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Abstract 

Poly (vinyl·butyral) (PVB) is prepared-by the-acetalisation-of-poly-(vinyl -

alcohol) with butanal. Due to the random nature of the reaction, some of 

the hydoxyl groups are left unreacted. The residual hydroxyl groups 

greatly influence its solution behaviour leading to aggregate formation in 

many solvents. 

A number of modified samples of PVB were prepared by esterification of 

the hydroxyl groups with butanoic anhydride, benzoic anhydride, 

trifluroacetic anhydride, phthalic anhydride and succinIcanhydriue: -

These modified samples were examined by size exclusion 

chromatography (SEC) and dilute solution viscometry. The degree of 
; . 

modification was determined by chemical determination of the residual 

h~roxyl groups, by nuclear magnetic resonca.nce spectroscopy (NMR) or 

Fourrier transform infrared spectroscopy (FTIR). 

Viscosity measurements showed that modification with non-polar ester 

groups diminished the degree of aggregate formation in THF while 

modification. with the cyclic anhydrides showed an increased tendency 

towards aggregation in THF while the aggregates were efficiently 

disrupted by methanol. 

The miscibility of the modified PVB with a polyester, a polyurethane, 

polyethylenimine and poly (vinyl pyrrolidone) was investigated by 

dynamic mechanical thermal analysis (DMTA). It was found that samples 

modified with non-polar. ester groups showed reduced miscibility with 

these polymers, while samples modified with cyclic anhydrides showed 

improved miscibility with these polymers and formed macromolecular 

complexes with polythylenimine and poly (vinyl pyrrolidone). 

It was concluded that intermolecular hydrogen bonding ~fected the 

viscosity behaviour of PVB in various sole vents and was the main 

thermodynamic reason for promoting miscibility with the polymers 

studied. 
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1. INTRODUCTION 

Synthetic polymers are prepared with the intention of producing materials , 
with particular properties. The desired properties may depend, at least in 

part, on the presence of specific functional groups either in the polymer 

backbone, or substituents in pendent groups linked to the main chain. 

This functionality may be incorporated in two ways, either a suitably 

substituted monomer is polymerized, or the substituents are introduced at 

-a.later-stage.by-chemical.modification.of a_preformed.polymer._TheJirst._ 

method leads to a fully substituted product of known overall structure, 

the second method gives a product which is rarely fully functionalized, 

and where the .precise positions of functional groups along the polymer 

chain are not known. Often, a random distribution of substituents is 

assumed. 

The ease of modification depends upon the chemical and physical nature 

of the starting material, particularly on whether it is linear or cross-lPlked. 

For insoluble polymers chemical modification might only occur un the 

outer surface. 

It would seem, at least superficially, that a functionalized reactive polymer 

might be best prepared from a suitably substituted monomer. However, 

this is not always possible. The monomers may be very expensive, or 

difficult to synthesis, or the desired substituent may inhibit 

polymerization. In addition, if the functional groups of a modified 

polymer are themselves to be utilized in the product a large proportion 

may be in an inaccessible part of an insolu'ble bead. 

In general, the reasons for carrying out modification of polymers are: 

1. Changing the physical properties to improve the 

biocompat;ibility, fire retard<U1CY, adhesion, or ability to blend 

with other polymers. Sometimes changes are made to the outer 

surface in order to alter properties such as solvent repellancy or 

friction. 

2. Preparing polymer supported reagents. It is sometimes 

advantageous to use reagents in polymeric fQrm the ~e~ired 

products, and reagent recovery and recycling are facilitated. 

This is particularly important for expensive reagents and 

1 



~~t~lys~. _A ~hie r~~g_e _o~~,:ch substituents have been 
prepared. l -B 

3. Controlling the release of drugs and pesticid"es can be achieved 

by attaching the pharmacologically active unit to a polymer 9. 

4. Studying the mechanism of reactions, wl1ere the linking of the 

reacting groups to polymers facilitate mechaniJtic 
- -interpretation.!!!"-_. _________ ._._~ ___________________ _ 

The aim of this work was to prepare a number of samples of chemically 

modified poly.(vinyl butyral), with the objective of reducing the solution 

viscosity and improving the miscibility of poly (vinyl butyral) with other 

polymers. The residual hydroxyl groups lend themselves to the type of 

chemistry used in carbohydrate chemistry by etherification .or 

ester,ification. We chose to modify poly (vinyl butyral) by esterification of 

the hydroxyl group, to produce side groups of low polarity and high 

polarity. The esters chosen were butanoate, benzoate, triflouroethanoate, 

phthalate and succinate. The effect of degree of modification upon 

solution and miscibility was to be studied .. 

2 



2. THEORY 

2.1 Reactions of Functional Polymers 

.' ' 

2.1.1 General Considerations 

Chemical modification of polymers probably began in 178111with the 

isomerization of natural rubber in the presence of acids. The mid-

_nineteenth,century_saw_thefirst,successf!.tL~t~mpJ2,..tQ.. mQQl iy-{?ol y]ller.§ ..... __ . __ 

in a useful way; nitration of cellulose12 was reported in 1833 and. the 

Goodyear vulcanization process was patented in 1844 13. Until 1845 

reactions were carried out on natural polymers only and their first 

application to totally synthetic polymers is very probably the nitration of 

polystyrene14. An important step forward was the development by 

Staudinger of the concept of polymer analogous reactions which consisted 

in the . transformation of a polymer into a derivative of equivalent 

molecular mass. He obtained evidence for this concept by hydrogenating 

rubber 15 and polystyrene16 with almost no chain degnWation. (o' 

Any reaction of classical organic chemistry can be applied to polymers; 

however, the mechanism and kinetics of the reaction may be diffen!nt 

according to whether reaction is carried out on a small molecule or on a 

polymer. Over the last thirty years, several interesting and well 

documented reviews on macromolecular chemistry have been 

published17-43 proposing general theories of macromolecular reactions. 

The reactivity of a functional group in a polymer depends upon (i) the 

nature of the neighbouring groups, (ii) the nature, length and 

conformation of the chain (iii) the morphology of the polymer and its 

history, and (iv) the experimental conditions, which have a greater 

influence with polymers than with small molecules. The neighbouring 

group effect is probably the most important determining factor of the 

reactivity of a functional group in a polymer', The significant factors are :-

i. Steric factors - which inhibit the approach of the reagents. 

ii. ·Polar and electro~tatic effects - these may hinder or enhance the 

approach of Charged reagents. 
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iii. _ ConcentJItion_-iocaLconcelltratign of functionalg~oup~ in 

polymer solutions can be cons~derably higher than could be 

obtained if each of the groups belonged to a small molecule. 

IV. Stabilization of intermolecular complexes. When part ~of a 

compo ·und MN reacts with a group A in a poly;~in~y 
happen that the intermediary complex is stabiliZed by 

interaction of part N with another group A-. 
---.----------- ---

v. Hydrophobic interactions - the existence of attractive 

interactions between the polymer and the reagent is well known -

particularly in aqueras media 44-48 

vi. Specific interactions between neighbouring groups - these may 

lead to_ cyclisations involving adjacent monomer units or may 

lead to ancl1imeric assistance. This is illustrated by the 

hydrolysis of poly ( 4 - nitro - phenyl methacrylate - co - acrylic 

acid) in basic media, as shown is scheme 1. . The efficiency of the 

interaction depends upon the distance and relative positions of 

the groups. 

-

-

NO, 
Me 

..r"CH L I CH, CH,,",-
...... (;/ ...... CH/ 

I I 
·~/--..O/C"'" . . IT "'\.J. . . 

-

Scheme 1 

Thus, for the two polymers isotactic polymethacrylate (IMA) (1) and 

syndiotactic (SMA) (2), the rate of hydrolysis of (IMA) is approximately 

4 



ten times that of (SMA). As the formation of a cyclic intermediate is 
·f~;~uredby the (IMA)~tr~~tur~~ - - - - - .- - - - --. _0 o.~ - - ~ 

(1) (IMA) (2) (SMA) 

- ------ -- ----- -----~--.--------------------------- ------ -------

This is confirmed by the study of (3) for which the hydrolysis rate is about 

200 times that 'of mono succinate; in this case the two interacting functions 

are rigidly maintained in an immediate neighbourhood. 

ctz;~~". 
o 

(3) 

The acetalyzation of poly(vinyl alcohol) (PVA) is another example of the 

specific effect of a neighbouring group; the reaction of an aldehyde with 

PVA results in the formation of intramolecular acetals'rather than the 

formation of intermolecular compounds. This is due to the mec~ism of 

the acetalyzation reaction (Scheme 2). 

5 
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~ tit- ~ 
\ j ~ I H 6~ 
0" H 0" H H ~ "H 

---- ---R- --_OH_-___ _ 

IJ r' 
RAH +- = 

(1~.~ 
A . ~H 0,---/ 

R OH2 I 
._-------+--- ---------- ~---

Scheme 2 

The influence of tacticity, conformation and their evaluation during 

reaction has been reviewed by several authors26,28,31 and summarized by 

Millan49 and GalinSO. The relationship between stereotypes of poly(vinyl 

alcohol) and acetalyzation has been stud~ed51.s3. The isotactic portion of 

poly(vinyl alcohol) might give the cis-m-dioxane(4) while the syndiotactic 

portion might give the trans-m-dioxane(S). 

e 

(4) 

cis derivative 

isotactic 

(5) 

trans derivative 

syndiotactic 

The di-equatorial conformation is more stable than the axial-equatorial 

conformation. 
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2.1.2 Kinetics 

If we consider triads of mono mer units, the rate contants can be defined 

for the reaction of a function A to yield a group B. They are generally 
• )(... x 

called ko for AAA triads, kJ for AAB or fuA triads and k2 for BAB triads, 

where A is the reacting species. In many cases, appreciable influence is 

exerted on the reactivity of a ~ function by the neighbouring units54,55. A 

good theoretical framework emphasizing the major role of the ratios of the 
- -three-kinetic-constants-ko:kJ:k2,-has-been-elaborated.-It-allows_a. 

quantitative description of the reactions on polymers from these related , 
. points of view; (i) kinetic analysis and limiting yields, (ii) compositional 

heterogeneity, and (iii) unit distribution. These points are illustrated in 

table 1. If ko=kl=k2 all reaction probabilities are the same leading to a 

random distribution of reacted groups. If ko<kl<k2 then the probability of 

reaction adjacent to a reacted site becomes greater, leading to a blocky 

distribution of reacted sites. If ko>kpk2 then the probability of reaction 
decreases leading to a distribution of isolated reacted sites between blocks 

of unreacted sites. 

Boucher26, proposed scheme 3 where. and 0 are respectively reacted 

and unreacted groups at time t in a linear array of m.sites. The possible 

situations are reported in table 2. 

o • • o 

t 
o • o 

• o 

t 
• o 

t 
k2 

Scheme 3 

The reaction probabilities of different sites during time dt are kodt, kl dt 

and k2dt respectively. A neighbouring group effect is considered as a 

localised phenomenon operating on a few atoms in the vicinity of each 

neighbouring group. Boucher26,56 established the kinetic expressions 

relative to chemical modification. 
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N3gJronirg 
GroJpi'1Ws 

kir<fu 

Cmver!im 

. , . , 

Table 1: Overview of cooperative effects on macromDlecular chain reactivity 

one single rate constant 

ko=kl=k2 

pure random processes 

may be quantitative 

i 
I 

three different rate ~onstants 
ko<kl<k2 

, 
ko>kpk2 , , 

autoacceleration autoretardation 

mAy be limited K~(fj6 
J . 

may be quantitative ki=kFl - ffirFOA32 
I 
I , 

G:mp:fi1inal ~ moderate I 
I er = DP -'(DS';' - DS2) n J~\ m may be quite high 

Markov statistics - formation 

DNributin d A ard B unit; Bemouilli statistics ofBn blocks 

I may be very low 

~arkov statistics isolated B 
I 

junits between An blocks 
, 
I 

DSm = Substitution degree in mole or molar fraction of B units in the copol~mer 
I 

;;:.~ -v Mean square standard deviation to the average composition 
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Table 2 

Description of the Possible Situations in Reactions of Polymers 

Model representation 

bY. 0 • 0 0 0 • 0···· 

I I I 
kl kl ko 

kl --
0 .-. 0 0 ....-. 0 0 0 0 0···· 

kl ko 

o ••• 0 0 0 0 0 0 0 .... 

kl 

k, k, 

o 0 

00 

o 0 .-.-.-.0 0 0 0 0 0··' 

.. 

Remarks 

I 
Singleton reaction with neighbo~ihg group effect I . 

! 

B · . . . h . hb I. I rr aSlc pamng wit nelg onng group euect 
- t 

General ·n~on.m' model, e.g. 11 = 3l with neigh boring 
group effect ' 

Complex pairing or random ladLr f~rmation, e.g. 
upper row CO and lower row M~ 

I 
Z· . I'" . I, 11' d b 'd Ip reaction. mtlaUon at sites ,0 owe y rapl 
propagation (many variations) i 

i 

Continuum models where discrete/groups are ignored 

I ' 
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------------
Reactions can be considered as either, pairing or non-pairing. An example . 

of non-pairing is the quatell\zation of poly(vinyl pyridine) as in scheme 4. 

-. ------ e-e-~)---------- -- -----
x-

R 

Scheme 4 

The intial stage of reaction follows second-order kinetics; however, later 

stages show retardation. Fuoss57,58 et al attributed retardation J'Je to a 

build up of charge during the reaction. Bourquignon59 reported that in 

the qua; 'te~zation cif poly(4-vinyl pyridine) with butyl Ct-v.·mide in 

sulphalone, ·re. !tardation requires both neighbouring groups to h;ve 
I 

reacted and that the decrease in rate is due to an electric field effect. 

However, Frere and Gra~ain60 have shown that with voluminous 

reagents the steric effect induces the greater limiting factor. 

Pair.ing reactions show a statistical feature which in principle can be 

recognised at any extent of reaction including the t -+00 limit, as well as 

departure from· overall first or second-order kinetic behaviour. 

Consequently, the comparison of experimental data. with the model 
"-

should give a way of testing a proposed reaction scheme, whether or not· 

there is a neighbouring group effect. Non-reversible reactions of pairs of 

adjacent substituents in linear polymers have been treated fairly 
exhaustively61-65. In the simple cases, each substituent X of the chain is 

capable of reacting with only one of its neighbouring substituents X, the 

pair of groups may react directly with one another or jointly with a 

monomeric reactant. This is demonstrated in Scheme 5. 

10 



I I I 
-x x- x' 

~ 
x-x' x- -' - -x-

+A 

I I I I 
X _A_'_- X x- _A_ X X X-A - X 

tB 
- --- -,- -Scheme-S·-·--------'·----. ----.. ----.. -- __ 

Where X-A-X represents the condes;tion product between 2X and AJand B 

is the byproduct of that reaction. For a tandem irreversible reaction of a 

high molecular mass polymer compound of -CH2-CHX- units, when the 
units are arranged head to tail along the chain, 13.53%61 of them are 

prevented from reaction due to isolation between reacted pairs. 

Analogous condesation in' polymers which have their subsitituents 

orientated at random where reaction between 1,4- pairs of substituents 

does not occur, 18.40% of the substituents of a random polymer remain 

isolated after the possibilities for 1'.1- and 1,3- reactions have been 

exhausted. A treatment of vinyl copolymers of the type in Scheme 6 in 

which X may conden,se with Y has been presented66. 

x y x x y y x 

Scheme 6 

Most of the known reactions involving neighbouring pairs of substituents 

in chains are easily reversible and subject to interchange, Examples 

indude the formation of poly(vinyl acetal} from poly(vinyl alcohol} and 

aldehydes and indude formation of imides on heating polyacrylamide, as 

exemplified in scheme 7. 

11 



-CH2--CH--CH2--CH- - -CH2--CH CH2 CH 

I I I I 
C=O C=O C=O C=O 

I I ~N'H~ 
NH2 NH2 

Scheme 7 

If under the condit ions during the intramolecular reaction between pairs 

of subsituents the reverse process may also take place, a reacted pair 

which is adjacent to an isolated subsituent may dissociate and the other 

pair of sequences oflhese substances may then react as illustrated in 

SchemeS. 

SchemeS 

Experimental evidence demonstrating the feasibility of carrying out such a • 

reaction exceeding the S6% limit for non-reversible random reactions is 

found in the literature onp'oly(vinyl acetal) where conversio~exceeding 

90% have been reported67. "Hence, assuming a reversible reaction Flory68 

extended the upper limit of acetalisation to 100%. Though such 

conversions would be possible if the acetalisation were reversible, there is 

no positive evidence in the literature to suggest reversibility and 

experimental studies52,69 have concluded that the reverse reaction is 

insignificant. It has been recently shown70 that by considering the rate 

12 
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constants_for_the_types_of -QB gmIJps in sc;hem~"9 __ that I!.igh_~ollversi~n __ 
can be achieved. 

or 

OH OH OH OH OH OH o 0 

'-../ 

o 0 OH 0 0 
---~- --------------v---- ------------- -- -- -

Scheme 9 

The results of the kinetic model are given in Table 3. 

