different ways. In the program on the

left, the counter variable is given a value of one before the

loop is entered, while 1n the version on the right it is

initialised to zero.

100 COUNT 1 100 COUNT := 0
110 WHILE COUNT <= N DO 110 WHILE COUNT < N DO

(guarded statements) (guarded statements)

190 COUNT:= COUNT + 1
200 ENDWHILE

190 COUNT:= COUNT + 1
200 ENDWHILE

The outcome is the same in each case because the loop guards are

different. It was felt that it was important to choose one

method and to use it consistently in order to avoid confusion.

The former method was chosen (even though the other one is used

in many textbooks) because:

1. It seemed to be more in accord with common sense:

COUNT is 1 on the first iteration.

COUNT is 2 on the second iteration. etc.

2. It is very often necessary to use the value of

COUNT within the loop (as in the SQUARES problem

above). The second method would involve some

'fixing' under these circumstances.

It was decided, having established the notion of fixed

iteration, to introduce some indefinite iteration problems

immediately, lest it might be assumed that all loops must be

fixed iteration. The first such problem was:

127

Write a program which keeps accepting pairs of numbers

and printing the larger of each pair. The program

should terminate when two equal numbers are input.

The students were first asked to decide if this problem

contained a loop. When this was agreed they were asked to

decide how many times the loop should be executed. This caused

bewilderment because it was impossible to say. They were then

asked to state under what circumstances the iteration should

stop.

equal.

This was very easy to state, i.e. when both numbers are

It was pointed out that if this was the condition for

terminating the loop, then the loop guard must be the opposite

of this, i.e. when both numbers are different. They were then

asked to say what should be done inside the loop and most were

able to see immediately that the two numbers should be compared

and the larger one printed. The fact that another two values

should be input was overlooked by many and even when the

complete solution (figure 7.13) was shown there was still some

confusion on this point.

In this case and in many others 'running' the solution on the

board was found to be he 1 p fu 1 . Students were encouraged to

'run' all their solutions in this way as a check on the

algorithm before implementing it on a machine.

used was as shown in figure 7.14.

The technique

128

BIGGER

INPUT NUM1,
NUM2

LOOP TO PROCESS PAIR & ACCEPT
NEXT PAIR (IF NECESSARY)

PRINT
"FINISHED"

FIND
BIGGER

NUM1 > NUM2·

BIGGER
NUM1

VALUES TO BE INPUT

3 , 2
5 , 8
7 , 7

NUM1

3
5
7

NUM1 <> NUM2

PRINT
BIGGER

NUM2 > NUM1

FIGURE 7.13

NUM2

2
8
7

FIGURE 7.14

ACCEPT NEW PAIR
OF NUMBERS

INPUT NUM1, NUM2

BIGGER
NUM2

EXPECTED OUTPUT

3
8

"FINISHED"

LOOP GUARD

TRUE
TRUE
FALSE

OUTPUT

3
8

"FINISHED"

129

The values to be input. are decided in advance along with the

expected output .. A trace is then kept of the values of all the

variables involved and of the loop guard. It is felt that this

is a vi t.al ski 11 and that even though students are often

reluctant to apply it that it is worth forcing them to do so (by

homework assignments, worksheets etc.). This technique was used

during class time, by the teacher, in the hope that the students

would see the benefit of such an approach for themselves and

apply it in their own work. It was found, however, that

students did little that was not specifically required of them.

For this reason it is planned to devise worksheets containing

programs with loops, along with charts like that in figure 7.14,

which the students will be required to complete.

7.8.3 GENERAL METHOD FOR CONSTRUCTING LOOPS

In general, \~hen writing a loop the students were encouraged to

ask themselves the following questions:

1. What variables are needed?

2. Is it a fixed iteration or an indefinite iteration

loop?

3. What should the loop guard be?

4. What needs to be done inside the loop?

5. What needs to be initialised?

6. How can it be guaranteed that the loop will

terminate correctly?

7.8.4 LOOPS TO ADD NUMBERS

The genert,] method may be illustrated by considering the

following problem:

130

Wri te a program to calculate the .number of terms of the series

1 + 3 + 5 + 7 that must. be added to give a sum greater

than any specified (input) value.

If the six questions outlined above are considered the following

answers may be found:

1. Need variables for:

a) t.he current total SUM

b) the number of terms added to date .. NUMTERMS

c) the current term being added .. CURRTERM

d) the specified limiting value LIMIT

2. This is indefinite iteration as it is not known in

advance how many times the loop should be executed.

3. The loop should terminate when the value of SUM

exceeds the value of LIMIT. This means that the

loop guard should be the opposite of this:

i.e. SUM <= LIMIT

4. Need to add the current term on to the total,

generate the next term of the series and increment

the number of terms.

5. The loop guard involves both SUM and LIMIT so these

must be initialised, SUM is set to 0 and LIMIT is

input. It is also necessary to set NUMTERMS to 0

and CURRTERM to 1 as both of these are incremented

inside the loop.

6. As SUM is increased each time the loop is executed,

its value will eventually exceed that of LIMIT

which is not changed inside the loop.

After considering these questions the solution 1n figure 7.15

was arri ved at.:

131

INPUT
LIMIT

SUM

INITIALISE

SUM
SUM + CURRTERM

LOOP TO ADD TERMS & COUNT
NUMBER OF TERMS ADDED

1

CURRTERM
CURRTERM -t 2

FIGURE 7.15

PRINT
NUMTERMS

SUM <=LIMIT

NUMTERMS
NUMTERMS -t 1

Several other problems set at this level of difficulty were then

solved in class and as homework assignments. In general, these

were well done although there were some silly mistakes such as

neglecting to initialise or increment variables. These would

not have occurred if the procedure outlined above had been

carried out in all cases. It was also obvious from the nature

of the errors that some students were not 'running' the

solutions on paper as outlined in figure 7.14. If all students

could be convinced t.hat asking the six questions above before

designing the loop, and 'running' the finished product on paper

were always wor·thwhile, then there would be fewer careless

errors in their work. As with some other techniques, the good

example of the teacher has not been totally effective in these

matters. Specific exercises on these techniques will be

designed for future courses.

132

An important point regarding the design of the loop guard for

indefinit.e iteration loops may be seen in the previous example.

In difficult cases, it is

condition for terminating the

often simpler to decide on

loop and then to reverse

the

this

using de Morgan's law, than to consider the condition for entry

to the loop directly in the first instance. This is

particularly useful when the loop guard contains boo lean

operators. For example, consider a program to simulate thrO\dng

a die until a four turns up or the sum of all the throws exceeds

thirty. In this case, the condition under which the loop should

terminate is obviously:

DIE = 4 OR SUM > 30

Reversing this gives the condition under which the loop should

be executed, i.e. the loop guard:

DIE <> 4 AND SUM <= 30

This technique has been found to be most useful in more complex

cases but may of" course be applied in any situation.

7.8.5 PROBLEMS INVOLVING READ/DATA STATEMENTS

Numerous problems were used which involved READ/DATA statements.

These statements had not been introduced up to now because it

was felt that the input statement alone was perfectly adequate

for programs without loops. It was now felt that a number of

important ideas, which would normally be introduced with arrays

and files, could be dealt with more simply by using read/data

statements. Data which is held in an array or a file is not

'visible' and cannot therefore be thought about: as easily as

that which is contained in a program listing. the

algori thms for handl ing data are much t.he same, so that anything

133

learned from these problems should be useful when arrays and

files are encountered later.

COMAL contains an end-of-data flag, EOD. This is a system

variable, of type BOOLEAN, which only becomes TRUE when all the

data in a program has been read. This can be used to access all

the data in a program as follows:

100 WHILE NOT EOD DO
110 READ N

200 ENDWHILE

It was decided not to use this facility because:

1. BOOLEAN variables had not been introduced.

2. The construction of 'do-it-yourself' end-of-data

flags helps to focus attention on the need for good

organisation of data in a program.

3. EOD is not generally available in other languages.

When designing solutions to problems involving read/data

statements, the practice of writing samples of the data

(including the end-of-data flag where appropriate) beside the

diagram was adopted. This was to emphasise the importance of

data organisation and also because the diagram would be

meaningless without this information. Throughout these problems

the data has been organised in 'logical units' rather than to

save memory or to speed implementation. For example, if the

data were to contain names and ages it would be organised as

follows:

DATA ··JOE", 14
DATA ··MARY··, 15

rather than the more usual:

DATA ··.JOE··, 14, ··MARY··, 15

134

This latter organisation is very difficult to read and to debug

when there is even a modest amount of data involved.

It was further decided when' constructing end-of-data flags to

use sufficient terminal values to match the overall organisation

of the data, as in the example on the left, rather than the

normal practice of just using one flag , as on the right.

100 DATA "JOE",14
110 DATA "MARY" , 15

200 DATA "END",-l

100 DATA "JOE", 14
110 DATA "MARY" , 15

200 DATA "END"

This organisation allows the use of a clearer algorithm (on the

left) to process the data, as opposed to the more usual method

(on the right).

10 READ NAME$
20 READ AGE
30 WHILE NAME$ <> "END" DO
40
50
60 READ NAME$
70 READ AGE
80 ENDWHILE

10 READ NAME$
20 WHILE NAME$ <> "END" DO
30 READ AGE
40
50
60
70 READ NAME$
80 ENDWHILE

In the program on the left, the two values being read from the

same data line are read together. In the other program, this is

not possible and One value is read at the start of the loop and

the other is read at the end. There is no doubt that the former

program is much clearer and simpler. This can only be achieved

if the data statements are organised as outlined above.

The syntax and semantics of the read/data construct were

explained using many simple examples. It was emphasised that

the programmer must ensure that string values and numeric values

are read into variables of the appropriate type. The concept of

a data pointer was introduced and a little arrow was drawn on

135

the board to denote the pointer. This was moved forward as each

item was read. The RESTORE st.atement was also introduced along

with its COMAL variations. These allow the pointer to be

restored to a particular line-number or to a LABEL.

All of the early problems used in this section involved

algorithms which were already quite familiar (adding numbers,

finding averages etc.), the only difference being that the data

v/ere read rather than input. This served the purpose of

familiarising the students with the read/data construct without

introducing any very difficult problems.

7.8.6 MORE DIFFICULT LOOPING PROBLEMS

The next, more difficult, group of problems concerned linear

searches. This is an important algorithm and requires careful

consideration. The first and simplest of these problems was:

Write a program to say whether or not a name, input at

the keyboard, is contained in the data list. The end

of the data is marked by the 'name' "END".

The loop for this problem was designed as outlined in 7.8.3. As

the loop can be terminated for either of two different reasons

it is necessary to include a conditional statement after the

loop to find out which part of the loop guard became FALSE. A

complete solution is shown in figure 7.16. Many problems which

were very similar to this, also involving linear searches but

with added complexities, were then solved both in class and for

homework and these were done exceptionally well.

135

- . -

NAMESEARCH
(READ/DATA)

INPUT LOOP TO DO OUTPUT THE
TARGET$ THE SEARCH RESULT

\

\
READ { NAME$ <> TARGET$ AND I FIND REASON FOR
NAME$ NAME$ <> "END" LOOP TERMINATION

I
I

READ NAME$ = NAME$ =
NAME$ TARGET$ "END"

PRINT PRINT
"FOUND" "NOT FOUND"

FIGURE 7.16

137

7.9 PROCEDURES

It \~as decided to use problems which were fairly simple, and

which only used algorithms which were already quite familiar, in

the initial stages of this section. The problems, though

simple, were much bigger than any which had been previously

encountered. This arrangement allowed the students to

concentrate on the overall organisation of the solution, without

having to consider the minute details of each sub-algorithm.

The first problem used was:

Write a program which allows the user to either a)

input a person's name and find the appropriate phone

number or b) to input a number and find the name. The

names and telephone numbers are organised in data

statements as follows:

DATA "MARY", 234156

DATA "ANNE", 763452

The end of the data is marked by:

DATA "END", 0

If the input name or number is not in the data then

the program should output a suitable message. When

the name or number has. been supplied the user should

again be given the option of inputting another name or

number or of quitting the program.

This problem was approached in a different way to the previous

problems in the course. The problem definition was not given to

the students but a well structured, menu-driven program to solve

·t.he problem was supplied on disk instead (FONEDEMO. CSE). This

program is listed in appendix B, p.220 The students were asked

to run the program vii thout being told what. it was about or how

138

it was struc0ured. After each.student had used the program for

about five minutes a class discussion was held during which the

students were asked to describe what the program did. They did

this very well, discussing the program at a very high level

without concerning themselves with how the searches were carried

out. The consensus of what the program did was:

1. The user is given three options:

A. Find a phone number given a name.

B. Find a name given a phone number.

C. Quit the program.

2. If the user chooses A or B then the required

information is requested and the program carries

out a search.

3. After giving the result of the search, the program

returns to the first section and the user is again

given the three options ..

4. The program terminates when,

user chooses the QUIT option.

and only Vlhen, the

The remarkable thing about this description is that it exactly

mirrors the structure of the main program (figure 7.17). The

double sided boxes were called PROCEDURES and were simply

described as 'sections of the program, each of Vlhich performed a

particular task'. It was emphasised that once a procedure Vias

used in a structure diagram that it was essential to specify its

purpose. This specification, which must be shown with the

di agram contain ing the proe:edure, sbould later be used as a

comment (REM statement) in the program listing.

139

MENU

PHONE

CHOICE = 1 OR
CHOICE = 2

GOODBYE

CHOICE = 1 CHOICE = 2 MENU

FINDNUM FINDNAME

MENU

FINDNUM

FINDNAME

GOODBYE

Displays the options and requests the user
to input a value to a variable called
CHOICE.

Asks for a name and then searches for the
appropriate phone number.

Asks for a phone number and then searches
for the appropriate name.

Indicates to the user that the program has
terminated.

FIGURE 7.17

After the diagram had been discussed in detail the COMAL code

for the main program was written. This introduced the COMAL

keyword EXEC which is used to call a procedure.

220 EXEC MENU
230 ~IHILE' CHOICE = 1 OR CHOICE = 2 DO
240 IF CHOICE = 1 THEN
250 EXEC FINDNUM
260 ELIF CHOICE = 2 THEN
270 EXEC FINDNAME
280 ENDIF
290 EXEC MENU
300 EIWWHILE
310 EXEC GOODBYE
320 END

140

This method of introducing procedures was found to be very

successful. It emphasised the notion of a procedure as a block

within a program, which is designed to carry out some specific,

well-defined task.

missed by many

This is a very powerful concept and is

textbooks which introduce procedures as

'containers' for chunks of code sandwiched bet\~een PROC and

ENDPROC statements. It also suggests that a procedure may be

used as long as the programmer knows exactly WHAT it does, even

if its internal structure is not known or understood in detail.

In this sense, it prepared the way for the introduction and use

of library procedures.

7.9.1 CODING STYLE

After the COMAL stat.ements for calling (EXEC) and defining

(PROC/ENDPROC) procedures had been discussed in detail, a full

listing of the FONEDEMO program was given to each student. The

following important points of coding style were stressed:

1. The main program should come first followed by the

procedure definitions.

2. The main program should be short and should consist

mostly of procedure calls.

3. Each procedure should· contain a one sentence REM

statement describing what it does. It was

suggested that. if this could not be done in one

short sentence then further refinement should be

considered.

4. The program listing should be easy to read.

'EmptyJ REM statements should be put at the

beginning and the end of each section.

141

5. All DATA statements should be placed together,

preferably at the end of the listing.

6. All initialisation should be done at the beginning

of the listing.

7. Every program should contain the name of the

author, the date it was written and a brief

description of what it does, at the beginning of

the listing.

It should be emphasised that the motivation for these guidelines

was based on making the students' programs clearly readable and

understandable and that issues such as speed of execution and

efficient use of memory were not considered to be relevant.

The students were then asked to write a menu-driven program

which gave the user the choice of calculating the area of a

rectangle, the area of a circle. the volume of a cYlinder or the

volume of a cone, (or of quittlng). They were told to model

their programs on the previous example. This was done very well

and demonstrated l~hat it is not too difficult to write a long

program if a good organisational framework is worked out in

advance. The coding guidelines above were well adhered to and

the overall structure, in most cases, was identical to that in

the phone problem. An example of this work, MENUEXER.CSB, is

supplied on disk. The only deviation from the proposed

structure was that some students called the MENU procedure at

the end of each of the 'calculating' procedures, rather than

,just once at the end of the loop in the main program. This

worked correctly but made the lis"t.ing more difficult to

understand. This was because it was not obvious from reading

142

the ma~n program that the value of CHOICE was being changed. each

time the loop was executed and therefore it was not obvious that

the loop would terminate properly. When this was pointed out to

the students concerned, they were reluctant to accept that it

was important enough to warrant changing their programs but were

eventually persuaded to do so.

