B Loughborough
University

This item was submitted to Loughborough University as a Masters thesis by
the author and is made available in the Institutional Repository
(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
& to copy, distribute, display, and perform the wark

Under the following conditions:

Attribution. ¥ou rmust attribute the wark in the manner specified by
the author or licensor,

MWoncommercial. vYou may not use this work for commercial purposes,

Mo Derivative Works, vou may not alter, transform, or build upon
this work,

& For any reuse or distribution, vou must make clear to others the license terms of
this work,

® Any of these conditions can be waived if you get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This is a hurman-readable summary of the Legal Code (the full license).

Disclaimer BN

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

l - ——— .J_.

: LOUGHBOROUGH i
. UNIVERSITY OF TECHNOLOGY
' LIBRARY ;,

AUTHOR/FILING TITLE

-

J: ACCESSION/COPY NO.

U - Qinlo8 J Y R .
' voL. NO. | cLAss MARK ‘

Lloan coPY

F 7 ool osoe 01

ammmn/fmmm.'mmmm«mmrmim

"'_l /

THE DESIGN OF A FIRST COURSE
IN PROGRAMMING

by

Michael! P. Brady B.Sc., H.D.E.

A Master’s Thesis

Submitted in partial fulfilment of
the requirements for the award of
M.Phil.

cf the Loughborough University of Technology

MAY 19886
@ " by Michael P. Brady B.Sc., H.D.E 1986
Supervisor : Professor A.C. Bajpai, Director of
C.AME.T. and Head of the Department of
Engineering Mathematics, Loughborough

University of Technology.

Local Supervisor @ Dr. John O’Donoghue, Head of Mathematics,
Thomond College, Limericlk, Ireland.

The Design of a First Course in Programming Michael P. Brady

THESIS ABSTRACT
A course was designed to teach Top-Down programming to second
level students who had no previous computer experience. The
purpases of the course were a) to enable them to become computer
literate and b) to develop their problem-solving ability. The
course was designed to teach programming in a manner which was
independent of any particular programming language or. machine,
This approach was prompted by dissatisfaction with traditional
courses which generally concentrate on the syntax and semantics
of a particular programming language, at the expense of
developing important underlying concepts.
Initially, a review of the history of programming languages was
carried out to identify the esser}tial elements of programming.
This review found that there was generall agreement about the
fundamental importance of structure and that it was not
necessary to use all of the control constructs contained.in the
available languages (BASIC, COMAL and PASCAL).
Both a mini-language;, containing just two control structures,
and a diagrammatic representation (structure dilagrams} of the
mini-language were then designed. The chosen control structures
were IF/THEN/ELIF/ELSE for selection and a WHILE 1loop for
iteration. The students were trained +to sclve problems using
the mini-language and structure diagrams and were supplied with
translation rules to convert their solutions into COMAL.
Traﬁslation rules were also drawn up for PASCAL and BASIC.
The course was tested with girls aged 15 and 18 years in a
Dublin secondary school. These trials showed that the method

may be used successfully with students of this age.

-

l‘\"i‘f";'#v'(ru:'ﬁ e gy ‘_.;"

! ‘ﬁe forme v"{,u;_;' TR RF '
H e (/h-‘ Sé ¢
o - e =
1

——— 4

.

" 0ioToR ol

pr—— i—— - - "

The Design of a First Course in Programming

e —— o —— it — —— T ——— T, Ty, . T, o S A e T W T T .

KEYWORDS

Top-Down Analysis

Structured Programming

Control Structures

Mini-Language

Structure Diagrams

Problem-Solving

Second Level Students

Michael P. Brady

——— e — e —— —

ACKNOWLEDGMENTS

I wish to express my gratitude to Professor A.C. Bajpai for
providing me with this research opportunity and for his support.
I also wish to thank my local supervisor, Dr. John Q’Donoghue of
Thomond College Limerick, for his practical advice and for his

constant interest in the project.

I wish to thank the staff of the Holy Faith Secondary Schonl,
The Coombe, Dublin for their co-operation. In particular 1
would like to thank Sister Aldeen, who made the school’s
computer facilities available to me at all times, Mia Delaney,
who provided much background information, and Christina Nulty,
wvho offered many helpful suggestions 1n preparing the

manuscript.

I would especially like to thank Marita McGrath who helped teach

the course and whc ocffered much constructive advice and support.

Finally, I would like to +thank my wife, Bridin, whose constant

support and encouragement were invaluable,

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

Wb

CHAPTER 5

RN

WWWwwWwww
WM IR

.b:bpb-»h.hrb.b;b-.bph,h
U BB AR WWWWN e

it ot n

[0, 26 LR OV o2& B

G O

n

LMD

W O3 DO

W N =

WM

L DN

TABLE OF CONTENTS

INTRODUCTION

HISTORICAL BACKGROUND

Introduction

The 1850s

The 19260s

Structured Programming

~ Computers in Education

The Irish Situation

EDUCATIONAL ROLE OF STRUCTURED PROGRAMMING

Intreoduction
Structured Programming
Problem Definition
Top-Down Design
Control Structures
Coding Style
Structured Programming in Education

DESIGN OF A SUITABLE MINI-LANGUAGE

Languages for Beginners’ Courses
The Need for a Mini-Language
Mini-Language Definition

Iterative Structures

Decision Structures

Other Statements and Structures

Diagrammatic Representation of Program Design

Flowcharts
Pseudocode
Structure Diagrams
Translation of Diagrams into Programming
Languages
Translation of Sequential Statements
Translation of the Conditional
Control Structure
Translation of the Iterative
Control Structure
Choice of Implementation Language

REVIEW OF THE AVAILABLE TEXTBOOKS

Introduction

Basic Computer Programming for Students [51)]
Flowcharts
Selection and Iteration
Advanced BASIC

Foundations in Computer Studies wit

COMAL [49] :

10

10
10
14
15
18
23

27
28
29
29
32
33
34

37

37
39
41
41
44
45
46
46
47
48

50
51

53
56
58
61
61
62
62
654
70

71

o

o anGt g onn
Db b B W W W

W B

~]

CHAPTER 6

[8))

(o>l e N Rer i o
W s LMo

av]

OO ®
(o1& IS LN Y L

O Ot

[

CHAPTER 7

~1 -3
(64 ws)
(S9N

RIS R BN BEN BN BEN BN

~3 ~d -1~

O w0 @

S B R R E

NN OO B W

o] @ [ov e REN
(9]

o

S =

.10
.11
L1101

Selection
Iteration
Structure Diagrams
Structured Programming With COMAL
Iteration
Selection
Beginning COMAL [582]
The Design and Use of Structured
Algorithms [7]
Conclusion

PROJECT RATIONALE

School and Student Background
Aims of the Course

Outline of the Syllabus

The Fifth Year Course

Developing the Concept of a Computer

System -

[501

Variables, Input, Assignment

and Output
Structure Diagrams

The Conditional Control Structure
The Iterative Control Structure

Procedures
The Sixth Year Course

Arrays
Conclusion

IMPLEMENTATION OF THE COURSE

Developing the Concept of a Computer System

The Concept of a Variable

The Assignment Statement

Input and Output Statements
Structure Diagrams

Top-Down Method

The Conditional Control Structure

Rules for Translation of IF

Statements into COMAL
Boolean Operators

The Iterative Control Structure
Rules for Translation of Iterative

Structure into COMAL

Fixed Iteration vs. Indefinite

Iteration

General Method for Conztructing

Loops
Loops to Add Numbers

Problems Involving READ/DATA

Statements

More Difficult Looping Problems

Procedures
Coding Style
Library Procedures

General Approach to Large Problems

The Sixth Year Course
Introduction to Arrays

71
74
78
79
82
83
84

85
S0

91

91
95
96
98

98

98
160
101
102
103
1G4
i05
106

1G7

107
110
110
112
113
116
119

120
121
125
125
127

130
130

133
136

. 138

141
143
145
151
151

String Handling Functions
Arrays of Strings
Sorting ‘Arrays

CHAPTER 8 EVALUATION GOF THE COURSE

DOV ODODDLD
[daJges) o] WO~ O B Wi

.10
.11
.12
.13

0 000 0 oo [00)

Introduction
The Metanic COMAL System
The Concept of a Computer System
Variables
String Variables
The INPUT Statement
Types of Problems for Exercises
Structure Diagrams
The Conditional Control Structure

Use of an ELSE Branch in IF

Statements

The Use of 'REuplicit’ Boolean

Conditions
De Morgan’s Law
The Iterative Control Structure
Procedures
Arrays
Projects

The Use of Structure Diagrams 1in Mathematics

Chapter 9 CONCLUSIONS

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
REFERENCES

Programming Course Notes

Some Demonstration Programs

Student Projects

Mathematics Course Notes

How To Use The Accompanying Disk

155
157
161

165

165
165
166
166
187
169
170
170
173

175

1786
179
181
181
182
185
180

198

CHAFTER 1

A recent survey of Irish schools [1] concluded that many of
our school leavers are computer illiterate. This is clearly
undesirable in a society which is increasingly influenced by
information technology and in which the rate of
technological innovation 1is so rapid. The need for
familiarisation with the new technolody as part of the
curriculum is now generally recognised. The government has
expressed the hope that encouragement will be given to the
promotion of the study of computers as part of the =chool
curriculum [2] and has begun this process by including
Computer Studies modules in both the Intermediate and
Leaving Certificate programmes and by arranging for the
supply of computing equipment +to all second level schools.
This view, that education should embrace the new
technologies, has been endorsed by the recently formed
Curriculum and Examinations Board [3] and by many other

bodies representing teachers at all levels of educaticn.

The broad goal of all computer education is to provide
students with an understanding of the operatioﬁ and
applications o¢f computers and to alert them to the
limitations and difficulties associated with the new
technology. This may be achieved in a number of different
ways including Computer Studies as a subject in its own

right, computer aided learning and the use of computers as

tools in various subject areas. One ovérall aim of all such
maodes of computer usé is +that students should develop an
understanding of computers and become competent in their
use. The achievement of computer literascy may alsc involve
discussion of issues such as the social impact of computers,
the history of computing, the rudiments of computer hardware

and the use of various software packages.

Computer literacy, however, must also involve some
understanding of programming, which 1is an integral part of
all computing. This is not to suggest that our students
should be trained as professional programmers but that
understanding of computing could not be complete. without
some awareness of how programs are designed. If this
awareness is not achieved, then real computer literacy 1is
not possible as the student could not really appreciate how
the machine is toﬁally dependent on the skill of the

programmer and the accuracy of the supplied data.

Learning how to program can be an enjoyable, stimulating and
highly rewarding educational experience. It is a creative
activity requiring the integration of many skills and
requires much more active involvement on the part of the
student than the use of software'packages. When programming,
the student is in control of the machine and not simply
responding to the machine’s instuctions which is the case in
using many software packages. Papert [4] ha; warned of the

danger of allowing the machine to program the student in

such circumstances. Programming, therefore, is likely to

help the student to develop a sense of mastery and power in

relation to computers which may not be achieved by any other

computer related activity. Thus the affective benefits of

learning to program may be important in the development of a
positive attitude towards computers and technology in

general.

The importance of programming is recognised by the majority
of schools and Computer Studies (which normally includes a
large element of programming) 1is by far the chief mode of
computer use in schools (1]. Its importance is also
recognised by the Department of Education which has
suggested that programming should be a major element of the
current second level computer modules at both junior and
senior cycle [5,8]. This emphasis on programming is further
underlined by the Department of Education’s publication of a
book on programming as an aid to the teaching of Computer
Studies [7] and by the fact that most of the software
supplied by the Depaftment to schools consists of
programming languages (PASCAL, COMAL, LOGO and

MICRO-PROLOG) .

In addition to 1its éontribution to the achievement of
computer literacy, learning how to program may also lead to
an improvement in general problem-solving skills. While it
is recognised that problem—sélving activity can be generated
in all academic disciplines, recent developments in computer
science have produced new methodologies which explicitly
focus on the problem-solving process. Using these
techniques, it is possible to teach students how to approach

problems in a systematic and disciplined way which might

then be applied to a broad range of situations. The
relevant programming skills, which include planning, problem
decomposition, anticipation of outcomes, recognition of
relationships, testing, revising and persevering, are
applicable to many non-computer problem-scolving situations.
When programming, students develop and experiment with their
own hypotheses, criticise their own work constructively and
must persevere until their solution is fully correct. The
emphasis is firmly placed on the process of solving the
problem rather than on the product {(the answer). The actual
use of a computer for testing programs supplies immediate
and valuable feedback which. would be wunthinkable in most

other problem-solving situations.

From the students’® viewpoint, problem-solving situstions are
very often frustrating and time consuming. Hativa [8] has
found that undergraduate students generally do not see the
teacher’s role as that of a ’skill developer’ but rather as=
a ‘transwmitter’ of knowledge, whose main function 1is *to
impart facts. A necessary corollary of this is that
students see themselves as passive ‘receivers’ of
information and may resent being asked to solve awkward
problems. It is likely that this point of view is even more
prevalent in second level schools due to the increasing
pressﬁre of public examinations for which the acquisition of
facis is very important. In most other subjects on the
curriculum, éecond level students will have already
encountered an enormous number of facts and techniques that

must be remembered and understood before they can be applied

to problems. In many cases these basic techniques are not
well comprehended and so the learner is not in a position to
sclve problems. This difficulty can be overcome in a first
programming course as the students will be starting a
completely new subject in which there is no previously

learnt body of knowledge to be remembered.

In a first programming course, non-transferable, low-level
knowledge should be kept to a minimum so as to allow the
learner to concentrate on the essential problem-solving
techniques at the heart of programming. This sugdests that
a full programming language should not be used because of
the large amount of time required to 1learn all the syntax
and semantics of the language and because a 1lot of such
knowledge is not transferable to other programming
languages, or even to a different implementation of the same
language. More importantly, the need to learn all the petty
rules and regulations of a particular programming 1language
would distract attention from the problem-solwving process
and might well defeat the whole purpose of a course intended
to develop high level cognitive skills. Dissatisfaction was
felt with the current practice in teaching introductory
programming courses which invariably seemed to concentrsate
on the details of whatever programming language was most
easily implemented on the available hardware. It was felt
that the teaching of programming should not be dependent on
the available hardware as this was self defeating due to the
very wide range of languages, the numerous versions of each

language and the rapid changes taking place in this area.

Thus concentration on the most readily available language
could well lead to students being conversant with the minute
details of some language which was obsolete before they left

school and this was not desirable.

With this in mind a course was developed which attempted to
develop the essential programming skills but which avoided,
as far as possible, concern with the specific details of any
one programming language. This was done by designing a
mini-language which contained only the essential programming
structures and which was considered suitable for students in
the senior cycle of our second 1level schools. These
essential programming structures were isolated by a study of
the history of programming languages over the past thirty
vears including the development of the structured
programming movement. This is outlined in Chapter 2. This
restriction of +the programming language should not be
considered an impediment to ’proper’ programming but rather
as an aid to structured programming. Hells (9] has
concluded that in spite of ﬁhe proliferation of programming
languages, general purpose languages are converging towards
’everyday’ algorithmic language with relatively few
eésenti&l constructs. It has also been ciaimed by Dijkstra
[16] that the use of a small, elegant language cﬁn actually
help programmers to find algorithms that are much more
difficult to find using more extensive languages. The
educational importance of structured programming is

discussed in Chapter 3.

It was recognised that some diagrammatic representation of
the programming structures was required but an examination
of the current methods used in most textbooks, described in
Chapter 5, found that none of the available methods was
desirable or suitable. A new diagrammatic representation
was then designed to match the chosen programming structures
and to represent the hierarchical nature of programs clearly
and unambilguously. Once a solution has been designed
diagrammatically, it is vital to be able to convert it into
an implementable prégramming language easily and directly.
‘Sets of translation rules were therefore formulated to
convert the diagrammatic solutions into the varlous popular
programming languages. The mini-language, its diagrammatic
representation and the translation rules are described in

Chapter 4.

Thus a complete system was developed which allowed the
students to concentrate on the design of solutions rather
than on the syntax of a programming language. It provided a
clear hierarchical diagrammatic representation of completed
prograﬁs which allowed for the convenient translation of the
solution into any of the popular programming languzges. In
short, a system was developed which allowed students to
concentrate on solving problems and which relegated the
actual implementation of solutions on a computer to a simple

‘automatic’ clerieal task.

Avital and Shettleworth [11] have suggested that the key to
fostering higher level abilities is exposure and Polya [12]

hes claimed that solving problems is a practical =kill which

is acquired by imitation and practice. This means that if
students are to learn how to write good programs then they
must be shown examples of good programming and must alsc be
given a broad range of stimulating and interesting prpblems
on which to work. To maintain motivation, students nust
also feel that they are successful and this is best achieved
by ensuring that the problems they aré given are within
their capabilities. The general strategy followed was to
introduce each new topic by means of a problem or a set of
problems. Solutions for these were provided by the teacher
in a step-by-step fashion, emphasising the reasons for each
step rather than presenting the solution as a finished
product. The students were then given sets of similar
problems to sclve, both 1in class and for homewerk. While
many of +these problems required fairly straightforward
application of the new technique, some were sufficiently
remote from the original examples to require higher level
cognitive activity. Thus +the course was based around a
large set of problems which were devised (or in some cases
adapted from textbooks) to illustrate widely applicable
programming techniques and structures. Much emphasis was
rlaced on students’ homework which normally consisted of
solving problems diagrammatically. These éolutions were

then usually implemented on the school’s computers.

The students’ repertoire of programming techniques was built
up throughout the course and toward§ the end they were given
moderately large problems to solve over a period of a few

weeks. All the techniques necessary to solve these problems

had been encountered during the course but because these
problems were larger than those previously encountered they
required more analysis and more commitment on the part of
the students. That they were very successful at these
problems was a good indication of the effectiveness of the
course. The course, its implementation and its evaluation
are described in Chapters 6, 7 and 8 respectivel?.

Conclusions are drawn in Chapter 9.

CHAPTER 2

2.1 INTRODUCTION

In the past thirty years the nature of computer programming
has changed dramatically. It is intended to review the major
developments that have taken place in relation to programming
and programming languages and their uses in education. It is
not intended to present a comprehensive study of the major
programming languages but to review the important +trends
with a view to isolating what 1is essential, what should be

taught and how it should be taught.

2.2 THE 1950s,

In the early fifties all programming was done in machine code
or assembly language [13]. Programming was considered to be a
very complex and highly creative art and the skills of the
early pProgrammers were directed tqwards overcoming the
limitations of +the &available hardware. These limitations
included the absence of floating point calculations, slow
processing speeds, very small memories, and restricted
instruction sets. Programs had to be written to fit into the
tiny memories and to run as quickly as possible to make the
most efficient use of the large, very expensive computers,
Programmers were prized for their ability to write tricky,
efficient code which took advantage of the particular

idicsynerasies of the machine that they were using.

10

The mid fifties saw the beginning of the evolution of higher
level *algebraic’ langﬁages e.g. FLOWMATIC (1955h) and
MATH-MATIC (1957). These languages freed programmers from
many of the ’red-tape’ issues of pfogrammiﬁg by allowing them
to write more sentence-oriented code, to use decimal numbers
and to avail of subroutine libraries. In effect, they allowed
programmers to concentrate more on algorithmic issues and less
on machine issues. Initially, these new languages met with a
lot of resistance in the computing community, mainly due to
the fact that they slowed processing speeds by a factor of

about ten [13].

Towards the end of the decade there was an enormous effort put
into the development of high level languages. It began with
the recognition of a basic economic problem, i.e. that
programming and debugging costs were excessive and were
growing all. the time. The response was to try +to develop
languages which made programming easier, which were
machine-independent and which were problem-oriented. ’ The

three most important languages introduced in this period were

FORTRAN, COBOL and ALGOL ’860.

FORTRAN was intended for use by scientists and engineers for
mathematical | computation. Among the language concepts
introduced by FORTRAN were [14]:

1. Variables and expressions (erithmetic and boolean).

2. Arrays {(whose dimensions were known at compile time).

3. Iterative A and conditional branching control

structures.
4. Programs as sets of subroutine or function segments

11

that could be compiled independently.

The committee that designed FORTRAN was unaware of many of the
issues of language design that were later to become important
such as block structure, type declarations etec.[13]. In fact,
it considered the design of the language to be a rather
trivial prelude to the ’real’ problem which was the design of
the compiler. As a result, the language has subsequently been
described by Dijkstra as an efficient coding system but

one with few conceptual aids to assist the programmer [15].

COBOL was designed for business data processing, in which the

emphasis is on file-handling, with relatively 1little
‘computing’. The designers intended that the language could
be used by novice progammers. It was also hoped that, by

keeping it as close to natural language as possible, it could
bé read and understood by management [16]. Hence, much
attention was given to meking it easy to read, as opposed to
making it easy to write or to learn. Some important concepts
introduced by COBOL were [14]:

1. The IF/THEN/ELSE structure.

2. Separation of procedural statements from data

description.
3. Natural Jlanguage style.

4, Record.data structures,

FORTRAN ‘and COBOL were immediately successful and were very
widely implemented. Even today they are among the most widely
used languages and most in-house company training courses

still wse COBOL [17]. The reascns for their great success and

12

continued use are:
1. COBOL was chosen as the required language on all U.S.
Department of Defence computers.
2. There was a huge investment in applications programs
in both languages.

3. They became standardised.

The main impetus for the design of ALGOL 60 came from a desire
to =allow algorithnms to be written more clearly and
conveniently. It was intended mainly for scientific
computation. The language’s defining document [18] introduced
a method of landuage definition, Backus—-Naur Form (BNF), which
was almost as important as the language itself. This was a huge
advance on previous language definition techniques and
initiated the idea of language as an cbject of study in its own
right, rather than as a tool for facilitating the specification
of programs. Some of the new concepts introduced in ALGOL ’60
were [14]:

1. Block structure.
Explicit type declarations for variables.
Scope rules for lecal variables.
Nested IF/THEN/ELSE statements.
Call-by-value and call-by-reference parameters.

.. Recursive subroutines.

e R = - T & SR - S . N A

Dynamic arrays.

However, the most important elements of ALGOL '60 were its
sense of simplicity and its conciseness. Although ALGOL 80
was never widely i1mplemented, its =tyle has been much more
influential in subsequent language design thaa either FORTRAN

13

or COBOL which have had very little impact in this area.

2.3 THE 1960s,

By 1960 the debate concerning the use of high level languages
was over. Machine coding had become the exception rather than
the rule. During the sixties very many new Jlanguages were
invented and by the end of the decade there were about 170
languaggs in use in the U.S. alone [19]. Approximately half of
these were designed for special purposes such as string
processing and pattern matching (SNOBOL), simulation (SIMULA,
SIMSCRIPT), education (BASIC, APL)}, while the rest,

including PL/1 and ALGOL ’'68, were general purpose languages.

In the early sixties programming was considered to consist
mainly of coding in some particular language. The notion was
common that scientific and commercial programmers, who used
different langusges, should be trained separately. Not only
were languages designea for each group but each group had its
own computers'[ZO]. As the available hardware became.more
powerful the distinctions began to fade. The files that
scientists were processing were as big as those in commercial
installations, while commercial users were beginning to perform
" linear regressiohs and factor analyses on market data.
Companies began to object to buying two sets of hardware and

employing and educating two sets of programmers.

This, combined with the general belief at that time that
programming was simple as long as the language was powerful
encugh and the computer fast enough, led to the development of

14

large powerful languages which attempted to combine the
features of scientific and commercial languages. PL/1 was one
such language which was developed from FORTRAN, COBOL and
ALGOL.. The idea of separately compiled subroutines sharing
common data was taken from FORTRAN. Data structures were taken
from COBOL. Block structure and control constructs were taken
from ALGOL. PL/1 illustrates the advantages and problems
associated with large general-purpose languages. The power
and richness of such languages lead to complexity in both
language definition and language use, making verifiability and

readability of programs a major problem (14].

2.4 STRUCTURED PROGRAMMING.

By the end of the sixties the enormous advances in hardware
design and the corresponding decrease in hardware costs meant
that software had become by far the most expensive part of a
computer system. It was also acknowledged that there were very
serious problems in the area of software development. Most
software projects were taking longer to complete and costing
more than planned. Worse stili, the end product was very often
unreliable. It was realised that programming was a difficult
task and that fast machines and powerful computer languages did
not make it much easier. Prior to this, large software
projects had been designed to minimise development costs rather
than total costs for the lifetime of the piece of software.
This Jled to a disproportionate emphasis on achieving speedy
implementation and a corresponding neglect of both the initial
problem specification and the production phase of the program,

which might involve frequent modifications. It was estimated

15

that 70% of programmers’ time was deveoted to the maintenance of
existing programs [21]. Maintenance and revision of software
requires that someonse other than the author is capable
of understanding the original design. This was very often not
the case and large amounts of time were being spent analysing
existing code. Even at the development stage more time was

being spent debugging than on algorithmiec design.

The search for programming improvements led to an analysis of
the fundamental structures of programming and a greater
emphasis on the methodology of problem- solving. Research was
directed away from the development of powerful new languages
towards control of the complexity, cost and relisbility of
large programs. The new methodologies developed at this timé
are usually grouped under the heading of structured
programming. Structured programming was originally considered
to be programming without GOTO statements, substituting clearer

control structures instead. It has since ccome tOo mean

designing programs in such a way¥y that they are simple,

verifiable, reliable and maintainable. It is more concerned

with using the programmer’s time efficiently than with machine

efficiency.

The first example of a structured language, PASCAL, appeared in
the early seventies. PASCAL was designed by Niklaus Wirth who
was dissatisfied with the major languages because of their
over-elaborate constructs, which were difficult to explain
logically and convincingly and which often defied systematic
reasoning {22]. PASCAL was a return to a smaller, simpler type
of language, based on the style of ALGOL ’60 but providing

16

richer data structures and programmer-defined typeo
specifications. It could also detect many programming errors
as syntax errors because of its built-in protection against
both improper mixing of types and the aséignment of 1illegal
values to variables. Because of its conceptual simplicity, it
has been possible to develop a complete formal definition of
the language [23]. The existence of this formal definition has
in turn led to the widespread use of PASCAL as a base language

for program verification research.

The techniques of structured programming (which are
discussed in Chapter 3) have had a great impact on both
academic Computer Science and on production programming.
During the seventies, facilities for structuring were added to
most of the major programming languages. However,
correctness proofs, which are the more formal aspect of
structured programming and which are of great interest +to
computer science researchers, have had practically no effect
on general commercial programming. In order that a program may
be proved correct, it must be developed from control structures
that are well understood and this is a strong argument in
favour of very modest, very systematic programming

languages.

So after more than a decade of debate, academic computer
scientists are promoting the use of simpler, more systematic
and safer languages but FORTRAN, COBOL and BASIC (albeit with
structuring facilities added in many cases) are still
generally favoured by commercial users and even larger
languages such as ADA are being designed. This situation has

17

been summed up by Wells [9],- who has observed that good
progress has been made in the area of language design, but that
progress has been less dramatic with respect to the use of

well designed langusages.

2.5 COMPUTERS IN EDUCATION.

By 1962 computers were beginning to appear in third level
institutions and were being used mainly by students of Science,
Engineering and Mathematics [24]. In the early sixties there
were no Computer Science departments in universities and most
students who studied computers did so in short courses
organised by Maths/Science departments. These courses were

usually geared towards programming in FORTRAN.

One attempt to overcome this Maths/Science bias was the
devel opment of BASIC at Dartmouth College in the early
sixties [25]. Its development was motivated by the need to
make it possible for non-experts to program without committing
themselves to a large amount of-preliminary study. . As about
75% of the students at Dartmouth were non-science majors, the
group which produces most of the decision-makers in business
and government, it was considered important that they should
have some knowledge of computing to help them make sensible
decisions about computers 1in their subsequent professional
lives. Access to computing prior to this had involved punched
cards and both intellectual and administrative.hurdles. The
designers of BASIC sought to overcome these by making it an
on-1line, simple to learn, interactive language. This had now
become possible due to the arrival of time-sharing and éheap
teletext terminals.

18

The language 1itself was a modification of FORTRAN. It was
never intended that it should be used for solving very large or
difficult problems - FORTRAN was supposed to be used for these.
BASIC was ver& successful because of its:

1. Simple syntax.

2. Easy operating system.
3. Cheap implementation.
4

Interactive nature.

Despite its success, BASIC was developed at a time when the
nature of programming was undergoing great changes and it
embodied structures and practices which were later seriously

questioned.

By the end of the sixties it was generally accepted that
computing was a sScience 1in its own right and Computer Science
departments began to appear in many universities. In 1970 it
was estimated that there were about 300 college degree
programmes in Computer Science in the United States [28]. The
need for discipline in programming technique was beginning to
be recognised at this time. The curriculum committee of the
Association for Computing Machinery (ACM) has issued
recommendations on the content of college Computer Science
courses - at regular intervals since the wmid sixties. In
general, these reéommendations emphasise systematic algorithm
development and clear programming style. A 1984 document,
concerned with introductory College Computer Science courses,
strongly emphasises Top-Down design and stepwise refinement
[27]. Wirth designed PASCAL mainly as & medium for teaching
programming in a systematic manner. He maintained that the

19

language in which programming is taught profoundly influences
subsequent habits of thought, and that the conéepts embodied in
the language feed back into the learner’s style of problem
analysis, influencing the way in which problem-solving skills
develop. This would indicate that great care should be
exercised in the choice of language to be used for

introductory programming courses.

PASCALL has been very widely accepted by the third level
academic community and is currently used in most university
Computer Science courses. Up to now it has not been available
on many microcomputers and g0 has not been widely used in

second level schools.

Computing in second 1level schools began in the late sixties.
As very few schools could afford to buy computing equipment at
this time, those schools which were involved had to beg and
borrow computer time from local commercial firms and from
universities. Programs were generally prepared on punched
cards or paper tape and brought to the computer installation
in the evenings. The naﬁure of the work done under these very
difficult circumstances depended entirely on the facilities
availaﬁle rather than on any clearly defined educational
objectives. It wa§ recognised, however, that the design of
algorithms was of fundamental importance and that - high level

languages should be used wherever possible [26].

Towards the end of the seventies the arrival of affordable
microcomputers caused dramatic changes in educational

computing. Schools were now in a position to buy their own

hardware. The demand for computer courses suddenly increased
and schools that had no experience or expertise in computing
came under pressure to provide computer courses. When these
first micros appeared there was very 1little educational
software available and so teaching programming was the only
viable educational activity. As they had very restricted
memories, BASIC was the only possible programming language
and so learning BASIC became the norm for teacher in-service
courses. Consequently, many teachers’ first experience of
computing was in the use of BASIC. Such teachers and school
administrators, who were unaware of the whole structured
rrogramming debate, were then forced into making important
decisions concerning the choice of both hardware and

programming languages.

This has, unfortunately, 1led +to the entrenchment of BASIC.
This trend is reinforced by the popular computer magazines,
many of which heavily emphasise programming in BASIC. The
hardware manufacturers compound this problem by continuing to
suppiy primitive versicons of BASIC with +their machines. This
is in spite of the fact that the original reason for using
BASIC (i.e. tiny memories) is no longer valid. The argument
most often used to justify the choice of BASIC is based on its
widespread availability and the fact that much software is
written in it. This, together with the fact that the language
most Qidely taught is going to be thereafter the one most
widely used, is, according to Wirth [22], "the safest recipe
for stagnation in a subject of such profound. pedagogical

influence”.

21

The inadequacy of BASIC as a language for learning
programming 1is recognised by many educators. Efforts to
overcome the problems associated with BASIC have included the
promotion of LOGO, COMAL and the so-called structured BASICs.
LOGO has received widespread attention in the primary and
junior secondary sector. COMAL has been adopted by many
second level schools in Denmark, Ireland, Sweden, Scotland and
more recently in the United States [28]. A version of BASIC

which is almost identical to COMAL has recently been

released <for the RML 3802 computer [29]. There is also a
’structured’ version of BASIC available for the B.B.C.
computer. As both of +these machines are widely used in

British schools, these developments are welcome.

One recent decision which may have a profound effect on the
use of BASIC in American schools is the selection of PASCAL as
the sole language to be used in the Advanced Placement
Computer Science Examination {[30}]. This 1is an examination
taken at the end of second level schooling by students who
wish to pursue Computer Science courses at third level. As
there. are currently 300, 000 students enrolled in
introductory, third level, Computer Science coufses in the
United States [30], the demand for courses leading to the
ddvanced Placement Examination 1is certain to be great. This
demand will have to be met by supplying courses in PASCAL at
second level which should, in turn, stimulate manufacturers

to supply versions of PASCAL for the popular school machines.

22

2.6 THE IRISH SITUATION.

Irish second level schools began using computers in the early
seventies. Much of the impetus for the use of computers in
schools has come from the Computer Education Society of
Ireland (C.E.S.1.) which was founded in 1973 by Professor
A.C. Bajpai and which has since provided the main forum for
discussion and formulation of ideas in relation to computer
education. The first Department of Education computer training
course for teachers was held in 1970, Since then, numerous
courses have been sponsored by the Department of Education,
cften in conjunction with C.E.S.I. These are usually one week
courses and are held during the school holiday periods. In
addition, other institutions (universities, tesachers’ centres
etc.) have offered computing courses for teachers. None of
these courses {(including the Department of Education’s) leads

to an officially recognised teaching qualification.

Many of the teachers who have taken part in these courses are
now taking their students through theiéomputing option on the
Leaving Certificate Mathematics course. This option, begun in
1981, was, up to 1984, the only recognised computer module in
our second level schools. The module, intended as an interim
arrangement pending the introduction of Computer Studies as a
full subject on the curriculum, consists of approximately 35
hours instruction and was adopted by about 200 schools in its
second year of operation [31]. In 1984, a similar module was
introduced for junior c&cle rupils in second level schools,
There is no written examination of either module and both

syllabii [5,6] leave much to the discretion of the teacher.

23

Therefore it is not clear what exactly is being taught but it
would seem that in most cases the tendency is to concentrate

on programming [32].

So, up to now, the principal use of computers in schools has
been to teach programming. This has stimulated much debate
about the choice of a suitable programming language for
schools. Although there were earlier attempts to introduce
low level languages [33], it seems "to be féirly well accepted
now that what is needed is a high level language. The choice,
therefore, is between BASIC, LOGO and COMAL as no other

languages are widely available as yet.

Of these three, LOGO has only recently become widely available
but is already very popular in primary schools. It is likely
that 1ts wuse will increase dramatically in second level
schools in the near future. BASIC, of course, 1is available
for every micro (at no extra cost) and so 1is very widely used
in second level schools. In 1981, the Department of Educaticn
drew up an , internal report on the use of computers in
schools which has not been published [34]. It would seem,
however, from subsequent actions by the Department that
decisions were taken to promote COMAL, adopt the Apple II

computer and postpone indefinitely the introduction of

Computer Studies as a full subject.