Maximum attainable conversion for various ko/kl 

ko/kl 
0.05 

0.1 

0.2 

0.5 

1.1 

2.0 

4.0 

Table 3 

Conversion % 

96.64 

93.13 

91.45 

89.19 

87.66 

86.46 

85.64 

Most kinetic studies have been carried out on dilute solutions. When the 

raction is carried out in the melt, diffusion may control the kinetics. De 

Gennes71,72 studied the kinetics of diffusion - controlled processes in 

dense polymer systems in the case of non-entangled and entangled 

regions. When the degree of polymerization N is smaller than a critical 

value Ne, then entanglement effects are not important. If N»Ne, then 

entanglement becomes dominant and dynamics are severely modified. 

The study of the reaction between groups A and B attached to a long 

13 
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flexible chain in melts or in concentrated solutions leads to the following 
f~dame~taltypesofbeh~vi~;';'r-.-- -~- ----"--~- -----

i) Non-compact exploration, which is obtained in the classical 

case when A and B belong to small molecules and where simple diffusion 

prevails. The space volumes wh~re A-and B mayovedapsignificantly 

without any reaction taking place, and this regime leads to a second order 

rate constant k, where k is independ·mt of time. 

--- - -------------------- ------------------- --
ii) Compact exploration, when as soon as the space volume 

explored by A and B overlap the reaction takes place and the rate constant 

is time depend;ent. 

14 
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2.2 Viscosities of Polymer Solutions 
---~ -~- .-'-'-- -- --- ---

The viscosities of even very dilute solutions of high polymers are always 

significantly greater than those of solvents. This is a consequence of the 

.. ,~,,, large size.. of the polymer molecules, relative to those of solvents and 

the extension of a chain molecule in space. Parameters derived from 

measurements of dilute solution viscosity can be related to molecular 

mass and chain dimensions of the polymer and to interactions between 

._- -polymer_and.solvenLThey_may_also_b~ used in studies of chain stiffness! 

chain branching, polydispersity and association of polymers in solution. 

The .viscosity of a dilute polymer solution is often expressed relative to the 

viscosity of the solvent in which the polymer is dissolved. This is 

determined b~ measuring the time for a fixed amount of liquid to flow 

through a capillary of uniform diameter under the weight of solution. 
Hence, the relative viscosity 1) r is defined in (2.1) 

(2.1) 

where t is the efflux time of the polymer solution and to is the efflux time 
of the solvent. The specific viscosity 1) sp which is given by (2.2) 

expresses the incremental viscosity attributable to the polymer ~olute. The 
ratio 1) spl c is a measure of the specific capacity of the polymer to increase 

/ the viscosity. 

The limiting value of this ratio at infinite dilution is called the intrinsic' 

viscosity. (2.3) 

_--,1)",,?~-.,-'I_ = fisc' 
Climd::'-7o Clim(,,-t 0 

The most general relationship between intrinsic viscosity and dilute 

soluton viscosity takes the form of a polynorninal (2.4). 

15 
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where kl, k2, k3 etc. are dimensionless constants. Huggin's theoretical 

analysis of the hydrodynamics of both flexible and rigid polymer 

molecules73-75 producesthe following equation (2.5) 

11.>~.= [~J (2.5) 
e l.:..k [111e 

where k is a dimensionless constant introduced to correct for certain 

deficiencies in the analysis and is commonly referred to as the Huggin s 

constant, which }elated to the size and shape of polymer segments and 

hydrodynamic interactions between different segments of the same 

polymer molecule. Series expansion of (2.5) is permi?\ble provided that 
o<k-[ 111c<1 and gives a convergent series which is equivalent to equation. 

(2.4) with kn = k-n~for n = 1,2,3, etc. Thus, k, corresponds to the Huggin s --- -
constant.:. The Huggin-s constant typically has values which fall in the 

range 0.3 (for good polymer-solvent pairs) to 0.5 (for poor-solvent pairs). 

Experimental data for whichkl>O.5 should be treated with caution since , 
this indicates aggregation of polymer molecules76. A large number of 

equations have been recommended for the evaluation of (n) by 

extrapolation of experimental data. The most commonly encountered are 

listed below. 

Huggiri:s75 (2.6) 

Kraemer77 (2.7) 

. Martin84 In( l1C"') = In[ 111h+ ~!l1Le 
\ 

(2.9) 

The Huggin's equation is simply a truncation of the series expansion (2.4); 

and strictly, is only applicable when [111 C«1. At highe~ concentration, 
) 

experimental data shows upward curvature when plotted according to, 

this equation. The Kraemer equation is an approximation of the Huggin's 

equation, from which it may be derived assuming that [111 sp«1. Theory' 

16 I 
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predicts that kH + :!<k)= 0.5 when the approximation is satisfactory. The 
'-. 

Schulz-Blaschke equation was deduced empirically and is identical to (2.5) 

with [1)] = [1)] SB and k = kSB. Experimental data plotted according to this 

equation shows decreased curvature as the concentration increases, 

though such plots are usually linear to' higher concentrations than for 

application of the Huggins equation. Similar observations have been 

made with regard to the Martin equation, which was also deduced 

empirically. Series expansion of the equation gives an expression which is 
equivalent to equation (2.4), with [1)] ,,; [1)]£.,and.kn = kmn/n!, for n= 1,2, 

3 etc. Assuming the solutions were sufficiently dilute to ensure that each 

of the equations (2.6 - 2.9), IS. -(alid, it is easy to show that: 
./ 

(2.10) 

and 

Thus each equation is capable of giving a good estimat~ of [1)]. Solution 

concentrations should be chosen such that 1)sp<l, the lower limit 

\ 
I 

depending upon both the precision with which 1):'" is measured and the \ 
'Sp 

magnitude of adsorption effects. Plots of experimental data must then be 

carefully inspected for signs of curvature before selecting the data points 

to be fitted to a straight line. In particular, data points corresponding to 
[1)] c>l should be viewed with caution, especially for the plots according 

to the Huggins and Kraemer equations. If straight lines are fitted to data 

which show curvature when plotted according to equation (2.6-2.9) then 
extrapolations are predicted80 to yield different e~timates of [1)]and kl. 

(2.12) 

and 

(2.13) 

These trends are often observed81 -85 and highlight the possible 
undrestimation of [1)]when employing the most common method for its 

evaluation, which involves fitting of the data to both Huggi~~ and 

17 
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Kraemer equations. Sakai80 has suggested that [1)] and kJ are best 

estimated by taking arithmetic means of values obtained from application 

of the Huggins equation and either the Martin equation for good polymer 

-solvent pairs, or the Schulz-Blaschke equation for poor polymer-solvent 

pairs. The inconvenience of extrapolation methods for routine analysis 
has given rise to considerable interest in estimation of [1)] from a single 

specific viscosity measurement, particulaly when [1)] need only be 

evaluated approximately, and these have recently been reviewed76,86. 

When completely, or partially, neutralized polyelectroLytes are studied, a 

massive increase in specific viscosity is observed in the region of low 

concentration as shown in figure 2.187,88. 
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Figure 2.1 

c 

Variation of reduced viscosity with polymer concentration for a 

polyelectrolyte 

This arises from variation in the degree of dissociation of the ionizable 

groups. Fuoss and Strauss87,88 found that the reduced viscosity ( 11,. le) 
and concentration of a charged polyelectrolyte follow the relation (2.14) 

~= A +D 
c I+B..Jc 

(2.14) 

The quantity (A+D) is the limit approached at zero concentration in the 

analogue of intrinsic viscosity. Equation 2.14 is usually arranged in the 

-.form (2.15). 

(2.15) 

where r is a constant. The values so obtained correspond to a rod like 
J 

shape andll/e.sensitive to the shear rate. A more acceptible procedure for 

evaluation of [11 1 involves the suppression of the effect of ionization by 

the use of an in, ert low molecular mass electrolyte as co-solute89,90. 
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As has been previously mentioned} viscosity data which gives k]>0.5 

indicate aggregate behaviour of the polymer. Association behaviour can 

often be seen in plots of reduced viscosity against concentration (Figure 
2.2)91,92 

05P 
c 

o 

x 

c 

Figure 2.2 

O='open association;x. =closed association. 

Effect of association upon the variation of reduced viscosity with 

concentration. 

Figure 2.2 

The thermodynamics of aggregation have been recently reviewed by 

Higgins93 et al. Viscosity data can be used to assess therrno-reversible 

gelation of many polymers in different solvents.' The. aggregation 
behaviour of poly(vinyl butyra1)94-101 in many solvents has been observed 

by size exclusion chromatography, solution viscosity and low angle laser 

light scattering. 
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2.3 Polymer Miscibility 

2.3.1 Introduction 

At equilibrium, a system of two amorphous polymers may exist as a 

simple phase of intimately mixed segments of the two macromolecular 

components or separate into two distinct phases conSisting primarily of 

the individual components. Which of these occurs is dictated by the same 

thermodynamic principles governing the phase behaviour of low molar 

mass liquids, with some quantitative differences arising from the higher 

molar mass in the case of polymers. 

The most widely used definition of a miscible polymer blend is one which 

exhibits a single glass transition temperature. Miscibility therefore implies 

by this definition, a level of homogeneity within the mixture, such that 

any separate dOl;nains present 'are smaller than the segmental size 

responsible for the glass transition. Miscibility in this sense does not 

imply ideal molecular mixing, but suggests a level of mixing adequate to 

yield the macroscopic properties expected of a single phase material. 

Therefore, a technique used for studying miscibility on the basis of glass 

transition may lead to the conclusion of';; single phase, whilst a more 

sensitive technique may be capable of differentiating between small 

domains, leading to a conclusion of immiscility. The use of solid state 

N.M.R.103-110 has recently been used to determine the domain size of 

polymer blends. It has been suggested that the segmental size associated 

with the glass transition is of the order of 15nm
lll 

while NMR techniques 

are capable of measuring domain sizes down to 3nm. In practice, many 

polymer blends are neither completely miscible nor completely inmiscible, 

but exhibit a degree of partial miScibility. In this situation, two glass . 

transitions may occur at temperatures intermediate between the 

transitions, which would occur in an immiscible blend of the two 

polymers. This suggests that there is limited solubility of the two 

polymers in each other, but insufficient to yield a single glass transition. A 

partially miscible system may however show ·a single broad transition 

which might span over the range between the transitions of the blend 

components. Clearly, when studying the miscibility of a blend using a 

single glass transition criterion, problems will arise if the two polymers 

have transitions at similar temperatures. In this situation it is very 
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difficult to detennine whether one or two transitions are present, making 

conclusions about miscibility almost impossible. There has been 

considerable interest in the area of polymer blending in recent years112-

119. 

2.3.2 Phase Behaviour 

The equilibrium phase behaviour of mixturesin general is given by the free 

energy of mixing as defined in equation 2.16. 

(2.16) 

A plot of dGm against blend compositions (02, volume fraction of 

component 2) as in Figure 2.3, shows three possible types of mixing 

behaviour for a binary system. The three curves represent the. miscible 

(A), partially miscible (B) and completely immiscible (C) situations. 

The necessary conditions for a binary system to be miscible at a particular 

composition are: 

dGIk <0 (2.17) 

(a2d~) >0 
a02 T.p 

(2.18) 

Clearly to determine the nature of the miscibility of a .given binary system, 

infonnation quantifying dlin'\ and dSwi are required in order to know the 

sign and magnitude of dG~ at a given composition. The various 

thennodynamic therories, therefore, attempt to relate dH"f°imd dSM to 
• i 

physical parameters of the two components of the blend ~~hich can be 

easily obtained experimentally or otherwise. ~r 
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It is rare that enough information is available from either experiment or 

theory to be able to predict the miscibility of a given system. It is more 

common to first observe the phase behaviour which is then explained by 

the combination of theoretical and experimental knowledge. 

Phase diagrams for binary polymer systems are shown in figure 2.4, 

illustrating upper and lower critical solution temperatures (UeST and 

LeST). It is assumed that the polymers are in their liquid state and the 

presence of a glass transition is neglected. It is well established that lower 

critical solution temperature (LeST) behaviour is the predominant mode 

of phase separation in a polymer-polymer mixture and has been observed 

for many systems20-123. It can be seen from Figure 2.3 that the shape of 

the curve for the free energy of mixing .1.G/YI plotted against composition 

(02) can indicate the state of miscibility of a binary system . 

. Since the entropy change (.1.S:rr;) on mixing two polymers is very small, it 

follows from equation 2.16 that a small positive .1.H:", ·:an lead to positive 

.1.G", and hence phase separation. At constant temperature and pressure, 

for a binary mixture to be homogenous at all compositions, the 

equilibrium condition of free energy requires a free energy composition 

curve that is curved upwards over the whole composition range from its -- - .- - . 
maximum point. Figure 2.5 shows free energy-composition curves for a 

.-- - - . 
completely mircible system (a) and a partially miscible system (b), which 

J is characterised by a curve having a portion of negative curvature. In this 

two phase system, a double tangent can be drawn which. touches the 

curve at two points, representing the composition of the two coexisting 

phases 02' and 02" The double tangent intercepts the free-energy axis at 

points representing the chemical potential of the two components. The' 

chemical potential of species i in solution (Jli)relative to its chemical 

potential is the pure state ~i';)jS defined as the first derivative of .1.G", 

with respect to concentration (Jlj) of i 

... (aAG~ . J.li -"..i = -, :cAJ,q aM, ,P,i 
(2.19) 
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The two inflexion points on this curve separate the positively and 

negatively curved parts of ~GIT\~ Any system within this region is 
'" unstable and will phase separate, because' the slightest change in 

concentration will 

lead to a decrease in the free energy of the system and cause further 

separation, until the stable situation of free energy for the two phase 

system has been reached, (ie a point on the double tangent). This process 

is ~nown as spinodal phase separation124. At the inflexion points 

(a2~1'i) ~O 
h-.P 

(2.20) 

The range of concentrations between the point of inflexion and tangent 

point are called metastable, since the system can resist small concentration 

fluctuations on account of the positive curvature. 

Increasing the temperature in a two phase system, serves to bring together 

the two sets of tangents and inflexion points until they form a critical point 

(Figure 2.5c) at which 

( ;Y~G;MJ = 0 
Jl2S, T.p 

(2.21) 

Plotting the· .{aCtA S'- .; of tangent and inflexion points as a function of 
, 

temperature yields the phase diagrams showing the coexistence curve 

(binodal) and locus of inflexion points (spinodal) (Figure 2.6). These two 

curves have a common horizontal tangent at the critical point parallel to 

the lines which connect the composition of the coexisting phases. 

It is likely that (Figure 2.6) represents only the simplest case and many 

polymer systems will be characterised by the curves having more 

complicated shapes. It should also be noted that the critical point may be 

affected by polydispersity, chain length, temperature and composition. 
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The thermodynamic treatment of phase behaviour for mixtures becomes 
more useful when specific models for the enthqlpic and entropic terms are 

used. The .simplest such model, is that developed by Flory125 and 

Huggins 126 originally for the treatment of polymer solutions. Each 

suggests a lattice model in order to derive expressions for the enthQ.lpy 

and entropy of mixing. 

When a polymer chain is placed in an imaginary two-dimensional lattice, 

each polymer segment occupies a site on the lattice in an overall random 

way. A second polymer can then be placed randomly in the remaining 

la ttice sites. It is assumed that the same lattice sites can be used to , 
describe the configuration of both components and that the geometry of 

the two species is identical. This makes no allowance for specific inter

molecular interactions. The Flory-Huggins theory gives the entropy as 

(2.22) 

Where N£'is the number of moles of i and 0i:s the volume fraction of i . 
• 

The enthCllpy of mixing is given by 

(2.23) 

(2.24) 

NA is Avagadros' number, z the co-ordination number of the lattice and 

W12 is the energy for the formation of an" unlike contact pair which can be 

expressed as 

(2.25) 

where W12, Wll and W22 are the energies of the respective pair 

interactions. Substituting (2.22) and (2.23) into (2.16) gives the free energy 

of mixing. 

(2.26) 
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Asr~al polymers are generally p_()ly~ispers~ this gives 

~M 0 Rr [ ,\:~",M>", ,{ N~, M,,~:t«~l,fhJ (2.27) 

assuming that interaction parameters are independant of molecular mass . 

As previously mentioned, one major assumption is that the same lattice is 

applicable for describing the configuration of components, and this cannot 

be justified if the two polymer chains have different #.patial requirements. 

This may lead to a difference between the observed behaviour and that 

predicted by theory. 

It is believed that the entropy contribution to the free energy of miXing, is 
made up of both a combinatori, al entropy term (ASm(C»)and im excess 

entropy term (~Sm(e». The free energy of mixing becomes 

(2.28) 

The Flory-Huggins lattice theory takes into account only the combinatorial 

entropy. However, if specific interactions occur between chain segments, 
then there will be deviation from random mixing and this may result in a 

volume change on mixing. Attractive interactions between chains might 

be expected to lead to a reduction in volume compar!;!d to that predicted. 
-The coir)binatorial entropy term alone takes no account of such volume 

changes, but equation of state theories attempt to allow for this. 

The lattice and equation of state theories attempt to explain or model' 

experimentally observed miscibility behaviour,but they cannot easily 

predict such behaviour given only information about the physical 

properties of the pure unmixed components. The interaction parameter X 
has been related to the solubility parameters of the polymers. 