7.9.2 LIBRARY PROCEDURES

Some time was then spent on the use of library procedures and

the COMAL commands LIST and ENTER were introduced. The use of

the command LIST for two completely different purposes in COMAL

is one of the few design faults in the system. When LIST is

followed by a filename it writes the contents of memory to disk,

under that filename, as a string of ASCII characters and appends

the suffix .CML to the filename. The file can be retrieved

without disturbing the contents of memory by using the command

ENTER followed by the filename. Thus, if there is no clash of

line-numbers, this can be used to store and retrieve procedures

which may be used in many programs. It is normal to use very

big line-numbers when designing such procedures, as this

minimises the likelihood of a clash of line-numbers when the

procedure is added into memory.

enhance screen displays (INVERSE,

A few useful procedures to

NORMAL and FLASH), one to

sound the Apple's bell (BELL), and one to halt program execution

until the spacebar is hit (SPACEBAR), were supplied. The

students were shown how to LIST and ENTER these and how to

utilise them in their programs. They were very amused by t.hese

and. for some time after, included them at every conceivable

opportunity in their programs. All of these procedures

143

contained statements that had not been introduced in class (PEEK

and POKE) and so the point was made that it was not always

necessary to understand the minute details of a procedure in

order to utilise it effectively.

Another large program (QUIZDEMO.CSB) was supplied on disk for

the students to use and discuss in the same way as FONEDEMO.CSB.

A listing of the program is in appendix B, p.223. This program

conducted a multiple choice quiz and utilised all the procedures

mentioned above. Although it merely asks three questions, the

overall structure is very general and could be adapted to ask

any number of questions, on any topic, whether they were stored

in data statements or in a separate diskfile. The program was

used and discussed at length in the same way as FONEDEMO. They

were then asked to design a similar program to conduct a quiz on

chemical names and symbols. There was an added complication in

this assignment, as the user was to be given the option of

matching chemical names with chemical symbols, or vice versa.

(Those not studying chemistry were given the option of writing a

similar program on any topic of their choice). To do this, it

was necessary for the programmer to combine the features of the

two demonstration programs above, as the program had to

implement a multiple choice quiz AND be menu-driven.

This problem demanded the construction of two different sets of

data. One set was needed for the option where the user was to be

tested on chemical names. In this set, each data line had to

contain a chemical symbol, three possible answers and the

response (a letter) associated with the correct answer,

e.g. DATA ··C··, ··COPPER··, ··CARBON"" , ··CHLORINE··, ··B··

144

For the other set of data, where the user was~to be tested on

chemical symbols, each line had to contain a chemical name,

three possible symbols and the letter associated with the

correct response,

e.g. DATA "SODIUM", "S", "So", "Na", "c"

While two sets of data were required, it was possible to

manipulate them both with the same procedure and this is how it

was done by all the students. In order to get the data pointer

to the correct set of data the RESTORE LABEL statement was used

by all the students, except one. This girl was unaware of the

existence of this feature but still got her program to work

correctly by placing 'flags' in the data. This led to a

slightly more cumbersome but impressive program (QUIZEX2.CSB).

Other examples of the students' work on this problem are also on

disk (QUIZEXER.CSB and CHEMQUIZ.CSB).

7.10 GENERAL APPROACH TO LARGE PROBLEMS

Up to this, the problems dealt with had involved the

organisation of various simple and familiar algorithms in large

programs. An attempt was now made to demonstrate a method of

finding a complete solution to any large problem which might be

both unfamiliar and difficult. The problem specification was

very long and detailed (figure 7.18) and some time was spent

making sure that everybody understood what the program was

supposed to do. This was done by asking what should appear on

the screen at each stage of the program. As this was a

menu-driven program the outer structure was already quite

familiar and this is shown in figure 7.19.

145

PROBLEM SPECIFICATION

Write a menu-driven program which gives the
that he/she can afford. The user should be
BRITISH, EUROPEAN or JAPANESE cars. The
arranged in three groups each of which is
statement. Each data statement contains
followed by its price:

1000 LABEL BRITISH
1010 DATA "MINI", 4500
1020 DATA ··METRO··, 6200

2000 LABEL EUROPEAN

user a list of cars
given the choice of
DATA statements are
preceded by a LABEL
the name of a car

etc.

2010 DATA "CITROEN DYANE··, 4900
2020 DATA ··FIAT PANDA", 5300 etc.

3000 LABEL JAPANESE
3010 DATA "DATSUN MICRA", 5400
3020 DATA "TOYOTA STARLET", 6000 etc.

The end of each data section is marked by:

DATA ··END··, 0

Within each section the cars are not arranged in any particular
order. The model or models that can be afforded are decided by
two factors:

1. The value of the car (if any) that is being traded in.
This depends on:
a. The year it was first registered.
b. The original value.
c. The mileage done.
The value is calculated as follows:
a. 10% depreciation for each year of its age.
b. A further depreciation of £50 for every 1000 miles in

excess of an average mileage of 10000 miles per year.
(if the car were 5 years old and had a mileage of
58000 this Vlould amount to 8 * £50 = £400)

2. The user's annual income:
The total outlay must not exceed 80% of annual income
(i. e. may spend 80% of annual income in addition to any
trade-in allowance).

The user should be asked to choose either BRITISH, EUROPEAN or
JAPANESE from the main menu. The necessary information
regarding salary and trade-in car should then be requested. The
program should then output all the cars of the type requested
that are within the user's price range before returning to the
main menu.

FIGURE 7.18

146

MENU

SETPOINTER

MENU

SETPOINTER

FINDMAX

PRINTMODELS

GOODBYE

CARBUYER

CHOICE = INT(CHOICE) AND
CHOICE > 0 AND CHOICE < 4

Displays options and accepts CHOICE.

Sets data pointer to correct LABEL.

GOODBYE

Calculates the maximum amount that the user
can afford to spend.

Outputs all models of the type chosen whose
cost does not exceed MAX.

Indicates termination of the program.

FIGURE 7.19

When all were satisfied that this was indeed a solution the next

task was to write the various procedures. As MENU and GOODBYE

were almost identical to those in earlier programs it was

decided to start with SETPOINTER (figure 7.20). The use of the

RESTORE LABEL statement made this very easy in COMAL. As BASIC

does not support this variation of RESTORE, this section would

need to be expanded if a BASIC implementation were required.

This would mean that RESTORE BRITISH etc. would have to be

further refined, but the overall structure would not be

affected. The same would apply to data stored in files rather

than in data statements.

147

FINDMAX was then developed (figure 7.21). This in turn called

another procedure (FINDVALUE) which then had to be specified and

developed (figure 7.22). This was the only section of the

problem which involved a complex 'mathematical' algorithm. The

final section, PRINTMODELS, was then developed (figure 7.23).

This was quite a familiar type of algorithm.

The purpose of all this was to show the students how a large

problem should be approached, as a preparation for their end of

year project work. It was stressed that this method made it

possible to analyse large problems clearly, even if a complete

solution could not be achieved. For example, if a student did

not know how to calculate the value of the trade-in, the rest of

the problem could still be solved and then help could be sought

with the difficult section. As long as the purpose of the

difficult procedure has been clearly specified and it is known

how the procedure fits into the overall solution, then it is

perfectly valid and desirable that help should be sought in this

way. If this approach is followed, then the student who has

difficulties and cannot find a complete solution will at least

know what questions to ask. It was hoped that if students could

be taught to think like this, that they would then be able to

approach any problem intelligently, rather than give up because

they "didn't understand" or because they "didn't know how to

calculate depreciation" etc.

14B

CHOICE = 1

RESTORE
BRITISH

INPUT
SALARY

SETPOINTER

CHOICE

RESTORE
EUROPEAN

FIGURE 7.20

= 3

RESTORE
JAPANESE

(SALARY * 0.8)
+ VALUE

INPUT "TRADE IN ? ". REPLY$ =
"YES"

REPLY$ =
"NO" REPLY$

FINDVALUE

FINDVALUE VALUE o

Calculates the current value of the car that
is being traded in.

FIGURE 7.21

149

INPUT OLDVALUE,
YEARBOUGHT, MILEAGE

CALCULATE CURRENT
VALUE

AGE := 1984-
YEARBOUGHT

LOOP TO DECREASE VALUE BY
10% FOR EACH YEAR OF AGE

SUBTRACT 'EXCESS'
DEPRECIATION

VALUE: =
VALUE*0.9

READ MODEL$, PRICE

<= MILEAGE>
AGE * 10000

EXTRAMILES := VALUE := VALUE -
MILEAGE-(AGE * 10000) (EXTRAMILES/IOOO)*50

FIGURE 7.22

RINTMODELS

PRICE <= MAX READ MODEL$, PRICE

PRINT MODEL$, PRICE

FIGURE 7.23

150

7.11 THE SIXTH YEAR COURSE

To begin, five problems of reasonable difficulty but not

requiring any new concepts were assigned. This was to force the

students to revise what they had learned in the first year.

One problem was assigned per student and it was planned that

each girl would present her solution to the rest of the class at

a later session. All of these problems were solved very well

with no more than minor bugs in any of them. Where there were

bugs the students were aware of them and fully understood any

corrections that were made.

success, mainly due to

The class presentations were not a

the fact that the students were

uncritical of each other's work, leaving it up to the teacher to

challenge the presented solutions. This may have been due to

immaturity on their part but could also have been due to their

failure to

solution.

recognise the importance of

These presentations had

communicating their

to be reluctantly

discontinued as they were very time-consuming. This was a great

pity as 'walking through' one's own solution and explaining it

step by step to a critical audience could certainly help to

develop confidence and would contribute to the concept of

programming as a co-operative group activity.

7.11.1 INTRODUCTION TO ARRAYS

A sheet containing information on arrays, along with sixteen

problems, was distributed. These problems are listed in

appendix A, p.216. The need for arrays was introduced using an

example concerning the processing of thirty examination scores

in which the number of students who failed was to be counted.

This was a bad example to use as the problem could have been

151

solved quite simply without arrays. This difficulty is

discussed in 8.11.

The convention of using a variable 'i' as the array index, when

'moving forward' through the array, was adopted. In cases

where the array was being processed 'backwards' the index 'j'

was used. This was a change from the normal policy of using

longer variable names, but was justifiable because variable

names of subscripted variables can be very long and can be

difficult to read. As the convention was explained, and adhered

to consistently, no problems of readability were encountered.

Arrays were depicted, like ordinary variables, as large boxes in

the computer's memory but consisting of numerous different

sections.

SCORE

SCORE(l) SCORE(2) SCORE(30)

Each section was really a variable, like those that were already

familiar, but the big advantage was that the array could" be

referred to and processed as a whole. The convention of using

SCORE[l .. 10] etc. when referring to the array as a whole was

adopted. In general A[i .. j] refers to an array A whose elements

are indexed from i to j inclusive. A COMAL example was given to

show how a loop could be constructed to input values to an

array:

10 INPUT "How many values? ":NUMBER
20 DIM SCORE (NUMBER)
30 i : = 1
40 WHILE i <= NUMBER DO
50 INPUT SCORE (i)
60 i: = i + 1
70 ENDWHILE

152

This algorithm was discussed in detail and the students were

then asked to write a similar algorithm to output the values

from the array, which they were easily able to do. The next

few sessions were spent working through the problems on the

sheet. The first ten of these were concerned with quite

familiar algorithms but set in the context of arrays. These

were intended to familiarise the students with the concept of an

array and to give them practice in the use of the syntax

associated with array manipulation in COMAL.

problems caused much difficulty.

None of these

The next five problems involved swapping values in an array and

were slightly more difficult. For example:

Write a program to fill an array with N numbers and

then to swap the first with the last, the second with

the second last etc. until the whole array has been

reversed.

The solution to this problem is shown in figure 7.24. The

difficult part of this algorithm is deciding on the loop guard.

A number of students used the familiar i <= N guard but this

causes both counters i and j to move through the whole array,

causing each pair to be swapped twice and leaving the array in

its initial state. The correct guard was arrived at by

considering the case in which the array contained an even number

of elements and the case involving an odd number of elements.

EVEN NO.

i j

153

SETUP
A[1. . N]

i 1

SWITCHAROUND

SWITCH
ELEMENTS

j

WRITEOUT
A[1 .. N]

SWAP A(i), A(j)

SETUP

WRITEOUT

SWAP

Sets up the indicated array.

Prints out the indicated array.

Swaps the values of any pair of variables.
(A(i) and A(j) in this case).

FIGURE 7.24

In the case of an even number of elements it is clear that the

processing should cease when the swaps at the indicated

positions of i and j have been made. The next increment of i

and decrement of j would result in i being greater than j.

ODD NO.

i j

In the case of an odd number of elements there is no need to

process the middle element and so the processing should cease

when the swaps at the indicated positions have been made. The

next increment of i and decrement of j would result in i being

154

equal to j. It follows from this that processing should cease

when either i equals or exceeds j. Reversing this, the loop

guard is found to be i < j.

This kind of argument is generally applicable where the array is

being processed both from the front and from the back at the

same time and the students were encouraged to think in terms of

the two cases (odd and even) outlined above. The rest of the

problems on this sheet were done very well with the exception of

the one which required the first N lines of Pascal's triangle to

be output. This was found to be far too difficult and no

student was able to solve it.

7.11.2 STRING-HANDLING FUNCTIONS

The next group of problems involved the manipulation of

(appendix A, p.217). This was the ideal time to

string handling, as strings ARE arrays and the skills

strings

introduce

acquired

in the previous section could be practised in a

different context. Unlike their equivalents in BASIC

RIGHT$ etc.), the string-handling functions in COMAL

reflect the connection between strings and arrays:

slightly

(LEFT$,

clearly

i. e.

just as

NAME$ (1)

SCORE (1)

is the first character in NAMES$

is the first element in SCORE.

Some other COMAL string-handling- functions introduced were:

1. LEN :

This returns the number of characters in a string. It

1S the same as the function found in BASIC.

2. IN

This is an operat.or which tests jf a given substring

is present in another string.

155

e.g. IF A$ IN B$ THEN

IF "JANE" IN NAME$ THEN eT.c.

3. SUBSTRINGS

B. B. C. COMAL allO\,s parts of a string to be accessed

in the following way:

NAME$ (i) the ith. character of NAME$.

NAME$ (i: j) ... all characters from i th. to jth. (inc 1).

NAME$ (i:) all characters from ith. to the end.

NAME$ (:j) all characters from start to jth.

Having introduced these functions and operators the thirteen

problems on the sheet were done over a period of three weeks.

Most of these problems deal with the manipulation of names.

A typical example is:

Write a program which accepts a name from the keyboard

in the form Christian name, space, Surname and which

then outputs the same name in the form Surname, space,

Christian name.

A solution to this problem is shown in figure 7.25. The crucial

part of this algorithm is the loop to find the position of the

space. It is important to state the name of the index of the

position where the space will be found, at the second level of

the diagram. This allows the rest of the solution to be found

even if the section to find the space cannot be completed. This

practice was encouraged throughout. Many of these problems

involved searching through a string for a particular value

(usually a space) and then outputting the string in a different

format Ilsing the COMAL features outlined above. This search was

similar to the linear search, described above, but simpler

156

INPUT
NAMES$

SWITCH NAME

BREAK NAME$ INTO TWO
PARTS (SNAME$ & CNAME$)

LOOP TO FIND POSITION OF
SPACE (AT POSITION i)

FIND
CNAME$

CNAME$:=
NAME$ (:i-1)

FIGURE 7.25

PRINT SNAME$;" ";
CNAME$

FIND
SNAME$

SNAME$:=
NAME$ (i+1:

in that the target value "(the space) was guaranteed to be

present. These problems were solved very well with the

exception of the last two (numbers 12 and 13) which seemed to be

too difficult and caused some confusion.

7.11.3 ARRAYS OF STRINGS

The next group of problems concerned the manipulation of arrays

of strings, i.e. arrays where each element is itself a string.

The necessary syntax, along wi t.h eight problems, were

distributed on a sheet. These problems are listed in appendix

A, p.218. It was pointed out that B.B.C. COMAL distinguishes

between NAME$ (1) which is the first character in the string

157

NAME$, and NAME$(l) which is the first string in an array of

strings. The only difference is the space before the opening

bracket. As with arrays, a diagram showing the concept of an

array of strings as a large box with separate sections was

presented.

STUDENT$ IRENE I MARIA
~. ________ -L ____________ ~ __________________________ _

STUDENT$(l) STUDENT$(2) etc.

The dimension statement for this type of array needs to be

explained carefully. It is necessary to specify two dimensions:

1. The number of elements (names) in the array,

i.e. DIM STUDENT$(6) allows for six names.

2. The maximum number of characters expected in any

one element.

i.e. DIM STUDENT$(6) OF 20 allows six names of up

to twenty characters each.

A typical problem of this kind is given below:

Read ten names and ten associated scores from data

into two arrays. Print the names of the students who

scored above average.

This problem illustrates the idea of 'parallel'arrays which was

central to some of these problems. The value in SCORE(i) is

associated with the name in STUDENT$(i), so that if the score

read in for MARIA was 52 and the score for IRENE was 46, the

arrays could be visualised as follows:

158

STUDENT$ MARIA IRENE

STUDENT$(l) STUDENT$(2)

SCORE 52 46

SCORE (1) SCORE(2)

This arrangement allows for very convenient processing and also

foreshadows the concept of a record.

A number of the problems used at this stage involved processing

lists of names. A typical example was:

Write a program which reads ten names from data

statements and then prints out the initials of each

person. Each name consists of a Christian name,

followed by a space, followed by a Surname.

