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SUMMARY 

Emerging techniques of intelligent or learning control seem attractive for 

applications in manufacturing and robotics. It is however important to understand the 

capabilities of such control systems. In the past the inverted pendulum has been used as a 

test case. 

The thesis begins with an examination of whether the inverted pendulum or pole

cart balancing problem is a representative problem for experimentation for learning 

controllers for complex nonlinear systems. Results of previous research concerning the 

inverted pendulum problem are presented to show that this problem is not sufficiently 

testing. 

This thesis therefore concentrates on the control of the inverted pendulum with an 

additional degree of freedom as a testing demonstrator problem for learning control 

system experimentation. A flexible pole is used in place of a rigid one. The transverse 

displacement of the flexible pole adds a degree of freedom to the system. The dynamics of 

this new system are more complex as the system needs additional parameters to be 

defIned due to the pole's elastic deflection. This problem also has many of the signifIcant 

features associated with flexible robots with lightweight links as applied in manufacturing. 

Novel neural network and fuzzy control systems are presented that control such a 

system both in simulation and real time. A fuzzy-genetic approach is also demonstrated 

that allows the creation of fuzzy control systems without the use of extensive knowledge. 
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CHAPTERl 

1.1. Introduction 

There has been a considerable development of nonlinear control theory in the last 

10 years with the exploration of such ideas as feedback linearization, input output 

linearization, fuzzy control theory [1], and neural networks [2]. However, actual 

implementations of these techniques in manufacturing industries have been rare. This may 

be because of the considerable computational requirement needed by these new 

algorithms, and a lack of communication between theoreticians and industrial practitioners 

of control engineering. 

However, due to technological breakthroughs in digital signal processors and 

other technologies, the capabilities of computational hardware have steadily increased. 

Thus, the implementation of complex nonlinear learning control algorithms with relatively 

inexpensive components may now be possible. 

The inverted pendulum (pole-cart balancing) problem has received a great deal of 

attention as a model problem for the establishment of learning control systems [3, 4, 5, 6, 

9, 10, 11]. That authors are successful in this field can be seen in results of their published 

work. However, using a rigid pole as the pendulum, analysis shows that this system has 

only two degrees of freedom and little non-linearity. As a result of these limitations the 

learning controllers developed using such a demonstrator problem have limited power and 

are unlikely to have broad applications to manufacturing industries. Because of the 

limitations mentioned, this author modifies the pole-cart balancing problem to give a more 

exacting testbed for learning controllers by replacing the rigid pole by an elastic pole. The 

dynamics of this new system are more complex and highly nonlinear when compared to 

the traditional rigid pole-cart balancing system as a result of the additional degree of 

freedom within the system, e.g., the transverse displacement of the elastic pole. 



Modelling and control of flexible robot systems has attracted much interest in 

recent years [12, 29, 30, 31, 37, 38, 39]. This has arisen, in particular, in the area of space 

and industrial robots that require lightweight and flexible links [43]. Flexible robot 

manipulators have many advantages compared to robot manipulators constructed from 

rigid links. This is discussed in section 3.l. If the advantages associated with the 

lightweight machine elements are not to be sacrificed then advanced control systems for 

such flexible robot manipulators have to be developed [29]. The flexible pole testbed 

explored in this thesis allows the examination of some of the control issues within flexible 

linked robots. 

1.2. The Area of Investigation 

The author began his work by investigating the limitations of the inverted 

pendulum as a benchmark for learning controllers. Here, the objective was to investigate 

the inverted pendulum problem and analyse its usefulness as a benchmark for developing 

learning control systems and their application in manufacturing industries. It shows 

particularly that the pole-cart problem may not be sufficiently testing, hence, the author 

extended the problem using a flexible pole as a replacement for the rigid pole. 

To verify the feasibility of solving the flexible pole-cart balancing problem, the 

author has generated a computer simulation of this system. Equations of the dynarnics of 

this system have been derived and a rule based bang-bang control system developed. A 

graphical representation of the system behaviour has been made to show the cart 

balancing the pole along a track in real time. Having shown by computer simulation that it 

is possible to control the flexible pole-cart balancing problem under its fIrst mode of 

vibration, the next stage of the research addressed this in the real application. 

This thesis therefore, focuses on developing and testing on line and off line 

learning controllers that balance a flexible pole hinged by its root on top of a cart moving 

2 



along a limited track. The capabilities of neural network algorithms, fuzzy logic systems 

and genetic algorithms have been investigated and tested in control of the system. 

1.3. Structure of the Thesis 

There are 7 further chapters within this document. Chapter 2 fIrst provides an 

introduction to the general problems associated with control engineering. Reviews of the 

concepts used in developing classical and intelligent controllers are discussed and 

particular attention is paid to the inverted pendulum problem as a testbed for learning 

controllers. 

Chapter 3 presents a new model problem (a highly nonlinear system) to be used as 

a testbed application for developing intelligent controllers. SimplifIed mathematical 

equations of the dynamics of the flexible pole·cart balancing problem are derived and a 

computer simulation conducted in order to verify the Validity of these equations. A rule 

based controller is implemented to control the system off line and a graphical 

representation of the motion of the system is presented. 

Chapters 4 and 5 concentrate on controlling the flexible pole·cart balancing system 

using neural network techniques. Chapter 4 discusses particularly the development and 

testing of off-line controller using backpropagation (feedforward neural network) and a 

Kohonen's Self Organising Map to control the system. Chapter 5 focuses on developing 

and testing an on line controller for the real system. A physical flexible pole-cart balancing 

system is developed and controlled in real time. 

Chapter 6 concentrates on developing and testing an on-line fuzzy logic system 

controller for the flexible pole-cart balancing system. Chapter 7 deals with development of 

a genetic algorithm combined with a fuzzy logic systems controller. This is a particularly 

novel approach to solving the problem since the fuzzy logic system does not need human 

expertise to calculate the values of its parameters. Chapter 8 reviews the contribution of 

the thesis, and identifIes areas in which it will be fruitful to conduct future work. The 
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diagram of figure 1.1 shows the general structure of the thesis and the relationships 

between the individual elements of the work 
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CHAPTER 2 

Literature Review 

2.1. Introduction 

The objective of this chapter is to review and investigate the inverted pendulum 

problem and analyse its usefulness as a benchmark for developing leaming control 

systems and their application. Results of previous research concerning the inverted 

pendulum problem are presented. A review and analysis of the dynamics of this problem 

is undertaken. This chapter also summarises key elements of the theory of conventional 

control and trainable control. 

A common problem in controlling a system is to provide the correct input vector 

to drive a nonlinear plant from an initial state to a subsequent desired state. The typical 

approach to solve this problem involves linearizing the plant around a number of 

operating points, and then building a controller [3]. For nonlinear plants this approach is 

usually computationally intensive and requires considerable design effort. 

When constructing a controller there are three kinds of information available. The 

fIrst is numerical information from measuring instruments, the second is the linguistic 

information from human experts, and the third is the behavioural characteristics of the 

plant and its environment. Most of the supervised learning methods associated with 

neural networks, such as the perceptron, the back-propagation algorithm, and reduced 

coulomb energy network, utilise only numerical data [8]. The unsupervised learning 

methods of neural networks have demonstrated the capability to handle behavioural 

characteristics of the plant and environment. Fuzzy control is one of the most useful 

approaches for utilising expert knowledge. Many hybrid techniques of fuzzy control 
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systems and neural networks have been also proposed for utilising numerical data [21]

[26]. In these techniques, the learning ability of neural networks has been incorporated 

into fuzzy control systems to generate and adjust fuzzy if-then rules using numerical 

data. Other proposed techniques use learning methods of neural networks to utilise not 

only numerical data but also expert knowledge represented by fuzzy if-then rules [8]. 

The idea of this technique is to utilise fuzzy if-then rules obtained from human experts in 

support of neural network learning. 

This chapter begins by reviewing the concepts of developing traditional 

controllers, and it continues by the discussion of the concepts of constructing adaptive 

and learning control systems. Also, reviews of the past and recent work pertaining to the 

pole-cart balancing problem (inverted pendulum) are presented. 

2.2. Technological Control Systems 

The Merriam - Webster dictionary defines control as a device for regulating a 

mechanism. It is a mean of directing and influencing an object in order for that object to 

behave in a desired way. The term "control system" can be substituted by "cybernetical 

system" where cybernetics is defined by Wiener as the science of control and 

communication in the animal and the machine [13]. 

There are two major objectives in designing control systems [54]. The first one is 

to make the state or output of the system to be very close or equal, if possible to the set 

points or reference input. In short it is necessary to have a very small steady state error 

e(t) with time t. The second objective is to maintain the transient performance of the 

system within reasonable limits. 

6 



Conventional or basic control systems are classified into two categories. The 

open-loop control system and the closed-loop control system. In an open-loop control, 

the amount of the corrective effort is determined by the desired value of the controlled 

variable. An example for this is a gasoline engine whose function is to drive a load. Since 

a small pressure on the engine throttle will cause a large change in the power output, the 

speed of the shaft for a constant load is a function of the position of the throttle. 

In a closed-loop control system the amount of corrective effort is determined by 

the actual value of both the controlled variable and the desired value. The closed-loop 

control system uses feedback to regulate the mechanism. Hence, sometimes, it is called 

the feedback control system (see figure 2.1). The actual output of the system in this 

case is returned to the controlling system. The error is determined from the difference of 

the actual output and the prescribed reference input. This error is used by the controller 

to adjust the mechanism in order for this to give the correct, desired behaviour. 

A "conventional" control system can also be divided into sub-groups depending 

on the relationship of the output of the controller to the error. Among this group are: 

proportional control (P), proportional-plus-derivative control (PO), proportional-plus

integral control (PI), and proportional-plus-integral-plus-derivative control (PID) [13]. 

The proportional (P) control system is a feedback control system in which the 

output of the controller is directly proportional to the error (see figure 2.2). The 

proportional-plus-derivative (PO) control is a feedback control system in which the 

output of the controller is a linear combination of the error and its first time derivative 

(see figure 2.3). Derivative control causes the changes in the output of the controller in 

anticipation of an error in the immediate future. The proportional-plus-integral (PI) 

control is a feedback control system in which the output of the controller is a linear 

combination of the error and its first time integral (see figure 2.4). The use of integral 

control in addition to proportional control eliminates steady state errors. The 

proportional-plus-integral-plus-derivative (PID) control is a feedback control system in 
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which the output of the controller is a linear combination of the error, its first time 

integral, and its first time derivative (see figure 2.5). This type of controller is particularly 

useful for high steady-state accuracy and high speed settling. 
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2.3. State Space Analysis 

Section 2.2 introduced conventional control systems (open loop and closed loop 

control system). The analysis and designed of such systems is based on converting a 

system's differential equation to a transfer function, thus generating a mathematical 

model of the system that algebraically relates a representation of the output to a 

representation of the input. Conventional methods are conceptually simple and require 

only a reasonable number of computations, but they are applicable only to linear time

invariant systems having a single input and single output [70]. 

With the arrival of space exploration, requirements for control systems increased 

in scope. A modern control system may have many inputs and many outputs, and these 

may be interrelated in a complicated manner. Modelling systems by using linear, time 

invariant differential equations and subsequent transfer functions became inadequate. The 

state-space approach (also referred to as the modern, or time-domain, approach) is a 

unified method for modelling, analysing, and designing a wide range of systems [71]. 

This type of approach can handle, conveniently, systems with nonzero initial conditions. 

Multiple-input multiple-output systems (e.g., a vehicle with input direction and input 

velocity yielding an output direction and an output velocity) can be compactly 

represented in state space with a model similar in form and complexity to that used for 

single input, single-output systems. The state-space approach can be used to represent 

systems with a digital computer in the loop or to model systems for digital simulations. It 

can be used also for the same class of systems modelled by the classical approach which 

gives the control systems designer another perspective from which to create a design. 

The disadvantage of the state-space approach is that it is not intuitive as the conventional 

approach. The designer has to engage in several calculations before the physical 

interpretation of the model is apparent, whereas in conventional control, some 

straightforward calculations or a graphic presentation of data rapidly yields the physical 

interpretation. 
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The concept of the state-space approach is based on the description of system 

equations in tenns of n fIrst-order differential equations. which may be combined into a 

fIrst-order vector-matrix differential' equations [70]. The use of the vector-matrix 

notation greatly simplifIes the mathematical representation of the system equations. 

2.3.1. General Representation of State-Space Approach 

In order to fonnalise the representation of state-space approach it is necessary to 

defIne the following tenns [70. 71]. 

• State - The state of a dynamic system is the smallest set of variables (called state 

variables) such that the knowledge of these variables at t = to. together with the 

knowledge of the input for t >= to. completely determines the behaviour of the 

system for any time t >= to' 

• State variables - The state variables of a dynamic system are the variables making up 

the smallest set of variables that determine the state of the dynamic system. If at least 

n variables x"x2 ..... xn are needed to completely describe the behaviour of a 

dynamic system (so that once the input is given for t >= to and the initial state at t = 

to. is specifIed. the future of the system is completely determined). then such n 

variables are a set of state variables. 

• State vector - A state vector is a vector that detennines uniquely the system state x(t) 

for any time t >= to. once the state at t = to is specifIed. It is a vector whose 

elements are the state variables. 

• State Space - The n-dimensional space whose coordinate axes are the state variables. 

Any state can be represented by a point in the state space. This is a new tenn and is 

illustrated in fIgure 2.6, where the state variables are assumed to be, v,, and v" 

These variables fonn the axes of the state space. A trajectory can be thought of as 
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being mapped out by the state vector, x(t), for a range of t. Also shown is the state 

vector at the particular time t = 4. 

• State Equations - A set of n simultaneous, fIrst order differential equations with n 

variables, where the n variables to be solved are the state variables. 

• Output Equation - The algebraic equation that expresses the output variables of a 

system as linear combinations of the state variables and the inputs. 

Now that the defInitions have been formally stated, a state-space representation 

of a system is determined using the following equations [70]. 

L For time-varying (linear or nonlinear) discrete-time systems the state equation may 

be written as: 

x(k+ 1) = f[x(k), u(k), k] 

and the output equation as: 

y(k) = g[x(k), u(k), k] 

(2.1) 

(2.2) 

For linear time· varying discrete·time systems, the state equation and output equation 

may be simplifIed to: 

where 

x(k+ 1) = G(k)x(k) + H(k)u(k) (2.3) 

y(k) = C(k)x(k) + D(k)u(k) 

x(k) = n-vector 

y(k) = m-vector 

u(k) = r-vector 

G(k) = n x n matrix 

H(k) = n x r matrix 

C(k) = m x n matrix 

D(k) = m x r matrix 

(state vector) 

(output vector) 

(input vector) 

(state matrix) 

(input matrix) 

(output matrix) 

(direct transmission matrix) 

(2.4) 

Note that the appearance of the variable k in the arguments of matrices G(k), 

H (k), C(k), D(k) implies that these matrices are time varying. 
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If the system is time-invariant, then the state equation and output equation may 

be simplified to: 

x(k+l) = Gx(k) + HU(k) 

y(k) = Cx(k) + DU(k) 

(2.5) 

(2.6) 

2. For continuous-time (linear or nonlinear) systems, the state equation may be written 

as: 

• 
xCt) = f[x(t), u(t), tl (2.7) 

and the output equation as: 

y(k) = g[x(t), u(t), tl (2.8) 

For linear time-varying continuous-time systems, the state equation and output 

equation may be written as: 

• 
x(t) = A(t)x(t) + H(t)u(t) 

yet) = C(t)x(t) + D(t)u(t) 

(2.9) 

(2.10) 

If the system is time-invariant, then the state equation and output equation may be 

simplified to 

• 
x(t) = AxCt) + Hu(t) 

yCt) = Cx(t) + Du(t) 

(2.11) 

(2.12) 

Figure 2.7 shows the block diagram representation of a discrete-time control 

system defmed by equations 2.5 and 2.6, and figure 2.8 shows the continuous-time 

control system defmed by equations 2.11 and 2.12 [70]. 
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2.4. Adaptive Control Systems 

Researchers from different fields give different meartings to the word adaptation. 

For engineers adaptation often is equated to learning. For the psychologist adaptation 

and learning are totally different. Life scientists take an intermediate position. 

In 1965 Sklansky [17] made a formal distinction between adaptation and learning. 

He defines learning and self-repair as a special form of adaptation. He considers a 

species. an organism. or a cell to be adaptive if its behaviour in a changing environment 

is successful in some sense. In a machine. success can be distinguished either by stability 

or reliability. Thus. to an engineer adaptation is demonstrated by the presence of 

reliability. or stability. or both. 

Ashby [18] defines adaptation as a form of behaviour that maintains its essential 

variables within physiological limits. like homeostasis. This means that for an 

unpredictable environment persistence of success should be attained. This definition 

strengthens the requirement of stability. Glorioso [13] defines adaptation as a pre

requisite to reliability. He said that if a portion of a system is damaged and the effect of 

the damage is gradually masked until the system performance reaches an acceptable 

level. then the system is adaptive. 

Thus. adaptation can be defmed formally as the property or a system that reacts 

favourably with respect to any performance function in the face of changes into 

environment or to its own internal structure. There are two major functional elements of 

an adaptive control system [13]. a controller and a plant to be controlled. The design of 

the controller is usually based on the nominal but inexact mathematical model of the 

plant and/or its environment. 

Figure 2.9 describes the functional block diagram of an adaptive control system. 

Achieving satisfactory response of the plant state o(t) to an input i(t) is the objective of 
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the system. Inputs i(t) are applied to the controller. Nonnally this is unknown a priori. 

The controller then generates an output which is used as the input to the plant. Direct or 

indirect measurement of the plant state is carried out through the measuring devices. 

These measurements are compared with the input i(t) via perfonnance assessment 

identification in order to establish the present perfonnance vector pet). The adaptation 

algorithm then maps pet) to a weighting input aCt). The output of the measuring devices 

met) and the weighting input aCt) are used as the inputs of the variable structure 

controller to modify the relationship between the command and the plant inputs. Hence, 

the behaviour of the system can be improved by changing dynamically the original 

nominal design. 

ADAPTIVE CONTROLLER 
i·········································· __ ·········"'1 

INPlIT ;(t): variable PLANT INPlIT e(l) STATE 0(1 

" 
structure PLANT 
controller 

T 
~ 

.(1) 

penonnance 
adaptation """"""",I measuring 
algorithm and lor devices t-

p(t) identification m(l) 

Figure 2.9 
Functional block diagram of an adaptive control system 
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2.5. Learning Control Systems 

A system is learning if it reacts favourably with respect to performance function p 

in some time t after a change in its environment [13]. Learning is dependent on time. 

One can say that a system learns if given a change in the state of environment at t = 0, 

the performance index at t > 0 is greater than the performance index at time t = O. 

In order that learning controllers know the acceptable reactions of the system at 

any given time it is necessary to classify the performance of the system resulting from 

any change in the controller. This classification can be either good or bad and the system 

must be awarded or punished, respectively. Moreover, since the learning process is 

dependent on time , the learning control system must have memory. In determining the 

future behaviour of the system it must be capable of using past and present behaviour 

results. 

Learning controllers generally show performance which gradually improves with 

time. When there are reductions in the bounds of prescribed infonnation or the improved 

identification of certain attributes then the system is learning. A learning controller can 

be defmed [11] as a control design that improves the performance of the system being 

controlled without knowing completely its mathematical model. In this case learning is 

derived from the behaviour of the plant, either from its operation or experimentation. 

This learned information is used as the knowledge to influence future decisions to be 

executed by the controller. 

There are various techniques applied when designing learning controllers. It can be 

that the learning process is obtained by considering all possible answers, that is 

consolidating short term memory into long term memory, and exhibiting altered 

behaviour because of what was remembered [32]. It is possible also that the controller 

itself employs a performance measure to supervise learning. Whenever the same situation 

occurs the experience of the controller based on learned information is used to improve 

the quality of control. The information extracted from different control situations 
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constitutes different experiences. Learning schemes like, supervised learning, 

unsupervised learning, are explained in section 2.8.2 

2.6. The Algorithms used for Developing Intelligent Controllers 

An intelligent control system is a system that possess the properties of an adaptive 

control system or a learning control system (see section 2.4 and 2.5). There are many 

techniques that can be used in developing intelligent controllers. Among them are neural 

networks, fuzzy logic systems, and genetic algorithms. Each of these techniques has its 

own strengths and weaknesses. 

A neural network is an information processing system that is nonalgorithrnic, 

nondigital, and intensely parallel [44]. It consists of groups of very simple and highly 

interconnected processors called neurons or processing elements. A neurone is an 

analogue of the biological neural cell in the brain. Detailed explanations of neural 

network techniques are contained in chapter 4. 

A fuzzy logic system describes complex systems with linguistic descriptions [54]. 

Here, the information is described in terms of fuzzy sets. The concept of a fuzzy set is 

made precise through the definition of an associated membership function. Again chapter 

6 contains more discussion of these techniques. 

Genetic algorithms are algorithms for optimisation and learning based on the 

mechanism of genetic evolution [63]. They give solutions to problems using a 

probabilistic optimisation method based on evolution strategies as nature solves the 

problem of adapting living organisms to the harsh realities of life in a hostile world. 

Chapter 7 includes a detailed explanation of this topic. 
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2.7. The Inverted Pendulum 

2.7.1. The Problem 

The inverted pendulum system consists of a pole hinged at the top of a wheeled 

cart that travels along a limited track. The task of the controller applied to this system is 

to balance the pole when the cart is pushed back and forth by a force of magnitude F. 

The pole can only swing in a vertical plane parallel to the direction of motion of the cart. 

Balancing fails when the cart hits the end of the track or the inclination of the pole 

exceeds preset limits. The overall goal is to find a controller that prevents the system 

from failing. A more demanding version of the inverted pendulum experiments requires 

the controller to balance the pole and bring back the cart to the centre of the track [10]. 

Figure 2.10 describes the system. 

The state of the inverted pendulum system is described by four variables : 

x = the position of the cart in a track. 

v = dxl dt = the velocity of the cart. 

8 = the angular position of the pole. 

0> = d8 / dt = the angular velocity of the pole. 

Assuming that the system is frictionless the dynamic equations [10] are: 

do> gsin8 -acos8 -!1p0>2/cos8sin8 
= 

dt /(~-3!1 cos 2 8) 
3 p 

(1) 

(2) 
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Figure 2.10 
The inverted pendulum 
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where 11 p is the reduced mass of the pole 

mp 
IIp = --"--

Inp +lnc 

and 
F a =---'--

with the standard parameters as 

acceleration due to gravity 

length of the pole 

mass of the cart 

mass of the pole 

magnitude of the control force 

=g 

= I 

= Ine 

= F 

2.7.2. The Reasons for using the Inverted Pendulum as a Control 

Benchmark. 

The inverted pendulum problem is popular in the field of research in learning 

control systems for the following reasons [10]: 

1) The problem is apparently difficult but it is easy to understand and simple to describe. 

2) It is a textbook example of an inherently unstable control system. This has been 

analysed in detail with conventional control theory providing a convenient reference 

for assessing neural network controllers [20]. 

3) The system is not too expensive. Thus, it is easier to develop and demonstrate. 

4) There are constraints on the response time of any controller because the cart-pole is 

a real time problem. 
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2.8. Previous Research in Control of the Inverted Pendulum 

2.8.1. General Experiments 

Widrow and Smith [6] pioneered the inverted pendulum problem in 1963 as an 

application for neural network based control. They demonstrated that a network of one 

computing element, an adaptive linear element (ADALINE), was capable of balancing an 

inverted pendulum if the ADALINE input consisted of the four state variables, each 

encoded with an n-bit linearly independent code [9]. The force produced by the 

ADALINE approximated that called for by the equation 

• • 
F- ksgn(W ·S+W ·S+W ·x+W ·x) - I 2 3 4 

Where: 

• F is the force required to stabilise the system at any time. 

• k is a positive constant representing the magnitude of the force to be applied to the 

system. 

• sgn is the sign (or direction) of the applied force. 

The coefficients U-;, W2 ' W3 ' W.' are derived from the physical characteristics of the 

pendulum system and optimal bang-bang control theory. 

Widrow and Smith trained the network using the Widrow-Hoff least mean square 

(LMS) algorithm with the output on an optimal controller in a form of the equation 

above as the teacher. The teaching signal was obtained by linearizing the dynarnics of the 

system and applying a conventional control law. In this work they were able to show that 

a linear control law is sufficient to solve the problem. 

In 1983 Barto, Sutton, and Anderson [5] used the inverted pendulum to simulate 

reinforcement learning control. They used two neuronlike adaptive elements. The first 

one is an adaptive critic element (ACE), and the second one the adaptive search element 

(ASE). 
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The ACE provides an indication of what the reinforcement should be. It evaluates 

every state of the inverted pendulum system that is used to steer the learning process of 

the controller [10]. The ACE receives the externally supplied reinforcement signal which 

it uses to determine how to compute, on the basis of the current system state vector, an 

improved reinforcement signal that it sends to the ASE [5]. Expressed in terms of the 

BOXES system [27], the job of the ACE is to store in each box a prediction or 

expectation of the environment by choosing an action for that box. A BOXES system 

can learn to control an inverted pendulum using a state representation of discrete 

regions. For example, in [27] the regions of the state space were formed by the . 
intersections of six intervals along the e dimension and three intervals along the e , x, . 
and x dimensions, making a total of 162 regions. The ACE uses this prediction to 

determine a reinforcement signal that it delivers to the ASE whenever the box is entered 

by the inverted pendulum state. Specific knowledge of the dynamics of the inverted 

pendulum is not necessary. Weights in both the controller and the ACE are adjusted in 

proportion to the change in prediction from one time step to the next [10]. Initially all 

the weights of the ACE are set to zero and consequently the prediction is zero for all 

states. Nonzero predictions spread out gradually from the final failure states as more 

trials are conducted. The controller is nondeterministic, its output biases a random 

process towards one of the two control actions. 

If the environment cannot provide the necessary responses the ASE must discover 

what responses lead to improvements in performance. It employs a trial-and-error, or 

generate-and-test, search process. In the presence of input signals, it generates actions by 

a random process. Based on feedback that evaluates the problem-solving consequences 

of the actions, the ASE "tunes in" input signals to bias the action generation process, 

conditionally on the input, so that it will more likely to generate the actions leading to 

improve performance [5]. Actions that lead to improved performance when taken in the 
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presence of certain input signals become associated with those signals in a developing 

input-output mapping. 

The work of Barto et al shows that at least 60 trial runs are needed before the 

controller successfully balances the system. However, the authors do not mention 

whether the controller was able to centre the cart. 

Anderson [4] in 1989 presented a further paper on the inverted pendulum problem. 

His paper describes a neural network that learns to generate successful action sequences 

by acquiring two networks: the action network and the evaluation network. 

The action network learns to select actions as a function of states. It consists of a 

single unit having two possible outputs, one for each of the two allowable control 

actions of pushing left or right on the cart with a fIxed-magnitude force. The output of 

the unit is probabilistic. The probability of generating each action depends on the 

weighted sum of the unit's inputs, i.e., the inner product of the input vector and the 

unit's weight vector. 

The evaluation network is needed to apportion the blame for the failure among the 

actions in the sequence leading to the failure. It consists of a single unit. The evaluation 

unit learns the expected value of a discounted sum of future failure signals by means of a 

prediction method called temporal difference. Temporal difference methods learn 

associations among signals separated in time, such as the inverted pendulum state 

vectors and failure signals. Through learning, the output of the evaluation network 

comes to predict the failure signal, with the strength of the prediction indicating how 

soon failure can be expected to occur. The predictions are adjusted after each step by an 

amount proportional to the network's input and the difference between the new 

prediction, based on the current state of the inverted pendulum, and the previous 

prediction, based on the previous state, i.e., the temporal difference or change in 

prediction of failure. The temporal difference method allows learning to occur 
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continuously using the learned evaluation function and differences in its output as 

reinforcement, rather than waiting for further failure. 

The experiments described in Anderson's work were motivated by the work of 

Michie and Chambers [27l, the BOXES system. To compare with the performance of 

the BOXES learning system, Anderson uses the same state representation (162 regions). 

The resulting networks are shown in figure 2.11. Each unit receives the 162 binary input 

components, and the evaluation unit's output directs the learning process for both units. 

The result of this experiment is shown in figure 2.13. 

Anderson extended his experiment by using two layer networks with unquantized 

state variables. His motive is primarily to improve learning speed. A very fme 

quantization with many regions permits accurate approximation of complex functions, 

but learning the correct output for each of the many regions requires much experience. 

Learning can be faster for a course quantization because learning from one state in a 

region is transferred to all states in the region, but only functions whose output remains 

relatively constant over regions can be represented. The architecture of this network is 

shown in figure 2.12 and the result of this experiment is shown in figure 2.14. 

The most recent research into the control of the inverted pendulum problem was 

carried out in 1991 by Bing Zhang [l1l, and in 1993 by Geva and Sitte [lOl. The results 

of these experiments are discussed separately. 

25 



Four State 
Variables 

162 
Bmary 

e State Variables 

• Space e Quanti- Smg\e x zation One 

X 
Nm=ro 

Evaluation Failure Signal 

Network~ . ;_ ........... for1eamingonly 
· . · . · . · . 

Action 
Network 

Figure 2.11 

State 
Evaluation 

for 1eaming only 

Action 

INVERTED 
PENDULUM 

SYSTEM 

Single-layer networks with state-space quantization 

4 State Variables 
to every unit in both 

networks 

x 
• 
x 

Hidden Evaluation 

Units /Network ......................... . . 

Failure Signal 

for learning only 

State 
Evaluation 

Action 

,···· .. ·············· .... 'Actlon 

Network 

Figure 2.12 

INVERTED 
PENDULUM 

SYSTEM 

Two-layer networks receiving unqualltized state variables 

26 



TIME 
STEPS 

80,000 

UNTIL 40,000 

FAILURE 

o 

Single-Layer 
Networks 
with Quantized 
Representation 
of State Space 

25 50 75 

FAILURES 

Figure 2.13 

lOO 

ACE/ASE 
Barto, Sulton. Anderson 
Learning System 

BOXES 
Michie and Chambers 
Learning System 

Learning curves for single-layer networks and BOXES using 
quantized representation of state space 

100.000 

TIME 
STEPS 
UNTIL 

FAILURE 
Log 

Scale 

1,000 

10 

o 

Anderson 
Learning System 

Single- Layer 
. Networks Receiving 

Vanables 4 ~ Variables 

-_.--- -=--
Random Actions (no learning) 

5.000 10.000 

FAILURES 

Figure 2,14 
Learning curves for two-layer and single-layer networks 

receiving unquantized state variables 

27 



2.8.2. Bing Zhang's Experiment 

The objective of Zhang's experiment is to demonstrate by physical experimentation 

and software simulation, how the ideas of neurocomputing can be used to build adaptive 

learning controllers to control complex dynamic systems [11]. He presented supervised 

learning, reinforcement learning, and unsupervised learning solutions to the inverted 

pendulum problem. 

In the reinforcement learning technique, learning is achieved through 

backpropagation of reinforcement signals provided by a subgoal. Here the learning 

process is achieved through adopting a reinforcement scheme based on an evaluation of 

a subgoal which is related to the desired overall system performance. Reinforcement is a 

feedback process that provides information about the correctness of the actions taken by 

the system but does not provide information to indicate what the correct action is. The 

feedback is provided by the environment. Here the system only receives feedback 

indicating the value of the system's action. This method can be used with systems that 

vary with the external environment provided the system variables can be measured [11]. 

The advantage of this method is that less a priori information needs to be known about 

the system. It is useful in those cases where supervisory information is not available and 

leads to the development of more autonomous system. 

Zhang believed that the overall goal of the inverted pendulum balancing task is 

hard to formulate mathematically, and also that such a goal does not provide any hint as 

to whether the control action decided by the action network is a good control choice or a 

bad one. In other words the goal cannot supply the action network with the necessary 

reinforcement signal required to adjust the connection weights of the action network. 

In view of the problem mentioned above Zhang used an approach to establish a 

subgoal that can be mathematically formulated as a cost function (in this case a quadratic 
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cost function) so it can be used to direct the updating of action network weights. TIlls 

subgoal can be expressed as: 

Subgoal = SG(t) = X(t)GX(t) 

where: 

• SG(t) = a chosen subgoal that represents a weighted vector distance of the state of 

the system at time t from the origin of the state space. 

• X(t) = a system state variable at time t. 

• G = a positive definite diagonal matrix with elements (g 11' ... ' g nn) which may be 

either pre-assigned or determined through a learning process. 

The best value for G depends on the plant as well as the system overall goal 

through trial and error. In practice, one of the elements of G may be chosen as I, others 

can be pre-assigned initially and then learned precisely through a secondary learning loop 

to give a result which optirnises the system overall goal. TIlls secondary learning loop 

consists of standard AI techniques (breadth-first, depth-fust, best-first, etc.). 

Zhang chooses a subgoal equal to: 
-2 -2 

SG(t) = g11X2(t) + g22 x(t) + g33e2 (t) + g44 e(t) 

Here, g44 was intentionally chosen as 1 because the weighting factors are all relative to 

each other. 

2.8.2.1. Bing Zhang's Computer Simulation Experiment 

l. The program was run 50 times. 

2. Each run consists of n number of trials 

3. Each trial starts with the pole cart system set to a random state and ends with a 

system failure. 
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4. The length of track is 2.4 - 4.8 meters 

Computer simulation results 

1. In all 50 runs the system learned to balance the pole for 100000 time steps, 

equivalent to 33 minutes of balancing. 

2. In most runs, the system learned to balance in less than 20 trials, sometimes as few as 

4 trials, the average is 17 trials. 

3. Zhang did not mention whether the cart stayed at the centre. 

2.8.2.2. Bing Zhang's Physical Model Experiment 

The physical system hardware for Zhang's inverted pendulum experiment is shown 

in figure 2.15. This experiment uses the following parameters : 

Mass of the pole = 0.1 kg 

Mass of the cart = 1.0 kg 

Length of the pole = 1 meter 

Length of the track = 2 meters 

The cart is mounted on a parallel track and controlled by a direct current motor 

that provides propulsion for bang-bang control by applying a constant left or right force 

only. The voltage of the power amplifier is applied to the motor through two relays. A 

negative or positive voltage of the same amplitude is applied to the motor, depending on 

the relays, moving the cart in one direction or another via a steel wire. The relays are 

controlled by two signals coming from the serial RS232 port of a PC. These two signals 

are controlled also by the I/O command in the control program. 
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Two reed switches are placed at each end of the track to detect if the cart has 

reached the end (the failure signal used in learning algorithm). The switches are activated 

by a magnet mounted on the cart. The status of the switches is determined through the 

serial I/O port of the mM PC/AT computer. This PC is also responsible for the 

execution of whichever control algorithm currently is under test. 