Mm = RTX ={8 _8)2 
V V I. 2 

(2.29) 
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The use of solubility parameters in predicting miscibility behaviour has 
been critically reviewed recently127,128 . .Inverse gas chromatography and 

_small angle neutron scattering have also been used to determine 'X 

The simple Flory-Huggins theory for the thermodynamics of mixing of 

polymers predicts negligibly small combinatorial entropy and positive 

enthalpy terms. To obtain miscible homopolymer blends, it is usually 

necessary to have some sort of attractive force beteween unlike segments. 

Hydrogen bonding interactions lead to true association of polymer, 

segments, and above the Tg there is a dynamic equilibrium distribution of 

hydrogen bonds. When polymer segments are associated by hydrogen 

bonding, the rotational and vibrational degrees of freedom become 

seriously modified, which can be observed in the infrared spectrum. 

Painter et a1124,132 have developed an association model for a binary 

polymer blend in which one polymer self-associates, whilst the second 

does not, but is capable of hydrogen bonding with the first. This theory 

depends upon the following assumptions. 

a The hydrogen bonded species that can form are unaffected by the 

covalent linkage of interacting units in, ,) the polymer chain. , 

b The equilibrium constants are independent of the length of 

hydrogen bonded chains 

c The equilibrium constants can be defined in terms of a chemical 

repeat unit. 
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2.4 Glass Transition 

When a high molecular mass amorphous polymer in its liquid or rubbery 

phase is cooled, at some temperature calledte~glass transition (Tg), the 

physical and mechanical behaviour of the polymer will be transformed to 

that of a rigid glassy material. At this temperature . there is a marked 

change in the temperature dependence of volume (V), and enthalpy (H) as 

shown in figure 2.7. There is also a discontin,uity in the temperature 

depend~nce of heat capacity and expansion coefficient at Tg. 

There is· debate as to whether the glass trans~ction is a true 

thermodynamic phenomenon. Although the glass transition displays 

second order behaviour, its position depends upon the rate of cooling, and 

\ 

, , 

;,,, the kinetics of the process are also important. On heating Tg is usually " 

, interpreted as the point at which there is sufficient thermal energy to 

initiate the onset of molecular motion and conformational change, due to 

rotation about the bonds along the main backbone of the polymer chain. 

Below the Tg ( a transition .. .) such movement is severely limited, although 

for many polymers fJ-trans.L:tions (secondary relaxations) have been 

observed, which are believed to be due to movement in hde chains or 

groups. 
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2.4.1 Kinetic Theory 

The most widely used theory quantifying the behaviour observed in the 

region of the glass transition is the kinetic theory of Flory and Fox133,134. 

They proposed that a material may be considered to have a volume made 

up of two contributions, that which is occupied by molecules and that 

which consists of vacancies or holes, making up a free volume. 

Conformational changes are, therefore, movements of chain segments into 

free volume. The greater the free volume, the greater the extent of 

molecular motion possible. The glass transitions temperature is the point 

below which there is insufficient free volume for significant molecular 

motion to be possible, and so below this temperature the conformational 

structure of the chains is "frozen in". 

Below T g' the only temperature-induced volume changes are due to 

molecular expansion or contraction, as the free volume is considered to be 

constant. The total volume at T g (V g) is given by 

Vg=Vo+Vf (dV) Tg 
dt g 

(2.30) 

Where Vo is the molecular volume of the material at absolute zero, VI 

represents the free volume within the glassy region and (dV / dt)g is the 

expansivity of the molecular or occupied volume in the glass. At a 
temperature T, above Tg, the total volume, V R is given by 

(2.31) 

(dV/dnR represents the expansivity of the total volume above Tg.· 

Doolittie135,136 derived an expression relating viscosity and volume, 

incorporating the concept of free volume. 

(2.32) 
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Where f'..a is the difference in thermal expansion coefficients for the 

rubbery and glassy state and fg'is the fraction of hv.e vlumeat Tg, This is 
of the same form on the Williams, Landel, Ferry (WLF) equationl37 

('I)) (-CiT-Tg ) , 
Ig ~!, = <;:+ T-Tg) =lgaT 

(2,33) 

Where Cl and Ct,are constants anda'Tis the ratio of relaxation time at T to 

the relaxation time at Tg 

2.4.2 Thermodynamic Theories 

As already mentioned, on cooling the melt of an amorphous polymer, at 

some point it will undergo a transition to a glassy state. The nature of the 

glass and the extent of disorder frozen in will depend on the rate at which 

the transition is approached, as will the temperature at which the 
transition occurs. Thermodynamic theories propose that there is a true 
thermodynamic glass transition, at some temperature below the 

experimentally observed Tg, which could be attained if the melt was 

cooled at an infinitely slow rate. 

The most well known thermodynamic theory of the glass transition is that 

due to Gibb5 " and DiMarzio138. This attempts to explain the glass 

transition from a more molecular point 'of view, with allowances made for 

the choice stiffness and variations of. volume with temperature. IJsing a 
lattice model, each segment of the polymer chain is allowed several 

different orientations, with different energies. The lattice has a number of . 

vacant sites into which chain segments can move. As the temperature is 

decreased, the system tends towards minimum free energy, that is having 

a smaller number of holes and a larger percentage of bonds existing in the 

low flex-energy orientation. The entropy decreases until, at a temperature 

T2, the number of allowed states available to the system is reduced to one 

or a very small number. In this state no conformational changes are 
possible, and below this temperature T2, the entropy of the system 

remains constant, that is zero conformational entropy. Thus T2, is the 

equilibrium glass transition temperature, to which the experimentally 
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observed glass transition converges in the case of an infinitely slow time 

scale. 

Adams and Gibbsl34, extended the Gibbs-DiU\4arzio approach to allow for 

non-equilibrium conditions. The temperature of relaxation behaviour is 

--. explained in terms of the variation in size of a co-operatively rearranging 
• 

system, defined as the smallest unit that can undergo a transition without 

a simultaneous change on or outside its boundary. An equation similar to 

the WLF equation is derived 

(2.34) 

where Tj,is a reference temperature . 
• 

2.4.3 Factors Affecting Glass Transition Temperature 

a) Chemical Structure 

There are several structural factors which influence Tg of a polymer, one 

of the most important being the flexibility of the backbone. Clearly, a 

polymer having a structure which allows-easy rotation around main chaint 

bonds will have a lower Tg than one where such rotations, and hence 

conformational changes are hindered. 

b) Crosslinking 

Crosslinking has been observed to increase the Tg of a polymer to an 

extent depending on the degree of network formation. 

c) Molecular Mass 

For high molecular mass polymers, Tg is effectively independent of 

molecular mass. However, Tgof shorter chain polymers decreases with 

chain length. Lower molecular mass polymers have a higher proportion 

.. of chain ends and hence, free volume. An expression which relates ,.'.l the 

effect of molecular mass on the glass transition temperature is 

(2.35) 
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where Tg~ is the glass transition temperature at infinite molecular mass 

and M is the molecular mass of the polymer. 

d) Effect of Diluents 

Adding a lower molecular mass species to a polymer causes plasticisation. 

Again, the decrease in the Tg observed on addition of diluents can be 

explained in terms of an increase in free volume. 

e) Blending 

A special case of diluent additon is the incorporation of another polymer. 

The effect this has on the Tg depends upon the miscibility of the two 

polymers. A miscible polymer blend will exhibit a single Tg, at some 

point in between the Tg values of the two unmixed components, the exact 

position depending on the blend composition. An immiscible blend 

exhibits two glass transitions which correspond closely to the Tg values of 

the two components. A partially miscible blend will usually show two 

glass transitions at positions determined by the nature of the phases 

present in the mixture. 
.. 

Several equations have been proposed to describe the composition 

dependence of miS~ible blends. Gordon and Taylor140 derived an 

expression of the form 

Tg ~ TgA + ... (K..,.T-";gB,:---;T",gA",l_W",,B 
-l+(l-K)WB 

(2.36) 

The Fox141 equation is a special case of the Gordon-Taylor equation, 

where K is equal to the ratio of the equivalent homopolymer glass 

transitions (TgA/Tgs) 

1 WA W. -=--+-
Tg TgA Tg. 

(2.37) 

Couchman142 has proposed a classical thermodynamic treatment of th~ 

effect of compositon on glass transition temperature. Di Marzio143 has 

36 



recently critically reviewed the equations used to predict the glass 

transitions of polymer blends. 
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2.4.4 Dynamic mechanical Properties of Polymers 

Materials under the influence of an applied strain are characterised 

depending on the nature of their response. Perfectly elastic materials obey 

Hooke's Law, the"applied r:tr-«is being proportional to the'rt:-ra.,;(\ Perfectly 

viscous liguids obey Newton's Law of viscosity, the applied stress being 

directly proportional to the strain rate. Polymeric materials are neither 

completely elastic or viscous, but can exhibit both types of behaviour and 
I~ I • ~~ • 

/are\so termed vlscoelas tic. '. 

One of the most important techniques for studying the mechanical 

behaviour of polymers is dyml.mic mechanical analysis, which usually 

entails the application of a sinusoidal load leading to a sinusoidal 

deformation (Figure 2.8). The resulting strain is neither in phase with the 

stress (as in perfectly elastic materials) nor 90° out of phase (as in perfectly 

viscous liquids), instead there is a phase lag 0 (phase angle). 

Dynamic mechanical analysis is usually carried out in association with a 

heating program as in dynamic mechanical thermal analysis (DMTA). It is 
possible to carry out the experiment at constant frequency whilst varying 

the temperature or vice versa. The stressCc1resulting from the applied 

strain (r) is measured and the time dependency of stress and strain can be 

written 

r = ro,t/in OJt (2.38) 

a = ao sin( mt + 0) (2.39) 

OJis the. cyclic frequency ro and 00 are the strain and stress amptitude. 

Equation 2.39 can be expanded to 

a = a o sinOJtcoso + aocos~tsino (2.40) ,\ 

So it can· be seen that stress is made up of the two components, one which 
is in phase with strain (of magnitude aocosoftmd one which is out of 

phase with strain (of magnitude ao sin 0) 
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The stress-strain relationship, therefore is as follows: 

(Y = roE'sin rot + yJ':" cos rot 
o 

(2.41) 

Where the storage modulus E/ is equal to «(Yo / ro)coso, that is the 

component of stress in-phase with strain divided by the strain amplitude, 
,// 

and where loss modulus E' is equal to ((Yo / r')sin 0, the component of 

stress out of phase with strain divided by the strain amptitude. 

Dividing the loss modulus by the storage modulus leads to the loss 

tangent 

(2.42) 

This effectively means that tan 0 is the ratio of energy stored to the energy 

lost per cycle. A complex modulus can be derived such that 

(2.43) 

This can be represented by an Argand diagram as in Figure 2.9. Figure 

2.10 shows the variation of E' and tan 0 against frequen'cy and. 

temperature for a typical homopolymer in the region of its glass transition. 

At high frequencies and low temperature the storage modulus E~~ is 

characteristic of a glassy material. On decreasing the frequency or 

increasing the temperature, the storage modulus becomes characteristic: 

of a rubbery material, the loss modulus in both cases having passed 

through its peak. The peak in tano corresponds to the maximum in the 

hysteresis or damping and is interpreted as occuring at the glass transition 

of the polymer. 

2.4.5. Factors Affecting Dynamic Mechanical Behaviour 

Random or statistical copolymers are generally characterized by a single 

Tg and hence a single tano peak at' a temperature determined by 

copolymer composition. A broadel\ing of the peak may be observed if 
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there are long sequences of a given comonomer unit, especially if these 

units experience poor mixing with other comonomer segments. 

The miscibility of two or more component polymers within a blend can 

have a marked effect on the appearance of both the loss modulus and loss 

tangent curves. Figure 2.11 shows the loss modulus and tan D curves 

characteristic of miscible} partially miscible and immiscible binary 

mixtures. Completely miscible blends are characterised by a single tan D 

peak at some point between the pO.ints expected for the Tg values of the 

unmixed components, due to a single glass transition for the single phase 

present. The breadth of the tan D peak should, for completely miscible 

blends, be no wider than the tan D peaks of the blend components. A 

broadening of the peak may result if there is incomplete miscibility. 

Totally immiscible blends are indicated byi .. t'W(? -:, tan D peak at the same 
- - ;~ ... - . 

temperature close to the peaks for the unmixed components. A shift of 

peaks towards each other relative to the two components suggests some 

degree of partial mixing. 

A broad loss peak covering the temperature range between the peak 

positions of the blend components[ls',a special case of partial miscibility 

termed micro-heterogeneity. This effect is due to the presence of a large 

number of phases of varying compositions. The dynamic mechanical 

behaviour of polymers has been extensively reviewed.144,145 
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3. EXPERIMENTAL 

3.1 Reagents and Materials 

The poly (vinyl butyral) samples were B20H and B30H mowitals 

supplied by Hoechst with 75 - 77 wt % acetal units, 3 wt % acetate units 

and 18-21% alcohol units. Tetrahydrofuran (THE), was unstablised 

HPLC grade supplied by Fisons. Dioxane (99% ACS reagent) was' 

distilled from sodium before use. Pyridine (99% Gold Label) was stored 

over sodium hydroxide before use. Benzoic anhydride (99%) was 

recrystalised from benzene/petrol before use. Phthalic anhydride (99%) 

and succinic anhydride (97%) were recrystalised from ethanoic 

anhydride before use. Ethanoic anhydride (98% ACS reagent) and 

butanoic anhydride (98%) were distilled from phospherous pentoxide ,,. 

before use. Trifluoracetic anhydride (99%) was used as supplied. 

Triethylamine (99%) was distilled from sodium before use. All these 

were supplied by the Aldrich Chemical Company. Polyethylenimine 

was Polymin P supplied by BDH as a solution in water, the water was 

removed by heating in a vacuum oven at 60°c for 24 hours. Poly (vinyl 

pyrrolidone) (-10,000) was supplied by the Aldrich Chemical Company, 

this was dried by heating under vacullffi; at 1800 for 24 hours and stored 

in a desIecator before use. The polyester I?ior~x and the polyurethane 

TMXD1 /~PG were supplied by Coah'~Lorrilleux International Limited, 

as solutions in ethyl acetate/industrial alcohol. Solvent was removed by 

heating in an oven at 40°C for 24 hours followed by heating at 40°C 

under vacuum for 24 hours. All other solvents were supplied by 

Careless Solvents Limited. Unless otherwise stated these were used as 

supplied. 

3.2 Instrumentation 

Infrared spectra of polymer films cast on to sodium chloride discs from a 

solution i)" THF or chloroform were recorded on a Nicolet 20DX Fourier 

transform S'pectrometer. Nuclear magnetic resonance'spectra (NMR 250 

MH'7) were recorded on a Bruker AC 250 spectrometer of samples in 

deuterated dimethyl sulphoxide (d6-DMSO, 99%) supplied by the Aldrich 

Chemical Company, with chemical shifts (OH ppM) expressed relative 

to tetramethyl silane (TMS) used as an internal standard. Size exclusion 
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chromatography (SEC) was performed using a Polymer Laboratories 

mixed gel column with a particle size of 10 Jl m using THF as eluent with 

toluen!i! as an internal standard. Solutions. were approximately 0.15o/p 

w / v loaded into a six port injection valve containing a 200 JlI loop. 

Elution was with a Knauer High Pressure Liquid Chromatography 

Pump 64 at a flow rate of 1.0 ml min-I. Detection was accomplished 

using a Knauer 98 differential refractometer connected to a J J chart 

recorder; set with a chart speed of 200 mm min-I. The column was 

calibrated with polystyrene standards supplied by Polymer 

Laboratories. Values of average molecular masses were obtained using a 

computer programme, fr~m values of peak heights over a range of 

elution times. 

Mechanical thermal analysis was carried out with a Polymer 

Laboratories Mark II Dynamic Mechanical Thermal Analyzer (DMTA) in 

. the dual cantilever mode. Most of the polymers were to"soft to prepare 

bar samples, so they were imbedded into an inert support materiaP46. 

These samples were pressed into filter paper or bleached cotton cloth 

between the jaws of a press heated to 20 - 50°C above the expected Tg 

and held at six tons for thirty seconds then cooled rapidly to room 

temperature. A comparison of casij>olystyrene and supported 

polystyrene is given in Appendix 1. 

3.3 Intrinsic Viscosities 

ApprOximately 0.25g of poly (vinyl butyral) was dissolved in 15ml of 

THF by refluxing and stirring for one hour. After cooling this was 

transferred to a 25rnl volumetric flask and diluted to the mark. The 

viscosity of the solutions was determined relative to the THF at 25°C· 

using a Schott-Gerate AVS 310 automatic viscometer with a Schott

Gerate 531 01 Ubbelohde capillary viscometer tube. All solutions and 

solvents were filtered through Whatman glass microfilters before 

placing in the viscometer tube. The solution was allowed to reach 

thermal equilibrium for 15 minutes before measurements were taken. 

Dilution was carried out internally with rapid mixing. Relative , 
viscosities were determined for at least five different concentrations 

maintaining I! 2 S; 1), S; 2. The viscosities of acid derivatlsed poly (vinyl 
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butyral) were determined in distilled methanol and distilled water using 

a Schott-Gerate 531 03 Ubbelohde capillary viscometer tube. 