The solution to this problem is in figure 7.26. This set of

problems was quite difficult but they all had the same general

outer st.ructure:

100 i : = 1
110 WHILE i <= N DO
120 PROCESS NAMES$(i)
130 i:=i+1
140 ENDWHILE

This outer loop controls the 'movement' down through the array

l;aking each name in turn. Once this has been established, the

student is then free to concentrate on refining the 'PROCESS

NAME$(i)' statement. In each case, the algorithm for processing

NAME$(i) was already familiar from the previous section on

string variables. This meant that most of the problems could be

solved by f;uperimposing this out;er structure on to the previous

solutions. There were also some syntax considerations in

implementing solutions to these problems. The first bracket

159

SETUP
NAME$[1. ,10]

FIND INITIALS
OF NAMES$(i)

FIRST$:=
NAME$ (i) (1)

LOOP TO FIND THE SPACE
(at position k)

DATA "MARIA CORRIGAN"'
DATA "IRENE COMERFORD"

INITIALS

LOOP TO FIND AND PRINT THE
INITIALS OF THE TEN NAMES

PRINT INITIALS
OF NAME$(i)

i i + 1

FIND
SECOND$

PRINT FIRST$;", ";
SECOND$;", "

SECOND$:=
NAME$ (i) (k + 1)

NAME$(i) (k) <> .. "

etc, (10 such DATA statements)

FIGURE 7,26

160

after the name of the array contains the index of the required

element, while the second bracket contains the index of the

required character within this element. Thus NAME$(i) (k) refers

to the kth. character in the ith. element of the array. The

second bracket may also contain two parameters, so that NAME$(i)

(j:k) refers to the group of characters, starting at the jth.

and ending with the kth., of the ith. element of the array.

This caused quite a lot of difficulty and perhaps some exercises

on this syntax should have been done before attempting to use it

in difficult problems.

7.11.4 SORTING ARRAYS

The bubblesort algorithm was used to introduce the topic of

sorting, as it was felt that this was the simplest and most

accessible of the sorting algorithms. It had been intended to

investigate some other sorting processes but this was impossible

due to time constraints. The outline of the bubblesort

algorithm was described and then the first pass on a list of

four numbers was demonstrated using the following algorithm:

"Starting at the left, compare each value with its immediate

neighbour (to its right) and if it is found to exceed its

neighbour then swap the two values".

6 3 5 2 (6 > 3 therefore swap values)

3 6 5 2 (6 > 5

3 5 6 2 (6 > 2)

3 5 2 6 (end of first pass)

After working on a sjmilar list of numbers the students were

shown a structure diagram for this process (figure 7.27) .

161

i 1

FIRST
PASS

A(i) > A(i + 1)

SWAP A(i),A(i + 1)

j

FIGURE 7.27

The loop guard i < j is used here instead of the more familiar

i <= j because the pass is complete when·i has reached the

second last number in the list. If i were allowed to become

equal to j, then there would be no number to the right for

comparison, i.e. there is no A(j+l). It was agreed that the

last element in the list could now be forgotten about as it was

already in its correct position. The next task was.to process

the first three elements in the same way as above and then,

finally, the first two elements. The students were required to

do this manually. When this had been done they were given

several different lists to process manually before being shown

the complete bubblesort algorithm (figure 7.28).

162

SETUP
A[l .. N]

BUBBLESORT

SORT
A[1 .. N]

LOOP TO PUT THE BIGGEST
REMAINING NUMBER INTO A(j)

A(i) > A(i + 1)

SWAP A(i), A(i + 1)

FIGURE 7.28

WRITEOUT
A[1. . N]

j j - 1

An exercise requiring the use of the bubblesort algorithm was

then given. This required the use of the supplied algorithm, to

give the user the choice of outputting a list of names, in

either alphabetical order or order of merit (based on supplied

scores) and was done very well. Another exercise done at this

stage was to use the internal clock of the B.B.C. microcomputer

to investigate the efficiency of the bubblesort algorithm. This

163

involved using the clock to time bubblesorts for arrays of

different· sizes. The inefficiency of this aleorithm is not at

all obvious when processing arrays of twenty or thirty numbers,

which require just a few seconds. Its inefficiency was

demonstrated very clearly, however, when it took over an hour to

sort an array of one thousand elements.

164

CHAPTER 8

EVALUATION OF THE COURSE
========================

8.1 INTRODUCTION

In this chapter some difficulties that arose concerning certain

sections of the course are outlined and the adjustments made for

the second implementation of the fifth year course are

described. This is followed by a review of the projects

undertaken by the students. These are on the accompanying disk

and are a good measure of the effectiveness of the course. The

chapter terminates with the description of an application of

structure diagrams in Leaving Certificate mathematics.

8.2 THE METANIC COMAL SYSTEM

Apple Metanic COMAL was used as the implementation language

throughout the fifth year course and was found to be generally

satisfactory ~lith just one serious flaw. To access this version

it is first necessary to get the machine into CP/M and then to

call up COMAL. CP/M and COMAL are loaded from the same disk.

In the first year each student was given a CP/M formatted blank

disk for storing COMAL programs. Each student used the same

master disk to start up the system, inserting her own disk after

the system was in COMAL. This caused some problems due to a

quirk of Metanic COMAL which requires INIT to be typed every

time a disk is changed. If this is not done, and students

165

often forgot to do it, it is impossible to save a program on the

new disk. This is a serious flaw in the system and there is no

way to recover once the error has been made. This caused a

number of programs to be lost which was very frustrating for the

students concerned. Because of this, in the second year each

student was given a disk containing both CP/M and COMAL. This

meant that there was no need to change disks after COMAL had

been brought up. There was, of course, less space available on

the students' disks for their own programs but this

cause any problems.

8.3 THE CONCEPT OF A COMPUTER SYSTEM

did not

All s'l:udents in both years developed the abi 1 i ty to use the

computers confidently and unsupervised. They were all able to

load and save programs, edit programs and ENTER library

procedures into programs without difficulty. This indicates

that the simple mental model used was satisfactory and that

there was no need to describe the system configuration in more

technical terms.

8.4" VARIABLES

All students acquired the concept of a real variable reasonably

quickly. However there was some confusion in relation to the

other types of variable. COMAL supports four distinct types of

varinble: real, integer, string and boolean. In the first year

of the course all four were described but it was found that the

distinction between real and integer variables caused difficulty

166

for many students. It was also found that, using the

mini-language, there was no need for boolean variables. For

these reasons it was decided to introduce only real and string

variables for the second year.

referred to as numeric variables.

Real variables were always

As all the algorithms used in

the course may be written using just real and string variables,

there is no good reason for introducing the others if they are

likely to cause confusion.

satisfactory.

8.4.1 STRING VARIABLES

Omitting them proved to be very

In the first year, very little explicit instruction was given on

string variables.

time as real and

They were initiallY introduced at the same

integer variables. Numerous examples

concerning the use of real variables were used but very few

examples involving string variables were demonstrated. This was

because it was considered that the concept of a string variable

was essentially the same as that of a real variable, the only

difference being in the syntax of assignment and the need for

dimensioning. A sheet containing all the necessary information

on string variables was distributed to each student but the

topic was not dealt with in detail in class. The students were

requested to study the sheet themselves and then to keep it for

reference. This waS a mistake. The students tended to dismiss

material treated in this way as being of lesser importance than

that spelt out in class and paid little heed to it.

167

To overcome this problem, a whole session was devoted to strin:g

variables in the second year.

prepared (appendix A, p. 208).

More comprehensive sheets were

These sheets contained the rules

for string variable names, followed by the syntax for both the

assignment and input statements. When some examples on these

statements had been carried out by the class, the need for

dimensioning was raised. It was simply pointed out that string

and numeric values were stored in different ways by the

computer. No matter how large a number is, it only requires a

fixed amount of space because it may be rounded off. Strings,

on the other hand, should not be rounded off, so large strings

require large amounts of memory. Therefore in the interests of

economy, it was necessary to specify how large each string

variable might be, so that the

suitable amount of memory space.

computer could set aside a

This explanation of the need

for dimensioning was accepted with some misgivings by the class.

Another change in the treatment of string variables was to

require students to run programs which utilised them, before the

topic was discussed in class. This prepared them for the idea

of a non-numeric variable, as they could see that the computer

could 'remember' words, names etc. Despite this extra effort,

students still had difficulty with string variables. The two

most common mistakes were to omit the DIM statement and to use a

numeric variable where a string variable should have been used.

All these problems were, however, overcome with practice.

168

8.5 THE INPUT STATEMENT

It was noticed during the first year that some students had

severe difficulties with the input statement. There was some

confusion between what appears on the screen when the program is

listed and what appears when it is run. The main error was to

attempt to give a value to the variable when keying in the

program.

For example

or

INPUT LENGTH 6

INPUT 6

For this reason, during the second year, students were required

to run numerous teacher-written programs, which utilised input

statements, before the topic was mentioned in class. The

students enjoyed using these programs, especially the ones which

asked for their names and then carried on a 'personal'

conversation using the supplied name. They became curious about

how the programs worked and how numbers and names were

'remembered' by the computer. They were therefore better

prepared to acquire the concept of input when it was introduced.

The difficulties mentioned above did appear again in the second

year, but much less frequently, and were cleared up much more

quickly.

It was found that the students who spent most time at .the

machines in these early stages were least likely to encounter

difficulties of this nature. This seems to suggest that

practice at the machines is very important in the early stages

169

and may be more beneficial than extensive class instruction,

supplied notes etc., at this stage.

8.6 TYPES OF PROBLEMS FOR EXERCISES

In general, the problems that \~ere assigned in the early stages

were very simple and concerned topics that were familiar from

other subject areas. However, in the first year, some examples

were assigned involving topics which were not already familiar

to the students (e.g. A.P.s, G.P.s, Compound Interest etc.) but

which were really quite simple and which were included in their

fifth year mathematics course. This was a mistake and confused

a number of students. In fact, some of them were still confused

even after solutions had been shown and explained in detail. It

would seem, therefore, that in the early stages of the course,

it is unwise to ask students to solve problems from areas which

are not extremely familiar. This might also be an argument

against running programming and mathematics courses 'in

parallel'. It seems that they had enough to cope with in

learning COMAL syntax and how to operate the machines without

having to solve problems from 'new' areas.

not assigned in the second year.

8.7 STRUCTURE DIAGRAMS

These problems were

The students initially resisted the idea of using diagrams and

were very slow to accept that, when drawing a diagram, certain

'syntax' rules needed to be observed. For example, it was very

common to find a sequence of statements listed vertically rather

170

than horizontally; i. e. if a certain task, A, required the

execution of three steps, 1, 2 and 3, it was often drawn as in

figure 8.1, rather than as in figure 8.2. This kind of error

ruined t.he meaning of the diagram and spoiled the Top-Down

approach.

A lot of difficulty was initially encountered in trying to

convince the students that it really mattered how the diagrams

feel that it was sufficient to were drawn. They seemed to

derive a program that worked (or seemed to work), either with a

badly drawn diagram or with no diagram at all.

I TASK A 1

I STEP 1 1

I STEP 2 I

I STEP 3 I

FIGURE 8.1

TASK A

STEP 1 STEP 2

FIGURE 8.2

171

It was also noticed in practically all cases, whether the

diagram was organised properly or not, that they were very.

sloppily drawn and presented. Very few students seemed to use a

ruler. This was despite the fact that all the diagrams they had

been shown, whether on overhead slides or on typed notes, were

very carefully drawn. It seems they were unable to appreciate

that a well drawn diagram could be an effective means of

communicating a solution. In fact, it is possible that they

didn't appreciate that there might be a need to communicate a

solution at all, other than to a machine. It is understandable

that the students had difficulty in accepting the idea of using

structure diagrams. The kind of problems encountered at this

stage are usually simple and straightforward enough to be coded

directly by most students. To the novice, the idea of drawing a

diagram may seem to be a waste of time. If, however, the

introduction of diagrams is postponed until really big problems

are encountered, students who solve problems at the keyboard

will find it very difficult to adapt. There is also the

likelihood that the combination of quite difficult problems and

a new method of approach might overwhelm the students and

discourage them.

Initially, many students complained that they found the diagrams

'very difficult'. It was subsequently discovered that they

could all interpret the diagrams quite well, but had difficulty

in designing them. This seems to indicate that it was the

172

problems rather than the diagrams that they found difficult, but

were unable to distinguish between the two. Despite these

difficulties, the students came to appreciate the diagrams and

in later sessions, when they were given the choice of using the

diagrams or of coding directly, all chose to use the diagrams.

8.8 THE CONDITIONAL CONTROL STRUCTURE

One unexpected difficulty that arose in the early stages

concerned the output statements from simple programs involving a

conditional structure.

the following problem:

This may be illustrated by considering

Input a number at the keyboard and say whether it is

even or odd.

There are two ways in which the output from this type of problem

can be organised and these are illustrated in figure 8.3 and

figure 8.4. The solution in figure 8.3, although it is slightly

longer, is better, as the first level of the diagram breaks the

problem down into three separate sub-tasks representing INPUT,

PROCESS and OUTPUT. This is a sub-division that occurs in

numerous problems, including many quite complex ones. On the

other hand, there are situations in "hich this method cannot be

applied. An example of this is the problem of outputting the

greater of two numbers (see figure 7.10). If the numbers happen

to be equal, then the output should be a message saying that

they are the same (a string). The output may therefore be

either numeric (one of the numbers) or string. In these cases

173

ODD/EVEN No.1

INPUT NUMBER FIND RESULT$

NUMBER MOD 2 = 0 NUMBER MOD 2 <> 0

RESULT$

INPUT
NUMBER

"EVEN"

FIGURE 8.3

NUMBER MOD 2 = 0

PRINT "EVEN"

FIGURE 8.4

RESULT$ "ODD"

TEST NUMBER AND
OUTPUT RESULT

NUMBER MOD 2 <> 0

PRINT "ODD"

174

the alternative method (figure 8.4) should be used. Students

were encouraged to use the first method wherever possible but

were also shown some examples in which the second method was

used. This led to some confusion and a common error encountered

in the early stages was the inclusion of two sets of output

statements. As more practice was acquired the confusion was

gradually dispelled. However, in the second year, numerous

problems of the first kind were used, before any of the second

kind were introduced, and this was quite satisfactory.

8.8.1 THE USE OF AN ELSE BRANCH IN IF STATEMENTS

In the first year the ELSE branch was introduced as an extension

of the conditional control structure. An information sheet was

distributed and examples were given in which ELSE might be used.

It was stressed that the use of ELSE was never strictly

necessary and that it should be used with extreme caution. It

was suggested that it should only be used in cases where the

final condition of the IF structure was obvious, but long and

tedious to compose. The following program fragment, which

decides whether a given letter (A$) is a vowel or a consonant,

was given as an example:

100 IF A$=··A·· OR A$=··E"' OR A$=·T· OR A$=··O·· OR A$=··U·· THEN
110 PRINT"' IT IS A VOWEL"·
120 ELSE
130 PRINT·· IT IS A CONSONANT"'
140 ENDIF

The alternatives to ELSE in this program are quite long

expressions and so it was suggested that ELSE might be used in

175

circumstances such as this. The class was shown how to

construct a diagram for a conditional structure including an

ELSE branch, and how to convert this into COMAL.

It Vias noted that the students rarely used an ELSE branch in

their own work and often made errors when they did use one. It

was realised that the use of ELSE in anything other than

two-branch conditional statements usually resulted in a loss of

clarity. The reason for this is that to comprehend the

circumstances under which the ELSE branch is executed, it is

necessary to 'back up' through all the previous conditions. It

is also necessary to reverse each one, and mentally combine the

reversed conditions. This is quite difficult but must be done

to understand such a program. If this is not done it is very

easy to overlook special cases, causing the ELSE branch to be

executed in error. For this reason ELSE branches were not

introduced at all in the second year of the course and this was

much more satisfactory.

8.8.2 THE USE OF 'EXPLICIT' BOOLEAN CONDITIONS

In the first year it was noticed that the students composed the

boolean conditions of conditional statements in an 'explicit'

manner most of the time and that their programs were clearer and

less error-prone when they did this.

the point:

An example will illustrate

176

Write a program in which the number of children per

fami ly is input and wlli ch t.hen decides how many pin'ts

of milk are required under the following rule:

No children · 2 pints

1, 2 or 3 children · 4 pints

4 or 5 chi Idren · 6 pints

6 or more children · 3 pints + 1 per child

The normal textbook approach to coding the conditional statement

in this problem in CO MAL is as follows:

100 IF KIDS = 0 THEN
110 PINTS . - 2
120 ELIF KIDS < 4 THEN
130 PINTS . - 4
140 ELIF KIDS < 6 THEN
150 PINTS 6
160 ELSE
170 PINTS 3 + KIDS
180 ENDIF

In order to understand the circumstances under which the third

branch of this structure is executed, it is not sufficient to

examine the boolean condition guarding it (KIDS < 6). This

condition is TRUE when KIDS has any value less than six but, of

course, the branch is only executed \~hen the value of KIDS is

four or five. To realise, this it is necessary to 'back up'

through the st.ructure examining each of the previous conditions.