An optical shaft encoder mounted on the cart is used for computing the pole angle 

and velocity. The angular velocity is calculated as the average rate of change in angle 

relative to the previous time period. The position of the cart along the track is also 

sensed using another shaft encoder. The resolution of the two encoders used is 1000 

counts per revolution. This gave a resolution of 0.009 centimetre per count for the cart 

position on the track and 0.36 degree per count for the pole angle. 

The computer establishes the current status of the pole and the cart by decoding 

the count readings from the two encoders attached to the physical system. An 8-bit up

down counter was used to count the pulses from the encoder attached to the pole, and a 

16-bit up-down counter is used to count the pulses from the encoder and therefore 

sensed the position of the cart along the track. The decoding circuit together with the 

necessary I/O interface with the computer was built on a prototype board which could be 

easily plugged into one of the I/O slots of the PC. 
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2.8.2.2.1. Bing Zhang's Physical Model Experiment Results 

Figure 2.16 shows the results of this experiment. The system learned to balance the 

pole in less than 20 trials, for a period of 5 minutes which was the cut-off time for this 

experiment. The final pattern of movements of the system in some of the trials which 

lasted for more than 3 minutes were unexpected. This is shown in figure 2.17. From this 

figure, it can be seen that the inverted pendulum system is not oscillating around the 

centre of the track. Also, further learning was found not to improved the result. The 

reason for this according to Zhang was that the network had reached a local minimum 

and not the global optimum. Another reason was due to the effects of the unknown 

friction between the cart and the track. 

Zhang encountered a number of problems in this experiment. He mentioned that 

for most of the time the change in pole angle between subsequent two samplings was 

too small for the computer to detect. This was because the control decision was 

calculated and executed very quickly. Direct sensing of pole and cart velocities were not 

provided. Another problem was the count readings decoded by the computer. It tended 

to increment or decrement erroneously while the position of the pole remained 

unchanged. According to Zhang, the reason for this was the shaky vertical movements 

between the cart and the track during the horizontal movements of the cart along the 

track. This problem created considerable difficulties in the experiment. The pole often 

biased in one direction or another, causing the cart to move in the same direction, that 

eventually resulted in failure (hitting the track end). Zhang solved this problem by 

remounting the encoder in such a way that when the pole was almost vertical (angle = 0), 

the reference signal produces an effective low signal which in turn cleared the up-down 

counters of the decoding logic. In this way, the pole angle (encoder count readings) 
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sensed by the computer was calibrated to zero whenever the pole passed the straight 

vertical position. 

In an another attempt to solve the problems Zhang retained reinforcement learning, 

but this time he divided the learning task into two sub-tasks. The first subtask is the pole 

angle learning control strategy, and the other second subtask is the cart position learning 

strategy. According to Zhang, this attempt is supported by the fact that, when the 

pendulum is almost vertical (6 = 0), the fourth order system could be approximated as 

two decoupled second order systems. 

The results of this experiment are: 

I) The decoupled system learned to balance for 100000 time steps in an average of 12 

trials. 

II ) When the condition of applying uneven forces was tested, the system failed in all 20 

test runs. Figure 2.18 shows the learning curve of Zhang's algorithm and others. 

In supervised learning the system learns through a human teacher. This is good in 

highly complex systems where it is very difficult to construct a composite subgoal 

function to promote reinforcement learning due to various unspecified parameters. The 

human can assess the situations and make decisions based on qualitative data. However, 

using this technique, Zhang had difficulties in doing his experiment physically, since in 

real time the human teacher itself can not balance the system. The data that was fed to 

the computer was incorrect because the human teacher failed to do his job in balancing 

the pole. 

Unsupervised learning is a technique used in neural network to control a system 

without requiring a teacher. The neural network controllers can autonomously learn to 

control the unknown complex system and adapt the changing environment. In this type 

of control, Zhang mentioned that he developed two separate learning algorithms to 

provide adaptive learning of state-space partitioning. Unfortunately this is not reported. 
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At the conclusion to his experiment Zhang recommended the following for future 

work. 

I) Establish satisfactory subgoals which can successfully guide the learning process. 

IT) Ideally such subgoals should be learned, and not specified by human being m 

advance. 

ITI ) By incorporating powerful subgoal learning mechanics, the reinforcement scheme 

based on immediate feedback will provide faster and practically more feasible 

solutions to the real-time control problems. 
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Learning curve obtained on physical experiments 
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2.8.3. Geva & Sitte's Experiment 

The objectives of Geva & Sitte's experiment is to present a thorough analysis of the 

inverted pendulum problem, to clear up implied or explicit misconceptions contained in 

earlier work, and to propose a set of conditions to make it a useful and well defmed 

benchmark for neural network training algorithms [10]. 

The paper of Geva & Sitte presents control laws that are linear in the state 

variables of the inverted pendulum, for both bang-bang and proportional control 

strategies. The experiment reveals that it is easy to find by random search in weight 

space, single neuron controllers that achieve the fundamental control objectives of 

maintaining the pole upright and bringing the cart to the centre of the track. 

Geva & Sitte claimed that demonstration of supervised learning is no longer 

needed for the cart-pole problem because a linear control law is sufficient. Therefore a 

single neuron is sufficient for a satisfactory controller. 

2.8.3.1. The Dynamics of the Inverted Pendulum by Geva & Sitte. 

As has been described already the earliest application of neural networks to the 

inverted pendulum was conducted by Widrow and Smith [6]. Their analysis was based 

on a traditional control approach. They assumed that the applied control force F is a 

linear function of four state variables (x,x,8 ,8, with constant coefficients W1 ••• W.). 

• • 
F = ksgn(W1 ·8 + W2 ·8+ W3 ·x + w. ·x) 

The state of the system was sampled at regular intervals and classified. The output 

of the classification determined the sign of the fixed force k, that was applied to the cart 

for the duration of sampling interval. For the linearized dynamic equations the linear 
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• • 
control force F = k(W1 ·8 + W2 '8+ W3 ' x + W • . x) = k(w.s) minimises the quadratic 

error measured by the time integral of the square of the four state variables and the 

control force [19]. 

Geva and Sitte [10] recently conducted a qualitative analysis of the linear control 

law of the above equation. They found out that the weights we have to be positive. 

With this analysis they were able to dissect and understand the control strategy embodied 

in the linear control law. From their experiments it was found out that if the cart is in 

equilibrium at the centre of the track, and the pole is leaning at a positive angle with no 

angular velocity then the control action is F = k ~8. In this case only positive force 

will erect the pole, and ~ has to be positive. Similarly, if the pole angle is zero, but the 

angular velocity is positive and the cart is in equilibrium at the centre then only positive 

W2 will produce the force that reduces the angular velocity. 

On the other hand if the cart is in equilibrium somewhere on the right side of the 

track , and the pole is balanced perfectly, then the control force is determined by W3 • A 

positive weight will cause the force to accelerate the cart away from the centre of the 

track. This action will initially move the cart further away from the centre. However, as a 

result of this action the pole will start falling to the left, making the angular position and 

velocity negative. As the angular position and velocity become more negative their 

negative contribution to the force equation k(w.s), attempting to balance the pole, will 

overcome the positive contribution from x. The net effect over time of the spoiling 

effect of W3 , and correcting effect of W1 and W2 is to accelerate the cart towards the 

centre. To verify how much this net effect happens consider the pole in a stationary 

upright position. Because of gravi ty, a sequence of m control actions in the reverse 

direction are required to compensate the work done by the gravity during the fall and the 

pull of gravity during recovery. Thus, the inverted pendulum receives a net acceleration 

in the direction opposite to the initial direction of force application. 

When the cart is accelerating towards the centre of the track it will eventually 

overshoot. In order to bring it back to the centre another opposite sequence of control 

actions is necessary. Because of this condition the cart will continue oscillating about the 
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centre of the track. To stop the oscillation, a mechanism like damping is needed. The 

weight W. provides exactly this mechanism. The analysis of this is as follows. Suppose 

the pole is balanced and the cart is at the centre of the track moving with constant 

velocity to the right. Positive weight W. induced braking through angular contribution, 

in the same way as positive weight W3 induced centring. The cart will accelerate to the 

right because of the contribution of the velocity to the force, hence the cart velocity also 

will increased. However, the increase of cart velocity to the right will cause the pole to 

fall to the left. So the next action of the control is to balance the pole. This control action 

produce the desired net result of slowing down the cart. 

With the knowledge of the inverted pendulum dynamics using a linear control 

strategy Geva and Sitte [10] concluded the following; The angular position weight W1 

and angular velocity weight W2 work towards maintaining the pole in a balance position. 

The horizontal displacement weight W3 indirectly causes the cart to accelerate towards 

the centre of the track. Finally, the velocity weight W. indirectly slows down the cart, by 

causing the pole to lean in a direction opposite to the direction of movement. 

2.8.3.2. Random Searches in Weight Space 

Geva and Sitte raise the possibility that a random search in weight space might be 

effective in balancing the pole. To test this hypothesis they generated 10,000 unitary 

weight vectors with random orientations. Linear controllers with these weight vectors 

were tested in a computer simulation for their ability to prevent the cart-pole from failing 

within the fIrst 300 s after release from various initial conditions. The parameters used 

with this simulation were those of Barto et al [5]. The control force was updated at 

every integration time step of 0.02 s (50 Hz sampling). The controllers were tested in 

the bang-bang and continuous force control mode. The maximum force deliverable by 

the motor is limited to 10 N with K=50. Because Geva and Sitte knew that the weight 
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vectors have to have positive components they used a second population of 10,000 

vectors chosen from the positive quadrant. The results shows that one out of twelve 

random weight vectors could balance the pole for at least 5 minutes in the bang-bang 

regime when the cart was released from the centre of the track and with the pole in 

equilibrium. For continuous force this initial condition is trivial since the control force is 

always zero and there is nothing in the simulations to break the unstable equilibrium. 

Almost as many controllers from the totally random population pass the test as 

from the positive quadrant population. The explanation for it according to Geva and 

Sitte is that controllers with small negative W3 and W. will survive the fIrst 5 minutes, 

although they will not stay at the centre but rather oscillate or drift away slowly. When 

the initial condition is made slightly more diffIcult by releasing the cart at 1 meter to the 

right of the centre, the controllers of dubious quality no longer pass the test. When the 

knowledge that the weights have to be positive is discarded (search over all orientations) 

controllers that pass the test from a diffIcult initial position become hard to fmd. Figures 

2.19,2.20, and 2.21 show the results of Geva and Sitte's experiment. 
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2.9. Limitations of the Inverted Pendulum as a Benchmark for 

Learning Controllers 

It has been known for many years that a linear control law , implemented by a single 

artificial neuron can control the inverted pendulum. An investigation of the literature on 

unsupervised learning methods for the inverted pendulum controllers reveals tliat it is 

hard to compare the published results. Also, it shows that most of the methods used 

present no clear evidence of better performance than the random search method. 

What was not recognised before was that the random search in weight space can 

quickly uncover coefficients (weights) for controllers that work over a wide range of 

initial conditions [l0]. This was tested by Geva and Sitte using linear controllers with 

those weight vectors in a computer simulations (see section 2.8.3.2). The result of 

random search in weight space indicates that success in finding a satisfactory neural 

controller is not sufficient proof for the effectiveness of unsupervised learning method. 

Dissecting the dynamics of the inverted pendulum system it is obvious that it has 

limitations. The system has only two degrees of freedom. Hence, its capability and its 

ability to represent complex problems is limited. For example, robots need extra degrees 

of freedom to avoid degeneracies [15] or to manoeuvre past obstacles in 'the 

environment [16]. The techniques using neural networks to solve the control problem 

lacks stability. This is because disturbances and uncertain initial conditions are not well 

defIned in the experiments. What happens if the interval between control force updates is 

increased or if unequal magnitude forces are applied? The authors above assume that the 

system is frictionless, in actual or physical simulations, friction does really exist. The 

controller developed also lacks flexibility and adaptability. Successful research in neural 

network learning control did not mention about what happens to the system if external 

disturbances are applied to the plant. 
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2.10. Summary 

This chapter gave an overview of the problem and limitations imposed by the 

present methods of modelling a control system. A review of the concepts used in 

developing a conventional and an intelligent control system had been discussed. Special 

attention has been paid to the rigid pole-cart balancing problem (inverted pendulum) as a 

benchmark for learning controllers. A comparison of the works of different authors 

addressing this problem has been presented. It is pointed out that there are limitations on 

this problem, as, controlling this system is not a difficult nonlinear problem, and the 

learning controller developed may have limited application to manufacturing industries. 

Armed with this knowledge therefore, there are many issues that remain unsolved, 

that need further investigation. For example, can the techniques developed for learning 

control applied to a more complex nonlinear system? Can we scale up this new 

techniques to larger, more complex system without suffering from local minima problems 

(local minima are the inevitable problem in least minimum squares error methods of 

learning [7]). To answer these questions it would therefore be better to conduct future 

work using a model problem which is more complex than the current inverted pendulum 

problem. 

The author therefore conducted research on inverted pendulum learning control 

using an elastic pole. This type of pole gives an additional degree of freedom to the 

system, e.g. its elastic transverse displacement and therefore has much more complex 

dynamics. 

The next chapters of this thesis concentrate on the discussion and presentation of 

the development and test of learning controllers to balance a flexible pole hinged on top 

of a cart moving along a limited track. 
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CHAPTER 3 

A Model of a Flexible Pole-Cart Balancing 
System Under its First Mode of Vibration 

3.1. Introduction 

Flexible beams have been a topic of research in the field of robotics since the 

early 1970's [37]. Beams of this type have been used to model flexibility in robotic 

members, a phenomenon that has gained an importance as a result of widespread 

attempt to lighten robotic assemblies for increased speed and efficiency [38]. The 

present day industrial robot is easy to control because it is designed to be very heavy, 

rigid and slow. This, however, gives high weight to payload ratios which increase cost 

and decrease the speed of the robot. To improve this ratio, several researchers have 

proposed the use of lightweight robots with links that are allowed to flex during 

operation [33,34,35,36]. 

When compared with the traditional robot manipulators constructed from rigid 

links, flexible robot manipulators have many advantages; among them are [30]; the 

moving of larger pay loads without increasing the mass of the linkages, requirements for 

less material and smaller actuators, less link weight, less power consumption, and the 

machines are more maneuverable and transportable. Flexible robot manipulators are not 

presently used in production industries because robot manipulators are required to have 

a reasonable accuracy in the response of the manipulator end-effector to the input 

command from its control system. The experiments described in [30,31,37,38] were 

directed towards developing controller for flexible robot manipulators. Building this type 

of controller is a difficult and very challenging task. One major step in making this 

controller is to analyze the dynamic behavior of the system. Computer simulation is 

necessary to evaluate whether the derived dynamics of the system are correct. It is 
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therefore most appropriate to study analogues of such systems. The flexible pole-cart 

system provides such an analogue. 

This chapter presents a rule based control system for the flexible pole-cart 

balancing problem (the inverted pendulum using an elastic pole) that operates on a 

simulation of the system. The task of this system is to balance an elastic pole that is 

hinged on a movable cart. It is assumed that the hinge is frictionless. The cart is allowed 

to move along a track with limited length and that has friction. Forces of different 

magnitude are applied to the cart in either a left or right direction. The initial angle of the 

pole can be varied up to 30 degrees. This is more difficult than the conventional rigid 

pole-cart system because of the complexity in its dynamics. The deflection of the elastic 

pole gives additional degrees of freedom to this system. A computer simulation of the 

use of the cart to balance a flexible pole under first mode of vibration is presented here. 

The dynamic equations of the system were derived using Newton's laws, Bemoulli

Euler analysis, and beam theories. The system was analyzed with the presence of 

friction. Numerical integration using fourth order Runge-Kutta was conducted. 

Computer graphics of the cart balancing the pole along the track in real time have been 

made and are shown. Results on the analysis of the behavior of the system under various 

conditions has also been obtained in order to explore the practicality of attempting to 

control such a system. 

The chapter begins by presenting the mechanics of the system. It then continues 

by describing a simulation of these mechanics. The chapter closes by describing the 

operation of the rule based controller on the simulated dynamics. The code for 

simulations program and the controller are presented in full in Appendix A. 

3.2. Mechanics 

This section discusses the dynamics of the flexible pole-cart balancing system. 

The analysis of the system is based on the dynamics of the rigid pole-cart, together with 

beam theories. 
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3.2.1. Diagram of the Flexible Pole-Cart Balancing System. 

Figure 3.1 shows the dynamics of the system. The free body diagrams of the 

system are shown in figures 3.2 and 3.3. 

elastic pole rigid pole 

x, dx/dt Force 

• 

Figure 3.1 
The flexible pole-cart balancing system 
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3.2.2. Derivation of the Equations 

3.2.2.1. Solution for Rigid Pole Angle, Velocity, Acceleration, and Cart 
Velocity. 

This section presents the analysis that relates the motion of the cart to the motion 

of the pole. It begins by considering the dynamics of the rigid pole. 

Let 

rnp = mass of the pole. 

me = mass of the cart. 

ae = acceleration of the cart. 

L = total length of the pole. 

a = the angle of the pole from y axis . 

• a = angular velocity of the pole. 

•• a = angular acceleration of the pole. 

g = acceleration due to gravity 

Applying Newton's law to the rigid pole: 

Summation of forces at the center of the pole = (mass)(acceleration of pole) 

(3.1) 

Using defmitions from figures 3.2 and 3.3. 

et = a unit vector for tangential component. 

en = a unit vector for normal component. 

at = tangential acceleration. 

an = normal acceleration; then 

et = cos(a)*ex -sin(a)*ey (3.2) 
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en = -sin(6)*ez -cos(6)*ey 

L .. 
a =ra =-*8 

I 2 

L '2 
a =nv 2 =-*6 

n 2 

and using equations 3.2 to 3.5: 

L·· L-2 
aB = -6 (cos(8)e -sin(6)e ) +-6(-sin(8)e -cos(6)e ) 2 z y 2 z y 

then from figure 3.2: 

L '2 "28 (-sin(8)ez -cos(8)ey)} 

Equating tenns of the ez and ey components: 

L·· L-2 . 
-mpa, + Rz = mp {-8 cos(6) +-8(-sin(8»} 

2 2 

L·· L-2 
-mpa, + Rz = m {-6 cos(6) --6 sin(8)} 

p 2 2 

L •• -2 
-mpa, +Rz =m -{8cos(6)-8sin(8)} 

p 2 

L·· L-2 
Ry-mpg=m {-6(-sin(8)--8cos(8)} 

p 2 2 
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From the Euler equations. the summation of the moments at point 0 is equal to the 

product of the moment of inertia (1) and the angular acceleration (a ) of the pole. 

where: 

1 r =-m L 
3 p 

.. 
a=8 

Therefore using figure 3.2 apply equation 3.10: 

L L •• 1 •• 
m g-sin(8) - m a, -cos(8) = I" 8 = -m

p
L2 8 

p 2 p 2 3 

L 1" L 
a -cos(8) = -L' 8- g-sin(8) 
, 2 3 2 

since Lt2 = r 

4 •• 
a,rcos(8) = _r2 8- grsin(8) 

3 

(3.10) 

(3.11) 

Equation 3.11 shows the relationship of the cart acceleration to the angular acceleration of 

the pole. 

To establish the forces acting on the cart it is assumed that the mass of the 

wheels is very small compared to the mass of the cart and the pole. Figure 3.4 

shows the free body diagram of the cart. 
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I-I 
N 

Figure 3.4 
Forces acting on the cart 

Applying Newton's law to figure 3.4: 

F-R-/=rna c x c c 

Ry =N j / =!1N 

This is the force needed to move the cart. 

Then substituting equations 3.8 & 3.9 inta 3.12 

L·· -2 
!l(rnpg + rnp -(-8 sin 8 -8 cas8)) 

2 

'2 L 
8 rnp -(-sin8 -!lcas8) 

2 
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(3.12) 



" L ~ L 
Fe -1i1mpg +8 mp 2 (eos8 -llsin8)+8 mp 2(-sin8 -lleos8) 

ae = 

Let 

r =L/2 

then 

and substituting 3.13 to 3.11 

•• -2 

( 
. )Fe -{llmpg+8 mpr(eos8 -llsin8)+8 mpr(-sin8 -lleos8) 

reos8 = 
m 

4 " "m reos8(eos8-llsin8) 
-r8-8 p = gsin8-
3 m 

4 •• 
_r2 8- grsin8 
3 

eos8 '2 
--Wc -[!lmpg -8 mpr(sin8 + lleos8)]} 

m 

"[4 ] 8 "3mr - mpreos 2 8 + Ilmpreos8 sin8 = mgsin8-

'2 
eos8We -[Ilmpg -8 mpr(sin8 + lleos8)]} 
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·2 e = _m_g_Sl_· n_8_-.,...c_os_8_1 F...:.,_-_[_~_m.::..pg_-_8_m....!p,--r_(s_in_8_+_~_c_os_8_)_]) 

imr-m rcos2 8 +~mprcos8sin8 
(3.14) 

3 p 

This represents the angular acceleration of the rigid pole hinge root on top of the 

cart that move dependent on the magnitude and direction of the applied force F,. 

3.2.2.2. Solution for Elastic Pole Angle, Velocity, and Acceleration. 

It is now necessary to extend this analysis to include the elastic pole. 

Let 
8, = total elastic pole's angle from the vertical axis . 

• 
8, = elastic pole's velocity . 

•• 
8, = elastic pole's acceleration 

For the elastic pole, it is assumed that the total angle 8, (the pole's actual 

position with respect to vertical axis) is equal to the actual angle of the rigid pole 

8 plus the pole's angle due to its elastic deflection 8,. 

8,=8+8, 
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To find e. it is assumed that the pole behaves as a cantilever with uniform 

distributed load as is shown in figure 3.5. From [40] 

L 

W / unit length 

Figure 3.5 
Cantilever carrying a uniformly distributed load 

E = Young's modulus of elasticity. 

I = Second moment of area 

= BD 3 /12 

B = Breadth of the beam 

D = Depth of the beam 

W = Weight per unit length 

The bending moment at a distance Z from C is : 

but 

hence; 

-1 
M =-WCL_Z)2 

2 

d 25 
-M=EI

dZ 2 
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do 1 1 
EI- = -W(L2Z - LZ2 +-Z3 + A) further integrating this equation gives 

dZ 2 3 

1 1 1 1 
Elo =-W(-L2Z 2_-LZ3 +-Z4 +AZ+B) 

2 2 3 12 

At the built in end, Z = 0, and we have 

dO - = 0 and 0 = 0 Thus A = B = 0 
dZ ' 

Then 

At the free end D, Z =L 

WL4 

o -
D - SEI 

(3.16) 

(3.17) 

It is now necessary to fit the cantilever analysis to the flexible pole. To find the 

value of W within the cantilever analysis, the pole can be analyzed by considering both 

the concentrated and unifonn load as shown in figures 3.6 and 3.7. 

mpgcose ..... 
'.~ .. 

Figure 3.6 
Concentrated load of the pole at any position 
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For the pole at unifonn load using F at figure 3.6: 

= 

Therefore: 

mpgsin6 
W = -"--=----

x L 

+ 
", 

'. 
(this component is used only' if there is buckling or the hinge has 
friction; hence it will not affect the value of W) 

Figure 3.7 
Uniform load of the pole at any position 

(3.18) 

To determine the total elastic pole angle 6" at any time, consider figure 3.8 below. 

-.-. 

L 

", 

_ .:. . ..::..0. _______________________________ _ 

Figure 3.8 
Position of the rigid and elastic pole at any time t 
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/) 
tan 8 = --E.. ; from equation 3.17 , L 

WL4 wC 
tan8 =--=-

, 8EIL 8EI 
from equation 3.18 

but I = BD 3 /12 

12L'mp g 
let K = ---';;-

8EBD3 

tan8, = Ksin8 ; hence 

8, = tan-1(Ksin8) 

Substitute equation 3.19 into equation 3.15 

To find the elastic pole's angular velocity, differentiate 3.20: 

8, =8+( Kcos8 )8 
1+(Ksin8)2 

8, = 8{1 + ( K cos8 )} 
1+(Ksin8)2 

To find the elastic pole's angular acceleration, differentiate 3.21. 

8,=81+ + •• "[ K cos8 ] 
1+(Ksin8)2 

8[(-K sin8)(8)(1 + (K sin8)2) - (K cos8)(2K sin8)(K COS8)C8)] 
(1+(Ksin8)2)2 
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(3.19) 

(3.20) 

(3.21) 



8t =8 1+ + 
•• ..[ K cos8 ] 

1 + (K sin8)2 

e[(-K sin8)(1 + (K sin8)2) - (K cos8)(2K sin8)(K COS8)] 
(1 + (K sin8)2)2 

8 t = 8 1 + + 8 ----'----'----'----:,--;:----'----'---'-
•• ..[ KCOS8] .2[Ksin8(-I-K2(Sin8)2 -2K

2
(COS8)2)] 

1 + (K sin8)2 (1 + (K sin8)2)2 

et =e[l+ Kcos8 ]+ e[-Ksin8{I+K
2
((Sin8)2 +2(COS8)2)}] 

1+(Ksin8)2 (1+(Ksin8)2)2 

8 t = 8 1 + + 8 ---'------'---,,-'-,,----'--'-•• ..[ KCOS8] .2[-Ksin8(1+K
2
(1+(COS8)2)] 

1+(Ksin8), (1+(Ksin8)2)2 
(3.22) 

This presents the angular acceleration of the flexible pole hinge on top on the 

moving cart. 

3.2.2.3. Solution for Cart Acceleration and Displacement due to 

Balance the Elastic Pole. 

This section discusses the mechanics to find the displacement of the cart 

due to the applied force in order to balance the elastic pole. The acceleration of 

.. . 
the cart in order to balance the pole is derived from equation 3.13 with 8 ,8 ,8 

.. . 
replaced by 8 t , 8 t , 8 t respectively. Hence, 

•• -2 

Fe - {l1mpg +8 t mpr(cos8 t -11 sin8 t) + 8 t mpr(-sin8 t -11 cos8 t) 
ae=~~~~--~~-~~-~--~~-~~--~~ 

m 
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From the computer simulation using numerical integration (fourth order 

Runge-Kutta) the value of the acceleration 0" is found to be a cosine function 

(refer to section 3.3.4 figures 3.17c, 3.18c, and 3.19c). The reason for this is that 

the acceleration of the cart is dependent upon the force applied to it. This force is 

being controlled in order to balance the pole and it is experimentally observed to 

be periodic. At time t equal to zero initial force is already applied to the cart. 

Because of this, at this point in time, the cart is already accelerating at a magnitude 

equivalent to force/mass. 

Thus, the acceleration of the cart for balancing the flexible pole at any time t is: 

0" = k cos rot (3.24) 

The velocity of the cart at any time t for balancing the flexible pole is obtained by 

integrating equation 3.24. 

The displacement of the cart at any time t for balancing the flexible pole is obtained 

by integrating equation 3.25. 

I I k . -k cos wt x =[v =[-Slnwt= ce ce W w2 

but from equation 3.24 0" = k cos rot , hence 

and 

-ace 
Xce =-2-

ro 
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(3.25) 



(J) = 2n/ 

/ = average frequency 

(3.26) 

To find the frequency / it is necessary to obtain the total number of cycles 

during the total time of pole balancing. Below is the algorithm to determine this. 

1. Determine the highest value of the acceleration for the entire time of 

balancing excluding the fIrst one (a'h). 

2. Starting from time t > 0.0 record the value of time for the first a,h (Timea'hl). 

3. Record the time it takes to have another acceleration approximately equal to 

4. Record the frequency from (Timea,hl) to (Timea,.,) = one cycle. 

5. Repeat process 2 & 3 by substituting Timea,h2 to Timea,hl for I to N. 

I & N can be any value of time from t > 0.0 to the final time of balancing the pole. 

Record the total number of cycles for this process (tot_cycles). 

6. Get the sum of the time recorded from Timea,hl to Timea,hN (tot_time). 

N 

tot_time = L (Timea,h} + Timea,h}+I) 
/-1 

7. Average frequency is 

(3.27) 
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3.2.2.4. Solution for the Location of the Pole at Any Time in XY 

Plane. 

This section discussed the mechanics to fmd the coordinates of the flexible 

pole on XY plane at any angle. See figure 3.9. The equations derived from this 

analysis are very important in displaying the pole graphically. Every point of the 

pole is plotted. This analysis uses equation 3.16 as its starting point. 

Let 

(xl,yl) = the coordinate at any point of the pole without elastic deflection (say pI). 

(x2,y2) = the new coordinate of pI due to elastic deflection. 

The deflection of the elastic pole at any point is derived from equation 3.16. 

From figure 3.9 

The value of Ll is from 0.0 to L. 

xl = (sine )(Ll) 

yl = (cose )(Ll) 

L2 = ~(Ll)2 +6 2 

e = tan-l(~) 
• Ll 

x2 = sin(e +e,)(L2) 

y2 = cos(e +e,)(L2) 
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(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 



yl 
y2="-=-

---

y 

: ........ .:-.: 
I 

I I ....... L2 
I :. 

6 L" 
le. , 
v' : 

"I I 
••••. : ... I 

, I 

o xl x2 

.' 

Figure 3.9 

x 

The coordinates of the elastic pole at any point in xy plane 
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3.3. Software Simulation 

3.3.1. The Program 

MA YMA Y is a computer program that will simulate the pole-cart balancing 

system. This program is written in the Turbo Pascal language and implemented on an 

IBM PC machine. MA YMA Y can simulate both rigid and elastic pole-cart balancing with 

or without friction. The program is a menu driven. The user has nine options to choose 

from the main menu (see figure 3.10). 

Option number one is to simulate rigid pole-cart balancing and option number two 

is to simulate elastic pole-cart balancing. Both options one and two can be carried out 

either with or without friction. The user must enter data for these options. These data 

represent the characteristics of the pole, the system initial condition, and the simulation 

time (see tables 3.1 and 3.2). Once the data are entered into the computer, the program, 

using numerical integration (fourth order Runge-Kutta, see figure 3.11) calculates the 

values of the derived dynamic equations presented previously. The outputs of this 

process are the values at any given time of the angle of the pole from the vertical axis, 

the angular velocity and acceleration of the pole, the force applied to the cart, the 

velocity of the cart, the acceleration of the cart, and the displacement of the cart. All of 

this data are stored in an external file for future use. After calculating these values, the 

process then will go back to the main menu. 

Option number four plots the behavior of the rigid pole at any given time. This is 

a graphic representation of the rigid pole's angle versus time. Option number five is 

similar to number four, but extends the simulation to an elastic pole. Option number six is 

a real time graphical pole-cart simulation. This process will display the cart moving along 

the track (forward and backward), and balancing the pole that is hinged at its root. 

Option number seven plots the graph of the displacement of the cart versus time. 

Option number eight presents the graph of the cart's acceleration versus time, and option 

number nine presents the graph of the cart's velocity versus time. The data for option 4 is 
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taken from the result of process I, while for options 5, 6, 7, 8, and 9 it is taken from the 

result of process 2. Finally, to exit from the program, the user should choose option 

number zero. 

Table 3.1 
(The data that the user must enter for option I - rij1;id pOle) 

Mass of the pole (in kilograms) 
Total mass of the pole and the cart (in kilograms) 

Total length of the pOle (in meters) 
Initial force applied (in Newton) 

Coefficient of friction 
Step size (H) (the increment of integral calculation) 

Upper limit of inteeration (tmax) 
Freq. intermediate printouts (Ifreq) (display result for ltiven increment) 

Initial pOle anj1;le (theta in deJ1;rees) 
Limitations of pOle an!!.le (in degrees) 

Table 3.2 
(The data that the user must enter for option 2 - elastic pOle) 

Mass of the pOle (in kilograms) 
Total mass of the pole and the cart (in kilograms) 

Total length of the pOle (in meters) 
Breadth of the pole (in meters) 
Depth of the pole (in meters) 

Young's modulus - elasticity ofthe~ole (in Newton/square meter) 
Initial force applied (in Newton) 

Coellkient of friction 
Step size (H) (the increment of integral calculation) 

Upper limit of integration (tmax) 
Freq. intermediate printouts (Ifreq) (display result for given increment) 

Initial pole angle (theta in degrees) 
Limitations of pole angle (in degrees) 

66 



3.3.2. The Algorithm 

This section presents the algorithm of program MAYMAY. Figure 3.10 is 

the complete structure of the program. Detailed algorithms of every option are shown in 

figures 3.11 to 3.15. The code is in appendix A. 

START 

........................... u...u·t 

1 GJ8c!J 6 [2] 8 

DATA 
STORAGE 

(EXTERNAL FIlE) 

1 l 
................ ...... k ................................. -k. ................. ............... & 

DESIRED 
OUTPUT 

Figure 3.10 
(Program MAYMAY) 

Elastic pole-cart balancing system computer simulation 
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END 



data 
storage 

(external file) 

e gEQN.3.14 

INPUT DATA 

N 
>--~' END! -'--' 

N 

Figure 3.11 
option 1 & 2 

F 

N 
EXIT 

DATA 
STORAGE 
(external file) 

Numerical integration to find the behavior of elastic/rigid pole-cart balancing system 
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: STARTJ 

1 
i GET SCALE FACTOR I 

GET DATA FROM 
EXTERNAL FILE 

INITIALIZE 
GRAPHICS MODE 

PLOT LINES 
XV COORDINATES 

1 
PLOT DESIRED 

POINTS 

WRITE STRING 
HEADINGS 

CLOSE 
GRAPHICS MODE 

GO BACK TO 
MAIN MENU 

Figure 3.12 
options 4, 5, 7, 8, and 9 

Graphical representation of the behavior of the pole-cart balancing system 
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GET INITIAL DATA 
FROM EXTERNAL FILE 

N y 
end r------< file .>---------, 

GEfELASTIC 
pole angle 
(Langle) 

GEfRIGID 
pole angle 
(angle_co) 

GEfc.ART 
acceleration 

(c_ac) 

Find Amplitude ! 
of acceleration :-! ----' 

(positive & negativel 
! 

6. 7.9 

f" ............ ~ ......... . 

1 FINDCART 

l displacement 

check 
option 

? 