The decision to promote a practically unknown but very well
structured language, COMAL, was a courageous one and was
generally welcomed by those who were already involved in

computer education, including C.E.5.1. However, the

24

implementation of COMAL has caused many problems. The
Department of Education has assisted all second level
schools to buy one Apple computer. Each of these machines is
capable of running COMAL but 1if schools buy extra Aprle
machines they are unable to ilmplement COMAL on them without
fitting a Z-B0 card in each new machinei As many schoois are
now buying networks of from five to ten machines this large
extra expense may tempt them to revert to BABIC. Similarly,
as COMAL is supplied in ROM form for the B.B.C. computer it is
necessary to buy one for each machine and this may be
prchibitive if a large number of machines is to be bought.
There is , however, a very cheap version available for the
Commodore 64 which may be run on networks at no extra cost. So
while the choice of COMAL must be applauded, the high cost of
implementing it has tended to prevent its universal use in our
schools. At the moment it seems that schools’ programming

courses are fairly evenly divided between BASIC and COMAL.

It is gnfortunate that the_introduction of computing into our
schools has not been guided by a coherent overall plan. In the
past, schools have been happy to accept any facilities that
they could get without really examining their educational
needs, but the falling cost of equipment suggests that schools
will soon be able to pick and choose between hardware,
software, and programming languages. It is in this context
that there is noQ a great need to clarify the 1issues

concerning computing in schools. The +teaching of programming

is one such major issue which 1is of fundamental educatiocnal

importance and which requires serious debate. Programming

25

courses in our schools are important not Jjust because of tﬁe
need to produce well treined computer specialists to support
our industry and economy but because they can make a major
contribution to the achievement of computer literacy and can
help towards the development of general high level cognitive
skills. This can best be achieved if +the subject is
approached in a systematic way and if modern techniques of

structured programming are adopted.

If this is to be done then it 1s necessary to examine in
detail the techniques of structured programming and to devise
a way of presenting them which is suitable for students at

second level.

26

CHAPTER 3

3.1 INTRODUCTION

Schools are at present coming under increasing pressure from
both parents and students to provide courses in Computer
Science. Many schools are responding to this pressure by
acquiring computer equipment and providing courses in
programming but in many cases insufficient thought and
preparation has been put into the organisation of these
courses. There is now an urgent need to examine the role of
programming in second 1level schools and to decide on how

it should be taught.

The teaching of programming is important because if we are
concerned with educating our pupils for maturity and to accept
responsibility for their actions as eadults, +then we must be
concerned with their ability to think reasonably and logically
and to act accerdingly. This ability, to formulate a
reasonable plan of action and to carry it through, is the very
essence of programming. The study of programming in a
systematic way can be a powerful facilitator for the
development of higher level skills and abilities, encouraging
an algorithmic, procedural approach to problem-solving. The
unambiguous semantics of a programming language together with
the precision of syntax required, can give our students
insight into the power of language and the care required to

communicate clearly. Moreover, these skills, 1f developed

27

carefully, are more widely applicable and are more permanent

than mere knowledge of specifics, end so are likely to benefit

our students’ performance in other subject areas.

While we are not in the business of producing professional
programmers, we can Jlearn from the developments that have
taken place in professional programming practice and academic
computer science during the past twenty years. The main
lesson that has been learhﬁ is that good programming is
structured programming and so, before developing an
introductory course, it is necessary to review just what 1is

meant by structured programming.

3.2 STRUCTURED PROGRAMMING
The principal concern of structured programming is that
programs should be designed and coded in such a way as to make
them correct and easily understeocod. Structured programming
grew out of a recognition of the limitations of the human mind
when confronted by large problems which may involve very many
details. It is an attempt to limit the complexity with which
the programmer has to deal at any one time. The methods used
to achieve these objectives are:

1. Careful definition of the problem to be solved.

2. Design of solutions in a Top-Down manner.

3. Use of a limited number of carefully chosen

control structures.

4. Use of a clear and consistent coding style.

3.2.1 PROBLEM DEFINITION
This involves developing and clarif&ing the exact
specifications of the problem. It may be a fairly lengthy
process as many rroblems are poorly defined and ambiguoué
initially. However, it is essential that due consideration be
given to this part of the programming process, as no problem
can be solved unless it 1is well understood. Some of the
issues that should be examined at this stage are:
1. In what form will the data be supplied?
2. Within what reasocnable limits is data expected to be?
3. What errors should be anticipated and what action
should be taken if an error is found?
4. How will the end of the data be signalled®?
5. May the input values be discarded after they are used
in the computation?
6. What should ©be done if some operation cannot be
successfully completed?
7. In what form and to what degree of accuracy should
output be provided?
8. Is there any indication of the amount of output that
will be produced®?
9. What changes in the problem statement are 1likely to

cceur during the lifetime of the program?

3.2.2 TOP-DOWN DESIGN

The structured programming debate, at least as it has teken
pPlace in relation to education, has been mainly concerned with
the choice of programming languages and control structures._

This is a pity, as it is more important that consideration be

29

given to the overall structure of programs. Polya hés
suggested that in solving complex problems it is possible to
distinguish between °’‘great’ steps and ’small’ steps [12]. In
finding a solution it is important to organise the great steps
first. Wirth has proposed a method of ’'stepwise refinement’
by which a large problem is broken down into a few
sub-problems (’great’ steps) (35]. These sub-problems are
then continuously refined if necessary, aé in figure 3.1,

until each sub-problem may be considered to be trivial.

PROBLEM

_— | T

S5.P.1 5.P.2 S.P.3 LEVEL 1

s.p.1.1] [s.p.1.2] [s.p.2.1} [s.p.2.2] [s.P.3.1] [s.P.3.2] LEVEL 2

FIGURE 3.1

It is usual to start with a high level, abstract program. The
level of abstraction is chosen to make the program short,

understandable and obvicusly correct [368], as in figure 3.2.

PROBLEM

READ IN DATA | DO CALCULATIONS OUTPUT RESULTS } LEVEL 1

FIGURE 3.2

30

Typically, the upper levels contain statements of WHAT has to
be done. These are then refined into statements of HOW it
should be done. The advantages of using this method are:

) 1. The overall structure takes precedence over details
and indeed should be complete before any detaills are
considefed.

2. The most important decisions are made first.

3. The programmer’s mind is focussed initially on the
problem rather than on the machine or the syntax of a
programming language. The design then proceeds FROM
the problem TO the machine.

4. Each level of the design provides a complete solution
to the problem, which may be c¢hecked by another
programmer (or by a machine), before proceeding to

" the next level.

5. The complexity is reduced. The programmer only has
to consider one problem at a time.

6. If a design flaw is discovered the programmer mey
start again without having to scrap a lot of
redundant code (or, worse still, patch up the faulty
code).

7. Solutions developed in this manner may be coded into

any programming language.

The beaesic building block of structure is the procedure or
subroutine. A procedure is a section of a program that
prerforms some particular task. Procedures should not be
regarded as containers for chunks of code but rather as

logical units, whose job it 1is to carry out some well-defined

31

function. It should be possible to state the purpose of each
?rocedure in one short sentence. If this cannot be done, then
the procedure should probably be refined further. The
collective structure of the procedures in a program 1is of
paramount importance and should be developed and tested before

going on to consider the structure within each procedure.

If the scope of variable names can be limited to the
pfocedures in which they occur, then the procedures méy be
written independently without fear of variable name clashes at
a later stage in program developﬁent. Procedures written in

this manner may also be used in many different programs.

3.2.3 CONTROL STRUCTURES

The controversy over the use of control structures is usually
traced to a famous paper by Dijkstra in which he pointed out
that unrestricted use of GOTO statements 1led to unnecessarily
complex flow paths [37]. It had been proved as =early as
1966, by Bohm and Jacopini [38], that any program could be
written with only two control structures, one conditional and
one iterative. In his subsequent work, Dijkstra has
consistently advocated the use of simpler languages and has
proposed a ianguage that contains just two control structures

{39].

It has been claimed that the discipline imposed by using only
these basic structures improves the performance of even the
best programmers {40]. There is =also some psychological
evidence to indicate that the choice of control structures

does make a significant difference in programmer performance

32

{41)]. This evidence supports the maxim that the number of
bugs in any program is directly proportional +to the square of

the number of GOTO statements.

The essence of a good control structure 1is that it has one
entry point and one exit point, with entry at the start of the
structure and exit at the end. For iteration, the FOR/NEXT,
REPEAT/UNTIL and WHILE/ENDWHILE structures meet these
requirements. For selection, both the IF/THEN/ELSE and
CASE/ENDCASE structures are generally considered to be

satisfactory.

3.2.4 CODING STYLE
The use of a good coding style is generally regarded as an aid
to making programs more readable. There is some evidence to
suggest that the use of a good style has only a marginal
influence on the comprehensibility of programs, but - - that most
programmers regard it favourably and believe that it improves
their performance {[42]7. Some important elements of coding
style are:
1. Comments.
Each procedure or unit should be prefaced by a brief
description of its function. Low level comments
which simply reiterate the operation of a particular
statement are of 1little value. Comments should
relate to the problem rather than toc the program, so
that "Find student with highest mark"” is better than
"Find maximum integer 1in array"”. In addition, long
programs should contain a ’table of contents’ at the
beginning.

33

Identifiers
Identifiers should be chosen carefully, to reflect
the objects that they are intended +to represent.
Each procedure should contain a list of the variables
used in it. In languages in which identifiers are
limited to one or two characters each procedure
should contain a dictionary of identifiers.

e.g. VR = VAT RATE ete.
Text Format.
Indentation is used to show where control structures
begin and end. This helps the reader to see the
logical structure of the program. It is especially
effective when control structures are nested. The
liberal use of spaces and blank lines is also
helpful and it is dgenerally considered good style to
write just oﬂe statement per program line.
Brackets.
It is possible 1in most languages to write long
arithmetic and boolean statements without brackets,
as there is a fixed order of precedence for both
arithmetic and boolean operators. This, however, nay
cause difficulty for the reader and 1is not a good

idea.

3.3 STRUCTURED PROGRAMMING IN EDUCATION.

The overall goal of structured programming is to find simple

solutions to difficult problems and to represent these
solutions as clearly as possible. The key element in all of
this is the idea of Top-Down design. Quite apart from the

34

world of compufers, this is a skill which can be applied to a
wide wvariety of problems. The =ability to suppress the
consideration of details until the overall structure has been
completed is important in many activities and is essential in

all complex activities.

It is likely that the majority of good problem-soclvers have
always worked in this way, but up te now the methed has not
been formally described. It is also likely that many good
teachers have used such methods to demonstrate problem-seolving
activity for their classes but, sco far, such methods have not
been considered as obJjects of study in themselves and have not

been explicitly taught 1in schools. Computer programming

provides a unique opportunity for focussing on such problem-

solving processes that is not afforded by other school
subjects. When programming, it is possible to gain insight
into one’s own problem-solving strategy by examining that
strategy as a program and then observing the outcomes of that
strategy when the program is execufea. By reflecting on the
outcomes it is then possible to alter or improve components of

the strategy until it is considered satisfactory.

An understanding of structured programming will also make
students aware of the existence of design criteria such as
clarity, efficiency apd symmetry of structure. By designing
solutions in a Top-Down manner, it is possible to foster a
consciousness of the design decisions taken at each level.
The student will be required to critically examine, and
possibly reject, sclutions which provide the correct results
but which may violate some of the other criteria. In short,

35

students will become aware that getting the right answer is
not the only goal in problem solving, but that there may be a
variety of solutions to choose from, and that some solutions

may be preferable to others.

There will be situations where students are unable to find a
complete solution to a given problem. This may be frustrating
but, if the Top-Down method 1s followed in these cases, the
student will find a partial solution and clarify the problem.
This should 1lead +to the =ability to know when to seek the

teacher’s help and to ask specifig, well-directed questions.

Introducing students to structured programming is therefore a
‘worthwhile educational goal because of its role in focussing
on the problem-solving process and because of the insight it
can provide inteo the whole area of computing. It is intended
to teach students not only how to use the methed, but also to
make them fully aware of the method they are using and of its

possible application in other areas of the curriculum.

36

CHAPTER 4

4.1 LANGUAGES FOR BEGINNERS’ COURSES.

At present there seems to be no generally accepted educational
philosophy guiding the design of programming courses at second
level. The rationale for schools’ programming courses may
vary from vocational training for those who wish to pursue
careers as programmers, to an extension of the mathematics
syllabus. In many cases, however, the content 1s largely
determined by the available hardware and much emphasis is
placed on learning the syntax and semantics of whatever
programming language is most easily implemented. While this
is understandable in the present confused situation, it is not
the best approach and is coming under increasing criticism.
Moursound [43] has suggested that present second level courses
in the United States may be doing more harm than good and that
students who have taken such courses may be at a disadvantage

'if they proceed to take a University Computer Science course.

It is often argued that the use of BASIC in second level
courses is at the root of the problem. While it is recognised
that BASIC 1is structurally deficient and to be avoided
whenever possible, the same problems can arise with any
programming language if the primary aim is to teach the
programming language rathér than to teach programming. It is

vital, particularly for novices, to separate the task of

37

solving problems from the task of learning the rules and

regulations of a programming language. The programming

language (i.e. the implementation language) should be seen as
a tool for communicating the completed solution to the
computer, rather +than as a means of finding solutions in
the first instance, and the emphasis should be firmly placed
on finding well structured, elegant solutioné. In the school
situatioﬁ, programs are usually written, tested and then never
used again. It 1i1s easy to overlook the importance of
structure under these circumstences, but to do so 1is to miss

an important educational opportunity.

While the methods of structured programming were developed to
allow programmers to deal with large complex problems, the
types of problems used in a first programming course will not
be very large or very complex. This should not be used as an
argument for postponing the teaching of structured programming
until some later stage, as these methods are just as powerful
when applied to small problems™ and are 1likely to be
transferable to many eother situations. When beginning a first
course in programming, students are usually eager and well
motivated, so that the first concepts absorbed by them are
likely to become well established and will be difficult to
change at a later stage. Therefore, it is important to design
courses that help students to think in an orderly and precise
manner right from the start. It is also important to find
problems which illustrate and reinforce important programming
concepts and which are of interest to, and within the reach

of, our students. The temptation +to choose problems which

38

merely demonstrate the capabilities of the particular machine

being used should be resisted.

4.2 THE NEED FOR A MINI-LANGUAGE
In designing a suitable problem—-solving language, it 1is
important to be aware that language is not only a medium of
expression but also an instrument of reason. Bruner has
pointed out that language is "not only the medium of exchange
but the instrument that the learner can then Qse himself in
bringing order to the environment” [44]. Any language or
notation used should have the important characteristic of
relieving the learner of unnecessary work, thus allowing
concentration on the problem at hand. This can be achieved by
designing a language which:
1. Contains the minimum number of different concepts
with clear and simple rules for their combination.
2. 1Is easy to learn and to use.
3. Is applicable to a wide range of problems.
4. Has consistent épplication of the same rules in the
same way throughout.
5. Contains suitable control structures which are
available, or may be simulated, in most programming

(implementation) languages,

In short, the language should provide a gcod conceptual
framework for thinking about algorithms and should be easily
translated into any programming language with the minimum of

translation rules.
If a course is to be designed which attempts to emphasise the

39

essentials of programming rather than the details of some
particular programming language, then a mini-language
consisting of just the vital statements should be used. Most
of the widely available programming languasges contain far more
constructs than are necessary, and there 1is evidence ¢to
suggest that even professional programmers use only a small
subset of their particular language a large proportion of the
time [45)]. The two most important concepts in programming are
iteration and selection, and the choice of control structures
for these must be made with care. There are numercus control
structures available for both selection and iteration but
learning all of them confers neo advantage on the student.
Indeed it may hinder the development of the underlying
concepts due to the inevitable concentration on the syntax and
semantics of the large number of structures, and the
requirement to remember the appropriate circumstances in which
to use each individual structure. Another danger associated
with this approach is that the student may be convinced that
there is nothing more to programming than knowing all about

the various control structures.

Therefore, the approach adopted was to single out one
construct for iteration and one for selection. In each case,
the most general construct was chosen so that it would work in
all situations, thus relieving the student of the need to
remémber which construct to use under which set of
circumstances. Using this approach, there was also less
syntax to be learnt and this reduced the amount of specific,

low level knowledge to be absorbed, allowing for concentration

40

on the underlying concepts. This restriction also meant that
fewer translation rules were reaquired to convert the soclutions
into implementable programming languages, which was also an

important consideration.

This idea of using a mini-language for introductory courses
had been tested with undergraduates by Riley [46] and Campbell
[47]). In both cases, a subset of PASCAL was used and problem-—
solving techniques were emphasised. In each case, a
significantly positive effect was noted on subsequent
performance in traditional PASCAL courses. Campbell reported

an improvement of an entire grade on average.

4.3. MINI-LANGUAGE DEFINITION

The mini-language which was designed contained very few syntax
rules and, equally important, very few translation rules for
converting solutions into programming languages. It was hoped
that this restriction would encourage students to
approach similar problems in similar ways, and so help them to

develop a consistent style of programming.

4.3.1 ITERATIVE STRUCTURES

The iterative structure used was WHILE/ENDWHILE as it is the
most general of those available. All FOR/NEXT and REPEAT/UNTIL
loops may be written as WHILE/ENDWHILE loops, but there are
WHILE/ENDWHILE loops which may not be written in sither of the
other forms. The FOR/NEXT loop in figure 4.1 is of the most
general type possible and yet is very simply “‘matched’ by the

WHILE/ENDWHILE loop on the right.

41

FOR COUNT:= N TO M STEP L COUNT:= N
. WHILE COUNT <= M DO

. COUNT:= COUNT + L
NEXT COUNT ENDWHILE

FIGURE 4.1

Another objection to the FOR/NEXT loop 1is +the number of
variations in the way it can be written as N, M and L may be
variables or constants and may be positive or negative. The
worst aspect of all, however, is its lack of clarity because:
1. It is not clear what value COUNT has after the loop
has been executed.
2. It is not clear what happrens if N = M, or if N > M
and L is positive.
3. It is not clear what happens if the wvalues of COUNT,
N, M and L are changed within the body of the loop

(and most implementations allow this to be done!).

These problems do not ariée with the WHILE/ENDNHILE'looﬁ. The
loop control variable COUNT is explicitly incremented and so
there can be no doubt as to its wvalue at any time before,
during 6r after the iteration. Likewigse, the boolean
condition at the entry point to the locop is perfectly explicit
and so there is no doubt as to when the loop may or may not be
executed. This superiority of the WHILE construct is well
recognised and Metzler has reported an attempt to teach the
WHILE construct before the FOR/NEXT in BASIC, despite the fact
that the WHILE construct has to be simulated using IF and GOTO

statements [48].

Every REPEAT/UNTIL 1loop can be written as a WHILE 1loop by
reversing its boolean condition (Figure 4.2). The opposite is
not the case, as every REPEAT/UNTIL locp is executed at least
once because there is no guard on entry to the structure.
There are numerous situations in which a loop should not be

executed at all, and +this cannot be achieved using a

REPEAT/UNTIL loop.

REPEAT WHILE NOT CONDITION A DO

UNTIL CONDITION A ENDWHILE

FIGURE 4.2

Although it 1is possible to write all REPEAT/UNTIL loops as
WHILE/ENDWHILE loops, this may not always be desirable from
the point of view of simplicity and clarity. In particular,
there are occasions when some variable in the boolean
CONDITION A is 1initialised within the body of the loop. In
this case the HNOT CONDITION A expression above would be
invalid because it contained an undefined variable. This
difficulty may be overcome by introducing another wvariable
{often a boolean variable) in the WHILE condition but it is
probably better to use a REPEAT/UNTIL loop instead. These
circumstances are rare and so this slight difficulty should

not be allowed fo interfere with the language design.

The big advantage of the WHILE/ENDWHILE structure i1s that the
condition is tested before the 1loop 1is entered. This is

generally regarded as bhetter programming practice [45].

43

4.3.2 DECISION STRUCTURES
The normal practice with decision structures is to use the
IF/THEN/ELSE structure for two-way decisions and CASE/ENDCASE
for multiway decisions. However, the CASE structure was
rejected because any list of constants in a CASE statement may
be written as a boeclean expression, but the converse is not
true. Therefore the IF statement, which utilises boolean
conditions rather than lists of constants is more general:
i.e. CASE X$ OF
a,b,c

is equivalent to

IF X$ = "a”" OR X$ = "p" OR X$ = "c”
Conversely, even simple boolean expressions such as:

X > 0 AND X ¢ 10 (where X is of type REAL)
may not be expressed as a list of constants. The
remaining choice, therefore, was between the various kinds of

IF structures.

The most general IF structure, IF/THEN/ELIF/ELSE, was chosen
as this supports one-way, two-way and multiway decisions.
{ELIF is equivalent to ELSE IF). The use of ELIF enables
students to avoid deeply nested structures when they are not
necessary although, of course, nesting of structures is still
possible. The ELIF structure in figure 4.3 is a much simpler
and clearer representation than the nested structure. The
conditions "light is green”, "light 1is crange” and ELSE (i.e.
"light is red") are all at the same semantic level and so
should be represented as such in the program text. This is

not possible using the IF/THEN/ELSE structure.

44

Furthermore, it 1s possible

conditions (i.e. avoid the

structure and this 1is often

to

explicitly state all the

of ELSE) wusing the BELIF

desirable.

IF light is green THEN
Go

ELIF light is orange THEN
Stop if you can

ELSE
Stop

ENDIF

FIGURE 4.3

IF 1light is green THEN
Go
ELSE
IF light is orange THEN
Stop if you can
ELSE
Stop
ENDIF
ENDIF

A major advantage of

that they are very similar.

In

choosing these two control structures is

both cases entry to the

structure (and to any branch in the case of the IF structure)

is controlled by boolean

satisfactory than

expressions. This

a mixture of 1loop

unity 1is more

counters, lists of

constants and boolean expressions, which would be the case if

all the usual

also implies that boolean expressions are

and must be dealt

course.

structures were

with extensively and

introduced. This, of course,
extremely important

carefully in the

4,3.3 OTHER STATEMENTS AND STRUCTURES

The other
mini-language were:
1. An INPUT statement.

2. A PRINT statement.

3. An assignment statement.

statements and

structures included in the

4. Variables of type REAL and STRING.

45

5. READ and DATA statements.
6. Procedures.

7. Arrays.

4.4 DIAGRAMMATIC REPRESENTATION OF PROGRAM DESIGN

It was necessary to devigse a system of representing the
hierarchical nature of good Top-Down designs in a manner which
could be easily translated into programming languages. This
system should not alone represent the hierarchy of the
solution but should assist the leérner to discover it. It
should also, of course, be capable of supporting the chosen
control structures. There are three principal systems used to
represent algorithms in the popular textbooks. These are a)
flowcharts which are mainly associated with programming in
BASIC, b) pseudocode which is mainly used in PASCAL textbooks
and c) structure diagrams which are neot as widespread and are

often associated with COMAL.

4.4.1 FLOWCHARTS
Flowcharts may be criticised on the grounds that:

1. They graphically depict ANY flow of control and
discourage the discipline necessary to maintain good
structure,

2. They force the designer to concentrate on the most
detailed aspects of the problem before the overall
design is complete.

3. The flowchart and the program code are at the same
semantic level and so the flowchart confers no
advantage on the reader.

4. Levels of detail are very easily mixed and confused.

16

5. They have no provision for representing multiway
decisions.

6. There is no symbol to represent a loop.

As flowcharts are organised around conditional and
unconditional Jjumps, it is extremely difficult to see how a
set of rules could be drawn up to translate them into a
language which does not conteain a GOTO statement. Flowcharts,
then, distract attention from the important functional
relationships in the overall design. They highlight the flow
of control at the expense of inherent structure and so are of
no value at all in helping to develop an awareness of the

importance of structure,

4.4.2 PSEUDOCODE

There are many varieties of pseudoceode but most of them are a
compromise between Eanglish and PASCAL. This is a popular and
useful méthod of program development and does attempt to
represent the overall hierarchical nature of the solution. It
is usual to begin with a very high level description of the
solution as a 1list of indexed points. Each point is then
refined, 1i1f necessary, into a further list of indexed
sub-points and this process is continued until the program is
§ompleté1y broken down into a set of simple sub-tasks. This
is the classic Top-Down approach but, unfortunately, may lead
to a solution spread over a number of pages of text. In
addition, there is no obvious representaticon {(apart from the
.indices) of the relationships between the various sub-tasks.
It is also an extremely ’wordy’ method and 1is not easily
represented on a blackboard or overhead projector.

47

4.4.3 STRUCTURE DIAGRAMS.

Structure diagrams are developed in exactly the same way as
pseudocode but the finished product represents bpth the
hierarchy and the relationships between the parts 1n a
much clearer manner. They are very suitable for wuse in
schools because:

1. They force students to use a Top—Dan design.

2. They show overall structure at a glance.

3. They are hierarchical and support the refinement
process.

4. They are very different from any programming language
and so reinforce the idea of program design as a
separate task from coding.

5. They embody very few syntax rules of their own and so
the technique of constructing them can be learnt
quickly .and easily.

8. It is easy to modify the lower 1levels of the
diagram, without disturbing the upper levels. This
is important as problem—-solving is often a trial and
error process. This flexibility should encourage
students to examine their own designs critically and
continuously.

7. At every level there 1is a complete solution. This
may help students to feel that they are making
progress and encourage them to persevere.

B. Students may have any level of design checked by the
teacher before proceeding to the next level.

9. The teacher may supply the upper levels and Eequire
students to further refine the solution.

48

10. They may be translated directly into any computer
language, at the keyboard, by following a few simple
rules.

11. They are very suitable for use on both blackboards

and overhead projectors.

A form of structure diagram has been used by Kelly [49] and
Atherton [50] but this does not adequately represent the
mini-language outlined above. A variation of these diagrams
was therefore designed to ﬁatch the structures of the proposed
mini-language. A properly drawn diagram of this type is a
good reflection of one’s problem analysis. It also represents
the exact ordering of the statements within the program and so

may be readily translated into a programming language.

Each disgram is a tree-like structure (the +tree is upside

down) and may consist of:

(1) A ROOT box:

This contains the title of the program.

(ii) NODE boxes:

These are boxes that have been further refined.
They contain headings which may be used as REM

statements.

(1i11) LEAF boxes:

These are boxes that have not been further

refined. They contain actions.

{iv) PROCEDURE boxes:

These contain procedure names.

49

(v) THE IF SYMBOL: ®
This denotes the beginning and the end of an
alternative control structure. Beneath the IF

symbol, and attached to it, there must be at least

one DECISION BOX: <L :>

Each decision box contains a boolean condition
guarding entry to a block of the IF structure.
The last box may contain the word ELSE denoting an
ELSE clause. If all of the previous conditions
have been found to be FALSE, then the ELSE branch

is executed by default.

(vi) LOOP CONTROL boxes: C)

These denote the beginning and the end of a lecop.
FEach one contains a boolean expression which
'guards’ entry to a loop. The boxes below it, and
attached to it, contain the statements of the body
of the loop which are executed repeatedly as long

as the boolean expression is TRUE.

4.5. TRANSLATICN OF DIAGRAMS INTO PROGRAMMING LANGUAGES

It was neceséary to specify_ exactly how the diagrammatic
solutions should be translated into programming languages, as
otherwise the diagrams would be wuseless. This point is rather
neglected in most textbooks that use either structure diagrams
or flowcharts; possibly because of the near impossibility of
describing the trénslation process if all +the various looping
and branching structures are used. Nevertheless, it is vital

that this 1s done, as otherwise the student 1is burdened with

50

unnecessary effort which may distract from the problem at hand.
Ideally, the translation rules should be simple, unambiguous and
as few as possible, making the translation process a purely
"mechanical’ one. Once the translation rules are learned, the
student should be able to write programs at the keyboard
directly from a diagram in whafever implementation language is
being used, This part of the programming process should be
viewed by the student as fairly trivial and not nearly as

important as designing the diagram in the first place.

4.5.1 TRANSLATION OF SEQUENTIAL STATEMENTS
The general method for translating any diagram into a
programming language is as follows:
1. The disgram is a tree (upside down).
2. The tree consists of a root, leaves and nodes. The
root is the box containing the name of the problem.
Nodes are boxes that have been further refined.
Leaves are boxes that have not been refined.
3. Starting at the reocot ’‘walk’ around the tree keeping
an imaginary left hand on it at all times. Whenever
a leaf is encountered, the appropriate statement is
written in the programming language. Nothing 1is

written at a node.

An example of a simple diagram and the program derived from it
is shown in figure 4.4. This general scheme is the same for all
languages. Differences only arise when conditionsal and

lterative control structures need to be translated.

TITLE

Program derived from diesgram :

Note: A and B have both been further refined and therefore are
not statements in the program. They may however be used
as REM statements because A describes the process carried
out by executing D and E, and B describes the process

carried out by executing F and G.

FIGURE 4.4

o
r2

4.5.2. TRANSLATION OF THE CONDITIONAL CONTROL STRUCTURE

The start and end of a conditional structure is represented in
the diagrams by the symbol @ . The example in figure 4.5 is
interpreted as follows:

1. Once the structure is entered the first condition

on the left is tested.

2 a) If this is found to be TRUE then the statements
below it {(guarded by it) are executed. The
other conditions in the structure are not then
tested as only one branch of the structure may
be executed.

b) If it is found to be FALSE +then the next
condition to the right is tested.

3. This process is repeated until either one condition

is found to be TRUE or all the conditions have been

found to be FALSE.

(CONDITION A> (CONDITION B) {CONDITION C)

BLOCK 1 STATEMENTS BLOCK 2 STATEMENTS BLOCK 3 STATEMENTS

FIGURE 4.5

It may be noted that, at most, one branch is executed but that

it 1is also possible +that no branch 1is executed if a1l the

53

conditions are féund to be FALSE. There is no upper limit on

the number of branches but, of course, there musf be at least

one.

The diagram in figure 4.5 may be translated 1nto the wvarious

languages as shown in figure 4.8, The COMAL editor

automatically indents control structures as shown but in PASCAL
the indentation must be added by the programmer. With regard to
the Applesoft BASIC program it may be noted that:

1. The ’reversal’ of the boolean conditions can be
achieved quite readily by using the NOT operator or
(preferably) by using de. Morgan’s law.

2. It is possible to derive a simpler translation
rule, which decesn’t require reversal of the
conditions, by using multi-statement lines. This
works quite well 1if there are just a few statements
in each Dblock, but fails if there are more
statements in a block than will fit on a program
line. It is also very awkward to use this method
when nested IFs are involved.

3. The editor does not allow statements to be indented
as shown, and actually removes indentation if

included by the programmer.

The style of coding used in the BASIC examples is gquite unlike
the norm found in textbooks. The advantages of this style are
that control structures are oclearly indicated with Jjust one
entry point and one exit point, GOTO0s are confined to Jjumps

within & control structure and the statements governed by any

METANIC COMAL

100 IF CONDITION A THEN

APPLE PASCAL

IF CONDITION A THEN

110 BLOCK 1 STATEMENTS BEGIN

120 ELIF CONDITION B THEN

BLOCK 1 STATEMENTS;

130 BLOCK 2 STATEMENTS END

140 ELIF CONDITION C THEN

150 BLOCK 3
160 ENDIF

ELSE IF CONDITION B THEN

STATEMENTS BEGIN

APPLESOFT BASIC

B.B.C. BASIC

100
110
120
130
140
150
160
170
190
200

100
110
120
130
140
150
160
170
180
190

BLOCK 2 STATEMENTS;
END

ELSE IF CONDITION C THEN
BEGIN
BLOCK 3 STATEMENTS;
END;

END.

REM STARTIF

IF NOT. (CONDITION A) THEN GOTO 140
BLOCK 1 STATEMENTS
GOTO 200

IF NOT (CONDITION B) THEN GOTO 170
BLOCK 2 STATEMENTS
GOTO 200

IF NOT (CONDITION C) THEN GOTO 200
BLOCK 3 STATEMENTS

REM ENDIF ‘

REM STARTIF

IF CONDITION A THEN 120 ELSE 140
BLOCK 1 STATEMENTS
GOTO 190

IF CONDITION B THEN 150 ELSE 170
BLOCK 2 STATEMENTS
GOTO 190

IF CONDITION C THEN 180 ELSE 180
BLOCK 3 STATEMENTS

REM ENDIF

FIGURE 4.6

particular condition afe written immediately after that

condition.

The final conditional box may contain the word. ELSE, rather than
a boolean condition. In this case the last branch of the:
structure is executed if all the previous conditions have been
found to be FALSE. If there 1is an ELSE branch in the structure,
as in figure 4.7, it may be coded into the various languages as

in figure 4.8 (see page 57).

<CONDITION A> < CONDITION B>

BLOCK 1 STATEMENTS BLOCK 2 STATEMENTS BLOCK 3 STATEMENTS

FIGURE 4.7

4.5.3 TRANSLATION OF THE ITERATIVE CONTROL STRUCTURE

(conpiTION A)

ACTION 1 ACTION 2 ACTION 3

FIGURE 4.9

The diagram in figure 4.9 is interpreted as follows:

1. The condition in the round box is tested.

b6

METANIC COMAL

100 IF CONDITION A THEN
110 BLOCK 1 STATEMENTS
120 ELIF CONDITION B THEN
130 BLOCK 2 STATEMENTS
140 ELSE

150 BLOCK 3 STATEMENTS
160 ENDIF

APPLE PASCAL

IF CONDITION A THEN
BEGIN
BLOCK 1 STATEMENTS;
END

ELSE IF CONDITION B THEN
BEGIN
BLOCK 2 STATEMENTS;

APPLESOFT BASIC

B.B.C. BASIC
100
110
120
130
140
150
160
170
180
190

END
ELSE
- BEGIN

BLOCK 3 STATEMENTS;

END;
END.

REM STARTIF

IF NOT (CONDITION A} THEN GOTO 140
BLOCK 1 STATEMENTS
GOTO 200

IF NOT (CONDITION B) THEN GOTO 170
BLOCK 2 STATEMENTS
GOTO 200

REM ELSE BRANCH
BLOCK 3 STATEMENTS

REM ENDIF

REM STARTIF

IF CONDITION A THEN 120 ELSE 140
BLOCK 1 STATEMENTS
GOTO 120

IF CONDITION B THEN 150 ELSE 170
BLOCK 2 STATEMENTS
GOTO 190

REM ELSE BRANCH
BLOCK 3 STATEMENTS

REM ENDIF

FIGURE 4.8

57

2. If this 1s found tc be TRUE .then the statements
below it (guarded by it) are executed. The
condition is then tested again.