This makes the program difficult to read and to understand. The

fin"l ELSE branch is an extreme case of this lack of clarity.,

Using 'explicit' boolean conditions the following program

fragment is derived:

177

100 IF KIDS = 0 THEN
110 PINTS . - 2
120 ELIF KIDS = 1 OR KIDS ::: 2 OR KIllS =3 THEN
130 PINTS . - 4
140 ELIF KIDS = 4 OR KIDS ::: 5 THEN
150 PINTS := 6
160 ELIF KIDS >:: 6 THEN
170 PINTS 3 + KIDS
180 ENDIF

In this case the total condition governing each branch is

explicitly stated at the entry point to the branch and this

results in a clearer, more readable program. It may also be

noted 1;hat this solution is a much closer reflection of the

problem statement and t.herefore is easier to check and debug.

It was decided to insist on explicit statements such as these

for the second year of the course and this was successful.

In order to write these explicit conditions, it is usually

necessary to use boolean operators. However, it was felt that

boo lean operators should not be introduced until the concept and

syntax of t.he conditional statement were reasonably well

established. This meant that it had to be possible to solve all

the initial IF-type problems with explicit conditions, but

without boolean operators. It was difficult to find problems of

this nature which contained more than two branches. Five of t.he

eleven problems which were used at this stage in the first year

had t.o be postponed unti I after boolean operators were dealt

with. Eleven problems were eventually used and these are in

appendix A, p.215.

176

8.:3.3 De MORGAN'S LAW

Most. of the class avoided using the NOT operator by ·turning

expressions around. i. e. using A >= 3 rather than NOT A < 3.

Those who did use NOT tended to get confused when constructing

expressions with more than one condition. This difficulty with

the NOT operator prompted the introduction of de Morgan's law in

the second year. In all cases where it was necessary to reverse

a condition, de Morgan's law was used rather than the NOT

operator, although the NOT operator was still introduced for the

sake of completeness. The principal reason for this was that

many, if not all, expressions which involve the NOT operator are

difficult. ·to understand. At the simplest level it may be argued

that X > 10 is much easier to comprehend than NOT(X <= 10) which

means exactly t.he same thing. When used with large expressions,

NOT can almost render them incomprehensible. For example:

NOT X <= 6 OR X MOD 5 <> 0 i

is equivalent to

X > 6 AND X MOD 5 = 0

In the latter case it is obvious that. the expression is TRUE

,,'hen X j.s a multiple of 5 but greater than 6, i.e. it is TRUE

when X has one of the values 10, 15, 20, 25 etc.

This is not at all clear from the former expression. It would

appear that the NOT operator is not only confusing but

redundant, as any boolean expression can be writ.ten without it

by using a combination of ANDs and ORs.

179

De Morgan's law is used to reverse any expression as follows:

1. Reverse all the component conditions.

= becomes

> becomes

<. becomes

<>

<=

>=

and vice versa.

and vice versa.

and vice versa.

2. Change all ORs to ANDs and vice versa

For example the reverse of the condition

X <> 5 AND (Y = X OR Y <= 2)

is X = 5 OR (Y <> X AND Y > 2)

In the first year, the most frequent use of NOT was to reverse

boolean expressions to cater for either/or situations. These

situations occur quite frequently as in the program to simulate

throwing two dice (see 7.7.2). If the program is to be altered

to output a message whether a prize has been won or not, then a

two-way branch is required. The guard for the second branch may

be derived in any of three different ways:

l. Use the NOT operator.

2. Use ELSE.

3. Use de Morgan's law.

All three of these methods are quite simple to apply even if de

Morgan's law requires slightly more effort on the part of the

programmer. However, it is felt that the resulting program is

always much clearer and easier to understand, if this method is

appl ied. Students had no difficulty in learning the method and

completed numerous examples accurately in class. The only

difficulty found here was in convincing the students that it was

180

worth the slight extra effort. There is a. case here for

omitting the NOT operator altogether and this is being seriously

considered for future courses.

All the students became proficient in the use of the conditional

statement and the construction of boolean conditions. The fact

that they mostly avoided the use of ELSE, and that they

generally made their conditions explicit, was very encouraging

and showed that they appreciated the need for clarity. The

omission of the CASE statement did not cause difficulty as there

was no need for it in any of the problems on the course.

8.9 THE ITERATIVE CONTROL STRUCTURE

No serious difficulties were encountered with this part of the

course. The students were already very familiar with boolean

conditions when this section was introduced. They therefore had

little difficulty constructing loop control conditions, which is

the most important skill in loop construction. The guidelines

that they were given for constructing loop conditions were found

to be helpful, as was the distinction that was drawn between

fixed and indefinite iteration. The fact that only one looping

structure was used caused no problems and there was never any

need for structures other than the WHILE loop.

8.10 PROCEDURES

When this work was originally planned it was intended to

introduce procedures at a very early stage because it was felt

181

that procedures were a fundamental part of structured programs.

However, it was realised as the work progressed that it would be

pointless to introduce procedures until the students were able

to tackle reasonably large problems in which the use of

procedures was justified. Procedures could have been introduced

earlier, but the students would not have learnt any more than

the syntax of the EXEC, PROe and ENDPROC statements, had this

been done. Although procedures had not been introduced, the use

of a strict Top-Down method had encouraged the students to think

'procedurally' from the start. The use of the diagrams forced

students to think about problems in high level terms before

details were considered. This is the essence of 'procedural'

thinking and was well established early in the course. The

actual use of procedures in problems and the associated syntax

was easily assimilated by all the students and they all came to

use them well, as is evidenced by their projects (see 8.12).

8.11 ARRAYS

The main difficulty associated with the introduction of arrays

was to find suitable introductory problems in which their use

was justified but which were not too difficult. The initial

problem used was quite unsatisfactory (see 7.11.1) as it did not

really require the use of an array and this was realised by some

of the students. The problem was to decide how many students

from a class of thirty had failed a test (i. e. scored less than

forty marks). The teacher then suggested that without arrays

182

t·his would require thirty separate variables, SCORE 1, SCORE 2

et.c. and thirty different conditional statements:

IF SCORE 1 < 40 THEN etc.

This was not correct, as the problem could have been solved very

simply without arrays as follows:

10 FAILED := 0
20 COUNT := 1
30 WHILE COUNT <= 30 DO
40 READ SCORE
50 IF SCORE < 40 THEN
60 FAILED := FAILED + 1
70 ENDIF
80 COUNT := COUNT + 1
90 ENDWHILE

100 PRINT FAILED

What is required at this stage is an example in which an array

is really necessary and this usually implies that the data must

be processed twice. This would involve changing the above

problem as follows:

Write a program to accept thirty scores from the

keyboard and find the number of scores that are above

the average.

In this case each score is first used to calculate the mean and

then, when this is done, each score must be compared with the'

mean. Therefore each score must be stored after it is initially

used to calculate the mean. In this case the choice is between

thirty separate variables (and thirty IF statements) or a thirty

element array. This point is considered to be important because

it is known from experience that many students have difficulty

in deciding when it is appropriate to use an array, and tend to

183

use arrays in situations where they are not appropriate. It is

important that the first few problems encountered in this

section should demonstrate the real need for arrays and not just

the syntax associated with them. Some other problems which are

quite simple, which require arrays and which will be used in

future courses are:

1. Input a set of 10 numbers and then print them in

reverse order.

2. Input a set of 10 numbers and then print those that

are bigger than the last number that is input.

3. Read a set of numbers from data and find their

standard deviation.

4. Read a set of numbers from data. Ouput either the

even numbers or the odd numbers of the set,

whichever has the greater sum.

Apart from this initial difficulty, the use of arrays did not

cause any great problems for the students, although some had

difficulty with the syntax in the early stages. The sorting and

searching algorithms used in the final stages were also found to

be difficult by some students. This is understandable as they

are quite difficult and the students were under a lot of exam

pressure from other subjects, leaving them little time to devote

to these problems.

184

8.12 PROJECTS

Towards the end of each of the fifth year courses the students

were required to undertake projects. A decision had to be made

whether to give the students a free choice of project or to

require them to undertake specific, well defined-problems. The

advantage of the former was that each student could choose a

topic which was of interest to

this were done there would

herself. On the other hand, if

be difficulties of problem

definition. Some students would probably want to attempt too

much, while others would be inclined to do as little as

possible, and still more would probably not be able to think of

a project at all. Because of this, it was decided to require

them to work on specific, teacher-defined problems.

A list of big and quite difficult problems was drawn up each

year (appendix C, p.228). The students were given the option of

working alone or in pairs. Most students chose to work in pairs

and were allowed to select their own partners. When the

groupings had been decided, the problems were allocated

according to the abilities of those in the group. Thus the two

most able students in the class were assigned the most difficult

problem and the weakest student, who chose to work alone, was

assigned the easiest one. It was hoped that each problem would

be difficult enough to constitute a challenge for those

involved, without being so ·difficult as to discourage them.

They were advised to approach the problems in the way that was

185

outlined above in the CARBUYER example (see 7.10). To encourage

this approach, they were required to submit the main program and

the procedure specifications for scrutiny, before going on to

develop the lower levels or the problem. They were generally

reluctant to do this but, after some persuasion, they eventually

did it quite well. It

through for each level

being submitted as they

was intended to carry this approach

of each problem, with all procedures

were developed. This proved to be

impractical due to school holidays, absenteeism, excuses

and was not attempted in the second year. Despite this,

final solutions achieved were very good in both years.

etc. ,

the

The

supplied disk contains some sample projects. All of

programs have names that end with PROJ (e.g. SUMSPROJ).

these

A good example of the projects submitted was the simulation of

the game of NIM (NIMPROJ.CSB). A full listing of this program

is in appendix C, p.230. The problem definition was as follows:

The game of NIM is normally played by two players.

Starting with any number of matchsticks, each player

is allowed to remove 1, 2 or 3 at a time. The player

left with the last match loses. The 'trick' is to

leave your opponent with 5 matches in which case, no

matter how many she takes, you can always ensure that

she is left with th~ last pne. To make sure that she

is left with 5 you should ensure t;hat she is left with

9 (13,17,21, 25 etc.). Write a program in which the

186

computer plays NIM with the user. Try to make sure

that the computer will always win. Make sure that the

user does not cheat by taking an illegal number of

matches. Make the program as friendly as possible.

The main program submitted was:

140 CLEAR
150 EXEC INSTRUCTIONS
160 EXEC NUMSTART
170 EXEC FIRSTPLAYER
180 WHILE REMAINDER <> 1 DO
190 EXEC COMCHOICE
200 IF REMAINDER <> 1 THEN
210 EXEC PLAYCHOICE
220 ENDIF
230 ENDWHILE
240 EXEC WINNER
250 END

The procedures were then defined as follows:

INSTRUCTIONS

NUMSTART

FIRSTPLAYER

COMCHOICE

PLAYCHOICE

WINNER

Displays information on the game for the
user.

Allows the user to choose the number of
matches for the game.

Gives the user the option of making the
first move. If the user chooses to go
first then PLAYCHOICE is called to allow
the user to do so.

Calculates how many matches the computer
should take and reduces REMAINDER
accordingly.

Allows the user to choose 1, 2 or 3
matches and checks that the number chosen
is valid. Reduces REMAINDER accordingly.

Announces the winner of the game.

This is a very good Top-Down design and allows the overall

solution to be understood by just reading the main program. The

187

only part lacking clarity is FIRSTPLAYER. This procedure may

or may not call PLAYCHOICE depending on whether the user

requests the first move. It would have been clearer to make

this fully explicit in the main program. The routines to

generate the computer's choice and to accept and check the

user's choice, though quite difficult, were handled very well.

The screen presentation was also good, although there was no

attempt made to represent the matches graphically.

One of the easier problems was a simulation of the game of DODO.

The problem definition was as follows:

The game of DODO is played with two special dice. The

blue die has seven sides numbered with the first seven

. prime numbers (2, 3, 5, 7, 11, 13, 17) and the red die·

has nine sides numbered with the first nine Fibonacci

numbers (1, 1, 2, 3, 5, 8, 13, 21, 34). One player

rolls the blue die and the other rolls the red die.

The highest score wins. Write a program which, by

simulating 1000 games of DODO, decides which die has

the better chance of winning.

The students attempting this problem had some difficulty in

finding a way to generate the required numbers. When given the

hint of storing the numbers in data, they proceeded quite

quickly to a good solution. Their main program was:

300 REDWINS := 0
310 BLUEWINS 0
320 COUNT := 1

188

330 WHILE COUNT <= 1000 DO
340 EXEC RED NUM
350 EXEC BLUENUM
360 IF REDNUM > BLUENUM THEN
370 REDWINS := REDWINS + 1
380 ELIF BLUENUM > REDNUM THEN
390 BLUEWINS := BLUEWINS + 1
400 ENDIF
410 COUNT:= COUNT + 1
420 ENDWHILE
430 IF REDWINS > BLUEWINS THEN
440 PRINT "red die has better chance"
450 ELIF BLUEWINS > REDWINS THEN
460 PRINT "blue die has better chance"
470 ELIF REDWINS = BLUEWINS THEN
480 PRINT "both have equal chance"
490 ENDIF
500 END

The procedure definitions were:

REDNUM Generates a number for the red die.

BLUENUM Generates a number for the blue die.

The die numbers in each case were stored in data statements

preceded by an appropriate LABEL (RED or BLUE). The procedure

REDNUM restores the data pointer to the LABEL RED, generates a

random number (X) between one and seven, and then reads through

the data list until it comes to the Xth. item. This value is

then assigned to REDNUM. A similar procedure is used to

generate BLUENUM. In solving this problem the students showed

good judgement in the way they used procedures. To have broken

the main program into further procedures would have been

pointless in such a short and simple program, but to have left

the routines in REDNUM and BLUENUM in the main program would
~

have distracted from the clear presentation of the overall

189

solution. This program (DICEPROJ.CSB) is on the accompanying

disk.

These are good examples of both the simpler and more difficult

projects undertaken. Further examples are on the accompanying

disk. The quality of the work done on these projects is a good

indication of the high level of achievement of those students

who undertook the course.

8.13 THE USE OF STRUCTURE DIAGRAMS IN MATHEMATICS

A brief experiment was carried out to test if the structure

diagrams and the Top-Down method could be applied to other

areas of the curriculum. The topic chosen was Leaving

Certificate co-ordinate geometry.

It had been observed, over a number of years, that very many

students had great difficulty with co-ordinate geometry

problems. This was true even when they had been very well

drilled in the use of all the relevant formulae (slope,

mid-point etc.). It was found that, as long as students were

given problems in which only one formula was required, they

could manage quite well (e.g. given the slope of a line and

the co-ordinates of one point on it, find the equation).

However, once the problems became even slightly more

difficult, most students were unable to cope. The normal

procedure carried out when such problems were being assigned

was to discuss the problem and the proposed solution in some

190

detail with the students. They were then allowed to work

alone or in small groups. It was observed that many students

who were initially able to discuss the problems intelligently

became completely confused when they actually started writing.

Typically, students would start off correctly but then either

use an inappropriate formula or else simply give up because

they were 'lost'. It was felt that they were so involved with

the calculations that they were in danger of losing whatever

insight they originally had into the solution of the problem.

The class consisted of 23 girls all aged either 15 or 16. All

had taken the Intermediate Certificate in 1984 and their maths

grades (all lower course) were as follows:

B 5

C 13

D 5

The average number of honours and passes per student were two

and five respectively. This indicates quite a poor level of

academic achievement and, ~n addition, they were noted for

their generally unruly behaviour and their lack of interest in

'mathematical' subjects. The average attendance over the

period of instruction was 88%.

It was felt that the use of structure diagrams would be

beneficial in these circumstances. The idea was that students

would learn to develop a complete solution to each problem,

and set this down in a structure diagram, before doing any

calculations. The calculations specified in the diagram would

then be carried out and the result of each calculation would

be written on the diagram. The student could then see at a

191

glance how each result fitted into the overall solution. The

student would also be 'prompted' by the diagram to carry out

the next step in the solution. In short, the student would

devise an algorithm and would then simply have to implement

the algorithm to get the required result.

EXAMPLE

Given two points a(3,-1) and b(4,5) find the equation of the

line through b which is perpendicular to a (see figure 8.5).

FIND SLOPE
OF LINE

FIND EQUATION OF LINE

FIND POINT
ON LINE

FIND SLOPE OF PERPENDICULAR
LINE (i.e. LINE ab)

FIND TWO POINTS
ON ab

USE Y1 - Y,
X).- X,

Figure 8.5

USE
Y - Y, = M(X -X,)

TURN UPSIDE DOWN
AND CHANGE SIGN

Once the diagram is complete, the answer may be found by

working up from the bottom until the slope and a point on the

line are found' and then using the formulaY - ~ = M(X - ~.

The students had been introduced to all the formulae in the

192

normal way and had done many examples in which only one

formula was required. The instruction with the diagrams took

place during eight classes, each of forty minutes duration,

over a period of two weeks. A ninth class was devoted to a

test. At the first class the difficulty of approaching large

problems was discussed. It was suggested that they might be

broken down into sections, as described in chapter 3 (page

30). At this stage sheets were given to each student containing

all l~he required formulae in structure diagram form (appendix

D, pages 235, 236). Further sheets containing sample solutions

were also distributed and discussions of how the diagrams

were developed took place. When this was understood, they were

shown how to find answers from the diagrams.