3.4 Determination of hydroxyl content of samples of poly 
(vinyl butyrai) 147,148,149 

This involves the conversion of the hydroxyl groups to acetate groups 
using ethanoic anhydride followed by titr i'metric determination of the 

remaining acetylating agent. ApprOximately 0.1 g of poly (vinyl butyraD 
dried at 40°c under vacuum for 24 hr. was dissolved in acetylating agent 

(10:1 pyridine/ethanoic anydride) and left in a stoppered flask at room 

temperature overnight. To this 30ml of chloroform and 20ml of water 

'~ereadded. This was then t-itrated with approximately 0.2M aqueous 

sodium hydroxide with vigarous stirring using phenolphthaJ:?in as 
indicator. Blank solutions of acetylating agent were treated in the same 

way. 

.. . 
Ethanoic anhydride provides 2 moles of ethanoic acid per mole of 

anhydride. One mole of acid attaches to the polymer chain, the other 

,being complexed with pyridine. For every mole of hydroxyl groups in 

the polymer, one mole of ethanoic acid is produced and one mole of 

sodium hydroxide is required in the titration. The blank solution will 

require two moles of sodium hydroxide per mole of ethanoic anhydride. 

Let x = moles of ethanoic acid in blank 

Let y = moles of ~anoic anhydride required for acetylation 

This requires 2(x-y) moles of sodium hydroxide in the titration. Since y 
moles of ethanoic anhydride gives y moles of ethanoic acid during, 

acetylation, the total amount of ethanoic acid produced is 2(x-y) + y = 2x 

-y moles which require 2x -y moles of sodium hydroxide. The amount of 

hydroxyl groups due to polymer is: 

y = 2x - (2x-y) or 

(Blank Titre - Sample Titre) x [Na OH] x 10-3 per gramme 

Mass of Polymer 
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3.5 Modification of Poly (Vinyl ButyraIl 

3.5.1. Butyration 

Approximately 109 of poly (vinyl butyral) w~dried overnight in a 
vacuum oven at 100°c. This was then dissolved in SOml of dioxane with 

20ml of "friethylamine by refluxing under an atmosphere of nitrogen. 

Butanoic anhydride was added via a pressure equilibrating dropping 

funnel at room temperature over a period of 30 minutes, and the , 
resulting mixture left at room temperature for 24 hours. The polymer 

was then precipitated into water. The precipitate was filtered, washed 
with water, redissolved in a mixture of acetone and methanol and 
reprecipitated into water. This was repeated twice more and the final 

product dried in a vacuum oven at 600e for 24 hours. The degree of 

modification can be varied by changing the amount of anhydride used. 

3.5.2 Trifluoroacetylation 

A solution of poly (vinyl butyral) in dioxane and triethylamine was 
prepared as in section 3.5.1. This was then cooled to ooe with an ice 

water bath. Trifluoroacetic anhydride was added dropwise over a 

period of 30 minutes under an atmosphere of nitrogen. When addition 

was complete, the reaction mixture was allowed to warm to room· 

temperature and left for 24 hours. The product was obtained and 

purified as in section 3.5.1. The degree of modification can be varied by 

changing the amount of anhydride used. 

3.5.3 Benzoation 

A solution of poly (vinyl bu; .. tyral) in dioxane and triethylamine was 

prepared as in section 3.5.1., and a solution of benzoic anhydride in 

dioxane. The benzoic anhydride solution was added dropwise over 30 

minutes under a nitrogen atmosphere and then left for 24 hours at room 

temperature. The product was obtained and purified as in section 3.5.1. 

The degree of modification can be varied by changing the amount of 

anhydride used. 
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3.5.4. Reaction with succinic and phthalic 
anhydride 150, 151, 152 

A solution of poly (vinyl butyral) in dioxane and triethylamine was 

prepared as in Section 3.5.1. The anhydride was dissolved in sodium 

dried benzene. The solution was added slowly under an atmosphere of 

nitrogen and brought to reflux and left for 24 hours. Af~er cooling}he 

mixture was concentrated under reduced pressure. The residue was 

dissolved in a little methanol and poured into a litre of water containing 

15g of sodium chloride. The aqueous mixture was usually at a pH of lO

II with the polymer completely dissolved. The pH was lowered by 

slowly adding hydrochloric acid. Precipitation began at a pH of 8.5 and 

should be complete at pH 5-6. The particles could be coagulated by 

adding a small amount of acetone. This was then filtered and the 

precipitate washed with a large amount of water. This was then dried in 

a vacuum oven at 100°c for 24 hours. The degree of modification can be 

changed by varying the amount of anhydride used. 

3.6 Determination of acid groups in phthalated and succinated 

poly (vinyl butyral) 

Approximately 1 % solutions of derivised poly (vinyl butyraD was made 

in freshly distilled methanol and titrated with 0.009M potassium 

hydroxide solution in distilled methanol using phenophthalein as 

indicator 

3.7 Solubilities 

Approximately O.lg of polymer was mixed with 4ml of solvent. The 

\ solvents were methanol, methanol! ethyl acetate (1:1), ethyl acetate, 

acetone, THF, benzene, toluene, hexane, cyc10hexane and chloroform. 

These were shaken for 30 minutes at room temperature and observed for 

signs of swelling or dissolution. 

3.8 Blend Preparation 

Blends with Diorex 

Samples of poly (vinyl butyraD and diorex were dissolved s~"arately in 

a 3:1 mixture of ethyl acetate and industrial alcohol. When the polymers 
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were dissolved the solutions were mixed and poured into crystalisation 

dishes and left in a fume cupboard for 24 hours to allow-the solvent to 

evaporate. The blends were further dried in a vacuum oven at 100°C for 

a further 24 hours. The blend compositions were 2:1 poly (vinyl 

butyral)/ diorex, "1:1 poly (vinyl butyral)/ diorex and 1:2 poly (vinyl 

butyral)/.9-iorex with a total mass of polymer mass of about O.4g. The 

transparency of the films were observed and the blends analysed by 

DMTA 

Blends with TMXDIINPG 

Samples of poly (vinyl butyral) and TMXDI/NPG were dissolved 

separately in a 3:1 mixture of ethyl acetate and industrial alcohol. When 

the polymers were dissolved the solutions were mixed and poured into 

crystalisation dishes and left in a fume cupboard for 24 hours to allow 

the solvent to evaporate. The blends were then further dried in a 

vacuum oven at 100°C for 24 hours. The blend compositions were 2:1 

poly (vinyl butyral)/TMXDI/NPG, 1:1 poly (vinyl butyral)/TMX 

D!/NPG and 1:2 poly (vinyl butyral)/TMXDI/NPG, with a total mass 

of polymer of about O.4g. The transparency of the films was observed, 

and the blends analysed by DMTA. 

Blends with polyethylenirnine 

Samples of poly (vinyl butyral) and polyethylenimine were dissolved 

separately in a 3:1 mixture of ethyl acetate and industrial alcohol. When 

the polymers were dissolved the solutions were poured into 

crystalisation dishes and left in a fume cupboard for 24 hours to allow 

the solvent to evaporate. The blends were further dried in a vacuum 

oven at 100°C for a further 24 hours. The blend compositions are 2:1 

poly (vinyl butyral)/polythylenimine, 1:1 poly (vinyl butyral)/ 

polythylenirnine, and 1:2 poly (vinyl butyral)/polyethylenimine, with a 

total mass of polymer of about O.4g. The transparency of the films was 

observed, and the blends analysed by DMT A. 
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Blends with poly (vinyl pyrrolidone) 

Samples of poly (vinyl butyral) and poly (vinyl pyrrolidone) were 

dissolved separately in a 3:1 mixture of ethyl acetate and industrial 

alcohol. When the polymers were dissolved, the solutions were poured 

into crystalisation dishes and left in a fume cupboard for 24 hours to 

allow the solvent to evaporate. The blends were further dried in a 

vacuum oven at 100°c for 24 hours. The blend compositions were 2:1 

poly (vinyl butyral)/poly (vinyl pyrrolidone), 1:1 poly (vinyl butyral)/ 

poly (vinyl pyrrolidone) and 1:2 poly (vinyl butyral)/ poly (vinyl· 

pyrrolidone), with a total mass of polymer of about OAg. The 

transparency of the films was observed. Once the samples for analysis 

by DMTA were prepared, they were further dried in a vacuum oven at 

120°C for 24 hours and stored in a desICcator before analysis wich was 

carried out under an atmosphere of dry nitrogen. This is to prevent the 

uptake of water from the atmosphere by the poly (vinyl pyrrolidone) 

which causes rnicrophase. separation in the blend. 

Errors 

The error in determining the intrinsic viscosity (11) and slope constant k, are 2% and 5% 

respectively based upon 95% confidence limits. The error in determining the chemical ~ 

composition can be as high as 80%. 
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4. RESULTS AND DISCUSSION 

4.1 Unmodified Poly (Vinyl Butyral) PVB 

The intrinsic viscosities of the mowitals B20H and B30H in THF were 

determined U;'i~g the Huggins-Kraemer74,77 (equations 2.6 and 2.7), 
J 

Schulz-Blaschke78 (equation 2.8) and Martin79 (equation 2.9) methods. 

The results are given in table 4.1. The higher value of the slope constant 

for B30H is an indication of aggregation, both samples of PVB show non 

ideal behaviourjas has been previously mentioned a theoretical value of 

the slope constant is approximately 0.3. This behaviour is also 

illustrated by the size exclusion chromatography (SEC) data in table 4.2, 

by the higher polydispersity of B30H, and the shoulder on the high 

molecular mass region of the chromatogram of B30H in figure 4.1. This 

has also been observed by Cotts et a1-96-100 and Remson101 indicating 

that the shoulder is due to aggregation. Th!! aggregates are difficult to 

detect with a refractive index detector but are easily seen with the use of 

a low angle laser light scattering (LALLS) detector. Solubility was 

investigated in a number of solvents as indicated in table 4.3. 

There have been few reports of miscibility studies of poly (vinyl butyral) 

or poly (vinyl acetal) with other polymers in the literature153-155. Guo156 

has 

studied the miscibility of poly (vinyl formal) with poly (vinyl 

pyrrolidone) (PVP) and found the polymers to be miscible in all 

proportions. Eguiazabal157 found that blends of poly (vinyl butyral) 

with poly (vinyl pyrrolidone) gave a single Tg when they contain less 

than 50 wt% of PVP. 

Blends of PVB with PVP, polyethylenimine (PE!) an aliphatic polyester 

(diorex) and af poluyrethane:TMXDI/NPG) were prepared by solution 1, _ _ 

caSting and examined by DMTA. 
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Table 4.1 
Intrinsic Viscosity Data of PVB in THF 

polymer [1J1 H I g-~ [1J1 K I g-~l [1J1 SB I g -IJi [1J1M I g-~i kH kk kSB· . kM 

B30H 0.5948 0.6103 0.6144 0.6065 0.815 0.0728 0.5115 0.6282 
B20H 0.3382 0.3464 0.3436 0.3411 0.4737 0.0845 0.3592 0.4099 

Table 4.2 
Molecular Mass, Hydroxyl and Transition Data of Homopolymers 

Polymer - - - [OH)/mmoi g-l Tg;oc Mn Mw Mp Mwd 
B30H 16000 58000 31000 3.55 4.00 70 
B20H 9000 23000 14000 2.56 4.00 71 
Diorex 2100 4900 3200 2.33 - -35 

TMXDI/NPG 5300 10000 7300 1-9 - 98.5 
PEI - - . - - - -26.5 
PVP 10000 - - - - 171 



Table 4.3 

Solubility Characteristics of PVB 

Ethyl 
polymer Methanol Acetone Ethyl Acetate/ THF Benzene Toluene Hexane Cydohexane Chloroform 

Acetate Methanol 
1:1 

B30H V' V' V' V' V' swell swell X X V' 
B20H V' V' V' V' V' swell swell X X V' 



, 

The transition data of the homopolymers are given in table 4.2 and the 

results of blending are given in table 4.4. It was found that atmospheric 

moisture greatly influences the miscibility of PVB with PVP illustrated 

by a broad tan 8 peak at the glass transition temperature in figure 4.2. 

Under an atmosphere of dry nitrogenJa single Tg was observed with a 

PVB/PVP ratio of 2:1, which is in close agreement with that predicted by 

the Fox equation141 (equation 2.37) and that predicted by the rule of 

rriixtures158 (equation 4.1) 

4.1 

Where Wl is the weight fraction of component. 1. This indicates 

miscibility of the two polymers with a single phase morphology. With a 

. PVB/PVP ratio of 1:1 and 1:2 two values of Tg are observed. With a 

ratio of 1:1 the lower Tg is narrow and the higher one is broad. This 

indicates the prescence of two phases, one a mixture of PVB with PVP 

the other a phase very rich in PVP with some partial miscibility with 

PVB. With a ratio of 1:2, the values of Tg are narrow; one phase is a 

mixture of PVB with PVP the other is unmixed PVP. This is in 

agreement with the results reported by Eguizabaj157 and illustrated in 

figure 4.3. Blends of PVB with PEI show a single narrow Tg with a 

PBV /PEI ratio of 2:1, whim is lOoe lower than that of unmixed PVB but 

does not correlate with the predictions of the Fox equation or rule of 

mixtures. This indicates that there is partial miscibility of PVB with PEI 

giving a phase whim is rich in PVB. With a PVB/PEI ratio of 1:1 two 

broad values of Tg are observed in between those of the umixed 

polymers, indicating partial miscibility with some 

microphaseheterogeneity. With a PVB/PEI ratio of 1:2 the tan8 peak is 

very broad covering the region between the values of the Tg of the 

unmixed polymers, indicatinglmicropha.5ehete~ogenei~ as illustrated in 

figure 4.4. 

Blends of PVB with diorex show a narrowTg with a PVB/ diorex ratio of - ~ 

2:1 whim does not correlate with that predicted by the Fox equation or 

the rule of mixtures but is lOoe lower than that of unmixed PVB. This 

indicates some miscibility of PVB with ~iorex. With a PVB/ diorex ratio 

of 1:1 a single broad Tg is observed 19°e lower than that of unmixed 

PVB indicating partial miscibility with some microheterogeneity. With a 
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PVB/~iorex rato of 1:2, a narrow Tg is observed corresponding to 
• ~in!xe:~ diorex and a very broad tano curve giving a Tg at 45.8°C 

corresponding to a microhetelgeneous blend of PVB / !iiorex, as 

indicated in figure 4.5. Blends of PVB with TMXDI/NPG show a single 

narrow Tg with a PVP /TMXDI/NPG ratio of 2:1 which correlates with 

that predicted by the Fox equation and rule of mixtures indicating single 

phase morphology. HoweveL there may be some error in this 

conclusion as the values of Tg of the unmixed polymers are quite close. 

and only just resolved by DMTA. With a PVB/TMXDI/NPG ratio of 

1:1, two poorlr resolved Tg values are observed in between those of the 

unmixed polymers. With a PVB/TMXDI/NPG ratio of 1:2, two broad 

and poorly resolved Tg's are observed which are close to those of the 

unmixed polymers. This indicates partial miscibility with some 

microphaseheterogeneity as illustrated in figure 4.6. 

The chemistry that can be used to modify PVB is similar to that used in 

polysaccharide chemistry, by esterification or ether,j'ication of the 

hydroxyl groups as shown in scheme 10. 

PVB-OH 

PVB-OH 

NEt 

0 

o 
/'-. 

PVB-O A 

1\ ')I.......o- R 

B-
l PVB-OA 

A-X 

Scheme 10 

Danhelka95 has acetylated PVB to aid characterisation by SEC. Harris159 

has prepared acrylate and methacrylate esters of poly (vinyl formal). 

When a cyclic anhydride is used at least two equivalents of 

triethylamine must be used to avoid cross-linking. It has been 

reportedl60 that some care must be taken with the reaction conditions to 

avoid degre.dation of the polymer chain. Other chemical modifications 

of PVB which have been reported are metalation with aluminium 

a1coholates161-163 and recently Velichkoval64 has grafted poly (ethylene 
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oxide) and poly (dimethyl silox,One) onto the free hydroxyl groups of 
PVB. 

4.2 Butyrated PVB 

A number of butyrated samples of B20H and B30H were prepared. The 

intrinsic viscosities of the modified PVB samples were determined and 

the results given in table 4.5. The molecular mass, hydroxyl content, 

transition data and ratio of butyrate plus butyral groups to acetate 
groups are given in table 4.6. Determination of hydroxyl content by 

acetylation and titrating the excess reagent can introduce large errors, 

possibly due to in' complete acetylation149 and absorption of acetylating 
I 

agent in precipitated polymer. The accuracy of analysis by NMR. 

depends upon the signal from the substitutents being well resolved from 

other signals. In the case of butyrated samples of PVB, the easiest to use 

is from the methyl\protons'on the butyrate ester with those of the butyral 
".~ ..... -•. - ..... . 

groups. An NMR spectrum of modified PVB is given in figure 4.7 . 