5 

ASSIGN VALUES 

of elastic anglf 
to array 

angle co 

ASSIGN VALUES 
of cart acceleration 

to array 
angle co 

I--_~: ENDlio-' _-l 
L ................ .f 

Figure 3.13 
Process get data from external file 
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DRAW 
TRACK 

1 
DRAW 
CART 

1 
DRAW 
WHEEL 

DRAW 
HINGE 

1 
DRAW 

v 

GEfDATAFROM 
external fIle 

INTI1ALIZE 
GRAPIDCS MODE 

WRITE 
HEADING 

? 
TIME <= '}-.J":L----tI WRrI'E f--
1MAX SUCCESSFUL 

N 

Y WRITE GO BACK 
POLE I----+( 

cart hit 
track limit 

? 
FAILURE f---t to main menu 

Figure 3.14 
option 6 

Real time simulation of the cart balancing the pole along a track 
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:ST@ 

time <- N GO BACK TC 
tInax MAIN MENU 

? 

Ii 

N LI<= Y 

1 
length 
of pole 

? 
CLEAR FIND XI 
SCREEN (EQN.28) 

1 
FIND CART FINDYI 
displacement (EQN.29) 

pun 
N hit Y (Xl.Y1) 

the track 

limit 
? 

FIND 0 
DRAW EXIT mON.16) 
TRACK go back: to 

camn. Of"""" 

FINDL2 
(EQN.30) 

DRAW 
CART 

NI'VO. 

(EQN.31) 
DRAW 

1 WHEEL 
FINDX2 
(EQN.32) 

L- DRAW 
HINGE FINDY2 

(EQN.33) 

PLOT 
(X2.Y2) 

Figure 3.15 
Process in drawing the pole at any given time 
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3.3.3. The Controller 

The task of the controller is to balance the flexible pole on top of the cart moving 

along a limited track for a given time. The algorithm for this process is shown in figure 

3.11 section 3.3.2. This process uses numerical_integration. Subprocess RUNGE( ) will 

calculate the values of the pole's angle, velocity, and acceleration for every time step set 

by the user. These values are taken from the parameters V and F of RUNGE( ). For every 

increment of the time step, the controller will check if it has exceeded the total simulation 

time. If the total simulation time has been attained process numerical_integration will end 

otherwise subprocess RUNGE() will be executed. 

The motion of the cart is dependent on the force applied to its body. Hence, it is 

necessary to control the magnitude and direction of this applied force. However, this 

force is directly proportional to the angle of the pole from the vertical axis and the total 

mass of the cart and pole. The angle of the pole is obtained from equation 3.14 by 

applying numerical integration using fourth order Runge-Kutta. This is the subprocess 

RUNGE(). 

To detennine the actual magnitude and direction of the force, the controller will 

check first the magnitude and direction of the pole's angle. This is the subprocess 

check_pole_angle. If the angle of the pole exceeds the prescribed limit then it will report a 

failure and go back to the main menu, otherwise the process will continue. If the 

inclination of the angle of the pole is going left (negative) then the direction of the force 

applied to the cart is going left (also negative), otherwise it is in the opposite direction. 

The magnitude of the force is chosen using a simple rule-based system in a manner of a 

look up table (see Appendix A). For 0.0009 to 0.001 degrees inclination this corresponds 

to 0.1 Newton of force applied to the cart. Above this value an increment of 0.003 degree 

angle will correspond to an increase of 0.1 Newton in the applied force. The controller 

can apply a maximum force of 15 Newton's, although the user may enter an initial force 

greater than this. The author conducted a number of experiments in simulation the values 

relating the applied forces on the cart and the angles of the pole, to detennine satisfactory 
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values of the parameter. The control algorithm can be modified to accommodate changes 

in mass. The above controller is set for a total mass of 1.1 kilograms. Figure 3.16 show 

the results of the flexible pole cart balancing controller operating with different 

parameters. 

3.3.4. computer Simulation Results 

The figures that follow show the behavior of the pole cart simulation programme 

under varying conditions: 

Section 3.3.4.1 to 3.3.4.3 described the behavior of the system for a number of 

conditions. Figure 3.16 shows the animation of the system when parameters are changed. 

Examples 1, 2, and 3 present the oscillations of the displacement of the cart, velocity of 

the cart, acceleration of the cart, positions of the pole, and the graphical representation of 

the motion of the entire system. 
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Figure 3.16 
Animation of the flexible pole-cart balancing system 

when parameters are changed 
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3.3.4.1. Example 1: 
A computer simulation of the flexible pole-cart balancing system using the 

following data. 

Mass of the pole 

Total mass of the pole and the cart 

Total length of the pole 

Breadth of the pole 

Depth of the pole 

Elasticity of the pole 

Initial force applied 

Coefficient of friction 

Step size (H) 

Upper limit of integration (tmax) 

Freq. intermediate printouts (Ifreq) 

Initial time (t sec) 

Initial pole angle (theta in deg) 

Limitations of pole angle 

Initial pole velocity (theta/dt) 

Acceleration due to gravity 
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= 0.1000 kg 

= 1.1000 kg 

= 1.0000 meters 

= 0.0300 meters 

= 0.0050 meters 

= 0.1800 Pascal 

= 7.0000 Newton 

= 0.0000 

=0.0010 

= 10.0000 

=50 

=0.0 

= 10.000 degrees 

= 50.000 degrees 

=0.0 

= 9.81 m/sq sec. 



Figures 3.17a to 3.17e show the dynamic behaviour of the flexible pole-cart 

balancing system for example 1. 
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Figure 3.17a 
Displacement of the cart on the track 
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Velocity of the cart 

!I 

11 

v v v v v 
40 60 BD 

Tirne steps (X1000) 

77 

-

-

~ 

100 120 

100 120 



Figure 3.17c 
Acceleration of the cart 
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Figure 3.17d 
Flexible pole angle 
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Figure 3.17e 
Rigid pole angle 
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The figures below represent the real time movement of the cart and the whip of the 

pole for example 1. 
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3.3.4.2. Example 2: 

In this simulation the values of the size of the cart, the length of the pole, and the 

initial force were changed. The following data is as below. 

Mass of the pole 

Total mass of the pole and the cart 

Total length of the pole 

Breadth of the pole 

Depth of the pole 

Elasticity of the pole 

Initial force applied 

Coefficient offriction 

Step size (H) 

Upper limit of integration (trnax) 

Freq. intermediate printouts (lfreq) 

Initial time (t sec) 

Initial pole angle (theta in deg) 

Limitations of pole angle 

Initial pole velocity (theta/dt) 

Acceleration due to gravity 

80 

= 0.0500 kg 

=0.5050 kg 

= 0.5000 meters 

= 0.0150 meters 

= 0.0025 meters 

= 0.1800 Pascal 

= 1.0000 Newton 

= 0.0800 

=0.0010 

= 10.0000 

=50 

=0.0 

= 5.0000 degrees 

= 50.000 degrees 

=0.0 

= 9.81 m/sq sec. 



Figures 3.18a to 3.18e show the dynamic behaviour of the flexible pole-cart 

balancing system for example 2 
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Figure 3.18c 
Acceleration of the cart 
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The figures below represent the real time movement of the cart and the whip of the 

pole for example 2. 
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Example 3: 

In this simulation the initial values of the pole angle and the force applied to the 

cart were changed. The data are as below. 

Mass of the pole 

Total mass of the pole and the cart 

Total length of the pole 

Breadth of the pole 

Depth of the pole 

Elasticity of the pole 

Initial force applied 

Coefficient of friction 

Step size (H) 

Upper limit of integration (tmax) 

Freq. intermediate printouts (Hreq) 

Initial time (t sec) 

Initial pole angle (theta in deg) 

Limitations of pole angle 

Initial pole velocity (theta/dt) 

Acceleration due to gravity 

84 

= 0.1000 kg 

= 1.1000 kg 

= 1.0000 meters 

= 0.0300 meters 

= 0.0050 meters 

= 0.1800 Pascal 

= 5.0000 Newton 

=0.0000 

=0.0010 

= 10.0000 

=50 

=0.0 

= 5.0000 degrees 

= 50.000 degrees 

=0.0 

= 9.81 m/sq sec. 



Figures 3.19a to 3.1ge show the dynamic behaviour of the flexible pole-cart 

balancing system for example 3 

Figure 3.19a 
Displacement of the cart on the track 
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The figures below represent the real time movement of the cart and the whip of the 

pole for example 3. 
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3.4. Analysis of Results 

The program MA YMA Y has been used to simulate the mathematical equations 

derived in Section 3.2. The output of this program indicates that this analysis is 

qualitatively correct. This needs to be verified by experiment. In order to balance the pole 

on top of the cart it is necessary to control the force that is applied to the cart. The 

magnitude of this force is directly proportional to the angle of the pole from the vertical 

axis and the total weight of the cart and pole. If the angle of the pole increases or the total 

weight of pole and cart increases then the magnitude of the force also increases. The 

direction of the force is dependent on the direction of the angle. If the pole is inclined to 

the left (angle is negative) then the direction of the force is also to the left, otherwise it is 

the opposite. The value of the force used is selected based upon experiment within the 

simulation. Figure 3.11 section 3.3.2 shows the algorithm of the controller for this. 

The initial condition of the program is, at time t equal to zero, the velocity and 

displacement of the cart are zero. The force and the pole angle can be initialised to any 

value (positive or negative). However, since there is a limitation to the length of the track, 

the value of the pole angle is limited to plus and minus forty degrees. The movement of 

the cart is dependent on the rate of change of the magnitude of the force and direction. 

The faster the applied force changes in one direction, the more oscillation there is in of the 

movement of the cart. Furthermore, the larger magnitude of force applied to the cart the 

further it travels. 

In order to centre the cart on the track, the distance it travels should be 

controlled. This is derived and explained in section 3.2.2.3. The average frequency of the 

cart's acceleration is very important here. The frequency should not be small in order to 

prevent the cart from hitting the track limit. The frequency should not also be too large, in 

this case the cart will not move sufficiently far (see equation 26). 
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The strength, efficiency and capability of program MA YMA Y has been tested by 

running it under various conditions to indicate that it appears that the flexible pole cart 

problem can be controlled. 

3.5. Summary 

A computer simulation of the simple rule based control of a cart balancing a 

flexible pole under its first mode of vibration was presented. The appropriate dynamic 

equations of the system have been derived using Newton's laws, Euler analysis, and Beam 

theories. The system can be assumed to be with or without friction. Numerical integration 

using fourth order Runge-Kutta was implemented. A real time graphics representation of 

the cart balancing the flexible pole on a limited track can be displayed. The behaviour of 

the system can be analysed and observed by viewing the graphs of the pole's angle versus 

time (either with or without friction), the acceleration of the cart versus time, the velocity 

of the cart versus time, and the displacement of the cart versus time. The Turbo Pascal 

language has been used to implement the computer program on an IBM PC machine. 

The simulation program indicated that it was likely to be possible to balance a 

flexible pole-cart system. It was therefore decided to proceed to demonstrations on a real 

system without the necessary simplifications made to the model system and to explore the 

applicability of non-conventional control techniques to the system .. 

The next chapters of this thesis are therefore focused on the development and 

testing of on line and off line intelligent controllers using neural network algorithms and 

fuzzy logic systems on a real system, and the simulation of the application of genetic 

algorithms as an extension of the non-conventional control approaches. 

89 



CHAPTER 4 

OfT Line Application of Neural Networks to the Flexible Pole
Cart Balancing Problem 

4.1. Introduction 

Over recent years, neural networks have received a great deal of attention and are 

being proposed as powerful computational tools [46]. The structures of neural networks 

are roughly based on our present understanding of the biological nervous system. The 

potential benefits of neural networks extend beyond the high computation rates provided 

by massive parallelism. The application phase of neural networks takes relatively little time 

compared to its training phase and therefore offers potentially faster solutions for problem 

solving. The basic architecture of a neural network is presented in section 4.2. 

This work presents a simulation of the flexible pole-cart balancing problem as a 

test bed for neural network applications. As has been discussed earlier this type of problem 

is more complex and highly nonlinear when compared to the classical rigid pole-cart 

balancing problem because it gives an additional degree of freedom to the classical system, 

e.g. its transverse displacement. The author has derived (see section 3.2) the mathematical 

equations of the dynamics of this system and used computer simulation to test the validity 

of the mathematical modeL The results of this computer simulation have been used as the 

training data for the neural network. 

The objective of the work presented in this chapter is to develop and test neural 

network based software that learns to predict the value of the force applied to the cart at 

any given time in order to balance the flexible pole hinged at its root on the top of the cart. 

The Backpropagation neural network architecture and Kohonen's self organizing map 

have been used to test the capability of neural networks to control the flexible pole-cart 

balancing problem in simulation. A Backpropagation neural network has been trained by 
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supervised learning. The network was presented with training data set made up of pairs of 

patterns i.e, an input pattern paired with a target output. Upon the presentation of this 

data, weights within the network were adjusted to decrease the difference between the 

network's output and the target output (see section 4.2.2). The inputs are the elastic pole 

angle, rigid pole angle, velocity of the cart, and the displacement of the cart, while the 

output is the force applied to the cart. 

A Kohonen's self organizing map neural network is trained by unsupervised 

learning. It modifies the connection strengths based only on the characteristics of the input 

pattern presented to the network. It does not require any feedback (see section 4.2.3). In 

the previous chapter the author used a rule based system to determine the force to be 

applied to the cart using only the value of the pole's angle. All this data were presented 

to the neural network which learned to imitate these values using competitive learning. 

This chapter begins with the discussion of neural network architectures and it 

continues to the processes needed for the application of this neural network to the flexible 

pole cart balancing problem. Results of the experiments conducted using neural network 

controllers are presented. 

4.2. Neural Networks 

A neural network is an information processmg system that is nonalgorithmic, 

nondigital, and intensely parallel [44]. It consists of groups of very simple and highly 

interconnected processors called neurons or processing elements (PE). PE's are analogue 

of the biological neural cells in the brain. A subgroup of PE's is called a layer in the 

network. The first layer is the input layer and the last layer is the output layer. The layers 

that are placed between the input and the output layer are called hidden layers. The PE are 

connected by a large number of weighted links, over which signals can pass. Each PE 

typically receives many signals over its incoming connections. These signals may arise 

from other PE or from the external environment. A PE in a neural network receives input 
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stimuli along its input connections and translates those stimuli into a single output 

response, which is then transmitted along the PE's output connections. The mathematical 

expression that describes the translation of input stimulus pattern to output response signal 

is called the transfer function of the PE [45]. 

Figure 4.1 is a typical neural network architecture. The circular nodes represent 

PE's. There are three layers, an input layer, a hidden layer, and an output layer. The 

directed graph shows the connections from layer to layer. Although there may be more 

than one incoming connection, there is never more than one outgoing line from each PE. 

The outgoing connection often branches to carry the PE's single output signal to many 

destinations. 

Figure 4.2 summarizes how a PE works. Each PE has a number of inputs (Xi), 

each of which must store a connection weight (Wi) and compute one and only one output 

signal (Y)). This output is a function (f) of the weighted sum Ew. Xi' The function (f) 

maybe a sigmoid function, sine function, hyperbolic tangent function or various threshold 

and linear functions. Weights (Wi) are variables and can be adjusted dynamically to 

produce (Y)). 
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4.2.1. Training and Learning in Neural Network 

Training and learning are fundamental to nearly all neural networks. A network in 

which learning is employed must be trained. Training is an external process or regimen. It 

is the procedure by which the network learns. Learning is the result that takes place 

internal to the network. It is the process by which a neural network modifies its weights in 

response to external inputs. Weights are changed when the output(s) are not what is 

expected. 

Training is done using examples, and it can take place in three distinct ways [441, 

namely; supervised, reinforcement, and unsupervised. In supervised training the network 

is provided with an input stimulus pattern along with the corresponding desired output 

pattern. The learning law for such a network typically computes an error, that is, how far 

from the desired output the network's actual output really is. This error is then used to 

modify the weights on the interconnections between the PE's. Initial weights can be set 

randomly. Using this technique, a network can do things like make decisions, map 

associations, "memorize" information, or generalize. 

Reinforcement training is similar to supervised training except that the exact 

desired output is not provided; only a "grade" of how well the network is working. In this 

type of training the neural network only receives feedback indicating the value of the 

system's action. The weights are reinforced for properly performed actions and punished 

for inappropriate ones. This technique is useful in those cases where supervisory 

information is not available. 

Unsupervised training is sometimes called self organization training. In this type of 

training the network is presented only with a series of input patterns and is given no 

information or feedback at all about its performance levels. The network uses no external 

influences to adjust its weights. It looks for regularities or trends in the input signals, and 

makes adaptations according to the function of the network. Even without being told 

whether it's right or wrong, the network still must have some information about how to 

organize itself. Competition between PE's can also form the basis for learning. Training 
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of competitive clusters can amplify the responses of specific groups to specific stimuli and 

associate those groups with each other. For example, processing elements could be 

organized to discriminate between various pattern features, such as vertical edges or left

hand and right-hand edges. 

4.2.2. The Backpropagation Neural Network Architecture 

The backpropagation neural network is one of the most important historical 

developments of neurocomputing [47]. It is a powerful mapping network that has been 

successfully applied to a wide variety of problems ranging from credit application scoring 

to image compression. It was originally introduced by Paul Werbos in 1974 [48], and 

extended by David Parker [49], and by David Rumelhart [50] in 1986. 

The architecture of the backpropagation neural network is a hierarchical design 

consisting of fully interconnected layers or rows of processing units (see figure 4.3). Each 

unit is itself comprised of several individual processing elements. This architecture does 

not have feedback connections, but errors are backpropagated during training. Errors in 

the output determine measures of hidden layer output errors, which are used as a basis for 

adjusting of connection weights between the input and hidden layers. Adjusting the two 

sets of weights between the pairs of layers and recalculating the outputs is an iterative 

process that is carried on until the errors fall below a tolerance level. Learning rate 

parameters scale the adjustments to weights. A momentum parameter can also be used in 

scaling the adjustments from a previous iteration and adding to the adjustments in the 

current iteration. 

The backpropagation network undergoes supervised training, with a finite number 

of pattern pairs consisting of an input pattern and a desired output pattern. An input 

pattern is presented at the input layer. The PE's then pass the pattern digits to the next 

layer of PE's, the hidden layer. The outputs of the hidden layer PE's are obtained by using 

perhaps a bias, and a threshold function with the activations determined by the weights 
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and the inputs. These hidden layer outputs become inputs to the outer PE's, which also 

process using possibly a bias and a threshold function with their activations to determine 

the final output from the network. Once training is completed, the weights are set and the 

network can be used to find outputs for new inputs. The number of PE's in the input layer 

determines the dimension of the inputs, and the number of PE's in the output layer 

determines the dimension of the outputs. 

4.2.3. The Kohonen's Self Organizing Map Neural Network 

The self organizing map neural network was developed by Teuvo Kohonen of 

Helsinki University of Technology during the period 1979 - 1982 [51, 52]. It is employed 

only in unsupervised learning network applications, where no expected outputs are 

presented to a neural network. A network, by its self organizing properties, is able to infer 

relationships and learn more as more inputs are presented to it. One advantage to this 

scheme is that the system will change whenever the conditions and inputs vary. 

In this technique the processing elements compete for the opportunity of learning. 

The processing element with the largest output is declared the winner and has the 

capability of inhibiting its competitors as well as exciting its neighbors. Only the winner is 

permitted as output, and only the winner plus its neighbors are permitted to adjust their 

weights. The size of this neighborhood can vary during the training period. Inputs are fed 

into each of the PE's in the Kohonen layer from the input layer (see figure 4.4). Each PE 

determines its output according to a weighted sum formula. The weights and the inputs 

are usually normalized, which means that the magnitude of the weight and input vectors 

are set from 0.0 to 1.0. 
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Y .. Y .. 

Figure 4.3 
Macroscopic architecture of the back propagation neural network. 

The boxes and circles are processing elements or neurons. 
(x, ... xn are inputs; Y; ... y~ are outputs; Y, ... Y .. are output errors) 
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4.3. The Flexible Pole-Cart Balancing System 

The task of the flexible pole-cart balancing system is to balance an elastic pole that 

is hinged on a movable cart. It is assumed that the hinge is frictionless. The cart is allowed 

to move along a track with limited length and that has friction. Forces of different 

magnitude are applied to the cart in either a left or right direction to balance the pole. The 

dynamics of this system have been shown in Chapter 3. 

4.4. Processes Involved In The Formulation Of The Flexible Pole

Cart Balancing Control: Neural Network Perspective 

This section describes the various processes involved in formulating the problem 

from a neural network perspective and provides an effective specification of the 

application of a neural network to the flexible pole-cart balancing system. These 

processes are briefly described below. 

(1) The decision on how the information for presentation to the neural network should be 

represented is very important. Since neural networks are pattern matchers, the 

representation of the data contained in the training sets is critical to a successful neural 

network solution. Clear understanding of the problem is necessary. Writing a brief 

narrative description of what the neural network will do is known to support this. For 

this work, the goal is to develop a neural network that learns to predict the amount of 

force exerted on the cart to balance the pole given the position of the pole, 

displacement of the cart, and the velocity of the cart. 

(2) It is important to have enough data to yield sufficient training and test sets to train and 

evaluate the performance of the neural network effectively. The architecture of the 

network, the training method, and the problem being addressed are dependent on the 

amount of data required for training a network. In this research, the data used to train 
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the network are elastic pole angle, rigid pole angle, velocity of the cart, displacement 

of the cart, and the force applied to the cart. 

(3) The data sets in the input training set, as well as the desired output, should be as 

orthogonal as possible; that is, the variables contained in the data sets should be 

independent with no correlation. 

(4) Generally, the majority of effort in developing a neural network goes into collecting 

data examples and preprocessing them appropriately. The standard process is to 

normalize the data. Here the requirement is that the input to each input processing 

elements should be in the interval between -1.0 to 1.0 and the output to each output 

processing element should be between 0.0 to 1.0. The following approaches have been 

adopted for normalizing the raw data to the pole balancing problem before using it in 

the neural network. 

(A) For input values: 

( i) el_ang...n = el_ang...r/max31_ang; 

where: 

el_ang...n = normalized value of the flexible pole's angle. 

el_ang...r = raw value of the flexible pole's angle. 

max_el_ang = largest absolute value of the flexible pole's angle. 

(ii) ri_ang...n = ri_ang...r/max_ri_ang; 

where: 

ri_ang...n = normalized value of the rigid pole's angle. 

ri_ang...r = raw value of the rigid pole's angle. 

max_ri_ang = largest absolute value of the rigid pole's angle. 

(iii) cart_ vel_n = care veCr/max_car_ vel; 

where: 

cart_ vel_n = normalized value of the cart velocity. 

cart_ veCr = raw value of cart velocity. 

max_cart_ vel = largest absolute value of cart velocity. 

(iv) cart_dis_n = cart_disJ/max_car_dis; 

where: 
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cart_dis_n = normalized value of the cart displacement. 

cart_dis_r = raw value of cart displacement. 

max_cart_dis = largest absolute value of cart displacement. 

(B) For output values: 

force_n = forceJ/max_force; 

where: 

force_n = normalized value of the force exerted to the cart. 

maxjorce = maximum value of the force exerted to the cart. 

= 15 Newton 

Since the output range is from 0.0 to 1.0 the author has used two output vectors 

in order for the network to identify the direction of the force (negative & positive values) 

as well as its magnitude. 

Example: 

For a normalized force of -0.5 the corresponding output data are 

0.5 and 0.0. 

0.0 indicates that the force is going left (-). 

For a normalized force of 0.5 the corresponding output data are 

0.5 and 1.0 

1.0 indicates that the force is going right (+). 

(5) Experiments must be carried out to train and test the neural network. The 

"architecture" is a specification of the neural network topology, with other attributes 

of the neural network such as the learning rule; activation function; update function; 

learning and momentum factors. It should be kept in mind that the number of hidden 

layers and number of nodes in each layer are problem dependent and are empirically 

selected. It is necessary to vary the parameters used in the neural network such as the 

learning rate, error tolerance, momentum, etc. in order to get the fastest convergence. 
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4.5. Discussions: The Neural Network Simulator 

This section describes the construction of the neural network software for the 

flexible pole-cart balancing problem. There are two algorithms used as a representative 

networks; the Backpropagation, and the Kohonen's Self Organizing Map. The code is 

presented as Appendix C. 

4.5.1. The Backpropagation Model 

The architecture of backpropagation neural network has been discussed ill 

section 4.2.2. For the problem of interest the input layer consists of four PE's because 

there are four input variables to the network. The output layer has two PE's since the 

neural network needs two outputs in order to identify the direction and magnitude of the 

force. In this program the best result was obtained by using two hidden layers, each layer 

consisting of eight PE's Csee figure 4.6 for the complete structure). The following 

equations [53] are used in the program; 

o = desired output pattern. 

x = output of input layer 

y = momentum parameter. 

A. = learning rate parameter for the hidden layer. 

11 = learning rate parameter for the output layer. 

Yj = fccExiW,[i][j]) +8) = outputofjth hidden layer PE. 

Z j = fccE YiW2[i][j]) +, ) = output of jth output layer PE. 

0i - Zi = ith component of vector output difference. 

ei = Zi Cl- Zi )COi - Zi) = ith component of output error at the output layer. 

ti = Yi Cl- Yi )c1: jW2 [i] [j]e j) = ith component of output error at the hidden layer. 
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AW2 [i]U] = !lYiej +yAW2 [i][Jl(t -1) = adjustment for weight between ith PE in 

hidden layer and jth output PE. 

AW,[i][j] = Ax,t j + yAW, [i]U](t -1) = adjustment for weight between ith input 

PE and jth PE in hidden layer. 

A-c j = !le j = adjustment to the threshold value or bias for the jth output PE. 

Aa j ="Ae j = adjustment to the threshold value or bias for the jth hidden layer PE. 

I 
f(x) = = thresholding function. 

(l+e- X
) 

The program needs the following information from the user: 

(a) Error tolerance - this is the difference between desired output and networks computed 

output. If this is attained the program simulation will stop. 

(b) Leaming parameter - used in scaling the adjustment to weights. 

(c) Maximum number of cycles" a cycle is one pass for the whole training data. This will 

insure the program stops even if the error tolerance is not attained. 

(d) The total number of layers. 

(e) The total number of processing elements for every layer. 

(f) Momentum parameter - used in scaling the adjustments from the previous iteration 

and adding the adjustments in the current iteration. 

(g) Noise" a random number added to each input component of the input vector as it is 

applied to the network. This will avoid getting stuck to local minima. 

The momentum and noise terms are described more fully in section 4.5.2. There· 

are two major processes to be undertaken to construct the backpropagation network. The 

fIrst one is the training process and the second one is the testing process. All of this 

processes use external fIles for data storage. The training process uses fIles input.dat, 

weights.dat, and results.dat. File input.dat contains exemplar pairs, or patterns. Each 

pattern has four input variables and two output variable (see table 4.1). Once the training 

process reaches the error tolerance or the maximum number of cycles, the program keeps 

the state of the network, by saving all its weights in fIle weights.dat. Results of the last 

pattern are stored in fIle results.dat. In the testing process the user will enter only the 
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number of layers of the network and the processing elements for each layer. The program 

has assumed that the network has already been trained. External files testing.dat, 

weights.dat and results.dat are used in this process. File testing.dat contains only the input 

patterns. When this file is presented to the network it then uses the weights from file 

weights.dat to evaluate the output. The outputs from the network for all input patterns 

are then generated and stored in the file results.dat. 

4.5.2. The Momentum and Noise Terms 

Addition of the momentum term to the training law is a simple change that 

sometimes results in much faster training process. The weight change, in the absence of 

error, would be a constant multiple of the previous weight change, i.e. the weight change 

continues in the direction it was heading [53]. The momentum term is an attempt to try to 

keep the weight change process moving, and thereby not get stuck in a local minima. The 

training law for backpropagation as implemented in this simulator is: 

WeightJhange = learning_rate * input * error _Ollput + 

momentumyarameter * previous _weight_change 

The second term in this equation is the momentum term. The momentum term 

could be implemented either using the weight change for the previous pattern or using the 

weight change accumulated over the previous cycle. Although both of these 

implementations are valid, the second is particularly useful, since it adds a term that is 

significant for all patterns, and hence would contribute to global error reduction. 

Another approach to avoid local minima is to introduce some noise in the input 

during training. A random number is added to each input component of the input vector as 

it is applied to the network. This is scaled by an overall noise factor, which has a value 

from 0 to 1. The noise factor is reduced at regular intervals because as the solution is 

closer and have reached a satisfactory minimum, it is not needed to interfere with 
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convergence to the minimum. In this simulation, noise factor decreases as the number of 

cycles increases. 

Elastic 
angle 

Rigid 
angle 

Cart 
velocity 

Cart 
displacement 

Figure 4.6 
Backpropagation neural network model for flexible 

pole-cart balancing system 
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4.5.3. Kohonen's Self Organizing Map Model 

The Kohonen model is composed of two layers. The input layer and the Kohonen 

layer (see figure 4.4). Information from the external environment is fed into the input 

layer. In this program the external information is solely the position of the pole. A rule 

based system is then used to search for the range of this position (maximum and minimum 

angle) and the equivalent force applied to the cart for this position. This inputs are fed into 

each of the processing elements in the Kohonen layer. The Kohonen layer uses a winner

take-all strategy. The processing elements with the highest output is the winner. Each 

processing element determines its output according to a weighted sum formula [53]: 

output = Ew;jxi • 

The weights and the inputs in this program are normalized, which means that the 

magnitude of the weight and input vectors are set equal to one. The reason for this is that 

the training law uses subtraction of the weight vector from the input vector and 

normalization reduces both vectors to unit-less status, and hence, makes the subtraction of 

like quantities possible. Normalization of a vector is obtained by dividing each component 

by the square root of the sum of squares of all the components. 

Example: let a vector V = k1x + k2y + k3Z ; sq = ~k12 + ki + k; 

then the normalized vector is : 

k1x k2y k3Z 
V =-+-+-

n sq sq sq 

The training law for the Kohonen model is straightforward. The change in weight 

vector for a given output neuron is given by the formula [10]: 

W new = Wold +a (J, - Wold ); where a = gain constant between 0 and 1. 

/, = Input vector 

The neighborhood size normally has an initial value and it will gradually be 

decreased as the input pattern cycles continue. The same is true for the gain constant a . 

This program uses two external files for data storage. The input patterns are stored in file 
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input.dat and the outputs of the network when the simulation finished are stored in ftle 

results.dat. In order to run the program the user must enter the following information. 

a) Neighborhood size. 

b) Gain constant a . 

c) Maximum cycles for the simulation; a cycle is one iteration through the data set. 

d) Period; this is the number of cycles after which the a and neighborhood sIZe 

decrement. 

e) The size of the input layer and the Kohonen layer. 

4.6. Discussion of Results 

The author conducted a number of different sets of experiments in this program. 

The training data consisted of 40 patterns (see table 4.1). Different methods were used to 

normalize the data and the best method being the one described in section 4.4. In the 

application of backpropagation algorithm a number of different layers and processing 

elements were tried. For a three layer architecture the simulation did not converge. Good 

results were obtained for four layers. The time of convergence depended on the number of 

processing elements in each hidden layer. The addition of momentum parameter and noise 

factor also helped the simulation to converge. In this program the best result was obtained 

using the following input parameters (see section 4.5.1 for parameter defmition). 

a) Error tolerance = 0.007039 

b) Learning parameter = 0.01 

c) Maximum number of cycles = 3050 

d) Total number of layers = 4 

e) Total number of processing elements for every layer 

(input hidden hidden output = 4 8 8 2) 

f) Momentum parameter = 0.01 

g) Noise factor = 0.05 
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Samples of the results of the backpropagation simulation are shown in tables 4.1 and 4.2 

The program for the Kohonen network is straightforward. Here the number of the 

processing elements of the Kohonen layer should be greater than the number of the 

processing elements of the input layer. During some training sessions the winning distance 

achieved an incorrect value, this was solved by reducing the initial value of the 

neighborhood size. In this program the best result was obtained using the following input 

parameters (see section 4.5.3 for parameter definition). 

A) Alpha = 0.6 

b) Neighborhood size = 10 

c) Period = 40 

d) Maximum cycle = 30. 

Samples of the results of Kohonen program are shown in table 4.3. 
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Table 4.1: Examples of the results of the backpropagation simulation using 2 
outputs. 

Samples of the training data for backpropagation mode/with 2 outputs 
(The first 4 columns are the input data and the last 2 are the desired output) 

(This is the training data used for examples 1.2.3. & 4) 

Example 1 
Inputs: 

a) Error tolerance = 0.007039 
b) Learning parameter = 0.01 
c) Maximum number of cycles = 3050 
d) Total number of layers = 4 
e) Total number of processing elements for every layer 

(input hidden hidden output = 4882) 
f) Momentum parameter = 0.01 
g) Noise factor = 0.05 

Outputs of example 1: 

Rigid pole Elastic pole Cart Cart 

109 

Force Force 



Example 2 

Inputs: 
a) Error tolerance; 0.0075 
b) Learning parameter; 0.01 
c) Maximum number of cycles; 2525 
d) Total number of layers; 4 
e) Total number of processing elements for every layer 

(input hidden hidden output; 4 12 12 2) 
f) Momentum parameter; 0.01 
g) Noise factor; 0.05 

Outputs of example 2: 

Rigid pole 
angle 

0.838203 
0.647774 
0.402434 
0.121891 
-0.459220 
-0.186079 
0.105567 
o. 

Example 3 
Inputs: 

, , 
, 
, 

INPUT VECfORS 
Elastic pole Cart 

angle disolacement 
0.846334 : 0.482706 
0.660336 0.685901 
0.413959 0.845998 
0.126050 0.952937 
-0.471551 0.368853 
-0.192290 0.125581 
0.109182 : -0.125581 
n _n 

a) Error tolerance; 0.0075 
b) Learning parameter; 0.01 

: 

c) Maximum number of cycles; 1360 
d) Total number of layers; 4 

Cart 
velocitv 

-0.866357 
-0.694884 
-0.457932 
-0.165491 
0.521115 
0.230196 : 

-0.146711 
_n "-'1fl1l91 : 

e) Total number of processing elements for every layer 
(input hidden hidden output; 4 1616 2) 

f) Momentum parameter; 0.01 
g) Noise factor; 0.05 

Outputs of example 3: 
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OUfPUT VALUES 
Force Force 

magnitude direction 
0.853668 0.999984 
0.693899 0.999962 
0.392296 0.999860 
0.167283 0.998675 
0.483844 0.000078 
0.176161 0.002150 
0.131581 0.991830 
n IR?Q?Q ' O.999Rl1 



Example 4 
Inputs: 

a) Error tolerance = 0.0075 
b) Learning parameter = 0.01 
c) Maximum number of cycles = 1394 
d) Total number of layers = 4 
e) Total number of processing elements for every layer 

(input hidden hidden output = 4 20 20 2) 
!J Momentum parameter = 0.01 
g) Noise factor = 0.05 

Outputs of example 4: 

ExampleS 
Inputs: 

a) Error tolerance = 0.0075 
b) Learning parameter = 0.01 
c) Maximum number of cycles = 5000 
d) Total number of layers = 3 
e) Total number of processing elements for every layer 

(input hidden output = 4 16 2) 
!J Momentum parameter = 0.01 
g) Noise factor = 0.05 

Outputs of example 5: 

(The simulation experience local minima at: error = 0.045711. max. cycles = 5000) 

INPUT VECfORS OUTPUT VALUES 
Rigid pole Elastic pole Cart Cart Force Force 

aneJe an~le disolacement velocitv m~nitude direction 
0.838203 0.846334 0.482706 -0.866357 0.709629 1.000000 
0.647774 0.660336 0.685901 -0.694884 , 0.678095 1.000000 
0.402434 0.413959 0.845998 -0.457932 0.571376 1.000000 
0.121891 o J?/\0'i0 09<;2917 -0 1/\<;491 o. :0 
-0.459220 -0.471551 0.368853 0.521115 0.632237 : 0.000001 
-0.186079 -0.192290 0.125581 0.230196 0.630291 : 0.000390 
0.105567 0.109182 

, 
-0.125581 -0.146711 0.605158 ' 0.998291 

0 11 _11 _11 Ill\1MRl '11 
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Table 4.2: Example of the results of the backpropagation simulation using I 
output. 