Throughout the period of instruction many problems were

solved, both in the classroom and as homework assignments. The

reaction of the students was very favourable and all learned

the method quickly. It was noticed that, for the first time,

students were distinguishing between finding the solution and

finding the answer. They also began to regard finding the

solution as the more important of the two. After three days

they were given problems to solve, without being explicitly

told to use diagrams, but all continued to use them throughout

the whole period. The general approach to each problem was to

consider the problem statement and then to derive a solution,

through a class discussion, on the board. Most members of the

class took an interest in, and

deliberations. The students would then

their notebooks and use this to find

contributed to, these

copy the solution into

the answer. On some

193

occasions they were left completely to themselves. In the more.

difficult cases geometrical diagrams were also used to clarify

the problem.

At the end of the period a 30 minute test consisting of three

problems was given. The problems given were typical of those

that had been used during the instruction period. Twenty

students took the test and their performance on each problem

is discussed below.

QUESTION 1 (figure 8.S).

Find the equation of the line containing the points

a(-2,-2) and b(4,S).

FIND EQUATION
OF LINE

FIND SLOPE
OF LINE

FIND POINT
ON LINE

USE Y - ~ = M(X -KJ

FIND TWO POINTS
ON LINE

USE Y ... - Y,
Xl- X,

Figure 8.S

Only one student failed to find the complete solution to this

problem, although the student concerned did find the first

level solution. Of the other nineteen, twelve got the correct

answer but all executed the algorithm correctly. (All of

their errors were arithmetical.)

194

Question 2 (figure 8.7).

Find the equation of the line through the point (2,0) which

is parallel to the line 4x + 3y - 5 = 0.

FIND SLOPE OF A
PARALLEL LINE

PUT EQUATION IN
FORM Y = MX + C

FIND EQUATION
OF LINE

USE Y - ~ = M(X - ~

SLOPE IS THE
SAME AS THIS

SLOPE IS M

Figure 8.7

Again, only one student failed to find the correct solution

(the same student). This time, however, only six students

found the correct answer. Of the other thirteen, ten found an

incorrect slope for the line 4x + 3y - 5 = ° and the other

three did not attempt to find the answer.

QUESTION 3 (figure 8.8).

Find the equation of the perpendicular bisector of the line

segment joining a(O,O) and b(4,6)

195

FIND SLOPE
OF LINE

FIND SLOPE OF A
PERP. LINE

FIND TWO POINTS
ON ab \

\.
\

FIND EQUATION
OF LINE

FIND POINT
ON LINE

USE Y - ~ = M(X - XJ

TURN THIS UPSIDE
DOWN & CHANGE SIGN

FIND MID-POINT
OF ab

USE Yl. - Y,
X .. - X,

Figure 8.8

USE (XI; x.. , y,; Y~

. !
In this casealeven students had the correct solution. Of the

remaining n,!e, seven had the algorithm for finding the slope

correct but! made the mistake of assuming that one of the given

points (a~r b) was on the required line. The other two were

unable to .set to grips with the problem at all. Of the eleven
\

with the correct solution, seven got the correct answer.

One encouraging finding which emerged from the test was that

all the students were able to execute their algorithms

correctly in every case. All the errors arose from

arithmetical slips rather than from 'getting lost' in the

problems.

196

It was clear that the students liked using the diagrams and

that they regarded them as being helpful. It was encouraging

to hear these students discuss solutions among themselves as

they worked. This was in sharp contrast to the normal type of

conversation that takes place while they work, which normally

concerns only the answer. All the students were able to

understand the TOP-DOWN nature of the diagrams and were able

to use them to find solutions. They were all able to interpret

the diagrams. This was evidenced by the fact that they were

able to carry out the steps of their solutions in the correct

order in every case.

It is felt that the diagrams made a significant contribution

towards overcoming their original difficulty and also gave

them a tool for finding solutions to more complex problems.

197

CHAPTER 9

CONCLUSIONS

There is no doubt that the course described here was much more

satisfactory than the previous 'traditional' course that had

been given to a similar group of students. If it is borne in

mind that the total amount of class time involved (approximately

35 hours) was less than what would normally be allotted to

Mathematics in one term, and that none of the participants had

any previous experience of computing whatsoever, then it is

obvious that a considerable amount was accomplished. Both the

teachers and the students involved expressed satisfaction with

the course and other teachers at the school also noted

improvements in the students' ability to argue constructively

and to analyse problems.

All the students involved in the course became proficient in thei

use of a computer system and they were all able to work

confidently at the machines without teacher supervision. They

became familiar with disk management methods and were able to

load and save programs and to use library procedures. Although

some were very apprehensive at first, all came to enjoy using

the computers. They developed a very positive attitude towards

the computers, to the extent that they were prepared to spend

large amounts of their free time working at them. Free,

unsupervised access to the machines was important in this

regard, as the students preferred to work in small groups

without having a teacher present. Such extra-curricular work

198

was very unusual for these students and was one of the most.

encouraging outcomes of the course.

The mini-language which was designed for the course proved to be

totally satisfactory. Elegant, Top-Down solutions to every

problem encountered were found using the chosen structures. The

similarity between the two control structures, in that they were

both governed by boolean expressions, was helpful; and the

emphasis placed on the construction of boolean exPressions was

well justified. The general rejection of ELSE branches and the

preference of the students for 'explicit' expressions indicated

that the need for clarity was well appreciated by them. The

systematic application of the same structures to numerous

different problems had the desired effect and the students

developed a consistent style of programming. They generally

wrote similar algorithms in similar ways, unlike students who

are exPosed to a complete programming language. The latter tend

to use a whole range of structures in an unpredictable way. For

example, when constructing fixed iteration loops, such students

may use a FOR/NEXT loop at one point and then use a REPEAT/UNTIL

loop for an exactly similar situation in another part of the

same program. This mixture of

development of programming style

difficult to read.

structures

and also

inhibits the

makes programs

The fact that relatively few solutions submitted differed

radically from what was expected also indicated that the

students had developed a consistent style. This implies that

the teaching was effective and that the students were able to

apply what they knew to new situations. This was in marked

199

contrast to previous experience where students were exposed to a

full programming language in a less structured

environment.

to problems

In these latter circumstances, methods of

varied drastically and were very

inappropriate.

learning

approach

often

The structure diagrams which were designed to represent the

mini-language were also considered to be highly successful.

They were capable of representing the structures of the language

both conveniently and clearly and provided a good introduction

to the idea of Top-Down analysis. They were also very easily

translated into COMAL; and this process became so 'automatic'

for the students that they were able to type code into the

computer directly from their diagrams. While the students found

it difficult to adapt to the Top-Down approach initially, they

gradually came to appreciate its value and used it consistently

in the later stages of the course, in preference to direct

coding in COMAL. The diagrams were a major factor in impressing

on them the need to plan solutions carefully before attempting

to consider details or to write any code. The use of the

diagrams in a short mathematics module also produced the same

effect.

It was difficult to impress on the students the need to test

solutions before actually writing any code. They were

encouraged to 'trace' all variables and boolean expressions in

their programs to check that the required result was produced.

This idea was not received too favourably but was carried out in

many cases, especially with more difficult problems and with the

200

projects. In cases where it was done, many students reported

that their programs worked correctly on the first run.

The idea of making one's work clearlY understandable and

communicable was not generally appreciated by the students

initially. The consistent use of the diagrams, in which the

emphasis was always on achieving clarity and good organisation,

eventuallY produced a change in their approach. The

coding style, which emphasised visual layout and the

suggested

use of

meaningful variable names, was very well received and most of

their COMAL programs were excellent in this respect. The

students therefore learned the importance of organising their

work and of presenting it clearly. This was confirmed by other

members of the staff who noticed improvements of this nature in

the students' other subjects.

The topics chosen for the course were also considered to be

satisfactory and the order of presentation of the material

worked very well. The problems used to illustrate and reinforce

the various concepts were generally satisfactory and were mostly

set at the correct level of difficulty for the students

involved. Much was learned from the first implementation of the

course in this regard, and many problems had to be rejected or

modified for the second year. The most important lesson learned

here was that the problems had to be on topics with which the

students were already quite familiar. They also had to be very

carefully graded to ensure that they were within the students'

capabilities, while still providing a challenge.

201

The projects undertaken by the students were executed extremely­

well. Some of these problems were very difficult but in most

cases excellent solutions were achieved. The organisational

principles suggested were generally adhered to and the coding

style in most of them was excellent. The fact that problems

such as these could be tackled successfully was a major

achievement, as experience with previous courses would have

suggested that these were beyond the reach of such students.

Previous experience had shown that students usually either gave

up very easily or else resorted to 'hacking' when faced with any

moderately difficult problem. However, the combination of

mini-language, structure diagrams and translation rules,

together with consistency of approach, gave the students the

tools they needed to allow them to tackle large problems and to

persevere with them until a good solution had been achieved.

The success of

suggests that

areas of the

the structure diagrams in co-ordinate

the Top-Down method could be applied

geometry

to other

curriculum

experimentation in this

and

field.

there is

There are

Mathematics and Science which could certainly

need for future

many topics

be treated

in

this

way and there may also be the possibility of application in

subjects such as Business Studies, Geography etc., especially

with weaker students. Any problem which may be broken down into

a set of procedures may be treated in this way and the insight

gained into the hierarchical nature of those procedures may be

of great value. In the context of Computer Science, further

research is required to establish if the method can be used with

more complex problems and with students from both older and

202

younger age groups. There is also a need to test if the method

works as conveniently with other implementation languages such

as BASIC, PASCAL and LOGO. The translation rules for BASIC are

more complex than those for COMAL and it would be interesting to

see if the translation process would become 'automatic' for

students using BASIC. It would also be interesting to see how

students who had already taken a 'traditional' course might

react when exPosed to this approach.

In conclusion, it is felt that the course was an unqualified

success as the primary aims of promoting computer literacy and

problem-solving skills were achieved. All the students gained

an insight into the process of Top-Down programming and became

familiar with the use of a computer. Many of them decided that

they would like to pursue careers in computing as a result of

the enjoyment they had derived from the course. However, even

if they do not become computer specialists, it is very likely

that most of them will encounter computers in their working

lives and the experience gained from the course is certain to be

of assistance to them in this regard.

203

APPENDICES

AND

REFERENCES

204

APPENDIX A

This appendix contains samples of class notes distributed to the

students.

205

As CO MAL is not supplied with the machine it must be loaded into
memory before it is used. The language is supplied on disk. The
procedure for loading it into memory is as follows:

1.Put COMAL disk into drive 1 and switch on.
2.A> appears on the screen.
3. Type COMAL-80 and press 'return'.
4.COMAL message now appears and you are asked if you require
'error texts'.Type Y (for 'YES').

Error texts are messages that are printed on the screen when you
make a mistake. If you typed N (for 'NO') then you would merely
get an error number when you made a mistake and yOU would have
to look up the manual to find what the mistake was.
5. * now appears on the screen. This is the COMAL prompt to let
you know that the machine is ready to accept COMAL programs.

IMMEDIATE EXECUTION MODE

In immediate execution mode the commands that you give to the
machine are carried out immediately after you press 'return'.
These are called DIRECT COMMANDS. For example if you type CLEAR
the screen will be cleared immediately. Some of the more
important direct commands are given below:

LIST This causes the commands of whatever program
is in :memory to be written on the screen.

NEW This erases the current program from memory
RUN This causes the program in memory to be
executed
CLEAR ... This clears all text from the screen but has no

effect on the program in memory. (CLEAR may
also be used in deferred execution mode).

DEFERRED EXECUTION MODE (PROGRAMS)

A program is a sequence of deferred commands i.e. a list of
instructions that are stored in the computer's memory. They are
executed when the direct command RUN is given. Programs may be
written to solve a huge variety of problems i.e. to create a
computer game, to calculate tax, to teach a geography lesson, to
test a student's knowledge etc. The fact that so many different
problems can be solved. using the same computer accounts for
their great power.
In deferred execution mode each command (or statement) is
preceded bya number.
When the command is typed in it is stored in memory. When the
direct command RUN is given the commands in memory are carried
out in sequence from the lowest numbered to the highest. It is
normal to number the commands in 'steps' of 10. It is unusual to
type in a whole program without making some errors. The
process of correcting errors is called EDITING.

206

SIMPLE EDITING IN APPLE COMAL-SO
================================

A. ERROR IS DETECTED BEFORE YOU PRESS 'RETURN':
1. Use backarrow to position cursor over incorrect character.
2. Type in correct character.
3. When satisfied press 'return'.

B. ERROR NOTICED AFTER YOU PRESS 'RETURN':
1. If error is a syntax error then the faulty line will be
displayed with the cursor over (or near) the error. Proceed
as in A above.
2. Other errors may be corrected by retyping the whole line.
3. To remove a line completely from a program type DEL (for
delete) followed by the appropriate line number. You must
leave a space between the word DEL and the number e.g. DEL
50.
4. If you get 'stuck' press the escape (ESC) button on the
keyboard.

THE PRINT STATEMENT

The PRINT statement is used to write on the screen (or on the
printer ... later). To write something on the screen you simply
type:

PRINT "anything you like in here"
Note that the words to be written are enclosed in double
quotation marks. You may use the command PRINT with nothing
after it to print a blank line on the screen. The use of blank
lines to separate text helps to make the screen more readable.

SAMPLE PROGRAM:
To clear screen and then write name and address.

10 CLEAR

EXERCISE

20 PRINT
30 PRINT
40 PRINT "M.BRADY"
50 PRINT .. HOLY FAITH CONVENT"
60 PRINT" THE COOMBE"
70 PRINT" DUBLIN.S."
SO END

WRITE PROGRAMS TO CLEAR THE SCREEN AND THEN PRINT:
1. Your own name and address.
2. Your own name and address indented (as on an envelope).
3. Your own name and address in top r.h. corner of screen
(as on a letter)
4. The numbers 1 to 5 on successive screen lines.
5. The numbers 1 to 5 with blank lines in between.
6. The numbers 1 to 5 in a diagonal across the screen.
7. The numbers 1 to .'5 on the same 1 ine with spaces between
them.
8. A 'solid' rectangle made of asterisks
9. An 'empty' rectangle made of asterisks.

10. A 'solid' rectangle in the centre of the screen.

207

STRINGS

A string is a sequence of characters enclosed in double
quotation marks. Characters are letters, digits, spaces,
commas etc.

e.g. "SALLY O'BRIEN" "THE AREA IS "
"DONALD DUCK" etc.

STRING VARIABLES

Like NUMERIC variables, STRING variables are also 'boxes' in
the computer's memory. To enable the computer to distinguish
between the two types of variable, String variable names
always end with the dollar sign ($).

VALID VARIABLE NAMES
--

NUMERIC

LENGTH
INTEREST
RATEPERHOUR

STRING

NAME$
ADDRESS$
ANSWER$

Values are given to STRING variables by the same statements
that are used for NUMERIC variables. (i.e. ASSIGNMENT, INPUT
AND READ)

ASSIGNMENT

The value that is to be given to the variable must be
enclosed in double quotation marks.

INPUT

e.g. NAMES$
YEAR$
HOBBY$

"MARY LOU"
"FIFTH"
"DANCING"

This is exactly the same as for NUMERIC variables

e.g. INPUT FIRSTNAME$
INPUT "WHAT GRADE DID YOU GET ": GRADE$
INPUT "DO YOU WANT TO TRY AGAIN ":REPLY$

N.B. No quotes are required when typing in the value during
program execution (in response to an INPUT statement).

Once a v'alue has been put into a STRING variable it may then
be printed out in the same way as a NUMERIC variable.

e. g. 50 INPUT "WHAT IS YOUR NAME ": NAME$
60 PRINT "HI THERE ";NAME$

COMAL contains statements for manipulating string variables.
Some of these will be introduced later.

208

DIMENSIONING STRING VARIABLES

The computer stores STRING values and NUMERIC values in
different ways. Before setting up a 'box' for a STRING
variable the computer needs to know how much space to set
aside ... IT NEEDS TO KNOW THE MAXIMUM NUMBER OF CHARACTERS
THAT YOU EXPECT TO PUT IN THE BOX.
If.the variable is to hold an exam grade thenthe maximum
number of characters would be two. If it was to hold a name
then the maximum would be about 25. If it was to hold
addresses the maximum might be about 50.
In COMAL you tell the computer how much space to set aside by
using a DIMENSION statement:

e.g. 10 DIM GRADE$ OF 2
20 DIM NAME$ OF 25

The DIM statement must come BEFORE the variable is given a
value. It is a good idea to DIMENSION all your STRING
variables together at the start of your program

e.g. 10 CLEAR
20 DIM NAME$ OF 25
30 DIM YEAR$ OF 6
40 INPUT "WHAT IS YOUR NAME ":NAME$
50 PRINT
60 PRINT "HELLO THERE "; NAME$
70 INPUT "WHAT YEAR ARE YOU IN ":YEAR$
80 PRINT
90 PRINT YEAR$;" YEAR!! HOW EXCITING!!"

If you forget to include the DIM statement for a STRING
variable then you will get an UNDEFINED VARIABLE error
message when you try to give a value to the variable.

If you try to give a longer value to a STRING variable than
has been allowed for in the DIM statement then the extra
characters will be 'chopped off'. For example if the STRING
variable SHOP$ has been DIMENSIONED for 10 characters and you
try to give it the value "QUINNSWORTH" which contains 11
characters then this would be shortened to "QUINNSWORT". What
would happen if you gave it the value "SUPERQUINN" or
"DUNNE'S STORES"

It is O.K. to give a shorter value than has been allowed for
in the DIM statement.