• 

\ 
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W·th I (. I I pOly vmyl 

wt 

Blend fraction 

PVB 
1 

158(a) 2/3 

158(b) 1/2 

158(c) 1/3 

0 

Table 4.4 

Blends of B20H 

rd ) (PVP)' Jyrro lone marr 

wt 

fraction Film 

PVP Appearance 

0 

1/3 dear 

1/2 dear 

2/3 dear 

1 

With PVP under dry nitrogen 

wt wt 

Blend fraction fraction Film 

PVB PVP Appearance 

1 0 

186(a) 2/3 1/3 dear 

186(b) 1/2 1/2 dear 

187(c) 1/3 2/3 dear 

0 1 

·th I th I (pEI)' WI pOlye lylenerrune m air 

wt wt 

Blend fraction fraction Film 

PVB PEI . Appearance 

1 0 

159(a) 2/3 1/3 clear 

159(b) 1/2 1/2 clear 

159(c) 1/3 2/3 clear 

0 1 
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Rule of 

DMTA FoxEqn Mixtures 

T~/oC T~/oC T~/oC 

71 

96.1,167 98.92 104.33 

182 114.66 121 

184 131.71 137.61 

171 

Rule of 

DMTA FoxEqn Mixtures 

T~/oC T~/oC T~/oC 

71 

106 98.92 104.33 

105,166 114.66 121 

119,170 131.71 137.61 

171 

Rule of 

DMTA FoxEqn Mixtures 

Tg/oC Tg/oC Tg/oC 

71 

60 30.93 38.5 

{).1,543 14.20 22.25 

-3.4,65.6 -0.78 6 

-26.5 



With Diorex in air 

wt wt 

Blend fraction fraction 

PVB Diorex 

1 0 

161(a) 2/3 1/3 

161(b) 1/2 1/2 

161(c) 1/3 2/3 

0 1 

With TMXDI/NPG in air 

wt wt 

Blend fraction fraction 

PVB TMXDI/ 

NPG 

1 0 

171(a) 2/3 1/3 

171(b) 1/2 1/2 

171(c) 1/3 2/3 

0 1 

Table 4.4 

Blends of B20H 

Film 

Appearance 

dear 

dear 

dear 

Film 

Appearance 

dear 

dear 

dear 

59 

Rule of 

DMTA Fox Mixtures 
Tg/oC Eqn Tg/oC 

Tg/oC 
. 

71 

(:£).8 26.54 35.67 

52.2 8.35 18 

-355,45.8 -7.75 0.33 

-35 

Rule of 

DMTA FoxEqn Mixtures 
Tg/oC Tg/oC Tg/oC 

71 

773 79.71 80.17· 

76.4,913 84.23 84.76 

746,917 88.87 89.35 

98.5 
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polymer 

B30H 
B30H-46 
B30H-47. 
B30H-50 

B20H 
B20H-52 

Q20H-54 
B20H-58 
B20H-66 
B20H-69 
B20H-86 
B20H-92 

\ .... 

[l1]H / g-'dl 

0.5948 
0.3901 
0.4950 
0.5258 
0.3382 
0.3189 
0.3366 
0.3496 
0.3596 

. 0.3521 
0.3011 
0.334 

... 

Table 4.5 
Viscosity data for Butyrated PVB samples in THF 

[11]. / g-'dl [l1]sB / g-'dl [l1]M / g-'dl kH kk kSB kM 

0.6103 0.6144 0.6065 0:815 • 0.153 0.512 0.628 
0.3963 0.4013 0.3963 0.679 0.0331 0.467 0.554 
0.5137 0.5204 0.5093 0.712 0.0136 0.425 0.534 

. 

0.5324 0.5433 0.5331 0.553 0.478 - 0.373 0.456 
0.3464 0.3436 0.3411 .0.474-- -0,0810- 0.359 0.410 
0.3202 0.3229 0.3211 0.418 0.115 0.327 0.366 
0.3372 0.3387 0.3377 0.382 0.135 0.322 0.349 
0.3514 0.3537 0.3517 0.447 0.0960 0.354 0.396 
0.3612 0.3642 0.3620 0.436 0.103 0.341 0.384 
0.3532 0.3559 0.3542 0.414 0.114 0.333 0.365 
0.3012 0.3030 0.3020 0.363 0.144 0.306 0.332 

0.333 0.336 0.335 0.313 0.176 0.268 0.290 

! 
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Table 4.6 

Molecular Mass, Hydroxyl and Transition Data of Butyrated samples of PVB 

Polymer - - Mp Mwd [OH)/mmo/ g-l Tg/oC BU/OAc Mn Mw 
B30H 16000 58000 31000 3.55 4.0 70 6.8 

B30H-46 19000 68000 36000 3.5 3.60 57.5 9.4 
B30H-47 17000 50000 29000 2.85 2.90 57.5 11.3 
B30H-50 10000 32000 18000 3.17 4.10 70.7 I 12.8 

B20H 9000 23000 14000 2.56 4.0 ' 71 , 8.9 
B20H-52 15000 32000 22000 2.12 2.8 57.4 -
B20H-54 4100 9100 6100 2.23 4.7 66.3 11.3 
B20H-58 7100 23000 13000 3.19 3.8 63.6 11.2 
B20H-66 10000 24000 16000 2.36 3.7 66.5 12.3 
B20H-69 9400 26000 16000 2.74 3.5 68.5 12.0 
B20H-86 9600 24000 15000 2.45 2.3 70.1 10.6 
B20H-92 9400 21000 14000 2.18 0.5 65.8 12.7 



It has been reported83 that the Schulz-Blaschke78 equation provides the 
best estimate of intrinsic viscosity and slope constant for polymers in 

poor solvents and this has been used by Cotts et al·96-99 in their studies 

. of PVB. This is the method used to investigate the effect of modification 

upon solution viscosity and slope constant, though the Huggins75 and 

Martin79 equations produce similar trends. The variation of intrinsic 

viscosity against hydroxyl content and the ratio of butyrate plus butyral 

groups to acetate groups are given in figures 4.8 and 4.9. These show 

little variation of intrinsic viscosity with degree of modification. The 

r" variation of kSB with hydroxyl content and ratio of butyrate plus butyral 

groups to acetate groups are shown in figures 4.10 and 4.11. These show 

a much greater dependence of the slope constant upon the degree of 

modification. 

Blends of butyrated samples of PVB with diorex, TMXDI/NPG and PE! 

were prepared by solution casting and examined by DMTA. The results 

of blending with ct.~orex are given in table 4.7. With B20H-52 

PVB/diorex ratios of 2:1,1:1 and 1:2, two broad transitions are observed , 
which are situated between those of the unmixed polymers. The 

transitions became broader and move closer together as the diorex 

content is increased. This indicates partial miscibility with 

microphaseheterogeneity as the diorex content is increased as illustrated 

in Figure 4.12. blends with B20H-54<shows a single narrow Tg with a 

PVB/diorex ratio of 2:1 which does not correlate with the Fox equation 

or rule of mixtures, indicating partial miscibility of those polymers 

giving a phase rich in PVB. With PVB/diorex ratios of 1:1 and 1:2 two 

broad Tg values are observed, one quite close to that of pure diorex the 

other 20°C below that of PVB indicating partial miscibility with 

microphaseheterogeneity as shown in figure 4.13. Blends of B20H-58 

with PVB/Diorex ratios of 2:1,1:1 and 1:2, show two broad values of Tg 

are obs.erved which become broader and move closer together as the 

'\ c:Iiorex content is increased indicating partial miscibility with ;1 

microphase-heterogeneity as shown in Figure 4.'14. Blends of B20H-66, 

with a PVB/ diorex ratio of 2:1 a single broad Tg is observed which does 

not correlate with those predicted by the Fox equation or rule of 

mixtures indicating partial miscibility. With PVB/diorex ratios of 1:1 

and 1:2 show two broad values of Tg. '.; between those of the unmixed . '7 
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Figur~ 4.8, . . 
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polymers are observed, these broaden as the diorex content is increased, 

indicating microphaseheterogeneity this is illustrated in Figure 4.15. 

Blends of B20H-69 with a PVB/diorex ratio of 2:1 a single broad Tg is 

observed which does not correlate with the predictions of the Fox 

equation or rule of mixtures indicating partial miscibility of these 

polymers. With PVB/ diorex ratios ofl:1 and 1:2 two broad transitions 

are observed inbetween those of the umixed polymers which broaden as . 

the diorex content is increased indicating partial miscibility with 

microphaseheterogeneity as illustrated in figure 4.16. Blends of B20H-86 

with a PVB(diorex ratio of 2:1 a single broad Tg is observed which does 

not correlate with those predicted by the Fox equation or the rule of 

mixtures indicating partial miscibility of these polymers. With 

PVB/diorex ratios of 1:1 and 1:2, two broad transitions are observed. 

One is very close to that of umixed diorex the other 23.4°C !.ower than 

that of PVB. These transition broaden as the direox content \is'increased, 

indicating partial miscibility with some microphaseheterogeneity. This 
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Table 4.7 

Blends of Butyrated B20H with Diorex 

B20H-52 

wt wt Rule of 
Blend fraction fraction Film DMTA Fox Mixtures 

PVB Diorex Appearance Tg/oC Eqn Tg/oC 

T!(/oC 

1 0 57.4 

164(a) 2/3 1/3 clear -36,45.1 19.39 26.4 

164(b) 1/2 1/2 clear -31.1,30.9 3.59 11.05 

164(c) 1/3 2/3 clear -30.1,312 -10.59 -4.3 

0 ··'f-. . . -35 

B20H-54 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 
PVB Diorex Appearance Tg/oC Eqn Tg/oC 

TR"/oC 

1 0 66.3 

I 164(d) 2/3 1/3 clear 563 24.15 32.53 

164(e) 1/2 1/2 clear -33.6,51.1 6.77 15.65 

164(0 1/3 2/3 clear -35.4/t83 -8.69 -1.23 

0 1 -35 

B20H-58 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB Diorex Appearance Tg/oC Eqn Tg/oC 
T!(/oC 

1 0 63.6 

164(g) 2/3 1/3 clear -34,495 22.76 30.73 

164(h) 1/2 1/2 clear -32.1,475 5.84 14.3 

164(i) 1/3 2/3 clear -34.9,473 -9.24 -2.3 

0 1 -35 
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Table 4.7 

Blends of Butyrated B20H with Diorex 

B20H:'()6 

wt wt Rule of 

Blend . fraction fraction Film DMTA Fox Mixtures 

PVB Diorex Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 66.5 

164(j) 2/3 1/3 clear 565 24.25 32.66 

. 164(k) 1/2 1/2 clear -28.7,51.8 6.83 15.75 

164(1) 1/3 2/3 clear -34.2,49.1 -8.65 . -1.12 

0 1 -35 

B20H-69 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB Diorex Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 68.5 

164(m) 2/3 1/3 clear 567 25.27 .34 

164(n) 1/2 1/2 clear .J7.8,53.4 7.51 16.75 

164(0) 1/3 2/3 clear -345,523 -8.25 -0.5 

0 1 -35 

B20Hc86 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB Diorex Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 70.1 

164(p) 2/3 1/3 clear 522 26.08 35.07 

164(q) 1/2 1/2 clear -36.7,49 8.05 17.55 

164(r) 1/3 2/3 clear -36.6,467 . -7.93 0.03 
·0 1 -35 
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Table 4.7 

Blends of Butyrated B20H with Diorex 

B20H-92 

wt wt Rule of 

Blend ' fraction fraction Film DMTA Fox Mixtures 
PVB Diorex Appearance Tg/oC Eqn Tg/oC 

T~/oC 

1 0 65.8 

164(s) 2/3 1/3 clear 493 20.20 29.87 

164(t) 1/2 1/2 clear -345,48.8 1.71 11.9 

164(u) 1/3 2/3 clear -335,437 -14.6 -6.07 

0 1 -35 

. is shown in figure 4.17. Blends of B20H-92 with a PVB/diorex ratio of 

2:1 show a single broad Tg which does not correlate with the predictions 
of the Fox equation or rule of mixtures. With PVB/diorex ratios of 1:1 

and 1:2 two broad transition are ob.served, the lower is very close to that 
o~drex, the higher about 20°Clower than PVB. These transitions 

broaden as the diorex content is iiicreased, indicating partial miscibility 

with some microphaseheterogeneity. This is shown in figure 4.l8. 

The results of blending with TMXDI/NPG are given in table 4.8. Blends 
of B20H-54 with a PVB/TMXDI/NPG ratio of 2:1 a single narrow Tg is 

observed which correlates with the predictions of the Fox equation and 

the rule of mixtures indicating miscibility of the polymers with single 

phase morphology. With PVB/TMXDI/NPG ratios of 1:1 and 1:2 two 

Tg values are observed, one in between those of the unmixed polymers, 

the other quite close to that of TMXDI/NPG indicating the presence of 

two phases one a mixture of PVB/TMXDI/NPG the other unmixed 

polyurethane. This is shown in figure 4.19. -Blends of B20H-58 with a 

PVB/TMXDI/NPG ratio of 2:1 a single narrow Tg is observed, 
correlating with the predictions of the Fox equation and rule of mixtures, 

indicating single phase morphology. With PVB/TMXDI/NPG ratios of 
1:1 and 1:2 two Tg values are observed 'one in between those of the 

unmixed polymers, the other corresponding to TMXDI/NPG. This 

indicates the pres,: mce of two phases one a mixture of PVB with 

69 

-, 



) 

TMXDI/NPG the other unmixed polyurethane as illustrated in figure 

4.20. (Blends of B20H-66 with a PVB/TMXDI/NPG ratio of 2:1?a single 

narrow Tg is observed which correlates with the predictions of the Fox 

equation and rule of mixtures indicating single phase morphology. With 

PVB/TMXDI/NPG ratios of 1:1 and 1:2, two broad Tg values are 

observed:one in between those of the unmixed polymers and one 

corresponding to TMXDI/NPG. This indicates the presence of two 

phases, one a mixture of PVB/TMXOI/NPG the other unmixed 

polyurethane. This is illustrated in figure 4.21. 

The results of blending with PEI are given i~ table 4.9 with PVB/PEI 

ratios· of2:1, 1:1, and 1:2 singlelbroad Tg values are observed which do 

not correlate with the predictions of the Fox equation or rule of mixtures. 

The transitions broaden as the PEI content is increased, indicating partial 

miscibility with microphaseheterogeneity. This is illustrated in figure 

4.22. In general, butyration decreases the miscibility of B20H with 

Cdiorex and PEI as the tan 0 peaks are broadened and multiphase 

morphology is readily observed. No definite conclusion concerning the 

miscibility of butyrated B20H with TMXDI/NPG can be made, as the 

transitions of the unmixed polymers are quite close and not easily 

resolved by DMTA. 

The solubility of butyrated samples of PVB were investigated in a 

number of solvents and the results given in table 4.10. This has shown 

no change in solubility characteristics upon butyration. 
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Table 4.8 

Blends of Butyrated B20H with TMXDIINPG 

B20H-54 

wt wt Rule of 
Blend fraction fraction Film DMTA Fox Mixtures 

PVB TMXDI/ Appearance Tg/oe Eqn Tg/oe 

NPG woe 

1 0 66.3 

173(a) 2/3 1/3 clear 76.1 76.39 77.03 

173(b) 1/2 1/2 opaque fBSJ152 81.67 82.4 

173(c) 1/3 2/3 opaque 75.4;& 87.11 87.77 

0 1 98.5 

B20H-58 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB TMXDI/ Appearance Tg/oe Eqn Tg/oe 

NPG Tg/oe 

1 0 63.6 

173(d) 2/3 1/3 clear 71.8 74.48 75.23 

173(e) 1/2 1/2 opaque 717fJ4.7 80.19 81.05 

1739f) 1/3 2/3 opaque 77.9~4 86.09 86.82 

0 1 98.5 

B20H-66 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB TMXDI/ Appearance Tg/oe Eqn Tg/oe 

NPG Tg/oe 

1 0 66.5 

173(g) 2/3 1/3 clear 75.6 76.54 77.17 

173(h) 1/2 1/2 opaque J';l.9,91.4 81.78 82.5 

173(0 1/3 2/3 opaque 702.402 87.18 87.83 

0 1 98.5 
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Table 4.9 

Blends of Butyrated B20H with PEI 

B20H-54 

wt 'wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB PEI Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 66.3 

177(a) 2/3 1/3 . clear 473 28.47 35.37 

177(b) 1/2 1/2 clear 395 12.55 19.9 

177(c) 1/3 2/3 clear 235 -1.77 4.43 

0 1 -26.5 

, 

72 



-" ! 
III .. 
c .. 
" c 
" en 

DMTA 

r -i 

-ill 1 

Blende of 

CJ U r--' G 4~' 
--;:"!"~E P\'~ 

9:.Ji:TI"rL.E: 620H-54 
FILENAMc: BaOH-tS4 
OPERATOR: D.Cunl1ffe 

PATE t=;:.Jt-!: , .. .ilJ.o/03/19Sa::o. 
Ft;t::Q, ::l 
STRAIN : 4 
DIM: 2.00.12.600 •• 263 

J '3CoJ 

NI'&-

ill 811 112 • 811 
TelllP"reture (·Cl 

101 tI!O • 

B20H-84 with TMXD1/NPG in eir 

Figure 4.20 
TITLE PVB DATE RUN: .Jun/0I5/199i 
SUBTITLE: B2OH-I58 FREQ: 1 

Hee= Stendard aoo·c F:tl.ENIoME: B20H-158 STRAIN : 4 
OPERATOR; D.CUnl1ffe DIM: 2.00.12.808 •• S10 -

.eo 

I 1180 .41 
• 
III 
0 c .. Il1O .80 
" c 
.11 

• ill 

o 

-UI 1 18 811 112 • 811 
TelllPereture (·Cl 

101 

Blande of B20H-88 with TMXD1/NPe in air 

.. 
c 
" .. .. 
c .. 
" c 
to en 

, 

.. 
c 
" .. .. 
c .. 
" c 
" en 



O~~~T A. 
H6e~ 9tende~d 300·C 

. /' '=,.-c rlQL..Jt--e ~ .. L_ 

T!TLE. PVa 
SU8TZiLE: e20H-66 
FIL.ENA"E: B20H-66 
OPERATO~ O.Cunllf1o 

DATE R:J!·~: J:..:rt/07 i H~9! 
FREQ :! 
STRAIN : .0: 
OI~ 2.CO.12.960 •• 307 -_._--_._--.---_ .... _-----------------_._--

1700 

1880 

t8IIO 

D lt110 

~ 1020 

III -a 
c: -.. 
" c: 
.! 1110 

1140 

170 

0 .00 

-110 -Ill -se 1 ill III 112 III III 108 
Tempereture ('C) 

Blende Of B20H-88 with TMXDl/NP9 In elr 

~~ IllS. 20 

DMTA 
Figure 4.22 

TITLE : PV9 DATE RUN: .Jun/OS/IBBI 
SUBTITLE: 920H-!l4 FREQ: 1 

Head: Stendard 800'C FII.ENAME: 9201+-154 BTRAIN : 4 
OPERATOR D.CUnl1ffe DI~ 2.00.12.800 •• 2as 

1000 .110 - .114 - .~ 

- 1400 

I IlIIO 

• 
_..\----,-.111 

11/ 1000 
a 
c: -.. 
" c: 
.! -

400 

10 III 40 III 
Tempereture ('C) 

70 100 

Blends of 820H-804 with PEI in air 

~rON: ~.20 

.. 
c:: 

" .. .. 
c:: .. 
" c:: 
.! 