Example 6 

Samples of the training data for hackpropagation model with one output 
(The fIrst 4 columns are the input data and the last I is the desired output) 

(This is the training data used in example 6) 

Inputs: 
a) Error tolerance = 0.0075 
b) Learning parameter = 0.01 
c) Maximum number of cycles = 4000 
d) Total number of layers = 4 
e) Total number of processing elements for every layer 

(input hidden hidden output = 416161) 
j) Momentum parameter = 0.01 
g) Noise factor = 0.05 

Outputs of example 6: 
(The simulatiou experience local minima at: error = 0.082327. max. Cycles = 4000) 

(When maximum cycles reached 4388 the weights blown up and the program stopped) 

INPUf VECTORS OUIPUT VALUES 
Rigid pole , Elastic pole Cart Cart Force magnitude 

am>le 
, 

angle displacement velocity and direction 
0.838203 0.846334 0.482706 -0.866357 0.856467 
0.647774 0.660336 0.685901 -0.694884 0.744855 
0.402434 0.413959 0.845998 -0.457932 0.296580 
0.121891 0.126050 0.952937 -0.165491 0.340751 
-0.459220 -0.471551 0.368853 0.521115 0.000000 
-0.186079 -0.192290 0.125581 0.230196 0.000000 
0.105567 0.109182 -0.125581 -0.146711 0.067407 
n 0 -0 -0 04'll1? 

112 



Table 43: Examples of the results of the Kohonen's simulation. 

, 
Actual angle : Max. Angle Min. Angle: Force Cycles 

Input data 0.002000 0.003000 0.00 I 001 0.200000 
Output pattern 0.002000 : 0.002996 0.OOlO04 0.200011 7 

: 

Input data 0.003500 : 0.006000 
: 

0.00300 I 0.300000 
Output pattern 0.003499 0.005995 

: 
0.002995 : 0.300068 7 

: 

Input data 0.355000 0.357000 
: 

0.354000 12.000009 
Output pattern 0.355012 0.357029 0.354005 11.997595 1 

: 

Input data 0.200000 0.201000 0.198001 6.799996 
Output pattern 

, 
0.200040 0.201061 0.198270 6.794923 3 

4.7. Summary 

This chapter has demonstrated the use of neural networks in the control of a highly 

nonlinear system. A computer simulation of a neural network controlling a model of a 

cart balancing a flexible pole under its first mode of vibration has been presented. The 

backpropagation algorithm and Kohonen's self organizing map had been used as neural 

network examples. The networks leamed from a set of training data taken from the 

results of a computer simulation of the derived dynamics of the flexible pole-cart 

balancing system (see chapter 4). 

The next chapter of this thesis shows the application of a neural network based 

controller to a real physical flexible pole-cart balancing system. 
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CHAPTERS 

On Line Application of Neural Networks to the Flexible Pole
Cart Balancing Problem 

5.1. Introduction 

This chapter presents an on line neural-net based hybrid controller that controls a 

cart balancing a flexible pole under its fIrst mode of vibration. The networks learned from 

a set of training data derived from a real system and were initially tested against a 

computer simulation of the derived dynamics of the flexible pole-cart balancing system and 

then applied to the real system. The architecture of the neural network is the same as that 

described in section 4.5.1 with the force output directly mapped to a voltage required by 

the actuator in controlling the motion of the cart (see figure 5.4). The controller developed 

had been tested on the physical system and it not only balances the elastic pole for infmite 

time but also brings the cart nearly to the centre of the track. The controller can still 

balance the system even if external disturbances are applied to the plant (i.g., pushing the 

pole in any direction, elevating and shaking the track on either side, etc.). The system can 

also be initialised anywhere on the track. The controller's action is sufficiently fast that it 

can balance the system at an initial angle of -19.8 degrees. This is superior to the 

performance of even rigid pole controllers such those of [3, 4, 5, 6, 9, 10, 11]. The real 

physical system was constructed by the Quanzer Consulting Company to the authors 

specification. It was the first such system to be built. Results of experiments on the system 

are shown in section 5.4. 

This chapter begins with the discussion of the hardware architecture of the real 

flexible pole-cart balancing system and it follows with the application of the neural 

network. The results of the physical experiments at different conditions are presented. 
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5.2. The Physical Architecture of the Flexible Pole-Cart Balancing 
System 

A photograph of the real system and the hardware architecture are shown in 

figures 5.1 and 5.2. The specifications of the physical system are given below. Appendix B 

also describes the proprietory control system. 

• Track length = 91.4 cm 

• Pole length = 41.0cm 

• Mass of the cart & camera sensor = 0.755 kg 

• Additional load on the tip of the pole = 0.35 kg 

• Period of the elastic pole = 2 seconds 

• Camera system = coupled at the base of the pole and a light bulb is attached to the 

tip of the pole. 

In the real physical system a camera system is used to detect the deflection of the 

pole. This is coupled at the base of the flexible pole and will detect the light coming from 

the bulb attached to the tip of the pole. The deflection of this light corresponds to the 

deflection of the pole. A potentiometer is attached to the base of the elastic pole in order 

to obtain its angular position. To determine the distance travelled by the cart, another 

potentiometer is attached to the wheel that rolls on the track. The values of these sensors 

are then fed to the computer via an analog to digital / digital to analog converter (AD/DA 

converter) see figure 5.2. In order to make the problem more complex an additional load 

was attached on the tip of the pole equivalent to 0.35 kilograms. This has the effect of 

increasing the period of the elastic pole to 2 seconds. 
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Figure 5.1 
A photograph of tire real flexible pole-cart balancing system 
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Figure 5.2 
Hardware architecture of the real flexible pole·cart balancing system 
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5.3. Application of Neural Network Model to the Flexible Pole-Cart 
Balancing System 

Figure 5.3 shows the on line hybrid controller block diagram for the flexible pole-
, . 
cart balancing problem. The backpropagation controller described in section 4.2.2 was 

applied to the real system with the outputs directly mapped as voltages to the actuator 

(see figure 5.4). The training data was taken from observations of the inputs and outputs 

of the real system with its existing controller. Discussions of the training and testing 

process of this controller was similar to that shown in section 4.5. The backpropagation 

based controller successfully balanced the pole for a limited period. However, this control 

system frequently failed due to the cart running out of track. In order to solve this 

problem, a hybrid control system (see figure 5.3) was then applied to the physical system, 

the backpropagation system being overridden in extreme cases by a small rule based 

supervisory system that periodically corrected extreme angles of the pole that caused the 

cart to decentralise on the track. 

It can be seen from figure 5.5 that the feedforward neural network 

(backpropagation algorithm) used to control the system has 2 hidden layers. Each hidden 

layer has 8 processing elements (neurons). The input layer has 4 processing elements and 

the output layer has 2 processing elements. The actual value of the weights connecting 

each processing element is shown in table 5.1. Here, the leftrnost value corresponds to the 

nwpber of the layer and the number of lines having the same leftrnost value corresponds to 
, 

the number of processing elements for that layer. For example, the first four lines have a 

leftn10st value of 1. The number one corresponds to the first layer, and the four lines 

correspond to the four processing elements of this layer. The next 8 lines have a leftrnost 

value of 2 indicating the second layer, and the last 8 lines have a leftrnost value of 3 for 
. I 

the third layer. 

The values next to the leftrnost number on each line correspond to the weights that 

connect a processing element of that layer to all of the processing elements of the next 

layer. For example, each processing element of the first layer is connected to 8 processing 

elements of the second layer, hence, there are 8 values next to the leftrnost number 1. The 
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same is true for the second layer, each processing element is connected to 8 processing 

elements of the third layer, hence, there are 8 values after the leftmost number 2. Finally, 

the third layer has only two values after number 3 because each processing element is 

connected only to the two processing elements of the output layer. It is worth noting that 

the arrangement of the weight values are sequential, meaning, a processing element of a 

layer is connected to the flrst processing element, second processing element, third 

processing element, and so on, of the next layer. The flrst line of the same leftmost value 

corresponds to the flrst processing element of this layer, the second line corresponds to 

the second processing element of this layer, etc. 

Table 5.2 describes the rule base of the evaluator used to correct extreme 

behaviours of the neural network. 

In 

E 
NEURAL -NETWORK 

l 

I 
BASED LEARNING Out o[pi·ANT····f-P 

CONTROLLER 
(FNN) 

L ...................................................................... 
PERFORMANCE 

EVALUATOR 

Figure 5.3 
Hybrid controller block diagram for theflexible 

pole-cart balancing problem (on line) 
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Figure 5.4 
8ackpropagation neural network model for the flexible 

pole-cart balancing problem (on line) 
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TableS.l 
The values of the weights connecting each processing element of the on line feedforward 

neural network control/er 

1 -0.188662 -14.036287 -3.352839 -2.473303 1.985948 19.490234 11.2394980.481953 

14.956312 -2.398801-4.827594 -7.715945 0.969971 0.219576 0.509925 -12.291900 

11.993420 -2.410884 -16.832338 9.828149 0.335660 1.427019 -0.122610 -14.757426 

17.953069 -4.432342 7.229471 0.493617 1.000431 -0.1477545.767792 -7.396082 

2 -2.260085 2.721589 -0.6173010.991330 -7.7967851.129860 5.016824 -3.787388 

2 -0.694484 -13.195033 -4.532439 4.279198 1.135099 3.270727 -7.059445 -2.270613 

2 -7.269268 -14.795992 -4.052489 5.050180 1.482505 1.696126 -2.924294 2.483483 

25.7670201.752683 -0.8564981.665344 -7.655233 -3.964407 -0.737276 -3.415481 

20.0086740.9329361.6786310.618250 -3.230417 0.894155 -1.421489 -1.976010 

20.980527 13.2689605.889343 -1.131561 0.221078 -7.700460 0.936903 3.213932 

20.08794110.6571674.582888 -0.344960 -2.3307511.065558 -0.837586 -1.921857 

22.037073 -14.794135 -5.3769023.6220927.990932 1.187436 1.665400 3.076303 

3 -0.107427 -8.428615 

3 1.92341826.984537 

3 -7.034989 -0.344512 

3 0.184818 -5.594577 

33.655073 10.139201 

3 -1.026488 -8.348601 

3 8.367657 1.654985 

3 -0.067262 6.702623 
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Rulel 

Rule 2 

Rule 3 

Rule 4 

Rule 5 

Rule 6 

Rule 7 

Rule 8 

TabkS.2 
The rule based evaluator 

If (pole angle> 2.31 degrees) then applied voltage = 5.0. 

If (pole angle < -2.31 degrees) then applied voltage = -5.0. 

If(pole angle> 1.01 degrees) and (pole angular velocity> 0.01 deg/s) 

then applied voltage = 3.0. 

If (pole angle < -1.01 degrees) and ( pole angular velocity < -0.01 deg/s) 

then applied voltage = -3.0. 

If(displacement of the cart> 14 cm.) and (velocity of the cart> 

0.01 cm/sec)and (pole angle> 1.01 degrees) 

then applied voltage = 2.0. 

If (displacement of the cart> 14 cm.) and (velocity of the cart < -0.01 

cm/sec) and (pole angle> 1.01 degrees) 

then applied voltage = I .1. 

If(displacement of the cart < -14 cm.) and (velocity of the cart < -0.01 

cm/sec) and (pole angle < -1.01 degrees) 

then applied voltage = -0.5. 

If(displacement of the cart < -14 cm.) and (velocity of the cart> 0.01 

cm/sec)and (pole angle < -1.01 degrees) 

then applied voltage = -0.2. 

It can be seen from these rules that rules 1 to 4 take care of balancing the pole 

under extreme conditions, rules 5 to 8 bring the cart to the centre of the track. Rule 1 is 

the condition when the pole angle inclines more to the right, while rule 2 inclines more to 

the left. Rules 3 and 4 is the condition when the pole move fast towards the inclination. 

Rule 5 is the condition when the cart stays to the right, pole angle inclines to the right, and 

the cart moves to the right. Rule 6 is the same as rule 5 but the cart moves to the left. Rule 

7 is the condition when the cart stays to the left, pole angle inclines to the left, and the cart 

moves to the left. Rule 8 is the same as rule 7 but the cart moves to the right. 
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5.4. Results of the Physical Experiments 

In this work the author conducted several experiments on the real physical system. 

The graphs of figures 5.5(i) to 5.15(i) show the actual behaviour of the flexible pole-cart 

balancing system under different conditions. Each of these graphs depicts the motion and 

position of the system at any time, the X-coordinate. The Y-coordinate corresponds to the 

measurements of the angle of the pole in degrees, the deflection of the pole in centimetres, 

and the location of the cart on the track in centimetres. 

The motion of the cart can be analysed by reviewing the graph of the cart 

displacement. The graph of the pole angle and the pole deflection shows the motion and 

position of the flexible pole on top of the cart. For example, figure 5.5(i) shows the 

behaviour of the system when it was initialised at -19.8 degrees. Here, in order to balance 

the flexible pole, the cart moves quickly to the left direction and after 0.4 seconds the pole 

angle reached 4 degrees. To bring back the pole angle to the centre the cart then moved 

back to the right. The system then stabilised after 0.7 seconds and the controller tried to 

bring the cart to the centre of the track. Also, it can be seen from this figure that the faster 

the motion of the cart, the larger is the deflection of the pole. 

Figures 5.7(i) and 5.8(i) show the behaviour of the system when it was initialised 

nearly at the end of the track. The controller effectively balances the flexible pole and 

gradually brings the cart to centre of the track. In figures 5.14(i) and 5.15(i) the controller 

still balances the system even when the system is initialised at the extreme end of the track 

with the pole inclined over the end of the track. The controller developed was tested to 

establish how it react to external disturbances applied to the flexible pole. Figure 5.9(i) 

shows the behaviour of the system when an external force is applied to the pole. Here, at 

2.75 seconds the pole was pushed to the left. Immediately the controller reaction was to 

move the cart quickly to the left. The controller easily stabilises the system and brings 

back the cart to the centre of the track. 
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External disturbances to the track were also applied to the system. Figures 5.l0(i) 

and 5.11 (i) show the graphical results of the behaviour of the system when the right and 

left ends of the track were elevated. Here, the controller balances the pole easily and the 

cart oscillates around the centre of the track. Figure 5.l2(i) shows the graphical result of 

the behaviour of the system when the track was shaken randomly laterally and figure 

5.13(i) shows the behaviour of the system under normal operation. It should be 

emphasised that for all of the test cases presented the controller developed was able to 

control the system for infinite time. This represents an improvement on the Quanzer 

controller, particularly the results shown in figures 5. 14(i) and 5.15(i). 
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Figure 5.5(i) 
Initial angle at -19.B degrees 
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Figure 5.5(ii) 
Initial angle at -19.B degrees 
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Figure 5.6(i) 
Initial angle = 15.4 degrees 
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Figure S.7(i) 

Cart started almost at left end of the track 
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Figure S.7(ii) 
Cart started almost at left end of the track 
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Figure S.7(iii) 
Cart started almost at left end of the track 
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Figure S.8(i) 
Cart started almost at right end of the track 
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Figure 5.8(ii) 
Cart started almost at right end of the track 
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Figure 5.8(iii) 
Cart started almost at right end of the track 
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Figure 5.9(i) 

Applying external forces to the pole 
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Figure 5.9(ii) 
Applying external forces to the pole 
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Figure 5.10(ii) 
Elevating the right end of the track 
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Figure 5.10(iii) 
Elevating the right end of the track 
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Figure 5.11(i) 
Elevating the left side of the track 
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Figure 5.11(ii) 
Elevating the left end of the track 
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Figure 5.12(i) 
Applying e)(\ernal forces to the track 

~ 
5 6 

25r-------r-------~------~------~,------~~------~ 

E 
.8. 20 
'" .., 
co 

'" u; 
(5 15 

-

-5L-----~------~------~------~------~----~ o 1 2 3 4 5 6 
Time in seconds 

134 



Figure S.12(ii) 

Applying e)(ternal forces to the track 
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Figure S.12( iii) 
Applying e)(ternal forces to the track 
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Figure 5.13(i) 
Normal operation 
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Figure 5.13(ii) 
Normal operation 
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Figure S.13(iii) 
Normal operation 
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Figure S.14(i) 

Initial distance = -40.1 cm. Initial angle = -9.4 deg 
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Figure S.14(ii) 
Initial distance = ·40.1 cm. Initial angle = ·9.4 deg 
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Figure 5.15(i) 
Initial distance = 38.5 cm. Initial angle = 3.4 deg 
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Initial distance = 38.5 cm, Initial angle = 3.4 deg 
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5.5. Summary 

An on line reinforcement learning hybrid neural network controller was developed 

to balance a flexible pole hinged root on top of the cart moving along a limited track. The 

physical experiments show that the controller not only balances the flexible pole but also 

brings the cart to the centre of the track for infinite time. The learning controller 

developed is sufficiently robust to control the system at different initial pole angles and 

different initial cart positions on the track. The stability. flexibility. and adaptability of this 

learning controller was tested by applying external disturbances to the plant. 

The next chapter of this thesis discusses the development and test of an on line 

intelligent controller that controls the flexible pole-cart balancing system without knowing 

the mathematical descriptions of the dynamics of the system. using a fuzzy logic control 

system. 
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CHAPTER 6 

Multiple Fuzzy Logic Systems: An on line controller for the 
Flexible Pole-Cart Balancing Problem 

6.1. Introduction 

Classical controllers are designed on the basis of mathematical descriptions such as 

differential equations or transfer functions. while modern controllers use first order vector 

matrix differential equations based on the state space method [54]. In these techniques. a 

controller designer has to possess extensive knowledge of both mathematics and the 

system under control. However. an experienced person can skillfully control vehicles, 

machines and manufacturing plants even though the systems under control are very 

complex and nonlinear. These experts mostly use know-how which has been gathered 

from experience. This suggests that there is another technique which can facilitate the 

control of a complicated system without knowledge of its mathematical description. This 

technique is popularly known as fuzzy logic control - the use of fuzzy inference to control 

a system. 

The concept of fuzzy logic was introduced by Zadeh in 1965 [55]. This system is 

unique in that it is able to simultaneously handle numerical data and linguistic knowledge. 

It is a nonlinear mapping of an input data vector into a scalar output. i.e. it maps numbers 

into numbers but fuzzy set theory and fuzzy logic establish the specifics of the nonlinear 

mapping [56]. The applications of this technique are multi-disciplinary in nature. These 

include. for example. automatic control. consumer electronics. signal processing. 

information retrieval. time series prediction. database management. computer vision. data 

classification and decision making [57]. The application of fuzzy logic to control 

problems was introduced by Mamdani in 1975 [59.59]. 

This work presents the flexible pole-cart balancing problem as a testbed for fuzzy 

logic applications. Here. the objective is to develop and test an on line fuzzy logic 
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controller that predicts the value of the force applied to the cart at any given time in 

order to balance the flexible pole hinged at its root on top of the cart. In this work 

multiple fuzzy logic systems have been used to fuzzify the input data from the 

environment. There are six input data to the system (the elastic pole deflection, deflection 

velocity, angular position, angular velocity, cart displacement, and cart velocity). Results 

of the physical experiments are shown graphically in section 6.9.2. 

This chapter begins by the discussion of the concepts and architecture of a fuzzy 

logic systems and it continues by the development of a fuzzy logic controller for the 

flexible pole-cart balancing problem. The results of on line experiments conducted on this 

controller are presented. 

6.2. Fuzzy Logic System 

A fuzzy logic system is a system design that is based on how the human brain 

thinks. It arose from the desire to describe complex systems with linguistic description 

[54]. Fuzzy logic looks at the world in imprecise terms in much the same way that our 

own brain takes in information. The information is described in terms of fuzzy linguistic 

terms. These fuzzy linguistic terms are called fuzzy sets and can be regarded as sets of 

singletons, the grades of which are not only 1 but also ranging from 0 to 1. Each singleton 

is an element of fuzzy sets. 

The concept of fuzzy sets is made precise through the definition of an associated 

membership function. This membership function indicates a grade of membership of each 

element (physical value) in a fuzzy linguistic term of interest. Fuzzy membership functions 

are the mechanism through which the fuzzy system interfaces with the outside world [60]. 

The domain of the membership function is the set of possible values for a given variable. 

The possible output values of the membership function is the set of all real numbers from 

o to 1. A typical choice of the shape of the fuzzy membership function is a triangular, 

trapezoidal, or a gaussian function. 
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Fuzzy sets can be combined through fuzzy rules to defIne specific actions. The 

fuzzy system can provide insight into their own operation because the fuzzy rules provide 

a commonsense description of the system own action. The technique used to store and 

represent fuzzy rules is the fuzzy associative memory matrix (see section 6.6). This matrix 

may have dimensions higher than two. Usually the number of inputs, or antecedents, to 

the fuzzy rules determines the dimension of the matrix. 

Figure 6.1 depicts a fuzzy logic system that is widely used in fuzzy logic 

controllers and signal processing applications [56]. It contains four components: fuzzifier, 

rules, inference engine, and defuzzifier. Once the rules have been established, a fuzzy logic 

system can be viewed as a mapping of inputs to outputs. 

Rules are expressed as a collection of IF-THEN statements, e.g. IF the cart 

position is far left and the pole angle inclined more to the right THEN apply a force 

to the right. This rule reveals that it is necessary to understand linguistic variables versus 

numerical values of a variable (e.g., angle inclined more to the right versus 20 degrees). It 

is also necessary to quantify linguistic variables (e.g., how much force will be applied to 

the right). This can easily be done using fuzzy membership functions (see section 6.7). 

The fuzzifier maps crisp input numbers into fuzzy sets. It is needed in order to 

activate rules which are in the terms of linguistic variables, which have fuzzy sets 

associated with them. The inference engine maps fuzzy sets into fuzzy sets. It handles the 

way in which rules are combined. The defuzzifier maps output set into crisp numbers (e.g., 

in control application, such a number corresponds to the control action). 
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6.3. The Flexible Pole-Cart Balancing System 

The task of the flexible pole-cart balancing system is to balance an elastic pole that is 

hinged on a movable cart [72, 73, 74, 75]. It is assumed that the hinge is frictionless. The 

cart is allowed to move along a track with limited length and that has friction. Forces of 

different magnitude are applied to the cart in either a left or right direction to balance the 

pole. Figure 3.1 shows the diagram of the dynamics of the system. As has been described 

earlier, in the real physical system (see section 5.2), the length of the track that the cart 

can travel is 91.4 cm. The length of the pole is 41.0 cm. The total mass of the cart and the 

camera sensor is 0.755 kg. An additional load of 0.35 kg is attached on the tip of the pole 

to increase its elastic deflection to make the control problem more testing. 

6.4. Processes Involved in the Formulation of the Flexible Pole

Cart Balancing Control: Fuzzy Logic Perspective 

This section describes the various processes involved in formulating the problem 

from a fuzzy logic perspective and provides a specification of the application of a fuzzy 

logic controller to the flexible pole-cart balancing system. These processes are briefly 

discussed below. 

It is important to know all the variables to be used in the controller including the 

input data, the variables within the fuzzy rules (e.g. antecedents and consequents) and 

their maximum and minimum values. In this controller, there are 6 input data (the cart 

displacement, cart velocity, pole deflection, pole deflection velocity, pole angle, and pole 

angular velocity). The rules have 2 variables for the antecedents and 7 variables for the 

consequents. It has been found helpful sub-divide the complex problem into its elements. 

Therefore cart displacement, pole angle, and pole deflection are handled separately, to 

make the controller design simple. 
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It is necessary to establish the shape of membership function suitable for describing 

each problem element (triangular, trapezoidal, gaussian, etc.) and number of regions and 

their range for each membership function. The shape is not necessarily the same for each 

problem element. The number of membership functions corresponds to the number of the 

input regions of the fuzzy rules. In this controller, there are 5 regions created (see section 

6.7) to limit the usage of computer memory which increases with the number of fuzzy 

rules and regions. 

It is also important to know the strategy to be used in selecting useful sets of fuzzy 

rules and the conjunctions within the rules. Knowledge of how and when to combine more 

than one rule is helpful. In this controller each fuzzy logic system has only 13 rules (see 

section 6.6). Note that, in this application, we are particularly concerned with cart 

position if the cart is in the negative, left, part of the track and heading further left, or in 

the positive, right, track and heading further right. Similarly, if the pole angle and 

deflection is too large or changing too fast, this should be corrected regardless of the 

location of the cart on the track. In this controller we have used 6 variables and 5 input 

regions. If all of these variables were used in the antecedents and 5 regions are adopted for 

each variable, 56 = 15625 rules must be examined. It is impossible for the designer to 

generate this large rule set. In order to cope with this problem, the number of variables 

must be reduced. In order to achieve this the author has implemented multiple fuzzy logic 

systems (see section 6.5). 

Any controller must be tested until it works as effectively as possible. The effect 

of varying the fuzzy rules, the variables and the range of the values and shape of the 

membership functions was explored by experiment. It was also found necessary to check 

the values of the sensors (e.g. the input data). 
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6.5. Application of Fuzzy Logic Controller. to the Real Physical 

Flexible Pole-Cart Balancing System 

Figure 6.2 shows the fuzzy logic controller generated for the flexible pole·cart 

balancing problem. 5 fuzzy logic systems (FLS) and a rule based evaluator are used to 

control the flexible pole-cart balancing system. The architecture of the fuzzy logic systems 

is shown and discussed in full in section 6.2. The importance of using multiple FLS is to 

minimize the memory consumption of the computer, and each FLS serves as a good fIlter 

to the noise on the input data. FLS 1 is a fuzzy logic system that maps the cart 

displacement and cart velocity to the crisp output1. Crisp outputl corresponds to the crisp 

numerical value that will compensate for the effect of the movement of the cart on the 

overall system. FLS2 is a fuzzy logic system that maps the pole angle and angular velocity 

to crisp output2. Crisp output2 corresponds to the crisp numerical value that will 

compensate for the effect of the movement of the flexible pole on the overall system. 

FLS3 is a fuzzy logic system that maps the pole's deflection and deflection velocity to 

crisp output3. Crisp output3 is the crisp numerical value that will compensate for the 

effect of the movement of the flexible pole, due to its deflection and deflection velocity, on 

the overall system. 

Since the contribution of the effects of crisp output2 and crisp output3 to the 

plant are similar, the two of them can be fuzzified further using FLS4. This maps crisp 

output2 and crisp output3 to crisp output4. Crisp output4 is the crisp numerical value that 

will compensate the fuzzified effect of the movement of the pole due to its angular 

position, angular velocity, deflection, and deflection velocity, on the overall system. In 

order to obtain the overall crisp value that will compensate the effect of the total 

movement of the system, crisp outputl and crisp output4 map to crisp output5 through 

FLS5 which will fuzzify further the fuzzified effect in FLSl and FLS4. The FLS5 process 

fIlters the noise on the final data required to control the system. Finally, to ensure that the 

cart stays at the center of the track a rule based evaluator (see figure 6.2) is used to 

evaluate the condition of the plant. The evaluator adds additional constant forces to those 
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supplied by the fuzzy system when the cart exceeds particular displacements. The output 

of the rule based evaluator is then fed to the plant for appropriate action. External 

disturbances can be applied to the plant at any time without affecting the performance of 

the controller. 

6.6. Fuzzy Associative Memory (FAM) Matrix 

The FAM matrix is a method of storing and representing fuzzy rules. In this 

controller, each fuzzy logic system (FLS) has two inputs. Each input variable has 5 fuzzy 

sets associated with it, which are labeled NL (negatively large), NS (negatively small), ZE 

(zero), PS (positively small), and PL (positively large). Note that here ZE is a fuzzy set 

that would typically represent a range of values near 0, not just a single numerical value 0. 

The output variable has 7 fuzzy sets associated with it: NL (negatively large), NM 

(negatively medium), NS (negatively small), ZE (zero), PS (positively small), PM 

(positively medium), and PL (positively large). The number of inputs, or antecedents, to 

the fuzzy rules determines the dimension of FAM matrix. Thus, in this controller we are 

using a 2 dimensional FAM matrix. 

Note that, we are particularly concerned with the pole position if the pole angle is 

too large and increasing. The same is true for its deflection. These need to be corrected 

regardless of the location of the cart in the track by applying maximum force to the cart 

with the same direction as the inclination of the pole. Similarly, if the cart is too near the 

end of the track, this should be corrected regardless of the state of the flexible pole (angle 

and deflection) by applying maximum force to the cart towards the end of the track, 

making the flexible pole incline more in the other direction, thus in turn allowing the 

controller action to balance the flexible pole by applying more force to the opposite side of 

the cart and at the same time bringing it to the center of the track. 

TheFAMmatrix for FLSl is shown in table 6.1. This is used to fuzzify the cart's 

displacement and velocity to obtain a crisp result (output) that can compensate the effect 
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of the dynamic movement of the cart (due to its displacement and velocity) on the system. 

These rules can be interpreted as : 

• 
Rulel : IF X is NL and X is NL THEN the output result is NL. 

Rule2 : IF X is NL and X is ZE THEN the output result is NM . 

• 
Rule3 : IF X is NL and X is PL THEN the output result is PS. 

and so on 

Note that: 

X = the displacement of the cart . 

• 
X = the velocity of the cart. 

The FAM of the other FLS's are shown in tables 6.2 to 6.5. The operations of these are 

similar to table 6.1. 
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Figure 6.2 
Multiple fuzzy logic controller block diagram 
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. 
x 

NL NS ZE PS PL 
NI NT. NM P." 
NI;: ~7uI ~" 

x ZE NS ZE PS 
PS PS PM 
PI N.IO' PM PT. 

Table 6.1 
(Fuzzy associative memory matrix for FLSl) 

• e 
NL NS ZE PS PL 

NL NL ZE ZE 
NS NM NS 

e ZE NS ZE PS 
PS PS PM 
PL ZE ZE PL 

Table 6.2 
(Fuzzy associative memory matrix for FLS2) 

This is used to Juzzify the pole's angle and angular velocity to obtain a crisp result 
(output) that will compensate the effect of the movement of the pole (due to its angular 

position and angular velocity) to the entire system. 
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D 

NL NS ZE PS PL 
NL NL ZE ZE 
NS NM NS 

D ZE NS ZE PS 
PS PS PM 
PL ZE ZE PL 

Table 6.3 
(Fuzzy associative memory matrix/or FLS3) 

This is used to fuzzify the pole's deflection and deflection velocity to obtain a crisp 
result (output) that will compensate the effect of the movement of the pole (due to its 

deflection and deflection velocity) to the entire system. 

8 fs8 

NL NS ZE PS PL 
NL NL NS PS 
NS NM PS 

• 
DfsD ZE ZE ZE ZE 

PS NS PM 
PL NS PS PL 

Table 6.4 
(Fuzzy associative memory matrix/or FLS4) 

This is used to fuzzify further the fuzzijied effect of the movement of the pole's angle 
and angular velocity with the fuzzijied effect of the movement of the pole's deflection 

and deflection velocity to obtain a crisp result (output) that will compensate the effect of 
the movement of the pole (due to its angular position, angular velocity, deflection, and 

deflection velocity) to the entire system. 
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<8 fs 8) fs <D fs D) 

NL NS ZE PS PL 
NL NL NM NS 
NS NM NS 

X fsX ZE NS ZE PS 
PS PS PM 
PL PS PM PL 

Table 6.5 
(Fuzzy associative memory matrix/oT FLSS) 

This is used to fuzzify further the fuzzified effect of the movement of the pole's angle, 
angular velocity, deflection, and deflection velocity with thefuzzified effect of the 

movement of the cart's displacement and velocity to obtain a crisp result (output) that 
will compensate the effect of the total movement of the entire system. 
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6.7 .. Membership Functions (MF's) 

Membership functions map each element of "universe of discourse" to a 

continuous membership value (or membership grade) between 0 and 1. The "universe of 

discourse" may contain either discrete objects or continuous values. In this controller 

each membership function is sampled to discrete grades, whose representation depends on 

the type of input variables (e.g., -5.0 to 5.0 centimeters for the cart displacement, -5.0 to 

5.0 degrees for the pole angle, etc.). The shape and the regions of the membership 

function can be changed by reassigning its grade distribution as shown in figures 6.3 to 

6.5. Determination of the shapes of each membership function usually requires some trial 

and error [60]. The exact shape of the functions, as well as where they intersect the 

horizontal axis and how much overlap exists between adjacent functions, is open to 

experimentation. 

There are two shapes of membership functions used in this controller (see section 6.9.1). 

1. Trapezoidal MF's specified by four parameters {a,b,c,d} which determine the x 

x-a d-x 
coordinate as follows: trapezoid(x; a,b,c,d) = max(min(--,l,--),O) (6.1) 

b-a d-c 

2. Triangular MF's specified by three parameters {a,b,c} which determine the x 

x-a c-x 
coordinate as follows: triangle(x; a,b,c) = max(min(--,--),O) (6.2) 

b-a c-b 

The leftrnost and rightrnost regions of the MF of figures 6.3 to 6.5 are an open 

trapezoid whose values for d and c are equal to O. Other shapes of MF are triangles. 