EXERCISE

1. Write a program which asks the user to supply her name and
age and then makes a suitable comment.
2. Write a program which asks the user for her name and the
name of her boyfriend and then makes some comment.

209

VARIABLES

1. A variable may be thought of as a box in the computer's
memory.

2. Each variable has a value and a name.
3. You may create as many variables as you like in a

program.
4. A lot of programming consists of manipulating variables.
5. We will be using two different 'types' of variable. These

are NUMERIC and STRING.
NUMERIC ... value may be any number (whole,decimal,+ or

-)
STRING value may be any group of characters

RULES FOR VARIABLE NAMES

1.May be up to 16 characters long
2.Characters must be letters or digits

i.e. no special characters such as commas, spaces etc.
3.First character must be a letter.
4. Cannot be a COMAL keyword.
5. String variable names end with the dollar sign.

It is important that you use meaningful variable names i.e. try
to choose names which suggest what the role of the variable is.
For example if a variable is to contain a number which
represents the average of some group of numbers then call the
variable AVERAGE. A variable may have only one value at any
given time. This means that if you change the value of a
variable then the old value is destroyed. In COMAL there are
three ways in which values may be given to variables:

1. ASSIGNMENT STATEMENTS
2. INPUT STATEMENTS
3. READ STATEMENTS

The READ statement will be dealt with later.

1.ASSIGNMENT STATEMENT

An assignment statement consists of a VARIABLE NAME on L.H.S,
the assignment symbol (:=) , and an 'expression' on the R.H.S.

SCORE:= 12
WAGES:= HOURS * RATE

PI:= 3.1416
HOURS:= MINUTES * 60

1. The symbol : = is read as "becomes equal to"
e.g. SCORE becomes equal to 12

2. In each case the expression on the R.H.S. is evaluated and
the value is given to the variable named on the L.H.S.
3. If the expression on the R.H.S. contains variables then they
must have been given values earlier in the program (i.e. they

. must be INITIALISED). If any variables on the R.H.S have not
been initialised then the assignment statement is invalid ,the
program will' crash' and an error message will be displayed.
4. The variables on the R.H.S. are unchanged by the assignment
statement.

210

2. INPUT STATEMENT

INPUT statements allow values to be given to variables ,by the
user, while the program is RUNning.

e.g. 30 INPUT LENGTH
When the program reaches line 30 it stops and a question mark is
displayed on the screen. This is a signal to the user that some
data is required by the program. Whatever value is typed in is
then given to the variable named in the input statement and the
program continues on to the next line. Of course a question mark
is not a great prompt for the user but fortunately the
programmer may display meaningful prompts very simply as
follows:

e.g. 30 INPUT "what score did you get ":SCORE
40 INPUT "how old are you":AGE

The prompt,which must be in double quotation marks, is displayed
instead of the question mark. The variable name is separated from
the prompt by a colon.

OUTPUTTING THE VALUE OF A VARIABLE

To output the value of a variable on the screen use PRINT
e.g. PRINT SCORE

This causes the value of SCORE to be written on the screen.

NOTE 1. PRINT SCORE is not the same as PRINT "SCORE"
NOTE 2.You may include a 'prompt' in the PRINT statement as in
the INPUT statement but use a semicolon to separate the 'prompt'
from the variable name.

e.g. PRINT "your present score is ";SCORE

EXERCISE INVOLVING INPUT,ASSIGNMENT AND PRINT STATEMENTS

1. Input length and breadth of a rectangle. Output it's area
2. Input principal, rate and time. Output simple interest.
3. Input any whole number. Output the next one.
4. Input any number. Output it's square and it's cube.
5. Input any four numbers. Output their average.
6. Input degrees celsius. Output degrees fahrenheit

FAHRENHEIT=(9/5)*CELSIUS + 32
7. Input radius of sphere. Output it's volume.

VOLUME = 4/3(PI * RADIUS A 3)
8. Input radius and height of a cylinder. Output it's volume

and it's surface area.
9. Input a student's test score and the maximum possible

score for the test. Output percentage mark.

When programming these problems on the machine try to make the
screen output 'pretty' by clearing the screen at the
start,printing blank lines to separate the 'output section' from
the 'input section' etc.
In short try to make the screen readable.

211

. EXERCISES

1.Write a program to calculate the total price of an item if the
nett price and the rate of VAT are input.
2.Write a program to calculate nett pay if gross pay, tax free
allowance and rate of tax are input.
3.Design a program which could be used to estimate the total
co.st of laying concrete paths around rectangular gardens (all
four sides). The length and width of the garden should be input
(in feet) along with the width of the required path. The cost of
cement is 20p. per square foot and VAT is charged at 23%.
4.Write a program to estimate the cost of making curtains in
\~hich the width and height of the windo\~ are input (in feet)
along with the cost per yard of the material. The finished
curtains should go 6 inches above and belO\~ the window. The
width of the finished curtains should be twice that of the
window. The cost of lining is £2 per yard. There is a fixed
charge of £20 per pair of curtains. All material is 48 inches
wide. VAT is 23%.

SAMPLE PROBLEM

The wallpaper department of a large retail store wish to give
computerised estimates by phone to their customers. The customer
supplies the length, width and height of the room to be papered
and the price per roll of the paper chosen (from the store's
catalogue). This information is then given to the computer and
it is expected to estimate the number of rolls required and the
total cost of papering the room.

The length of a roll of wallpaper is 10 metres.
The width .. 0.5
Paste costs 2 pounds per room.
VAT is charged at 23% on both paste and paper.
You needn't allow for doors,windows etc.

INPUT LENGTH, HID'i1I.
HEIGll!. ROl.LCOST

FIND Po\Pi:RPRICIt

lto\LLPAPER

HETPRICI:: =PAPi:RPRICIt.2 VAT':ctUi:TPRICII:_O.23

PAPILRPRICE: =NUMROl.LS_OO1.LCOST

IIUMROLl-S:=
PERIHETER/ltlOTIIPERROl.l.

5TH IPSPERROI.L: = to/II! IGIIT

HIDTllp!RROU.:=
STRIPSPERROLt.*O. :,

212

1. Write a program which calculates the total cost of buying a
quantity of some particular item where:

. A. The cost per item
B. The number of items
C. The rate of V.A.T.

are all INPUT. Assume that there is a standard charge of $20
for delivery regardless of how many items are bought.

2. Write a program to calculate the time taken (in hours) to
heat a swimming pool from 15 degrees centigrade to 25 degrees
centrigrade, given that the heating plant can heat 100 cubic
metres of water through the required temperature range in 90
minutes. The following items should be INPUT:

A. Length of pool in metres
B. Width of pool in metres
C. Depth of pool in metres

3. Write a program to find the cost of repairing a car where:
A. The net cost of all materials
B. The number of hours spent working on car
C. The cost per hour for labour

are INPUT. The V.A.T. rate on materials is 23% and the V.A.T.
on labour is 5%.

4. Write a program to find the cost of ordering pencils and
rulers for a school where:

A. The number of pencils
B. The number of rulers
C. The price per pencil
D. The price per ruler

are INPUT. The rate ofV.A.T. on both items is 23%.

5. A journey is to be made by car and boat. The car averages
40 m.p.h. and the boat averages 12 m.p.h. Write a program in
which:

A. The distance to be travelled by car
B. The distance to be travelled by boat

are INPUT and which then calculates the total time taken.

6. A driver has discovered that his car averages 30 m.p.g. in
city driving and 40 m.p.g. in country driving. Write a program
in which:

A. The number of miles of city driving per week
B. The number of miles of country driving per week
C. The price per gallon of petrol

are INPUT and which then calculates the total cost per week for
petrol.

213

In the following problem you are required to insert the given
statements into the correct boxes. (Some of the given statements
are not required at all so it is up to you to decide which ones
are required and where they should go)

STATEMENT OF PROBLEM
====================
A person wants to buy a carpet. It must be both affordable and
of a suitable colour. Draw a diagram to illustrate how a carpet
is 'checked'.

CARPET IS
AFFORDABLE

STATEMENTS TO BE INSERTED

1. DON'T BUY IT
2. CARPET IS BIG ENOUGH

CARPET

3. CARPET IS NOT A SUITABLE COLOUR
4. BUY IT
5. NEGOTIATE A DISCOUNT
6. CARPET IS 100% WOOL
7. CARPET IS NOT AFFORDABLE
8. PRICE INCLUDES FITTING CHARGE
9. CARPET IS A SUITABLE COLOUR

10. CARPET FITS THE ROOM
11. BUY RUG PROTECTORS FOR THE FURNITURE

214

PROBLEMS REQUIRING USE OF IF STRUCTURE

1. Write a program in which the user is asked to input any
number. The program should then decide if the number is
positive, negative or zero and output the result.

2. Input a number. If it is bigger than 5 then multiply it by
2. Otherwise multiply it by 3. Output the result.

3. Input a number and say whether or not it's square is
greater than 10000.

4. Input two numbers. If they are different then output the
smaller one. If they are the same then print a message saying
so.

5. Write a program in which the user is given the choice of
calculating either simple interest or compound interest
(Principal, Rate and Time to be input).

6. Write a program which offers the user the choice of
calculating the area of a rectangle, a triangle or a circle.
When the user has indicated which shape is required the
program should ask for the relevant measurements, calculate
the area and output the result.

7. Write a program in which the computer carries on a
conversation with the user. The computer should ask the user
some simple questions (i.e. What school do you go to? Do
you like your school? etc.) and make a suitable comment on
each of the user's responses.

8. Write a program to calculate an air fare for the user. The
standard fare is £400 but there is a 15% discount for
travellers under 21. If a first class seat is required there
is an extra charge of £200. This first class surcharge is the
same for all travellers regardless of age. The program should
prompt the user to supply all the necessary information.

9. Input a number and say if it is an integer (whole number)
HINT: If X is an integer is it equal to INT(X) ?

10. Input a number and say if it is even.
HINT: If X is even what can be said' about X MOD 2 ?

11. Input a number and say if it is a multiple of 7.
HINT: This is almost the same as the previous problem

j 215
I

PROBLEMS INVOLVING ARRAYS
,

1. Fill an Array with N random numbers between 1 and 20 and
then:

A. Print them all out.
B. Print out the first 10 elements.
C. Print out the second 10 elements.
E. Print out every second element. Give the user the choice
of printing the odd or the even numbered elements.

2. Fill two Arrays A and B with N elements each. Then create
two new Arrays, C and D, from:

a. The sums of the corresponding elements in A and B.
b. The larger of the corresponding elements in A and B.

3. Find the sum of all the terms in an Array of N elements.

4. Find the average of the elements in an Array of N elements.

5. Given two arrays, each containing the same number of
elements, determine how many pairs of corresponding elements
are equal.

6. Read numbers into two Arrays.
bigger average. If they have the
suitable message. (They need not
elements) .

Print out the Array with the
same average then print out a
contain the same number of

7. Find the number of zero's in an Array.

8. Set each element of an Array to the value of the sum of all
the elements in the Array.

9. Set each element of an Array to the value of itself plus all
the preceding elements (i.e. 1,2,3,4 should become 1,3,6,10).

10. Write out the elements of an array in reverse order.

11. Write out the elements of an Array containing N elements in
the order First, Last, Second, Second-Last etc.

12. Fill an Array with N numbers and then swap the First with
the Last, the Second with the Second Last etc., until the whole
Array has been reversed.

13. Find the biggest and smallest numbers in an N element Array.

14. Find the average of all the elements in an array & round the
answer off to the nearest whole number. Then change each element
of the array into the difference between it and the average
(i.e. if and element was 2 below the average it should be
changed to -2).

15. Test if an Array is Palindromic (i.e. the same when read
from either end.).

16. Output the first N lines of Pascal's Triangle.

216

PROBLEMS ON STRING MANIPULATION

.l. Input a string. Output the first two characters.

2. Input a name. Check if the surname begins with 0'. (1. e.
O'BRIEN, O'DOWD etc.)

3. Input a string. Output the last character.

4. Input a string. Output the string backwards.

5. Input a string. Output the middle character (or the two
middle characters if there is an even number of characters).

6. Input a string. Say how many vowels are contained in it.

7. Input a name (Christian name and Surname). Ouput the
Christian name only.

8. Input a name (Christian name and Surname). Output the
Surname only.

9. Input a name (Christian name and Surname). Output the
initials only.

10. Input a name (Christian name and Surname) into a string
variable. Output the name with the Surname first.

11. Input a string. Say if it is a Palindrome.

12. Write a program to create 'spoonerisms'. A spoonerism is got
by swapping the first letters of two words i.e. JOE SOAP would
become SOE JOAP.
The correct names should be in DATA statements. The program
should read these and output the adjusted names. The end of the
data should be marked with the word "END".

13. Write a program to check if words containing the letters 'i'
and 'e' are spelt correctly. The rule is " i before e except
after c ". You will need to check that the words don't contain
the letters 'cie' and that they don't contain the letters 'ei'
immediately after a 'c'. The words should be input at the
keyboard.

217

PROBLEMS ON STRING ARRAYS

1. Read a list of 10 names from data into an array. Print them
out again in reverse order.

2. Read the names and scores of 10 pupils from data 1 ines into
two Arrays. Print out the name of the pupil with the highest
score and the name of the pupil with the lowest score. Assume
that all the scores are different.

3. Read 10 names and scores. Find the average (mean) score and
print out the names of those who scored above average.

4. Read 10 names and scores from data. Print out each name
saying whether that persons score was above , below or equal to
the average. (The average should be rounded off to the nearest
whole number.)

5. Read 10 names from data. (Each name consists of a christian
name and a surname , separated by a space.) Print out the
initials of each person.

6. Read 20 names into an array. Each name should consist of a
title (MR. MRS. etc.), a christian name and a surname. Write
programs to:

a. Print out all the mens' names.
b. Print out all the women's names.
c. Print out all the names in the order:

surname, christian name, title
d. Print out all the names in the order:

title, initial, surname

7. Read 20 names into an array. Each name consists of a
christian name and a surname. Create a new array in which the
same names are stored with the surname first. Give the user the
choice of having the names output in either order.

8. Write a program to print out the words of the song "THE 12
DAYS OF CHRISTMAS". The 'gifts' for each day should be held in
data statements.

DATA "FIRST","A PARTRIDGE IN A PEAR TREE"
DATA "SECOND"," 2 TURTLE DOVES AND A ..
DATA "THIRD"," 3 FRENCH HENS" etc.

218

APPENDIX B

This appendix contains listings of two COMAL demonstration

programs, FONEDEMO and QUIZDEMO, that were given to the

students.

219

,
I
I
I ,

,
I
I
'.

0010 11 M.BRADY
0020 11
0030 11 27/2/1984
0040 11
0050 11 PROGRAM TO DEMONSTRATE USE OF PROCEDURES
0060 11
0070 1111111111I1111111I111111111111111I111I111111I11111111111111I
0080 11 PROGRAM TO ALLOW USER TO FIND A
0090 11 PHONE NUMBER BY INPUTTING A
0100 11 NAME AND VICE-VERSA.
0110 11 ALL INPUT IS ASSUMED TO BE VALID
0120 11
0130 1111111111111111111111I1111111111111I111111111111111111111I1I
0140 11 INITIALISATION SECTION
0150 11
0160 DIM TESTNAME$ OF 20
0170 DIM NAME$ OF 20
0180 11
0190 11111111111I1I1111I111111111111I111111I1I1111I111111111111I11
0200 11 MAIN PROGRAM
0210 1/
0220 EXEC MENU
0230 WHILE CHOICE=l OR CHOICE=2 DO
0240 IF CHOICE=l THEN
0250 EXEC FINDNUM
0260 ELIF CHOICE=2 THEN
0270 EXEC FINDNAME
0280 ENDIF
0290 EXEC MENU
0300 ENDWHILE
0310 EXEC GOODBYE
0320 END
0330 11
0340 11 END OF MAIN PROGRAM
0350 11111111111111111111111111111111111111I11I11I1111I1111111111
0360 PROC MENU .
0370 11
0380 11 PROCEDURE TO PRINT THE OPTIONS
0390 liON THE SCREEN AND ACCEPT
0400 11 THE USER'S INPUT.
0410 11
0420 CLEAR
0430 PRINT TAB(10);"TELEPHONE PROGRAM"
0440 PRINT TAB(10);"================="
0450 PRINT
0460 PRINT
0470 PRINT "YOU MAY:"
0480 PRINT
0490 PRINT"
0500 PRINT
0510 PRINT"
0520 PRINT

1. SEARCH FOR A NUMBER"

2. SEARCH FOR A NAME"

0530 PRINT" 3. QUIT"
0540 CURSOR 1, 22
0550 INPUT "TYPE IN NUMBER OF YOUR SELECTION ": CHOICE
0.560 ENDPROC MENU
0570 11
0580 1111111111111I1111I111111111111111I1111111111I11111I11I11111
0590 PROC FINDNUM
0600 I1
0610 11 PROCEDURE TO ASK FOR A NAME
0620 1I AND THEN TO SEARCH DATA FOR
0630 1I THE APPROPRIATE NUMBER 220

0640 11
0650 CLEAR
0660 PRINT
0670 PRINT
0680 INPUT "ENTER NAME", ": TESTNAME$
0690 READ NAME$, NUMBER
0700 WHILE NOT (NAME$=TESTNAME$ OR NAME$="END") DO
0710 READ NAME$, NUMBER
0720 ENDWHILE
0730 IF NAME$=TESTNAME$ AND NAME$<> "END" THEN
0740 PRINT
0750 PRINT
0760 PRINT "PHONE NUMBER OF "; TESTNAME$;" IS "; NUMBER
0770 ELIF NAME$="END" THEN
0780 PRINT
0790 PRINT
0800 PRINT "THIS NAME IS NOT IN THE DIRECTORY"
0810 ENDIF
0820 RESTORE
0830 . EXEC SPACEBAR
0840 ENDPROC FINDNUM
0850 11
0860 11111111111111111111111111111111111
0870 PROC FINDNAME
0880 11
0890 11 PROCEDURE TO ASK FOR A NUMBER
0900 11 AND THEN TO SEARCH DATA FOR
0910 11 APPROPRIATE NAME,
0920 CLEAR
0930 PRINT
0940 PRINT
0950 INPUT "ENTER NUMBER""", ": TESTNUMBER
0960 READ NAME$, NUMBER
0970 WHILE NOT (NUMBER=TESTNUMBER OR NAME$="END") DO
0980 READ NAME$, NUMBER
0990 ENDWHILE
1000 IF NUMBER=TESTNUMBER AND NUMBER<>O THEN
1010 PRINT
1020 PRINT
1030 PRINT
1040 PRINT "THE PERSON WITH THIS PHONE NUMBER IS ";NAME$
1050 ELIF NAME$="END" THEN
1060 PRINT
1070 PRINT
1080 PRINT
1090 PRINT "THIS NUMBER IS NOT IN THE DIRECTORY"
1100 ENDIF
1110 RESTORE
1120 EXEC SPACEBAR
1130 ENDPROC FINDNAME
1140 11
1150 1111111111111111111111111111111111
1160 PROC GOODBYE
1170 11
1180 11 PROCEDURE TO CLEAR SCREEN
1190 11 AND GIVE 'END' MESSAGE
1200 11
1210 CLEAR
1220 CURSOR 10, 10
1230 PRINT "END OF PROGRAM"
1240 CURSOR 10,11
1250 PRINT "=============="
1260 ENDPROC GOODBYE
1270 11
1280 II~'
1290 PROC SPACEBAR 221
1300 //.