.. 
ti .. .. 
c:: .. 
" c: 
.! 



Table 4.10 

Solubility Characteristics of Butyrated samples of PVB 

Ethyl 
Ethyl Acetate/ 

Polymer Methanol Acetone Acetate Methanol THF Benzene Toluene Hexane Cycbhexane Chlorofonn 
1:1 

B30H eI eI 11 eI eI swell swell X X eI 
B30H-46 eI eI .eI eI eI swell swell X X eI 
B30H-47 eI eI eI eI eI swell swell X X eI 
B30H-SO eI eI eI eI eI swell swell X X eI 

B20H eI eI eI eI eI swell swell X X eI 
B2OH-S2 eI eI eI eI tI swell swell X X eI 
B2OH-54 eI eI eI eI eI swell swell X X eI 
B2OH.-S8 eI eI eI eI eI swell swell X X eI 
B2OH-66 eI eI eI eI eI swell swell X X eI 
B2OH-69 eI eI eI eI eI swell swell X X eI 
B2OH-86 eI eI eI eI eI swell swell X X eI 
B2OH-96 eI eI eI eI eI swell swell X X eI 



4.3 Benzoated PVB 

A number of benzoated samples of B20H were prepared. The intrinsic 

viscosities of the modified PVB samples were determined and the results 

given in table 4.11. The molecular mass, hydroxyl content, transition 

data and ratio of benzoate groups to butyral groups are given in table 

4.12. An NMR spectrum of benzoated PVB is given in figure 4.23. The 

variation of [n]SB with hydroxyl content and ratio of benzoate groups to 

butyral groups are given in figures 4.24 and 4.25 and the variation oflk~_ 
with hydroxyl content and ratio of benzoate groups to butyral groups 

are given is figures 4.26 and 4.27. These show that the effect upon slope 

\constant with degree of modification is: - :;' ',. :~-.;<! q;reater 

than the effect ofiodification upon intrinsic viscosity as seen in the case 

of butyrated PVB. 

Blends of benzoated samples of B20Hw!,!r~prepared by solution casting 

with TMXDI/NPG, .~orex, PEI and PVP. The results of blending with 

TMXDI/NPG are given in table 4.13. Blends of B20H-94 with 

PVB/TMXDI/NPG ratios of 2:1, 1:1 and 1:2 showl single broad Tg 

values about 100 e higher than those predicted by the Fox equation, the 

films are also opaque in appearance. In this case, it is possible that 

cross linking has taken place between unreacted hydroxy 1 groups and 

free isocy.aJ1a:·,te groups in the polyurethane as indicated in figure 4.28. 

Blends of B20H-99 with PVB/TMXDI/NPG ratios of 2:1, 1:1 and 1:2 

show two [broad' values of Tg which are quite close to those of the' 

unmixed polymers indicating a decrease in miscibility of these polymers 

upon benzoation of PVB, as illustrated in figure 4.29. Blends of B20H-

109 with PVB/TMXDI/NPG ratios of 2:1,1:1 and 1:2 show single broad 

Tg values which are 10-14°e above those predicted by the Fox equation 

or rule of mixtures, as illustrated in figure 4.30. 
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Table 4.11 

Intrinsic Viscosity Data of Benzoated B20H in THF 

polymer [171Hi g-'dl [171. / g-'dl [171s8 / g-'dl [17]M / g-'dl kH kk kSB kM 
B20H 0.3382 0.3464 0.3436 0.3411 0.474 0.0816 0.359 0.410 

B20H-94 0.3328 0.3319 0.3386 0.3365 0.469 0.0643 0.348 0.393 
B20H.95 0.3086 0.31102 0.3132 0.3121 0.396 0.138 0.307 0.336 
B20H-99 0.3165 0.3172 0.3189 0.3177 0.389 0.130 0.322 0.353 
B20H-106 0.3368 0.3343 0.3369 0.3366 0.211 0.240 0.192 0.201 
B20H-109 0.2669 0.2664 0.2726 0.2673 0.351 0.140 0.181 0.332 



Table 4.12 

Molecular Mass, Hydroxyl and Transition Data of Benzoated PVB Samples 

Polymer - - Mp Mwd [oH]/mmol g-l TgfOc Moler Ratio 
Mn Mw benzoate/butyral 

. B20H 9000 23000 14000 2.56 4.0 71 0.00 
B20H-94 8600 22000 14000 2.54 4.2 68.7 0.017 
B20H-95 16000 33000 23000 2.05 8.0 76.3 0.015 
B20H-99 14000 32000 21000 2.22 2.3 74.2 0.029 
B20H-I06 1200 2100 16000 1.77 7.6 70.1 0.040 
B20H-I09 19000 31000 24000 1.6 15.1 72.2 0.088 
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Figure 4.24 
Plot of [1J]ss against [OH] for Benzoated B20H in THF 
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Figure 4.25 
[77]sB against ratio Benzoate I Butyral for Benzoated B20H in THF 
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Figure 4.26 

kSB against [OH] for Benzoated B20H in THF 
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Figure 4.27 
kSB against ratio of Benzoate / Butyral for Benzoated B20H in THF 
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Table 4.13 

Blends of Benzoated B20H with TMXDI/NPG 

B20H-94 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB 1MXDI/ Appearance Tg/oC Eqn Tg/oC 

NPG Tg/oC 

1 0 68.7 

189(a) 2/3 1/3 opaque 88..5 78.09 78.63 

189(b) 1/2 1/2 opaque 94.4 83.0 83.6 

189(c) 1/3 2/3 opaque 96.9 88.0 88.57 

0 1 98.5 

B20H-99 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB 1MXDI/ Appearance Tg/oC Eqn Tg/oC 

NPG Tg/oC 

1 0 74.2 

175(a) 2/3 1/3 clear 74:J}Y52 81.94 82.3 

175(b) 1/2 1/2 clear 75:Jf)6.9 85.94 86.35 

175(c) 1/3 2/3 opaque 665,94 90.03 90.4 

0 1 98.5 

B20H-109 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB 1MXDI/ Appearance Tg/oC Eqn Tg/oC 

NPG Tg/oC 

1 0 72.2 

189(d) 2/3 1/3 opaque 94 80.54 81.0 

189(e) 1/2 1/2 opaque <x32 84.87 85.35 

189(f) 1/3 2/3 opaque 101 89.73 89.73 

0 1 98.5 
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Table 4.14 
Blends of Benzoated B20H with Diorex 

B20H-99 

wt wt Rule of 
Blend fraction fraction Film DMTA Fox Mixtures 

PVB Diorex Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 74.2 

166(a) 2/3 1/3 clear 463 28.15 37.8 

166(b) 1/2 1/2 clear -34,36.2 9.42 19.6 

166(c) 1/3 2/3 clear -305,263 -7.12 1.4 

0 1 -35 

Table 4.15 
Blends of Benzoated B20H with PEI 

B20H-94 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB PEI Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 68.7 

190(a) 2/3 1/3 clear 45.1 29.73 37.0 

190(b) 1/2 1/2 clear -24.6;l8.2 13.40 21.1' 

190(c) 1/3 2/3 clear -26,14.3 -1.26 5.23 

0 1 -26.5 

Table 4.16 
Blends of Benzoated B20H with PVP 

B20H-94 under dry nitrogen 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB PVP Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 68.7 

191(a) 2/3 1/3 clear 107,167 97.13 102.8 

191(b) 1/2 1/2 clear 123,172 131.65 119.85 

191(c) 1/3 2/3 clear 130,166 144 146.9 

0 1 171 
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These blends are opaque in appearance and like those of B20H-94 are 
insoluble, indicating that cross linking has taken place between the free 

hydroxyl groups of PVB and free isocynate groups of the polyurethane. 

The results of blending with diorex are given in table 4.14. Blends of 

B20H-99 with a PVB/.diorex ratio of 2:1 a single broad Tg is observed 

which does not correlate with that predicted by the Fox equation or the 

ruleof mixtures, indicating partial miscibility with some 

microphaseheterogeneity. With PVB/diorex ratios of 1:1 and 1:2 two 
broad Tg values are observed the lower corresponds to that of unmixed 

.diorex while the higher transitions broadens and shifts to a lower 

temperature as the diorex content is increased. This is illustrated in 

figure 4.31. 

The results of blending with PEI are given in table 4.15. Blends of B20H-

94 with a PVB/PEI ratio of 2:1 a single broad Tg is observed which does 

not correlate with that predicted by the Fox equation or rule of mixtures, 
indicating partial miscibility with some microphaseheterogeneity. With 

PVB/PEI ratios of 1:1 and 1:2,'two broad Tg values are observed. The 

low temperature transition corresponds to thatof unmixed PE!. The high 
To 

temperatur~roadens and moves to a lower value as the PEI content is 

increased. This is illustrated in figure 4.32. 

The results of blending with PVP are given in table 4.16. With PVB/PVP 
ratios of 2:1,1:1 and 1:2 two broad values of Tg are observed. The lower 

temperature transition is in between the values of the unmixed polymers 

and its value increases as the PVP content is increased. The higher 

temperature transition does not vary as the PVP content changes and· 

corresponds to that of unmixed PVP. This is illustrated in figure 4.33. In 

general benzoation of PVB decreases its miscibility with the other 

polymers. Similar to the case of butyration. The solubility 

characteristics of benzoated samples of B20H were studied and the 
results given in table 4.17. This shows an increased solubility of PVB in 

non-polar hydrocarbon solvents and a decrease in highly polar solvents, 

as the degree of benzoation is increased. 
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Table 4.17 

Solubility Characteristics of Benzoated B20H .J 

Ethyl 
/ 

Ethyl Acetate/ 
Polymer Methanol Acetone Acetate Methanol THF Benz~ne Toluene Hexane Cycbhexane Chloroform 

1:1 , 
B20H t/ t/ t/ t/ t/ swell swell X X t/ 

B20H-94 t/ t/ t/ t/ t/ swell swell X swell t/ 
B20H-95 t/ t/ t/ t/ t/ swell swell X swell t/ 
B20H-99 t/(a) .t/ t/ t/ t/ t/ t/ swell swell t/ 
B20H-106 t/(a) t/ t/ t/ t/ t/ t/ X swell t/ 
B20H-109 t/ t/(a) X t/(a) t/(a) swell swell X swell t/(a) 

(a) slightly soluble 



) 

4.4 Trifluoroacetylated PVB 

A number of trifluoroacetylated samples of B20H were prepared and 

their intrinsic viscosities in THF were determined and the results are 

given in table 4.18. Molecular mass, hydroxyl content, transition data 
and ratio of trifluoroacetate groups plus acetate groups to hydroxyl 

groups are given in table 4.19. The ratio of acetate groups to alcohol" 

groups was determined by FTIR As the films are thin enough to obey 

Beer Lamberts law, the heights of the peaks are proportional to the 

number of groups present hence a ratio of peak heights is proportional 

"to the ratio of groups percent. "An infrared spectrum of a 

trifluoracetylated sample of B20H is given in figure 4.34. 

It was found that incomplete modification of PVB does not prevent 

aggregation in THF. This shown by the chromatograml65 in figure 4.35 

which compares the response from a RI detector with the response from 
a LALLS detector. Aggregation is indicated by a shoulder in the high 

molecular mass region in the LALLS response which is not observed by" 

the RI detector. The molecular mass of the :~i!l~oro_acet.Ylated B20H was 

also determined by light scattering in THF and acetic acidl65. Figure 

4.36 shows a Zimm plot for B20H-79 in THF, the curvature of the plot is 
due to aggregate formation in THF and gives a value for MWof 608000. 
Figure 4.37 shows a Zimm plot for B20H-79 in acetic acid, this is a better 

solvent for PVB and gives a linear Zimm plot indicating the lack of 

aggregate formation and gives a value for Mw of 28000 which is similar 
to the value obtained at Loughborough by SEC in THF. 

The variation of [17]SB and kSB with hydroxyl content and ratio of acetate 

groups torhydro~yl groups are given in figures 4.38 - 4.41. These show 
that the v~ri'ation (;f [17] SB and k SB with the degree of modificaton are 

of the same order " whereas with benzoation and 

butyration there is ar ": ; difference in the variation of 
[17] sBand k SB with the degree of modification. 
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Table 4.18 

Viscosity Data for Trifluoroacetylated B20H in THF 

polymer [1J]H I g-Idl [1J]. I g-Idl _ [1J]SB I g-Idl [1J]M I g-Idl kH kk ksB - kM 

B20H 0.3382 0.3464 0.3436 0.3411 0.474 0.0816 .0.359 0.41 
B20H-74 0.3303 0.332 0.3326 0.3326 0.478 0.0768 0.375 0.420 
B20H-76 0.3162 0.3162 0.3175 0.3175 0.389 0.125 0.328 0.354 
B20H-78 0.2828 0.2985 0.2979 0.2979 0.172 0.599 0.293 0.352 
B20H-79 0.3279 0.3283 0.3293 0.3295 0.368 0.142 0.364 0.333 
B20H-84 0.3011 0.3012 0.3021 0.3021 0.363 0.144 0.306 0.332 

B20H-I03 0.2763 0.2765 0.2812 0.2812 0.377 0.136 0.268 0.296 



Table 4.19 

Molecular Mass, Hydroxyl and Transition Data of Trifluoroacetylated PVB Samples 

Trifluroacetate plus 

Polymer - - Mp Mwd [OH]/mmol g-l Tg;oc Acetate 
Mn Mw Hydroxyl 

B20H 9000 23000 14000 2.56 4.0 71 0.84 
B20H-74 7900 17000 12000 2.18 3.75 66.5 0.97 
B20H-76 6900 22000 12000 3.1 2.81 63.5 0.41 
B20H-78 5500 24000 12000 4.5 2.15 65.1 10.9 
B20H-79 10000 26000 16000 2.7 2.30 69.6 3.0 
B20H-84 11000 32000 19000 2.8 1.55 64.4 3.1 

B20H-I03 8300 14000 11000 1.7 6.4 59.9 14.3 



I"· 
Figure 4.34 Infrared Spectrum of Trifluoroacetylated B20H 
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Figure 4.35 

Size Exclusion Chromatogram of Trifluoroacetylated 820H 
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Figure 4.36 

Zimm plot of trifluoroacetylated B20H in THF 
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Figure 4.37 

Zimm plot of trifluoroacetylated B20H in acetic acid 
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Figure 4.38 
[71]SB against [OH] for trifluorracetylated B20H in THF 
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Figure 4.39 

kSB against [OH] for trifluorracetylatedB20H in THF 
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Figure 4.40 
[1)]ss against ratio acetate I hydroxyl for 

trifluon:acetylatedB20H in THF 
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Figure 4.41 

kss against ratio of trifluoracetate plus acetate groups 

for trifluO~OtCetylated B20H in THF 
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Blends of trifluoroacetylated B20H were prepared with PEI, d~orex and 