3. This process is continued until the condition is
found to be FALSE.

Note: If the condition is found +to be FALSE on the first test
then the guarded statements are not executed at all. The
diagram in figure 4.9 may be translated into the various

languages as shown in figure 4.10,

4.6 CHOICE OF IMPLEMENTATION LANGUAGE

Although one of the chief aims of the course was to teach
rrogramming concepts independently of any particular programming
language, it was still necessary to choose a computer language
for implementing and testing programs. The languages available
were APPLESOFT BASIC, APPLE PASCAL, METANIC COMAL (for Apple

machines) and B.B.C BASIC.

It is clear from the coded examples that both COMAL and PASCAL
support the chosen structures i1n a very clear manner. With both
of the BASICs +the structures have +to be simulated. The
conditional statement is particularly tedious to construct in
BASiC. This is not due to any fault in the chosen control
structure but because both BASICs are structurally deficient
languages. Applesoft BASIC is particularly bad as it does not
support any control structures, apart from the IF/THEN
conditional statement (with no ELSE branch)} and the FOR/NEXT
loop. Neither does it support procedures. It also has an
appallingly bad editor, which is another important

consideration. B.B.C. BASIC is slightly more structured and has

58

METANIC COMAL

100 WHILE CONDITION A DO

110 ACTION 1
120 ACTION 2
130 ACTION 3
140 ENDWHILE

APPLESOFT BASIC

100
110
120
130
140
150
160

B.B.C. BASIC

100
110
120
130
140
150
160

APPLE PASCAL

. WHILE CONDITION A DO
BEGIN
ACTION 1;
ACTION 2;
ACTION 3;
END.

REM STARTLOOP
IF NOT (CONDITION A) THEN GOTO 160
ACTION 1
ACTION 2
ACTION 3
GOTO 100
REM ENDLOOP

REM STARTLOOP
IF CONDITION A THEN 120 ELSE 160
ACTION 1
ACTION 2
ACTION 3
GOTO 100
REM ENDLOOP

FIGURE 4.10

a good editor. It supports procedures, the REPEAT/UNTIL 1loop
and the IF/THEN/ELSE conditional statement. This latter
structure is not much of an improvement on the Applesoft IF/THEN
statement as the complete statement must be written on one

program line.

The choice of language then was between METANIC COMAL and APPLE
PASCAL. This was an easy decision as the operating environment
of COMAL 1is simpler. It was feared that learning how to
manipulate.the PASCAL editor, filer, compiler etc. would take up
most of the available time, leaving no time for the real purpose
of the course, i.e. solving problems. It was also felt that an
interpreted language, rather than a compiled one, was better for
beginners. This was because their initiai efforts were sure to
contain many errors and the interpreter could give them
immediate feedback. COMAL is particularly good in this respect
as 1t checks the syntax of each line as it is typed and reports
any errors found. It also performs a pre-RUN check on each
program to ensure that all control structures are properly
nested and closed. If any error of this nature is found then it
igs reported by the systen. In effect, this means that any
program which can be RIN is free of syntax errors and so if the
desired result is not achieved it can be assumed that there is a
logical error. This knowledge, combined with the system-forced
indentation, i1s helpful when debugging programs. A further
reason for choosing COMAL was that it allows external library
procedures to be incorporated into programs in a very simple

manner.

60

CHAPTER 5

5.1 INTRODUCTION

A review of the currently available textbooks for second level
courses was cgrried out before developing the course materials.
The purposes of this review wére:

1. To see if such textbooks might be suitable for the
course.

2. To gain some inzight into what are the accepted
norms for such courses.

3. To show how the mini-language and the structure
diagrams can be used to solve the problems that are
used in these books and to compare the solutions
developed in this way with those in the books.

4., To find prohlems that might be used in the course.

Five books were reviewed [49,50,51,52,7]. Two of these {[49,51]
are the current best-sellers in Irish second level schools. The
other two COMAL books [50,52] were reviewed briefly because
COMAL was the chosen implementation language. The final book
t?] was reviewed because it has been distributed to all second
level schools by the Department of Education and is concerned

with Top-Down programming, structure diagrams and COMAL.

61

5.2 BASIC COMPUTER PROGRAMMING FOR STUDENTS ([51]

In the préface of this ©book the authors state that it was
"produced with the object of enabling students of. all age groups
to communicate with computers using what is often regarded as
the easiest and quickest computer language +to learn - BASIC".
In chapter 1 (p».9) they state that "the process of making an
algorithm acceptable to 'a computer is called programming"”.
These two statements would suggeét that the emphasis of the book
is on coding in BASIC and this is indeed the case. In the early
chapters there is nc clear distinction drawn between
problem-solving, coding and editing. Most of the examples given
are designed to show how BASIC statements such as READ, LET and

PRINT work, rather than to solve any stated problem.

5.2.1 FLOWCHARTS

Initially, flowcharts are used +to develop programs but after
page 100 they are discarded. In the rest of the book, if an
algarithm is developed before coding, it is done by writing a
sentence describing each section of the program. In most cases,
the finished program is presented without any preliminary
discussion of the algorithm. Figure 5.1 {from p.51) 1is a
typical example of the wey in which flowcharts are used in the
book. The flowchart 1is an exact, statement by statement,
replica of the cocde and salis of little value. Even in such =a
”simple problem, the structure diagram allows the programmer to
seek a solution 1in a Top-Down manner. The completed diagram
{(figure 5.2) also tells us much more about how the problqm was

approached.

62

Create a program which reads a number of hours and minutes from data
as a pair of values, calculates and prints the total number of minutes.
e.g. 5,2 = 5 hours and 2 minutes. The dummy value used is minus hours

(-H).

Solution

10
START 20

FIGURE 5.1

READ H,M
IF H<(0 THEN B0
LET A=H.60 + M

PRINT H,M,“=".A
GOTO 10 '
DATA 5,2,3,45,15,16,32,4,24.0
DATA 48,0,-5,0

END

MINUTES

/\

READ FIRST LOOP TO PROCESS ALL
SET OF DATA , THE DATA AND PRINT RESULTS
READ H, M H >= 0
DO CALCULATION OUTPUT RESULT READ NEXT
SET OF DATA
A:= (H*60) + M PRINT A READ H, M
FIGURE 5.2.

63

The problem in figure 5.3 (from p.53) is re-solved using the
mini-language and a structure diagram in figure 5.4 . The
structure diagram illustrates the overall appreoach to the
problem in a clearer fashion and is much easier to understand.
The code developed from the flowchart involves four jumps and
does not indicate where the loop begins and ends. This may be
contrasted with the BASIC program derived from the structure
diagram:

10 READ A

20 REM STARTLOOP

30 IF A < O THEN 70

40 IF A »>= 40 AND A <= 50 THEN PRINT A

50 READ A

60 GOTO 20

70 REM ENDLOOP
In figure 5.5 (from p.90) it is impossible to understand how the
solution works without examining the flowchart in minute detail.
This, in turn, indicates that in developing the solution it was
necessary to consider all the minor details first and then build
them up to arrive at +the overall solution. This approach
confers no advantage over coding the program directly in BASIC.
This is in marked contrast to the structure diagram (figure 5.8)
where it is obvious from the first few lines that the program is

accepting posltive numbers from the keyboard, searching the data

for each one and terminating when a negative number is input.

5.2.2 SELECTION AND ITERATION

As the stated purpose of the book is to teach BASIC, there 1is
little attention paid to the underlying programming structures.
There is no clear distinction drawn between looping and
branching. This is because both are introduced together in

chapter 4 for the purpose of showing how the GOTO statement

64

Design a program to read an unknown quantity of values in the range
0 to 100 and to print those in the range 40 to 50 inclusive. A-negative
value is to be used to terminate the data,

Solution
10 READ A
START - 15 DATA 47,8,42,75,41,39,95,-2

.20 IF A<O THEN 60

25 {F A<4A0 THEN S0
30 IF A>50 THEN 5D
40 PRINT A
50 GOTO 10

4 60 END

f

- PRINT
A
FIGURE 5.3
RANGE
INITIALISE LOOP TO READ ALL THE NUMBERS
AND TO TEST EACH ONE
READ A

{ A >= 40 AND A <= 50 > READ A

PRINT A

FIGURE 5.4

A set of data comprising a stall number, name and job description is
provided for each of a number of employees. Create a program which
finds the job description of an employee whose stafl number is entered
from a terminal.

Generalize this program to repeat the process until the value 0 is input
for the staff number. ' :

Flowchart Program

10 PRINT “ENTER EMPLOYEE NUMBER"
(START) B 15 PRINT “ENTER 0 TO END"*
20 tINPUT N

= 25 iF N=0 THEN 420

READ A
IF A=0 THEN 100

READ T%,J8
IF N=A THEN B0

70 GOTO 30

80 PRINT N;T8:" HAS JOB ";Jg

90 GOTO 400 . S

100 PRINT “NO SUCH EMPLOYEE"
130 DATA 16,"JOE SMITH”,“CLERK"

(STOP ’ 380 DATA 768,"ALAN HUGHES”,”DRIVER"

330 DATAD

400 RESTORE

410 GOTO 10.
Y 420 END

3838

PRINT
NO SUCH
PERSON

A
A

FIGURE 5.5

JOBFINDER

INITIALISE DO THE PROCESSING FINISH
INPUT N N >0
SEARCH DATA FOR RESTORE THE INPUT N
VALUE EQUAL TO N(OR O) DATA POINTER
READ A A<O>N AND A<O OUTPUT RESULT
OF THE SEARCH

READ T3, J$ READ A FIND REASON FOR
LOOP TERMINATION.

READ T$, J$ PRINT T$, J$ PRINT "NOT
ON THE STAFF"

FIGURE 5.6

67

works. It is felt that this approach is unwise as looping and
branching are vital concepts and the GOTO statement exists

merely to facilitate coding of loops and branches in BASIC.

The first program in the book that contains a loop (from p.486)

is as follows:

10 READ H, R

20 LET P=H*R

30 PRINT P

40 GOTO 10

50 DATA 6,1.20, 7, 1.40, 5, 0.80

60 DATA 4, 1.50

70 END
This program contains an infinite loop and cannot terminate
properly. The authors discuss the ’‘workings’ of the program in
detail and indicate that it will eventually terminate with an
‘out of data’ error. This is bad programming practice and an
unsatisfactory way to introduce the important topic of loop
construction. The FOR/NEXT loop is introduced in chapter 5. It
is not emphasised that the FOR/NEXT structure is designed for
looping situations in which the number of iterations is known in
advance. In fact, it seems that the autheors do not believe this
is the case as they give three examples 1llustrating how to
tamper with the structure, one of which is as follows:

10 FOR I = 1 TO 20

15 READ X

20 IF X = O THEN 50

25 IF X > 100 THEN 40

3OLET C =C + 1

40 NEXT I

50 (rest of program)
This is clearly not a FOR/NEXT situation at all as the loop is
terminated either when I exceeds 20 or when X=0, The structure

of this program fragment could be improved as in figure 5.7.

This would result in the following code:

68

10 LET I=1

20 LET C=0

30 READ X

40 REM STARTLOOP

50 IF (X=0) OR (I>20) THEN 100
60 LET I=I+1

70 IF X <= 100 THEN C=C+1

80 READ X

90 GOTO 40

100 REM ENDLOOP

DEMO

X<>0 AND
I<=20

I1:=1 C:=0 READ X

I:=I+1 READ X

C:=C+1

FIGURE 5.7

A further point to note about the listing from the book is that
the authors fail to initialise the variable C. This practice is
carried out +throughout +the book, the assumption being that
uninitialised variables will have zero value, While this is
true for most BASIC implementations, it is not good practice and

would not work with most other languages.

No problem specification is given for this program fragment, or
for the other ones which tamper with the FOR/NEXT structure, and

no explanation is given for coding them in this way. The

69

motivation seems to be to demonstrate not pnly how the
statements of BASIC work but also to show how they may be
*fooled’. The student, however, is left with the impression

that programming consists of mysterious tricks.

Boclean operators (AND, OR, NOT) are introduced (p.58) as
"additional facilities”. A truth table 1is shown for each
operator and some trivial exgmples are given. These examples
are used merely to illustrate the truth tables and none are in
solutions to stated problems. It seems that the authors do, in
fact, regard Dboolean operators as “"additional facilities" as
they do not use them in their own programs. If, however, it 1is
realised that selection and iteration are the fundamental
structures in all progrems, and if both of these structures are
'guarded’ by boolean expressions, then these exXpressions and

their construction with boolean operators are of vital concern.

5.2.3 ’ADVANCED’ BASIC.
Towards the end of the book there is a section (Chapter 15} on
*Advanced’ BASIC. This is not, as one might expect, a chapter
about solving very difficult problems with BASIC but one in
which additional (and somewhat rare) BASIC statements are
described. This emphasis on languasge ‘facilities’ at the
expense of problem-solving 1is, however, consistent with the
general approach of the book. These ’advanced’ facilities are:

A. The IF/THEN/UNLESS STATEMENT (p. 264)

B. Thg'FOR UNTIL STATEMENT (p. 268)

C. The FOR..... WHILE STATEMENT (p. 268)
These are merely looping and branching statements and can easily

be constructed using simpler, more common statements. The

70

impression given by this chapter is that, to become an
*advanced’ programmer, it is merely necessary to learn how more
statements work. This is not so, as beingd a good programmer
involves analysing problems in a disciplined, systematic way and
detailed knowledge of numerous programming language statements

is not much help in this regard.

This book was considered to be unsuitable for the purposes of

the course, for the reasons outlined above,.

5.3 FOUNDATIONS IN COMPUTER STUDIES WITH COMAL (49}
The preface of this book contains six stated aims, four of which
concern ’'general’ computer appreciation. The other two are:

1. To develop an appreciation of structured

problem-solving.

2. To develop skill in COMAL programming.
Most of the book is devoted to these two aims. The first two
chapters fail to make a clear distinction between
problem-solving, editing and disk management. These are all
introduced togeéther without any attempt to emphasise key
concepts such as variables, assignment statements and input

statements.

5.3.1 SELECTION

The first decision structure introduced is the IF/THEN/ELSE
structure. This is represented iq the structure diasgrams by a
decision box containing a boolean expression with tﬁo branches
leading out of 1it. These branches are marked YES and NO
respectively. The branch marked YES is executed if the boolean

expression is TRUE and the branch marked NO is executed if it is

71

FALSE. This arrangement often leads to situations in which it
1s necessary to go the bottom of a diagram before accomplishing
a task at the first level, as the author concedes in the example
(on p.42) concerning conversion of singular nouns to plurals

(see figure 5.8).

In the alternative diagram {(figure 5.9) all the decisions, which
are of equal importance, are represented at the same level of
the diagram. This is a neater, easier to follow representation
of the solution. This method 1is also more conducive to
'Top-Down’ thinking as the decision is taken at a certain level
of the diagram and does not intrude on lower levels if there are

any.

This author’s sclution is then coded in COMAL (on p.43), using
four nested IF/THEN/ELSE structures. On the following page it
is remarked that the "need for multiple selection arises fairly
often” and an IF/ELIF coding of the same problem is given. This
is a simpler, clearer coding as there 1is really only one
multi-way decision to be made, rather than four separate two-way
decisions. This 1is reflected much more clearly by the
alternative diagram presented here than by the diagram in the

book.

All the remaining problems in the chapter involve multi-way
decisions and are treated in either of two ways:
1. Solved using nested +two-way decisions and coded
using IF/ELIF.
2. Solved using one multi-way decision (like the one

suggested here) and coded using the CASE structure.

72

CONVERT
SINGULAR NOUN
* TO PLURAL
INPUT -
OUTPUT
SINGULAR < NOUN = cum@ :
NOUN ANSWER
. T . :
: . ADDREM |~ - '~
TO FORM i NOUN = MOUSE?
PLURAL :
PLURAL = MICE
NO
PLURAL := OXEN < NOUN = WOMAI’D
!
YES ‘ NO
: ADD S
-{ PLURAL:=WOMEN - | TOFORM
PLURAL
FIGURE 5.8
PLURAL
INPUT NOUNS$ FIND PLURALS$ PRINT PLURAL$

PLURALS: = PLURALS$: = PLURALS$: = PLURALS: = PLURALS$: =
“"CHILDREN" "MICE" "OXEN" “"WOMEN " NOUN$+"S"

FIGURE 5,9

Towards the end of the chapter (p.55), a problem 1is shown to
i1llustrate how the CASE statement can be very clumsy. The
program is then coded using the IF/ELIF structure to show how it
is superior to the CASE structure. In all, fhree' different
methods of making decisions are shown. This 1is unhelpful,
especially when it is conceded that in certain circumstances two
of these may be very unsuitable, This may 1leave students
confused about which structure to use and will almost certainly
lead them to employ mixtures of these structures when dealing
with larger problems, It would seem that the author was more
concerned with giving a full description of COMAL and less
concerned with developing a structured approach to

problem-solving.

5.3.2 ITERATION

Chapters 4, 5 and 8 are concerned with looping and introduce the
REPEAT/UNTIL, FOR/NEXT and WHILE/ENDWHILE structures
respectively. The first problem introduced to demonstrate the
REPEAT/UNTIL loop is to find the mean of a 1list of positive
numbers which are input. A negative value is used to indicate
the end of the input. The diagram for the solution (figure
5.10}) does not clearly suggest the structure of the solution and
gives no indication of how the problem was analysed. It merely
presents the statements in the same way as a program 1listing
would. An alternative using the Top-Down method is suggested

(figure 5.11).

The solution in the book ({(figure 5.10) is not strictly correct
as 1t does not take account of the fact that there may be no

rositive input. This is &a general feature of solutions that

74

FIND
MEAN

REPEAT
UNTIL MARK
<0

SUM := 0 COUNT:=¢{ | INPUT

MEAN := SUM ouTPUT
MARK AN =S

COUNT MEAN

SUM ;= COUNT := INPUT
SUM + MARK COUNT + i MARK

FIGURE 5.10

FIND MEAN
INITIALISE LOOP TO ACCEPT OUTPUT THE
NUMBERS & FIND MEAN RESULT

SUM: =0
COUNT: =0 MARK

MARK>=0

< COUNT>O >

SUM: = COUNT: = INPUT | MEAN: = PRINT
SUM + MARK COUNT + 1 MARK SUM/COUNT MEAN
FIGURE 5.11

75

employ the REPEAT/UNTIL structure. In very many problems there
are circumstances in which the actions inside the loop should
not be executed at all. To guard against this, the boolean
expression controlling the loop must be placed at the start of
the loop. This means that the WHILE/ENDWHILE structure should

be used.

Another problem dealt with in this chapter is to find the wvalue
of 7!. The program is as follows. (All REM statements have
been removed).

70 FACTORIAL:= 1

80 N:= 7

90 REPEAT

100 FACTORIAL:= FACTORIAL * N

110 N:i= N -1

120 UNTIL N = 0O

130 PRINT "7! = "; FACTORIAL

140 END
It may be noted that it is not necessary to write a program to
calculate 7!, as this can be done with a simple print statement,
i.e. PRINT 7*6%5%4%x3%2%1., It must therefore be assumed that the
author intended this program to be generalised to find N!. The
given program is correct and does calculate 7! ; but, if it is
generalised to calculate N! (where N is input), it will fail
when N is given the wvalue ZERO. The reason for this is again
due to the nature of the REPEAT/UNTIL structure. The loop 1is
not guarded properly and entry is allowed when N has ZERO value.
This would lead to the loop being executed infinitely, because N

is decreased inside the loop, and so "UNTIL N = 0" can never

become TRIE.

It is just as simple to write a program for this problem which

will work under all circumstances, assuming that the input 1is

76

valid (which is a separate issue), This of course involves a
properly guarded loop and the WHILE/ENDWHILE structure.

10 INPUT N

20 FACTORIAL:= 1

30 WHILE N>1 DO

40 FACTORIAL:= FACTORIAL * N

50 N:= N-1

60 ENDWHILE

70 PRINT FACTORIAL
The loop 1is not executed at all if N=0 (or if N=1) and so
FACTORIAL retains 1its original value of 1, which gives the

correct answer for both 0! and 1!.

The FOR/NEXT loop is introduced in chapter 5. It is emphasised
that this structure 1is only suitable where the loop is to be
éxecuted a fixed number of times. The 7! problem is recoded
using a FOR/NEXT loop but still cannot be generalised to find N!
as it contains the line:

90 FOR COUNT:= 7 DOWNTO 1 DO
If this were generalised it would be:

90 FOR COUNT:= N DOWNTO 1 DO
It is not clear what would happen here 1f N had the value 0 or 1

as both ‘0 DOWNTO 1’ and ’1 DOWNTO 1’ are meaningless.

The WHILE/ENDWHILE 1loop is introduced in chapter 6. It is
femarked (on p.88) that "the WHILE loop is more general than the
REPEAT loop"” and that “every REPEAT loop could be recast as a
WHILE loop, but not the other way round”. The author does not
point out that the same may be said of the FOR/NEXT loop. (This
is demonstrated in chapter 4 of this thesis). The use of the
REPEAT loop is then justified . because it is “"often a more

natural way to express iteration and may make programs easier to

77

read". It is not clear what "natural"” means in this context but
it is probably fair to assume that it is concerned with clarity
of expression. No examples are given to illustrate this claim.
In another example (on p.138) the author uses WHILE/ENDWHILE for
a fixed iteration loop. While this is perfectly correct, it is
likely to lead to confusion for students who have been told that

the FOR/NEXT loop is the one to use under these circumstances.

The treatment of both selection and iteration invoives too many
programming constructs and so distracts from the most important
issue, i.e. problem—-solving. All the problems in these chapters
can be solved using the WHILE/ENDWHILE loop and in many cases
the =solutions are more general and clearer. Even if all the
other loops are tc be introduced, the WHILE/ENDWHILE lcop should
be introduced first as it 1is the most general. It also
encourages a Top-Down approach as the loop control condition 1is
usually constructed before the body of the loop is written.
This in turn encourages the student to construct the condition

very carefully.

Boolean operators are almost totally ignored and are dealt with
in less than half a page (p.141). This indicates that the
author does not consider boolean operators to be important and,
in fact, they are not used very much in subsequent programs. No
attempt is made to show how these operators may be combined to

build up powerful conditional expressions.

5.3.3 STRUCTURE DIAGRAMS
Throughout the book, structure diagrams are used to develop

solutions before coding them in COMAL. A typical example,

78

involving the calculation of income tax, appears on page 24
(figure 5.12). This diagram is very wide and not very deep.
This is an important characteristic of most of the diagrams in
the book, indicating that a Top-Down method has not been used.
The diagram in figure 5.12 1is a direct restatement of the
program listing and appears to have been derived from the
listing rather than vice versa. The alternative solution
(figure 5.13) gives a much clearer 1idea of how the problem was

approached.

A later problem (figure 5.14) concerns finding the smallest
positive power of 2 that exceeds a given (input) number. This
solution contains no output statement and is obviously not a
Top-Down solution. There is also an unnecessary variable
(POWER) which makes the solution quite difficult to understand.

The alternative (figure 5.15) is much simpler.

It would seem, from the examples presented here and the others
in the book, that the diagrams are extremely ‘close’ to the
coded COMAL programs. Because of this, they tell us little more

than the program listing and so are of relatively little value.

While this book is closer to the type of course being developed
than the previous cne, it was considered unsuitable because of
the lack of a proper Top-Down approach and the confusion caused

by the presentation of all the looping and branching structures.

5.4 STRUCTURED PROGRAMMING WITH COMAL [50Q]
This book is intended to be a "suitable introduction to problem
analysis and programming for a complete beginner or for someone

who knows BASIC". It would seem, however, that the book is

79

- INPUT
SALARY

INPUT
MARITAL
STATUS

YES

TAXABLE
:= SALARY -
[2400

CALCULATE
INCOME
TAX

FIGURE 5.12

TAX OUTPUT
=35 « TANABLE TAX
‘ 100
NO

TAXABLE
:= SALARY -

£1200

T

TAX

INPUT FIND PRINT
SALARY TAX TAX
FIND TAX:=
TAXABLE TAXABLE * 0.35
INFUT STATUSS = STATUSS =
STATUSS “"MARRIED" "SINGLE"

TAXABLE: =
SALARY - 2

400

FIGURE 5.13

TAXABLE: =
SALARY - 1200

80

=

FIND LEAST
POWER OF 2
GREATER THAN N

INPUT DO
GIVEN NUMBER INDEX := 0 POWER := | WHILE POWER
N <= N
POWER := INDEX :=
POWER * 2 INDEX +1
FIGURE 5. 14
27N
INPUT N LOOP TO FIND PRINT
REQUIRED INDEX INDEX

INITIALISE

INDEX:= 0

(27 INDEX <= N;)

INDEX:=

INDEX + 1

FIGURE 5.15

81

geared very much towards sowmeone who knows BASIC, or some other
programming langdguage, reasconably well. The author assumes
knowledge of many of the initial concepts and so there is a very
skimpy treatment of variables and of the assignment statement.
The examples given at this early stage concern both the use of
string processing statements and the use of string variables to
simulate records. This is not suitable for a complete beginner.
Similarly, some of the sample programs given in the initial
stages are extremely complex and often involve control
structures and COMAL statements which have not vyet been
mentioned in the book (e.g. p.32). This tendency to use COMAL
statements before they have been explained is a serious flaw and
also occurs with conditional expressions fp.29), procedures
{p.36) and boolean operators (p.61). In many cases new ideas

are introduced with over-complex examples, e.g. conditional

structure (p.58), CASE statement (p.72) and arrays (p.76).

5.4.1 ITERATION

The FOR/NEXT loop is introduced first, followed by the
REPEAT/UNTIL loop. The author recognises that the REPEAT loop
"has a defect” and warns of the danger of "an unexpected =zero
case” (p.122). Despite this, the REPEAT/UNTIL and FOR/NEXT
constructs are used most of the time because "these structures
often express the sense of what is being done in terms that
people can more readily appreciate” (p.128). The WHILE/ENDWHILE
construct, which is acknowledged as being “"more general"” and
"safer”, is reserved for special cases where no cocther construct
is possible. It is strange that the FOR/NEXT and REPEAT/UNTIL

constructs should be considered ’easier to understand’ than the

82

WHILE/ENDWHILE. There is no evidence to support this and it 1is
difficult to see how any one of the constructs should be more

difficult to understand than the others.

5.4.2 SELECTION

The IF/THEN/ELSE construct is introduced first for two—way
decisions and the CASE statement is used for mualti-way
decisions. The ELIF construct is introduced later for multi-way
decisions "which do not convert naturally into discrete sets of
values”, i.e. for special cases. There is only one example (on
p.130}) to illustrate its wuse and it is only used twice in the

remainder of the book.

Unlike the other textbooks reviewed, there is a reasonably
detailed treatment of boolean operators, although de Morgan’s
Laws are not mentioned. However, the author also makes the
distinction between inclusive and exclusive OR, which is, at
best, irrelevant. Once the rules for constructing a truth table
have been given, there ié no need for this distinection, as it
may lead to confusion. Indeed the author has confused himself
on this very point and makes the misleading statement that “OR
leads to a true compound statement if both simple statements are

true” (p.B63).

Throughout the book the author uses the ’post holes’ problem to
illustrate various points. It would have been preferable to
have used problems that could actually be programmed on a
computer. Most of the worked problems are analysed by listing a
few points under the heading Problem Analysis/Program Design and

this 1is wusually followed directly by the coded program.

83

Structure diagrams are introduced but only used to solve three
‘computable’ problems in the whole book. The motivation for
introducing the diagrams is not clear as the author does not use

then himself.

This book is not suitable for the propesed course as it assumes
a certain knowledge of BASIC, does not use structure diagrams in
a desirable way and only uses the two most important and general
control constructs (WHILE/ENDWHILE and IF/THEN/ELIF) for

*special cases’.

5.5 BEGIMNING COMAL {52]
This bock was written by one of the designers of COMAL and

claims to be "not only about COMAL; it is also an introduction

to structured programming in general”. The book is accompanied
by a disk containing numerous programs, listings of which are
given in the book. The whole focus of the book is on showing

how COMAL statements work, using the given programs. There are
numerous exercises, most of which involve running and editing
these programs. There are also numerous very‘triVial questions
which merely ask the learner to supply the line-number of some

particular statement or statements from the given listings.

Structure diagrams are used occasionally, but always to
illustrate the structure of a program which has already been
written. They are not used as tools for developing solutions
but as devices for illustrating program listings by suppression
of detail., The exercises which involve the diagrams all consist:
of ’filling in the blanks’ in an incomplete diagram by checking

the program listing.

84

The treatment of control structures is similar to that of the
other COMAL bocoks. For iteration, the FOR/NEXT 1loop is
introduced first, followed by the REPEAT/UNTIL and finally the
WHILE/ENDWHILE. In the supplied programs the FOR/NEXT and
REPEAT/UNTIL structures predominate. For selection, the
IF/THEN/ELSE construct 1is used for two-way selection and the
CASE/ENDCASE construct is used for multi-way selection.
Amazingly, the IF/THEHN/ELIF structure is not mentioned anywhere
in the book. As in the previous book, the treatment of boolean

operators is very skimpy.

This book 1is not concerned with solving problems. All the
matérial, exercises etc. are concerned with trying to
understand, edit and modify given programs. All of +these
programs must be taken as ’‘given’ as there 1s no problem
specification for any of +them. Because of +this, the book has
very little relevance to the course described here, although it
may be of value to those seeking an understanding of the way in

which COMAL statements work.

5.6 THE DESIGN AND USE OF STRUCTURED ALGORITHMS (7]

This book was tssued to all second level schools in the country
"as an aid to the teaching of computer studies”. The aim was to
"report on the design and use of structured algorithms"”. It 1is
geared more towards teachers’ needs than towards studentsf and
assumes familiarity with the ideas of input, output and
assignment. The first chapter describes the historical
development of structured programming and this is followed by an
excellent chapter ocutlining the general features of structured

programming, including Top-Down design. The remainder of the

858

book consists of programming examples using structure diagrams.
The appendix contains COMAL programs for each of the structure

diagrams.

The authors state that they wish to “"present structured
programming as a method which is systematic and which produces
easily understood and logical algorithmic solutions to
problems”. This is not achieved however{ as the book contains
major flaws which render it of little value:

1. Despite the excellent description of the Top-Down
method, the problems are not solved in a Top-Down
manner (apart from a few introductory
’non—-computer’ prcoblems).

2. All of the COMAL looping and decision structures
are used and there is no set of translation rules
given to convert the disgrams into COMAL. The
result of this is that many of the COMAL programs
bear very little relationship to the disgrams from
which they were derived.

3. In many cases diagrams and programs are given
without any problem specification.

Two examples will illustrate these points:

1. The diagram 1in figure 5.16 is an algorithm for

"searching a list of numbers for a target number”.
On page 34 it is stated +that the first level of a
solution should be "concerned with WHAT must be
done rather than HOW it must be done™. It is
patently obviocus that the first level of this

solution does not describe what must be done and

B6

is, in fact, totally meaningless by itself.
Practically all the programming examples 1in the
book are carried out in this style. This
particular exemple also contains an unnecessary
boolean variable. An alternative Top-Down solution
using the proposed mini-language is given in figure

5.17.

2. A diagram is given {(p.67) +to solve the problem of
converting a given exam percentage 1into a grade.
The diagram and the associated program (p. 151) are
in figure 5.18. While the supplied program does
actually provide the same output as the diagram, it
does so by a different process. There is nothing
in the diagram which is equivalent +to line 40 of
the program. Neither do the values in the CASE
structure bear any resemblance to +those in the

conditional statement in the diagram.

This practice occurs throughout +the book and is a direct
consequence of the lack of a set of translation rules for
deriving the program from the diagram. There are no translation
rules because it would be extremely difficult to devise a
coherent set of rules to cover all the control structures used

in the book.

The fact that the diagrams are badly organised, badly translated
and not Top-Down means that this book, apart from the
introductory chapters, adds nothing to our understanding of

systematic problem-solving and structured programming.

87

BOOLEAN- FIND

SPECIFY SET FOUND
TARGET TO FALSE

WHILE

" NOT FOUND -..
AND NOT EOD

' . .
'-li-: . e e e - . ER Y

IF FOUND
= TRUE

7y W.. .

VALUE

READ VALUE = TARGET PRINT
"FQUND"

PRINT
"NOT FOUND™

N T

SET FOUND
TO
. TRUEi

FIGURE 5.16

LINEAR SEARCH

e

INPUT TARGET

DO SEARCH

LOOP TO READ VALUES

AND COMPARE WITH TARGET

PRINT RESULT

FIND REASON FEOR
LOOP TERMINATION

READ VALUE VALUE<>TARGET VALUE=TARGET VALUE<>TARGET\{
AND NOT EOD

READ TARGET

PRINT "FOUND™

PRINT "NOT FOUND"

FIGURE 5.17

88

OUTPUT
GRADE

INPUT
7 HARK

MARK TO GRADE

10-24

£10

GRADE=A

GRADE=B

GRADE=C GRADE=D GRADE=E GRADE=F

GRADE=G

0010
0015
017
0020
0030
o040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210

//PROGRAM TO CONVERT PERCENTAGES TO GRADES
//PROGRAM C 4.8

CLEAR

INPUT " ENTER MARK 0 TO 100 ®: MARK
//CONVERT MARK TC A VALUE IN RAKGE 1 TO 8
GRADE:=INT((MARK+5)/15)+1

CASE GRADE OF

WHEN 1

PRINT "NG"

WHEN 2
PRINT
WHEN 3
PRINT
WHEN 4
PRINT "D"
WHEN 5
PRINT "C"
WHEN 6
PRINT "B"
OTHERWISE
PRINT "A"
ENDCASE
END

ng

llErl

FIGURE 5.18

89

5.7 CONCLUSION i

It would seem from the books reviewed here that the general
practice in schools’ programming courses is to egphasise the
semantics of the chosen programming language, while paying
relatively little attention to general problem-solving
strategies. In all cases the authors used most of ﬁhe available
control structures, although there was a consensus that the
WHILE/ENDWHILE and the IF/ELIF structures were the most general
of those available. Despite this, these two structures were
used muéh less often than the other looping and branching
structures. Although structure diagrams were used in most of
the books, they were not used in a proper Top-Down manner in any
of them. It appears that structure diagrams are seen as devices
for representing programs that have already been‘written, rather
than as aids to problem—solving. It was possible to soclve every
problem in these five books using the mini-language and in the
majority of cases the solutions were better, cleérer and more
general than those in the books. No book was found to be
suitable for the proposed course but many interesting exercises
were found and these were adapted for subsequent use in the

course,

g0

CHAPTER 6

6.1 SCHOOL AND STUDENT BACKGROUND

The course was taught over a two year period, ’83/’84 and
’84/°85. The initial course was implemented in each year with
different groups of fifth year students (all aged 15 or 16 years
at the start of the course) and the continuation course was
implemented just once, with sixth year students. The courses
will be referred to as the fifth year course and the sixth year

course respectively.