I
.1

..
1310 II
1320 II
1330 II
1340 II

PROCEDURE
EXECUTION
IS HIT.

TO HALT PROGRAM
UNTIL THE SPACEBAR

1350 II THIS PROCEDURES CONTAINS
1360 II STATEMENTS THAT HAVE NOT BEEN
1370 II EXPLAINED IN CLASS.
1380 II
1390 CURSOR 1, 24
1400 PRINT "HIT SPACE BAR TO CONTINUE ";
1410 POKE 256, 0
1420 REPEAT
1430 UNTIL PEEK(256)=32
1440 ENDPROC SPACEBAR
1450 II
1460 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!!!!!!!!!!!!!!!!/!!!!!!!//!!
1470 1/ DATA SECTION
1480 !!
1490 DATA
1500 DATA
1510 DATA
1520 DATA
1530 DATA

"PAT", 1
"JOE" , 2
"MARY" , 3
"KATE" , 4
"END", 0

222

0010 11 MULTIPLE CHOICE QUIZ
0020 11
0030 11 M.BRADY 5/3/1984
0040 11
0050 11 TO ILLUSTRATE SIMPLE
0060 11 ERROR CHECKING ROUTINE
0070 11 AND USE OF INVERSE,FLASH
0080 11 NORMAL AND BELL PROCEDURES
0090 11
0100 111111111111111111111111111111111
0110 11 INITIALISATION SECTION
0120 11
0130 DIM QUESTION$ OF 50
0140 DIM OPTION1$ OF 20
0150 DIM OPTION2$ OF 20
0160 DIM OPTION3$ OF 20
0170 DIM OPTION4$ OF 20
0180 DIM CORRECT$ OF 1
0190 DIM RESPONSE$ OF 1
0200 SCORE:=O
0210 11
0220 111111111111111111111111111111111
0230 11 MAIN PROGRAM
0240 11
0250 EXEC INSTRUCTIONS
0260 COUNT:=l
0270 WHILE COUNT<=3 DO
0280 EXEC READER
0290 EXEC DISPLAY
0300 EXEC ANSWER
0310 COUNT:=COUNT+1
0320 ENDWHILE
0330 EXEC GOODBYE
0340 END
0350 11
0360 111111111111111111111111111111111
0370 PROC INSTRUCTIONS
0380 11
0390 11 PROCEDURE TO INFORM USER ON
0400 11 USE OF PROGRAM
0410 11
0420 CLEAR
0430 PRINT TAB (14); "QUIZ PROGRAM"
0440 PRINT TAB(14);"============"
0450 EXEC BELL
0460 CURSOR 1, 8
0470 PRINT "THIS IS A QUIZ IN WHICH YOU WILL BE"
0480 PRINT "ASKED 3 QUESTIONS"
0490 PRINT
0500 PRINT "FOR EACH QUESTION YOU WILL BE GIVEN"
0510 PRINT "FOUR OPTIONS A,B,C AND D."
0520 PRINT
0530 PRINT
0540 PRINT "TYPE A ,B ,C OR D IN RESPONSE TO EACH"
0550 PRINT "QUESTION AND THEN PRESS RETURN"
0560 EXEC SPACEBAR
0570 ENDPROC INSTRUCTIONS
0580 11
0590 1111111111111111111111111111111111
0600 11
0610 PROC READER
0620 11
0630 11 PROCEDURE TO READ IN A
0640 11 QUESTION & THE FOUR
0650 11 POSSIBLE ANSWERS FROM
0660 11 THE DATA LINES.

223

0670 //
0680 READ QUESTION$
0690 READ OPTION1$
0700 READ OPTION2$
0710 READ OPTION3$
0720 READ OPTION4$
0730 READ CORRECT$
0740 ENDPROC READER
0750 //
0760 //////////////////////////////////
0770 //
0780 PROC DISPLAY
0790 .//
0800 // PROCEDURE TO DISPLAY THE
0810 // QUESTION & POSSIBLE ANSWERS
0820 // ON THE SCREEN.
0830 //
0840 CLEAR
0850 PRINT "QUESTION NO ... ";COUNT;" SCORE = ";SCORE
0860 PRINT "=="
0870 PRINT
0880 PRINT
0890 PRINT QUESTION$
0900 PRINT
0910 PRINT
0920 PRINT
0930 PRINT" A. "; OPTION1$
0940 PRINT
0950 PRINT "B. ";OPTION2$
0960 PRINT
0970 PRINT "C. ";OPTION3$
0980 PRINT
0990 PRINT "D. ";OPTION4$
1000 ENDPROC DISPLAY
1010 //
1020 /////////////////////////////
1030 //
1040 PROC ANSWER
1050 //
1060 //
1070 //
1080 //
1090 //
1100 //

PROCEDURE TO ASK FOR A
RESPONSE FROM THE USER
& TO CHECK THAT IT IS
A VALID RESPONSE.

1110 CURSOR 1, 22
1120 EXEC INVERSE
1130 PRINT "ENTER CHOICE ... (A, B, C OR D) ";
1140 EXEC NORMAL
1150 INPUT" ": RESPONSE$
1160 WHILE NOT (RESPONSE$="A" OR RESPONSE$="B" OR RESPONSE$="C" OR

RESPONSE$=" D") DO
CURSOR 1, 22
EXEC NORMAL
EXEC FLASH
EXEC BELL

1170
1175
1180
1190
1200 PRINT "MUST BE A,B,C OR D
1210 EXEC NORMAL
1220 INPUT" ... ": RESPONSE$
1230 ENDWHILE

" . ,

1240 IF RESPONSE$=CORRECT$ THEN SCORE:=SCORE+1
1250 ENDPROC ANSWER
1260 //
1270 //////////////////////////////////
1280 1/11//1//111/11/1/1//1///// f

I 224

I
I
)

I
I
i ,
t

1290 PROC INVERSE
1300 //
1310 // PROCEDURE TO GIVE SCREEN
1320 // DISPLAY IN INVERSE MODE
1330 //
1340 POKE 61490.0, 63
1350 ENDPROC INVERSE
1360 //
1370 ////////////////////////////
1380 ///////////////////////////
1390 PROC FLASH
1400 //
1410 // PROCEDURE TO GIVE SCREEN
1420 // DISPLAY IN FLASH MODE
1430 //
1440 POKE 61490.0, 127
1450 ENDPROC FLASH
1460 //

.1470 ////////////////////////////
1480 ///////////////////////////
1490 PROC NORMAL
1500 //
1510 // PROCEDURE TO GIVE SCREEN
1520 // DISPLAY IN NORMAL MODE
1530 //
1540 POKE 61490.0, 255
1550 ENDPROC NORMAL
1560 //
1570 ////////////////////////////
1580 //
1590PROC GOODBYE
1600 //
1610 // PROCEDURE TO PRINT OUT THE
1620 // SCORE AND GIVE END OF
1630 // PROGRAM MESSAGE.
1640 //
1650 CLEAR
1660 CURSOR 5, 10

. - .. -----~ ..

1670 PRINT "YOU·GOT ";SCORE;" RIGHT OUT OF 3"
1680 CURSOR 1, 22
1690 PRINT "PROGRAM EXECUTION FINISHED·'
1700 ENDPROC GOODBYE
1710 //
1720 ///////////////////////////////
1730 //
1740 PROC BELL CLOSED
1750 //
1760 // PROCEDURE TO SOUND BELL
1770 // FIVE TIMES.
1780 //
1790 COUNT:=l
1800 WHILE COUNT<=5 DO
1810 POKE 61509.0, 135
1820 POKE 62416.0, 217
1830 POKE 62417.0, 251
1840 CALL 56126.0
1850 COUNT:=COUNT+l
1860 ENDWHILE
1870 //
1880 ENDPROC BELL
1890 //
1900 /////1/1/1/11///1/11/111/////////
1910 //
1920 PROC SPACEBAR
1930 // 225

i
I

I
j
\
I

!

1940 II PROCEDURE TO HALT PROGRAM
1950 II EXECUTION UNTIL SPACEBAR
1960 I I IS HIT.
1970 II
1980 CURSOR 1, 24
1990 PRINT '"HIT SPACE BAR TO CONTINUE '";
2000 POKE 256, 0
2010 REPEAT
2020 UNTIL PEEK(256)=32
2030 ENDPROC SPACEBAR
2040 II
2050 11111111111111111111//1111111/111
2060 II
2070 II DATA SECTION
2080 II
2090 DATA "THE FIRST PRESIDENT OF IRELAND WAS ..
2100 DATA "DE VALERA", "DOUGLAS HYDE'"
2110 DATA "CHARLIE HAUGHEY", "GARRET FITZGERALD", '"B"
2120 II
2130 DATA "WHO INVENTED THE TELEPHONE ..
2140 DATA "SEAN DOHERTY", "MICHAEL NOONAN"
2150 DATA "ALEXANDER BELL", "EINSTEIN", "C"
2160 II
2170 DATA "WHO WROTE WAR AND PEACE"
2180 DATA "TOLSTOY", "DICKENS"
2190 DATA "JOHN LENNON", "RONALD REAGAN", "A"

226

APPENDIX C

This appendix contains the problems that were assigned as end

of year projects and a sample of one of the projects submitted.

227

PROBLEM No. 1

Computers are often used to produce cheques. As well as
writing the amount of money in numeric form it is also
necessary to write it in words:
e.g. IR£234.56 should be written as:

TWO HUNDRED AND THIRTY FOUR POUNDS FIFTY SIX PENCE
Write a program which will convert amounts of money input
in numeric form into words. The program should terminate
when a value of zero is input.

PROBLEM No. 2

Write a currency conversion program which allows the user
to convert from IR£ to:

A. POUNDS STERLING
B. FRENCH FRANCS
C. U.S. DOLLARS
D. CANADIAN DOLLARS

and from any of these back to IR£. These four options
should be displayed in the main menu. When this choice is
made the user should be asked to input the current rate
i.e. the number of dollars (or francs etc.) that are
equivalent to IR£l. The user should then be presented with
another menu:

1. CONVERT PUNTS TO DOLLARS (OR FRANCS etc.)
2. CONVERT DOLLARS (OR FRANCS etc.) TO PUNTS.
3. RETURN TO THE MAIN MENU.

When this selection is made the user should be allowed to
do as many conversions of that type as she requires before
being returned to this menu.

PROBLEM No. 3

The game of NIM is normally played with matchsticks.
Starting with any number of matches each of two players is
allowed to remove 1,2 or 3 matches at a time. Whoever is
left with the last match loses. The 'trick' is to leave
your opponent with 5 matches in which case no matter how
many she takes you can always ensure that she is left with
the last one. To make sure that she is left with 5 you
should ensure that she is left with 9 (13,17,21,25,29 ...).
Write a program in which the computer plays NIM with the
user. Try to make sure that the computer will win. Make
sure that the user doesn't cheat by taking an illegal
number of matches.
Make the program as friendly as possible.

PROBLEM No. 4

Write a program to give a test in arithmetic. The user
should be given the choice of ADDITION, SUBTRACTION,
MULTIPLICATION OR DIVISION and should be asked 10 questions
on the chosen topic.
The questions should be generated randomly and if the
answer is correct she should be given 10 marks. If
incorrect she should be given a second attempt and if this
is correct she should be given 5 marks. If the second
attempt is also incorrect then no marks should be given but
the correct answer should be displayed before going on to
the next question.
A final score should be displayed before returning to the
menu. 228

PROBLEM No. 5

Write a program which determines on which day of the week
any date this century falls. The date should be input in
numeric form.

PROBLEM No. 6

The game of DODO is played with two special dice. The blue
die has seven sides numbered with the first seven prime
numbers (2,3,5,7,11,13,17) and the red die has nine sides
numbered with the first nine FIBONACCI numbers
(1,1,2,3,5,8,13,21,34). One player rolls the red die and
the other rolls the blue die. The highest score is the
winner.
Write a program which simulates 1000 throws of the two dice
to find out which has the better chance of winning.

PROBLEM NO .. 7

Write a program which will pick a random integer between 1
and 100 (incl.). The user is asked to guess the number. For
each try the user should be told if the guess is too high
or too low until the correct number is input. The program
should then output the number of guesses that were
required. If this is less than 7 then a congratulatory
message should also be output. Otherwise output an
appropriate insult.

PROBLEM No. 8

Write a program in which the user picks a random integer
between 1 and 100 (incl.) and the computer then has to
guess what the number is. When the computer makes a guess
the user should be asked to input either S (too small), B
(too big) or C (correct).
the program should then output the number of guesses taken.

PROBLEM No .9

Write a program which will generate 10 random five word
sentences from 'dictionaries' of nouns, verbs, adjectives
and adverbs. Each sentence should be of the form:

The (adjective) (noun) (verb) (adverb).
e.g. The big computer worked efficiently.

PROBLEM No. 10

Wri te a program which prints out a cal.endar for any month
where the user inputs the name of the month, the number of
days in the month and the day of the week that the 1st. of
the month falls on. The output should be of the form:

FEBRUARY

MON TUES WED THURS FRI SAT SUN

1 2
3 4 5 6 7 8 9

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28

229

r ,

1 .

I ,
i
I.

1
i
I

j

1
j
J

... -_ _ . _-_-0_"_" ______ . __ _. _.._<. _____ • _ ._.-"' __ ' __ .~_i __ _

0010 11 PRO.JECT BY VALERIE TRAYNOR
0020 11 AND IRENE COMERFORD
0030 11·
0040 11 SUBMITTED AT END OF FIRST
0050 11 YEAR COURSE MAY 1984
0060 11
0070 111111111111111111111111111111
0080 1111111111111111111111111111
0090 11 DIM SECTION
0100 DIM TURN$ OF 10
0110 DIM ANSWER$ OF 10
0120 1111111111111111111111111111
0130 11 MAIN PROGRAM
0140 CLEAR
0150 EXEC INSTRUCTIONS
0160 EXEC NUMSTART
0170 EXEC FIRSTPLAYER
0180 WHILE REMAINDER<>l DO
0190 EXEC COMCHOICE
0200 IF REMAINDER<>l THEN
0210 EXEC PLAYCHOICE
0220 ENDIF
0230 ENDWHILE
0240 EXEC WINNER
0250 END
0260 11
0270 IIEND MAINPROGRAM
0280 111111111111111111111111111
0290 11
0300 PROC INSTRUCTIONS
03101lTHIS PROCEDURE WILL TELL THE
0320 IIUSER HOW TO PLAY THE GAME NIM
0330 11
0340 PRINT "****************************"
0350 PRINT
0360 PRINT"
0370 PRINT"
0380 PRINT
0390 EXEC BELL
0400 PRINT

NIM "

0410 PRINT
0420 PRINT
0430 PRINT
0440 PRINT
0450 PRINT
0460 PRINT
0470 PRINT
0480 PRINT

"THE GAME NIM IS PLAYED WITH "
"MATCHSTICKS . STARTING WITH"
"ANY NUMBER OF MATCHES YOU CHOOSE "
"EACH PLAYER IS ALLOWED TO REMOVE "
"1,2 OR 3 MATCHES AT A TIME. "

0490 PRINT "WHOEVER IS LEFT WITH THE LAST MATCH
0500 11
0510 EXEC SPACEBAR
0520 ENDPROC INSTRUCTIONS
0530 11
0540 11111111111111111111111111111
0550 11
0560 PROC NUMSTART
0570 11TH IS PROCEDURE ASKES THE USER
0580 IITO INPUT THE NUMBER OF MATCHES
0590 IIWHICH HE WANTS· THE GAME TO
0600 IIBEGIN WITH
0610 11
0620 CLEAR
0630 PRINT "TYPE IN THE NUMBER OF MATCHES "

LOSES "

230

I

I
"

'!