TMXDI/NPG by solution casting anq examined by DMTA. The results 

of blending with PEI are given in table 4.20. Blends of B20H-74 with 

PVB/PEI ratios of 2:1, 1:1 and.1:2, two broad Tg glass transitions are 

observed with values in between those of the unmixed polymers. As the 

PEI content is increased the low value Tg shifts towards that of PVB and 

the high value Tg shifts to a lower temperature and the tan D peak is 

broadened, I- ~~ illustrated in figure 4.42. This indicates -that the 

polymers are partially miscible with microphaseheterogeneity. Blends 

of B20H-76 with PVB/PEI ratios of 2:1, 1:1 and 1:2 give two broad 

values. With a ratio of 2:1 the high temperature transition is 4·C lower 

than that of PVB and the lower transition is 20·C above that of PE!. As 

the PEI content is increased the low t,emperature transition shifts 

towards that of PEI, the other also shifts to a lower temperature and 

broadens as shown in figure 4.43. This indicates partial miscibility 

between the two polymers with microphasehetero'geneity. Blends of 

B20H-78 with a PVB/PEI ratio of 2:1 two Tg values are observed the 

higher transition corresponding with that of unmixed PVB, the lower 

transition is 20°C higher than that of PE!. As the PEI content is increased 
the lower temperature transition shifts towards that of PE! and the 

higher temperature transition shifts to the lower temperature the tan D 
peak broadening, as illustrated in figure 4.44. This indicates partial 

miscibility of the two polymers with microphaseheterogeneity. Blends 

of B20H-79 with PVB/PEI ratios of 2:1,1:1 and 1:2 two broad transitions, 

in between those of the unmixed polymers are observed. As the PEI 

content is increased the low temperature transition shifts towards that of 

PEI and the higher value Tg moves towards a lower temperature and 

broadens with increasing PEI content, as illustrated in figure 4.45. This 

indicates partial miscibility of the two polymers with 

microphaseheterogeneity. Blends of B20H-84 with a PVB/PEI ratio of 

2:1, two glass transition are observed, the higher temperature transition 

corresponds to that of urunixed PVB, the lower transition is 20°C above 

that PE!. As the PEI content is increased the low temperature transition 

shifts towards that of PEI and the high temperature transition decreases 

and broadens as illustrated in figure 4.46. This indicates partial 

miscibility of these polymers with microphaseheterogeneity. 
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Table 4.20 

Blends of Trifluoroacetylated B20H with PEI 

B20H-74 

wt wt 

Blend fraction fraction Film DMTA Fox Rule of 

PVB PEI Appearance Tg/oC Eqn Mixtures 

TK/oC TK/oC 

1 0 66.5 

183(a) 2/3 1/3 clear -2.8,623 28.6 35.5 

183(b) 1/2 1/2 clear -195,48B 12.6 20 

183(c) 1/3 2/3 clear -23.2,37.4 -1.7 4.5 

0 1 -26.5 

B20H-76 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB PEI Appearance Tg/oC Eqn Tg/oC 

TK/oC 

1 0 63.5 

183(d) 2/3 1/3 clear -5.4fil.9 27 35.5 

183(e) 1/2 1/2 clear -19.6,512 11.6 18.5 

183(0 1/3 2/3 clear c25,41.9 -2.4 3.5 

0 1 -26.5 

B20H-78 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB PEI Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 65.1 

184(a) 2/3 1/3 clear -7.61>73 27 33.5 

184(b) 1/2 1/2 opaque -6.7,58.4 11.6 18.5 

184(c) 1/3 2/3 opa<J.ue -16.7,53.8 -2.4 3.5 

0 1 -26.5 
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Table 4.20 

Blends of Trifluoroacetylated B20H with PEI 

B20H-79 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB PE! Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 69.6 

184(d) 2/3 1/3 clear -14,61 30.2 37.6 

184(e) 1/2 1/2 clear -16.6,503 13.7 21.6 

18490 1/3 2/3 opaque -221,303 -1.1 5.5 

0 1 -26.5 

B20H-84 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB PE! Appearance Tg/oC Eqn Tg/oC -Tg/oC 

1 0 64.4 

184(g) 2/3 1/3 clear .fJ.9/:h9 27.5 34.1 

184(h) 1/2 1/2 clear -185,55.9 11.9 19 

184(i) 1/3 2/3 opaque -15.8,46.7 -2.2 3.8 

0 1 -26.5 
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Table 4.21 

Blends of Trifluoroacetylated B20H with Diorex 

B20H-84 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB Diorex Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 64.4 

167(a) 2/3 1/3 clear 32.6 23.0 31.27 

167(b) 1/2 1/2 clear -353,243 6.12 14.7 

167(c) 1/3 2/3 clear 3.1 -9.1 -1.87 

0 1 -35 

Table 4.22 

Blends of Trifluoroacetylated B20H with TMXDIINPG 

B20H-84 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB TMXDI/ Appearance Tg/oC Eqn Tg/oC 

NPG Tg/oC 

1 0 64.4 

176(a) 2/3 1/3 opaque 675/J13 75 75.8 

176(b) 1/2 1/2 opaque 777,96 80.6 81.5 

176(c) 1/3 2/3 opaque 102 86.4 87.1 

0 1 98.5 
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The results of blending with .diorex are given in table 4.21. Blends of 
B20H-84 with a PVB/diorex ratio of 2:1 a single broad glass transition 

which is about 10 DC higher than that predicted by the Fox equation and 

correlates with that predicted by the rule of mixtures. With a 

PVB/diorex ratio of 1:1 two broad Tg values are observed. The low 

temperature transition corresponds to that of .diorex, the high 

temperature transition· is 20DC lower than that of PVB. With a 

PVB/ ~iorex ratio of 1:2 a single broad transition is observed, as 

illustrated in figure 4.47. This indicates partial miscibility of the 

polymers with microphaseheterogeneity. 

The results of blending with TMXDI/NPG are given in table 4.22. 

Blends of B20H-84 with a PVB/'TMXDI/NPG ratio of 2:1 two broad .. Tg 

values are observed correlating with those of the unmixed polymers. 

With a PVB/TMXDI/NPG ratio of 1:1 two broad transition are observed 

one in between those of the unmixed polymer and one corresponding to 

unmixed TMXDI/NPG. This indicates partial miscibility with some 

microphaseheterogeneity. With a PVB/TMXDI/NPG ratio 1:2,a single 
Tg is observed which is SDC above that unmixed polyurethane, here as 

with some of the the blends of benzoatedlsamples: of PVB crosslinking 

may have occut"ed by reaction between free hydroxyl groups of PVB and 

isocyanate groups of the polyurethane. This is illustrated in figure 4.48. 

The solubility characteristics of trifluroacetylflted samples of B20H were 

investigated in a number of solvents. The results are given in table 4.23. 

As can be seen trifiuoroacetylation increases the sqlubility of PVB in 

aromatic hydrocarbon possibly due to charge transfer interactions 

between trifiuoroacetate groups and the aromatic nudeu;. 
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Table 4.23 

Solubility Characteristics of Trifluoroacetylated samples of 820H 

Ethyl 
Ethyl. Acetate/ 

Polymer Methanol Acetone Acetate Methanol THF Benzene Toluene Hexane Cyoohexane Chloroform 
1:1 

B20H t/ t/ t/ t/ t/ swell swell X X t/ 
B20H-94 t/ t/ t/ t/ t/ t/ t/ X X t/ 
B20H-95 t/ t/ t/ t/ t/ t/ t/ X X t/ 
B20H-99 t/ t/ t/ t/ t/ t/ t/ X X t/ 
B20H-I06 t/ t/ t/ t/ t/ t/ t/ X X t/ 
B20H-I09 t/ t/ t/ t/ t/ t/ t/ X X t/ 



Poly (vinyl butyraD is known to form inter- and intra-molecular 
hydrogen bonds, which lead to aggregate formation in many solvents94-

101. At low concentrations the polymer coils do not interpenetrate to any 

great extent hence intramolecular hydrogen bonding causes the polymer 

coils to contract which lowers the solution viscosity. As the 

concentration is increased the polymer coils increasingly 
interpenetrate166 and intermolecular hydrogen bonding predominates 

leading to aggregation, increasing the volume of the coils and the 

viscosity increases. Modification of\P\TB by, esterification producjng 
non-polar pendent groups, which reduceE, the number of proton 

donating species to take part in. hydrogen bonding. At low 

concentrations, the coils are more' expanded and the solution~ viscosity 

is higher than the unmodified PVB. As the concentration is increased 

the polymer coils iI';terpenetrate but aggregates are not formed and 
hence the solution viscosities are lower than those of unmodified PVB. 
This is illustrated in figure 4.49. Therefore, modification of PVB 

removing species capable of proton donation reduces aggregate 
formation in THF, but this can only be prevented by complete 

modification. 

The thermodynamic driving force for promoting the miscibility of PVB 

with, the polymers studied is by hydrogen bonding with the 
functionallity of the other polymers, the hydroxyl grOups of PVB acting 
on the proton donors. This behaviour has been reported by several 

authors. Painter167 et al ha~tudied hydrogen bond formaton in blends 

of\poluyrethanes. It has been found that copolymerisation of para-
-T - " - -

hydroxystyrenes with styrene improves the miscibility of polystyrene 

with pol~{nethyl methacrylate! poly ~utylqhylat~)and poly (vinyl 
ketones)168-174. Complexation behaviour has also been observed 

between pOI~ty!'ene-co-hYdroxystyrene)and poly (vinyl pyrrolidone). 
The glass transitions of the complexes prepared by precipitation are 
found to vary with the solvent used as precipitant and are higher than 

those obtained by solution casting175. 

The domain sizes of the complexes have been estmated to be of the order 

of 2.5nm176. Intermacromolecular complexes have been extensively 

reviewed by Tsuchida and Abel77. 
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Figure 4.49 

Variation of relative viscosity with concentration for PVB in THF 
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4.5 Phthalated PVB 

A number of phthalated samples of B20H were prepared. Their intrinsic 

viscosities were determined in THF and methanol and the results given 

in tables 4.24 and 4.25. Samples B20H-130 and B20H-174 exhibit 

polyelectrolyte behaviour in methanol shown by the upward curvature 

of Huggins plots as shown in figure 4.50, but give linear Fuoss and 

Strauss plots (equation 2.15). The ratio of phthalate groups to butyral 

groups was determined by NMR spectroscopy; a spectrum is given in 

figure 4.51. The molecular masses, acid content, transition. data and ratio 

of phthalate groups to butyral groups are given in table 4.26. The 

variation of intrinsic viscosity of phthalated B20H with acid content and 

molar ratio of phthalate groups to butyral grOlfPs are given in figures 

4.52 and 4.53. These show a small decrease in(i~trhlslc: viscosity in :rHF 

·with increasing degree of modification. The variation oflcsB with acid 

content and ratio of phthalate_e:rouDsJo_bJLt)rrillgro~ps in THF are given 
in~gures 4.54_ a~d 4.5_~ - -- ------ -: 

- - ._-- -~-~ 
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Figure 4.50 

Huggins ploh for B20H -130 and B20H -174 is methane.( 
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N.M.R. Spectrum of Phthalated B20H 
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B20H 
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B20H-124 
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[111
H 

I g-Id! 

0.3382 
0.2059 
0.2344 
0.1045 
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Table 4.24 

Intrinsic Viscosity Data of Phthalated Samples of B20H in THF 

[111. I g-Id! . [111s I g-Id! [111M I g-Id! kH kk 

0.3464 0.3436 0.3411 0.474 0.0816 
0.2115 0.2110 0.2098 1.26 -0.42 
0.2365 0.2371 0.2376 0.71 -0.091 
0.1076 0.1086 0.1059 1.93 -0.93 

- - - - -

ksB kM 
0.359 0.410 
0.885 1.00 
0.557 0.578 
1.25 1.62 

- -



Table 4.25 

Intrinsic Viscosity Data of Phthalated Samples of B20H in Methanol 

polymer [111H / g-'dl [111./ g-'dl [111sB / g-'dl [111M / g-'dl kH kk kSB kM 
B20H 0.1828 0.2025 0.2107 0.1995 2.63 -0.883 1.03 1.51 

B20H-110 0.2013 0.2008 0.2015 0.2014 0.205 0.261 0.20 0.21 
B20H-124 - - - - - - - -

Polymer [111FS / g-Idl rFS / idl! 
B20H-130 0.1506 0.26 
B20H-174 0.3511 0.54 



Table 4.26 
I 

Molecular Mass, Acid Content and Transition Data for Phthalated ~les of 820H 

Polymer - - Mp Mwd [C02H)/mmol TgfOC Phthalate/Butyral 
Mn Mw 

g-l 

B20H 9000 23000 14000 2.56 0.0 71 0 
B20H-110 5000 17000 9000 3.55 3976 113 0.642 
B20H-124 5000 1000 7000 ' 1.96 3,2.88 107 0.730 
B20H-130 5000 12000 8000 ' 2.25 266 66.8 0.734 
B20H-174 2000 9000 17000 3.58 1,5.54 111.0 -

B20H-174 by SEC in DMF relative to PEO/PEG standards178 
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Figure 4.52 

[1J]SB against [C02H] for phthalated B20H in THF 
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Figure 4.53 
[1J]SB against ratio of Phthalate groups to 

Butyral groups for Phthalated B20H in THF 
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Figure 4.54 

kSB against [C02H] for Phthalated B20H in THF 
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kSB against ratio of Phthalate groups to Butyral groups for 

Phthalated B20H in THF 
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The phthalate groups increase the extent of inter- and intramolecular 

hydrogen bonding in THE Hence, at low concentrations the polymer 

chains are more tightly coiled which decreases the solution viscosity as 

illustrated in figure 4.56: At higher concentrations the greater extent of 

intermolecular hydrogen bonding causes the slope constant to increase. 

The greater polarity of methanol is able to disrupt aggregate formation 

by forming hydrogen bonds with the polymer in solution. Hence B20H-

110 has a \k:SB value of 0.2 <table 4.25) in methanol whereas B20H has a 

\leSB value of 1.03 «table 4.25) in methanol. In dilute solution in 

methanol the polymer chains are less tightly coiled so the solution 

viscosity is not decreased to the extent as in THF, this is illustrated in 

figure 4.57. 

Blends of pIl.thalated samples of B20H with Qiorex, TMXDI/NPG, PEI 

and PVP wre prepared by solution casting and examined by DMTA. 

The results of blending with diorex are given in table 4.27. For blends of 

B20H-124 with PVB/diorex ratios of 2:1,1:1 and 1:2, two broad Tg peaks 

are ·observed. As the .diorex content is increased the low temperature 

transition shifts from -26.7 to -30.6DC while the high temperature 
transition shifts from 40.8OC to 12.3DC and the tan /5 peak broadens as the 

~iorex content is increased as illustrated in figure 458. This indicates the 

presence of two phases, one which is rich in diorex and the other a 

mixture of PVB with giorex with some microphasheterogeneity present. 

ForfbTh!lds. of B20H-130 with PVB/diorex ratios of 2:1,1:1 and 1:2, two 

glass transitions are observed. The low temperature transition 

corresponds to that of _diorex, while the high temperature transition 

shifts from 39.5°C to 29.6°C as the diorex content is increased with a 

broadening of the tan /5 peak. This indicates the presence of two phases, 

one unmixed diorex the other a mixture of PVB with diorex with some -microphaseheterogeneity as illustrated is figure 4.59 .. For blends of 

B20H-174 with PVB/diorex ratios of 2:1,-1:1 and 1:2 two glass transitions 

are observed. The low temperature transition corresponds to that of 

unmixed diorex. The high temperature transition shifts from 77.80 C to 

71.20 C and the tan /5 peak broadens as the c!~orex content is increased; 

this is illustrated in figure 4.60. This indicates the! presence )of two . 

phases, one consists of unmixed ~iorex while the other is a mixture of 

PVB with diorex with some microphaseheterogeneity. 
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Figure 4.56 
Variation of relative viscosity with concentration 

. for phthalated B20H in THF 
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Figure 4.57 
Variation of relative viscosity against concentration 

for phthalated B20H in Methanol 

1.6.,--'--------------,r--------, 

1.5 

1.4 

1.3 

1.2 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

c/,.lr' 

108 

III 820H 

• 820H·10 

• 820H·130 

III 820H 

• 820H·10 

• 820H·130 

• 



Table 4.27 

Blends of Phthalated B20H with Diorex 

B20H-124 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB Diorex Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 107 

181(a) 2/3 1/3 clear -26.7,40.8 44.0 59.7 

181(b) 1/2 1/2 clear -27.8;l.85 19.7 36 

181(c) 1/3 2/3 clear -30.6,123 -1.13 12.3 

0 1 -35 

B20H-130 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB Diorex Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 66.8 -
187(a) 2/3 1/3 opaque -305,395 24.2 32.67 

187(b) 1/2 1/2 opaque -31.9,345 6.8 15.75 

187(c) 1/3 2/3 \opaque -31.7,29.6 -8.7 -1.2 

0 1 -35 

B20H-174 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB Diorex Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 111 

178(a) 2/3 1/3 opaque -35777.8 45.8 62.3 

178(b) 1/2 1/2 opaque -31.077.1 20.9 38 

178(c) 1/3 2/3 opaque -32.9, -0.5 13.7 

712 

0 1 -35 
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The phthalate groups in the modified PVB have improved·the miscibility 

of B20H with 3iorex by hydrogen bonding. The carbonyl groups of the 

pOlyester acts as the proton accepting species and the phthal~te group~ 

as the proton donor. This sort of behaviour has been observed by 

Cole~179-who observed hydrogen bonding between polymers 

containing methacrylic acid and ether groups. The ability of the 

phthalate groups to hydrogen bond with the carbonyl of the polyester 

will depend upon the nature of the solvent used to prepare the blends or 

the prest :~nce of other polymers. This has been reported by Tsuchida180 

- ', .... 
The results of blending with TMXDI/NPG are given in table 4.28: Blends 

of B20H-124 with PVB/TMXDI/NPG ratios of 2:1, 1:1 and 1:2 single 

glass transitions are observed which correlate with those predicted by 

the Fox equation and rule of mixtures; the breadth of the tan 0 peaks at 

the glass transition for the homopolymers and blends is about 75oC. As 

illustrated in figure 4.61. Although a single Tg is observed the blend 

films are 'i opaque in appearance and there is the' possibility of 

crosslinking with free) iscicyi1.at!i.igroups and unreacted hydroxyl groups 

on the PVB. Miscibility may be improved by hydrogen bonding 

between the acid groups and the urethane units of TMXDl/NPG. The 

variation of glass transition with blend C<J.Position is given in figure 4.63, 

illustrating little difference between observed and predicted values. 