The courses were implemented at the Holy Faith Secondary School,
The Coombe, Dublin. This is a non fee-paying, girls’ school run
by the Holy Faith order of nuns, The school is situated in the
Liberties of Dublin, an old and historic area close to the city
centre, in which the school-going population is declining. The
area is currently beset by many social problems such as
unemployment, drug abuse and vandalism. Many of the children in
" the school have had close contact with such problems. The
population of the school is decreasing rapidly, falling from 665
in *78/°79 to 400 in '84/785. The pupils in the school are all
from working class backgrounds. Many of them live in inner city
apartment blocks and most of the rest commute from large council
estates on the outskirts of the c¢ity. This latter group are
mostly children of parents who originally lived in the vicinity

of the school.

91

In general the girls in the scheool are not ambitious. Most are
from large families (on average 4 or 5 children) in which there
is no academic tradition. Neither is there any tradition of
women working outside the home or of aspifing to a career. Very
few of the girls go on to third level education. For a girls’
school of i1ts type there is a good range of subject options at
senior level, although these are being curtailed as the school
population drops. The number taking higher level papers at
Leaving Certificate level in Mathematics and Science subjects is

very small and falling:

Mathematiecs approx. 2%
Physics N 2%
Chemistry g 10%
Biology " 20%

The school acguired its three micro-computers, two Apples and

one B.B.C., early in 1982. Dissatisfaction with a +traditional,

BASIC, programming course, taught in ’82/°83, prompted the
design of the present course. For this earlier course all
students who applied were admitted. The majority of those who

applied had no idea of what was involved and there was a very
high dropout rate (60%). All of the students in the lower two
streams dropped out so it wés decided to seek applications for
the preserit course from the two higher streams only. An
informal selection procedure was used, based mainly on
subjective evaluation by staff members but also taking note of
performance in the Intermediate Certificate examination. The
object was to choose the most able and hardest working students,
as 1t was felt that the course, being a non-exam course, would

require considerable commitment on the part of those

participating. Seventeen students were chosen in the first year.
and fifteen in the second. In each year two students dropped
out, in all cases after just a few weeks. These students were
among the weakest of each group, confirming that this type of

course is best suited to more able students.

As very few of the staff have any interest in computing, the
machines have not been used extensively apart from the
programming courses, No ’computer culture’ has developed as
yvet. In 1985 however, seven more computers were purchased and it
igs planned to use these extensively_to teach programming, word

processing, spreadsheets, databases ete. in the coming years.

In the first year of the course the machines were located in a
large open room with virtually free access. The students
developed a rota system for themselves. They divided 1into
groups of two to five students and each group had priority
access to the machines after school on one appointed day each
week, They usually workéd for about an hour, although there
wvere cases of students being locked in because they became
absorbed in their work . The machines were also available at
lunch time (35 minutes) and morning break (10 minutes). They
were also allowed access before school in the mornings. and
during any free classes that might arise due to teacher absence
etc. These relatively free conditions meant that some students
spent up to eiéht' hours a week working at the machines, while

the average was about one or two hours.

UOnfortunately, due to security problems, access had to be

restricted during the second year. The computers were relocated

93

in a small room beside the gtaff room and quite a distance from -
the students’ own classroom. This room was kept locked at all
times and even though the students were allowed access as in the
previous year, they were now reqguired to get a key from a
teacher or from the office. This resulted in a dramatic decline
in machine use, the only regular use being after schoeol in the
evenings. These after-school sessions were further restricted

to forty five minutes duration.

Two forty-minute periods per week were allotted to each course.
This gave a maximum of about forty hours instruction per year
but this was never achieved due to half-days, teacher absence,
house examinations ete. The actual time spent on each course
was approXimately thirty five hours. Attendance by the students
averaged about 80%. For the first few weeks of the fifth year
courses a good deal of class time was spent at the machines. As
the students becaﬁe more confident, less time was spent on
practical demonstrations until, eventually, practically all
instruction took place away from the nachines. The main tools
used to deliver the material were overhead projector slides and
student hendouts. Examples of these handouts are shown in

appendix A.

In an earlier survey, carried out by their career guidance
teacher, many of the students who undertook the course had
expressed an interest in computer-related jobs. None of then,
however, had any idea of what computing inveolved and had only a
very vague grasp of the difference between, for example, the
work of a programmer and the work of a computer operator. Many

had acquired the idea that a computer was all-powerful and knew

94

everything. For these reasons, 1t was felt that learning
programming would give them valuable 1insight into the way in
which computers work and would also help them to develop

self-confidence in their use.

It was also noticed from teaching mathematics in the school over
a period of years that students were very much inclined to give
up when faced with even moderately difficult problems. If the
solution was not immediately apparent, the normal reponse, even
from the more able students, was to accuse the teacher of not
having taught them how to solve that particular type of problem.
It was felt that this response was at least partly due to low
self-esteem and low expectations. By using a very systematic
Top-Down method that could be applied to numerous different

problems, it was hoped that this problem could be overcome.

6.2 AIMS OF THE COURSE

1. To teach important concepts of modern algorithmic
development including Top-Down design.

2. To introduce students to systematic prcblem-solving.

3. To develop an appreciation of the need for a systematic,
structured approach to solving problems.

4. To give students practice in developing and validating
their own ideas.

5. To develop the ability to make logical decisions and to
discuss ideas intelligently.

6. To develop a positive attitude towards work and
problem-solving.

7. To develop initiative, creativity and perseverance,

8. To develop the capacity to apply existing knowledde.

95

10.

11.

12.

13.

14,

15.

To develop consciousness of the learning process.

To develop an appreciation of the need to think and write
clearly.

To build confidence in the students’ own abilities.

To demystify the computing process.

To develop confidence in the students’ ability to use and
control a microcomputer.

To develop an appreciation of the precision of
communication afforded by a computer language.

To develop an awareness of the capabilities and

limitations of microcomputers.

6.3 OUTLINE OF THE SYLLABUS

Problem-Solving Concepts.

1.
2.
3.
4.

Top-Down design and stepwise refinement.
Procedural abstraction.
Algorithm representation in graphical form.

Methodology for approachling large problems.

Programming statements and structures.

1.

e e B+ T & S - ¥ B

The idea of a variable (both Real and String).
Input, Output and Assignment statements.

Read/Data statements.

Boolean expressions and operators. de Morgan’s Law.
The conditional statement.

The iterative statement.

Procedures.

Some simple system functions {(i.e. INT, RND etc.).

Arrays.

96

Coding Style.

1. Use of suitable variable names.

2. Use of suitable procedure names.

3. Use of indentation to emphasise structure.

4. Documentation techniques. Internal program comments and
suitable screen prompts for the user.

5. The need for easily readable screen output.

Basic Computer Concepts.

1. Description of a computer system in terms of processor,
memory and input/output devices.

2. Evaluation of programming languages.

3. Translation of preogramming languages into machine-usable

form by assemblers, compilers and interpreters.

In developing a syllabus the most important elements were
problem-solving concepts and programming structures. Coding
style was also considered to be 1important because of 1its
relevance to communicating clearly. It is impossible to work
with a computer without some concept of hpw it functions and =so
a basic- mental model of +the computer system had to be
established in the initial stages. The topics were not taught
in the order listed above. The order 1is described in section
6.4. This syllabus is in accord with the report of the ACM
Curriculum Committee Task Force, and is actually a subset of the
syllabus recommended as a first course for Computer Science

ma jors [27].

97

6.4 THE FIFTH YEAR COURSE
This section sets out the order in which the principal topics
were taught and the objectives to be achieved through each

section.

6§.4.1 DEVELOCPING THE CONCEPT OF A COMPUTER SYSTEM
The purpose of this section was to help the students to build a
simple mental model of a computer system to enable them to carry

out disk management and program editing tasks.’

Objectives.
Students should be able to:
1. Start up COMAL when:
a) The machine is OFF.
h) The machine is running some other software.
Catalog a disk in either drive.

Load programs from disks in either drive.

= W

List and run programs,

5. Use the system editing features (AUTO, RENUMBER
etc.) as required.

6. Edit programs:

a) Insert gnd delete lines.

b) Correct syntax errors.

t) Add and delete characters on any program line.

d) Use the *ESC’ key as required.

6.4.2 VARIABLES, INPUT, ASSIGNMENT AND OUTPUT.
The overall purpose of this section was to develop the concept

of a variable and to make the students aware of how wvariables

93

can be manipulated to solve simple problems involving input,

assignment and print statements only.

Cbjectives.
Students should be able to:
1. Distinguish between valid and invalid COMAL
variable names.
2. Distinguish between string and numeric variable
names.
3. Write syntactically correct input statements,
incorporating appropriate user prompts.
4, Write syntactically correct assignment statements
for both string and numeric variables.
5. Write syntactically correct print statements in the
following forms:
a) Print a string constant.
b} Print the value of a variable.
c) Print the wvalue of a variable with an
explanatory prompt.
6. Find and correct syntax errors in short programs
involving Jjust these three types of statement.
7. Find and correct logical errors in such programs.
8. Trace the values of variables in such programs.
9, Predict the output from such programs for given
input values.
10. Design algorithms using these statements to solve
simple problems on topics with which they are
already familiar (i.e. area, volume, profit & loss

etec.).

99

11. Implement these algorithms on a machine.
12. Design clear screen displays and helpful input and

output prompts for such programs.

6.4.3 STRUCTURE DIAGRAMS

The diagrams are essentially a toecl for assisting students to
analyse problems 1in a Top~-Down manner. Therefore it was
essential that they were able to construct and interpret the

diagrams before any difficult problems were encountered.

Objectives.
Students should be able to:

1. Place a given set of statements intoc their correct
positions in a diagram to solve a stated problem.

2. Write a 1list of statements in the correct order
from a given diagram.

3. Fill in +the blanks 1in a diagram describing a
familiar process.

4., Draw diagrams to represent solutions to simple
input/assignment/output type problems.

5. Find diagrammatic solutions for slightly more
difficult problems involving three or four levels
but requiring just these three types of statement.

6. Translate these solutions into COMAL.

7. Write COMAL programs from supplied diagrams.

8. Explain the overall meaning of more complex,

teacher-supplied diagrams.

100

6.4.4 THE CONDITIONAL CONTROL STRUCTURE

This, the first control structure, is of extreme importance and
should not be introduced until the students are very familiar
with all the previous material. In both years this was +towards

the end of the first term.

Objectives.
Students should be able to:

1. REecognise the symbol used in structure diagrams to
identify the start/end of conditional statements.

2. Recognise the boxes used in structure diagrams to
contain the boolean expressions of IF structures.

3. Translate =structure diasgrams containing conditiconal
expressions into COMAL.

4., Predict the output from such diagrams for given
input values.

5. Place the correct statements from a supplied 1list
into the appropriate boxes in a partially completed
diagram for a specified problem.

8. Recognise situations in problem specifications that
necessitate the use of a conditional statement.

7. Find and correct syntax errors in programs
involving conditional statements.

8. Find and correct logical errors in such programs.

9. Use structure diagrams +to solve simple problems
requiring conditional statements, and translate
these solutions into COMAL.

10, Evaluate: simple boolean expressions for given

values of the variables involved.

101

11. Evaluate complex boolean expressions containing
boclean operators for given values of the wvariables
involved.

12. Find the converse of any hoolean expression.

13, Construct boolean expressions . for conditions

specified in words.

8.4.5 THE ITERATIVE CONTROL STRUCTURE

This, the second control structure, was introduced shortly after
the start of the second term in each year. The idea of a loop
is absolutely central to programming and so, as in the case of
the other important concepts, considerable effort was devoted to
establishing the important principles before considering more

challenging problems.

Objectives
The students should be able to:

1. Recognise the symbol used in structure diagrams to
indentify the start/end of a loop.

2. Translate structure diagrams containing loops into
COMAL.

3. Trace the wvalue of a variaeble through numercus
iterations of a loop.

4. Trace the value of the boolean expression
controlling a loop through numercus iterations of
the loop.

5. Predict the output, for given input values, from a

program containing a loop.

10.

11.

12.

13.

6.4.6

Place the correct statements, from a supplied list,.
into the appropriate boxes in a partially completed
diagram for a specified problem involving a loop.
Receognise situations in problem specifications that
necessitate the use of a loop.

Distinguish between situations which require
'fixed’ iteration loops and those which require
’indefinite’ iteration loops.

Find and correct syntax errcrs in programs
involving loops.

Find and correct logical errors in such programs.
Write the general outline for any program invelving
N iterations of a loop, i.e. ’fixed’ iteration.
Write the general outline for any program which
uses a loop to add {or multiply) a list of numbers.
Solve simple préblems involving loops and translate

these solutions into COMAL.

PROCEDURES

The purpose of this section was to teach the students how

approach larger problems than had been considered so far and

impress on them the importance of the internal organisation

soclutions to such problems.

Objectives

The students should be able to:

1.

Recognise the symbol used in structure diagrams to
represent a procedure.
Translate structure diagrams contalining procedures

into COMAL.

to

to

of

103

3. Predict the flow of control in COMAL programs
containing procedures.

4. Recognise situations in problem specifications in
which the use of procedures would be advantageous.

5. Find and correct syntax errors in COMAL programs
containing procedures.

6. Find and correct logical errors in such programs.

7. Use the ENTER command to utilise library procedures
supplied on disc.

8. Use the LIST command to store their own library
procedures on disc.

9. Write +the general outline for sany nenu-driven
Program.

10. Solve problems using procedures.

6.5 THE SIXTH YEAR COURSE

A group of six girls who had completed the fifth year course,
and who had expressed an interest in pursuing the subject
further, took part in the sixth year course. As the Apple
machines were being used by the second group of fifth years, a
COMAL ROM chip . was acquired for the B.B.C. machine which was
then exclusively available for the sixth years. This
arrangement was not without its drawbacks as the COMAL ROM was a
pre-production model with no documentation whatsoever. This was
not a very serious problem as only a subset of COMAL was used
and this subset did not differ very much from the Apple version,
The lack of a disk drive was a much more serious problem and
even thougﬁ one was ordered at the bheginning of the year it was

not delivered until near the end of the first term. As all the

104

students were preparing for the Leaving Certificate examination,-
they had very little time, apart from the two scheduled classes
per week, to work at this course. For this reason, it was
decided that most of the classes would be of a workshop nature
with the minimum of formal instruction. The students generally
wvorked on problems in small groups and the teacher was available

to advise at any time.

The overall aim of this course was to allow the students +to
further develop the skills that had been acquired in the first
vear and to give them confidence in their own problem-soclving
abilities. It was originally planned to run the course for the
complete vear and to cover the topics of arrays and files, ‘as
well as giving them some experience in the use of spreadsheets,
databases, wordprocessors and other packages. However, the
pressure of their examination work in other subjects forced the
termination of the course midway through the year, and ruled out
most of these topics. Eventually, the only topic covered was

arrays.

6.5.1 ARRAYS

Arrays were the central focus of the sixth year course. The
concept of an array is vital but was considered to be too
difficult to be dealt with in the limited time available for the

fifth year course.

Objectives.
The students should be able to:
1. Recognise situations in which the use of an array 1is

appropriate.

105

2. Dimension both numeric arrays and string arrays
correctly.

3. Write simple programs to READ values into an array and
to PRINT thém out.

4. Find and correct syntax errors in programs involving
arrays.

5. Solve simple problems involving the use of arrays,
including the linear search of an array.

6. Describe the bubblesort algorithm for an array.

6.6 CONCLUSION

The principal difficulties of the target group of students were
identified as lack of confidence and motivation in relation to
mathematical and scientific subjects, in addition to an almost
total lack of appreciation of the whole computing process.
Despite this, a number of students had expressed interest 1in
computers and related careers. Therefore, topics were chosen,
and ordered, to meet both the perceived needs of the group of
students and to comply with the most recently recommended norms

of introductory College Computer Science courses,

106

CHAPTER 7

7.1 DEVELOPING THE CONCEPT OF A COMPUTER SYSTEM

Each student was dgiven a sheet (appendix A, p.208) contalning
instructions for starting up COMAL. This was demonstrated at
the keyboard and the students were then encouraged to carry out
the same procedure in small groups. After describing the Apple
keyboard an attempt was made to establish the mental model of
the system shown in figure 7.1. This model was discussed using
an overhead projector and then reinforced by requiring the
students to 1load and run a number of short, teacher-written

programs.

INPUT DEVICE e.g. keyboard

CPU

MEMORY PROCESSOR ¢ 3 EXTERNAL e.g. disk

STORAGE

OUTPUT DEVICE e.g. screen

FIGURE 7.1

107

A distinction was made between immediate execution mode and
deferred execution mode. Immediate commands are executed
directly by the processor, while deferred commands are stored in
nemory and are only executed when required. Some of the
simple COMAL direct commands were demonstrated (PRINT, CLEAR)
and then a short sample program which merely printed a name and
address on the screen was keyed into the computer. This was
then used to illustrate the commands RUN, LIST and NEW. It was
also used to demonstrate how extra lines could be added to the
’middle’ of a program and how a line of a program could be
chﬁnged by simply retyping it. Instructions for cafrying cut
some other simple editing tasks were also supplied on the
students’ sheets and these methods were all demonstrated in

class.

After the first few sessions the students were asked to write
ten very simple programs, (appendix A, p.207) all of which only
involved the CLEAR and PRINT statements, and to implement these
on the machines. These were done over a period of two weeks and

were completed very satisfactorily by all the students.

The limited editing skills that had been acquired by now were
sufficient to allow +the students to work at the machines
unsupervised. The section on variables (see 7.2) was completed
before dealing with disk management and more sophisticated
editing skills. Lists of these more advanced disk and editor
commands were drawn up on two reference sheets which were given
to each student. For the sake of clarity, ALL the formats for

each editor command were 1listed alongside an explanatory note,

108

rather than the more terse but common format adopted by the user
manual :
i.e. LIST 20 line 20 is listed

LIST 20,50........ lines 20 to 50" are listed etc.,

rather than,

LIST {<start>] [, <end>]
This was done because it was felt that the majority of students
would have difficulty with such an unfamiliar format, that it
added to +the air of mystery that surrounds computers in the
first place and that each variation would have to be explained
regardless. All of the editor commands were demonstrated on a
machine, as were all of the disk commands with the exception of
LIST/ENTER. {This is an alternative to SAVE/LOAD by which files
are stored as a string of ASCII characters and can be recalled
from disk without disturbing the contents of memory. The
principal purpose of this feature is to allow for the retrieval
of library procedures which may be used in numerous programs.

This is not relevant to the eariy part of the course):

. No specific exercises were given on the use of these commands

but evaluation was carried out hy informal observation of the

students working at the computers. Very few problems arose 1in
this area, indicating that all students were able to save, load
and edit programs without difficulty. Whether they were using

the editor in an efficient manner and using all of the editing
facilities is anocther matter and may reqguire some further

investigation.

7.2 THE CONCEPT OF A VARIABLE

The idea of a variable is the first crucial programming concept
and must be well undgrstood befere progressing to conditional
and iterative statements. Variables were described as boxes in
the computer’s memdry which have two characteristics, a name and

a value (figure 7.2).

23.94 . value

PRICE ..., name

FIGURE 7.2

The rules for valid variable names were given to esach student
{appendix A, p.210). After some discussion of these rules,
many examples of valid and invalid variable names were displayed
on an overhead projector and the students were reguired to state

whether each one was valid or not. .

7.3 THE ASSIGNMENT STATEMENT

Assignment was described as ’putting values into boxes’ and
’giving values to variables’. A detailed. description of the
syntax énd semantics of the assignment statement was given to
each pupil {(appendix A, p.210). It was emphasised that the left
hand side must contain only a variable name and that the right
hand side must contain an expression whose value is then given
to the wvariable on the left. It was pointed out that all
variables in the right hand expression must have some initial

value or else the whole statement would be meaningless. After

110

some examples which illustrated these points, numercus progranms
containing only assignment statements were diéplayed on an
overhead projector. The students were required to calculate the
value of each variable at the end of each pfogram. They were
instructed to set up a named box for each variable and to write

its value inside the box (figure 7.3).

10 X 1= 4
20 Y := 2 x X
3072 := X + Y
40 P (= X + (3 *x YY) + 2
X 4 Y 8
Z 12 P 40
FIGURE 7.3

Slightly more difficult examples were then used in which the
values of the variable were changed by the program (figure 7.4).
This was to reinforce the idea that a variable can only have one
value at a time. In these cases the old value was crossed out

and the new value was written beside it in the box.

10 P := 0

20P := P + 1
30 P := 2 x P
40 R := 10

50 R := R + P
60 P :z= R+ P
70P := R + P
B0R := P - R

N W W N
R | N 1% 14

FIGURE 7.4

111

These problems were all done very well and caused no difficulty;
indicating that the meaning of the assignment statement was well
understocd. None of the examples given at this stage performed
any recognisable task, (it is very difficult to devise a useful
program with only assignment statements), so the following
example was shown before considering the input statement:

10 PRINCIPAL := 1000

20 RATE := 12

30 TIME := 3 .

40 INTEREST := (PRINCIPAL * RATE x TIME) / 100
This program fragment suggests the purpose of the assignment

statement and was generalised after the introduction of the

INPUT statement.

7.4 INPUT AND OUTPUT STATEMENTS

The INPUT statement was introduced by showing a demonstration
program which wutilised INPUT statements. This program was
discussed with the class and then the necessary syntax rules
were given. The class was then given numerous problems, which
required INPUT statements, to solve and to implement on the
computers. This proved to be guite unsatisfactory and many of
the students encountered difficulties with the idea of INPUT.
In the second year the students were. given numercus
demonstration programs ﬁo run for themselves before the INPUT
statement was actually ;ntroduced. This was much more

satisfactory. These difficulties are discussed in chapter 8.

The use of wvariables in PRINT statements caused no such
difficulties. The approach was that items in quotation marks

were literally written on the screen but items without quotation

112

marks were taken to be variables and so their values were

written instead. This was readily saccepted.

There are many problems that can be solved with just input,
output and assignment statements, many of which are identical in
structure. For example:
1. Input the length and width of a rectangie and
output its area.
2. Input the radius of a sphere and output its volume.
Many examples of this nature were completed successfully by the

students 1n each year.

7.5 STRUCTURE DIAGRAMS

It was decided to use a number of very familiar, non-computer
algorithms to establish the use of diagrams before any computer
algorithms were encountered. No. formal desceription of the
diagrams’ syntax was given at this stage but worksheets were
given at each session to be completed during +the last five or

ten minutes of the class.

The first example given was a description of how to make a phone

call (figure 7.5):

PHONE CALL
ENTER THE LIFT THE RECEIVER & PLACE MONEY DIAL THE
PHONE BOX WAIT FOR DIAL TONE IN THE SLOT NUMBER
FIGURE 7.5

It was explained that the four boxes in the second row were a
description of the statement in the top row and that they should
be carried out from left to right to achieve the desired effect.
After this minimum of explanation the students were asked to
complete similar examples, all concerning familiar activities.

Their task was to assign a given list of statements to the

appropriate boxes in a diagram. A typical example is shown 1in
figure 7.6:
SHOPPING
1. Go to the shop
2. Go home
3. Pay for the items
4. Choose the items
5. Get money
FIGURE 7.6

The first worksheet contained six such problems and was

completed, with no errors, by all the students.

Even though these particular algorithms were trivial, they were
very usefui because they introduced the idea of a structure
diagram in a simple manner. They also reinforced the need to
get statements into the correct order and to write these
sequences of statements horizontally. The next step was to
intreduce diagrams with two levels and these were also completed
easily and correctly by all the students. The final stage in
this process was to give partially completed diagrams'without a

list of the missing statements. In some cases they were

114

required to fill in only second level statements but in others
they were given the second level solution (or most of it) and
were asked to fill in a blank in the first level. This latter
type of exercise 1is important as it forces students to think
‘procedurally’, i.e. it requires them to consider the oaverall
purpcose of a group of statements. An example of this type of

problem is given in figure 7.7.

PETROL
SELF-SERVICE

]

GO TO- LEAVE
GARAGE GARAGE
GET OUT OPEN CLOSE GET IN
OF CAR TANK TANK CAR
FIGURE 7.7

The missing statements at the second level are ’put petrol in
tank’ and ’‘pay for petrol’. All of these second level
statements then constitute the action ’bhuy petrol’ and this is

the required first level statement.

When all of these worksheets were completed, over a period of
two weeks, the topic of Top-Down design was introduced more

formally. The first ’‘computer’ problem solved with a diagram

concerngd the cost of laying a path around a rectangular gardeh
(figure 7.8). This type of problem was familiar to the students
from their work in Junior cycle mathematics, The diagram for
this problem may seem very complex at first sight but is quite
simple if read correctly. The method is to cover all but the
top level of the solution with a blank page. A check is then
made to confirm that the statements at this level constitute a
complete solution to the stated problem. When this is done the
blank page is moved down to the next level of the diagranm. A
check is then made to ensure that the statements at this level
ars corraect refinements of the statements at the first level.

This process is repeated until the whole diagram has been read.

7.6 TOP-DOWN METHODOLOGY
In solving problems with structure diagrams the students were
encouraged to ask themselves the following questions, based on
those suggested by Polya [12], at each level:

1. What am I trying to find?

2. What must I know to find it?

3. a) Am I given what I need to find it?

b} Can I calculate what I need to find it?

If these _questions are consistently applied, the result is
always a well organised Top-Down solution. Consider the
following example

Write a program to calculate nett pay if gross pay,

tax free allowance (TFA) and rate of tax are input.
The solution to this praoblen (figure 7.9) may be derived as
follows:

1. Trying to find nett pay.

116

PATH

P

INPUT LENGTH, WIDTH FIND . PRINT
PATHWIDTH, PRICE, VATRATE PATHCOST PATHCOST
FIND FIND PATHCOST :=
NETCOST VAT NETCOST + VAT

S

FIND NETCOST := VAT :=
PATHAREA PATHAREA *x PRICE NETCOST * VATRATE
FIND FIND PATHAEEA =
BIGAREA LAWNAREA BIGAREA - LAWNAREA
FIND FIND BIGAREA := LAWNAREA :=
BIGLENGTH BIGWIDTH BIGLENGTH * BIGWIDTH LENGTH * WIDTH

T~

BIGLENGTH :=
LENGTH + (2 x PATHWIDTH)

BIGWIDTH :=
WIDTH + (2 * PATHWIDTH)

FIGURE 7.8

117

2. Must know gross pay and tax due.

3. a) Gross pay has been input.

b) Must find tax due.

Question 1 supplies the first level solution and questions 2 and

3 give the second level

to a repetition of these

statement FIND TAXDUE:

solution.

Question 3b naturally leads

gquestions and a refinement of the

INPUT GROSSPAY,
TFA, TAXRATE

INCOME

FIND
NETPAY

PRINT
NETPAY

NETPAY :=

FIND
TAXDUE GROSSPAY - TAXDUE
FIND TAXDUE :=
TAXABLE TAXABLE * (TAXRATE / 100)
TAXABLE :=
GROSSPAY - TFA
FIGURE 7.9

1. Trying to find tax due.

2. Must know taxable income and tax rate.

3. a) Tax rate has been input.

118

b) Must find taxable income.
This constitutes the third level solution and again gquestion 3b
leads back to question 1 and a refinement of FIND TAXABLE.
1. Trying to find taxable income.
2. Must know gross pay and TFA.
3. a) Gross pay has been input.
) TFA has been input.

This is the level 4 solution and completes the analysis.

The programming exercises given with this section were changed,
as the ones given 1in the first year were too difficult (appendix
&, p.212). S5ix new homework problems (appendix A, p.213) were
given. These seemed tec have been set at the correct level and

were answered very well,

7.7 THE CONDITIONAL CONTROL STRUCTURE

It was pointed out that there were many problems that could not
be soclved by purely ’‘sequential’ algorithms and that many
solutions requilire choices to be made. Printing all the positive
numbers from a list of positive and negative numbers was cilted
as an example. In this case a choice, to print or not to print,
must be made for each numbgr in the list. The choice is made by

examining a condition, i.e. is the number greater than zero?

The first diagram used (figure 7.10) concerned the problem of
printing the greater of two numbers. This diagram was discussed
in detail. The boolean conditions contreolling access to each
branch were described as ’guards’ which had to-be TRUE before

that branch could he executed. The rules for translating

118

diagrams containing conditional statements into COMAL

given and this program fragment was then coded.

were

PRINT A PRINT B PRINT "THE SAME"

FIGURE 7.10

7.7.1 RULES FOR TRANSLATION OF IF STATEMENT INTO COMAL.:

1.

"Walk” around the structure in the same way as
described in chapter 4.

On the first encounter with the @ symbol write
the word 1IF, followed by the first condition,
followed by the word THEN (all on one program
line}.

HWrite the statement(s) that are duarded by the
first condition on the line{s) immediately after
it.

On subsequent encounters with the @ symbol write
the word ELIF, followed by the next condition,
followed by the word THEN (all on one line).

Write the statement(s) that are guarded by this
condition on the line(s) immediately after it.

On the finai encounter with the @ symbol write

the word ENDIF (on a program line of its own).

120

The COMAL fragment derived from the diagram in figure 7.10 is
therefore as follows:

100 IF A > B THEN

110 PRINT A

120 ELIF B > A THEN

130 PRINT B

140 ELIF A = B THEN

150 PRINT "THE SAME"

160 ENDIF
The students were then given several simple problems, reguiring
conditional statements, for homework. In each case they were

required to draw a disgram and write a COMAL program.

7.7.2 BOOLEAN OPERATORS

To introduce boolean operators, each student was given a sheet
containing information, examples, truth tables and problems.
Each operator was introduced by a simple non-computer example as
follows:

IF IT IS FINE AND THE POOL IS OPEN, JOHN WILL GO SWIMMING.

IT IS FINE THE POOL IS OPEN DOES HE GO SWIMMING®?

TRUE TRUE YES
TRUE FALBE - NO
FALSE TRUE NO
FALSE FALSE NO

This table was filled in with the help of the class and then a

more formal truth table was drawn up:

Bxp. 1 Ewp.2 Exp.1 AND Exp.2
TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

121

Then, again with the help of the class, a general statement
about the AND operator was drawn up:
Exp.1 AND Exp.2 is TRUE
oﬂly when Exp.1l is TRUE and Exp.2 is TRUE
Similar examples were used to 1introduce the OR and NOT

operators.

The next stagde was to present ’'real’ boolean expressions, which
they were required to evaluate for given values of the wvariables
involved, as in figure 7.11. Numercus examples of this type
were done in class. Initially, the examples inveclved only one
operator but latér examples involved combinations of two or
three operators. The students were very accurate when
evaluating these expressions and seemed to enjoy working on
themnm. & homework sheet containing about fifty such examples
involving AND, OR, and NOT was assigned and they were asked to
do ten particular examples from this. Most of the class did all

the problems on the sheet and most had all the answers correct.

X = 1 2 1 2 1
Y = 1 1 2 2 3
X>1 AND Y > 1
X>1 AND Y < 2
X =2 AND Y = 2
X <Y AND Y =2
X>Y AND Y < 1
FIGURE 7.11

When evaluating complex boolean expressionsg, the students were

discouragded from trying to comprehend the totality of the

expression but were shown how to approach the task of evaluation_
in a systematic way. This involved writing the value (T or F)
of each part beneath the expression and then using the
previously defined rules for combining these values. This may
be illustrated by the following example:

Evaluate the following expression for X = 2.

(X < 10 OR X > 20) AND (X MOD 2 = 0 AND X MOD 3 < Q)

=(T OR F) AND (T AND _ T)
= T AND T
= T

Up to this the emphasis had been on evaluating given expressions
and this had been learnt very well by all the students.
However, the really important skill 1in programming 1is to
construct boolean expressions. This was approached by using a
COMAL program which simulated a game in which two dice are
thrown., A win was defined as either:
a. The two dice are the same.
or b. The sum of the dice exceeds nine.

10 // DICEGAME SIMULATION

20 //

3O J//117 1707700000177 i rrirreririrr/7
40 CLEAR

50 RANDOM

60 DIE1 := RND(1,6)

70 DIEZ := RND(1,8)

80 SUM := DIE1 + DIE2
8O S/ 11117000 I TP 77 rrr7r i/

100 PRINT "SCORE ON FIRST THROW IS ";DIE1
110 PRINT
120 PRINT "SCORE ON SECOND THROW IS ";DIEZ

130 /7770007007770 7107777077777 7777777777777 77
140 // NOW MAKE DECISION ABOUT THE PRIZE

150 //

160 IF SUM > 9 OR DIE1 = DIE 2 THEN

170 CURBOR 1,20

180 PRINT "YOU HAVE WON A PRIZE !!!!”
190 ENDIF

200 JLL7 0100777707777 70077 Fr 777/
210 END

123

The program was discussed in c¢lass to ensure that everyone
understood how 1t worked. The students were then asked to alter
the program to simulate ten new games in which the definition of

a win was changed as follows:

1. Sum exceeds 7 or both dice are twos.

2. Both dice are even.

3. Both dice are odd.

4. Both dice are bigger than 4.

5. At least one die is bigger than 4.

6. DIEl is bigger than 3 and DIEZ igs less than 3.

7. One die is bigger than 3 and the other one is smaller

than 3.

8. Both dice are egqual and both are less than 5,

9. Neither die 1is smaller than 3.

10. The sum does not exceed 8 and neither die is less than

3.

This type of exercise was useful as it allowed the students to
focus exclusively on the booleﬁn expression without having to
‘consider the other parts of the prbgram. These exerclses were
done very well with an average of 80% accuracy. Many of the
errors were syntax errors. In particular, they were inclined to
write A = B = C instead of A = B AND B = C but this type of
error, which 1is detected by the COMAL interpreter, did not
persist after they had implemented a few such programs on the

machines.

124

7.8 THE ITERATIVE CONTROL STRUCTURE

It was pointed out that many problems reguired the same basic
steps to he performed on different sets of data and that it
would be very wasteful to write the same code for each data set.
The example of printing the squares of the first twenty numbers
was cited. It was suggested that it would be possible to write
a separate routine for each of the numbers but that this would
be out of the gquestion if the first two thousand numbers had to
be processed. The problem could be solved, however, by allowing
a section of the program to be executed twenty times, processing
a different number each time. The diagram in figure 7.12 was
then shown and discussed. The round box was.described as the
’loop control box’® and the boolean condition inside it was
called the ’*loop guard’. The meaning of the diagram was
discussed at‘length and the similarities between the iterative
and the conditional statements were stressed (the chief
difference is that the condition 1s tested again after the
guarded statements have been executed). It was enphasised that
all variables in the loop guard must be initialised before the
condition is tested (hence the need to set COUNT = 1 initially).
It was also emphasised that the programmer must ensure that the
condition eventually becomes FALSE to avoid the loop being

executed infinitely.