Obviously a triangular function is a special case of a trapezoidal function. 
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1 

Figure 6.3 
Membership functions for the cart's displacement 

1 

Figure 6.4 
Membership functions for the cart's velocity, pole's angular position, and pole's 

angular velocity 

1 

Figure 6.5 
Membership functions for pole's defiection, and pole's defiection velocity 
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6.8. Defuzzifier 

A defuzziller is a way of obtaining a detenninistic value, in the universe of 

discourse, from a fuzzy value (membership function). The most popular method of 

defuzzification is a center-of-gravity method [61, 62]. In this research our "universe of 

discourse" contains discrete objects, thus our membership function is represented by a 

sampled data (a set of elements). The center-of-gravity (C.G.) for discrete membership 

functions can be calculated using equation 6.3 . 

• Eo, 'Il, 
i .. 1 

Crisp output = C.G. = -=-.-- (6.3) 

Ell, 
j",l 

where n represents the number of elements of the sampled membership function, Il, the 

grade of ith element, and 0, the output variable of the ith fuzzy set. The maximum value 

of n is equal to the total number of fuzzy rules in the FLS. The value of Il, can be 

calculated using equation 6.1 or 6.2. For this particular system the output variable 0, has 

7 fuzzy sets associated with it. (e.g. NL,NM,NS,ZE,PS,PM,PL). The value of the output 

variable is based on the voltage capacity of the actuator, hence has specific values in volts: 

NL = -4.75, NM = -2.65, NS = -1.35, ZE = 0.0, S = 1.35, PM = 2.65, PL = 4.75. 

These values were derived through experimental observation of the flexible pole-cart 

balancing process. 
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6.9. Results of the Physical Experiments 

6.9.1. Discussion and analysis 

The author conducted a number of different sets of experiments in this work. The 

fIrst experiment was to attempt to develop a single fuzzy logic system (FLS) to control the 

plant (the flexible pole-cart balancing system). The application of this controller was not 

encouraging. The controller was very sensitive to noise from the pole deflection as the 

values of the deflection of the pole and the deflection velocity can vary abruptly. In order 

to further elirninate this noise a controller was built with multiple FLS. This technique is 

effective because each FLS acts as a noise fIlter. 

In this work, different total numbers of fuzzy rules were also applied. Attempts 

were made using 27, 75, 135 rules, etc. Unfortunately the results of the application of 

these controllers are not appropriate because increasing the number of rules increased the 

memory consumption of the computer program. Attempts to change the number of input 

regions (number of membership functions) to 3 regions did not give encouraging results. 

Best results were obtained using 5 regions (see fIgures 6.3 to 6.5). The size of these 

regions plays an important role. The more regions overlap each other, the better is the 

result, because of the design aim to use minimum number of rules. Choosing the exact 

position where regions overlap is critical and depends on knowledge of the physical 

structure of the plant and the capability of the sensors (e.g. knowing the exact size of the 

track, the minimum and maximum deflection of the pole as well as its angle for the system 

to operate, etc.). The shape of the regions is also important. It can be seen in fIgures 6.3 to 

6.5 that open trapezoids were used in the leftmost and rightmost regions. Whenever the 

plant reaches these positions (the beginning of the horizontal line and beyond), the 

controller gives a maximum output value to the system. 

Since the output of the FLS is based on generalized results, the pairing of input 

variables (antecedents of the fuzzy rules) for fuzzifIcation is particularly important. Good 
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results occur when input data that have similar characteristics (e.g., [X ,Xl, [8 ,8 1, 

[D,Dl, etc.) are combined. This technique is effective in building multiple FLS. As 

discussed earlier this eliminates the excessive noise on the flexible pole's deflection sensor. 

After fuzzifying [8 ,8 1 and [D,Dl, we further fuzzify the two results together. 

Selecting the fuzzy associative memory (FAM) matrix plays a vital role in the 

process. FAM matrices of smaller dimensions are easier to deal with. Although we have 

6 inputs from our plant, we have been able to reduce the size of our FAM matrix by 

considering two inputs at a time. It can be seen from section 6.6 that the input of each 

FAM matrix has 5 fuzzy sets. This means that we have 5x5 = 25 possible fuzzy rules 

generated. However, there is no need to assign all of these rules because membership 

functions (see figures 6.3, 6.4, 6.5) are assigned in such a way that neighboring 

membership functions penetrate each other. This means that a defect in one rule can be 

compensated (interpolated) by the surrounding four rules [11. Thus this technique enables 

us to minimize the total number of fuzzy rules in our FLS. 

In this work, the accuracy of the sensor initial values (offsets) are important. The 

fuzzy controller design assumes that there are zero sensor values when the system is 

balanced. Unfortunately, in the real physical system it is extremely difficult to achieve this 

(i.e., all the values of the sensors = 0 when the pole is perfectly balanced on the center of 

the track). This initialization difficulty causes a slight offset in the data to the controller 

that leads to the cart traversing off the track. This problem was resolved using by the rule 

based evaluator (see figure 6.2) thus correcting for the initial transducer offset errors. 

6.9.2. Graphical results 

The graphs of figures 6.6(i) to 6.9(i) present the results of on line application of 

the fuzzy logic controller. These figures show the complete status of the system with 

respect to time (i.e. the pole angle, pole deflection, and the cart displacement). The 
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movement of the cart is shown by the graph of the cart displacement, and the movement 

of the pole by the graphs of pole deflection and angle. 

Figure 6.6(i) shows the result of operating the system at an initial condition of: 

pole angle = -20.5 degrees, pole deflection = 1 cm, and cart displacement = 5 cm. Here, 

the cart initially moved quickly to the left in order to balance the pole. After 0.5 seconds 

the pole position changed to 10 degrees causing the cart to move back to the right. 

Because of this movement, the pole moved back towards the left, even though it reaches 

18 degrees at 0.8 second. The movement of the pole going left is best seen on the graph of 

the pole deflection. It can be seen that at 0.75 second the pole deflection is -3.0 cm. This 

means that the pole moved quickly towards the left. Finally, at 1.0 second the system 

stabilized. 

Figure 6.7(i) shows the result of operating the system initially on the left end of the 

track. It can be seen that the controller brings the cart to the center of the track after 4.7 

seconds without any difficulties in balancing the pole. Figure 6.8(i) shows the result of 

applying external forces to the pole. Here, at 1.3 seconds the pole was pushed towards the 

left and stabilized at 2.3 seconds. At 3.1 seconds the pole was again pushed towards the 

right direction and stabilized at 4.1 seconds. Figure 6.9(i) shows the result of elevating the 

right end of the track. Here, the graph shows that the cart moved towards the center of 

the track, keeping the pole balanced. It can be seen from the graphs that the deflection of 

the pole stays below 1.0 cm as soon as the system stabilizes. The figures also show a 

superposed vibration at the natural frequency of the pole/mass system. 

Other results of operating the system at different conditions are shown in figure 

6.10(i) to 6.16(i). This represents an improvement on the Quanzer controller. It should be 

emphasized that for all test cases presented the controller develoveped was able to control 

the system for infmite time. 
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Figure 6.6(i) 
Initial angle at -20.S degrees 

20.-------,--------,--------~------_r------_. 

-2SL-------~------~~----~~------~~----~ o 100 200 300 400 SOD 
Time in seconds 
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Figure 6.7(i) 
Initial distance at -41.0 cm 
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Figure 6.7(ii) 
Initial distance at -41.0 centimeters 
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Figure 6.7(iii) 
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Applying e.ternal forces to the pole 
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Figure 6.9(i) 
Elevating the right end of the track 
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Figure 6.9( ii) 
Elevating the right end of the track 
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Figure 6.9(iii) 
Elevating the right end of the track 
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Figure 6.1 O( i) 
Initial angle at 15.3 degrees 
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Figure 6.10(ii) 
Initial angle at 15.3 degrees 
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Figure 6.11(i) 

Initial distance at 40.3 cm 
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Figure 6.11(ii) 
Initial distance at 40.3 centimeters 
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Figure 6.11 (ill) 
Initial distance at 40.3 centimeters 
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Figure 6.12(i) 
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Figure 6.12(ii) 
Elevating the left end of the track 
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Figure 6.12(iii) 
Elevating the left end of the track 
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Figure 6.13(iJ 
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Figure 6.13(iiJ 
Applying external forces to the cart 
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Figure 6.14(i) 

Normal operation 
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Figure 6.14(ii) 
Normal operation 
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Initial distance = -40.1 cm. Initial angle = -7.1 deg 
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Initial distance = -40.1 cm, Initial angle = -7.1 deg 
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Figure 6.16(i) 

Initial distance = 40.124 cm, Initial angle = 4.4 deg 
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6.10. Summary 

This chapter presented the applicability of fuzzy logic based algorithms to control a 

cart balancing a flexible pole. The controller design includes 5 fuzzy logic systems (FLS) 

and a single rule based evaluator that centres the pole on the track. Results of physical 

experiments show that the controller not only balances the flexible pole indefInitely but 

also brings the cart to the centre of the track. The controller can also easily adapt to 

disturbances from the external environment (e.g. moving or shaking the track randomly, 

elevating the height of the track on either side, pushing the pole in any direction, 

preventing the pole from moving further by putting an obstacle in its path). The operation 

of the system can also be initialised anywhere in the track. The controller is suffIciently 

fast to balance the system from an initial angle of 20 degrees. 

The next chapter presents the application of a combination of genetic algorithm 

and fuzzy logic system techniques in the control of the flexible pole-cart balancing 

problem. 
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CHAPTER 7 

A Fuzzy-Genetic Controller for the Flexible Pole-Cart 
Balancing Problem 

7.1. Introduction 

A fuzzy logic system is a nonlinear mapping of an input data vector into a scalar 

output, i.e. it maps numbers into numbers [56]. Such systems were introduced by Zadeh in 

1965 [55]. Section 6.2 of this thesis explained the concepts and architectures of the fuzzy 

logic systems. The application of fuzzy logic to control problems was introduced by 

Mamdani in 1975 [58, 59]. Mamdani uses fuzzy logic to control the plant using fuzzy 

inference with rules preconstructed by an expert. Here, the most important task is to 

formulate the rule base which represents the experience and intuition of human experts. 

However, when a rule base from a human expert is not available, efficient control may not 

be possible [65]. Also, tuning the fuzzy logic membership functions requires the 

adjustment of many parameters simultaneously and is difficult to do manually. A 

probabilistic optirnisation method utilising evolution strategies such as genetic algorithms 

can be employed to solve this problem. 

Genetic algorithms are algorithms for optirnisation and learning based on the 

mechanism of genetic evolution [63]. They were proposed by John Holland in 1975 and 

are a search procedure based on the mechanics of natural selection. A probabilistic 

component provides a means to search poorly understood, irregular spaces. This makes it 

likely that the system converges towards the global solution because it simultaneously 

evaluates many points in the parameter space. Genetic algorithms have been successfully 

applied to a variety of function optimisations, self·adaptive control systems, and learning 

systems [64]. 

The objective of this research is to test the capability of a genetic algorithm 

approach to formulate and optirnise the parameters (i.e. fuzzy rules, membership 
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functions, and fuzzy associative memory matrix) necessary to implement a fuzzy logic 

controller to control the flexible pole-cart balancing problem (see section 3.2 for the 

dynamics of this problem). This minimises the role of a human expert in the design of a 

fuzzy logic controller. 

In this chapter, the objective function (a function on which an optimisation 

algorithm operates seeking its maximum or minimum point) of the genetic algorithm used 

to obtain the fitness of each chromosome is calculated from the evaluation function of the 

fuzzy logic system. The data used to train the genetic emulation is taken from the results 

of a rule based controller acting, in simulation, on the derived dynamics of the flexible 

pole-cart balancing problem [72, 74] as described in chapter 3. 

This chapter begins by the discussion of the concepts and architecture of a Genetic 

Algorithms and continues by the development of an off-line fuzzy-genetic controller as an 

application to the flexible pole-cart balancing problem. The results of the experiments 

conducted on this controller are presented. 

7.2. Genetic Algorithms 

Genetic Algorithms (GA's) are a biologically inspired class of algorithms that can 

be applied to, among other things, the optimisation of nonlinear multimodal (many local 

maxima and minima) functions [60]. They solve problems in the same way that nature 

solves the problem of adapting living organisms to the harsh realities of life in a hostile 

world. 

The major concepts of the genetic algorithm are that of chromosomes, and the 

operations of mutation and reproduction. The GA maintains a set of trial solutions called 

chromosomes and forces them to evolve towards an acceptable solution. The algorithm 

uses survival of the fittest as well as the knowledge of the previous gene pool to improve 

each generation's ability to solve the problem [67]. A chromosome is constructed by 

stringing binary representations of vector components end to end (see figure 7.1). This 
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represents an encoding of information upon which the algorithm operates. The length of a 

chromosome depends on the vector dimension and the desired accuracy. 

In order to obtain acceptable problem solutions the operation of reproduction and 

mutation is applied. A reproduction (or crossover) is a form of mating which combines 

two chromosomes to produce two new chromosomes (see figure 7.2). It is in this process 

that the GA can exploit the knowledge of the gene pool by allowing good chromosomes 

to combine with chromosomes that are not as good. This is based on the assumption that 

each individual, no matter how good it is does not have the answer to the problem [67]. It 

randomly selects a site along the length of the chromosome, and then splits the two 

chromosomes into two pieces. The new chromosomes are then formed by matching the 

top piece of one chromosome with the bottom of the other. The process of mutation will 

randomly change the bit value of the chromosomes (see figure 7.3). This is based on the 

idea that while each generation is better than the previous, the individuals that provide no 

offspring might have some information that is essential to the solution. Also, this will 

reinject information to the population because it might be that the initial population did not 

get all the necessary information. 
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Figure 7.1 

A chromosome - consists of a string of bits 

Before reproduction After reproduction 

1 0 1 0 
1 1 1 1 
0 0 0 0 
0 1 0 1 
1 1 1 1 
0 1 1 0 
1 0 0 1 
0 1 1 0 
A B A' B' 

Figure 7.2 
Reproduction or crossover operation of 2 chromosomes 

10 1 1 0 1 0 0 1 0 1 0 1 1 0 I 

Before mutation After mutation 

Figure 7.3 
Mutation operation of a chromosome 
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7.3. Application of Fuzzy-Genetic Controller to the Flexible Pole-Cart 
Balancing System 

The main objective of this research is to develop a hybrid genetic fuzzy logic 

controller that can predict the value of the force applied to the cart at any given time in 

order to balance a flexible pole hinged at its root on the top of the cart without the 

knowledge of a human expert. As mentioned earlier formulating the parameters (fuzzy 

rules and membership functions) for the fuzzy logic controller is extremely difficult 

without the knowledge of an expert. In this work a genetic algorithm is used to formulate 

these parameters by training the system using a training data set taken from the results of 

the rule base controller simulating the derived dynamics of the flexible pole cart balancing 

problem. This is equivalent to, for example, copying system data that is obtained from a 

system under human control. Figure 7.4 shows the block diagram of the entire process. 

The genetic algorithm determines its chromosomes fitness through the objective function 

calculated from the fuzzy logic system evaluation function. The trained information 

consists of the parameters needed by the fuzzy logic system (i.e., fuzzy rules, membership 

functions, input regions, etc.). A comparison of the result of the fuzzy-genetic controller 

and the rule based controller is shown in section 7.4. The Genetic Algorithm source code 

is shown in Appendix E. 
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7.3.1. Fuzzy·Genetic operation 

In this controller there are two major processes involved: training and 

implementing the trained system. Training is accomplished by running the GA operating 

on the fuzzy system evaluation function. The function to be optimised by the GA is called 

the evaluation function. Here, the goal is to minimise the error function, that is, the 

accumulation over the training set of the absolute difference between the fuzzy system 

output and the desired output value. The GA seeks to maximise its evaluation function, it 

is therefore necessary to turn the error function upside down by subtracting it from a fixed 

constant that is larger than the largest error [60]. Here, the fIxed constant value is equal to 

2, and in order to insure that the maximum value of the accumulated error should not 

exceed 1, this is multiplied by an inverse of the maximum cumulative error. Thus, the 

value of the evaluation function is assigned to be between 1 and 2, with the 2 

corresponding to minimum error. Every time an optimum value is attained, the fuzzy 

system parameters are saved to a fIle. 

During the training process, GA's operate in cycles called generations, and a 

population of chromosomes is maintained. An individual chromosome is assigned a fItness 

value based on a problem-specifIc evaluation function [60]. Fitness values can be 

normalised, scaled, shared or left unchanged [68]. Maximum fItness is rewarded, the 

evaluation function must be chosen so that its maximum corresponds to the desired value 

of the function to be optimised. For every generation, pairs of individual chromosomes are 

chosen for the reproduction operation. The fItness of an individual determines the 

likelihood that it will be selected for this operation. During the reproduction operation 

mutation is randomly applied and a new population is determined. Over the course of a 

number of generations, the average fItness of the population increases, and the fittest 

individuals approach acceptable solutions to the application problem. 

The implementation of the fuzzy logic system controller IS straightforward, 

following the determination of the relevant parameters. These parameters are passed to the 

fuzzy system described in full in chapter 6 and in [74]. Thus, the parameters of the trained 
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fuzzy system are taken from a flie, this is then interfaced with the training file and 

normalisation procedures. Since the system is now trained the GA is not needed further. 

7.3.2. Adaptation of the Fuzzy Logic System Parameters Using Genetic 
Optimisation 

The most important parameter in determining the fuzzy logic system output is 

representing and manipulating the fuzzy set of rules. The Fuzzy Associative Memory 

(FAM) matrix is responsible for doing this, hence, we will focus much attention on 

adapting the FAM. To apply genetic optimisation to FAM matrix adaptation, the matrix 

entries are strung together into a single long vector. Binary representation is used so that 

each matrix entry itself is· a vector of O's and 1 'so This is the chromosome upon which the 

genetic algorithm operates. 

In this system we use 4 input variables (the pole angle, the pole deflection, the cart 

displacement, and the cart velocity) and 1 output (the force applied to the cart) variable. 

We use a single FAM matrix that deals with all inputs simultaneously. Also, we use 3 

input fuzzy sets for every input variable, hence the FAM matrix has 34 = 81 entries. Take 

note that this number will grow very quickly if we increase either the number of input 

variables or the number of input fuzzy set for each variable. Since each F AM matrix entry 

is an output fuzzy set, we use 3-bit binary representation for this, giving 8 possible output 

fuzzy sets. As we mentioned earlier, these FAM matrix can be thought of as O's and 1 's, 

stringing these together end to end, we get a chromosome of length 3 x 81 = 243 for our 

genetic optimisation. 

The number of fuzzy membership functions is equal to 3 since it is equivalent to 

the number of input fuzzy sets. The shape of the membership function is assumed to be 

trapezoidal, hence we have 4 points defining each membership function. However, 

assuming that each trapezium penetrates each other, then adjacent trapeziums share two of 

their defining points (subintervals), thus, each membership function, with the exception of 

the final right trapezoid, increases the total number of defining points by two (see figure 
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7.5). Hence, if N is the number of membership functions, then there are a total of 2(N-l) 

defming points [60]. 

1 

Figure 7.5 
Defining points for 3 member ship [unctions 

(There are 5 equal length subintervals) 

183 



7.3.3. The GA Program 

Figure 7.6 shows the step by step process of the genetic algorithm program for the 

flexible pole cart balancing problem. Refer to Appendix E for the source code. Below are 

the parameters used in this program 

• Population size = 54 

Typical population sizes range from 40 to 100 individuals. Longer chromosomes 

may require larger popUlation. 

• Mutation probability = I/population size = 0.0185 

This is the probability of mutation for a single bit during crossover operation. 

• ReproductiOn/crossover probability = 0.6 

This is the probability to determine if reproduction operation is to be applied to 

selected pair. If reproduction is not applied, the pair is sent on to the next 

generation unchanged except for possible mutation. 

• Total number of generations = 150 

A generation is a step or a cycle of GA's operation. Pairs of chromosomes are 

chosen for the reproduction operation. 

• Bit length = 3 

This determines numeric accuracy or, alternately, dynamic range when the problem 

involves optimisation over numeric vectors. 

• Vector length = 81 

The number of components in each vector when optimisation is over a set of 

vectors. 

• Chromosome length = (bit length)x(vector length) = 243 

Length of each chromosome. 

• Maximum tolerance = 0.01 

An error tolerance use to terminate the generation. If an individual is found with a 

fitness within tolerance of maximum fitness, the algorithm stops. 

• Maximum fitness = 2.0 
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The maximum fitness for each chromosome. 

The program shown in figure 7.6 starts with the initialisation of variables needed in 

fuzzy logic system and genetic algorithm (see pages 301,302,303 and 310 appendix E). 

The training data is taken from the external file fl...ga. trn and normalised for GA' s 

operation (see page 317 appendix E). The process then continue by starting the loop for 

the optimisation operation. The loop will terntinate only when the prescribed number of 

generations or the error tolerance is attained. The optimisation process involves the 

following operations: 

• Selection of pairs of chromosomes based on its fitness (see page 304 appendix E). 

• Reproduction and mutation operation (see page 305 appendix E). 

• Calculation of the chromosomes fitness using fuzzy logic evaluation function (these 

are the chromosomes for the new population; see page 323 appendix E). 

• Obtained X fittest chromosomes from the pool of X new and X old population (these 

are the X chromosomes for the new population; see page 306 appendix E). 

• Re-scale the fitness of the new X population (see page 305 appendix E). 

• Fmally, if new optimum value found, then store information to external file fl....ga.fzs. 

These are the parameters used for fuzzy logic controller. 
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7.4. Discussion of Results 

A comparison of the result of application of the fuzzy-genetic controller to the 

desired output for the flexible pole-cart balancing problem is shown in figure 7.7. The 

graph shows that the controller is able to predict the desired behaviour with a high 

accuracy. Slight errors appear at the maximum values of the output because this is the 

time when the cart abruptly changes its direction. The predicted error of the fuzzy-genetic 

model is shown in figure 7.8. The error is measured from the absolute difference of the 

actual output of the fuzzy logic implementor and the desired output behaviour. The 

convergence speed of the GA is shown in figure 7.9. It can be seen from this graph that it 

took only 200 seconds to get the optimum fitness of 1.9693. Figure 7.10 shows the graph 

of the chromosomes fitness versus the number of generations. Here, the maximum fitness 

had been attained in less than 50 generations. 

As the GA progresses, the average fitness of the population increases. Since there 

is an upper bound of fitness, this has the effect of compressing the range of fitness values 

for the population (e.g. the difference between the largest and smallest fitness values 

shrinks). In order to solve this problem the concept of scaling was introduced. The scaling 

simply magnifies the range of fitness values in a linear way [60]. For example, suppose the 

algorithm reaches a point where all of the fitness values are between 1.935 and 1.945 

(with an optimal maximum value of 2.0). For purposes of reproduction selection, scaling 

would change the upper value 1.945 to loO, and the lower value 1.935 to 0.05. The effect 

of this is that the individual chromosome with a fitness value 1.0 has a better chance of 

selection for the next reproduction than the individual whose fitness value is nearly equal 

to 0.0. 

In order to improve the convergence speed, the GA uses a survival of the fittest 

approach by picking the fittest individual from the old and new popUlation to participate in 

the next generation. For example, if the standard size of the population is P, mutation and 

reproduction operations will produce a new population of size P, then the old and the new 

population can be combined together, producing a superpopulation of size 2P. The GA 
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then picked the P fittest individuals from this superpopulation for the next generation's 

population. This technique proved to be very effective on the training process. 
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Figure 7.8 

Prediction errors for the fuzzy-genetic model 
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Figure 7.10 

Genetic Algorithm fitness measured from 1 to 2 
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7.5. Summary 

This chapter investigates the applicability of developing a controller based on 

genetic algorithms combined with fuzzy logic to control the flexible pole-cart balancing 

problem. The genetic algorithm is used to obtain the values of the variables required by the 

fuzzy logic controller, removing the need for expert knowledge. The system employs 

genetic search to extract the fuzzy rules and membership functions using an objective 

function calculated from the fuzzy logic system evaluation function. The extracted rules 

are used in the fuzzy associative memory matrix entries so that the fuzzy logic system 

performance fits the desired behaviour. Results show that the controller developed is able 

to predict the desired output for the flexible pole-cart balancing problem with high 

accuracy. 
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CHAPTER 8 

Conclusions 

8.1. The Inverted Pendulum Problem 

For the past decade many researchers have used the inverted pendulum problem as a 

model for the development of learning control systems [3,4,5,6,9,10,11]. Many authors 

have successfully used neural network techniques to construct these control systems. 

Although it is true that the dynamics of the inverted pendulum is nonlinear, Geva and 

Sitte[1O] discovered that it is easy to fInd, by simple random search in weight space, linear 

controllers that not only balance the pole but also centre the cart. With this discovery 

Geva and Sitte concluded that controlling an inverted pendulum is not as difficult a 

nonlinear problem as has been assumed by many authors; 

Further the inverted pendulum system has only two degrees of freedom and 

therefore any learning controller demonstrated on this application is likely to have limited 

application in more demanding applications such as those encountered in manufacturing 

industries. Such a controller would be hard to use in a robot with flexible joints for 

example. Flexible robot manipulator research is' active [29,30,31,12] because when 

compared with the traditional robot manipulators constructed by rigid links, the flexible 

robot manipulators not only are able to move larger payloads without increasing the mass 

of the linkages, but also have many other advantages: They require less material and 

smaller actuators, have less link weight, consume less power, and are more manoeuvrable 

and transportable [29]. They have not been widely used in production industries due in 

part to the fact that manipulators are required to have a reasonable accuracy in the 

response of the manipulator end·effector to the input commands from their control 

systems. Hence, if the advantages associated with lightweight are to be sacrifIced, 

advanced control systems for flexible robot manipulators have to be developed [29]. The 
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flexible pole-cart problem described in this thesis both extends the complexity of the pole 

balancing test case and includes features of the flexible robot arm problem and therefore 

allows many relevant issues to be explored. 

8.2. The Mathematical Model of the Flexible Pole-Cart Balancing 

Problem 

To design advanced controllers for a cart balancing an elastic pole, it is important 

to derive a set of closed and explicit dynamic equations of motion describing the 

behaviour of the system. Section 3.2.2 of this thesis presented the mathematical 

derivations of equations approximating the behaviour of the system. It was found that the 

system equations are highly nonlinear. The correctness of these equations was verified 

qualitatively by reviewing the graphical output of the computer simulation using the 

program MA YMA Y. This program simulates a controller balancing an elastic pole on top 

of a cart moving on a limited track in real time. The design of the algorithm of this 

program is shown in section 3.3. Numerical integration using fourth order Runge-Kutta 

was implemented. The results of this program are shown in section 3.3.4. The efficiency of 

the program is tested by running it under various initial conditions. In this simulation the 

size of the cart, the track, and the pole may change. It can be seen from the results that the 

system still balances the pole and brings the cart to the centre of the track even though 

the magnitude of the force applied to the cart and the initial angle of the pole are changed. 

Based on the results of the computer simulation, the author established that 

theoretically, it is likely to be possible to balance an elastic pole in its first mode of 

vibration on top of a cart moving along a limited track. It is therefore of considerable 

interest to implement this in the real world. This had not been demonstrated at this stage 

of the work. A flexible pole-cart was commissioned and supplied together with a PD 

based controller of limited capability. It was therefore a logical step to attempt to develop 

and benchmark novel non-conventional controllers for this problem. 
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8.3. Off-Line Neural Network Controller for the Flexible Pole-Cart 

Balancing Problem 

As a first step neural networks based upon feedforward backpropagation and 

Kohonen networks were used to learn the forces required to balance a flexible pole on a 

cart by generating a learning controller in simulation. The information fed to the neural 

network was taken from the results of the computer simulation of the derived dynamics of 

the flexible pole-cart balancing problem. 

The method of normalising input patterns prior to their application to the neural 

network is important. For the backpropagation network, difficulty was encountered in 

determining the direction of the required force. The neural network experienced local 

minima and did not converge for a bipolar value of force from -1.0 to + 1.0 (see table 

4.2). This problem was resolved by adding an additional vector to the output. For the 

leftwards force the additional output vector must have a value of 0.0, otherwise 1.0. The 

application of momentum and noise terms helped also in avoiding local minima. 

8.4. On-Line Neural Network Controller for the Flexible Pole-Cart 

Balancing Problem 

Following the off-line implementation an on lioe hybrid controller using 

feedforward neural network (FNN) and a rule based evaluator was developed and tested 

to control the flexible pole-cart balancing problem on a testbed. The feedforward neural 

network learned from a set of training data derived from a real system and was initially 

tested against the computer simulation of the derived dynamics of the flexible pole-cart 

balancing system. The inputs to the neural network were the elastic pole deflection, the 
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elastic pole angle, the displacement of the cart, and the velocity of the cart. An electric 

motor has been used to control the motion of the cart, hence, the neural network output is 

a voltage needed for the electric motor to operate (-5 to +5 volts) rather than the fore 

used in the earlier simulation .. 

The FNN based controller developed then successfully balanced the real pole for a 

limited period. The control system frequently failed due to the cart running out of track. 

The inaccuracy of the initial value of all sensors was the main contributor to this failure. 

This problem was resolved using the performance evaluator (see figure 5.4). The FNN 

system was overridden by a small rule based supervisory system that periodically corrected 

extreme angles of the pole or caused the cart to decentralise on the track. 

The results of the physical experiments on this controller were shown and 

discussed in section 5.4. Here, the robustness of the controller developed was verified and 

tested. This results also show the stability, flexibility and adaptability of the controller. 

8.5. Fuzzy Logic System Controller for the Flexible Pole-Cart 

Balancing Problem 

An on line fuzzy logic controller was then developed to balance the flexible pole 

hinged at its root on top of a cart moving along a limited track. The controller design uses 

5 fuzzy logic systems and a rule based evaluator. A reduction of the number of fuzzy logic 

rules required for good control to 13 has been made in spite of the fact that the controller 

uses 6 input variables. The crisp output of the controller can be directly used as the input 

voltage of the actuator (motor). The controller, for most initial conditions of the system, is 

able to balance the flexible pole indefinitely and bring the cart to the centre of the track. 

The controller can accommodate external disturbances to the system (e.g., shaking the 

track randomly, elevating the end of the track, applying external forces and obstacles to 

the pole in any direction, etc.). The response of the controller is fast enough to balance the 
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flexible pole from an initial angle of 20 degrees. Nesting the fuzzy logic systems 

supported the filtering of noisy inputs. 

This research confirms that a multiple fuzzy controller can be developed to control 

a complex and nonlinear system such as the flexible pole-cart balancing system without 

knowing its mathematical description. It should be observed, however, that such a system 

requires rule based additions to accommodate initial sensor offsets and extreme 

displacement conditions. 

8.6. A Fuzzy-Genetic Controller for the Flexible Pole-Cart 

Balancing Problem 

In this element of the work the author was able to apply a combination of fuzzy 

logic systems and genetic algorithm techniques to the control of the flexible pole-cart 

balancing problem. The controller developed uses the genetic algorithm as a trainer and 

the fuzzy logic system as a controller. The construction of the fuzzy logic system did not 

require the prior knowledge of a human expert because the genetic algorithm was able to 

achieve the optimal parameter entries necessary for the fuzzy logic system to perform and 

control the desired behaviour. 

In this work, apart from being applied as a process controller, the fuzzy logic 

system is also being used as a universal approximator. The fuzzy logic system has been 

applied as a means of adjusting the system parameters so that the system output matches 

the training data (the desired behaviour of the flexible pole-cart balancing problem) with 

the aid of a genetic algorithm. This suggests that this system can be applied to a broad 

range or problems perhaps even including approximating a feedforward neural network 

(FNN). The advantage of this technique (when compared to the black box approach of 

FNN) is that, it is easy to look inside a FAM matrix and infer what it will do with the 

given input data. This is important for the user who requires transparent models of the 

control algorithms applied. 

195 



8.7. Summary 

Table 8.1 shows the comparison of functions of the controllers developed and the 

route of their evolution. The following should be noted: 

The neural network experiment determined that the pole deflection was the 

variable most prone to error. This was therefore measured directly in the fuzzy controller. 

• • • 
The fuzzy controller uses six inputs x,x,6"6"d,,d, while the neural network 

• 
and evaluator only uses x,x,6 ,,6, (noting that 6, = d, / L, where d, is deflection and L 

• • 
is the length of the pole). The neural network structure does not use therefore d, and 6, 

. . 
as input variables. A fuzzy controller using x,x,6, and d, as inputs was not able to 

balance the pole for infinite time. The 4-8-8-2 neural network structure built upon the 

understanding of the mechanics and control of the system determined during the 

construction of the simulation. It would appear that the 4-8-8-2 structure includes some 

implicit knowledge of the nonlinear dynamics of the system and the relationships between 

• • 
6" 6" and d,. The weights structures of the network used to control the simulation and 

the test bed are different. 

The fuzzy control system was the only system to use the input d,. This is a 

particularly noisy input. The cascaded approach was therefore implemented to remove the 

effect of the noise. 
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Table 8.1 

Volt output 
Evaluator 
Balance infinite time. 
Cart brought to 
centre of the track. 
With external 
disturbance. 

Balance for limited 
time 

Volt output 
Balance infinite time. 
Girt brought to centre 
of the track. 
With external 
disturbance. 
Needs apriori 
knowledge. 

Comparison off unctions of controllers generated 
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Neural network 
simula1es rule base 

Neural network control 
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Robust to external 
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Compn.ct for memory 
Real time. 
No need for plant 
dynamic equation .. 

No apriori 
knowledge 
required to build 
the fuzzy logic 
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8.8. Suggestions for Future Work 

There are. four areas that can be identified for further work. 

1. An implementation of the fuzzy-genetic controller presented in Chapter 7 on the real 

physical flexible pole-cart balancing system. The major limitations in such an 

experiment is the availability of a fast processing machine, a parallel processing 

machine is most likely to be appropriate. If the real GA's learning process requires a 

long time (e.g., longer chromosomes, more input variables or more input fuzzy sets are 

required) then a delay might occur that results in failure. The mapping of simulated 

force output to real voltage output must also be resolved. 

2. The construction of an on-line and off-line hybrid fuzzy-neural network controller to 

control the flexible pole-cart balancing system. Critical here is the determination of 

whether there is an improvement in the performance of the overall system by 

identifying new sets of parameters for fuzzy logic system decision making using 

gradient-descent optimisation techniques based on a neural network formulation of the 

problem. It is anticipated that learning can be take place in the neural network 

elements of the system and the implementation of control can be carried out by the 

fuzzy logic system. 

3. The development of an intelligent controller for a flexible pole-cart balancing problem 

on which the flexible pole undergoes multi-mode vibrations by for example using a 

thinner beam with a higher elastic deflection. This adds further input parameters 

(variables) to the system. This problem may be resolved by adding a further fuzzy logic 

system to the multiple fuzzy logic controller. 