Blends of B20H-174 with PVB/TMDI/NPG ratios of 2:1, 1:1 and 1:2 give 

single Tg values which are about 5-6 t: below the values predicted by 

the Fox equation or rule of mixtures with the tan 0 peaks for the blends 

and homopolymers having a width of.39'C at the glass transition, as 

illustrated in figure 4.62. Again, although a single glass transition is 

observed in the blends, the films are opaque indicating the possibility of 

cross linking. The variation of glass transition with blend composition is 

given in figure 4.64, showing negative deviation from predicted values. 

The results of blending with PVP are given in table 4.29. Blends of 

B20H-110 with PVP in air show two broad glass transitions at all 

compositions showing that atmospheric moisture greatly influences the 

miscibility of these polymers. This is illustrated in figUfe 4.65. Under an 

atmosphere of dry nitrogen, single narrow glas~nsitionsare observed 

at 10-20oC above those predicted by the Fox equation and rule of J 
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Table 4.28 

Blends of Phthalated B20H with TMXDIINPG 

B20H-124 

wt wt Rule of 

Blend fraction fraction Film DMTA . Fox Mixtures 

PVB TMXDI/ Appearance Tg/oC Eqn Tg/oC 

NPG T:;{/oC 

1 0 107 

185(a) ·2/3 1/3 opaque 103 104.1 104.2 

. 185(b) 1/2 1/2 opaque 101 102.7 102.8 

185(c) 1/3 2/3 opaque 101 101.3 101.3 

0 1 98.5 

B20H-174 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB TMXDI/ Appearance Tg/oC Eqn Tg/oC 

NPG T:;{/oC 

1 0 111 

179(a) 2/3 1/3 opaque 101 106.7 106.8 

179(b) 1/2 1/2 opaque ~ 104.6 104.8 

179(c) 1/3 2/3 opaque 9:.l . 102.6 102.7 

0 1 98.8 
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Table 4.29 

Blends of Phthalated B20H with PVP 
B20H-110 In Air 

wt wt 

Blend fraction fraction Film DMTA 

PVB PVP Appearance Tg/oC 

1 0 113 

165(a) 2/3 1/3 dear 132,175 
165(b) . 1/2 1/2 dear 137 

165(c) 1/3 2/3 clear 154 

0 1 171 

B20H 110U d D N' - n er Jry Itrogen 

wt wt 

Blend 'fraction fraction Film DMTA 

PVB PVP Appearance Tg/oC 

1 0 113 

165(a) 2/3 1/3 clear 149 

165(b) 1/2 1/2 clear 161 

165(c) 1/3 2/3 dear 164 

0 1 171 

B20H-130 Under Dry Nitrogen . 

wt wt 

Blend fraction fraction Film DMTA 

PVB PVP Appearance Tg/oC 
. 

1 0 66.8 

188(a) 2/3 1/3 clear 152 

188(b) 1/2 1/2 clear 155 

188(c) 1/3 2/3 dear 153 

0 1 171 

113 

Fox Rule of 

Eqn Mixtures 
Tg/oC Tg/oC 

130.6 132.3 

140.0 142.0 

150.0 151.7 

Fox Rule of 

Eqn Mixtures 

Tg/oC Tg/oC 

130.6 132.30 

140.0 142.0 

150.0 151.7 

Fox Rule of 

Eqn Mixtures 

Tg/oC Tg/oC 

.95 101 

111.5 118.5 

129.5 135.99 
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Figure 4.67 

Tg lversust.~~;·in blends with B20H-110 under dry nitrogen 
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mixtures, as illustrated in figure 4.66. The variation of glass transition 

with blend composition is given in figure 4.67 which shows the positive 

deviation of experimental data from predicted values. Blends of B20H-

130 with PVB/PVP ratios of 2:1, 1:1 and 1:2 give single narrow 

transitions under an atmosphere of dry nitrogen as shown in figure 4.68. 

The glass transitions are 30-60·C above those predicted by the Fox 

equation or rule of mixtures. The variation of glass transition with blend 

composition is given in figme 4.69, showing the positive deviation of 

experimental data from predicted values. This indicates the presence of 

strong specific interactions between the blend components. 

It is well known that PVP is able to form intermacromolecular complexes 

with polymers containing carboxylic acids181-186 and that the stability of 

the complex depends upon the proton accepting ability of the 

solvent187,188 Upon mixing the solutions of phthalated PVB with PVP 

an initial precipitate in formed which di®lves on standing, indicating 

strong interaction between the polymers giving a complex which later 

dissociates. It has been reported189 that the dynamic mechanical 

properties of these blends is greatly affected by the polarity of the 

solvent. Initial solid state NMR studies of blends of phthalated PVB 

with PVP indicates that in sample 188(a) the blend is homogeneous on a 

scale of 30nm190 but inhomogeneous at a scale of 5nm which is in 

approximate agreement with DMTA results. The intimacy of mixing 

will depend upon the solvent used for preparing the blends. 

The results of blending with PEI· are given in table 4.30. Mixing 

solutions of B20H-ll0, B20H-124 and B20H-130 with a solution of PEI 

produces a precipitate at all compositions. In each of these cases, the 

ratio of acid groups to free amine groups is greater than 1.5, mixing a 

solution of B20H-174 with a solution of PEI gives a precipitate when the 

PVB/PEI is 2:1 and 1:1, when the ratio of PVB/PEI is 1:2 the blend 

remains in solution as illustrated by sample 180(1) where the ratio of acid 

groups to free amine groups is less than 1.5. This is an example of the 

effect of solution conditions upon complex formation. If the pH of the 

solution is high enough and the number of amino groups very much 

larger than the acid groups, then there will be insufficient Coulombir 

interaction to cause precipitation. The DMTA behaviours of these 
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Table 30 

Blends of Phthalated B20H with PEI 

B20H-110 

wt wt Rule of 

Blend fraction fraction Film DMTA Fox Mixtures 

PVB PEI Appearance Tg/oC Eqn Tg/oC 

Tg/oC 

1 0 113 

169(a) 2/3 1/3 Yel10w 110.4 51.7 66.5 

Precipitate 

169(b) 1/2 1/2 Yel10w 00.4 22.9 43.3 

Precipitate 

169(c) 1/3 2/3 yel10w S2J 7.3 20 

precipitate 

0 1 -26.5 

B20H-124 

wt wt Fox Rule of 

Blend fraction fraction Film DMTA Eqn Mixtures 

PVB PEI Appearance Tg/oC Tg/oC Tg/oC 

1 0 107 

180(a) 2/3 1/3 precipitate 97.5 48.9 62.5 

180(b) 1/2 1/2 precipitate 75.1 26.0 40.3 

180(c) 1/3 2/3 precipitate 64.9 6.2 18.0 

0 1 -26.5 

B20H-130 

wt wt Fox Rule of 

Blend fraction fraction Film DMTA Eqn Mixtures 

PVB PEI Appearance Tg/oC Tg/oC Tg/oC 

1 0 66.8 

180(d) 2/3 1/3 precipitate 113 28.74 35.7 

180(e) 1/2 1/2 precipitate 71.8 12.73 20.15 

180(f) 1/3 2/3 precipitate -7ff53 -1.67 4.6 

0 1 -26.5 
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Table 4.30 continued 

B20H-174 

wt wt Fox Rule of 

Blend fraction fraction Film DMTA Eqn Mixtures 

PVB PEI Appearance Tg/oC Tg/oC Tg/oC 

1 0 111 

180(g) 2/3 1/3 precipitate f577 50.8 65.2 

180(h) 1/2 1/2 precipitate 31,643 27.3 42.3 

180(i) 1/3 2/3 clear 49 6.9 19.3 

0 1 -26.5 
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blends are given in figures 4.70-4.73. The variations of Tg with blend 
composition are given in figures 4.74-4.77. As in.the case of blends with 

PVP, the blends show positive deviation from values predicted by the 

rule of mixtures or the Fox equation. Again, this indicates strong 

intermacromolecular interactions. 

The influence of pH upon complexation of poly (methacrylic acid) with 

PEI,has been studied by Abe and Tsuchida191 . Acid base interactionsin 

\1?!ends of methacrylic acid copolymers with poly (vinyl pyridine) have 

also been studied192. Interactions between strong acids and weak bases 

or strong bases and weak acids are influenced less by the solvent used. 

Blends prepared with polysulphonic acids and poly (vinyl pyridine) 

have been studied by Huglin193 and MacKnight194, and Eisenberg has 

studied blends of polyamides with lithium or sodium sulphonated 

polystyrene ionomers195. It has been suggested196 that the enhancement 

of miscibility of weakly charged polyelectrolytes is due to the 

translational entrop y of counter ions and the requirements that the 

domains are electrically neutral. 

The solubility of phthalated samples of PVB was investigated in a 

number of solvents, the results are given in table 4.31. This shows that 

thelP~es~:rc~of carboxylic acid groups greatly change the solubility of 

PVB. The polymers are only soluble in polar solvents and solubility can 

be influenced by pH. 
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Figure 4.74 
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Figure 4.76 
Tgversus\i!J'J PEI in blends with B20H-130 
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Table 4.31 

Solubility Characteristics of phthalated samples of B20H 

Polymer Methanol 

B20H t/ 
B20H-ll0 t/ 
B20H-124 X(a) 

B20H-130 t/ 
B20H-174 t/ 

(a) only at > 50°c 
(b) only at pH ~ 8 

Acetone 

t/ 

t/ 

t/ 
X 

X 

Ethyl 
Ethyl Acetate/ 

Acetate Methanol THF 
1:1 

t/ t/ t/ 

t/ t/ t/ 

t/ t/ t/ 
X t/ t/ 
X t/ X 

Water 

x 

t/ (b) 

t/(b) 

t/(b) 

t/(b) 



4.6 Succinated PVB 

A number of succinated samples of B20H were prepared. The intrinsic 

viscosities were determined for solutions with THF, methanol and water 

as solvents. Sample B20H-107 showed polyelectrolyte behaviour in 

methanol and water as shown by the curvature of the Huggins plots as 

illustrated in figure 4.78 and 4.79, but gave linear Fuoss and Strauss plots 

for solutions in these solvents. The results are given in tables 4.32 - 4.34. 

The molecular masses, acid content and transition data were given in 

table 4.35. Determination of the ratio of succinate groups to butyral 

groups by NMR could only be accomplished for B20H-104 and B20H-107 

as the signal from the methylene protons of the succinate group are 

masked by the signal from the residual protons in d6-DMSO. An NMR 

spectrum of B20H-107 is given in figure 4.80. 

I 

The variation;of intrinsi~5isco.sity~ndJksB with acid content are given in 
figures 4.81 a'itd 4.82./ ':---., - '.---- . 

---- --
, .' _. ... _ _" The variation of intrinsic viscosity 

'~nd[kSB'~' acid content in methaIl9~re given in Ugtl!es1,83 ap.d 4.84. 
--=:..=--

[ , o.,,;~ 'the g,~t" pOiMity of m,""noi it i, rno" ""d,nt " 

disrupting intra- and intermolecul~Lhy<!rQg~n bonging than THF. 
~- ,- . 
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Table 4.32 

Intrinsic Viscosity Data for Succinated Samples of B20H in THF 

polymer [ 11 lH / g _-1 d [111. / g-~l [111SB / g-Jl [111M / g-:J1 kH kk ksB kM 

B20H 0.3382 0.3464 0.3436 0.3411 0.474 0.0816 0.359 0.410 
B20H-104· 0.3218 0.3219 0.3240 0.3230 0.353 0.152 0.296 0.321 
B20H-107 - - - - - - - -
B20H-129 0.2636 0.2633 0.2696 0.2657 0.552 -0.022 0.398 0.482 
B20H-134 0.2931 0.2977 0.3006 0.2970 0.579 -0.035 00404 0.479 
B20H-136 .2195 .2203 0.2228 0.2225 00405 0.127 0.287 0.306 



• Figure 4.78 
, Hugg. ins Plot for B20H-107 is methanol 
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Table 4.33 

Viscosity Data for Succinated B20H in Methanol 

polymer [17l H I g-;.,tl [ 17 l. I g -1E>/.,l [17l SB Ig-:~H [17lM I g-" kH kk. kSB kM 
B20H 0.1828 0.2025 . 0.2107 0.1995 2.63 -0.88 1.03 1.51 

B20H-I04 - - - - - - - -
B20H-107 - - - - - - - -
B20H-129 0.2419 0.2390 0.2421 0.2420 0.154 0.270 0.143 0.147 
B20H-134 0.2365 0.2498 0.2437 0.2403 0.955 -0.205 0.67 0.78 
B20H-136 0.1273 0.1304 0.1315 0.1270 1.026 0.262 0.69 0.952 

Table 4.34 
Intrinsic Viscosity Data for Succinated B20H in Methanol and Water 

polymer [17t I g-l)J../MeOH YFs I g-tdl! I MeOH [17l FS I g-ldll H26J YFS I g-tdltH20 

B20H-107 0.6983 0.542 - 0.618 2.57 



Table 4.35 

Molecular Mass, Acid Content and Transition Data for Succinated B20H 

Polymer - - Mp Mwd [C02H)/mmol Tg/oC Succinate/ 
Mn Mw g-1 butyrate 

B20H 9000 23000 14000 3.17 - 70.7 -
B20H-I04 7000 14000 10000 1.91 1.93 60.5 0.28 
B20H-I07 - - - - 15.69 68.7 0.62 
B20H-129 12000 32000 20000 2.64 3.28 64.4 -
B20H-134 7000 25000 13000 3.83 4.80 71.4 -
B20H-136 14000 34000 22000 2.4 3.62 67.5 -
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Figure 4.81 
(11J against (COlli] for succinated B20H in TH~ 
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The solubilities of succinated samples of B20H were investigated in a 

number of solvents and the results given in table 4.36. This shows that 

the presence of pendant acid groups require solvents of a high polarity 

to dissolve the polymers and that solubility is pH depend=t. 
. , 
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Figure 4.83 
( ry]SB against (C02HJ for succinated B20H in Methanol 
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Table 4.36 

Solubility Characteristics of Succinated samples of B20H 

Ethyl 
Ethyl Acetate/ 

Polymer Methanol Acetone Acetate Methanol THF Water 
1:1 

B20H t/ t/ t/ t/ t/ X 

B20H-104 X t/ t/ t/ t/ X 

B20H-107 t/ X X X X t/ 
B20H-129 t/ X X t/ t/ t/(a) 
B20H-134 t/ X X t/ t/ t/(a) 
B20H-136 t/ X X t/ t/ t/(a) 

(a) only at pH ~ 8 



5 Conclusions and Recommendations 

The hydroxyl groups of poly (vinyl butyral) are known to greatly 

influence its solution viscosity in many solvents due to intermolecular 

hydrogen bonding. They are also responsible for promoting miscibility 

with other .polymers. The aim of this work was to study the effect of 

chemical modification of hydroxyl groups upon solution viscosity and 

miscibility with other functional polymers. It was found that: . 

1 The chemistry used for modification can be that used in 

carbohydrate chemistry involving esterification or etherification of 

the hydroxyl groups, esterification being the simplest procedure 

2' Modified poly (vinyl butyral) with non-polar pendant groups show 

reduced tendency toward aggregation in THF as observed by dilate 

solution viscometry. With pendant acid groups, poly (vinyl butyral) 

shows a greater tendency toward aggregation ill THF" due to 

possible dimerisation of the acid groups. In methanol these 

aggregates are broken up due to the greater polarity of the solvent. 

3 Modified poly (vinyl butyral) with non-polar pendant groups show 

reduced miscibility with the polyurethane (TMXDI/NPG), the 

polyester (diorex) polyethylenimine and poly (vinyl pyrrolidone). 

This indicates that hydrogen bonding is the thermodynamic 

driving force for miscibility with other polymers and removal of the 

hydroxyl groups removes the chances of hydrogen bonding. The 

influence of hydroxyl groups in poly (vinyl butyral) upon the 

. miscibility withpolyurethanes has recently been reported by David 

and Sincock197,198. Poly (vinyl butyral) with pendent carboxyl 

groups showsimproved miscibility with polyurethane, polyester 

and showed evidence of complex formation with polyethylenimine 

and poly (vinyl pyrrolidone) 

Recommendation for further work. 

1 To prepare modified poly (vinyl butyral) with pendant basic 

groups and study the effect of having proton accepting species 

attached to the chain upon solution viscosity and miscibility 

2 Study the effect of solvent upon complexation behaviour of the acid 

derivatioo samples of poly (vinyl butyral) with polyethylenimine 
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/ 

and poly (vinyl pyrrolidone) 

3 Study intermolecular interactions by infrared spectroscopy and 

NMR _ I> 

4 Study the irit',imacy of mixing, h'y mif croscopy and NMR_ 
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