7.8.1 RULES FOR TRANSLATING ITERATIVE STRUCTURE INTO COMAL
1. On the first encounter with the loop control bhox
write the word WHILE, followed by the loop guard,

followed by the word DO (all on one program line).

2. Write the statements that are guarded by the loop

guard.

SQUARES

INITIALIGE ' LOOP TO WRITE
THE SQUARES

COUNT := 1 (' count <= zo)

SQUARE := PRINT COUNT :=
COUNT * COUNT SQUARE COUNT + 1
FIGURE 7.12

3. On the second and final encounter with the 1loop
control box write the word ENDWHILE {(on a separate
program line).

The COMAL fragment derived from figure 7.12 using these rules
is as follows:

100 COUNT := 1

110 WHILE COUNT <= 20 DO

120 SQUARE := COQUNT % COUNT

130 PRINT SQUARE

140 COUNT := COUNT + 1

150 ENDWHILE
Similar problems were then solved by the students, using

structure diagrams, in class. These were then coded in COMAL

for homework and implemented on the machines without
difficulty.

any

126

7.8.2 FIXED ITERATION VS. INDEFINITE ITERATION

These problems illustrated a very important routine which occurs
frequently in later problems, i.e. to execute a loop a fixed
number of times (fixed iteration). Using a WHILE loop this may
be done in a number of different ways. In the program on the
left, the counter variable 1s given a value of one before the
loop is entered, while in the version on the right it is

initialised to zero.

100 COUNT := 1 100 COUNT := 0

110 WHILE COUNT <= N DO 110 WHILE COUNT < N Do
? (guarded statements) ? {Buarded statements)

190 COUNT := COUNT + 1 190 COUNT := COUNT + 1

200 ENDWHILE 200 ENDWHILE

The outcome is the same in each case because the loop guards are
different. It was felt that it was important to choose one
method and to use it consistently in order to avoid confusion.
The former method was chosen {even though the other one is used
in many textbocks) because:

1. It seemed to be more in accord with common sense:

COUNT is 1 on the first iteration.
COUNT is 2 on the second iteration. etc.

2. It is very often necessary to use the value of
COUNT within the loop (as in the SQUARES problem
above). The second method would involve some
'fixing’® under these clrcumstances.

It wag decided, having established +the notion of fixed
iteration, to introduce some indefinite 1iteration problems
immediately, lest it might be assumed that all locops muzt be

fixed iteration. The first such problem was:

12

Write a program which keeps accepting pairs of numbers

and printing the larger of each pair. The program

should terminate when two equal numbers are 1lnput.
The students were first asked to decide if this problem
contained a loop. When this was agreed they were asked to
decide how many times the lcop should be executed. This caused
bewilderment because it was impossible to say. They were then
asked to state under what circumstances the iteration should
stop. This was very easy to state, 1.e. when both numbers are
egqual. It was pointed out that if +this was the condition for
terminating the loop, then the loop guard must be the opposite
of this, i.e. when both numbers are different. They were then
asked to say what should be done inside the loop and most were
able to see immediately that the two numbers should bé compared
and the larger one printed. The fact that another two values
should be input was overlooked by many and even when the
complete solution (figure 7.13) was shown there was still some

confusion on this point.

In this case and in many others *running’ the solution on the
board was found to be helpful. Students were encouraged to
"run’ all their solutions in this way as a check o©on the

algorithm before implementing it on a wmachine. The technique

used was as shown in figure 7.14.

128

BIGGER

FIGURE 7.14

FALSE

INPUT NUM1, LOOP TO PROCESS PAIR & ACCEPT PRINT
NUMZ NEXT PAIR (IF NECESSARY) "FINISHED"
(; NUM1 <> Numz;)
FIND PRINT ACCEPT NEW PAIR
BIGGER BIGGER OF NUMBERS
{ woMy > NUM2> { wuoM2 > NOML > INPUT NUM1, NUM2
BIGGER : = BIGGER :=
NUM1 NUM2
FIGURE 7.13
VALUES TO BE INPUT EXPECTED OUTPUT
3, 2 3
5 . 8 8
7,7 “FINISHED"
NUM1 NUM2 LOOP GUARD OUTPUT
3 2 TRUE 3
5 8 TRUE 8
7 7 “FINISHED"

129

The values to be input are decided in advance along with the
expected output. A trace is then kept of the values of all the
variables involved and of the loop guard. It is felt that +this
is a wvital skill and that even though students are often
reluctant to apply it that it is worth forcing them to do so (by
homework assignments, worlisheets etec.). This technique was used
during class time, by the teacher, in the hope that the students
would see the benefit of such an approach for themselves and
apply it in their own work. It was found, however, that
students did little thﬁt was not specifically reaquired of them.
For this reason it is planned to devise worksheets containing
programs with loops, along with charts like that in figure 7.14,

which the students will be required to complete.

7.8.3 GENERAL METHOD FOR CONSTRUCTING LOQOPS
In general, when writing a loop the students were encouraged to
ask themselves the following questions:

1. What variabies are needed?

2. Is it a fixed iteration or an indefinite iteration

1OQp? -
3. What should the loop guard be?
4. What needs to be done inside the loop?

What needs to be initialised?

[

6. How can it be guaranteed that the loop will

terminate correctly?

7.8.4 LOOPS TO ADD NIMBERS
The general methord may be i1llustrated by considering the

following problem:

130

Write a program to calculate the number of terms of the serieé
1 +3 +5+ 7 ..., that must be added to g€ive a sum greater
than any specified (input}) wvalue.
If the six questions outlined above are considered the following
answers may be found:
1. Need variables for:
a) the current totel L., SUM
b) the number of terms édded to date . .NUMTERMS
c} the current term being added . . CURRTERM
d) the specified limiting value «....LIMIT
2. This is indefinite iteration as it is not known in
advance how many times the loop should be executed.
3. The loop should terminate when the value of SUM
exceeds the value of LIMIT. This means that the
loop guard should be the opposite of this:
i.e, . BUM <= LIMIT
4, Need to add the current term on tc the total,
generate the next term of the series and increment
the number of terns.
5. The loop guard involves both SUM and LIMIT so these
must be initialised, 5UM is set to 0 and LIMIT is
input. It is also necessary to set NUMTERMS to O
and CHORRTEEM to 1 as both of these are incremented
inside the loop.
6. As SUM is increased each time the loop 1s executed,
its value will eventually exceed that of LIMIT
vhich is not changed inside the loop.
After considering these questions the solution in figure 7.158

was arrived at:

131

SUMSERIES

INPUT INITIALISE 1 LOOP TO ADD TERMS & COUNT PRINT
LIMIT ' NUMBER OF TERMS ADDED NUMTERMS
SUM := O NUMTERMS := O CURRTERM := 1 (jSUM <=LIMIT:)
SUM = CURRTERM := NUMTERMS :=
SUM + CURRTERM CURRTERM + 2 NUMTERMS + 1

FIGURE 7.15

Several other problems set at this level of difficulty were then
solved in class and as homework assignments. In general, these
were well done although there were scome silly mistakes such as
neglecting to initialise or increment variables. These would
not have occurred 1if the procedure outlined above had been
carried out in all cases. It was also obvious from the nature
of the errors that some students were not ’running’ the
solutions on paper as outlined in figure 7. 14, If all students
could be convinced that asking the six questions above before
designing the loop, and ’running’ the finished product on paper
were always worthwhile, .then there would be fewer careless
errcors in their work. As with some other techniques, the good
example of the teacher has not been totally effective in these
matters. Specific exercises on these techniques will be

designed for future courses.

An important point regarding the design of the loop guard for
indefinite iteration loops may be seen in the previous example.
In difficult cases, it is often simpler to decide on the
condition for terﬁinating the 1loop and +then to reverse this
using de Morgan’s 1a§, than to consider the condition for entry
to the loop directly in the first instance. This ig
particularly wuseful when the loop guard contains boolean
0peratoré. For example, consider a program to simulate throwing
a die until a four turns up or the sum of all the throws exceeds
thirty. In this case, the condition under which the loop should
terminate is obviously:

DIE = 4 OR SUM > 30
Reversing this gives the condition under which the locop should
be executed, i.e. the loop guard:

DIE <> 4 AND 3SUM <= 30
This technique has been found to be most useful in more complex

cases but may of course be applied in any situation.

7.8.5 PROBLEMS INVOLVING READ/DATA STATEMENTS

Numerous problems were used which involved READ/DATA statements.
These statements had not been introduced up to now because 1t
was felt that the input statement alone was perfectly adeguate
for programs without loops. it was now felt that a number of
important ideas, which would normally be introduced with arrays
and files, could be dealt with more simply by uszing read/data
statements. Data which 1is held in an array or a file is not
’visible’ and cannot therefore be thought about as easily as
that which 1is contained in a program listing: However, the

algorithms for handling data are much the same, so that anything

133

learned from these problems should be useful when arrays and

files are encountered later.

COMAL contains an end-of-data flag, EOD. This is a system
variable, of type BOOLEAN, which only becomes TRUE when all the
data in a program has been read. This can be used to access all

the data in a program as follows:

100 WHILE NOT EOD DO
110 READ N

>

200 ENDWHILE
It was decided not to use this facility because:

1. BOOLEAN Qariables had not been introduced.

2. The construction of ‘’do-it-yourself’ end-of-data
flags helps to focus attention on the need for good
organisation of data in a program.

3. EOD is not generally available in other languages.

When designing solutions to problems involving read /data
statements, the practice of writing samples of the data
(including the end-of-data flag where appropriate) beside the
diagram was adopted. This was to emphasise the importance of
data organisation and also because the diagram would be
meaningless without this information. Throughout these problems
the data has been organised in ’logical units’ rather than to
save memory or to speed implementation. For example, 1f the
data were to contain names and ages it would be organised as
follows:

DATA “JOE", 14
DATA "MARY", 15

rather than the more usual:

DATA "JOE", 14, "MARY", 15

This latter organisation is very difficult to read and to debug

when there is even a modest amount of data involved.

It was further decided when constructing end-of-data flags to
use sufficient terminal values to match the overall organisation
of the data, as in the example on the left, rather than the

normal practice of just using one flag , as on the right.

100 DATA "JOE", 14 100 DATA "JOE", 14
110 DATA "MARY", 15 110 DATA "MARY", 15
200 DATA "END", -1 200 DATA "END"

This organisation allows the use of a clearer algorithm {(on the
left) to process the data, as opposed to the more usual method

{on the right).

10 READ NAME$ 10 READ NAMES$

20 READ AGE 20 WHILE NAME$ <> "END" DO
30 WHILE NAME$ <> "END" DO 30 READ AGE

40 ! 40 ’

50 ' 50 ’

60 READ NAMES$ 60 !

70 READ AGE 70 READ NAMES$

80 ENDWHILE 80 ENDWHILE

In the program on the left, the two values being read from the
same data line are read together. In the other program, this is
not possible and one value 1s read at the start of the loop and
the other is read at the end. There is no doubt that the former
program is much clearer and simpler; This can only be achieved

if the data statements are corganised as cutlined above.

The syntax and semantics of the read/data construct were
explained using many simple examples. It was emphasised that
the programmer must ensure that string values and numeric values
are read into variables of the appropriate type. The concept of

a data polinter was introduced and a little arrow was drawn on

135

the board to denote the pointer, This was moved forward as =ach
item was read. The RESTORE statement was also introduced along
with its COMAL variations. These allow the pointer to be

restored to a particular line-number or to a LABEL.

All of the early problems used in this section involved
algorithms which were already quite familiar (adding numbers,
finding averages etc.), the only difference being that the data
were read rather than input. This served the purpose of
familiarising the students with the read/data construct without

introducing any very difficult problems.

7.8.6 MORE DIFFICULT LOOPING PROBLEMS
The next, more difficult, group of problems concerned lineaf
searches. This 1s an important algorithm and requires careful
consideration. The first and simplest of these problems was:

Write a program to say Qhether or not a name, input at

the keyboard, is contained in the data list. The end

of the data is marked by the ’'name’ "END”
The loop for this problem was designed as outlined in 7.8.3. As
the loop can be terminated for either of twe different reasons
it is necessary to include a conditional statement after the
loop to find out which part of the loop guard became FALSE. A
complete solution is shown in figure 7. 18. Many problems which
were very similar to this, also involving linear searches but
with added complexities, were then solved both in class and for

homework and these were done exceptionally well.

NAMESEARCH

{ READ/DATA)
INPOT LOOF TO DO CUTPUT THE
TARGETS THE SEARCH RESULT
READ NAME$ <> TARGET$ AND FIND REASON FOR
NAME$ NAME$ <> "END" LOOP TERMINATION

READ NAMES$ = NAME$
NAMES TARGET$ "END"

N

PRINT - PRINT
"FOUND" "NOT FOUND"
FIGIURE 7. 16

137

7.9 PROCEDURES
It was decided to use problems which were fairly simple, and
which only used algorithms which were already quite familiar, in
the initial stages of this section. The problems, though
simple, were much bigger than any which had been previously
encountered. This arrangement allowed the students to
concentrate on the overall organisation of the solution, without
having to consider the minute details of each sub-algorithm.
The first problem used was:
Write a program which allows the user to either a}
input a person’s name and find the appropriate phone
number or b) to input a number and find the name. The
names and telephone numbers are organised in data
statements as follows:
DATA "MARY", 234158
DATA "ANNE", 763452
The end of the data is marked by:
DATA "END", O
If the input name or number is not in the data then
the program should output a sultable message. When
the name or number has . been supplied the user should
again be given the option of inputting another name or
number or of quitting the program.
This problem was approached in a different way to the previous
problems in the course. The problem definition was not given to
the students but a well strucfured, menu-driven program to solve
the problem was supplied on disk instead (FONEDEMO.CSB). This
program is listed in appendix B, p.220 The students were asked

to run the program without being told what it was about or how

138

it was structured. After each student had used the program for
about five minutes a class discussion was held during which the
students were asked to describe what the program did. They did
this very well, discussing the program at a very high level
without concerning themselves with how the searches were carried
out. The consensus of what the program did was:

1. The user is given three options:

A. Find a phone number‘given a name.
B. Find a name given a phone number.
C. Quit the program.

2. If the wuser chooses A or B then the required
information is requested and the program carries
out a search.

3. After giving the result of the search, the program
returns to the first section and the user is again
given the three options..

4. The program terminates when, and only when, the

user chooses the QUIT option.

The remarkable thing about this description is that it exactly
mirrors the structure of the main program (figure 7.17). The
double sided bhoxes were called PROCEDURES and were sinply
described as ’sections of the program, each of which performed =a
particular task’. It was emphasised that once a procedure was
used in a structure dilagram that 1t was essential to specify its
PUrpose. This specification, which must be shown with the
diagram containing the procedure, should later be used as a

comment {(REM statement) in the program listing.

MENU

< CHOICE

- 1>

FINDNUM

MENU

FINDNUM

FINDNAME

GOODBYE

PHONE

CHOICE =1 OR GOODBYE
CHOICE = 2

<CHOICE = 2> MENU

FINDNAME

Displays the options and requests the user
to input a wvalue to a variable called
CHOICE,

Asks for a name and then searches for the
appropriate phone number.

Asks for a phone number and then searches
for the appropriate name,

Indicates to the user that the program has
terminated.

FIGURE 7.17

After the disgram had bheen discussed in detail the COMAL code

for the main

program was written. This intreduced the COMAL

keyword EXEC which is used to call a procedure.

220 EXEC MENU
230 WHILE -CHOICE = 1 OR CHOICE = 2 DO

240
250
250
270
280
290

IF CHOICE = 1 THEN
EXEC FINDNUM

ELIF CHOICE = 2 THEN
EXEC FINDNAME

ENDIF

EXLEC MENU

300 ENDWHILE
310 EXEC GOODBYE
320 END

140

This method of introducing procedures was found to bhe very
successful. It emphasised the notion of a procedure as a Dblock
within a program, which is designed to carry out some specific,

well-defined taslk. This 1is a very powerful concept and is
missed by many textboolkks which introduce procedures as
‘containers’ for chunks of code sandwiched between PROC and
EMDPROC statements. It also suggests that a procedure may be
used as long as the preogrammer knows exactly WHAT it does, even
if its internal structure is not known or understood in detail.
In this sense, it prepared the way for the introduction and use

of library procedures.

7.9.1 CODING STYLE

After the COMAL statements for calling (EXEC) and defining
(PROC/ENDPROC) procedures had been discussed iﬁ detail, a full
listing of the FONEDEMO program was given to each student. The
following important points of coding style were stressed:

1. The main program should come first followed by the
procedure definitions.

2. The main program should be short and should consist
mostly of procedure calls,

3. Each procedure should - contain a one sentence REM
statement describing what it does. It was
suggested that if this could not be done in one
short sentence then further refinement should bhe
considered.

4, The program listing should be easy to read.
"Empty’ REM statements should be put at the

bheginning and the end of each section.

141

5. All DATA statements should be placed together,
preferably at the end of the listing.

6. All initialisation should be done at the beaginning
of the listing.

7. Every program should contain the name of the
author, the date it was written and a brief
description of what 1t does, at the beginning of
the 1i§ting.

It should be emphasised that the motivation for these guidelines
was bhased on making the students’ programs clearly readable and
understandable and that issues such as speed of execution and

efficient use of memory were not considered to be relevant.

The students were then asked to write a menu-driven program
which gave the user the choice of calculating the area of a
rectangle, the area of a circle, the volume of & cylinder or the
volume of a cone, (or of quitting). They were told to model
their progranms on the previous example. This was done very well
and demonstrated that it is not too difficult to write a long
program if a dood organisational framework is worked out in
advance. The coding guidelines above were well adhered to and
the overall structure, in most cases, was identical to that in
the phone problem. An example of this work, MENIJEXER.CSB, is
supplied onn disk. The only deviation from +the proposed
structure was that some students called the MENU procedure at
the end of each of the ’calculating’ procedures, rather than
Just once at the end of fhe loop in the main program. This
worked correctly but made the listing more difficult to

understand. This was because it was not obvious from reading

the main program that the value of CHOICE was being changed,each
time the loop was executed and therefore it was not obvious that
the loop would terminate properly. Wheﬁ this was pointed out to
the students concerned, they were reluctant to accept that it
was important encugh to warrant changing their programs hut were

eventually persuaded to do so.

7.9.2 LIBRARY PRCCEDURES

Some time was then spent on the use of library procedures and
the COMAL commands LIST and ENTER were introduced. The use of
the command LIST for two completely different purposes in COMAL
is one of the few design faults in the system. When LIST is
followed by a filename it writes the contents of memory to disk,
under that filename, as a string of ASCII characters and appends
the suffix .CML to the filename. The file can be retrieved
without disturbing the contents of memory by using the command
ENTER followed by the filename. Thus, if there is no clash of
line-numbers, this can be used to store and retrieve procedures
which may be used in many programs. I+t is normal to use very
big line-numbers when designing such procedures, as this
minimises the 1ikeiihood of a clash of line-numbers when the
procedure is added intc memory. A few useful procedures to
enhance screen displays (INVERSE, NORMAL and FLASH), one to
sound the Apple’s bell (BELL), and one Lo halt program execution
until the spacebar 1s hit (SPACEEAR), were supplied. The

students were shown how to LIST and ENTER these and how to

utilise them in thelr programs. They were very amused by +these
and, for some time after, included them at every conceivable
opportunity in thelr programs. All of these procedures

143

contained statements that had not been intreocduced in class (PEEK
and POKE) and so the point was made thét it was not always
necessary to understand the minute detalls of a procedure in

order to utilise it effectively.

Another large program (QUIZDEMO.CSB) was supplied on disk for
the students to use and discuss in the same way as FONEDEMO.CSB.
A listing of the program is in appendix B, p.223. This program
conducted a multiple choice quiz and utilised all the procedures
mentioned above. Although it merely asks three questions, the
overall structure is very general and could be adapted to ask
any number of gquestions, on any topic, whether they were stored
in deta statements or in a separate diskfile. The program was
used and discussed at length in the same way as FONEDEMO. They
were then asked to design a similar program tc conduct a quiz on
chemical names and symbols. There was an added complication in
this assignment, as the user was to be given the option of
matching chemical names with chemical symbols, or vice versa.
{Those not studying chemistry were given the option of writing a
similar program on any topic of their choice). To do this, it
was necessary for the programmer to conmbine the features of the
two demonstration programs above, as the prdgram had to

implement a multiple choice aquiz AND be menu-driven.

This problem demanded the construction of two different sets of
data. One set was needed for the option where the user was to be
tested on chemical names. In this set, each data line had to
contain a chemical symbol, three possible answers and the
response {(a letiter) associated with the correct answer, -

e.g. DATA "C", "COPPER", "CARBON", "CHLORINE", "B"

144

For the other set of data, where the user was to be tested oﬁ
chemical symbols, each line had to contain a chemical nane,
three possible symbols and the letter associated with the
correct response,
e.g. DATA "SODIUM", "S", "So", "Na", "C"

While two sets of data were required, it was possible to
manipulate them both with the same procedure and this is how it
was done by all the students. In order to get the data pointer
to the correct set of data the RESTORE LABEL statement was used
by all the students, except one. This girl was unaware of the
existence of this feature but still got her program to work
correctly by placing ’*flags’ in thé data, This - led to a
slightly more cumbersome but impressive program {QUIZEX2.CSB).
Other examples of the students’ work on this problem are also on

disk (QUIZEXER.CSB and CHEMQUIZ.CSB).

7.10 GENERAL APPROACH TO LARGE PROBLEMS

Up to this, the problems dealt with had involved the
organisation of various simple and familiar algorithms in large
programs. An attempt was now made to demonstrate a method of
finding a complete solution to any large problem which might be
both unfamiliar and difficult. The problem specification was
very long and detailed (figure 7.18) and some time was spent
making sure that everybody understoocd Qhat the program was
supposed to do. This was done by asking what should appear on
the screen at each stage of the program, As this was a
menu-driven program the outer structure was already aquite

familiar and this i1s shown in figure 7.18.

145

PROBLEM SPECIFICATION

Write a menu-driven program which gives the user a list of cars
that he/she can afford. The user should be given the choice of
BRITISH, EUROPEAN or JAPANESE cars. The DATA statements are
arranged in three groups each of which is preceded by a LABEL
statement. Each data statement contains the name of a car
followed by its price:

1000 LABEL BRITISH

1010 DATA “"MINI", 4500

1020 DATA "METRO", 6200 etc.

2000 LABEL EUROPEAN
2010 DATA "CITRCEN DYANE", 4800
2020 DATA "FIAT PANDA", 5300 etc.

3000 LABEL JAPANESE
3010 DATA "DATSUN MICRA", 5400
3020 DATA “TOYQOTA STARLET", 6000 etc.

The end of each data section is marked by:
DATA "END", O

Within each section the cars are not arranged in any particular
order. The model or models that can be afforded are decided by
two factors:

1. The value of the car (if any) that is being traded in.
This depends on:
a. The year it was first registered.
b. The original value.
c. The mileage done.
The value is caleculated as follows:
a. 10% depreciation for each year of its age.
b. A further depreciation of £50 for every 1000 miles in
excess of an average mileage of 10000 miles per year.
(if the car were 5 years old and had a mileage of
EBO0O0 this would amount to 8 * £50 = £400)
2. The user’s annual income:
The total ocutlay must not exceed 80% of annual income
{(i.e. may spend 80% of annual income in addition to any
trade-in allowance).

The user should be asked to choose either BRITISH, EUROPEAN or
JAPANESE from the main menu. The necessary information
regarding salary and trade-in car should then be regquested. The
program should then output all the cars of the type requested
that are within the user’'s price range before returning tc the
main menu.

FIGURE 7.18

146

CARBUYER

MENU (:bHOICE = INT{CHOICE) AND GOODBYE
CHOICE > O AND CHOICE < 4

HSETPO INTER“ FINDMAX—“ PRI NTMODELE“ ' " MENU
MENU : Displays options and accepts CHOICE.
SETPOINTER : Sets data pointer to correct LABEL.

FINDMAX : Calculates the maximum amount that the user

can afford to spend.

PRINTMODELS : Qutputs all models of the type chosen whose
cost does not exceed MAX.

GOODBYE : Indicates termination of the program.

FIGURE 7. 19

When all were satisfied that this was indeed a solution the next
task was to write the varicus procedures., As MENU and GOODBYE
were almost identical to those in earlier programs - it was
decided to start with SETPOINTER (figure 7.20}). The use of the
RESTORE LABEL statement made this very easy in COMAL. As BASIC
does not support this variation of RESTORE, this section would
need to be expanded if a BA$IC implementation were required.
This would mean that RESTORE BRITISH etc. would have to be
further refined, but the overall structure would not be
affected. The same would apply to data stored in files rather

than in data statements.

147

FINDMAX was then developed (figure 7.21). This in turn called
another procedure (FINDVALUE) which then had to be specified and
developed (figure 7.22). This was the only section of the
problem which involved a complex 'mathematical’ algorithm, The
final section, PRINTMODELS, was then developed {(figure 7.23).

This was quite a familiar type of algorithm.

The purpose of all this was to show the students how a large
problem should be approached, as a preparation for their end of
year project work. It was stressed that this method made it
possible to analyse large problems clearly, even if a complete
solution could not be achieved. For example, if a studenp did
not know how tc calculate the value of the trade-in, the rest of
the problem could still be solved and then help could be sought
with the difficult section. As long as the purpose of the
difficult procedure has been clearly specified and it is known
how the procedure fits into the overall solution, +then it is
perfectly valid and desirable that help should be sought in this
way. If +this approach is followed, then the student who has
difficulties and cannot find a complete solution will at least
know what questions to ask, It was hoped that i1f students could
be taught to think 1like this, that they would then be able +to
approach any problem intelligently, rather than give up because
they "didn’t understand” or because they "didn’t know how to

calculate depreciation” etc.

148

SETPOINTER

o

< CHOICE = 1) <CHOICE

I
N

{CHOICE = 3)

RESTORE RESTORE ' RESTORE
BRITISH EUROPEAN JAPANESE

FIGURE 7.20

FINDMAX
INPUT FIND VALUE OF MAX := (SALARY * 0.8)
SALARY TRADE-IN + VALUE

INPUT “TRADE IN % ": REPLY$ = REPLY3 =
REPLYS$ "YES" "NO”
-FINDVALUE VALUE := 0
FINDVALUE : Calculates the current value of the car that

is beling traded in.

FIGURE 7.21

149

FINDVALUE

INPUT OLDVALUE,
YEARBOUGHT, MILEAGE

CALCULATE CURRENT
VALUE

AGE .= 1984-

SUBTRACT ’EXCESS’

LOOP TO DECREASE VALUE BY
YEARBOUGHT 10% FOR EACH YEAR OF AGE DEPRECIATION
VALUE := COUNT COUNT <= MILEAGE >
OLDVALUE : AGE AGE * 10000

VALUE: = COUNT: = EXTRAMILES := VALUE := VALUE -
vALUEx0. 9| {counT+1| |MILEAGE-(AGE * 10000 [(EXTRAMILES/1000)*50
FIGURE 7.22
PRINTMODEiEﬂ

READ MODEL$, PRICE

{PRICE <= MAX »

PRINT MODEL$, PRICE

FIGURE 7.23

(MODEL$ <> "ENDf)

READ MODEL$, PRICE

150

7.11 THE SIXTH YEAR COURSE

To begin, five problems of reasonable difficulty but not
requiring any new concepts were assigned. This was to force the
students to revise what they had learned in the first year.
One problem was assigned per student and it was planned that
each girl would present her solution to the rest of the class at
a later session. All of these problems were solved very well
with no more than minor bugs in any of them. Where there were
bugs the students were aware of them and fully understood any
corrections that were made. The class presentations were not a
success, mainly due to the fact that the students were
uncritical of each other’s work, leaving it up to the teacher to
challenge the presentéd sclutions. This may have been due to
immaturity on their part but could also have been due to their
failure to recognise the Iimportance of communicating their
sclution. These presentations had to be reluctantly
discontinued as they were very time-consuming. This was a great
pity as ’walking through’ one’s own solution and explaining it
step by step to a critical audience could certainly help to
develop confidence and would contribute to the coﬁcept of

programming as a co-operative group activity.

7.11.1 INTRODUCTION TO ARRAYS

A sheet containing information on arrays, along with sixteen
problems, was distributed. These problems are listed . in
appendix A, p.2186. The need for arrays was introduced using an
example concerning the processing of thirty examinatlon scores
in which the number of students who failed was to be counted.

This was a bad example to use as the problem could have been

151

S -

solved quite simply without arrays. This difficulty is

discussed in 8.11.

The convention of using a variable ’i’ as the array index, when

'moving forward’ through the array, was adopted. In cases
where the array was being processed ’backwards’ the index °'j’
was used. This was a change from the normal policy of using

longer variable nawes, but was Justifiable because variable
names of subscripted variables can be very long and can be
difficult to read. As the convention was explained, and adhered

to consistently, no problems of readability were sncountered.

Arrays were depicted, like ordinary variables, as large boxes in
the computer’s memory but consisting of numerous different

sections.

SCORE

SCORE(1) SCORE(2) . SCORE(30)

Each section was really a variable, like those that were already
familiar, but the big advantage was that the array could be
referred to and processed as a whole. The convention of wusing
SCORE[1..10] etc. when referring to the array as a whole was
adopted. In ¢general Afi..Jj] refers to an array A whose elements
are indexed from i to j inclusive. A COMAL example was given to
show how a loop could be constructed to input values +o an
array:

10 INPUT "How many values? ":NUMBER

20 DIM SCORE (NUMBER)

301 := 1

40 WHILE i1 <= NUMBER DO

50 INPUT SCORE (i)

60 1 := i + 1
70 ENDWHILE

152

This algorithm was discussed in detail and the students were
then asked to write a similar algorithm to output the values
from the array, which they were easily able to do. The next
few sessions were spent working through the problems on the
sheet. The first ten of these were concerned with quite
familiar algorithms but set in the context of arrays. These
were intended to familiarise the students with the concept of an
array and to give them practice in the use of the syntax
associated with array manipulation in COMAL. None of these

problems caused much difficulty.

The next five problems involved swapping values in an array and
were slightly more difficult. For example:

Write a4 program to fill an array with N numbers and

then to swap the first with the last, the second with

the second last etc. until the whole array has been

reversed.
The solution to this problem is shown in figure 7.24. The
difficult part of this algorithm is deciding on the loop guard.
A number of students used the familiar i <= N guard but this
causes both counters 1 and J to move through the whole array,

causing each pair to be swapped twice and leaving the array in

its initial state. The correct guard was arrived at by
considering the case in which the array contained an even number

of elements and the case involving an odd number of elements.

EVEN NO.

SWITCHAROUND

SETUP || SWITCH WRITEOUT
A[1l..N]J ELEMENTS A[1. .N]

SWAP A(i), A(]) iz i+ 1 joiz §-1

SETUP : Sets up the indicated_array.

WRITEOUT : Prints out the indicated array.

SHAP ! Swaps the values of any pair of variables.
(A(1) and A(j) in this case).
FIGURE 7.24

In the case of an even number of elements it is clear that the
processing should cease when the swaps at the indicated
positions of i and j have been made. The next increment of i

and decrement of j would result in i being greafer than j.

ODD NO.

i J
In the case of an odd number of elements there is no need to
process the middle element and so the processing should cease

when the swaps at the indicated positions have been made. The

next increment of i and decrement of j would result in i being

154

equal to j. It follows from this that processing should cease
when either i egquals or exceeds j. Reversing this, the loop

guard is found to be i < j.

This kind of argument is generally applicable where the array is
being processed both from the front and from the back at the
same time and the students were encouraged to think in terms of
the two cases (odd and even) cutlined above. The rest of the
problems on this sheet were done very well with the exception of
the one which required the first N lines of Pascal’s triangle to
be ocutput. This was found +to be far too difficult and no

student was able to solve it.

7.11.2 STRING-HANDLING FUNCTIONS
The next group of problems involved the manipulation of strings
{appendix A, p.217). This was the 1deal time to 1introduce
string handling, as strings ARE arrays and the skills acquired
in the previous section could be practised in a slightly
different context. Unlike their equivalents in BASIC (LEFT$,
RIGHT$ etc.), the string-handling functions in COMAL c¢learly
reflect the connection between strings and arrays:
i.e. NAMES (1) is the first character in NAMES$
just as SCORE (1) is the first element in SCORE.
Some other COMAL string-handling functions introduced were:
1. LEN |
This returns the number of characters in a string. It
is the same as the function found in BASIC.
2. IN
This is an operator which tests if a given substring

is present in another string.

155

e.g. IF A3 IN B$ THEN
IF "JANE" IN NAME$ THEN etc.
3. SUBSTRINGS
B.B.C. COMAL allows parts of a string to be accessed
in the following way:
NAMES (1)o the ith. character of NAMES$.
NAMES (i:3J)...all characters from ith. to jth. {(incl).
NAMES$ (i:)....... all characters from ith. to the end.

NAMES (:3).......... all characters from start to jth.

Having introduced +these functions and operastors the thirteen
problems on the sheet were done over a period of three weeks.
Most of these problems deal with the manipulation of names.
A typical example is:

Write a program which accepts a name from the keyboard

in the form Christian name, space, Surname and which

then outputs the same name in the form Surname, space,

Christian name.

A solution to this problem is shown in figure 7.25. The crucial
part of this algeorithm is the loop to find the position of the
space. It 1s important to state the name of the index of the
position where the space will be found, at the second level of
the diagram. This allows the rest of the solution to be found
even if the section to find the space cannot be completed. This
practice was encouraged throughout. Many of these problemns
involved searching through a string for a particular value
(usually a space) and then outputting the string in a different
format wusing the COMAL features outlined above. This search was

similar to the linear search, described above, but simpler

156

SWITCH NAME

INPUT BREAK NAME$ INTO TWO PRINT SNAME$;" ";
NAMESS PARTS (SNAME$ & CNAMES) CNAMES$
LOOP TO FIND POSITION OFi FIND FIND
SPACE (AT POSITION i) CNAMES SNAME$
ir=1 NAMES (1) CNAMES: = SNAMES$: =

<» "o NAME$ (:1i-1) NAMES (i+1:)

i:= i+1
FIGURE 7.25%

in that the target value (the space) was guaranteed to be
present. These ©problems were solved very well with the
exception of the last two (numbers 12 and 13) which seemed to be

too difficult and caused some confusion.