4. Perhaps the most demanding task is to develop an intelligent controller that can 

control the position of the tip of the flexible pole irrespective of the position and 
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movement of the cart. This problem is much more representative of the true needs of 

the application of flexible robots. Determining the appropriate input-output variables 

for the task would make a good starting point for this work. It maybe possible to apply 

the multiple fuzzy logic systems technique described earlier. In this case, knowledge of 

the dynamic equations of the system may not be needed. 
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Appendix A 

Program MA YMA Y source code 

This is a Pascal language computer program that will simulate the 

mathematical model of the flexible pole cart-balancing system 

The following are the options to choose for the user to run the program 

1. Simulate new values for rigid pole. 

2. Simulate new values for elastic pole. 

3. Plot the graph: rigid pole angle vs. time without friction. 

4. Plot the graph: rigid pole angle vs. time with friction. 

7. Plot the graph cart displacement vs. time (elastic pole). 

8. Plot the graph cart acceleration vs. time (elastic pole). 

9. Plot the graph cart velocity vs. time (elastic pole). 

O. To quit program. 

Important procedures in the program: 

1. runge() - A procedure to solve differential equations using Runge-Kutta algoritlun. 

2. check_pole_angle() - A procedure to check the position of the pole and apply the 

force necess ary to balance the pole. 

3. find3Ias_pole_acc_vel_ang() - A procedure to find the elastic pole velocity and 

acceleration. 

4. numerical_integration() - A procedure used to simulate the system by solving 

differential equations using numerical integration technique. 

5. find_elastic_angle() - A procedure to fmd the elastic pole angle. 

6. solve_cart_displacement() - A procedure to fmd the cart displacement and velocity. 
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7. Iind_carCacceleration() - A procedure to find the acceleration of the cart. 

A procedure used to plot the graphs of pole angle, cart 

displacement, cart velocity, cart acceleration versus time. 

9. draw_pole_cart() - A procedure to draw graphically the entire pole-cart balancing 

system in real time. 

/** The main Program **? 
program maymay; 
uses crt.gra28_car .glob_dat; 
constn=2; 
type 

order = array[l..nl of real; {array use to store the value of pole angle and velocity} 

var 

fl.f2 :text; (text file use for storing data) 

T,injorce,cjorce,cj :REAL; /T=time; injorce=initial force; cjorce=the force at any 
angle; cj=coeficient of friction} 

H.TMAX,nume,dnume,UimitREAL; {H=integration time step; TMAX=total simulation time; 
{nume=numerator; dnume=denomenator; Uimit=time limit} 

M,IFREQ,Icount,k,ctr :INfEGER; 
F,V :order; {V[ll=pole angle; V[21 = F[ll=pole velocity) 

{F[21=pole acceleartion} 
ch 
failure 

:char; 
:boolean; 

{ •••• procedure to enter data "'} 
procedure in_data(ch:char); 
var x,y :integer; 
begin 

clrscr; textcolor(yellow); 
write('Mass of the pole = '); 
readln(mp); 
write(Total mass of the pole and the cart = '); 
readln(mt); 
write(Totallength of the pole = '); 
readln(pl); 
if ch <> 'I' then (for elastic pole) 
begin 
writeCBreadth of the pole = '); 
readln(pb); 
write('Depth of the pole = '); 
readln(pd); 
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write('Elasticity of the pole = '); 
readln(E); 

end 
else 
begin (this is for rigid pole I 

pb := 0.0; pd := 0.0; e := 0.0 
end; 
x := wherex; y := wherey; 
repeat 

gotoxy(x.y); 
write(lnitial force applied (not zero) = '); 
readln(in30rce); 

until in30rce <> 0.0; 
writeCCoefficient of friction = '); 
readln(c_f); 
write('Step size (H) = '); 
readln(H); 
write('Upper limit of integration (tmax) = '); 
readln(tmax); 
writeCFreq. intermediate printouts (Hreq) = '); 
readln(IFREQ); 
T := 0.0; (time I 
g := 9.81; (acceleration due to gravity I 
writeClnitial pole angle (degrees) = '); 
readln(V[I); 
V[I) := V[!)*6.283185/360; 
writeCLimitation of pole angle (degrees) = '); 
readln(Uimit); 
Uimit := Uimit*6.283 I 85/360; 
V[2) := 0.0; (initial velocity of the pole I 
Icount:= 0; 
ctr := I; (fIrst array element I 
c30rce := in_force; 
c_ac[l) := in30rcelmt; (initial acceleration of the cartl 

end; (in_data I 

(*** procedure to write initial values to external me **1 
procedure write_iniC values_to_me; 
begin 

writeln(fl); 
writeln(fl.' ***** Initial Data ******'); 
writeln(fl.' Mass of the pole =',mp: 10:6); 
writeln(fl.' Total mass of the pole and the cart ='.mtI0:6); 
writeln(fl.' Total length of the pole =',pl: 10:6); 
writeln(fl.' Breadth of the pole =',pb: 10:6); 
writeln(fl.' Depth of the pole =',pd:IO:6); 
writeln(fl.' Elasticity of the pole =',e: 12:2); 
writeln(fl.' Initial force applied =',in30rce: 10:6); 
writeln(fl.' Coifficient of friction =',cj: 10:6); 
writeln(fl.' Step size (H) ='.h: 10:6); 
writeln(fl.' Upper limit of integration (tmax) =',tmax: 10:6); 
writeln(fl.' Freq. intermediate printouts (Ifreq) =' .ifreq: 10); 
writeln(fl.' Initial time (t sec) = 0.0'); 
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writeln(fl,' Initial pole angle (theta in rad) 
writeln(fl,' Limitations of pole angle 
writeln(fl,' Initial pole velocity (dthetaldt) 
writeln(fl,' Acceleration due to gravity 
writeln(fl.' OUI'PUf VALUES:'); 

end; (write_iniC values' 

=',V[l]:1O:6); 
=',UimitlO:6); 
=0,0'); 
= 9,81 m/sq sec.'); 

(*** procedure to write initial values to external ftie *., 
procedure write_iniCvalues_to_ftie2; 
begin 

writeln(f2); 
writeln(f2,' ••••• Initial Data ******'); 
writeln(f2,' Mass of the pole =',mp: 10:6); 
writeln(f2,' Total mass of the pole and the cart =' ,mt:1O:6); 
writeln(f2,' Total length of the pole =',pl:IO:6); 
writeln(f2,' Breadth of the pole =',pb: 10:6); 
writeln(f2,' Depth of the pole =',pd: 10:6); 
writeln(f2,' Elasticity of the pole =',e: 12:2); 
writeln(f2,' Initial force applied =' ,injorce: 10:6); 
writeln(f2,' Coifficient of friction =',cJ 10:6); 
writeln(f2,' Step size (H) ='.h:10:6); 
writeln(f2,' Upper limit of integration (tmax) =',tmax:10:6); 
writeln(f2,' Freq. intermediate printouts (Hreq) ='.ifreq: 10); 
writeln(f2,' Initial time (t sec) = 0.0'); 
writeln(f2,' Initial pole angle (theta in rad) =',V[I]:1O:6); 
writeln(f2,' Limitations of pole angle =',Climit 10:6); 
writeln(f2,' Initial pole velocity (dtheta/dt) = 0.0'); 
writeln(f2,' Acceleration due to gravity = 9.81 m/sq sec.'); 
writeln(f2,' OUI'PUf VALUES:'); 

end; {write_iniC values' 

(*** procedure to output data to external ftie ***.*, 
procedure out_file; 
begin 

write_iniC values_to_file; 
writeln(fl, Time':8,'C_accel': 13,'Pole_ang': 13, 'Pole_an&-vel': 14,'Force':7 ,'P _accel': 14); 
write(fl,T:IO:6,' ',c_ac[l]:10:6,' ',V[I]:1O:6,' ',V[2]:1O:6,' ',injorce:IO:6); 
timcco[ctr] := T; 
ang1cco[ctr] := V[l]; 

end; {oucftie] 

{**** procedure to use runge kutta algorithm ***' 
procedure runge(var m,k:integer;n:integer;var Y.F:order;var x.h:real); 
var 

j :integer; 
savey,phi :array[1..50] of real; 

begin 
m:=m+l; 
case m of 

I: k:= I; 
2: begin 

for j := I to n do 
begin 

savey(j] := Y(j]; 
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pbi[j] := F[j]; 
Y[j] := savey[j] + O.5*H*F[j]; 

end; 
x := x + 0.5 * H; 
k:= I; 

end; 
3: begin 

for j := I to n do 
begin 

pbi[j] := pbi[j] + 2.0*F[j]; 
Y[j] := savey[j] + 0.5*H*F[j]; 

end; 
k:= I; 

end; 
4: begin 

for j := I to n do 
begin 

pbi[j] := pbi[j] + 2.0*F[j]; 
Y[j] := savey[j] + H*F[j]; 

end; 
x := x + 0.5 * H; 
k:= I; 

end; 
5: begin 

for j := I to n do 
Y[j] := savey[j] + (pbi[j] + F[j])*H16.0; 

m:=O; 
k:=O; 

end; 
end; {case} 

end; {*** runge **} 

{*** procedure to check the location of the pole ****} 
{procedure check-pole_angle; 
begin 

if (V[I] > Uimit) or (V[1] < (-I)*Uimit) then 
begin 

clrscr; 
writelnC Failure!!!! angle reached the limit (in radians) = "Uimit: 10;6); 
writelnC Press return to exit .... '); 
failure := true; 
readln; ciose(fl); 
exit; 

end 
else if (V[1] > 0.0) then 

begin 
if cjorce < 0.0 then 
c_force := cjorce*( -I); 

end 
else if (V[I] < 0.0) then 

begin 
if cjorce > 0.0 then 

cjorce:= cjorce*(-I) 
end 

210 



{*** procedure to check the location of the pole •••• } 
procedure checkJlOle_angle; 
begin 

if (V[I] > Uimit) or (V[I] < (-I)'Uimit) then 
begin 

clrscr; 
writelnC Failure!!!! angle reached the limit (in radians) = ',Uimit: 10:6); 
writeC Press return to exit .... '); 
failure := true; 
readln; 
exit; 

end; 
if «V[I] >= -O.OOO9)and(V[l] <= 0.0009» then 

c30rce := 0.0 {theta is at 0 angle don't apply force} 
else if «V[I] > -O.OOI)and(V[l] <= -0.0009» then 

c30rce := -0.1 
else if «V[l] > O.OOO9)and(V[l] <= 0.001» then 

c30rce := 0.1 
else if «V[l] > -0.003)and(V[I] <= -0.001» then 

c30rce := -0.2 
else if «V[l] > O.OOl)and(V[I] <= 0.003» then 

c30rce := 0.2 
else if «V[l] > -O.OO6)and(V[l] <= -0.003» then 

c_force := -0.3 
else if «V[l] > 0.003)and(V[l] <= 0.006» then 

c30rce := 0.3 
else if «V[I] > -O.OO9)and(V[l] <= -0.006» then 

c30rce := -0.4 
else if «V[I] > O.OO6)and(V[l] <= 0.009» then 

c30rce := 0.4 
else if «V[l] > -0.01 l)and(V[I] <= -0.009» then 

c30rce := -O.S 
else if «V[I] > O.009)and(V[I] <= 0.011» then 

c30rce := O.S 
else if «V[l] > -0.013)and(V[l] <= -0.01 I) then 

c30rce := -0.6 
else if «V[l] > O.Oll)and(V[I] <= 0.013» then 

c30rce := 0.6 
else if «V[I] > -O.OIS)and(V[l] <= -0.013» then 

c30rce := -0.7 
else if «V[l] > O.013)and(V[l] <= O.OIS» then 

c_force := 0.7 
else if «V[I] > -0.017)and(V[l] <= -O.OIS» then 

c30rce := -0.8 
else if «V[l] > O.OIS)and(V[l] <= O.oI7» then 

c30rce := 0.8 
else if «V[l] > -0.019)and(V[l] <= -0.017» then 

c30rce := -0.9 
else if «V[l] > 0.0l7)and(V[l] <= 0.019» then 

c30rce := 0.9 
else if «V[l] > -0.020)and(V[I] <= -0.019)) then 

cforce := -1.0 
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else if «VU] > 0.019)and(V[I] <= 0.020» then 
c30rce := 1.0 

else if «V[l] > -0.022)and(V[l] <= -0.020» then 
c30rce := -1.1 

else if «V[I] > 0.020)and(V[l] <= 0.022» then 
c30rce := 1.1 

else if «V[l] > -O.024)and(V[I] <= -0.022» then 
c30rce := -1.2 

else if «V[I] > 0.022)and(V[l] <= 0.024» then 
c30rce := 1.2 

else if «V[I] > -0.026)and(V[I] <= -0.024» then 
c3orce:=-1.3 

else if «V[l] > O.024)and(V[I] <= 0.026» then 
c_force := 1.3 

else if «V[l] > -0.028)and(V[1] <= -0.026» then 
c30rce := -1.4 

else if «V[I] > 0.026)and(V[I] <= 0.028» then 
c30rce := 1.4 

else if «V[l] > -0.03)and(V[l] <= -0.028» then 
c30rce := -1.5 

else if «V[l] > 0.028)and(V[I] <= 0.030» then 
c30rce := 1.5 

else if «V[l] > -0.032)and(V[l] <= -0.030» then 
c_force := -1.6 

else if «V[l] > 0.030)and(V[1] <= 0.032» then 
c_force := 1.6 

else if «V[I] > -0.034)and(V[I] <= -0.032» then 
c3orce:=-1.7 

else if «V[I] > 0.032)and(V[I] <= 0.034» then 
c30rce := 1.7 

else if «V[I] > -0.036)and(V[I] <= -0.034» then 
c30rce:=-1.8 

else if «V[I] > 0.034)and(V[l] <= 0.036» then 
c30rce := 1.8 

else if «V[I] > -0.038)and(V[1] <= -0.036» then 
c30rce := -1.9 

else if «V[I] > 0.036)and(V[l] <= 0.038» then 
c30rce := 1.9 

else if «V[l] > -O.04O)and(V[l] <= -0.038» then 
c30rce := -2.0 

else if «V[l] > 0.038)and(V[I] <= 0.040» then 
c30rce := 2.0 

else if «V[l] > -0.043)and(V[l] <= -0.040» then 
c30rce := -2.1 

else if «V[I] > 0.040)and(V[l] <= 0.043» then 
c_force := 2.1 

else if «V[I] > -O.046)and(V[l] <= -0.043» then 
c30rce := -2.2 

else if «V[I] > 0.043)and(V[l] <= 0.046» then 
c30rce := 2.2 

else if «V[l] > -0.049)and(V[I] <= -0.046» then 
c30rce := -2.3 

else if «V[l] > 0.046)and(V[l] <= 0.049» then 
c_force := 2.3 

212 



else if «V[l] > -0.052)and(V[l] <= -0.049» then 
cjorce := -2.4 

else if «V[l] > 0.049)and(V[l] <= 0.052» then 
cjorce := 2.4 

else if «V[l] > -0.055)and(V[1] <= -0.052» then 
cjorce := -2.5 

else if «V[l] > 0.052)and(V[1] <= 0.055» then 
cjorce := 2.5 

else if «V[l] > -0.058)and(V[l] <= -0.055» then 
cjorce := -2.6 

else if «V[I] > 0.055)and(V[1] <= 0.058» then 
cjorce := 2.6 

else if «V[l] > -0.06l)and(V[l] <= -0.058» then 
cjorce := -2.7 

else if «V[l] > 0.058)and(V[l] <= 0.061» then 
c_force := 2.7 

else if «V[l] > -O.064)and(V[I] <= -0.061) then 
c_force := -2.8 

else if «V[l] > 0.06l)and(V[l] <= 0.064» then 
cjorce := 2.8 

else if «V[l] > -0.067)and(V[l] <= -0.064» then 
cjorce := -2.9 

else if «V[I] > O.064)and(V[l] <= 0.067)) then 
cjorce := 2.9 

else if «V[I] > -0.070)and(V[l] <= -0.067» then 
cjorce := -3.0 

else if· «V[I] > 0.067)and(V[I] <= 0.070» then 
cjorce := 3.0 

else if «V[I] > -0.073)and(V[l] <= -0.070» then 
c_force := -3.1 

else if «V[l] > 0.070)and(V[I] <= 0.073» then 
cjorce:= 3.1 

else if «V[l] > -0.076)and(V[l] <= -0.073» then 
cjorce := -3.2 

else if «V[l] > 0.073)and(V[1] <= 0.076» then 
c_force := 3.2 

else if «V[l] > -0.079)and(V[l] <= -0.076» then 
cjorce := -3.3 

else if «V[l] > 0.076)and(V[I] <= 0.079» then 
cjorce := 3.3 

else if «V[l] > -0.082)and(V[I] <= -0.079» then 
cjorce := -3.4 

else if «V[l] > 0.079)and(V[1] <= 0.082» then 
cjorce := 3.4 

else if «V[l] > -0.085)and(V[1] <= -0.082» then 
cjorce:= -3.5 

else if «V[l] > 0.082)and(V[I] <= 0.085» then 
cjorce := 3.5 

else if «V[l] > -0.088)and(V[I] <= -0.085» then 
cjorce := -3.6 

else if «V[l] > 0.085)and(V[l] <= 0.088» then 
cforce := 3.6 . 

else if «V[l] > -0.091)and(V[I] <= -0.088» then 
cjorce := -3.7 
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else if «V[l] > O.OBB)and(V[I] <= 0.091) then 
c_force := 3.7 

else if «V[I] > -O.094)and(V[I] <= -0.091) then 
c_force := -3.B 

else if «V[I] > O.09l)and(V[I] <= 0.094» then 
c_force := 3.B 

else if «V[l] > -0.097)and(V[l] <= -0.094» then 
c_force := -3.9 

else if «V[I] > 0.094)and(V[1] <= 0.097» then 
cjorce := 3.9 

else if «V[l] > -0.100)and(V[l] <= -0.097» then 
cjorce := -4.0 

else if «V[l] > 0.097)and(V[1] <= 0.100» then 
cjorce := 4.0 

else if «V[l] > -0.103)and(V[1] <= -0.100» then 
cjorce := -4.1 

else if «V[l] > 0.100)and(V[l] <= 0.103» then 
cjorce := 4.1 

else if «V[l] > -O.l06)and(V[l] <= -0.103» then 
cjorce := -4.2 

else if «V[l] > 0.103)and(VU] <= 0.106» then 
c_force := 4.2 

else if «V[l] > -O.l09)and(V[l] <= -0.106» then 
cjorce := -4.3 

else if «V[l] > 0.106)and(V[l] <= 0.109» then 
cjorce := 4.3 

else if «V[I] > -0. 112)and(V[l] <= -0.109» then 
cjorce := -4.4 

else if «VU] > O.l09)and(V[1] <= 0.112» then 
cjorce := 4.4 

else if «V[l] > -0. 115)and(V[l] <= -0.112» then 
cjorce := -4.5 

else if «V[l] > 0.112)and(V[l] <= 0.115» then 
cjorce := 4.5 

else if «V[l] > -O.llB)and(V[l] <= -0.115» then 
cjorce := -4.6 

else if «V[l] > 0.115)and(V[1] <= O.llB» then 
cjorce := 4.6 

else if «V[l] > -0.12I)and(V[l] <= -0.11B» then 
c_force := -4.7 

else if «V[l] > O.llB)and(V[l] <= 0.121) then 
cjorce := 4.7 

else if «V[I] > -O.l24)and(V[l] <= -0.121» then 
c_force := -4.B 

else if «V[l] > O.l21)and(V[1] <= 0.124» then 
cjorce := 4.B 

else if «VU] > -0.127)and(V[1] <= -0.124» then 
cjorce := -4.9 

else if «V[1] > O.l24)and(V[l] <= 0.127» then 
cjorce := 4.9 

else if «V[l] > -0. I 30)and(V[l] <= -0.127» then 
cjorce := -5.0 

else if «V[l] > O.l27)and(V[1] <= 0.130» then 
cjorce := 5.0 
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else if «V[1] > -0.133)and(V[1] <= -0.130» then 
cjorce:= -5.1 

else if «V[1] > 0.130)and(V[l] <= 0.133)) then 
cjorce := 5.1 

else if «V[l] > -0.136)and(V[l] <= -0.133» then 
cjorce := -5.2 

else if «V[l] > 0.133)and(V[1] <= 0.136» then 
c_force := 5.2 

else if «V[l] > -0.139)and(V[l] <= -0.136» then 
cjorce := -5.3 

else if «V[l] > 0.136)and(V[1] <= 0.139» then 
c_force := 5.3 

else if «V[1] > -0. 142)and(V[1] <= -0.139» then 
cjorce := -5.4 

else if «V[l] > 0.139)and(V[1] <= 0.142)) then 
cjorce := 5.4 

else if «V[l] > -0.145)and(V[1] <= -0.142» then 
cjorce := -5.5 

else if «V[l] > 0.142)and(V[I] <= 0.145» then 
cforce := 5.5 

else if «V[l] > -0.148)and(V[1] <= -0.145» then 
c_force := -5.6 

else if «V[l] > 0.145)and(V[1] <= 0.148» then 
cjorce := 5.6 

else if «V[l] > -0.151)and(V[l] <= -0.148» then 
cjorce := -5.7 

else if «V[l] > 0.148)and(V[1] <= 0.151) then 
cjorce:= 5.7 

else if «V[l] > -0.154)and(V[1] <= -0.151) then 
cjorce := -5.8 

else if «V[1] > 0.151)and(V[l] <= 0.154» then 
c_force := 5.8 

else if «V[l] > -0.157)and(V[l] <= -0.154» then 
cjorce := -5.9 

else if «V[l] > O.l54)and(V[l] <= 0.157» then 
cjorce := 5.9 

else if «V[l] > -0.160)and(V[l] <= -0.157» then 
cjorce := -6.0 

else if «V[l] > 0.157)and(V[1] <= 0.160» then 
cjorce := 6.0 

else if «V[l] > -0.163)and(V[l] <= -0.160» then 
cjorce := -6.1 

else if «V[l] > 0.160)and(V[1] <= 0.163» then 
cjorce := 6.1 

else if «V[l] > -0.166)and(V[l] <= -0.163» then 
cjorce := -6.2 

else if «V[l] > 0.163)and(V[l] <= 0.166» then 
c_force := 6.2 

else if «V[l] > -0.169)and(V[l] <= -0.166» then 
cjorce := -6.3 

else if «V[I] > O.l66)and(V[l] <= 0.169» then 
c_force := 6.3 

else if «V[l] > -0.172)and(V[l] <= -0.169)) then 
cjorce := -6.4 
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else if ((VU] > 0.169)and(VU] <= 0.172» then 
cjorce := 6.4 

else if ((V[I] > -O.l7S)and(V[1] <= -0.172)) then 
cjorce := -6.5 

else if ((V[I] > O.l72)and(V[I] <= 0.175» then 
cforce := 6.5 

else if ((V[I] > -0.178)and(VU] <= -0.175» then 
cjorce := -6.6 

else if ((VU] > O.l7S)and(V[1] <= 0.178» then 
cjorce := 6.6 

else if ((VU] > -0.18I)and(V[I] <= -0.178» then 
c_force := -6.7 

else if ((VU] > 0.178)and(VU] <= 0.181) then 
cjorce := 6.7 

else if ((VU] > -O.I84)and(V[I] <= -0.181» then 
cjorce := -6.8 

else if ((VU] > 0.181)and(VU] <= 0.184)) then 
cjorce := 6.8 

else if ((VU] > -0.1 87)and(V[1] <= -0.184» then 
cjorce := -6.9 

else if ((VU] > O.l84)and(V[I] <= 0.187» then 
cjorce := 6.9 

else if ((VU] > -O.l90)and(V[I] <= -0.187» then 
cjorce:= -7.0 

else if ((V[I] > 0.187)and(V[I] <= 0.190» then 
cjorce:= 7.0 

else if ((VU] > -O.l93)and(V[I] <= -0.190» then 
cjorce:= -7.1 

else if ((VU] > O.I90)and(V[I] <= 0.193» then 
cjorce:= 7.1 

else if ((VU] > -0.196)and(V[I] <= -0.193» then 
c_force := -7.2 

else if ((VU] > O.l93)and(VU] <= 0.196» then 
cforce := 7.2 

else if ((VU] > -O.l99)and(V[I] <= -0.196» then 
cjorce:= -7.3 

else if ((VU] > O.I%)and(VU] <= 0.199» then 
cjorce := 7.3 

else if ((VU] > -0.202)and(V[I] <= -0.199» then 
cjorce := -7.4 

else if ((VU] > 0.169)and(VU] <= 0.202» then 
cjorce := 7.4 

else if ((V[I] > -0.20S)and(V[I] <= -0.202» then 
cjorce := -7.5 

else if ((V[I] > 0.202)and(VU] <= 0.205» then 
c_force := 7.5 

else if ((VU] > -0.208)and(VU] <= -0.205» then 
cjorce := -7.6 

else if ((VU] > 0.205)and(V[1] <= 0.208» then 
cjorce:= 7.6 

else if ((VU] > -0.211)and(VU] <= -0.208» then 
cjorce:= -7.7 

else if ((VU] > 0.208)and(VU] <= 0.211) then 
cjorce:= 7.7 
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else if «V[t] > -0.214)and(VU] <= -0.211» then 
cjorce := -7.8 

else if «VU] > 0.2tl)and(V[t] <= 0.214)) then 
cjorce := 7.8 

else if «V[t] > -0.217)and(V[I] <= -0.214» then 
cjorce:= -7.9 

else if «V[t] > 0.214)and(VU] <= 0.217» then 
cjorce:= 7.9 

else if «VU] > -0.220)and(V[t] <= -0.217» then 
cjorce := -8.0 

else if «VU] > 0.217)and(VU] <= 0.220» then 
c_force := 8.0 

else if «V[l] > -0.223)and(VU] <= -0.220» then 
cjorce := -8.1 

else if «V[l] > 0.220)and(V[I] <= 0.223» then 
cjorce := 8.1 

else if «V[l] > -0.226)and(VU] <= -0.223» then 
cjorce := -8.2 

else if «VU] > 0.223)and(V[I] <= 0.226» then 
cjorce := 8.2 

else if «V[I] > -0.229)and(VU] <= -0.226» then 
cjorce := -8.3 

else if «V[I] > 0.226)and(VU] <= 0.229» then 
c_force := 8.3 

else if «V[l] > -0.232)and(V[t] <= -0.229» then 
cjorce := -8.4 

else if «VU] > 0.229)and(V[t] <= 0.232» then 
cjorce := 8.4 

else if «VU] > -0.235)and(VU] <= -0.232» then 
cjorce := -8.5 

else if «VU] > 0.232)and(V[t] <= 0.235» then 
cjorce := 8.5 

else if «V[1] > -0.238)and(V[1] <= -0.235» then 
c_force := -8.6 

else if «V[I] > 0.235)and(V[t] <= 0.238)) then 
cjorce := 8.6 

else if «V[t] > -0.241)and(V[I] <= -0.238)) then 
cjorce := -8.7 

else if «V[I] > 0.238)and(V[t] <= 0.241) then 
cjorce := 8.7 

else if «V[I] > -0.244)and(V[I] <= -0.241» then 
cjorce := -8.8 

else if «V[l] > 0.241)and(VU] <= 0.244» then 
c_force := 8.8 

else if «VU] > -0.247)and(V[I] <= -0.244» then 
cjorce := -8.9 

else if «V[1] > 0.244)and(V[1] <= 0.247» then 
cjorce := 8.9 

else if «V[t] > -0.250)and(V[1] <= -0.247» then 
c_force := -9.0 

else if «V[I] > 0.247)and(V[I] <= 0.250» then 
cjorce := 9.0 

else if «V[I] > -0.253)and(V[1] <= -0.250» then 
cjorce := -9.1 
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else if «VU] > 0.250)and(VU] <= 0.253)) then 
c30rce := 9.1 

else if «VU] > -0.256)and(VU] <= -0.253)) then 
c_force := -9.2 

else if «VU] > 0.253)and(V[l] <= 0.256)) then 
c30rce := 9.2 

else if «V[l] > -0.259)and(V[l] <= -0.256)) then 
c30rce := -9.3 

else if «VU] > 0.256)and(V[1] <= 0.259)) then 
c_force := 9.3 

else if «V[l] > -0.262)and(VU] <= -0.259)) then 
c30rce := -9.4 

else if «V[l] > 0.259)and(VU] <= 0.262)) then 
c30rce := 9.4 

else if «V[l] > -0.265)and(V[l] <= -0.262)) then 
c30rce := -9.5 

else if «VU] > 0.262)and(V[1] <= 0.265)) then 
c30rce := 9.5 

else if «V[l] > -0.268)and(V[I] <= -0.265)) then 
c30rce := -9.6 

else if «V[l] > 0.265)and(V[l] <= 0.268)) then 
c30rce := 9.6 

else if «V[l] > -0.271)and(V[I] <= -0.268)) then 
c30rce := -9.7 

else if «V[l] > 0.268)and(V[1] <= 0.271)) then 
c30rce := 9.7 

else if «VU] > -0.274)and(VU] <= -0.271)) then 
c30rce := -9.8 

else if «VU] > 0.271)and(V[I] <= 0.274)) then 
cforce := 9.8 

else if «V[l] > -0.277)and(V[I] <= -0.274)) then 
c30rce := -9.9 

else if «V[l] > 0.274)and(V[I] <= 0.277)) then 
c30rce := 9.9; 

if «V[l] > -0.280)and(VU] <= -0.277)) then 
c30rce := -10.0 

else if «V[l] > 0.277)and(V[l] <= 0.280)) then 
c30rce := 10.0 

else if «V[l] > -0.283)and(V[l] <= -0.280)) then 
c_force := -10.1 

else if «V[l] > 0.280)and(V[l] <= 0.283)) then 
c30rce := 10.1 

else if «V[l] > -0.286)and(V[I] <= -0.283)) then 
c_force := -10.2 

else if «V[l] > 0.283)and(V[I] <= 0.286)) then 
c_force := 10.2 

else if «V[l] > -0.289)and(V[l] <= -0.286)) then 
c30rce := -10.3 

else if «V[l] > 0.286)and(V[l] <= 0.289)) then 
c30rce := 10.3 

else if «V[l] > -0.292)and(V[I] <= -0.289)) then 
c30rce := -10.4 

else if «V[l] > 0.289)and(V[l] <= 0.292)) then 
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c_force := 10.4 
else if «V[I] > -0.295)and(V[I] <= -0.292)) then 

cjorce := -10.5 
else if «V[1] > 0.292)and(V[I] <= 0.295)) then 

cjorce := 10.5 
else if «V[l] > -0.298)and(V[1] <= -0.295)) then 

c_force := -10.6 
else if «V[1] > 0.295)and(V[I] <= 0.298)) then 

cjorce := 10.6 
else if «V[l] > -0.301)and(V[1] <= -0.298)) then 

c_force := -10.7 
else if «V[I] > 0.298)and(V[I] <= 0.301)) then 

cjorce := 10.7 
else if «V[1] > -O.304)and(V[l] <= -0.301)) then 

cjorce := -10.8 
else if «V[I] > O.301)and(V[1] <= 0.304)) then 

cjorce := 10.8 
else if «V[1] > -0.307)and(V[I] <= -0.304)) then 

cjorce := -10.9 
else if «V[l] > O.304)and(V[I] <= 0.307)) then 

cjorce := 10.9 
else if «V[I] > -O.3IO)and(V[1] <= -0.307)) then 

c_force := -11.0 
else if «V[1] > 0.307)and(V[1] <= 0.310)) then 

cjorce := 11.0 
else if «V[1] > -0.313)and(V[1] <= -0.310)) then 

c_force := -11.1 
else if «V[1] > 0.310)and(V[I] <= 0.313)) then 

c_force := 11.1 
else if «V[1] > -0.316)and(VU] <= -0.313)) then 

cjorce:= -11.2 
else if «V[1] > 0.313)and(VU] <= 0.316)) then 

cjorce := 11.2 
else if «V[1] > -0.319)and(V[I] <= -0.316)) then 

cjorce := -11.3 
else if «V[I] > 0.316)and(V[I] <= 0.319)) then 

c_force := 11.3 
else if «V[l] > -0.322)and(V[l] <= -0.319)) then 

cjorce:= -11.4 
else if «V[1] > 0.319)and(VU] <= 0.322)) then 

cjorce := 11.4 
else if «V[I] > -0.325)and(V[1] <= -0.322)) then 

cforce := -11.5 
else if «V[I] > 0.322)and(V[I] <= 0.325)) then 

cjorce := 11.5 
else if «V[1] > -0.328)and(V[l] <= -0.325)) then 

cjorce:= -11.6 
else if «V[1] > 0.325)and(V[I] <= 0.328)) then 

cjorce := 11.6 
else if «VU] > -0.331)and(VU] <= -0.328)) then 

cjorce:= -11.7 
else if «VU] > 0.328)and(V[1] <= 0.331)) then 

cjorce:= 11.7 
else if «V[1] > -0.334)and(V[1] <= -0.331)) then 

219 



cjorce := -11.8 
else if «V[1] > 0.331)and(V[l] <= 0.334)) then 

cforce := 11.8 
else if «V[I] > -0.337)and(V[1] <= -0.334)) then 

cforce:= -11.9 
else if «V[1] > 0.334)and(V[1] <= 0.337)) then 

cjorce := 11.9 
else if «V[1] > -0.340)and(V[1] <= -0.337)) then 

cjorce := -12.0 
else if «V[1] > 0.337)and(V[1] <= 0.340)) then 

c_force := 12.0 
else if «V[I] > -0.343)and(V[I] <= -0.340)) then 

cjorce := -12.1 
else if «V[1] > 0.340)and(V[I] <= 0.343)) then 

cjorce := 12.1 
else if «V[1] > -0.346)and(V[1] <= -0.343)) then 

c_force := -12.2 
else if «V[1] > 0.343)and(V[1] <= 0.346)) then 

cforce := 12.2 
else if «V[1] > -0.349)and(V[I] <= -0.346)) then 

cjorce := -12.3 
else if «V[1] > 0.346)and(V[I] <= 0.349)) then 

cjorce := 12.3 
else if «V[1] > -0.352)and(V[1] <= -0.349)) then 

cjorce := -12.4 
else if «V[1] > 0.349)and(V[I] <= 0.352)) then 

cjorce := 12.4 
else if «V[1] > -0.355)and(V[1] <= -0.352)) then 

cjorce := -12.5 
else if «V[1] > 0.352)and(V[1] <= 0.355)) then 

cjorce := 12.5 
else if «V[1] > -0.358)and(V[I] <= -0.355)) then 

c_force := -12.6 
else if «V[1] > 0.355)and(V[I] <= 0.358)) then 

c_force := 12.6 
else if «V[I] > -0.361)and(V[1] <= -0.358)) then 

cjorce := -12.7 
else if «V[I] > 0.358)and(V[I] <= 0.361)) then 

cjorce := 12.7 
else if «V[1] > -0.364)and(V[1] <= -0.361)) then 

cjorce := -12.8 
else if «V[I] > 0.361)and(V[I] <= 0.364)) then 

cjorce := 12.8 
else if «V[1] > -0.367)and(V[I] <= -0.364)) then 

cjorce := -12.9 
else if «V[1] > 0.364)and(V[1] <= 0.367)) then 

cjorce := 12.9 
else if «V[I] > -0.370)and(V[1] <= -0.367)) then 

cjorce := -13.0 
else if «V[I] > 0.367)and(V[1] <= 0.370)) then 

cjorce := 13.0 
else if «V[1] > -0.373)and(V[1] <= -0.370)) then 

cjorce := -13.1 
else if «V[1] > 0.370)and(V[1] <= 0.373)) then 

220 



cforce := 13.1 
else if «V[l] > -0.376)and(V[l] <= -0.373» then 

c30rce := -13.2 
else if «V[I] > 0.373)and(V[l] <= 0.376)) then 

c_force := 13.2 
else if «V[l] > -0.379)and(V[1] <= -0.376» then 

c30rce := -13.3 
else if «V[1] > 0.376)and(V[1] <= 0.379» then 

c30rce := 13.3 
else if «V[1] > -0.382)and(V[1] <= -0.379» then 

c30rce := -13.4 
else if «V[1] > 0.379)and(V[1] <= 0.382» then 

c30rce := 13.4 
else if «V[1] > -0.385)and(V[l] <= -0.382» then 

c30rce := -13.5 
else if «V[l] > 0.382)and(V[1] <= 0.385» then 

c30rce := 13.5 
else if «V[1] > -0.388)and(V[1] <= -0.385» then 

c30rce := -13.6 
else if «V[1] > 0.385)and(V[I] <= 0.388» then 

c30rce := 13.6 
else if «V[l] > -0.39I)and(V[1] <= -0.388» then 

c30rce := -13.7 
else if «V[l] > 0.388)and(V[I] <= 0.391» then 

c30rce := 13.7 
else if «V[I] > -0.394)and(V[I] <= -0.391) then 

c30rce := -13.8 
else if «V[l] > 0.39I)and(V[I] <= 0.394» then 

cforce := 13.8 
else if «V[l] > -0.397)and(V[I] <= -0.394» then 

c30rce := -13.9 
else if «V[1] > 0.394)and(V[l] <= 0.397» then 

c30rce := 13.9 
else if «V[I] > -0.400)and(V[1] <= -0.397» then 

c30rce := -14.0 
else if «V[I] > 0.397)and(V[I] <= 0.400» then 

c30rce := 14.0 
else if «V[I] > -0.403)and(V[l] <= -0.400» then 

c_force := -14.1 
else if «V[l] > 0.400)and(V[I] <= 0.403» then 

c3orce:= 14.1 
else if «V[l] > -O.406)and(V[I] <= -0.403» then 

c_force:= -14.2 
else if «V[l] > 0.403)and(V[l] <= 0.406» then 

cjorce:= 14.2 
else if «V[I] > -0.409)and(V[1] <= -0.406» then 

c3orce:= -14.3 
else if «V[1] > O.406)and(V[l] <= 0.409» then 

c_force := 14.3 
else if «V[1] > -0.412)and(V[1] <= -0.409» then 

c30rce := -14.4 
else if «V[l] > O.409)and(V[I] <= 0.412» then 

cforce := 14.4 
else if «V[I] > -0.415)and(V[l] <= -0.412» then 
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cjorce := -14.5 
else if «V[I] > 0.412)and(V[I] <= 0.415)) then 