0640 PRINT
0650 PRINT "WHICH YOU WANT TO BEGIN WITH "
0660 PRINT
0670 PRINT "IT
0680 CURSOR 1,
0690 INPUT"
0700 PRINT
0710 PRINT

MUST BE MORE
10
.': NUMSTART

THAN 5 "

0720 WHILE NOT (NUMSTART>5) DO
0730 EXEC FLASH
0740 EXEC BELL
0750 PRINT "MUST BE GREATER THAN 5, .. "
0760 EXEC NORMAL
0770 INPUT " ... ": NUMSTART
0780 ENDWHILE
0790 REMAINDER:=NUMSTART
0800 II
0810 ENDPROC NUMSTART
0820 II
0830 11111111111111111111111111/
0840 II
0850 PROC FIRSTPLAYER
0860 II
0870 I/THIS PROCEDURE WILL GIVE THE USER
0880 /ITHE CHOICE OF GOING FIST OR SECOND
0890 //
0900 CLEAR
0910 PRINT
0920 PRINT "III//I/IIIIII/III//IIII/I/I/II//"'
0930 CURSOR 1, 6
0940 PRINT "DO YOU WANT TO GO FIRST OR SECOND ?
0950 PRINT
0960 PRINT
0970 PRINT
0980 PRINT
0990 INPUT '. ". ANSWER$
1000 IF ANSWER$=··FIRST" THEN
1010 EXEC PLAYCHOICE
1020 ENDIF
1030 EXEC SPACEBAR
1040 ENDPROC FIRSTPLAYER
1050 /1
1060 /11111///1/1/1/111/111//1//
107011
1080 PROC COMCHOICE
1090 IITHIS PROCEDURE WILL DECIDE WHAT
1100 IINUMBER THE COMPUTER SHOULD TAKE
1110 I I
1120 CLEAR
1130 PRINT "COMPUTER CHOICE··
1140 PRINT "==============='.
1150 NUM:=(REMAINDER-5) MOD 4
1160 RANDOM
1170 IF NUM=O THEN
1180 NUM:=RND(1,3)
1190 ENDIF
1200 PRINT NUM
1210 REMAINDER:=REMAINDER-NUM
1220 TURN$:=·'COMPUTER"
1230 PRINT
1240 PRINT "THERE ARE " ; REMAINDER; "REMAINING '.
1250 EXEC SPACEBAR
1260 1/
1270 ENDPROC COMCHOICE
1280 1/
1290 /1//11//////1/1///1/////1

231

1300 //
1310 PROC PLAYCHOICE
1320 //THIS PROCEDURE WILL ASK THE USER
1330 //TO TYPE IN A NUMBER OF HIS CHOICE
1340 //AND TO CHECK THAT IT IS A VALID
1350 //ONE
1360 CLEAR
1370 PRINT "PLAYER CHOICE"
1380 PRINT "============="
1390 PRINT
1400 PRINT
1410 PRINT
1420 PRINT "TYPE IN THE NUMBER YOU WANT "
1430 PRINT
1440 PRINT
1450 PRINT
1460 PRINT
1470 INPUT"
1480 PRINT

": NUM

1490 WHILE NOT (NUM=l OR NUM=2 OR NUM=3) DO
1500 CURSOR 1, 22
1510 EXEC FLASH
1520 EXEC BELL
1530 PRINT "MUST BE 1,2 OR 3
1540 EXEC NORMAL
1550 INPUT " ... ": NUM
1560 ENDWHILE
1570 REMAINDER:=REMAINDER-NUM
1580 TURN$:="YOU"
1590 PRINT

" . ,

1600 PRINT "THERE ARE ";REMAINDER;"REMAINING"
1610 PRINT
1620 PRINT
1630 PRINT
1640 EXEC SPACEBAR
1650 //
1660 ENDPROC PLAYCHOICE
1670 //
1680 ////////////////////////////
1690 //
1700 PROC WINNER
1710 //THIS PROCEDURE WILL PRINT THE
1720 //WINNER
1730 PRINT
1740 CLEAR
1750 PRINT "*.**************************************"
1760 PRINT
1770' CURSOR 1, 5
1780 IF TURN$="YOU " THEN
1790 PRINT" CONGRATULATIONS l l l l YOU HAVE WON "
1800 ELIF TURN$="COMPUTER " THEN
1810 PRINT "HARD LUCK ! l YOU HAVE BEEN BEATEN "
1820 ENDIF
1830 PRINT -
1840 CURSOR 1, 10
1850 PRINT "***************************************"
1860 ENDPROC WINNER
1870 ////////////////////////////
1880 ///////////1///////////////
1890 PROC INVERSE
1900 //
1910 // PROCEDURE TO GIVE SCREEN
1920 // DISPLAY IN INVERSE MODE
1930 //
1940 POKE 61490.0, 63
1950 ENDPROC INVERSE

232

I
1

i
I

I

)
i ,

I
I
I
I
1
1
)
I

1960 //
1970 //////1///////1///1///1/////
1980 ///////////1//////1//1/////////
1990 //
2000 PROC BELL
2010 //
2020 // PROCEDURE TO SOUND BELL
2030 // NUMBER TIMES.
2040 //
2050 COUNT: =1.
2060 NUMBER: =5
2070 WHILE COUNT<=NUMBER DO
2080 POKE 61509.0, 135
2090 POKE 62416.0, 217
2100 POKE 62417.0, 251
2110 CALL 56126.0
2120 COUNT:=COUNT+1
2130 ENDWHILE
2140 //
2150 ENDPROC BELL
2160 //
2170 //////1///////1////1/1///////////
2180 ///1//////////////1////////
2190 PROC FLASH
2200 //
2210 // PROCEDURE TO GIVE SCREEN
2220 // DISPLAY IN FLASH MODE
2230 //
2240 POKE 61490.0, 127
2250 ENDPROC FLASH
2260 //
2270 ////////////////1/1/////1///
2280 ///1//1////11//////////////
2290 PROC NORMAL
2300 //
2310 // PROCEDURE TO GIVE SCREEN
2320 // DISPLAY IN NORMAL MODE
2330 //
2340 POKE 61490.0, 255
2350 ENDPROC NORMAL
2360 //
2370 //////1///1///////1/////////
2380 PROC SPACEBAR
2390 //
2400 // PROCEDURE TO HALT PROGRAM
2410 // EXECUTION UNTIL SPACEBAR
2420 // IS HIT.
2430 //
2440 CURSOR 1, 24
2450 PRINT "HIT SPACE BAR TO CONTINUE ";
2460 POKE 256, 0
2470 REPEAT
2480 UNTIL PEEK(256)=32
2490 ENDPROC SPACEBAR
2500 //
2510 /////////////111//1/1////////1

233

APPENDIX D
==========

This appendix contains the Mathematics class notes that were

distributed to the students who undertook the Mathematics

module.

234

_. _______________ • ______ J' __ __ , __ • __ • ___ , __

SLOPE OF A LINE

METHOD 1. FIND SLOPE OF A LINE

FIND TWO POINTS ON LINE
(X"Y,) AND (X~.Yd

USE y" - X,
x..-x.

METHOD 2.

PUT EQUATION IN FORM
Y = MX + C

FIND SLOPE OF A LINE

METHOD 3. FIND SLOPE OF A LINE

FIND SLOPE OF A SLOPE IS THE
PARALLEL LINE SAME AS THIS

METHOD 4. FIND SLOPE OF A LINE

FIND SLOPE OF A TURN UPSIDE DOWN
PERPENDICULAR LINE AND CHANGE SIGN

235

... .:. .. ~-- ------ --- ------------~--

EQUATION OF A LINE

FIND EQUATION OF
A LINE

FIND THE
SLOPE M

FIND A POINT ON
THE LINE (X ,Y)

MID POINT OF A LINE SEGMENT
===========================

FIND POINTS AT EACH END
(X"Y,) AND (X .. , Y ..)

LENGTH OF A LINE SEGMENT
========================

FIND LENGTH OF
A LINE SEGMENT

USE

USE
Y - Y, = M(X - ~

X,+ X .. , Y, + Y1
2 2

FIND POINTS AT EACH END
(X"Y,) AND (X .. ,Y ..)

USE J (XI. -X, t + (Ya. -Y, f

236

APPENDIX E

This appendix contains instructions for using the

accompanying disk.

237

The disk contains both the METANIC COMAL-80 language and
sample programs referred to in the thesis.

System requirements

Starting up

Loading Programs

Programs on the disk

Apple 11+ with 64K memory and fitted
with a Z-80 card.

When disk is booted CP/M is loaded.
When the CP/M prompt (A >) appears,
type COMAL-80. You will then be
asked if error texts are required.
If you reply YES (Y) then error
messages will be given when
appropriate. If you reply NO (N)
then error numbers only will be
given. It is normal to reply YES.
The COMAL prompt (*) then appears.

When the COMAL-80 language has been
loaded you may catalog the disk by
typing CAT. To load a program
simply type LOAD followed by the
program name. Program names are
followed by the suffix .CSB in the
catalog but it is not necessary to
include the suffix when loading a
program.

STAT.COM
NIMPROJ.CSB
PIP.COM
FONEDEMO.CSB
NUM8PROJ.CSB
DATEPROJ.CSB
SUMSPROJ.CSB
MENUEXER.CSB
QUIZEX2.CSB

FORMAT.COM
COMAL-80.COM
CASHPROJ.CSB
QUIZDEMO.CSB
NUM7PROJ.CSB
DICEPRO.}. CSB
CHEMQUIZ.CSB
QUIZEXER.CSB
COMPOUND.CSB

238

REFERENCES

[1) SMITH J., WINNING I. (1985). Computers in Schools.
Limerick, National Institute for Higher Educat.ion.

[2) Department of Education (1984). Programme for Action
in Education 1984 - 1987. Dublin, Stationery Office.

[3) Curriculum and Examinations Board (1984). Issues and
Structures in Education. Dublin, Curriculum and
Examinations Board.

[4) PAPERT S. (1980). Mindstorms. Brighton, Harvester
Press.

[5)

[6)

[7)

[8)

[9)

[10)

Department of Education
Module - Junior Cycle.
Education.

(1985). Computer Studies
Dublin, Department of

Department of Education (1984). Rules and Programme
for Secondary Schools. Dublin, Stationery Office.

Department of Education Advisory Committee on the Use
of Computers at Second Level (1984). The Design and
Use of Structured Algorithms. Dublin, Department of
Education.

Hativa N. (1984). Good Teaching of Mathematics as
Perceived by Undergraduate Students. INTERNATIONAL
JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND
TECHNOLOGY, 15, 5, 605-615.

WELLS M.B. (1980). Reflections on the Evolution of
Algorithmic Language. In METROPOLIS N., HOWLETT J.,
ROTA G. (Eds.). A History of Computing in the
Twentieth Century. New York, Academic Press.

DIJKSTRA E. (1975). Correctness Concerns and, Among
Other Things, Why They Are Resented. In Proceedings of
International Conference on Reliable Software,
546-550. ACM SIGPLAN NOTICES, Vol. 10.

[11) AVITAL S., SHETTLEWORTH S. (1968). Objectives for
Mathematics Learning. Toronto, The Ontario Institute
for Studies in Education.

[12)

[13)

POLYA G. (1945), How to Solve It. New Jersey,
Princeton University Press.

BACKUS J. (1978). The History of FORTRAN I, 11 and
Ill. ACM SIGPLAN NOTICES, 13, 8, 165-180.

[14] WEGNER P. (1976). Programming Languages - The First 25
Years. IEEE TRANSACTIONS ON COMPUTERS, C-25, 12,
1207-1225

239

[15] DIJKSTRA E. (1972). The Humble Programmer. COMM.
ACM, 15, 10, 859-866.

[16] SAMMET J. (1978). The Early History of COBOL. ACM
SIGPLAN NOTICES 13, 8, 121-161.

[17] JACKS A. (1983). Ten Languages; COBOL. PRACTICAL
COMPUTING 6, 4, p.114.

[18] NAUR P. (1960) (Editor). Report on the Algorithmic
Language ALGOL '60. COMM. ACM. 3, 229-314.

[19] SAMMET J. (1972). Programming Languages: History and
Future. COMM. ACM 15, 7, 601-610.

[20] RADIN G. (1978). The Early History and
Characteristics of PL/1. ACM SIGPLAN NOTICES 13, 8,
227-241.

[21] CHRYSLER E. (1980). Computer Programming Productivity.
In RULLO T.A. (Ed.). Advances in Computer Programming
Management Vol. 1. Philadelphia, Heyden.

[22] JENSEN K., WIRTH N. (1975). Pascal User Manual and
Report. New York, Springer Verlag.

[23] HOARE C. A. R., WIRTH N. (1973). An Axiomatic Definition
of the Programming Language Pascal. ACTA INFORMATICA
2, 4, 335-355.

[24] HALL J. (1962). (Ed.). Computers in Education.
Oxford, Pergamon Press.

[25] KURTZ T. (1978). BASIC. ACM SIGPLAN NOTICES 13, 8,
103-118.

[26] OECD (1971). Report of Seminar on Computer Science in
Education. Paris, OECD Publications.

[27] KOFFMAN E.B., MILLER P.L., WARDLE C.E. (1984).
Recommended Curr'iculum for CS1. COMM. ACM 27, 10,
998-1001.

[28]"" KELLY J. (1984). Why Comal? EDUCATION IRELAND. 1,4,
23-25.

[29] HORTON G. (1985). Structured Programming on the
380-Z. COMPUTER EDIJCATION 44, p.22.

[30] BRASWELL J.S. (1984). Advanced Placement in Computer
Science. MATHEMATICS TEACHER 77, 5, 372-379.

[31] O'CAOIMH C. (1982). The Computer Studies Option. THE
SECONDARY TEACHER 11, 2, 10-11

[32] O'SHEA F.T. (1983). Computers in Schools. EDUCATION
IRELAND 1, 1, 20-23.

240

[33] KELLY J. (1980). Computer Studies 1. Dublin, The
Educational Company of Ireland.

[34] O'RINN s. (1983). Is There Life Beyond Computer
Studies? EDUCATION IRELAND 1, 1, 25-26.

[35] WrRTH N. (1971). Program Development by Stepwise
Refinement. COMM. ACM 14, 4, 221-227

[36] WULF W.A. (1977). Languages and Structured Programs.
In YEH R.T. (Ed.). Current trends in Programming
Methodology. Englewood Cliffs, New Jersey,
Prentice-Hall.

[37] Dijkstra E. (1968). Goto Considered Harmful. COMM.
ACM 11, 3, 147-148.

[38] BOHM C., JACOPINI G. (1966). Flow Diagrams, Turing
Machines and Languages With Only Two Formation Rules.
COMM. ACM 9, 5, 366-371.

[39] DIJKSTRA E. (1975). Guarded Commands, Nondeterminancy
and Formal Derivation of Programs. COMM. ACM 18, 8, .
453-457.

[40] McCRACKEN D. (1973). Revolution in Programming.
DATAMATION Dec. 1973, 50-52.

[41] SHElL B.A. (1981). The Psychological Study of
Programming. ACM COMPUTING SURVEYS 13, 1, 101-120.

[42] SCHNEIDERMAN B. (1980). Software Psychology.
Cambridge, Winthrop.

[43] MOURSOUND D. (1984). More Harm Than Good? THE
COMPUTING TEACHER 12, 4, 3-4.

[44] BRUNER J.S. (1966). Toward a Theory of Instruction.

[45]

Cambridge, Harvard University Press.

NICHOLLS J.E. (1975).
Programming Languages.

The Structure and Design of
London, Addison Wesley.

,

[46] RILEY D. (1981). Teaching Problem Solving in an
Introductory Computer Science Class. ACM SIGCSE
BULLETIN 13, 1, 244-251.

[47] CAMPBELL P.F. (1984). The Effect of a Preliminary
Programming and Problem-Solving Course on Performance
in a Traditional Programming Course for Computer
Science Majors. ACM SIGCSE BULLETIN 16, 1, 56-64.

[48] METZLER R. C. (1984). IF Rules Then Better Structured
BASIC. THE COMPUTING TEACHER 12, 4, 12-14.

[49] KELLY J. (1983). Foundations in Computer Studies with
COMAL. Dublin, The Educational Company of Ireland.

241

[50] ATHERTON R. (1982). Structured Programming with
COMAL. Chichester, Ellis Horwood.

[51] O'LEARY P., MAXWELL M. (1980). BASIC Computer
Programming for Students. Dublin, Folens.

[52] CHRISTENSEN B. (1982). Beginning COMAL. Chichester,
Ellis Horwood.

242