7.11.3 ARRAYS OF STRINGS

The next group of problems concerned the manipulation of arrays
of strings, i.e. arrays where each element is itself a string.
The necessary syntax, along with eight problems, were
distributed on a sheet. These problems ;re listed in appendix
A, p.218. It was pointed out that B.B.C. COMAL distinguishes

between NAME$ (1) which is the first character in the string

157

NAME$, and NAME$(1l) which is the first string in an array of
strings. The only difference is the space before the opening
bracket. As with arrays, a diagram showing the concept of an
array of strings as a large box with separate sections was

presented.

- STUDENT$ MARIA IRENE

STUDENT$(1) STUDENTS$(2) etc.
The dimension statement for this +type of array needs to be
explained carefully. It is necessary to specify two dimensions:
1. The number of elements {(names) in the array,
i.e. DIM STUDENTS$(6) allows for six names.
2. The maximum number of characters expected in any
one element,
i.e. DIM STUDENT$(6) OF 20 allows six names of up
to twenty characters each.
A typical prcblem of this kind is given below:
Read ten names and ten associated scores from data
into twe arrays. Print the names of the students who
scored above average.
This problem illustrates the idea of ’parallel’ arrays which was
central to some of these problems. The value in SCORE(1) 1is
associated with the name in STUDENT$(1), so that if the score
read in for MARIA Qas 52 and the score for IRENE was 46, the

arrays could be visualised as follows:

[y
>
(88}

STUDENTS MARIA IRENE

STUDENTS$(1) STUDENTS$(2)

BCORE 52 46

SCORE{(1) SCORE(2)
This arrangement allows for very convenient processing and also

foreshadows the concept of a record.

A number of the problems used at this stage inveolved processing
lists of names. A typical example was:
Write a program which reads ten names from. data
statements and then prints out the initials of each
person. Each name consists_of a Christian name,
followed by a space, followed by a Surname.
The scolution to this problem is in figure 7.26. This set of
problems was quite difficult but they all had the same general
cuter structure:
100 i := 1
110 WHILE i <= N DO
120 PROCESS NAMES$(i)
130 i =1+ 1
140 ENDWHILE
This outer loop controls the ’movement’ down through the array
taking each name in turn. Once this has been established, the
student is then free to concentrate on refining the *PROCESS
NAMES$(i1i)’ =tatement. In each case, the algorithm. for érocessing
NAMEE({1i) was already familiar from the previous section on
string variables. This meant that most of the problems could be
solved by superimposing this outer structure on to the previous
solutions. There were also some syntax considerations in

implementing solutions *to these vproblems. The first bracket

158

INITIALS

SETUP
NAMES${1..10]

FIND INITIALS
OF NAMES$(i)

LOOP TO FIND AND PRINT THE
INITIALS OF THE TEN NAMES

PRINT INITIALS
OF NAMES$(1i)

FIRST$:=
NAME$(i) (1)

FIND
SECONDS

PRINT FIRSTS; .

SECONDS$; "

3
"

LOOP TO FIND THE SPACE
(at position k)

SECOND$:=
NAME$(1) (k + 1)

DATA "MARIA CORRIGAN"
DATA "IRENE COMERFORD"

(NAME$(1i) (k) <>

)

k= k +1

etc. (10 such DATA statements)

FIGURE 7.28

160

after the name of the array contains the index of the required
element, while the second bracket contains the index of the
required character within this element. Thus NAME$(i) (k) refers
to the kth. character in the ith. element of the"array. The
second bracket may also contain two parameters, so that NAME$(1i)
(j:k) refers to the group of characters, starting at the jth.
and ending with the kth., of the ith. element of the array.
This caused quite a lot of difficulty and perheps some exercises
on thils syntax should have been done before attempting to use it

in difficult problems.

7.11.4 SORTING ARRAYS

The bubblesort algorithm was used to introduce the topic of
sorting, as it was felt that this was the simplest and most
accessible of the sorting algorithms. It had been intended to
investigate some other sorting processes but this was impossible
due to time constraints. The outline of the bubblesort
algorithm was described and then the first pass on a list of
four numbers was demonstrated uszing the following algorithm:
"Starting at the left, compare each value with its immediate
Aheiéhbour (to its right) and 1if it 1is found to exceed its

neighbour then swap the two values"”.

6 3 5 2 {6 > 3 therefore swap values)
3 B 5 2 (6 > 5 "))
3 5 B 2 (6 > 2 " " ")
3 5 2 B ' (end of first pass)

After working on a similar 1list of numbers the students were

shown a structure diagram for this process (figure 7.27).

161

FIRST
PASS

<A(i)>A(i+1D i =i+ 1

SWAP A(i),A(1 + 1)

FIGURE 7.27

The loop guard i < j is used here instead of the more familiar
i <=3 because the pass is complete when-i has reached the
second last number .in the list. If 1 were allowed to become
equal to j, then there would be no number to the right for
compariscn, i.e. there is no A(j+1l). It was agreed that the
last element in the list could now be forgotten about as it was
already in its correct position, The next task was to process
the first three elements in the same way as above and then,
finally, the first two elements. The students were required to
do this manually. When this had been done they were given
several different lists to process manually before being shown

the complete bubblesort algorithm (figure 7.28}).

162

BUBBLESORT

SETUP SORT WRITEOUT
Af1..N] A[ll..N] All..N]

LOOP TO PUT THE BIGGEST | 3 = 3 - 1
REMAINING NUMBER INTO A(j)

6{i)>A(i+1)> ioc= i+ 1

SWAP A(i), A(i + 1)

FIGURE 7.28

An exercise requiring the use of the bubblesort algorithm was
then given. This required the use of the supplied aldorithm, to
give the user the c¢hoice of outputting a list of names, in
either alphabetical order or order of merit (based on supplied
scores) and was done very well. Another exercise done at this
stage was to use the internal clock of the B.B.C. microcomputer

to investigate the efficiency of the bubblesort algorithm. This

163

involved using the clock to time bubblesorts for array of
different sizes. The inefficiency of this algorithm is not at
all obvious when processing arrays of twenty or thirty numbers,
which require Jjust a few seconds. Its inefficiency was
demonstrated very clearly, however, when it took aover an hour to

sort an array of one thousand elements.

164

CHAPTER 8

8.1 INTRODUCTION

In this chapter some difficulties that arose concerning certain
sections of the course are outlined and the adjustments made for
the second implementation of the fifth year course are
described. This is followed by a review of the projects
undertalken by the students. These are on the accompanying disk
and are a good measure of the effectiveness of the courss. The
chapter terminates with the description of an application of

structure diagrams in Leaving Certificate mathematics.

8.2 THE METANIC COMAL SYSTEM

Apple Metanic COMAL was wused as the implementation language
throughout the fifth year course and was found to be generally
satisfactory with Jjust one serious flaw. To access this version
it is first necessary to get the machine into CP/M and then to
call up COMAL. CP/M and COMAL are Iloaded from the same disk.
In the first year each student was given a CP/M formatted blank
disk for storing COMAL programs. Each student used the same
master disk to start up the system, inserting her own disk after
the system was in COMAL. This caused some problems due to a
quirk of Metanic COMAL which requires INIT to be typed every

time a disk 1is changed. If this is not done, and students

165

often forgot to do it, it is impossible to save a program on the
new disk. This is a serious flaw in the system and there is no
way to recover once the error has been made. This caused a
number of programs to be lost which was very frustrating for the
students concerned. Because of this, in the second year each
student was given a disk containing both CP/M and COMAL. This
meant that there was no need to change disks after COMAL had
been brought up. There was, of course, less space available on
the students’ disks for their own programs but this did not

cause any problems.

8.3 THE CONCEPT OF A COMPUTER SYSTEM
All students in both years developed the ability to use the.
computers confidently and unsupervised. They were all able to
load and save programs, edit programs and ENTER library
procedures into programs without difficulty. This 1indicates
that the simple mental model used was satisfactory and that
rhere was no need to describe the system configuration in more

technical terms.

8.4. VARIABLES

All students acquired the concept of a real variable reasonably
quickly. However there was some confusion 1in relation to the
other types of variable. COMAL supports four distinct types of
variable: real, integder, string and boolean. In the first year
of the course all four were described but it was found that the

distinction between real and integer variables caused difficulty

166

for many students. It was also found that, using the
mini-language, there was no need for boolean wvariables. For
these reasons it was decided to introduce only real and string
variables for the second year. Real wvariables were always
referred to as numeric variables. As all the algorithms used in
the course may be written using Jjust real and string wvariabtles,
there is no good reason for introducing the others if they are
likely to cause confusion. Omitting them proved to be very

satisfactory.

8.4.1 STRING VARIABLES

In the first year, very little explicit instruction was given on
string variables. They were initially introduced at the same
time as real and integer variables, Numercous examples
concerning the use of real variables were used but very few
examples invelving string variables were demonstrated. This was
because it was considered that the concept of a string variable
was essentially the same as that of a real variable, the only
difference being in the syntax of assignment and the need for
dimensioning. A sheet containing all the necessary information
on string variables was distributed to each student but the
topic was not dealt with in detail in e¢lass. The students were
requested to study the sheet themselves and then to keep it for
reference. This was a mistake. The students tended to dismiss
material treated in this way as being of lesser importance than

that spelt cut in class and paid little heed to it.

167

To overcome this problem, a whole session was devoted to string
variables in the second year. More comprehensive sheets were
prepared {appendix A, p. 208). These sheets contained the rules
for string variable names, followed by the syntawx for both the
assignment and input Statehents. When some examples on these
statements had been carried out by the c¢lass, the need for
dimensioning was raised. It was simply pointed ocut that string
and numeric values were stored in different ways by the
computer. No matter how large a number is, it only requires a
fixed amount of space because it may be rounded off. Strings,
on the other hand, should not be rounded off, so large strings
require large amounts of memory. Therefore in the interests of
economy, it was necessary to specify how large éach string
variable might be, so that the computer could set aside a
suitable amount of memory space. This explanation of the need
for dimensioning was accepted with some misgivings by the class.
Another change in the treatment of string variables was to
reguire students to run prograﬁs which utilised them, before the
topic was discussed in class. This prepared them for the idea
of a non—numeric_variable,.as they could see that the computer
could ‘remeﬁber’ words, names etce. Despite this extra effort,
students still had difficulty with string variables. The two
most common mistakes were to omit the DIM statement and to use a
numeric variable where a string variable should have been used.

All fthese problems were, however, overcome with practice.

168

8.5 THE INPUT STATEMENT
It was noticed during the first jear that some students head
severé difficulties with the input statement. There was some
confusion between what appears on the screen when the-program is
listed and what appears when it is run. The main error was to
attempt to give a value to the variable when keying in the
program.
For example : INPUT LENGTH 6

or INPUT 6
For this reason, during the second year, students were required
to run numerous teacher-written programs, which utilised input
statements, before the topic was mentiocned 1in class. The
students enjoyed using these programs, especially the ones which -
asked for their names and then carried on a ’perscnal’
conversation using the supplied name. They became curious about
how +the programs worked and how numbers and names were
'remembered’ by the computer. They were therefore better
prepared to acquire the concept of input when it was introduced.
The difficulties mentioned above did appear again in the second
year, but much less frequently, and were cleared up much more

quickly.

It was found that the students who spent most time at . the
machines in these early stages were least likely to encounter
difficulties of this nature. This seems to suggest that

practice at the machines is very important in the early stages

169

and may be more beneficial than extensive class instruction,

supplied notes ete., at this stage.

8.6 TYPES OF PROBLEMS FOR EXERCISES

In general, the problems that were assigned in the early stages
were very simple and concerned topics that were familiar from
other subject areas. However, in the first year, some examples
were assigned involving topics which were not already familiar
te the students {(e.g. A.P.s, G.P.s, Compound Interest ete.) but
which were really quite simple and which were included in their
fifth year mathematics course. This was a mistake and confused
a number of students. In fact, some of them were still confused
even after sclutions had been shown and explained in detail. It
would seem, therefore, that in the early stages of the course,

it is unwise to ask students to solve problems from areas which

are not extremely familiar. This might also be an argument
against running programming and mathematics courses in
parallel’. It seems that they had enocugh to cope with in

learning COMAIL syntax and how to operate the machines without

?

having to solve problems from ‘new’ areas. These problems were

not assigned in the second year.

8.7 STRUCTURE DIAGRAMS

The students initially resisted the idea of using diagrams and
were very slow to accept that, when drawing a diagram, certain
'syntax’ rules needed to be observed. For example, it was very

common to find a sequence of statements listed vertically rather

170

than horizontally; 1i.e. if a certain task, A, required the
execution of three steps, 1, 2 and 3, it was often drawn as 1in
figure 8.1, rather than as in figure 8.2. This kind of error
ruined the meaning of the diagram and spoiled the Top-Down

approach.

A lot of difficulty was initially encountered in trying to
convince the students that it really mattered how the diagrams
were drawn. They seemed to feel that it was sufficient to
derive a program that worked (or seemed to work), either with a

badly drawn diagram or with no diagram at all.

TASK A

STEP 1

STEP 2

STEP 3

FIGURE 8.1

TASK A

STEP 1 STEP 2 . STEP 3

FIGURE 8.2

171

It was also noticed in practically all cases, whether the
diagram was organised properly or not, that they were very
sloppily drawn and presented._ Very few students seemed to use a
ruler. This was despite the fact that all the diagrams they had
been shown, whether on overhead slides or on typed notes, were
very carefully drawn. It seems they were unable to appreciate
that a well drawn diagram could be an effective means of
communicating a solution. In fact, it is possible that they
didn’t appreciate that there might be a need to communicate a
solution at all, other than to a machine. It is wunderstandable
that the students had difficulty_in accepting the idea of wusing
structure diagrams. The kind of problems encountered at this
stage are usually simple and straightforward enough to be coded
directly by most students. To the novice, the idea of drawing a
diagram may seem to be a waste of time. If, however, the
introduction of diagrams is postponed until really big problems
are encountered, students who solve problems at the keyboard
will find it very difficult to adapt. There is alsc the
likelihood that the combination of quite difficult problems and
a new method of approach might overwhelm the students and

discourage them.

Initially, many students complained that they found the diagrams
‘very difficult?, It was .subsequently discovered that they
could all interpret the diagrams quite well, but had difficulty

in designing them. This seems to 1indicate that it was the

172

problems rather than the diagrams that they found difficult, but .
were unable to distinguish between the two. Despite these
difficulties, the students came to appreciate the diagrams and
in later sessions, when they were given the choice af using the

diagrams or of coding directly, all chose to use the diagrams.

8.8 THE CONDITIONAL CONTROL STRUCTURE
One unexpected difficulty that arose 1in the early stages
concerned the output statements from simple programs iﬁvolving a
conditional structure. This may be illustrated by . considering
the following problem:

Input a number at the keyboard and say whether it 1is

even or odd.
There are two ways in which the output from this type of problem
can be organised and these are illustrated in figure 8.3 and
figure 8.4. The solution in figure 8.3, although it is slightly
longer, is better, as the first level of the diagram breaks the
problem down into three separate sub-tasks representing INPUT,
PROCESS and OUTPUT. This is a éub—division that occurs in
numerous problems, including many quite complex ones. On the
other hand, there are situations in which this methed cannot be
applied. An example of this is the problem of ocutputting the
greater of two numbers (see figure 7.10). If the numbers happen
to be equal, then the output should be a messagde saying that
they are the same (a string).. The output may therefore be

either numeric (one of the numbers) or string. In these cases

173

INPUT NUMBER

_ODD/EVEN No. 1

FIND RESULT$

PRINT RESULTS$

¢ NUMBER MOD 2 = 0> ({ NUMBER MOD 2 <> 0 >
RESULT$:= "EVEN" RESULT$:= "ODD"
FIGURE 8.3
ODD/EVEN No. 2
INPUT TEST NUMBER AND
NUMBER OUTPUT RESULT

< NUMBER MOD 2

0>

PRINT

“EVEN"

FIGURE 8.4

{ NUMBER MOD 2 <> 0 >

PRINT "ODD"

174

the alternative method (figure 8.4) should be used. Students
were encouraged to use the first method wherever possible but
were also shown some examples 1in which the second method was
used. This led to some confusion and a common error encountered
in the early stages was the inclusion of two sets of output
statements. As more practice was acquired the confusion was
gradually dispelled. However, in the second year, numerous
problems of the first kind were used, before any of the second

kind were intreduced, and this was guite satisfactory.

8.8.1 THE USE OF AN ELSE BRANCH IN IF STATEMENTS
In the first year the ELSE branch was introduced as an extension
of the conditional control structure. An information sheet was
distributed and examples were given in which ELSE might be used.
It was stressed that the use of ELSE was never strictly
necessary and that it should be used with extreme caution. It
was suggested that it should only be used in cases where the
final condition of the IF structure was obvious, but long and
tedious to compose. The following program fragment, which
decides whether a given letter (A$) is a vowel or a consonant,
was given as an example:

100 IF A$="A" OR A$="E" OR A%$="1" OR A%$="0" OR A$="U" THEN

110 PRINT "IT IS A VOWEL"

120 ELSE

130 PRINT “IT IS A CONSONANT™

140 ENDIF

The alternatives +to ELSE in this program are quite long

expressions and so it was sugdgested that ELSE might be used in

175

circumstances such as this. The c¢lass was shown how to
construct a diagram for a conditional structure including an

ELSE branch, and how to convert this into COMAL.

It was noted that the students rarely used an ELSE branch in
their own work and often made errors when they did use one. It
was realised that the wuse of ELSE in anything other than
two-branch conditional statements usually resulted in a loss of
clarity. The reason for this is that to comprehend the
circumstances under which the EL3E branch is executed, 1t 1is
necessary to ‘back up’ through all the previous conditions. It
is also necessary to reverse each one, and mentally combine the
reversed conditions. This is quite difficult but must be done
to understand such a programn. If this is not done 1t is very
easy to overlcok special cases, causing the ELSE branch to be
executed in error. For this reason ELSE branches were not
introduced at all in the second year of the course and this was

much more satisfactory.

8.8.2 THE USE OF 'EXPLICIT’ BOOLEAN CONDITIONS

In the first year it was noticed that the students composed the
boolean conditions of conditional stetements in an ’explicit’
manner most of the time and that their programs were clearer and
less error-prone when they did this. An example will illustrate

the point:

176

Write a program 1in which the number of children per
family is input and which then decides how many pints

of milk are reaquired under the following rule:

Ne children 2 pints
1, 2 or 3 children 4 pints
4 or 5 children 8 pints
6 or more children 3 pints + 1 per child

The normal textbook approach to coding the conditional statecment

in this problem in COMAL 1s as follows:

100 IF KIDS = O THEN

110 PINTS := 2

120 ELIF KIDS < 4 THEN
130 PINTS = 4

140 ELIF KIDS < 6 THEN
150 PINTS := 6

160 ELSE

170 PINTS := 3 + KIDS
180 ENDIF

In order to understand the circumstances under which the third
branch of this structure is executed, it 1is not sufficient to
examine the boolean condition guarding it (KIDS < 8). This
condition is TRUE when KIDS has any value less than six but, of
course, the branch is only executed when the wvalue of KIDS is
four or five. To realise, this it is necessary to "hack up’
through the structure examining each of the previous conditions.

This makes the program difficult to read and to understand. The

final ELSE branch is an extreme case of this lack of clarity..

Jsing ’explicit’ Dboolean conditions the following program

fragment is derived:

177

100 IF KIDS = O THEN

110 PINTS = 2

120 ELIF KIDS = 1 OR KIDS = 2 OR KIDS =3 THEN
130 PINTS := 4

140 ELIF KIDS = 4 OR KIDS = 5 THEN

150 PINTS := 6

160 ELIF KIDS >= &6 THEN

170 PINTS := 3 + KIDS

180 ENDIF
in this case the total condition governing each branch 1is
explicitly stated at the entry point to the branch and this
results in a clearer, more reasdable program. It may aiso be
noted that this sclution is a much closer reflection of the
problem statement and therefore is easier to check and debug.
It was decided to insist on explicit statements such as these

for the second vear of the course and this was successful.

In order to write these explicit conditions, it is wusually
necessary to use boolean operators. However, it was felt that
boolean operators should not be introduced until the concept and
syntax of the conditional statement were reasonably well
established. This meant that it had to be possible to solwve all
the initial IF-type problems with explicit conditions, but
without bonlean operators. It was difficult to find problems of
this nature which contained more than two branches. Five of the
eleven problems which were used at this stage in the first year
had to be postponed until after boolean operators were dealt
with. Eleven problems were eventually used and these are in

appendix» A, p.215.

178

8.3.3 De MORGAN’'S LAW
Mozt of the class aveided using the NOT operator by turning
expressions around, 1.e. using A >= 3 rather than NOT A < 3.
Those who did use NOT tended to get confused when constructing
expressions with more than one condition. This difficulty with
the NOT operator prompted the introduction of de Morgan’s law in
the second year. In all cases where it was necessary Lo reverse
a condition, de Morgan’s law was used rather than the HNOT
operator, although the NOT operator was still introduced for the
sake of completeness. The principal reason for this was that
many, if not all, expressions which involve the NOT operator are
difficult to understand. At the simplest level 1t may be argued
that X » 10 is much easier to comprehend than NOT(X <= 10) which
means exactly the same thing. When used with larde expressions,
.NOT can almost render them incomprehensible. For example:

NOT (X <= 6 CR X MOD &5 <> 0)
is eqguivalent to

X > 6B AND X MOD 5 = 0O

In the latter case it is obvious that the expression is TRUE
when X is a multiple of 3§ but greater than 6, i.e. it is TRUE
when X has one of the values 10, 15, 20, 25...... etc.
This is not at all clear from the former expression. It would
appear that the NOT operator is not only confusing but
redundant, as any boolean expression can be written without it

by using a combination of ANDs and ORs.

De Morgan’s law is used to reverse any expression as follows:

1. Reverse all the component conditions.

= becomes <> and vice versa.
> becomes <= and vice versa.
<: becomes >z and vice versa.

2. Change all ORs to ANDs and vice versa

For example the reverse of the condition
X <> 5 AND (Y =X OR Y <= 2)

‘is- X =5 OR (Y <> X AND Y > 2)
In the first year, the most fregquent use of NOT was to reverse
bonlean expressions to cater for either/or situations. These
situations occur quite frequently as in the program to simulate
throwihg two dice (see 7.7.2). 1If the program is to be altered
to output a message whether a prize has been won or not, then a
two-way branch is required. The guard for the second branch may
be derived in any of three different ways:

1. Use the NOT operator.

2. Use ELSE.

3. Use de Morgan’s law.
All three of these methods are quite simple to apply even if de
Morgan’s law requires slightly more effort on the part of the
programmer. However, it is felt that the resulting program is
always much clearer and easier to understand, if this method is
applied. Students had no difficulty in learning the method and
completed numercus examples accurately in class. The only

difficulty found here was in cenvincing the students that 1t was

180

worth the slight extra effort,. There 1is a. case here for
omitting the NOT operator altogether and this is being seriously

considered for future courses.

All the students became proficient in the use of the conditional
statement and the construction of boolean conditions. The fact
that they mostly avoided the use of ELSE, and that they
generally made their conditions explicit, was very encouraging
and showed that they appreciated fhe need for clarity. The
omission of the CASE statement did not cause difficulty as there

was no need for it in any of the problems on the course.

8.9 THE ITERATIVE CONTROL STRUCTURE

No serious difficulties were encountered with this part of the
course. The students were already very familiar with boolean
conditions when this section was introduced. They therefore had
little difficulty constructing loop control conditionsg, which is
the most important skill in loop construction. The guidelines
that they were given for constructing loop conditions were found
toc be helpful, as was the distinction that was drawn between
fixed and indefinite iteration. The fact that only one looping
structure was used caused no problems and there was never aﬁy

need for structures other than the WHILE loop.

8.10 PROCEDURES
When this work was originally planned it was intended to

introduce procedures at a very early stage hecause it was felt

181

i = e e —— ——— L. - —_— - e - = B Y

that procedures were a fundamental part of structured programs.
However, it was realised as the work progressed that it would be .
pointless to introduce procedures until the students were able
to tackle reasonably large problems in which the wuse of
procedures was Jjustified. Pfocedures could have been introduced
earlier, but the students would not have learnt any more than
the syntax of the EXEC, PROC and ENDPROC statements, had this
been done. Although procedures had not been introduced, the use
of a strict Top-Down method had encouraged the students to think
’procedurally’ from the start. The use of the diagrams forced
students to think about problems in high level terms before
details were considered, This is +the essence of ’procedural’
thinking and was well established early in the course. The
actual use of procedures in problems and the associated syntax
was easily assimilated by all the students and they all came to

use them well, as is evidenced by their projects (see 8.12}.

8.11 ARRAYS

The main difficulty associated with the introduction of arrays
was to find suitable introductory problems in which their use
was justified but which were not too difficult. The initial
problem used was gquite unsatisfactory {(see 7.11.1) as it did not
really require the use of an array and this was realised by some
of the students. The problem was to decide how many students
from a class of thirty had failed a test {i.e. scored less than

forty marks). The teacher then suggested that - without arrays

182

this would reauire thirty separate variables, SCORE 1, SCORE 2
etc. and thirty different conditional statements:
IF SCORE 1 < 40 THEN etc.
This was not correct, as the problem could have been solved very
simply without arrays as follows:
106 FAILED := 0O
20 COUNT := 1
30 WHILE COUNT <= 30 DO
40 READ SCORE
50 IF SCORE < 40 THEN
60 FAILED := FAILED + 1
70 ENDIF
80 COUNT := COUNT + 1
S0 ENDWHILE .
100 PRINT FAILED
What is required ét this stage is an example in which an array
is really necessary and this usually implies that the data must
be processed twice. This would involve changing the above
problem as follows:
Write a program to accept thirty scores from the
keyboard and find the number of scores that are above-
the average.
In this case each score is first used to calculate the mean and
then, when this is done, each score must be compared with the-
mean., Therefore each score must be stored after it is initially
used to calculate the mean. In this case the choice is between
thirty separate variables (and thirty IF statements) or a thirty
element array. This point is considered to he important because

it 1s known from experience that many students have difficulty

in deciding when it is appropriate to use an array, and tend to

183

use arrays in situations where they are not appropriate. It 1is
-important that the first few problems encountered in this
section should demonstrate the real need for arrays and not just
the syntax associated with them. Some other problems which are
quite simple, which require arrays and which will be used 1in
future courses are:
1. Input a set of 10 numbers and then print them in
reverse order.
2. Input a set of 10 numbers and then print those that
are bigger than the last number that is input.
3. Read a set of numbers from data and find their
standard deviation.
4, Read a set of numbers from data. Ouput either the
even numbers or the odd numbers of the set,

whichever has the greater sum.

Apart from this initial difficulty, the use of arrays did not
cause any great problems for the students, although some had
difficulty with the syntax in the early stages. The sorting and
searching algorithms used in tﬁe final stages were also found to
be difficult by some students. This is understandable as they
are quite difficult and the students were under a lot of exam
pressure from other subjects, leaving them little time to devote

to these problems.

184

8.12 PROJECTS

Towards the end of each of the fifth year courses the students
were required to undertake projects. A decision had to be made
whether to give the students a free choice of project or to
require them to undertake specific, weli defined-problems. The
advantage of the former was that each student could choose a
topic which was of interest to herself. On the other hand, if
this were done there wquld be difficulties of problem
definition. Some students would probably want to attempt too
much, while others would be inclined to do as 1little as
possible, and still more would probably not be able to think of
a project at all. Because of this, it was decided to require

them to work on specific, teacher-defined problems.

A list of Dbig and quite difficult problems was drawn up each
year {appendix C, p.228). The students were given the option of
working alone or in pairs. Most students chose to work in pairs
and were allowed *to select their own partners. When the
groupings had been decided,- the problems were allocated
according to the abilities of those in the group. Thus the two
nost able students in the class were assigned the most difficult
problem and the weakest student, who chose to work alone, was
assigned the easiest one. It was hoped that each problem would
be difficult enough to constitute a challenge for those
involved, without being so difficult as to discourage them.

They were advised to approach the problems in the way that was

185

outlined above in the CARBUYER example (see 7.10). To éncourage
this approach, they were required to submit the main program and
the procedure specifications for scrutiny, before going on to
develop the lower levels of the problem. They were generally
reluctant to do this but, after some persuasion, they eventually
did it quite well. It was intended to carry +this approach
through for each level of each problem, with all procedures
being submitted as they were develaped. This proved to be

impractical due to school holidays, absenteeism, excuses etc.,

and was not attempted in the second year, Despite this, the
final solutions achieved were very good in both years. The
supplied disk contains some sample projects. A11 of these

programs have names that end with PROJ (e.g. SUMSPROJ).

A good example of the projects submitted was the simulation of
the game of NIM (NIMPROJ.CSB). A full listing of this program

is in appendix C, p.230. The problem definition was as follows:

The game of NIM is normally played by two players.
Starting with any number of matchsticks, each player
is allowed to remove 1, 2 or 3 at a time. The player
left with the last match loses. The ’trick’ is to
leave your opponent with 5 matches in which case, no
matter how many she takes, you can always ensure that
she is left with the last one. To make sure that she
is left with 5 you should ensure that she is left with

9 (13, 17, 21, 25 etec.). WHWrite a program in which the

1886

computer plays NIM with the user. Try to make

sure

that the computer will always win. Make sure that the

user does not cheat by taking an illegal number of
matches. Make the program as friendly as possible.
The main program submitted was:
140 CLEAR
150 EXEC INSTRUCTIONS
1680 EXEC NUMSTART
170 EXEC FIRSTPLAYER
180 WHILE REMAINDER <> 1 DO
190 EXEC COMCHOICE
200 IF¥ REMAINDER <> 1 THEN
210 EXEC PLAYCHOICE
220 ENDIF
230 ENDWHILE
240 EXEC WINNER
250 END
The procedures were then defined as follows:

INSTRUCTIONS : Displays information on the game for the
user.

NUMSTART : Allows the user to choose the number of
matches for the game.

FIRSTPLAYER : Gives the user the option of making the
first move, If the user chooses to go
first then PLAYCHOICE 1is called to allow
the user to do so.

COMCHOICE : Calculates how many matches the computer
should take and reduces REMAINDER
accordingly. :

PLAYCHOICE : Allows the use;ﬁbto choose 1, or 3
matches and checks that the number chosen

is valid. Reduces REMAINDER accordingly.

WINNER : Announces the winner of the game.

This 1is a very good Top-Down design and allows the

overall

solution to be understood by Jjust reading the main program. The

187

only part lacking clarity is FIRSTPLAYER. This procedure may
ar ﬁay not call PLAYCHOICE depending on whether +the user
requests the first move. It would have been clearer to make
this fully explicit -in the main program. The routines to
generate the computer’s choice and to accept and check the
user’s choice, though quite difficult, were handled very well.
The screen presentation was also good, although there was no

attempt made to represent the matches graphically.

One of the easier problems was a simulation of the game of DODO.
The problem definition was as follows:

The game of DODO is played with two special dice. The

blue die has seven sides numbered with the first seven

- prime numbers (2, 3, 5, 7, 11, 13, 17} and the red die"

has nine sides numbered with the first nine Fibonacci

numbers (1, 1, 2, 3, 5, 8, 13, 21, 34). One player

rolls the blue Qie and the other rolls the red die.

The highest score wins. Write a program which, by

simulating 1000 games of DODQ, decides which die has

the better chance of winning.
The students attempting this problem had some difficulty in
finding a way to denerate the required numbers. When given the
hint of storing the numbers in data, they proceeded quite
quickly to a good solution. Their main program was:

300 REDWINS := 0

310 BLUEWINS := O
320 COUNT := 1

188

330 WHILE COUNT <= 1000 DO

340 EXEC REDNUM

350 EXEC BLUENUM

360 IF REDNUM > BLUENUM THEN

370 REDWINS := REDWINS + 1
380 ELIF BLUENUM > REDNUM THEN
390 BLUEWINS := BLUEWINS + 1
400 ENDIF

410 COUNT := COUNT + 1
420 ENDWHILE
430 IF REDWINS > BLUEWINS THEN
440 PRINT "red die has better chance”
450 ELIF BLUEWINS > REDWINS THEN :
460 PRINT "blue die has better chance”
470 ELIF REDWINS = BLUEWINS THEN
480 PRINT "both have equal chance”
490 ENDIF
500 END
The procedure definitions were:
REDNUM : Generates a number for the red die.

BLUENUM : Generates a number for the blue die.

The die numbers in each case were stored 1in data statements
preceded by an appropriate LABEL (RED or BLUE). The procedure
REDNUM restores the data pointer to the LABEL RED, generates a
random number (X) between one and seven, and then reads through
the dﬁta list until it comes to the Xth. item. This wvalue is
then assigned +to REDNUM. A similar procedure is used to
generate BLUENUOM, In solving this problem the students showed
good Jjudgement in the.way they uséd'procedures. To have broken
the main program into further procedures would have been
pointless in such a short and simple program, but to have left
the routines in REDNUM and BLUENUM in the main program would

%
have distracted from the clear presentation of the overall

189

solution. This program (DICEPROJ.CSB) is on the accompanying

disk.

These are good examples of both the simpler and more difficult
projects undertaken. Further examples are on the accompanying
disk. The quality of the work done on these projects is a good

indication of the high level of achievement of those students

who undertook the course.

8.13 THE USE OF STRUCTURE DIAGRAMS IN MATHEMATICS

A brief experiment was carried out to test if the structure
diagrams and the Top-Down method could be applied to other
areas of the curriculum. The topic chosen was Leaving

Certificate co-cordinate geometry.

b
It had been observed, over a number of years, that very many

students had great difficulty with co-ordinate geometry
problems. This was true even when they had been very well
drilled in the wuse of all the relevant formulae (slope,
mid-point etec.). It was found that, as long as students were
given problems in which only one formula was required, they
could manage quite well (e.g. given the slope of a line and
the co-ordinates of one point on it, find the equation).
However, once the problems became even slightly more
difficult, most students were unable to cope. The normal
procedure carried out when such problems were being assigned

was to discuss the problem and the proposed solution in some

190

—_ - maa — .- ———— - e Mo tn mmr e e hed s —n — o = e

detail with the students. They were then allowed to work
alone or in small groups. It was observed that many students
who were 1initially able to discuss the problems intelligently
became completely confused when they actually started writing.
Typically, students would start off correctly but then either
use an inappropriate formula or else simply give up because
they were ’lost’. It was felt that they were so involved with
the calculations that they were in danger of 1losing whatever

insight they originally had into the solution of the problem.

The class consisted of 23 girls all aged either 15 or 16. All
had taken the Intermediate Certificate in 1984 and their maths

grades (all lower course)}) were as follows:

B 5
C 13
D 5

The average number of honours and passes per student were two
and five respectively. This indicates quite a poor level of
academic achievement and, in- gddition, they were noted for
their generally unruly behaviour.and their lack of interest in
’mathematical’ subjects. The saverage attendance over the

period of instruction was B88%.