cjorce := 14.5 
else if «V[l] > -0.418)and(V[l] <= -0.415)) then 

c_force:= -14.6 
else if «V[l] > OAI5)and(V[l] <= 00418)) then 

cjorce := 14.6 
else if «V[l] > -0.421)and(V[l] <= -00418)) then 

cjorce := -14.7 
else if «V[I] > 0.418)and(V[I] <= 0.421)) then 

cforce := 14.7 
else if «V[l] > -OA24)and(V[I] <= -0.421)) then 

cjorce := -14.8 
else if «V[l] > OA21)and(V[I] <= 0.424)) then 

cjorce := 14.8 
else if «V[l] > -0.427)and(V[l] <= -0.424)) then 

c_force := -14.9 
else if «V[l] > OA24)and(V[l] <= 00427)) then 

c_force := 14.9 

else if «V[l] < -00427) or (V[I] > 00427)) then 
begin 
{ c30rce := 0 + injorce;} 
cjorce := IS; 
if (V[I] > 0.0) then 
begin {the pole angle is positive going down} 

if c_force < 0.0 then {force currently is going left} 
cjorce:= c3orce*(-I); {change direction} 

end 
else if (V[l] < 0.0) then 
begin 

{the pole angle is negative going down} 

if c30rce > 0.0 then {force currently is going right} 
cforce:= cjorce*(-I) {change direction} 

end; 
end; { theta is not zero} 
if mt < 0.6 then 
c_force := cjorce*O.2 

else if mt < 1.0 then 
cjorce := cjorce*O.5 
else if mt > 1.1 then 

cjorce := cjorce*mt 
end; {check_pole_angle} 

{reduce force since mass is very small} 
{reduce size of experiment} 

{*** procedure to fInd the elastic pole velocity and acceleration **} 
procedure fllld_elas_pole_acc3el_ang(k:real;var e_acc.e3el.cangle:real); 
var nl.n2.n3:real; 
begin 

e_vel:= V[2] + V[2}*k*cos(V[l])/(l + k*sin(V[l])*k*sin(V[l])); 
nl := I + (k*cos(V[l])/(1 + k*sin(V[I])*k*sin(V[l]))); 
n2 := -k*sin(V[I])*(l + k*k*(1 + cos(V[l])*cos(V[l]))); 
n3 := (I + (k*sin(V[l])*k*sin(V[l])))*(l + (k*sin(V[I])*k*sin(V[I]))); 
e_acc := F[2]*nl + V[2]*V[2]*(n2/n3); 

end; {fllld_elas_pole_acc_ veCangle} 
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{*** procedure to fInd cart acceleration * *) 
procedure fmd_carLacceleration( ch:char); 
var k,e_acc,cvel,nl.o2.o3,Langle,c_dis :real; 
begin 

nl := c_f*mp*g; 
if ch = '2' then {elastic pole) 
begin 
k:= (l2*pl*pl*mp*g)/(8*E*pb*pd*pd*pd); 
fmd_elas_pole_acc_vel_ang(k,e_acc,e_vel,Langle); 
t_angle := V[ll + arctan(k*sin(V[I])); {total elastic angle in radians) 
n2 := cacc*mp*p1/2*(cos(Langle)-<:_f*sin(Langle»; 
n3 := e_ vel*e_ vel*mp*pl/2*( -sin(Langle)-<:3*cos(Langle»; 
c_ac[ctr] := (cforce-(nl+n2+n3»/mt; 
writeln(f2,T: 10:6,' ',Langle*57 ,2957795: lO:6,' ',V[l]*57 ,2957795: lO:6,' ',c_ac[ctr]: lO:6); 

end 
else {rigid pole) 
begin 

n2 := F[2]*mp*p1!2*(cos(V[l])-<:_f*sin(VU])); 
n3 := V[2]*V[2]*mp*p1/2*(-sin(V[I])-<:_f*cos(V[1])); 
c_ac[ctr] := (cforce-(nl+n2+n3»/mt; 

end; 
end; {fmd_carLacceleration) 

{* •• proceudre to solve differential equation using numerical integration *} 
procedure numerical_integration(ch:char); 
var Langle:real; {total elastic angle) 
begin {main ) 

in_data(ch); 
failure := false; 
case ch of 

'1': assign(fl,'c:vesearch'n_i\r_out.dat'); {rigid pole) 
'2': begin 

angle) 

assign(fl ,'c:v.search'n_i'e_out.dat'}; {elastic pole) 
assign(f2,'c:v.search'n_i\r_angle,dat'); 
rewrite(f2); 
write_iniL values_to_me2; 
writeln(f2,Time':8, Elastic pole': IS, 'Rigid pole': 12,'Cart':7); 
writeln(f2, 'angle':20, 'angle': 12,' acceleration': 18); 
t_angle:= V[I] + arctan(sin(V[1])*(12*pl*pl*mp*g)/(8*E*pb*pd*pd*pd»; {total elastic 

writeln(f2,T: lO:6,' ',Langle*57,2957795: lO:6,' ',V[1l*57,2957795: lO:6,' ',c_ac[l]: lO:6); 
end; 

end; {case) 
rewrite(fl); 
oULme; {print data to me) 
writeln(Time':8,'C_accel': l3, 'Pole_ang': l3,'Pole_ang.,vel': 14, 'Force':7, 'P _accel': 14); 
write(T: lO:6,' ',c_acU]: lO:6,' ',VU]*57 ,2957795: lO:6,' ',V[2]: lO:6,' ',in3orce: 10:6); 
repeat 

m:=O; 
rungeCM.K,2,V'p,T,R); 
while k = 1 do 
begin 

FU] := V[2]; 
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check--pole_angle; 
if failure then 
begin 

close(fl); close(f2); 
exit; 

end; 
dnume := (4/3*mt*pl/2 - mp*pl/2*cos(V[1])*cos(V[1]) + c3*mp*pl/2*cos(V[I])*sin(V[l])); 
nume := mt*g*sin(V[I]) - cos(V[l])*(c30rce - (c_f*mp'g -

mp*pl/2*V[2]*V[2]*(sin(V[I])+c3*cos(V[I]»»; 
F[2] := nume/dnume; 
if T = 0.0 then 
begin 

writelnC '.F[2]: 10:6); 
writeln(fl,' '.F[2]:10:6); 

end; 
runge(M.K.2.V.F,T.m; 

end; 
if (T <= tmax) then 
begin 

icount := icount + I; 
if (icount = ifreq) then 
begin 

icount:= 0; 
ctr := ctr+ 1; {total number of elements in array j 
fmd_carCacceleration(ch); {fmds elastic angle,velocity,accelaration.displacemenj 

writeln(T:1O:6,' ',c_ac[ctr]:1O:6,' ',V[l]*57.295779:1O:6,' ',V[2]:10:6,' ',c30rce:IO:6,' '.F[2]:10:6); 
writeln(fl,T:IO:6,' ',c_ac[ctr]: 10:6,' ',V[l]*57.295779: 10:6,' ',V[2]: 10:6,' ',c30rce: 10:6,' ',F[2]: 10:6); 

time30[ctr] := T; angle30[ctr] := V[I]; 
end; 

end; 
until (T >tmax); 
writeln; 
writeC Thank you for waiting. Just press enter to continue ... '); 
readln; 
close(fl); 
if ch <> '1' then close(f2); 

end; {numerical_integration j 

{ this is the menu to choosr topic on the program j 
procedure menu(var ch:char); 
V AR y:integer; 
begin 

clrscr; gotoxy(1,3); 
textcolor(blue); 
writeln{'************************************************':63); 
textcolor(red+blinK); 
writelnC* CART -POLE BALANCING SYSTEM 
textcolor(blue); 
writeln(,* Computer simulation using 
WRITELNC* Fourth order runge-kutta 
textcolor(magenta+blink); 
writelnC* By: Elmer P. Dadios 
textcolor(blue); 

*':63); 
*':63); 

*':63); 

*':63); 

writeln('************************************************':63); 
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writeln; 
textcolor(green); 
writeln(,**************************************************':64); 
writeln('* MAIN MENU *':64); 
writelnC* I. Simulate new values for rigid pole *':64); 
writelnC* 2. Simulate new values for elastic pole *':64); 

writelnC* 3. Plot the graph: rigid pole without friction *':64);) 
writelnC* 4. Plot the graph: rigid pole angle vs. time *':64); 
writeln('* 5. Plot the graph: elastic pole angle vs.time *':64); 
writeln('* 6. Real time elastic pole cart simulation *':64); 
writelnC* 7. Cart displacement vs. time (elastic pole) *':64); 
writelnC* 8. Cart acceleration vs. time (elastic pole) *':64); 
writelnC* 9. Cart velocity vs. time (elastic pole) *':64); 
writelnC* O. To quit program. *':64); 
writelnC* *':64); 
write1n(,*************************************************':64); 
y:= wherey; 
repeat 

gotoxy(27.y); 
writeCYour choice please: '); 
read(ch); 

until ch in ['0':1':2':4':5','6':7':8':9']; 
end; (menu) 

(*** procedure tofmd the elastic angle ****) 
procedure fmd_elastic_angle; 
var k,cangle :real; 

i : integer; 
begin 

assign(fl ,'c:vesearch\n]-cangle.dat'); 
rewrite(fl); 
write_iniC values_to_file; 
writeln(fl, Time':8 ,'cpole_ang': 15, 'r_pole_ang': 12,'Caccel': 10); 
k := pl*pl*mp*g*12/(8*E*pb*pd*pd*pd); 
for i := 1 to ctr do 
begin 

t_angle := angle_co[i] + arctan(k*sin(angle_co[i])); 
writeln(fl,time_co[i]:1O:6,' ',cangle: 10:6,' ',angle_co[i]:1O:6,' ',c_ac[i]: 10:6); 

end; 
c!ose(fl); 

end; (fmd_elastic_angle) 

BEGIN (MAIN PROGRAM ) 
repeat 

MENU(ch); 
case ch of 

'I': numerical_integration(ch); 
'2' : numerical_integration(ch); 
'4','5','7','8','9': start..,g-,_wof(ch); (call program that will graph theta vs time) 
'6' : draw _pole_cart('6'); 

end; (case) 
until ch = '0'; 
textcolor(white); 

end. (MAINPROGRM) 
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/*** This is the file that contain the procedures for displaying graphically the ***/ 
/*** dynamic behaviour of the system ***/ 

unit gra28_car; {graph of moving pole and cart I 
INTERFACE 
uses crt,graph,glob_dat; 
type fillpaterrnType = array[1..8] of byte; 
const graySO: fillpattemtype = ($AA,$SS,$AA,$SS,$AA,$SS,$AA,$SS); 
var 

grdriver ,grmode,errcode,x,y .i,time_scj :integer; 
scale :longint; 
f1 : text; 
cangle :array[l .. n] of real; 
failure: boolean; 
injorce,cj,ac_amp :real; 

procedure get-pole_data(var data:real); 
procedure getjreq_neg(i:integer;var tl,t2:real;var cycles:integer); 
procedure solve_cart_displacement(ch:char); 
procedure gecex_data(choice:char); 
procedure ploUine(choice:char); 
procedure write_theta(the_pos,the_neg:real); 
procedure write_time(time:integer); 
procedure ploCpoints; 
procedure init--J!raph; 
procedure write_strings(ch:char); 
procedure start--J!-r_wof(choice:char); 
procedure write_cart_pole_heading; 
procedure draw_track; 
procedure draw _cart(change:reaO; 
procedure draw _hinge(change:real); 
procedure draw _elastic_pole(Ll,change:real;n:integer;var Tl.:real); 
procedure draw _system_acany_time(n,scale:integer;var change:real); 
procedure draw _pole(change:real); 
procedure draw _pole_cart(ch:char); 

IMPLEMENTATION 

{*** procedure to initialize global data *** I 
procedure init--J!lobal_data; 
begin 

for i := 1 to n do 
begin 

time_coli] := 0.0; 
cangle[il := 0.0; 
anglcco[i] := 0.0; 
c_ac[i] := 0.0; 

end; 
end; {init--J!lobal_data I 
{*** procedure to read poles data from file *** I 
procedure gecpole_data(var data:real); 
var ch:char; 
begin 

repeat 
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read(fl,ch); 
until ch = '='; 
readln(fl,data); 

end; {get-POle_data} 

{*** procedure to get frequency that start at the first negative side ***} 
procedure geCfreq_neg(i:integer;var tl,t2:real;var cycles:integer); 
begin 

cycles := cycles + I; 
if cycles = 1 then t2 := 0,0 
else t2 := t2 + (timcco[i]-tl); 
tl := time_coli]; 

end; {getjreq_neg} 

, {*** procedure to fmd the cart displacement and velocity ***} 
procedure solve_cart_displacement(ch:char); 
var tl,t2,freq,cart_ vel:real; 

i,cycles:integer; 
flag : boolean; 

begin 
assign(fl,'c:'research\n]c_dis,dat'); 
rewrite(fl); 
writeln(fl, Time': 8,'Elas_angle': 15 ,'Cart_accel': 12,'Cart3elocity': 14,'Cart_displacement': 18); 
writeln(fl,time_co[ 1]: lO:6,' ',Langle[I]*57 .2957795: lO:6,' ',c_ac[l] :lO:6,' ',0,0: lO:6,' ',0,0: lO:6); 
tl := 0,0; cycles := 0; 
if injorce > 0,0 then 
begin 

flag := true; 
fori:= 1 toj do 
begin 

if (flag) and (c_ac[i] < 0,0) then {frrst negative} 
begin 

geLfreq_neg(i,tl,t2,cycles); 
flag := false; 

end 
else if (not flag) and (c_ac[i] > 0,0) then {frrst positive} 
begin 

t2 := t2 + (time_co[i]-tl); 
tl := time_coli]; 
flag := true; 

end; 
end; {for} 

end {if injorce > O,O} 
else 
begin 

flag := false; 
for i := 1 to j do 
begin 

if (not flag) and (c_ac[i] > 0,0) then {frrst negative) 
begin 

get_freq_neg(i,tl,t2,cycles); 
flag := true; 

end 
else if (flag) and (Cac[i] < 0,0) then {frrst positive} 
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begin 
t2 := t2 + (time30Ii]-tl); 
tl := time_coli]; 
flag := false; 

end; 
end; (for} 

end; (if injorce < O.O} 
freq := t2/cycles; 
fori:=2tojdo (att>O} 
begin (values for cart displacement} 

cart_vel := ac_amp*sin(6.283l85*freq*time3o[i])/(6.283l85*freq); (Ksin(wt)/w = cart velocity} 
write(fl,time_coli]: 10:6,' ',cangle[i]*57 .2957795: 10:6,' , ,cacli]: 10:6,' , ,cart_vel: 10:6); 
if ch = '6' then (draw the entire system} 
begin 

c_ac[i] := -c_acli]/(freq*freq*39.4784); (cart displacement = -acceleration/omega*omega} 
writeln(fl,' ',c_ac[i]: 10:6); 

end 
else if ch = '7' then (plot cart displacement vs time} 
begin 

angle_coli] := -c_acli]/(freq*freq*39.4784); 
writeln(fl,' ',angle_co[i]: 10:6); 

end 
else if ch = '9' then (plot cart velocity vs time} 
begin 

angle_coli] ;= cart_vel; {in plotting points angle_co is always used} 
writeln(fl); 

end; 
end; {for} 
if ch = '6' then c_ac[l] ;= 0.0; {initial displacement in plotting the entire system} 
if (ch = '9')0r(ch='7') then 

angle_coil] := 0.0; {initial velocity and displacement} 
close(fl); 

end; {solve_cart_displacement} 

{*** procedure to read data from external file "'} 
procedure gecex_data(choice:char); 
var ch :char; 

amp-p,amp_n:real; {minimimum and maximum value of amplitude} 
begin 

init-Jllobal_data; 
case choice of 

'3','4': assign (fl,'c:\research\rU\r·_out.dat'); {rigid pole w/o friction} 
'4': assign (fl ,'c:\research\rU\r_angle.dat');} {rigid pole w/ friction} 

'5','6','7','8','9': assign (fl,'c:\research\rU\r_angle.dat'); {rigid pole w/ friction} 
end; 
reset(fl); 
for i := 1 to 20 do 
for i := 1 to 2 do 

readln(fl ); 
gecpole_data(mp); 
gecpole_data(mt); 
gecpole_data(pl); 
get-J)Ole_data(pb); 
gecpole_data(pd); 

(mass of the pole} 
{total mass of the pole and the cart} 

{length of the pole} 
{breadth of the pole} 
{ depth of the pole} 
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gecpole_data(E); {elasticity of the pole} 
gecpole_data(injorce); 
gecpole_data(c_f); 
for i := I to 11 do 
readln(fl ); 

j := 0; amp_p := 0; amp_n := 0; 
while (not eof(fl)) do 
begin 
j := j+l; 
fori:=lt02do 

read(fl,ch); 
read(fl,time_co[j]); {the time} 
for i := 1 to 2 do 

read(fl,ch); 
read(fl,cangle[j]); {the total elastic angle} 
cangle[j]:= cangle[j]/57,2957795; {convert to radians} 
fori:=lt02do 

read(fl,ch); 
read(fl,angle_co[j]); {the rigid pole angle} 
angle_co[j] := angle_co[j]/57,2957795; 
for i := 1 to 2 do 
read(fl,ch); 

readln(fl,c_ac[j]); {cart acceleration} 
if G>2) then 
begin {exclude at t=0} 
if (cac[j] < amp_n) then 

amp_n := c_ac[j] {max negative amplitude of acceleration} 
else if (c_ac[j] > amp_p) then 

amp_p := cac[j]; {max positive amplitude of acceleration} 
end; 

end; {while} 
ac_amp:= (amp-p + abs(amp_n))/2; {actual amplitude of acceleration} 
close(fl); 
if (choice='6') or (choice='?') or (choice='9') then {this is for real time cart pole simulation} 

solve_cart_displacement(choice) 
else if choice = '8' then {for cart acceleration} 
for i := I to j do 

angle_co[i] := c_ac[i] 
else if choice = '5' then {this is for elastic pole angle_co = total deflection} 

for i := 1 to j do 
angle_co[i] := cangle[i]; 

end; {get_ex_data} 

{ •••• procedure to draw center line ""} 
procedure ploUine(choice:char); 
begin 

x := round(getmaxx/2-270); 
y := round(getmaxy/2); 
for i := x to getmaxx-lO do 

Putpixel(i,y,blue); {horizontal line } 
for i := 5 to y'2-5 do 

putpixel(x-l.i,blue); {vertical line} 
setcolor(brown); 
SetTextstyle(defaultFont,Horizdir,2); {charsize =I} 
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SetTextjustify(centertext,centertext); 
case choice of 

'4':begin 
if c_f = 0.0 then 

OutTextXY(x+290,y-200,'RIGID POLE WITHOUT FRICTION') {TIfE TITLE} 
else 

OutTextXY(x+290,y-200,'RIGID POLE WITH FRICTION,); (TIfE TITLE} 
end; 

'5':begin 
if ef <> 0.0 then 

OutTextXY(x+290,y-200,'ELASTIC POLE WITH FRICTION') (TIfE TITLE} 
else 

OutTextXY(x+290,y-200,'ELASTIC POLE WITHOur FRICTION'); 
end; 

'7': OutTextXY(x+290,y-200,TIME VS. CART DISPLACEMENT,); (TIfE TITLE} 
'8': OutTextXY(x+290,y-200,TIME VS. CART ACCELERATION'); (TIfE TITLE} 
'9': OutTextXY(x+290,y-200,TIME VS. CART VELOCITY'); {TIfE TITLE} 

END; 
end; (ploUine} 

(*** procedure to plot the coordinates of the anlge ***} 
procedure write_theta(the_pos,the_neg:real); 
begin 

x := round(getmaxx/2-270); 
(*** for positive angle ****} 
y := round(scale*the_pos); 
y:= round(getmaxy/2 - y); (coordinate of theta} 
for i := (x-I) to (x+ I) do 

putpixel(i,y,green); {draw horizintalline} 
x:= x-30; 

if the_pos = 0.0 then 
OutTextXY(x,y,'O.O') 

else if the_pos <= 0.00175 then 
OutTextXY(x,y,'0.0018') 

else if the_pos <= 0.00345 then 
OutTextXY(x,y,'0.0035') 

else if the-pos <=0.005232 then 
OutTextXY(x,y,'0.0052') 

else if the-POs <= 0.00698 then 
OutTextXY(x,y,'O.OO7') 

else if the_pos <= 0.00873 then 
OutTextXY(x,y,'O.0087') 

else if the_pos <= 0.01047 then 
OutTextXY(x,y,'O.0105') 

else if the-lJOS <= 0.01220 then 
OutTextXY(x,y,'O.0122') 

else if the-lJOS <= 0.01396 then 
OutTextXY(x,y,'O.014') 

else if the_pos <= 0.01570 then 
OutTextXY(x,y,'O.0157') 

else if the-lJOS <= 0.01745 then 
OutTextXY(x,y,'O.O 175') 

else if the-POs <= 0.01919 then 
OutTextXY(x,y,'O.OI92') 
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else if the_pos <= 0.02090 then 
OutTextXY(x,y,'O.0209') 

else if the_pos <= 0.02269 then 
OutTextXY(x,y:0.0227') 

else if the_pos <= 0.02443 then 
OutTextXY(x,y:O.0244') 

else if the_pos <= 0.02618 then 
OutTextXY(x,y:0.0262') 

else if the_pos <= 0.02793 then 
OutTextXY(x,y,'O.0279') 

else if the_pos <= 0.02967 then 
OutTextXY(x,y,'O.0297') 

else if the_pos <= 0.03142 then 
OutTextXY(x,y:0.0314') 

else if the_pos <= 0.03316 then 
OutTextXY(x,y,'O.0332') 

else if the_pos <= 0.03491 then 
OutTextXY(x,y,'O.0349') 

else if the_pos <= 0.03665 then 
OutTextXY(x,y:0.0367') 

else if the_pos <= 0.03839 then 
OutTextXY(x,y,'O.0384') 

else if the_pos <= 0.04014 then 
OutTextXY(x,y:0.0401') 

else if the_pos <= 0.04189 then 
OutTextXY(x,y:0.04l9') 

else if the_pos <= 0.04363 then 
OutTextXY(x,y:0.0436') 

else if the_pos <= 0.04538 then 
OutTextXY(x,y,'O.0454') 

else if the_pos <= 0.04712 then 
OutTextXY(x,y:0.0471') 

else if the_pos <= 0.04887 then 
OutTextXY(x,y:0.0489') 

else if the-pos <= 0.05061 then 
OutTextXY(x,y,'0.0506') 

else if the_pos <= 0.05236 then 
OutTextXY(x,y,'0.0524') 

else if the_pos <= 0.05410 then 
OutTextXY(x,y:0.054l ') 

else if the_pos <= 0.05585 then 
OutTextXY(x,y,'0.0559') 

else if the_pos <= 0.05760 then 
OutTextXY(x,y:0.0576') 

else if the_pos <= 0.05934 then 
OutTextXY(x,y:0.0593') 

else if the_pos <= 0.06100 then 
OutTextXY(x,y :0.061 ') 

else if the_pos <= 0.06283 then 
OutTextXY(x,y,'0.0628') 

else if the_pos <= 0.06458 then 
OutTextXY(x,y:O.0646') 

else if the_pos <= 0.06632 then 
OutTextXY(x,y,'0.0663') 
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else if the_pos <= 0.06807 then 
OutTextXY(x,y ,'0.0681 ') 

else if the_pos <= 0.06981 then 
OutTextXY(x,y,'0.0698') 

else if the_pos <= 0.07156 then 
OutTextXY(x,y,'0.0716') 

else if the_pos <= 0.07330 then 
OutTextXY(x,y,'0.0733') 

else if the_pos <= 0.07500 then 
OutTextXY(x,y,'0.075') 

else if the_pos <= 0.07679 then 
OutTextXY(x,y,'0.0768') 

else if the_pos <= 0.07853 then 
OutTextXY(x,y,'0.0785') 

else if the_pos <= 0.08028 then 
OutTextXY(x,y,'0.0803') 

else if the_pos <= 0.08203 then 
OutTextXY(x,y,'0.082') 

else if the-POs <= 0.08378 then 
OutTextXY(x,y,'0.0838') 

else if the_pos <= 0.08552 then 
OutTextXY(x,y,'0.0855') 

else if the_pos <= 0.087273 then 
OutTextXY(x,y,'0.0873') 

else if the_pos <= 0.08901 then 
OutTextXY(x,y,'0.089') 

else if the_pos <= 0.09076 then 
OutTextXY(x,y,'0.0908') 

else if the_pos <= 0.09250 then 
OutTextXY(x,y,'0.0925') 

else if the_pos <= 0.09425 then 
OutTextXY(x,y,'0.0943') 

else if the_pos <= 0.09599 then 
OutTextXY(x,y,'O.096') 

else if the_pos <= 0.09777 then 
OutTextXY(x,y,'0.0978') 

else if thCpos <= 0.09948 then 
OutTextXY(x,y,'0.0995') 

else if the_pos <= 0.10123 then 
OutTextXY(x,y,'0.1012') 

else if the_pos <= 0.10297 then 
OutTextXY(x,y,'0.103') 

else if the_pos <= 0.10472 then 
OutTextXY(x,y,'O.I041') 

else if the-POs <= 0.10821 then 
OutTextXY(x,y,'0.1082') 

else if the_pos <= 0.11170 then 
OutTextXY(x,y,'O.III1') 

else if the_pos <= 0.11519 then 
OutTextXY(x,y,'O.l152') 

else if the_pos <= 0.11868 then 
OutTextXY(x,y,'0.1181') 

else ifthe-POs<= 0.12217 then 
OutTextXY(x,y,'0.1222') 
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else if the_pos <= 0.12566 then 
OutTextXY(x.y:0.1257') 

else if the-pos <= 0.12915 then 
OutTextXY(x.y:0.1292') 

else if the_pos <= 0.13264 then 
OutTextXY(x,y:0.1326') 

else if the_pos <= 0.13614 then 
OutTextXY(x,y:0.1361') 

else if the_pos <= 0.13962 then 
OutTextXY(x,y:0.1396') 

else if the_pos <= 0.14312 then 
OutTextXY(x,y,'O.1431') 

else if the_pos <= 0.14661 then 
OutTextXY(x,y,'O.I466') 

else if the_pos <= 0.15010 then 
OutTextXY(x,y:0.1501') 

else if the_pos <= 0.153689 then 
OutTextXY(x,y,'O.1537') 

else if the_pos <= 0.15708 then 
OutTextXY(x,y:0.1571') 

else if the_pos <= 0.16057 then 
OutTextXY(x,y,'O.I606') 

else if the_pos <= 0.16406 then 
OutTextXY(x,y:0.1641') 

else if the_pos <= 0.16755 then 
OutTextXY(x,y:0.1676') 

else ifthe-POs <= 0.17104 then 
OutTextXY(x,y:0.171') 

else if the-POs <= 0.17453 then 
OutTextXY(x,y:0.1745') 

else if the_pos <= 0.191986 then 
OutTextXY(x,y,'O.192') 

else if the_pos <= 0.2094395 then 
OutTextXY(x,y,'0.2094') 

else if the_pos <= 0.226892 then 
OutTextXY(x,y,'O.2269') 

else if the-POs <= 0.24435 then 
OutTextXY(x,y,'0.2444') 

else if the-pos <= 0.26180 then 
OutTextXY(x,y,'0.2618') 

else if the_pos <= 0.27925 then 
Ou tTextXY(x,y, '0.2793') 

else if the_pos <= 0.29671 then 
OutTextXY(x,y,'O.2967') 

else if the-pos <= 0.31416 then 
OutTextXY(x,y:0.3142') 

else if the-POs <= 0.33161 then 
OutTextXY(x,y:0.3316') 

else if the-POs <= 0.34907 then 
OutTextXY(x.y:0.3491') 

else if the-pos <= 0.36652 then 
OutTextXY(x,y,'0.3665') 

else if the_pos <= 0.38397 then 
OutTextXY(x,y:0.384') 
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else if the....jlos <= 0.40143 then 
OutTextXY(x,y,'O,4014') 

else if the....jlOs <= 0.41888 then 
OutTextXY(x,y, '0.4189') 

else if the_pos <= 0.43633 then 
OutTextXY(x,y,'0.4363') 

else if the_pos <= 0.453786 then 
OutTextXY(x,y,'0.4538') 

else if the_pos <= 0.47124 then 
OutTextXY(x,y,'0.4712') 

else if thcpos <= 0.48870 then 
OutTextXY(x,y,'0.4887') 

else if the_pos <= 0.506145 then 
OutTextXY(x,y,'0.506I') 

else if the_pos <= 0.523599 then 
OutTextXY(x,y,'O.5236'); 

( *** for negative **** I 
x:= x+30; 
y := round(scale*the_neg); 
y := round(abs(y) + getmaxy/2); 
for i := (x-I) to (x+l) do 
putpixel(i,y,green); 
x:= x-30; 
if the_neg = 0.0 then 

OutTextXY(x,y,'O.O') 
else if the_neg >= -0.00175 then 

OutTextXY(x,y,' 0.0018') 
else if the_neg >= -0.00345 then 

OutTextXY(x,y,' 0.0035') 
else if the_neg >= -0.00523 then 

OutTextXY(x,y,'O.0052') 
else if the_neg >= -0.00698 then 

OutTextXY(x,y,'O.OO7') 
else if the_neg >= -0.00873 then 

OutTextXY(x,y,'O.0087') 
else if the_neg >= -0.01047 then 

OutTextXY(x,y,'O.OI05') 
else if the_neg >= -0.01220 then 

OutTextXY(x,y,'0.0122') 
else if the_neg >= -0.01396 then 

OutTextXY(x,y,'O.014') 
else if the_neg >= -0.01570 then 

OutTextXY(x,y,'0.0157') 
else if the_neg >= -0.01745 then 

OutTextXY(x,y,'0.0175') 
else if the_neg >= -0.01919 then 

OutTextXY(x,y,'O.OI92') 
else if the_neg >= -0.02090 then 

OutTextXY(x,y,'0.0209') 
else if the_neg >= -0.02269 then 

OutTextXY(x,y,'0.0227') 
else if the_neg >= -0.02443 then 

Ou tTextXY(x,y, '0.0244') 