It was felt that the use .of structure diagrams would be
beneficial in these circumstances. The idea was that students

would learn to develop a complete solution to each problem,

and set this down in a structure diagram, before doing any
calculations. The calculations specified in the diagram would-
thén be carried out and the result of each calculation would
be written on the diagram. The student coﬁld then see at a

191

glance how each result fitted into the overall solution. The
sﬁudent would also be ’prompted’ by the diagram to carry out
the next step 1in the solution. In short, the student would
devise an algorithﬁ and would then simply have to implement

the algorithm to get the required result.

EXAMPLE

Given two points a(3,-1) and b{4,5) find the equation of the

line through b which is perpendicular to a (see figure 8.5).

FIND EQUATION OF LINE

FIND SLOPE FIND POINT USE
OF LINE ON LINE Y - Ye= M(X -X3)
FIND SLOPE OF PERPENDICULAR TURN UPSIDE DOWN
LINE {(i.e. LINE ab) AND CHANGE SIGN
FIND TWO POINTS USE Ya- Y
ON ab - X
Figure 8.5

Once +the diagrem is complete, the answer may be found by
working up from the bottom until the slope and a point on the

line are found and then using the formula Y - Y, = M(X - Xp.

The students had been introduced to all the formulae in the

192

normal way and had done many examples in which only one
formula was requiréd. The instruction with the diagrams took
place during eight c¢lasses, each of forty minutes duration,
over a period of two weéks. A ninth class was devoted to a
test. At the first class the difficulty of approaching large
problems was discussed. It was suggested that they might be

broken down info sections, as described 1in chapter 3 (page

30). At this stage sheets were given to each student containing
all the required formulae in structure diagram form (appendix
D, pages 235, 236). Further sheets containing sample solutions
were alsc distributed and discussions of how the diagrams
were developed took place. When thils was understood, they were

shown how to find answers from the diagrams.

Throughout the period of instruction many problems were
solved, both in the classroom and as homework assignments. The
reaction of the students was very favourable and all learned
the method quickly. It was noticed that, for the first tine,
students were distinguishing between finding the solution and
finding the answer. They also began to regard finding the
solution as the more important of the two. After three days
they were given problems to solve, without being explicitly
told to use diagrams, but all continued to use them throughout
the whole period. The general approach to each problem was to
consider the problem statement and then to derive a solution,
through a class discussicon, on the board. Most members of the
class took an interest in, and contributed to, these
deliberations. The students would then copy the solution into

their notebooks and use this to find the answer. On some

193

occasions they were left completely to themselves. In the more.
difficult cases geometrical diagrams were also used to clarify

the problem.

At the end of the period a 30 minute test consisting of three
problems was given. The problems given were typical of those
that had been used during the instruction period. Twenty

students took the test and their performance on each problem

is discussed below.

QUESTION 1 (figure 8.86).

Find the equation. of the 1line containing the points

a(-2,-2) and b(4,6).

FIND EQUATION
OF LINE
FIND SLOPE FIND POINT USE Y - Y, = M(X -X3}
IOF LINE . ON LINE
FIND TWO POINTS USE Y- Yy
ON LINE Xa- X
Figure 8.6

Only one student failed to find the complete solution to this
problem, although the student concerned did find the first
level solution. Of the other nineteen, twelve got the correct
answer but all executed the algorithm correctly. {All of

their errors were arithmetical.)

194

. Question 2 (figure 8.7).
Find the equation of the line through the point (2,0) which

is parallel to the line 4x + 3y - 5 = 0.

FIND EQUATION

OF LINE
FIND SLOPE FIND POINT USE. Y - Y, = M(X - Xp
+FIND SLOPE OF A SLOPE IS THE
PARALLEL LINE SAME AS THIS
PUT EQUATION IN SLOPE IS M

FORM Y =MX + C

Figure 8.7

Again, only one student failed to find the correct solution
(the same student). This time, however, only six students
found the correct answer. Of the other thirteen, ten found an
incorrect slope for +the line 4x + 3y - 5 = 0 and the other

three did not attempt to find the answer.

QUESTION 3 (figure 8.8).
Find the equation of the perpendicular bisector of the line

segment Jjoining a{(0,0) and b(4,6)

195

FIND EQUATION

OF LINE
FIND SLOPE FIND POINT USE Y - Y, = M(X ~ X
OF LINE ON LINE
FIND SLOPE OF A TURN THIS UPSIDE FIND MID-POINT
PERP. LINE DOWN & CHANGE SIGN OF ab
FIND TWO POINTS USE Ya- Vi USE [X + Xa, Yo + Y,)
ON ab N Xa- Xu 2 2

\ Figure 8.8

-,
In this case 2leven students had the correct solution. Of the
remaining nine, seven had the algorithm for finding the slope
correct buJVmade the mistake of assuming that one of the given
points (a for b) was on the required 1line. The other two were

unable to ﬁet to grips with @he problem at all. Of the eleven

with the correct solution, seven got the correct answer.

One encouraging finding which emerged from the test was that
all the students were able to execute their algorithms
correctly 1in every case, All the errors arose from
arithmetical slips rather than from ’getting lost’ in the

problems.

186

It was clear that the students liked using the diagrams and
that they regarded them as being helpful. It was encouraging
to hear these students discuss sclutions among themselves as
they worked. This was in sharp contrast to the normal type of
conversation that takes place while they work, which normally
concerns only the answer. All the students were able to
understand the TOP-DOWN nature of the diagrams and were able
to use them to find solutions. They were all able to interpret
the diagrams. This was evidenced by the fact that they were
able to carry out the speps of their solutions in the correct

order in every case,

It is felt that the diagrams made a significant contribution
towards overcoming their original difficulty and alse gave

them a tool for finding solutions to more complex problems.

197

CHAPTER 8

There is no doubt that the course described here was much more
satisfactoyy than the previous 'traditional’ course that had
been given to a similar droup of students. If it is borne 1in
mind that the total amount of class time involved {approximately
35 hours) -was iess than what would normally be allotted to
Mathematics in one term, and that none of the participants had
'any previous experience of computing whatsoever, then it is
obvious that a considerable amount was accomplished. Both the
teachers and the students involved expressed satisfaction with
the course and other teachers at the school also noted
improvements in the students’ ability to argue constructively

and to analyse problems.

All the students involﬁed in‘the course became proficient in the
use of a computer system and they were all able to work
confidently at the machines without teacher supervision. They
became familiar with disk management methods and were able to
load and save programs and to use library procedures. Although
some were very apbprehensive at first, all came to enjoy using
the computers. They developed a very positive attitude towards .
the computers, to the extent that they were prepared to spend
large amounts of their free time working at then. Free,
unsupervised access to the machines was important in this
regard, as the students preferred to work in small groups

without having a teacher present. Such extra-curricular work

198

was very unusual for these students and was one of the most.

encouraging outcomes of the course.

The mini-language which was designed for the course proved to be
totally satisfactory. Elegant, Top-Down solutions to every
problem encountered were found using the chosen structures. The
similarity between the two control structures, in that they were
both governed by boolean eXxpressions, was helpful; and the
emphasis placed on the construction of boolean expressions was
well justified. The general rejection of ELSE branches and the
preference of the students for ’‘explicit’ expressions indicated
that the need for clarity was well appreciated by them. The
systematic application of the same structures to numerous
different problems had the desired effect and the students
developed a consistent style of programming. They generally
wrote similar aldorithms in similar ways, unlike students who
are exposed to a complete programming language. The latter tend
to use a whole range of structures in an unpredictable way. For
example, when constructing fixed iteration locops, such students
may use a FOR/NEXT loop at one point and then use a REPEAT/UNTIL
loop for an exactly similar situation in another part of the
same program, This mixture of structures inhibits the
development of programming style and also makes programs

difficult to read.

The fact that relatively few solutions submitted differed
radically from what was expected also indicated that the
students had developed a consistent style. This implies that
the teaching was effective and that the students were able to

apply what they knew to new situations. This was in marked

199

contrast to previous experience where students were exposed to a
full programming Ilanguage in a less struqtured learning
environment. In these latter circumstances, methods of approach
to problems varied drastically and were véry often

inappropriate.

The structure diagrams which were designed to represent the
mini-language were also considered to be highly successful.
They were capable of representing the structures of the language
both conveniently and clearly and provided a good introduction
to the idea of Top-Down analysis. They were also very easily
translated into COMAL; and this process became so ’automatic’
for the students that they were able to type code into the
computer directly from their diagrams. While the students found
it difficult to adapt to +the Top-Down approach initially, they
gradually came to appreciate its walue and used it consistently
in the later stages of the course, in preference to direct
coding in COMAL. The diagrams were a major factor in impressing
on them the need to plan solutions carefully before attempting
to consider details or to write any code. The use of the
diagrams in a short mathematics module also produced the same

effect.

It was difficult +to impress on the students the need to test
solutions bhefore actually writing any code. . They were
encouraged to ‘trace’ all variables and boolean expressions in
their programs to check that the required result was produced.
This idea was not received too favourably but was carried out in

many cases, especilally with nmore difficult problems and with the

projects. In cases where it was done, many students reéorted_

that their programs worked correctly on the first run.

The idea of making one’s work clearly understandable and
communicable was not generally appreciated by the students
initially. The consistent use of the diagrams, in which the
emphasis was always on achieving clarity and good organisation,
eventually produced a change in their approach. The suggested
coding style, which emphasised +wvisual layout and the use of
meaningful variable names, was very well received and most of
their COMAL programs were excellent in this respect. The
stﬁdents therefore learned the importance of organising their
work and of presenting it clearly. This was confirmed by other
members of the staff who noticed improvements of this nature in

the students’ other subjects.

The topics chosen for the course were also considered toc be
satisfactory and the order of presentation of the material
worked very well. The problems used to illustrate and reinforce
the various concepts were generally satiéfactory and were mostly
set at +the correct level of difficulty for the students
involved. Much was learned from the first implementation of the
course in this regard, and many problems had to be rejected or
modified for the second year. The most important lesson learned
here was that the problems had to be on topics with which the
students were already quite familiar. They also had to be very
carefully graded to ensure that they were within the ‘Students’

capabilities, while still providing a challenge.

201

The projects undertaken by the students were executed extremely -
well. Some of these probleis-were very difficult but in most
cases excellent sclutions were achieved. The organisational

principles suggested were denerally adhered fo and the coding
style in most of them was excellent. The fact that problems‘
such as these could be tackled successfully was a major
achievement, as experience with previous courses would have
suggested that these were beyond the reach of such students.

Previous experience had shown that students usually either gave
up very easily or else resorted to ’hacking’ when faced with any
moderately difficult problem. However, the combination. of
mini-language, structure diagrams and translation rules,

together with consistency of approach, gave the students the
tools they needed to allow them to tackle larde problems and to

persevere with them until a good solution had been achieved.

The success of the structure diagrams in co-ordinate geometfy
suggests that the Top-Down method could be applied to other
areas of the curriculum and there is a need for future
experimentation in this field. There are many ﬁopics in
Mathematics and Science which could ﬁertainly be treated this
way and there may also be the possibility of application in
" subjects such as Business Studies, Geography etc., especially
with weaker students. Any problem which may be broken down into
a set of procedureé may be treated in this way and the insight
gained into the hierarchical naturé of those procedures may be
of great value. In the context of Computer Science, further
research is required to establish if the method can be used with

more complex problems and with students from both older and

202

yvounger age groups. There is also a need to tgst if the method
works as conveniently with other implementation languages such
as BASIC, PASCAL and LOGO. The translation rules for BASIC are
more complex than those for COMAL and it would be interesting to
see if the translation process would become ’automatic’ for
students using BASIC. It would also be interesting to see how
students who had already taken a ’traditional’ course might

react when exposed to this approach.

In conclusion, it 1is felt that the course was an ungualified
success as the primary aims of promoting computer literacy and
problem-solving skills were achieved. All the students gained
an insight into the process of Top-Down programming and became
familiar with the use of a computef. Many of them decided that
they would like to pursue careers in computing as a result of
the enjoyment they had derived from the course. However, even
if they do not become computer specialists, it is very 1likely
that most of them will encounter computers in their working
lives and the experience gained from the course is certain to be

of assistance to them in this regard.

203

APPENDICES
AND

REFERENCES‘

APPENDIX A

This appendix contains samples of class notes distributed to the

students.

205

As COMAL is not supplied with the machine it must be loaded into
memory before it is used. The language is supplied on disk. The
procedure for loading it into memory is as follows:

1.Put COMAL disk into drive 1 and switch on.

2.A> appears on the screen.

3. Type COMAL-80 and press ’'return’.

4. COMAL message now appears and you are asked if you require

’error texts’.Type Y (for 'YES?).
Error texts are messages that are printed on the screen when you
make a mistake. If you typed N (for *NO’) then you would merely
get an error number when you made a mistake and you would have
to look up the manual to find what the mistake was.
"%, % now appears on the screen. This is the COMAL prompt to let
you know that the machine is ready to accept COMAL programs.

IMMEDIATE EXECUTION MODE

In immediate execution mode the commands that you give to the
machine are carried out immediately after you press ’return’.
These are called DIRECT COMMANDS. For example if you type CLEAR
the screen will be cleared immediately. Some of the more
important direct commands are given below:

LISTThis causes the commands of whatever program
is in ‘memory to be written on the screen.

NEWThis erases the current program from memory
RUNThis causes the program in memory to be
executed

CLEAR ...This clears all text from the screen but has no

effect on the program in memory. (CLEAR may
also be used in deferred execution mode).

DEFERRED EXECUTION MODE (PROGRAMS)

A progdram is a sequence of deferred commands i.e. a list of
instructions that are stored in the computer’s memory. They are
executed when the direct command RUN is given. Programs may be
written teo solve a huge variety of problems i.e. to create a
computer game, to calculate tax, to teach a geography lesson, to
test a student’s knowledge ete. The fact that so many different
problems can be solved. using the same computer accounts for
their great power.

In deferred execution mode each command {(or statement) is
preceded by a number,

When the command is typed in it is stored in memory. When the
direct command RUN is given the commands in memory are carried
out in sequence from the lowest numbered to the highest. It is
normal to number the commands in ’steps’ of 10. It is unusual to-
type in a whole program without making some errors. The

process of correcting errors is called EDITING.

2086

SIMPLE EDITING IN APPLE COMAL-80

A. ERROR 1S DETECTED BEFORE YCU PRESS ’'RETURN’:
1. Use backarrow to position cursor over incorrect character.
2. Type in correct character.
3. When satisfied press ’return’.

B. ERROR NOTICED AFTER YOU PRESS ’RETURN’:
1. If error is a syntax error then the faulty line will be
displayed with the cursor over (or near) the error. Proceed
as in A above.
2. Dther errors may be corrected by retypring the whole line.
3. To remove a line completely from a program type DEL (for
delete) followed by the appropriaste line number. You must
leave a space between the word DEL and the number e.g. DEL
50.
4. If you get ’stuck’ press the escape (ESC) button on the
keyboard.

THE PRINT STATEMENT
The PRINT statement is used to write on the screen (or on the
printer... later). To write something on the screen you simply
type:

PRINT "anything you like in here”
Note that the words to be written are enclosed in double
guotation marks. You may use the command PRINT with nothing
after it to print a blank line on the screen. The use of blank
lines to separate text helps to make the screen more readable.

SAMPLE PROGRAM:
To clear screen and then write name and address.
10 CLEAR
20 PRINT
30 PRINT
40 PRINT "M.BRADY"
50 PRINT " HOLY FAITH CONVENT"
60 PRINT " THE COOMBE"
70 PRINT " DUBLIN.8B."
80 END

EXERCISE
WRITE PROGRAMS TC CLEAR THE SCREEN AND THEN PRINT:
1. Your own name and address.
2. Your own name and address indented (as on an envelope).
3. Your own name and address in top r.h. corner of screen
(as on a letter)
4. The numbers 1 to
5. The numbers 1 to
6. The numbers 1 to
7. The numbers 1 to
them.
B. A 's0lid’ rectangle made of asterisks
9. An ’empty’ rectangle made of asterisks.
10. A ’s0lid’ rectangle in the centre of the screen.

on SsuccessSive screen lines.

with blank lines in between.

in a diagonal across the screen,

on the same line with spaces between

oo

STRINGS
A string is a sequence of characters enclosed in double
guotation marks. Characters are letters, digits, spaces,
commas etc.
e.g. "SALLY O’BRIEN" "THE AREA IS *
"DONALD DUCK" etc.

STRING VARIABLES

Like NUMERIC variables, STRING variables are also ’boxes’ in
the computer’s memory. To enable the computer to distinguish
between the two types of variable, String variable names
always end with the dollar sign ($).

VALID VARIABLE NAMES

NUMERIC STRING
LENGTH NAMES$
INTEREST ADDRESSS$
RATEPERHOUR ANSHWERS

Values are given to STRING variables by the same statements
that are used for NUMERIC wvariables. {(i.e. ASSIGNMENT, INPUT
AND READ)

ASSIGNMENT

The value that is to be given to the variable must be
enclosed in double gquotation marks.

e.g. NAMES$:= "MARY LOU"
YEARS$ = “"FIFTH"
HOBBY$:= “DANCING"

This is exactly the same as for NUMERIC wvariables

e.g. INPUT FIRSTNAMES$
INPUT "WHAT GRADE DID YOU GET ":GRADES$
INPUT "DO YOU WANT TO TRY AGAIN " :REPLY$

N.B. No guotes are required when typing in the value during
program execution (in response to an INPUT statement).

Once a value has been put into a STRING variable it may then
be printed out in the same way as a NUMERIC wvariable.

e.g. 50 INPUT "WHAT IS YOUR NAME “:NAMES
60 PRINT "HI THERE " ;NAME$

COMAL contains statements for manipulating string variables.
Some of these will be introduced later.

208

DIMENSIONING STRING VARIABLES

The computer stores STRING values and NUMERIC wvalues in
different ways. Before setting up a "box’ for a2 STRING
variable the computer needs to know how much space to set
aside...IT NEEDS TO KNOW THE MAXIMUM NUMBER OF CHARACTERS
THAT YOU EXPECT TO PUT IN THE BOX.

If the variable is to hold an exam grade thenthe maximum
number of characters would be two. If it was to hold a name
then the maximum would be about 25. If it was to hold
addresses the maximum might be about 50.

In COMAL you tell the computer how much space to set aside by
using a DIMENSION statement:

=.8. 10 DIM GRADES$ OF 2
20 DIM NAMEg OF 25

The DIM statement must come BEFORE the variable is given a
value. It is a good idea to DIMENSION all wyvour STRING
variables together at the start of your progran
e.g. 10 CLEAR

20 DIM NAME$ OF 25

30 DIM YEARS OF 6

40 INPUT "WHAT IS YOUR NAME " :NAMES$

50 PRINT

60 PRINT "HELLO THERE " ;NAMES$

70 INPUT "WHAT YEAR ARE YOU IN ":YEARS$

80 PRINT

90 PRINT YEAR$;" YEAR !! HOW EXCITING !!"”

If you forget to include the DIM statement for a STRING
variable then you will get an UNDEFINED VARIABLE error
message when you try to give a value to the variable.

If you try to give a longer value to a STRING variable than
has been allowed for in the DIM statement then the extra
characters will be ’chopped off’. For example if the STRING
variable SHOP$ has been DIMENSIONED for 10 characters and you
try to give it the value "QUINNSWORTH" which contains 11
characters then this would be shortened to "QUINNSWORT". What
would happen if you gave it the value "SUPERQUINN" or
"DUNNE’S STORES"”

It is G.K. to give a shorter value than has been allowed for
in the DIM statement.

EXERCISE

1. Write a program which asks the user to supply her name and
age and then makes a suitable comment.
2. Write a program which asks the user for her name and the
name of her hoyfriend and then makes some comment,

/

VARIABLES

1. A variable may be thought of as a box in the computer’s
memory.

2. Each variable has a value and a name.

3. You may create as many variables as you like in a
program.

4, A lot of programming consists of manipulating variables.

5. We will be using two different ’'types’ of wvariable. These
are NUMERIC and STRING.

NUMERIC ... value may be any number {(whole,decimal,+ or

STRINGvalue may be any groupr of characters

RULES FOR VARIABLE NAMES
1. May be up to 16 characters long
2.Characters must be letters or digits
i.e. no special characters such as commas, spaces etc.
3.First character must be a letter.
4. Cannot be a COMAL keyword.
5.8%tring variable names end with the dollar sign.

It is important that you use meaningful variable names i.e. try
to cheoose names which suggest what the role of the variable is.
For example if a variable is to contain a number which
represents the average of some group of numbers then call the
variable AVERAGE. A variable may have only one value at any
given time. This means that if you change the value of a
variable then the o0ld value is destroyed. In COMAL there are
three ways in which values may be given to variables:

1. ASSIGNMENT STATEMENTS

2. INPUT STATEMENTS

3. READ STATEMENTS
The READ statement will be dealt with later.

1. ASSIGNMENT STATEMENT

An assignment statement consists of a VARIABLE NAME on L.H.S,
the assignment symbol (:=} and an ’‘expression’ on the R.H.S.

SCORE: = 12
. WAGES: = HOURS * RATE
PI:= 3.1418
HOURS: = MINUTES * 60
1. The symbol := is read as "becomes egqual to”

e.g£. SCORE becomes equal to 12
2. In each case the expression on the R.H.S. is evaluated and
the value is given to the variable named on the L.H.S.
3. If the expression on the R.H.S. contains variables then they
must have been given values earlier in the prodgram (i.e. they
.must be INITIALISED). If any variables on the R.H.S have not
been initialised then the assignment statement is invalid , the
program will ’crash’ and an error message will be displayed.
4, The variables on the R.H.S8. are unchanged by the assignment
statement.

2. INPUT STATEMENT
INPUT statements allow values to be given to variables ,by the
user, while the program is RUONning.
e.g. 30 INPUT LENGTH
When the program reaches line 30 it stops and a guestion mark is
displayed on the screen. This 1s a signal to the user that some
data is required by the program. Whatever value is typed in is
then given to the variable named in the input statement and the
program continues on to the next line. Of course a question mark
is not a great prompt for the user but fortunately the
programmer may display meaningful prompts very simply as
follows:
e.g. 30 INPUT "what score did you get " :SCORE
40 INPUT "how old are you”:AGE

The prompt,which must be in double quotation marks, is displayved
instead of the question mark.The variable name is separated from
the prompt by a colen.

QUTPUTTING THE VALUE OF A VARIABLE

To output the value of a variable on the screen use PRINT
e.g. PRINT SCORE

This causes the value of SCORE to be written on the screen.

NOTE 1.PRINT SCORE is not the same as PRINT "SCORE”
NOTE 2.You may include a ’prompt’ in the PRINT statement as in
the INPUT statement but use a semicolon to separate the ’prompt’
from the variable name.

e.g. PRINT “"your present score is ";SCORE

EXERCISE INVOLVING INPUT, ASSIGNMENT AND PRINT STATEMENTS

1 Input lendth and breadth of a rectangle. Qutput it’s area

2 Input principal, rate and time. Output simple interest.

3. Input any whole number. Qutput the next one,

4, Input any number. Output it’s square and it’s cube.

5 Input any four numbers. Output their average.

6 Input degrees celsius. Output degrees fahrenheit
FAHRENMHEIT=(9/5)*CELSIUS + 32

7. Input radius of sphere. Output it’s volumne.
VOLUME = 4/3(Pl % RADIUS"3)

8. Input radius and height of a cylinder. QOutput 1it’s volume

and it’s surface area.

g, Input a student’s test score and the maximum possible

score for the test, Output percentage mark.

When programming these problems on the machine try to make the
screen output 'pretty’ by clearing the screen at the

start, printing blank lines to separate the ’output section’ from
the ’input section’ etec.

In short try to make the screen readable.

-EXERCISES

1.Write a program to calculate the total price of an item if the
nett price and the rate of VAT are input.

2.Write a program to calculate nett pay if gross pay, tax free
allowance and rate of tax are input.

3.Design a program which could be used to estimate the total
cnst of laying concrete paths around rectangular gardens (all
four =sides). The length and width of the garden should be input
{in feet) along with the width of the required path. The cost of
cement is 20p. per square foot and VAT is charged at 23%.

4. Write a program to estimate the cost of making curtains in
which the width and height of the window are input {in feet)
along with the cost per yard of the material. The finished
curtains should go 6 inches above and below the window. The
width of the finished curtains should be twice that of the
window. The cost of lining 1s £2 per yard. There i1s a fixed
charge of £20 per pair of curtains. All material i1s 48 inches
wide., VAT is 23%.

SAMPLE PROBLEM
The wallpaper department of a large retail store wish to give
computerised estimates by phone to their customers. The customer
supplies the length, width and height of the room to be papered
and the price per roll of the paper chosen (from the store’s
catalogue). This information is then given to the computer and
it is expected toc estimate the number of rolls required and the
total cost of papering the room,

The length of a roll of wallpaper is 10 metres.

The width ~ " " " " " 0.5 "

Paste costs 2 pounds per room.

VAT is charged at 23% on both paste and paper.

You needn’t allow for doors,windows etc.

WALLPAPER

o IKPUT LENGTH, WIDTH, FIND PRICE
.. X HEIGHT., ROLLCOST

PRINT PRICE

FIND NETPRICE

| Price: suetPRICE VAT |

§ FIND PAPERFRICE] | neTPRICE: sPAPERPRICE 2] [vaT:=uETPRICE*0.22]

FIND HUMROLLS

| PAPERPRICE : =KUHROLLS*ROLLCOST |

FIHD
PER1HETER

FIND

HUHROLLS : =
HIDTHPERROLL

PERIMETER/W1DTHPERROLL

PERIMETER: = FIND HIDTHPERROLL: =
29{ LENGTH+WIDTH) STRIPSFERROLL STRIPSPERROLL*0. 3

| STRIPSPERROLL: = 10/HEIGHT | 212

1. Write a program which calculates the total cost of buying a
quantity of some particular item where:
- A The cost per item
B. The number of items
C. The rate of V.A. T.
are all INPUT. Assume that there is a standard charge of $20
for delivery regardless of how many items are bought.

2. Write a program to calculate the time taken {(in hours) to
heat a swimming pool from 15 degrees centigrade to 25 degrees
centrigrade, given that the heating plant can heat 100 cubic
metres of water through the required temperature range in 90
minutes. The following items should be INPUT:

A. Length of pool in metres

‘B. Width of pool in metres

C. Depth of pool in metres

3. Write a program to find the cost of repairing a car where:
&. The net cost of all materials
B. The number of hours spent working on car
€. The cost per hour for labour
are INPUT. The V.A.T. rate on materials is 23% and the V.A.T.
on labour 1is 5%,

4. Write a program to find the cost of ordering pencils and
rulers for a school where:

A. The number of pencills

B. 'The number of rulers

C. The price per pencil

D. The price per ruler
are INPUT. The rate of V.A.T. on both items is 23%.

5. A Jjourney is to be mede by car and boat. The car averages
40 m.p.h. and the boat averages 12 m.p.h. Write a program in
which:

A. The distance to be travelled by car

B. The distance to be travelled by boat
are INPUT and which then calculates the total time taken.

6. A driver has discovered that his car averages 30 m.p.g. in
city driving and 40 m.p.g. in country driving. Write a program
in which:

A. The number of miles of city driving per week

B. The number of miles of country driving per wepk

C. The price per gallon of petrol
are INPUT and which then calculates the total cost per week for
pretrol.

213

In the following problem you are required to insert the given
statements intc the correct boxes. {(Some 0f the given statements
are not required at all so it is up to you to decide which ones
are required and where they should go) :

STATEMENT OF PROBLEM

A person wants to buy a carpet. It must be both affordable and
of a suitable colour. Draw a diagram to illustrate how a carpet
is ’checked’.

CARPET

CARPET IS '
AFFORDABLE

(> >

DON’T BUY IT

STATEMENTS TO BE INSERTED

DON’T BOY IT

CARPET 1S BIG ENOUGH

CARPET IS NOT A SUITABLE COLOUR
BUY IT

NEGOTIATE A DISCOUNT

CARPET IS 100% WOOL

CARPET 15 NOT AFFORDABLE

PRICE INCLUDES FITTING CHARGE
CARPET IS A SUITABLE COLOUR
CARPET FITS THE ROOM

BUY RUG PROTECTORS FOR THE FURNITURE

et OO AW =IO B WD

[y

PROBLEMS REQUIRING USE OF IF STRUCTURE

l. Write a program 1in which the user is asked to input any
number. The program should then decide if the number is
positive, negative or Zero and output the result.

2. Input a number. If it is bigger than 5% then multiply it by
2. Otherwise multiply it by 3. OQutput the result.

3. Input a number and say whether or not it’s square is
greater than 10000,

4. Input two numbers. If they are different then output the
smaller one. If they are the same then print a message saying
sO.

5. Write a program in which the user is given the choice of
calculating either simple interest or compound interest
(Principal, Rate and Time to be input).

8. Write a program which offers the user the choice of
calculating the area of a rectangle, a triangle or a circle.
When the user has indicated which shape is required the
program should ask for the relevant measurements, calculate
the area and output the result.

7. Write a program in which the computer carries on a
conversation with the user. The computer should ask the user
some simple questions (i.e. What schocl do you go to % Do
you like your school ? etc.) and make a suitable comment on
cach of the user’s responses.

8. Write a program to calculate an air fare for the user. The
standard fare is £400 but there is a 15% discount for
travellers under 21. If a first class seat is required there
is an extra charge of £200. This first class surcharge is the
same for all travellers regardless of age. The program should
prompt the user to supply all the necessary information.

9. Input a number and say if it is an integer (whole number)
HINT: If X is an integer is it equal to INT(X) %

10. Input a number and say if it is even,
HINT: If X is even what can be said-about X MOD 2 ¢

11, Input a number and say if it is a multiple of 7.
HINT: This 1s almost the same as the previous problem

FROBLEMS INVOLVING ARRAYS
1. Fill an Array with N random numbers befween 1 and 20 and
then:
A. Print them all out.
B. Print out the first 10 elements.
C. Print out the second 10 elements.
E. Print out every second element. Give the user the choice
of printing the odd or the even numbered elements.

2. Fill two Arrays A and B with N elements each. Then create
two new Arrays, C and D, from:

a, The sums of the corresponding elements in A and B.

b. The larger of the corresponding elements in A and B,

3. Find the sum of all the terms in an Array of N elements.
4, Find the average of the elements in an Array of N elements.

5. Given two arrays, each containing the same number of
elements, determine how many pairs of corresponding elements
are aqual.

6. Read numbers into two Arrays. Print out the Array with the
bigger average. If they have the same average then print out a
sultable messadge. {(They need not contain the same number of
elements).

7. Find the number of gero’s 1in an Array.

8. Set each element of an Array to the value of the sum of all
the elements in the Array.

9. Set each element of an Array to the value of itself plus all
the preceding elements (i.e. 1,2,3,4 should become 1,3,6,10).

10. Write out the elements of an array in reverse order.

11. Write out the elements of an Array containing N elements in
the order First, Last, Second, Second-Last etc.

12. Fill an Array with N numbers and then swap the First with
the Last, the Second with the Second Last ete., until the whole
Array has been reversed.

13. Find the biggest and smallest numbers in an N element Array.

14. Find the average of all the elements in an array & round the
answer off to the nearest whole number. Then change each element
of the array into the difference between it and the average
"{i.e. if and element was 2 below the average it should be
changed to -2).

15, Test if an Array is Palindromic (i.e. the same when read
from either end.).

16. Output the first N lines of Pascal’s Triangle.

PROBLEMS ON STRING MANIPULATION

1. Input a string. Output the first two characters.

2. Input a name. Check if the surname begins with 0’, (1i.e.
O’BRIEN, O’DOWD etc.)

3. Input a string. Cutput the last character.
4. Input a string. Qutput the string backwards.

5. Input a string. Output the middle character (or the two
middle characters if there is an even number of characters).

8. Input a string. Say how many vowels are contained in it.

7. Input a name (Christian name and Surname). Ouput the
Christian name only.

8. Input a name (Christian name and Surname). Output the
Surname only.

9. Input a name (Christian name and Surname). Output the
initials only.

10. Input & name (Chrisﬁian name and Surname) into a string
variable. Output the name with the Surname first.

11. Input a string. BSay if it is a Palindrome.

12. Write a program to create ’spoonerisms’. A spoonerism is got
by swapping the first letters of two words i.e. JOE SOAP would
become SOE JOAP.

The correct names should be in DATA statements. The program
should read these and output the adjusted names. The end of the
data should be marked with the word "END".

13. Write a program to check if words containing the letters ’i’
and ‘e’ are spelt correctly. The rule is " i before e except
after ¢ ". You will need to check that the words don’'t contain
the letters ’cie’ and that they don’t contain the letters ’ei’
immediately after a ’¢’. The words should be input at the
keyboard.

217

PROBLEMS ON STRING ARRAYS

1. Read a list of 10 names from data into an array. Print them
out again in reverse order.

2. Read the nawmes and scores of 10 pupils from data lines into
two Arrays. Print out the name of the pupil with the highest
score and the name of the pupil with the lowest score. Assume
that all the scores are different.

3. Read 10 names and scores. Find the average (mean) score and
print ocut the names of those who scored above average.

4. Read 10 names and scores from data. Print out each name
saying whether that persons score was above , below or equal to
the average. (The average should be rounded off to the nearest
whole number.)

5. Read 10 names from data. {Each name consists of a christian
name and a surname , separated by a space.) Print out the
initials of each person.

6. Read 20 names into an array. Each name should consist of a
title (MR. MRS. ete.), a christian name and a surname. Write
programs to:
a. Print out all the mens’ names.
b. Print out all the women’s names.
¢, Print out all the names in the order:
surname, christian name, title
d. Print ocut all the names in the order:
title, initial, surname

7. Read 20 names into an array. Each name consists of a
christian name and a surname. Create a new array in which the
same names are stored with the surname first. Give the user the
choice of having the names output in either order.

8. Write a program to print out the words of the song "THE 12
DAYS OF CHRISTMAS”. The ’'gifts’ for each day should be held in
data statements.

DATA "FIRST", "A PARTRIDGE IN A PEAR TREE"

DATA "SECOND", " 2 TURTLE DOVES AND A "

DATA "THIRD"," 3 FRENCH HENS"” etc,

218

APPENDIX B

This appendix contains listings
programs, FONEDEMO and QUIZDEMO,

students.

of two COMAL demonstration

that were given to the

0010
0020
0030
0040
0050
0080
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
Q300
0310
0320
0330
0340
0350
0360
0370
0380
0380
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630

// M.BRADY

V94
/7 27/2/18984
/7
// PROGRAM TO DEMONSTRATE USE OF PROCEDURES
//
L1000 07 0777777777777 7777707777777 7777777777 777777777777777
// PROGRAM TO ALLOW USER TO FIND A
// PHONE NUMBER BY INPUTTING A
// NAME AND VICE-VERSA.)
// ALL INPUT IS ASSUMED TO BE VALID
//
///
// INITIALISATION SECTION
// i
DIM TESTNAME$ OF 20 \
DIM NAME$ OF 20
/7
///
// MAIN PROGRAM
/7
EXEC MENU
WHILE CHOICE=1 OR CHOICE=2 DO
IF CHOICE=1 THEN
EXEC FINDNUM
ELIF CHOICE=2 THEN
EXEC FINDNAME :
ENDIF :
EXEC MENU 5
ENDWHILE '
EXEC GOODBYE f
END ;
//
// END OF MAIN PROGRAM
//’///:
PROC MENT
// !
// PROCEDURE TO PRINT THE OPTIONS
// ON THE SCREEN AND ACCEPT
// THE USER’S INPUT,
/7
CLEAR
PRINT TAB(10); "TELEPHONE PROGRAM"
PRINT TAB(10); "======Zz=zz===z-z-==z="
PRINT
PRINT
PRINT "YOU MAY :"
PRINT
PRINT ™ 1. SEARCH FOR A NUMBER"
PRINT
PRINT " 2. SEARCH FOR A NAME"
PRINT .
PRINT "~ 3. QUIT"
CURSOR 1, 22
INPUT "TYPE IN NUMBER OF YOUR SELECTIGN “": CHOICE
ENDPROC MENU
/’f
L1777 7777777777777 777777777 7777770777777 7777777
PROC FINDNiM
a4
/7 PROCEDURE TQO ASK FOR A NAME
// AND THEN TO SEARCH DATA FOR 290
// THE APPROPRIATE NUMBER

1
i

——

0640
0850
0660
0670
0880
0690

0700

0710
0720
0730
0740
0750
0760
0770
0780
0790
08060
0810
0820
0830
0840
0850
0860
0870
0880
0890
0300
0910
0820
0830
0240
0850
0860
0970
0980
0890
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

1150

1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1280
1300

/7
CLEAR
PRINT
PRINT
INPUT "ENTER NAME...": TESTNAMES$
READ NAME$, NUMBER
WHILE NOT (NAME:=TESTNAME$ OR NAME$="END") DO
READ NAME$, NUMBER
ENDWHILE
IF NAME$=TESTNAME$ AND NAME$<>"END" THEN
PRINT
PRINT
PRINT "PHONE NUMBER OF " ;TESTNAME$;" IS " ;NUMBER
ELIF NAME$="END" THEN
PRINT
PRINT
PRINT "THIS NAME IS NOT IN THE DIRECTORY"
ENDIF
RESTGRE
- EXEC SPACEBAR
ENDPROC FINDNUM
/¥4
L0077 700777 7777777777777
PROC FINDNAME
/’/
// PROCEDURE TO ASK FOR A NUMBER
// AND THEN TO SEARCH DATA FOR
// APPROPRIATE NAME.
CLEAR
PRINT
PRINT :
INPUT "ENTER NUMBER....... ": TESTNUMBER
READ NAME$, NUMBER
WHILE NOT (NUMBER=TESTNUMBER OR NAME$="END") DO
READ NAME$, NUMBER
ENDHWHILE
IF NUMBER=TESTNUMBER AND NUMBER<>Q THEM
PRINT
PRINT
PRINT
PRINT "THE PERSON WITH THIS PHONE NUMBER IS ";NAMES
ELIF NAME$="END" THEN
PRINT
PRINT .
PRINT
PRINT "THIS NUMBER IS NOT IN THE DIRECTORY"
ENDIF
RESTORE
EXEC SPACEBAR
ENDPROC FINDNAME
//
L0777 077707777777 777777777777777
PROC GOODBYE
/r
// PROCEDURE TO CLEAR SCREEN
// AND GIVE ’'END’ MESSAGE
//
CLEAR
CURSOR 10, 10
PRINT "END OF PROGRAM"
CURSOR 10, 11
PRINT "zozzzzzz=z2z=z=z="
ENDPROC GOODBYE
/7
LI Z LAl 77l 77777777
PROC SPACEBAR ! 221
A

1310 // PROCEDURE TO HALT PROGRAM
1320 /7 EXECUTION UNTIL THE SPACEBAR
1330 // IS HIT.

1340 //

1350 // THIS PROCEDURES CONTAINS

1360 // STATEMENTS THAT HAVE NOT BEEN
1370 // EXPLAINED IN CLASS.

1380 //

1390 CURSOR 1, 24

1400 PRINT "HIT SPACE BAR TO CONTINUE *;
1410 POKE 256, O

1420 REPEAT

1430 UNTIL PEEK(256)=32

1440 ENDPROC SPACEBAR

1450 //

N A R R R R A A A N N SR NNV A N V4
1470 // DATA SECTION

1480 //

1430 DATA "PAT", 1

1500 DATA "JOE", 2

1510 DATA "MARY", 3

1520 DATA "KATE", 4

1530 DATA "END", O

0010
0020
0030
0040
0050
00860
G070
0080
0030
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660

// MULTIPLE CHOICE QUIZ

/7

// M.BRADY 5/3/1984

//

// TO ILLUSTRATE SIMPLE

// ERROR CHECKING ROUTINE

// AND USE OF INVERGSE, FLASH

/7 NORMAL AND BELL PROCEDURES

/f

L7770 7707777777777
/7 INITIALISATION SECTION

o4
DIM QUESTIONg OF 50
DIM OFPTION1$ OF 20
DIM OPTIONZ2$ OF 20

DIM OPTION3% OF 20
DIM OPTION4$ OF 20

DIM CORRECT$ OF 1
DIM RESPONSES OF 1

SCORE: =0

/7

NN SN a e e s e
// MAIN PROGRAM

//
EXEC INSTRUCTIONS

COUNT: =1
WHILE COUNT<=3 DO

EXEC READER

EXEC DISPLAY

EXEC ANSWER

COUNT: =COUNT+1

ENDWHILE
EXEC GOODBYE

END

//

L1777 7777077777777 7777
PROC INSTRUCTIONS

/7

// PROCEDURE TO INFORM USER ON
// USE OF PROGRAM

/f

CLEAR

PRINT TAB(14);"QUIZ PROGRAM"
PRINT TAB(14); "===z==z==zz=zzz==c="
EXEC BELL

CURSOR 1, 8

PRINT "THIS IS A QUIZ IN WHICH YOU WILL BE"
PRINT "ASKED 3 QUESTIONS"

PRINT

PRINT "FOR EACH QUESTION YOU WILL BE GIVEN"
PRINT "FOUR OPTIONS A,B,C AND D."
PRINT

PRINT

PRINT "TYPE A ,B ,C OR D IN RESPONSE TO EACH"

PRINT "QUESTION AND THEN PRESS RETURN”
EXEC SPACEBAR

ENDPROC INSTRUCTIONS

/7
ﬁﬁ////////////////////////////////
PROC READER

/7

// PROCEDURE TO READ IN A

// QUESTION & THE FOUR

// POSSIBLE ANSWERS FROM

// THE DATA LINES.

[+
e

0870 //

0680 READ QUESTIONS

08690 READ OPTION1S

0700 READ OPTIONZ2S$

0710 READ OPTION3$

0720 READ OQPTION4d$

0730 READ CORRECTS$

0740 ENDPROC READER

Q750 //

0160 J///771 7777777777 777777/7777777777/7

o770 //

0780 PROC DISPLAY

0780 " // '

0800 s/ PROCEDURE TO DISPLAY THE

0810 // QUESTION & POSSIBLE ANSWERS

0820 // ON THE SCREEN.

0830 //

0840 CLEAR

0850 PRINT "QUESTION NO...";COUNT;" SCORE = ";SCORE

0860 PRINT "==z===z=z-c=-r-o-zo-ozz=—=====-=-=—==-======—======—===="

0870 PRINT

0880 PRINT

0890 PRINT QUESTIONS$

0900 PRINT

0910 PRINT

0920 PRINT :

0930 PRINT "A. ",0PTION1g

0940 PRINT

0950 PRINT "B. ";OPTICNZ%

0960 PRINT

0970 PRINT "C. ";OPTION3%

0880 PRINT

0990 PRINT "D. ";0QPTION4%

1000 ENDPROC DISPLAY

1010 //

1020 /7777777777777 7777777777077777

1030 //

1040 PROC ANSWER

1050 //

1060 // PROCEDURE TO ASK FOR A

1070 // RESPONSE FROM THE USER

1080 // & TO CHECK TBAT IT 1S

1090 // A YALID RESPONSE.

1100 //

1110 CURSOR 1, 22

1120 EXEC INVERSE

1130 PRINT "ENTER CHOICE...(A,B,C OR D) “;

1140 EXEC NORMAL

1150 INPUT " *: RESPONSES$

1160 WHILE NOT (RESPONSE$="A" OR RESPONSE$="B"” OR RESPONSE$="C" OR
RESPONSE$="D") DO ’

1170 CURSOR 1, 22

1175 EXEC NORMAL

1180 EXEC FLASH

1180 EXEC BELL

1200 PRINT "MUST BE A,B,C OR D "

1210 EXEC NORMAL

1220 INPUT "...": RESPONSE$

1230 ENDWHILE

1240 IF RESPONSE$=CORRECT$ THEN SCORE:=SCORE+1

1250 ENDPROC ANSWER

1260 //

1270 /1107707777707 77777777777 777770777/77 ' ; .

Y280 S/ 0S7 PPN f 224

e e kbt et = et e e e

1290

1300
1310
1320
1330
1340

1350

1360
1370
1380
1380
1400
1410
1420
1430
1440
1450
1460

.1470

1480
1480
1500
1510
1520
1530
1540
1550
1560
1570
1580

1580

1600
1610
1620
1630
1640
1650
1660
1670

1680

1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1820
1930

PROC INVERSE
/7
// PROCEDURE TO GIVE SCREEN
// DISPLAY IN INVERSE MODE
//
POKE 61490.0, 63
ENDPROC INVERSE
//
L7177 7777077777777 777/7/77777
1077707777777 7777777777777
PROC FLASH -
//
// PROCEDURE TO GIVE SCREEN
// DISPLAY IN FLASH MODE
//
POKE 61490.0, 127
ENDPROC FLASH
//
[/ 7757777777777/ 77777777777
L0777 7777777777777
PROC NORMAL
//
// PROCEDURE TO GIVE SCREEN
// DISPLAY IN NORMAL MODE
/7
POKE 61490.0, 255
ENDPROC NORMAL
//
/;//////////////////////////
/
PROC GOODRBYE
/7
// PROCEDURE TO PRINT OUT THE
// SCORE AND GIVE END OF
// PROGRAM MESSAGE.
//
CLEAR
CURSOR 5, 10

PRINT "YOU GOT ";SCORE; " RIGHT OUT OF 3"

CURSOR 1, 22
PRINT "PROGRAM EXECUTION FINISHED"
ENDPROC GOODBYE
4
L1010 000 777177770777 7777777/
//
PROC BELL CLOSED
/-
// PROCEDURE TO SOUND BELL
// FIVE TIMES.
24
COUNT: =1
WHILE COUNT<=5 DO
POKE 61509.0, 135
POKE 62416.0, 217
POKE 62417.0, 251
CALL 56126.0
COUNT: =COUNT+1"
ENDWHILE
4
ENDPROC BELL
//
/;///////////////////////////////
/
PROC SPACEBAR
/7

225

T e e M

T e i ——

1940

1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070

// PROCEDURE TO HALT PROGRAM
// EXECUTION UNTIL SPACEBAR
// IS HIT.
/7
CURSOR 1, 24
PRINT "HIT SPACE BAR TO CONTINUE ";
POKE 256, 0
REPEAT
UNTIL PEEK(256)=32
ENDPROC SPACEBAR
/7 '
;ﬁ///////////////////////////////

// DATA SECTION

2080 //

2080
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190

DATA "THE FIRST PRESIDENT OF IRELAND WAS ™
DATA "DE VALERA", "DOUGLAS HYDE"

DATA "CHARLIE HAUGHEY", "GARRET FITZGERALD", "B"

/7
DATA "WHO INVENTED THE TELEPHONE *

DATA "SEAN DOHERTY", "MICHAEL NOONAN"
DATA "ALEXANDER BELL", "EINSTEIN", "C"
/Y

DATA "WHO WROTE WAR AND PEACE"

DATA "TOLSTOY", "DICKENS"

DATA "JOHN LENNON", "RONALD REAGAN", "A"

228

~APPENDIX C

This appendix contains the _problems that were assigned as end

of yvear projects and a sample of one of the projects submitted.

227

Computers are often used to produce chegques. As well as
writing the amount of money in numeric form it is also
necessary to write it in words:

e.g. IRL£234.56 should be written as:

TWO HUNDRED AND THIRTY FOUR POUNDS FIFTY SIX PENCE
Write a program which will convert amounts of money input
in numeric form into words. The program should terminate
when a value of zero is input.

PROBLEM No. 2
Write a currency conversion program which allows the user
to convert from IRE to:

A. POUNDS STERLING

B. FRENCH FRANCS

C. U.8. DOLLARS

D. CANADIAN DOLLARS
and from any of these back to IRE. These four cptions
should be displayed in the main menu. When this choice is
made the user should be asked to input the current rate
i.e. the number of dollars {(or francs etc.) that are
equivalent to IR£1. The user should then be presented with
ancther menu:

1. CONVERT PUNTS TO DOLLARS (OR FRANCS etc.)

2. CONVERT DOLLARS (OR FRANCS etc.} TO PUNTS,

3. RETURN TO THE MAIN MENU.
When this selection is made the user should be allowed to
do as many conversions of that type as she reguires before
being returned to this menu.

PROBLEM No. 3

The game of NIM is normally played with matchsticks.
Starting with any number of matches each of two players is
allowed to remove 1,2 or 3 matches at a time. Whoever is
left with the last match loses., The ’trick’ is to leave
your opponent with 5 matches i1n which case no matter how
many she takes you can always ensure that she is left with
the last one. To make sure that she is left with 5 you
should ensure that she is left with 9 (13,17,21,25,29...).
Write a program in which the computer plays NIM with the
user. Try to make sure that the computer will win. Make
sure that the user doesn’t cheat by taking an illegal
number of matches. }

Make the program as friendly as possible.

PRGBLEM No. 4

Write a program to give a test in arithmetic. The user
should be given the choice of ADDITION, SUBTRACTION,
MULTIPLICATION OR DIVISION and should be asked 10 questions
on the chosen topic.

The questions should be generated randomly and if the
answer is correct she should be given 10 marks. If
incorrect she should be given a second attempt and if this
is correct she should be given 5 marks. If the second
attempt is also incorrect then no marks should be given but
the correct answer should be displayed before going on to
the next question.

A final score should be displayéd before returning to the
menu. 228

- = A eeew - e e e e e o T e a m e e e e e e e

PROBLEM No. 5

Write a program which determines on which day of the week
any date this century falls. The date should be input in
numeric form.

PROBLEM No. 6

The game of DODO is played with two special dice. The blue
die has seven sides numbered with the first seven prime
numbers (2,3,5,7,11,13,17) and the red die has nine sides
numbered with the first nine FIBONACCI numbers
{(1,1,2,3,5,8,13,21,34). One player rolls the red die and
the other reolls the blue die. The highest score is the
winner. '

Write a program which simulates 1000 throws of the two dice
to find out which has the better chance of winning.

PROBLEM NO. 7

Write a program which will pick a random integer between 1
and 100 (incl.). The user is asked to guess the number. For
each try the user should be told if the guess is too high
or too low until the correct number is input. The program
should then output the number of guesses that were
required. If this 1is less than 7 then a congratulatory
message should also be output. Otherwise output &n
appropriate insult.

PROBLEM No. 8

Write a program in which the user picks a random integer
between 1 and 100 {(incl.) and the computer then has to
guess what the number is. When the computer makes a guess
the user should be asked to input either S (too small), B
{too big) or C {(correct).

the program should then output the number of guesses taken.

PROBLEM No .9
Write a program which will generate 10 random five word
sentences from ’dictionaries’ of nouns, verbs, adjectives
and adverbs. Each sentence should be of the form:

The (adjective) {(noun) (verb) (adverb).
e.g. The big computer worked efficiently.

PROBLEM No. 10

Write a program which prints out a calendar for any month

where the user inputs the name of the month, the number of
days in the month and the day of the week that the 1lst. of
the month falls on. The output should be of the form:

FEBRUARY
MON TUES WED THURS FRI SAT SUN

1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23

24 25 26 27 28
229

S S S P

e e i e 4 N T o b8 At

0010
0020

0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130

0140

0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0280
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0580
0600
0610
0620
0630

// PROJECT BY VALERIE TRAYNOR
7/ AND IRENE COMERFORD
/7
// SUBMITTED AT END OF FIRST
// YEAR COURSE MAY 1984
/7
LI1EFElI Al 7r 77777777777
L1770 07 07777777777 777777777
// DIM SECTION
DIM TURN$ OF 10
DIM ANSWER$ OF 10
LI E7 777077777777 777
// MAIN PROGRAM
CLEAR
EXEC INSTRUCTIONS
EXEC NUMSTART
EXEC FIRSTPLAYER
WHILE REMAINDER<>1 DO
EXEC COMCHOICE
IF REMAINDER<>1 THEN
EXEC PLAYCHOICE
ENDIF
ENDWHILE
EXEC WINNER
END
/7
//END MAINPROGRAM
;;/////////////////////////
PROC INSTRUCTIONS
//THIS PROCEDURE WILL TELL THE
//USER HOW TO PLAY THE GAME NIM

/7
PRINT " RKKAAAAKK KKK KKK KK KA KA KKK KA A K

PRINT

PRINT * NIM “

PRINT " —o=c==

PRINT

EXEC BELL

PRINT

PRINT

PRINT "THE GAME NIM IS PLAYED WITH *“
PRINT "MATCHSTICKS .STARTING WITH "

PRINT "ANY NUMBER OF MATCHES YOU CHOOSE *“
PRINT “EACH PLAYER IS ALLOWED TO REMOVE "
PRINT "1,2 OR 3 MATCHES AT A TIME . "
PRINT

PRINT

PRINT "WHOEVER IS LEFT WITH THE LAST MATCH
4

EXEC SPACEBAR
ENDPROC INSTRUCTIONS

!’/

;5///////////////////////////
PROC NUMSTART

//THIS PROCEDURE ASKES THE USER

//TO0 INPUT THE NUMBER OF MATCHES

//WHICH HE WANTS THE GAME TO

//BEGIN WITH

/7

CLEAR

PRINT "TYPE IN THE NUMBER OF MATCHES "

LOSES "~

e b | b wa e

230

S AU SR T A

e ————— e ot

R e L S e —

0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830

PRINT
PRINT "WHICH YOU WANT TO BEGIN WITH *
PRINT
PRINT "IT MUST BE MORE THAN 5 *
CURSOR 1, 10
INPUT * “: NUMSTART
PRINT
PRINT
WHILE NOT (NUMSTART>5) DO
EXEC FLASH
EXEC BELL
PRINT "MUST BE GREATER THAN 5..."
EXEC NORMAL
INPUT "...": NUMSTART
ENDWHILE
REMAINDER: =NUMSTART

- - e

/7
ENDPROC NUMSTART
//
i sasssiasdi

0840 //

0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060

PROC FIRSTPLAYER
//
//THIS PROCEDURE WILL GIVE THE USER
//THE CHOICE OF GOING FIST OR SECOND
/!
CLEAR
PRINT
PRINT /7777777777777 7077777777777/77/7/77"
CURSOR 1, 6
PRINT "DO YOU WANT TO GO FIRST OR SECOND %
PRINT
PRINT
PRINT
PRINT
INPUT * “: ANSWERS$
IF ANSWER$="FIRST" THEN
EXEC PLAYCHOICE
ENDIF
EXEC SPACEBAR
ENDPROC FIRSTPLAYER
//
(ILLLLILLEI 71777777777

1070 //

1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1120
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290

PROC COMCHCICE
//THIS PROCEDURE WILL DECIDE WHAT
//NUMBER THE COMPUTER SHOULD TAKE
/7
CLEAR
PRINT "COMPUTER CHOICE"
PRINT "=z zm======="
NUM: =(REMAINDER~-5) MOD 4
RANDOM
IF NUM=0 THEN
NUM: =RND{1, 3)
ENDIF
PRINT NUM
REMAINDER =REMAINDER-NUM
TURN$:="COMPUTER "
PRINT
PRINT “"THERE ARE *;REMAINDER; "REMAINING"
EXEC SPACEBAR
/7
ENDPROC COMCHOICE
/7
PIILLII P77 ir7r7/

231 |

T

e e e A e

Sy U S

[o . e iem et e i e ® P if s e b . % pa® e b

1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1580
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740

1750

1760

1770

1780
1790
1300
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940

1950

¥4
PROC PLAYCHOICE
//THIS PROCEDURE WILL ASK THE USER
//TO TYPE IN A NUMBER OF HIS CHQOICE
//AND TO CHECK THAT IT IS A VALID
/ /ONE
CLEAR
PRINT "PLAYER CHOICE™
PRINT "=z=====z=zz=z==z="
PRINT
PRINT
PRINT
PRINT "TYPE IN THE NUMBER YOU WANT *
PRINT
PRINT
PRINT
PRINT
INPOT " R NUM
PRINT
WHILE NOT (NUM=1 OR NUM=2 OR NUM=3) DO
CURSOR 1, 22
EXEC FLASH
EXEC BELL
PRINT "MUST BE 1,2 OR 3 "5
EXEC NORMAL
INPUT "...": NUM
ENDWHILE
REMAINDER: =REMAINDER-NUM
TURNg:="YOU "
PRINT

PRINT "THERE ARE ";REMAINDER; "REMAINING"

PRINT

PRINT

PRINT

EXEC SPACEBAR

//
ENDPROC PLAYCHOICE

// '
;;//////////////////////////
PROC WINNER

//THIS PROCEDURE WILL PRINT THE

//WINNER

PRINT

CLEAR

PRINT " 30k ok AR 3 A KAOK o K K 9k 6 30K KoK K K oK oROK K oK KKK K Kook

PRINT
CURSOR 1, 5
IF TURN$="YOU " THEN

PRINT "CONGRATULATIONS !!!! YOU HAVE WON *“

ELIF TURN$="COMPOTER " THEN

PRINT "HARD LUCK !! YOU HAVE BEEN BEATEN "

ENDIF
PRINT -
CURSOR 1, 10

PRINT " sk skok ok ok ok ook ok ok ok ok Ok Ok oK oK K8 8 ok oK ok o ke ok ok ok sokok skokeok ok

ENDPROC WINMER
(1177777777777 0777777777/7777
LI0LPLLIII PPl rrrrrr//
PROC INVERSE

/7

// PROCEDURE TOC GIVE SCREEN
// DISPLAY IN INVERSE MODE
//

POKE 61490.0, B3
ENDPROC INVERSE

232

— ——

1960
1970
1980
1980
2000
2010
2020
2030
2040
2050
2080
2070
2080
2080
2100
2110
2120
2130
2140
2150
2160
2170
2180
2120
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510

7’/
LI LPPEL7 707777777770 707777
/5/////////////////////////////
/
PROC BELL
44
// PROCEDURE TO SOUND BELL
// NUMBER TIMES.
a4
COUNT: =1
NUMBER:=5
WHILE COUNT<=NUMBER DO
POKE 61509.0, 135
POKE 62416.0, 217
POKE 62417.0, 251
CALL 56126.0
COUNT:=COUNT+1
ENDWHILE
/Y
ENDPROC BELL
/7
LEPTELLELP 7 PP 7777777777777/
L1117 077 7777777777777 777
PROC FLASH
44
// PROCEDURE TO GIVE SCREEN
// DISPLAY IN FLASH MODE
//
POKE 61490.0, 127
ENDPROC FLAGH
//
s ddgiddadassuisasys
(/100007077170 7777777777777
PROC NORMAL
4
// PROCEDURE TO GIVE SCREEN
// DISPLAY IN NORMAL MODE
//
POKE 61490.0, 255
ENDPROC NORMAL
74
////////////////////////////
PROC SPACEBAR
4
// PROCEDURE TO HALT PROGRAM
// EXECUTION UNTIL SPACEBAR
// IS HIT.
//
CURSOR 1, 24

PRINT "HIT SPACE BAR TO CONTINUE “;

POKE 256, ©

REPEAT

UNTIL PEEK(256)=32
ENDPROC SPACEBAR

4

[10L70 0007777777770 07777777777/

e e s m e o A= tme et eer o e wp dttn e d e —m4 e m e & w wme e

233

APPENDIX D

This appendix contains the Mathematics class notes that were

distributed to +the students who undertoock the Mathematics

module.

234

— i —r———— mr e e ————r " et e e amd e it e et et 3 amw et — -

SLOPE OF A LINE

METHCD 1.

FIND SLOPE OF A LINE

FIND TWO POINTS ON LINE
(X,,Y,)} AND (X,,Y;)

METHOD 2.

PUT EQUATION IN FORM
Y = MX + C

. METHOD 3.

FIND SLOPE OF A
PARALLEL LINE

METHOD 4.

FIND SLOPE OF A
PERPENDICULAR LINE

FIND SLOPE OF A LINE

SLOPE IS M

FIND SLOPE OF A LINE

SLOPE IS THE
SAME AS THIS

FIND SLOPE OF A LINE

TURN UPSIDE DOWN
AND CHANGE SIGN

235

[U R

EQUATION OF A LINE

FIND THE
SLOPE M

A LINE

FIND EQUATION OF

FIND A POINT ON
THE LINE (X ,Y)

' MID POINT OF A LINE SEGMENT

FIND MID POIN

T

USE
Y - ¥, = M(X - X)

FIND POINTS AT EACH END

(Xy,Yy) AND (X1, Ya)

USE

Lx X2, Yot Ya

LENGTH OF A LINE SEGMENT

FIND LENGTH OF
A LINE SEGMENT

FIND POINTS AT EACH END

(X,,Y,) AND (X,,Ya)

USE | (Xg-X, S + (Y, -V, f

236

This appendix contains

accompanyving disk.

APPENDIX E

instructions

for

using

the

237

PO . . —_— e

JR P R,

The disk contains both the METANIC COMAL-80 language and
sample programs referred to in the thesis.

System regquirements

Starting up

Loading Programs

Programs on the disk

Apple II+ with 64K memory and fitted
with a Z2-80 card.

When disk is booted CP/M is loaded.
When the CP/M prompt (A >) appears,
type COMAL-80. You will then be
asked if error texts are reguired.
If you reply YES (Y) then error
messages will be given when
appropriate. If you reply NO (N)
then error numbers only will be
given. It is normal to reply YES.
The COMAL prompt (%) then appears.

When the COMAL-80 language has been
loaded you may catalog the disk by

typing CAT. To load a program
simply type LOAD followed by the
program name. Program names are

followed by the suffix .CSB in the
catalog but it 1is not necessary to
include the suffix when loading a
program.

STAT. COM FORMAT. COM

NIMPROJ. CSB COMAL-80. COM
PIP.COM CASHPROJ . CSB
FONEDEMO. CSB QUIZDEMO. CSB
NUMBPROJ. CSB NUM7PROJ. C5B
DATEPROJ. CSB DICEPRO.J. CSB
SUMSPROJ ., CSB CHEMQUIZ.CSB
MENUEXER. CSB QUIZEXER. CSB
QUIZEXZ2.CSB COMPOUND. C5B

238

{11
[zl

3]

(4]

{51

[6]

[7]
(8]
(91
{10]

(11}

[12)
[13]

(14]

REFERENCES

SMITH J., WINNING I. (1985). Computers in Schools.
Limerick, National Institute for Higher Education.

Department of Education (1984). Programme for Action
in Education 1984 - 1987. Dublin, Stationery Office.

Curriculum and Examinations Board (1984). Issues and
Structures in Education. Dublin, Curriculum and
Examinations Board.

PAPERT 8. (1980). Mindstorms. Brighton, Harvester
Press.

Department of Education (1985). Computer Studies
Module - Junior Cycle. Dublin, Department of
Education.

Department of Education (1984). Rules and Programme
for Secondary Schools. Dublin, Stationery Office.

Department of Education Advisory Committee on the Use
of Computers at Second Level (1984). The Design and
Use of Structured Algorithms. Dublin, Department of
Education.

Hativa N. (1984). Good Teaching of Mathematics as
Perceived by Undergraduate Students. INTERNATIONAL
JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND
TECHNOLOGY, 15, 5, 805-815,

WELLS M.B. (1980). Reflections on the Evolution of
Algorithmic Language. In METROPOLIS N., HOWLETT J.,
ROTA G. (Eds.). A History of Computing in the
Twentieth Century. New York, Academic Press.

DIJKSTRA E. (1975). Correctness Concerns and, Among
Other Things, Why They Are Resented. In Proceedings of
International Conference on Reliable Software,

546-550. ACM SIGPLAN NOTICES, Vol. 10.

AVITAL S., SHETTLEWORTH S. (1968). Objectives for
Mathematics Learning. Toronto, The Ontario Institute
for Studies in Education.

POLYA G. (1945), How to Solve It. New Jersey,
Princeton University Press. .

BACKUS J. (1978). The History of FORTRAN I, II and
III. ACM SIGPLAN NOTICES, 13, 8, 165-180.

WEGNER P. (1978). Programming Languages - The First 25

Years. IEEE TRANSACTIONS ON COMPUTERS, C-25, 12,
1207-~-1225

239

[15] DIJKSTRA E. {(1972). The Humble Programmer. COMM.
ACM, 15, 10, 859-866.

[18]7 SAMMET J. {(1978). The Early History of COBOL. ACM
SIGPLAN NOTICES 13, 8, 121-181.

[17] JACKS A. (1983). Ten Languages; COBOL. PRACTICAL
COMPUTING 6, 4, p.114,

{1817 NAUR P. (18360) (Editor). Report onm the Algorithmic
Language ALGOL ’60. COMM. ACM. 3, 229-314.

[19] SAMMET J. (1972). Programming Languages :@: History and
Future., COMM. ACM 15, 7, 601-8610.

[207 RADIN G. (1978). The Early History and
Characteristics of PL/1. ACM SIGPLAN NOTICES 13, 8,
227-241, ~

[21] CHRYSLER E. (1980). Computer Programming Productivity.
In RULLC T.A. (Ed.). Advances in Computer Programming
Management Vol. 1. Philadelphia, Heyden.

{221 JENSEN K., WIRTH N. (1975). Pascal User Manual and
Report. New York, Springer Verlag.

(23] HOARE C.A.R., WIRTH N. (1973). An Axiomatic Definition
of the Programming Language Pascal. ACTA INFORMATICA
2, 4, 335-355.

[24]7 HALL J. (1862). (Ed.}. Computers in Education.
Oxford, Pergamon Press.

[25] KURTZ T. (1878). BASIC. ACM SIGPLAN NOTICES 13, 8,
103-118.

[26] OECD (1971). Report of Seminar on Computer Science in
Education. Paris, OECD Publications.

[27] KOFFMAN E.B., MILLER P.L., WARDLE C.E. (1984).
Recommended Curriculum for CS1. COMM, ACM 27, 10,
998-1001.

[28] KELLY J; (1984). Why Comal? EDUCATION IRELAND. 1,4,
23-25.

'[29] HORTON G. (1985). Structured Programming on the
380-Z. COMPUTER EDUCATION 44, p.22.

[30] BRASWELL J.S. (1984). Advanced Placement in Computer
Science. MATHEMATICS TEACHER 77, 5, 372~379.

(311 O’CAOIMH C. (1982). The Computer Studies Option. THE
SECONDARY TEACHER 11, 2, 10-11

[32} O’SHEA F.T. (1983). Computers in Schools. EDUCATION
IRELAND 1, 1, 20-23.

240

[33] KELLY J. (1980). Computer Studies 1. Dublin, The
Educational Company of Ireland.

[34] O’RINN S. (1983). Is There Life Beyond Computer
Studies? EDUCATION IRELAND 1, 1, 25-26.

[35] WIRTH N. (1971). Program Development by Stepwise
Refinement. COMM. ACM 14, 4, 221-227

[36] WULF W.A. (1977). Languages and Structured Programs.
In YEH R.T. (Ed.). Current trends in Programming
Methodology. Englewocod Cliffs, New Jersey,
Prentice-Hall.

{37 Dijkstra E. {1968). Goto Considered Harmful. COMM.
ACM 11, 3, 147-148.

[387 BOHM C., JACOPINI G. (1966). Flow Diagrams, Turing
Machines and Languages With Only Two Formation Rules,
COMM, ACM 9, 5, 386-371,

[39] DIJKSTRA E. (1975). Guarded Commandé, Nondeterminancy
and Formal Derivation of Programs. COMM. ACM 18, 8,
453-457.

[40] McCRACKEN D. (1973). Revolution in Programming.
DATAMATION Dec. 1873, 50-52.

(413 ©SHEIL B.A. (1981). The Psychological Study of
Programming. ACM COMPUTING SURVEYS 13, 1, 101-120.

f42] SCHNEIDERMAN B. (1980). Software Psychology.
Cambridge, Winthrop.

{43] MOURSOUND D. (1984). More Harm Than Good? THE
- COMPUTING TEACHER 12, 4, 3-4.

(44] BRUNER J.S. (1968). Toward a Theory of Instruction.
Cambriddge, Harvard University Press.

. f45] NICHOLLS J.E. (1975). The Structure and Design of
' Programming Languages. London, Addison Wesley.

[461- RILEY D. (1981). Teaching Problem Solving in an
Introductory Computer Science Class., ACM SIGCSE
BULLETIN 13, 1, 244-251.

[47] CAMPBELL P.F. (1984). The Effect of a Preliminary
Programming and Problem—-Solving Course on Performance
in a Traditional Programming Course for Computer
Science Majors. ACM SIGCSE BULLETIN 16, 1, 56-64.

48] METZLER R.C. (1984). IF Rules Then Better Structured
BASIC. THE COMPUTING TEACHER 12, 4, 12-14. '

[49] KELLY J. (1983). Foundations in Computer Studies with
CCMAL. Dublin, The Educational Company of Ireland.

241

[50]

[(51]

[52]

ATHERTON R. (1982). ©Structured Programming with
COMAL. Chichester, Ellis Horwood.

O’ LEARY P., MAXWELL M. (1980). BASIC Computer
Programming for Students. Dublin, Folens.

CHRISTENSEN B. (1982). Beginning COMAL. Chichester,
Ellis Horwoed.

242