(for horizontal line marker I 

(coordinate of theta I 

(draw horizintalline I 
(for theta coordinate I 
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else if the_neg >= -0.02618 then 
OutTextXY(x.y.'O.0262') 

else if the_neg >= -0.02793 then 
OutTextXY(x,y,'O.0279') 

else if the_neg >= -0.02967 then 
. OutTextXY(x,y:0.0297') 

else if the_neg >= -0.03142 then 
OutTextXY(x,y:0.0314') 

else if the_neg >= -0.03316 then 
OutTextXY(x,y:0.0332') 

else if the_neg >= -0.03491 then 
OutTextXY(x,y,'O.0349') 

else if the_neg >= -0.03665 then 
OutTextXY(x,y,'O.0367') 

else if the_neg >= -0.03839 then 
OutTextXY(x,y,'O.0384') 

else if the_neg >= -0.04014 then 
OutTextXY(x,y,'O.0401') 

else if the_neg >= -0.04189 then 
OutTextXY(x,y,'O.0419') 

else if the_neg >= -0.04363 then 
OutTextXY(x,y,'O.0436') 

else if the_neg >= -0.04538 then 
OutTextXY(x,y,'O.0454') 

else if the_neg >= -0.04712 then 
OutTextXY(x,y,'O.0471') 

else if the_neg >= -0.04887 then 
OutTextXY(x,y,'O.0489') 

else if the_neg >= -0.05061 then 
OutTextXY(x,y,'O.0506') 

else if the_neg >= -0.05236 then 
OutTextXY(x,y,'O.0524') 

else if the_neg >= -0.05410 then 
OutTextXY(x,y:0.0541') 

else if the_neg >= -0.05585 then 
OutTextXY(x,y:0.0559') 

else if the_neg >= -0.05760 then 
Ou tTextXY(x,y :0.0576') 

else if the_neg >= -0.05934 then 
OutTextXY(x,y,'0.0593') 

else if the_neg >= -0.06100 then 
OutTextXY(x,y,'O.061') 

else if the_neg >= -0.06283 then 
OutTextXY(x,y,'O.0628') 

else if the_neg >= -0.06458 then 
OutTextXY(x,y,'O.0646') 

else if the_neg >= -0.06632 then 
OutTextXY(x,y,'O.0663') 

else if the_neg >= -0.06807 then 
OutTextXY(x,y:0.0681') 

else if the_neg >= -0.06981 then 
OutTextXY(x,y:0.0698') 

else if the_neg >= -0.07156 then 
OutTextXY(x,y:0.0716') 
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else if the_neg >= -0.07330 then 
OutTextXY(x.y,'O.0733') 

else if the_neg >= -0.07500 then 
OutTextXY(x,y,'O.075') 

else if the_neg >= -0.07679 then 
OutTextXY(x,y:0.0768') 

else if the_neg >= -0.07853 then 
OutTextXY(x,y,'O.0785') 

else if the_neg >= -0.08028 then 
OutTextXY(x,y,'O.0803') 

else if the_neg >= -0.08203 then 
OutTextXY(x,y,'O.082') 

else if the_neg >= -0.08378 then 
OutTextXY(x,y,'O.0838') 

else if the_neg >= -0.08552 then 
OutTextXY(x,y,'O.0855') 

else if the_neg >= -0.087273 then 
OutTextXY(x,y:0.0873') 

else if the_neg >= -0.08901 then 
OutTextXY(x,y,'O.089') 

else if the_neg >= -0.09076 then 
OutTextXY(x,y,'O.0908) 

else if the_neg >= -0.09250 then 
OutTextXY(x,y,'O.0925') 

else if the_neg >= -0.09425 then 
OutTextXY(x,y:0.0943') 

else if the_neg >= -0.09599 then 
OutTextXY(x,y,'O.096') 

else if the_neg >= -0.09777 then 
OutTextXY(x,y,'O.0978') 

else if the_neg >= -0.09948 then 
OutTextXY(x,y,'O.0995') 

else if the_neg >= -0.10123 then 
OutTextXY(x,y:0.1012') 

else if the_neg >= -0.10297 then 
OutTextXY(x,y:0.103') 

else if the_neg >= -0.10472 then 
OutTextXY(x,y,'O. I 047') 

else if the_neg >= -0.10821 then 
OutTextXY(x,y,'O.1082') 

else if the_neg >= -0.11170 then 
OutTextXY(x,y:0.1117') 

else if the_neg >= -0.11519 then 
OutTextXY(x.y:0.1152') 

else if the_neg >= -0.11868 then 
OutTextXY(x.y:0.1187') 

else if the_neg >= -0.12217 then 
OutTextXY(x.y, '0.1222') 

else if the_neg >= -0.12566 then 
OutTextXY(x,y:0.1257') 

else ifthe_neg >= -0.12915 then 
OutTextXY(x,y:0.1292') 

else if the_neg >= -0.13264 then 
OutTextXY(x,y:0.1326') 
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else ifthe_neg >= -0.13614 then 
OutTextXY(x,y:0.136l') 

else if the_neg >= -0.13962 then 
OutTextXY(x,y:0.1396') 

else ifthe_neg >= -0.14312 then 
OutTextXY(x,y:0.143 I') 

else if the_neg >= -0.14661 then 
OutTextXY(x,y:O.I466') 

else if the_neg >= -0.15010 then 
OutTextXY(x,y:0.150I') 

else if the_neg >= -0.153689 then 
OutTextXY(x,y:0.1537') 

else if the_neg >= -0.15708 then 
OutTextXY(x,y:0.157I') 

else if the_neg >= -0.16057 then 
OutTextXY(x,y:0.1606') 

else if the_neg >= -0.16406 then 
OutTextXY(x,y:0.1641') 

else if the_neg >= -0.16755 then 
OutTextXY(x,y,'O.1676') 

else if the_neg >= -0.17104 then 
OutTextXY(x,y:0.171') 

else if the_neg >= -0.17453 then 
OutTextXY(x,y:0.1745') 

else if the_neg >= -0.191986 then 
OutTextXY(x,y, '0.192') 

else if the_neg >= -0.2094395 then 
OutTextXY(x,y,'0.2094') 

else if the_neg >= -0.226892 then 
OutTextXY(x,y:0.2269') 

else if the_neg >= -0.24435 then 
OutTextXY(x,y,'O.2444') 

else if the_neg >= -0.26180 then 
OutTextXY(x,y,'O.2618') 

else if the_neg >= -0.27925 then 
OutTextXY(x,y,'O.2793') 

else if the_neg >= -0.29671 then 
OutTextXY(x,y,'O.2967') 

else if the_neg >= -0.31416 then 
OutTextXY(x,y,'0.3142') 

else if the_neg >= -0.33161 then 
OutTextXY(x,y:0.3316') 

else if the_neg >= -0.34907 then 
OutTextXY(x,y:0.3491') 

else if the_neg >= -0.36652 then 
OutTextXY(x,y,'0.3665') 

else if the_neg >= -0.38397 then 
OutTextXY(x,y,'O.384') 

else if the_neg >= -0.40143 then 
OutTextXY(x,y,'O.4014') 

else if the_neg >= -0.41888 then 
OutTextXY(x,y,'O.4189') 

else if the_neg >= -0.43633 then 
OutTextXY(x,y:0.4363') 
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else if the_neg >= -0.453786 then 
OutTextXY(x,y,'0,4538') 

else if the_neg >= -0.47124 then 
OutTextXY(x,y ,'0.4 712') 

else if the_neg >= -0.48870 then 
OutTextXY(x,y,'0.4881') 

else if the_neg >= -0.506145 then 
OutTextXY(x,y,'0.5061') 

else if the_neg >= -0.523599 then 
OutTextXY(x,y,'0.5236'); 

end; I write_theta} 

I *** procedure to print time covered ***} 
procedure write_time(time:integer); 
var I,xt,yt:integer; 
begin 

xt:= round(getmaxx!2-270+time*time_sc); Ix coordinate of time} 
yt := round(getmaxyl2+5); I y coordinate of time} 
for 1:= round(getmaxyl2-1) to round(getmaxyl2+1) do 

putpixel(xt,l,green); 
setcolor(yellow); 
SetTextsty le(defaultfont.horizdir, 1); I charsize = 1 } 
SetTextjustify(LeftText,Toptext); 

case time of 
1: OutTextXY(xt-2,yt,'1'); 
2: OutTextXY(xt-2,yt,'2'); 
3: OutTextXY(xt-2,yt,'3'); 
4: OutTextXY(xt-2,yt,'4'); 
5: OutTextXY(xt-2,yt,'5'); 
6: OutTextXY(xt-2,yt,'6'); 
7: OutTextXY(xt-2,yt,'1'); 
8: OutTextXY(xt-2,yt,'8'); 
9: OutTextXY(xt-2,yt,'9'); 
10: OutTextXY(xt-2,yt,'IO'); 
11: OutTextXY(xt-2,yt,'11'); 
12: OutTextXY(xt-2,yt,' 12'); 
13: OutTextXY(xt-2,yt,'13'); 
14: OutTextXY(xt-2,yt,'14'); 
15: OutTextXY(xt-2,yt,'15'); 
16: OutTextXY(xt-2,yt,'16'); 
17: OutTextXY(xt-2,yt,'I1'); 
18: OutTextXY(xt-2,yt,'18'); 
19: OutTextXY(xt-2,yt,'19'); 
20: OutTextXY(xt-2,yt,'20'); 

end; 
end; I write_time} 

I **** procedure to plot points on the graph ****} 
procedure ploCpoints; 
var timer :integer; 

max_the_pos,max_the_neg :real; 
begin 

timer := 1; I value of time} 
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mID,-thcpos := 0; {maximum positive angle} 
max_the_neg := 0; 
for i := I to j do 
begin 

x := round(getmaxx/2-270 + time_sc*time_co[i]); {time} 
y := round(scale*angle30[i]); 
if (angle_co[i] > 0) then {positive angle} 
begin 

if angle_co[i] > max_the_pos then 
max_the_pos := angle_co[i]; 

y := round(getmaxy/2 - y); {coordinate of theta} 
end 
else if (angle_co[i] < 0) then 
begin {negative angle} 

if angle30[i] < max_the_neg then 
max_the_neg := angle_con]; 

y := round(abs(y) + getmaxy/2) 
end 
else 

y := round(getmaxy/2); 
putpixel(x,y,red); {at 0 angle} 
if (round(time_co[i]) = timer) then {check the value of time} 
begin 

write_time(timer); {plot time coordinate} 
timer:= timer +1; 

end; 
end; 
write_theta(max_the_pos,max_the_neg); {plot anlge coordinates} 

end; {ploCpoints} 

{*** procedure to initialize graphics mode ****} 
procedure iniLgraph; 
begin 

grdriver := detect; 
Initgraph(grdriver,grmode,'c:\tp6\bgi '); 
errcode := graphresult; 
if errcode <> grok then 
begin 

writeln('Graphics erro : ',GraphErrorMsg(Errcode»; 
readln; 
halt(l); 

end 
end; {init..graph} 

{*** procedure to write string values on screen ****} 
procedure write_strings(ch:char); 
begin 

setcolor(green); 
SetTextstyle(defaultFont,Horizdir,2); {charsize =l} 
SetTextjustify(centertext,centertext); 
OutTextXY(350,280, Time (seconds)'); {CP is updated} 
setcolor(green); 
SetTextstyle(defaultfont,Vertdir,2); {charsize =l} 
SetTextjustify(centertext,centertext); 
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if ch = '7' then 
OutTextXY( 10,240,'(-) Cart displacement [m] (+)') 

else if ch = '8' then 
begin 

OutTextXY(IO,240,'(-) Cart acceleration (+)'); 
OutTextXY(25,240,'[m/sqs]') 

end 
else if ch = '9' then 

OutTextXY(IO.240,'(-) Cart velocity [m/s] (+)') 
else 

OutTextXY(lO.240:(-) Theta (radians) (+)'); 
end; I write_strings} 

I ** procedure to start graph of rigid pole without friction'**} 
procedure start-s-'-wof(choice:char); 
var i :integer; 
begin 

clrscr; 
write('Scale factor of the vertical coordinate (1-1000) = '); 
readln(scale); 
write('Scale factor of the horizontal coordinate (1-50) = '); 
readln(time_sc); 
get_ex_data(choice); 

init.graph; 
p!oUine(choice); 
plot.jloints; 
write_strings(choice); 
readln; 
c1osegraph; 

end; ISTART_G_R_WOF} 

1*** procedure to write heading on the pole cart balancing system ***} 
procedure write3art_pole_heading; 
var i:integer; 
begin 

setcolor(cyan); 
SetTextstyle(defaultFont,Horizdir .2); I charsize =1} 
SetTextjustify(centertext,centertext); 
OutTextXY(round(getmaxx!2).round(getmaxy12+95),'CART POLE BALANCING SYSTEM'); 
setcolor(l3); 
SetTextstyle(defaultFont,Horizdir .2); I charsize =I} 
SetTextjustify(centertext,centertext); 
OutTextXY(round(getmaxx!2),round(getmaxy12+ 115), 'Real time simulation'); 
fori:=lt080do 

putpixel(round(getmaxx12-150+i),round(getmaxy 12+ 150),green); 
setcolor(green); 
SetTextstyle(defaultFont,Horizdir ,0); I charsize = 1 } 
SetTextjustify(centertext,centertext); 
OutTextXY(round(getmaxxf2).round(getmaxy12+ 150), Elastic pole'); 
for i := I to 80 do 

putpixel(round(getmaxx12-150+i),round(getmaxy 12+ 165),blue); 
setcolor(blue); 
SetTextstyle(defaultFont,Horizdir,O); Icharsize =I} 
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SetTextjustify(centertext.centertext); 
OutTextXY(round(getmaxx/2).round(getmaxy/2+165).'Rigid pole'); 

end; {write_cart-pole_headng} 

{*** procedure to draw the track ****} 
procedure draw_track; 
begin 

write_cart_pole_heading; 
setcolor(white); 
setfillpattem(gray50.brown); 
bar3d(round(getmaxx/2-

280) ,round(getmaxy /2+35),round(getmaxx/2+270),round(getmaxy/2+55).1 O,topoff); 
bar(round(getmaxx/2-280),round(getmaxy/2-35).round(getmaxx/2-270),round(getmaxy/2+45)); 
bar(round(getmaxx/2+270),round(getmaxy/2-35).round(getmaxx/2+280),round(getmaxy/2+55)); 

end; {draw_track} 

{*** procedure to draw the cart ***} 
procedure draw _cart(change:real); 
begin 

setfillpattem(gray50.red); 
if mt < 0.6 then 

bar(round(getmaxx/2-
25+change),round(getmaxy/2+10).round(getmaxx/2+25+change),round(getmaxy/2+30)) 

else 
bar(round(getmaxx/2-5O+change),round(getmaxy/2-

10).round(getmaxx/2+5O+change),round(getmaxy/2+30)); 
end; {draw_cart} 
{**** procedure to draw the wheel **} 
procedure draw _ wheel(change:real); 
begin 

setcolor(white); 
setfillpattem(gray50.white); 
if mt < 0.6 then 
begin 

pieslice(round(getmaxx/2-15+change),round(getmaxy /2+ 30) .0,360.5); 
pieslice(round(getmaxx/2+ 15+change) ,round(getmaxy/2+ 30) .0.360.5); 

end 
else 
begin 

pieslice(round(getmaxx/2-3O+change),round(getmaxy/2+30).0.360.9); 
pieslice(round(getmaxx/2+3O+change),round(getmaxy/2+30).0.360.9); 

end; 
end; {draw_wheel} 

{*** procedure to draw the hinge **} 
procedure draw _hinge(change:real); 
begin 

setcolor(yellow); 
if mt < 0.6 then 
begin 

arc(round(getmaxx/2+change).round(getmaxy/2+10).0.180.9); 
circle(round(getmaxx/2+change),round(getmaxy/2+6).3); 
circle(round(getmaxx/2+change).round(getmaxy/2+6).I); 

end 
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else 
begin 

arc(round(getmaxx!2-+<:hange),round(getmaxy!2-10)_O,180,10); 
circle(round(getmaxx!2-+<:hange) ,round(getmaxy!2-1S),3); 
circle(round(getmaxx!2-+<:hange) ,round(getmaxy!2-IS),I); 

end; 
end; ( draw_hinge) 

(*** procedure to draw the elastic pole ***) 
procedure draw _elastic_pole(L I,change:real;n:integer;var TL:real); 
var L,x2,y2,g,elong,L2,k;:real; 

scale :integer; ratio:real; 
begin 

ratio:= getmaxy/getmaxx; 
scale := 200; 
g := 9.81; 
k := pb*pd*pd*pd*E/12; (El) 
L:= pi; 
elong := (mp*g*sin(angle_co[n])!L)!24 * (6*L*L*U*LI - 4*L *u *u*u + Ll*Ll*U*Ll)!k; 
L2 := sqrt(LI*Ll + elong*elong); (distance of elastic pole at any point I) 
ifLI <> 0 then 

TL := arctan(elongILl) (the angle due to elasticity) 
else tl := 0.0; 
x2:= sin(angle_co[n]+TL)*L2*scale*ratio; 

y2 := cos(angle_co[n]+ TL)*L2*scale; 

x2 := sin(,CANGLE[N])*L2*scale*ratio; 
y2 := cos(T_angle[N])*L2*scale; 

ifmt < 0.6 then (small cart) 
putpixel(round(getmaxx!2-+<:hange+x2),round(getmaxy!2+6-y2),green) 

else 
putpixel(round(getmaxx!2-+<:hange+x2),round(getmaxy!2-IS-y2) ,green); 

end; (draw _elasticJlOle) 

(*** procedure to calculate the displacement of the cart ** *) 
procedure fmd_cart_displacement(n,scale:integer;var change:real); 
var ch :char; 
begin 

change := (scale)*c_ac[n]; 
( c _ac[n] X = distance covered by cart = cart acceleration) 

if (change <= -220.0) or (change >= 220.0) then 
begin (failure cart hit limit of track) 

setcolor(RED); 
SetTextstyle(defaultFontJ!orizdir,l); (charsize =I) 
SetTextjus!ify(centertext,centertext); 
OutTextXY(round(getmaxx!2),round(getmaxy-25),'F AlLURE !!! CART HIT THE TRACK 

LIMIT); 
OutTextXY(round(getniaxx/2),round(getmaxy-IS),'Press return for main menu.'); 
failure := true; 
readln(ch); 

end; 
end; (fmd_carCdisplacement) 
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(*** procedure to draw the entire system at any time n ***} 
(*** this will calculate the position of the cart ***} 
procedure draw _system_aCany _time(n,scale:integer;var change:real); 
begin 

fmd_carcdisplacement(n,scale,change); 
draw_track; 
draw _cart(change); 
draw _ wheel(change); 

draw _hinge(change); 
end; (draw_system_acany_time} 

(**** procedure to draw the pole ****} 
procedure draw _pole(change:real); 
var x,y ,LI L,n,ta,ratio:real; 

n,scale : integer; 
begin 

ratio := getrnaxy /getrnaxx; 
L:= pI; (l.O;} 
scale := 200; 
for n := I to j do (j is the total number of elements} 
begin 

Ll :=0.004; 
repeat 

x := sin(angle_co[n])*LI *ratio; 
y := cos(anglcco[n])*Ll; 
if mt < 0.6 then 
putpixel(round(getrnaxx/2-+<:hange+x*scale),round(getmaxy/2+6-y*scale),blue) 

else 
putpixel(round(getmaxx/2-+<:hange+x*scale ),round(getmaxy /2-15-y*scale),blue); 

draw _elastic_pole(L l,change.n,TL); 
Ll := Ll + 0.004; 

until Ll >= L; 
if timcco[nl = 0.02 then 

begin 
setcolor(RED); 
SetTextstyle(defaultFont,Horizdir,1 ); 

SetTextjustify(centertext,centertext); 
OutTextXY(round(getmaxx!2),round(getrnaxy-175): Time 

angle Rigid pole angle'); 
OutTextXY(round(getmaxx/2),round(getmaxy-165),'O.02 

9.924 degrees'); 
readln; clearviewport; 

end; 

ta := angle_co[nl + n; } (total elastic pole angle} 
writeln(fl,time_co[nl: 10:6: ',Il: 10:6: ',angle_co[nl: 10:6); } 

delay(3000); 
RESTORECRTMODE; 

Cart displacement Elastic pole 

-0.2994 30.52 degrees 

GOTOXY(l0,24); WRITE(,X = ',CHANGE/scale: 10:6: Time = ',time_co[nl:IO:6); 
delay(IOOO); 
SETGRAPHMODE(getgraphmode); 
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setviewport(round(getmaxx!2-269),round(getmaxy!2-235),Cgetmaxx-
51 ),roundCgetmaxy!2+35),clipon); 

cleruviewport; 
setviewport(O,O,getmaxx.getmaxy,clipon); 
draw _system_aCany _time(n+ I,scale,change); 
if failure then exit; 

end; {for} 
end; { draw_pole} 

{*** procedure to draw the cart and the pole •••• } 
procedure draw _pole_cart(ch;char); 
var i :integer: 

change: real; {X displacement of the cart} 
begin 

get_ex_data(ch); 
failure := false; 
init,.graph; 
change := O;} 

write_cart_pole_heading; 
draw _system_aCany _time( 1,200,change); 

draw_track; 
draw_cart(change); 
draw_wheel(change); 
draw _hinge(change); 

draw_pole(change);; 
if (not failure) then 
begin 

setcolor(RED); 
SetTextstyle(defaultFont.Horizdir,l); {charsize =I} 
SetTextjustify(centertext,centertext); 
OutTextXY(round(getmaxx!2).roundCgetmaxy-25):SUCCESSFUL !i! SIMULATION TIME 

FINISHED'); 
OutTextXY(roundCgetmaxx!2),round(getmaxy-15),'Press return for main menu.'); 
readln(ch); 

end: 
closegraph; 

end; {DRAW_POLE_CARTJ 
end. {UNIT GRA28} 
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APPENDIXB 

The Quanzer Consulting Incorporated Controller for the 
Flexible Pole-Cart Balancing Problem 

1. Description 

The Quanzer company make a range of devices for control engineering 

experiment. This experiment designed for this thesis combines the inverted pendulum and 

the flejdble link module to obtain an interesting variation of the classical inverted 

pendulum. 

The system is assembled as shown in figure B.l. Note that you can either use the 

full pendulum or just a small shaft to couple the flexible link to the cart. The two masses 

supplied with the system must also be attached to the tip of the link as shown in figure 

B.l. 

This appendix describes the problem for deriving the proprietory control system 

used by Quanzer. 

2. Mathematical model 

Consider the simplified diagram shown in figure B.2. The stiffness of the link is 

assumed to be collocated at the point of attachment to the pendulum. The rotational 

stiffness is represented by K,. The masses of the moving elements are as shown in the 

figure. In order to derive the differential equations of the system, we need to obtain the 

kinetic and potential energy for each element in the system. These are obtained as follows: 

Consider the coordinate frames defmed in the figure B.3. Using transformation 

matrices, we have the following transformations: 
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1 
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o 

o 

x 

o 

o 

1 

cos( a ) 0 -sin( a) hsin( a ) 

o 1 o o 

sin(a) 1 cos(a) hcos(a) 

o o o 1 

o 1 o o 

o o 0 1 

The last column in each matrix represents the position of the frame relative to the 

previous frame. The transformation Too = TOlTl2 represents the position and orientation 

of the camera relative to the base frame and T03 = T01TI2 T 23 is the position and 

orientation of the load attached at the tip (bulb plus two masses) relative to the base 

frame. 
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DefIning 

P' c 

0 

TOITI2 = [RI2] 
P' c 

0 0 0 1 

Take note that there is no motion along the 'y' direction. Then the kinetic energy of the 

camera is given by: 

and the potential energy of the camera is given by: 

PE -M P' camt!ra. - cg c 

Similarly for the load at the end of the link, 

p' 
b 

0 

TOITI2T23 = ~23] 
p' 

b 

0 0 0 1 

Then, the kinetic energy of the load is: 
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and the potential energy of the load is given by: 

The potential energy in the spring (equivalent stiffness of the link collocated at the 

mounting to the pendul urn) is: 

PE,pring = 0.5K,t12 

The potential energy of the pendulum is derived as for the camera by substituting L y for 

h in TI2 and My for M, in the energy equations. It is assumed the pendulum is a point 

mass located at a distance L y from the joint (L y is half the actual physica1length of the 

pendulum). 

The kinetic energy of the cart is given by: 

All of the above equations are implemented in a MAPLE program that computes the 

Langrarian about each independent axis and derives the nonIinear differential equations. 

The nonIinear differential equations are written to disk.. A second program reads the 

nonIinear equations and linearizes them about the operating point (0,0,0). The linearized 

model results in the matrix equation: 

0 0 0 1 0 0 x 0 
x 

0 0 0 0 1 0 a. 0 
• 

13 0 0 0 0 0 1 13 0 .. 
x .. = 

0 a'2 a'3 0 0 0 
• F x + b. 

0 aS2 aS3 0 0 0 a. bs .. 
0 a62 a63 0 0 0 13 b6 

The values for the constants in the matrix are then used in MATLAB to design the 

controller. 
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3. Control system design 

The design proceeds as with the inverted pendulum experiment. Substituting 

system parameters into the matrix equation obtained: 

• 0 0 0 1 0 0 x 0 x 
• 

a. 0 0 0 0 0 a. 0 

f3 0 0 0 0 0 1 f3 0 
•• 
x = 0 -5.8 -4.7 0 0 0 x + 1.3 F .. • a. 

0 49.6 92.8 0 0 0 a. -4.3 •• • 
f3 o -11.47 -94.7 0 0 0 f3 0.96 

The force output must be converted to a voltage input since the motor is driven by a 

voltage: 

F= T = KmKg1m = KmKg V 
r r Rr 

K 2K 2 • 
m g x 
Rr2 

substituting parameter values into the matrix equation results in: 

0 0 0 1 x 0 0 x 0 

a. 0 0 0 0 1 0 a. 0 

f3 0 0 0 0 0 1 f3 0 
•• 
x = 0 -5.8 -4.7 -10.1 0 0 x + 1.3 V .. 
a. 
•• 0 49.6 92.8 32 0 0 a. -4.3 

f3 o -11.47 -94.7 -7.4 0 0 f3 
0.96 
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A controller is then generated using the LQR method within MATLAB. The Q and the r 

weighting factors chosen are: 

Q = diag(0.1 1 0 0 0 0.1) 

r = 0.001 

resulting in the feedback gains: 

K = [-10 62.7 48.5 -16 -11.4 -10.71 for units in metres and radians. 

and 

K = [-0.1 -1.1 0.85 -0.16 -0.2 -0.19 for units in centimetres and degrees. 

The closed loop eigenvalues for the above gain are: 

[ -15.4 +- j6.2J 

[ -1.7 +- j7.9 J 

[ -1.4 +- jO.92J 

Figure FP4 compares the response of the modelled system to a step command in 

cart position using the gains obtained above and a set of gains with K3 and K6 set to zero. 

Clearly, the feedback gains K3 and K6 are necessary to stabilized the system. 
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Pendulum 

F 

MCART 

Figure B.2 
Simplified model of the flexible inverted pendulum 
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frame L.... 

XO 
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Camera frame 

Figure B.3 
Coordinate frame definitions 
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4. Results 

The above controller is implemented on an actual system and works well. Figure 

B.4 compares the response of the modelled system to a step command in cart position 

using the gains obtained above and a set of gains with K3 and K6 set to zero. Figure B.5 

shows the deflection response to a tap to the pendulum. Note that the system does not 

stabilize but there is a limit cycle due to friction and other nonlinearities. Figure B.6 shows 

the response of the system when the feedback gains K3 and K6 are set to zero. 
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Figure B.4 
Deflection (13) Response with and without camera feedback 
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Figure B.5 
Deflection (13 ) Response to a tap on the pendulum using full state feedback 
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FigureB.6 
Deflection (13 ) Response when K3 and K6 are set to zero 

5. Reference 

1. P. P. Richard "Robot Manipulators: Mathematics, Programming and Control,", The 

MIT press, 1981. 
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APPENDIXC 

The Neural Network On-Line Program for the Flexible Pole-Cart 
Balancing System 

Important procedures in the program: 

1. geCneuraLnet() - A procedure used to set up the architecture of the neural network. 

2. get_layer _info( ) - A procedure used to get the neural network parameters. 

3. set_up_network( ) - A procedure used to construct and interconnect the layers of the 

neural network. This includes memory allocation of the neural network to the 

computer. 

4. read_ weights( ) - A procedure used to get the trained weight values of the neural 

network from an external file wed2_111.dat and allocate it to each layer connections. 

5. main_loop( ) - A procedure used to operate the controller with an interaction of the 

user. 

6. reseCad_da_con() - A procedure used to prepare the analog/digital digital/analog 

converter for operation. 

7. initialize_data( ) - A procedure used to initialize the values of the sensors. 

8. seCclockJrequency() - A procedure used to set the clock frequency for real time 

operation. 

9. newtimer() - A tc++ built in procedure used to instruct the interrupt vectors to 

operate in real time. 

10. enable() - A tc++ buit in procedure used to enable the interrupt service routine (isr). 

At this point newtimer( ) start operating in real time and sensors are getting data from 

the plant. 

11. get_ voltage_from_neural_net( ) - A procedure used to get the voltage needed to 

operate the actuator and control the system. 

256 



12. geCdata_from_acd() - A procedure used to assign the nonnalized data taken from 

the sensors to the neural network input buffers. 

13. forward_prop() - A procedure used to obtain the required output of the neural 

network to control the system by forwardly propagating the sum of the weights and 

the input values of each layer. This uses a sigmoid function in procedure calc_out( ) 

to a value between 0 to 1. 

14. geCfinal_value() - A procedure for determining the actual magnitude and direction 

of the final output of the neural network controller. 

15. main_menu() - A procedure to display user options on operations the controller. 

16. printval() - A procedure use to display the status of the system. (i.g. position and 

velocity of the cart, the pole angle, and the pole deflection). 

17. save_data_to_fiIe() - A procedure used to save the infonnations needed to examine 

the perfonnance of the controller. The data are save in MA TLAB fonnat and are 

ready for MA TLAB graphical representation. 
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c++ Object Oriented Class/Structures Used in the Program 

" This classes are stored inside file layer4.h 
*/ 

#defme MAX_LA YERS 
#define MAX_ VECTORS 

class network: 
class layer 
{ 

protected: 
int num_inputs: 
int num_outputs: 
float 'outputs: 
float 'inputs: 

friend network: 
public: 

5 
500 

virtual void calc_outO=O; 
I; 

class inpuUayer: public layer 
{ 

} ; 

private: 

public: 

float noise_factor: 
float' orill-outputs; 

inpuUayer(int. int); 
-inpuUayerO; 
virtual void calc_outO; 
void seCNF(float); 

friend network; 

class middle_layer; 
class outpuUayer: public layer 
I 
protected: 

float * weights; 
float • output_errors; 
float' back_errors; 
float • expected_values; 
float • cum_deltas; 
float' pascdeltas; 

friend network: 

11 The components of a layer 

11 pointer to array of outputs 
11 pointer to array of inputs. which are outputs of 
11 some other layer 

11 The components of input layer 

11 Noise parameter applied to input data 

11 The components of hidden layers 

11 Pointers of weight values 
/I array of errors at output 
11 array of errors back-propagated 
11 to inputs 
11 for momentum 
11 for momentum 
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public: 

} ; 

oulpuUayer(int. int); 
-oulpuUayer(); 
virtual void caIc_outO; 
void list_ weightsO; 
void read_ weights(int, FILE *); 
void list_outputsO; 

class middle_layer: 
[ 

public outpuUayer 

private: 
public: 

} ; 

middle_layer(int. int); 
-middle_layerQ; 
void caIc_error(); 

class network 
{ 
private: 

public: 

layer *layer-ptr[MNCLA YERS1; 
int numbecoClayers; 
int layecsize[MAX_LA YERS1; 
float *buffer; 
fpos_t position; 
unsigned training; 

networkO; 
-networkO; 
void seCtraining(const unsigned &); 
unsigned gectrainin&-valueO; 
void geUayecinfoO; 
void set_up_networkO; 
void read_ weights (FILE *); 
float getJmal_outputO; 
void write_outputs(FILE *); 
void list_outputsO; 
void forward-propO; 

If The components of FNN architecture 

If Pointer for every layer 
If Actual number of layers in the network 

If Input data storage 
If Flag for status of system 
If Flag for testing or training operation 

int geCdatajrom_adc(float a.float x_d.float a_d.float d_d); 
void secup_pattem(int); 

} ; 
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t* 
This is the main program to test capability of feedforward neural network 
controller to control the flexible pole-cart balancing problem. 
By: Elmer P. Dadios 
Manufacturing Engineering Department 
Loughborough University of Technology, UK 

#pragma inline 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include <bios.h> 
#include <dos.h> 
#include <io.h> 
#include <float.h> 
#include <stdlib.h> 
#include <graphics.h> 
#include <d:\research\neuldt2811.drv> 
extern void interrupt newtimer( ... ); 
static void interrupt (*oldtimer)(. .. ); 

#include "layer4.cpp" 
#define WEIGHfS_FILE "wed2_11 l.dat" 
network backp; /I create a network object 
long int vectors_in_buffer; 

const int no_oCdata = 3000; 
int i.ctr.ctrl; 

1/ Inline assembly declaration 

I/Use for data translation AD/DA converter 
1/ Declare other functions for real time operarion 

float x_data[30001.a_data[3000l.d_data[30001.v _data[30001; 
FILE * weights_me_ptr; 

float a_n.d_n.x_n,x_dn.a_dn.d_dn; /I Normalized values of data from the plant 
float alpha.alpha_d.x.x_d.def.deCd.voltage.vf.force.cmass; 
float alpha_pf.alpha_p.alphaj,x-pf.x_p.x_f.deCpf.deCp.deCf.deCdf; /I Raw data 
float cal_constanLx.cal_constant_alpha.cal_constant_def; 1/ Sensors constant value 

/I For low pass mter float wcut!cu!.kfl,kf2.ts!samp; 
int ivolts.alpha_int.x_int.deCint.motor_off; 
float x_bias.alpha_bias.deCbias; 
int gdriver.gmode.cdiv .cdiv _Io.cdiv _hi; 
float timen.timep.u_freq.del_time.basejreq; 
screen 
float volts_o; 
int volCint; 

void initializcdata(void) 
{ 

1/ sampling frequency 
fsamp = 200.0; 
ts = l/fsamp; 
ctr = 0; 

/I Integer values of raw data for AD/DA converter 
/I Offset[Jnitial value of sensor in voles 
/I Graphics & clock devider 

/I Frequency for printing realtime data to 

/I Actual voltage value for actuator 
/I Integer voltage value for AD/DA converter 
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// setup printvalO frequency 
u_freq = 5; /* refresh realtime data on screen at 5 Hz */ 
del_time = I./u_freq; 

//sensor calibration constant 
cal_constancx = 91/10.00; //91 cm over entire range 
cal_constanCalpha = 352.0/24; // full turn over 24 volts 
cal_constancdef = 2.54; III inch per volt = 2.54 cm per volt but you should calibrate first 
x_bias = 0; 11 cart displacement offset 
alpha_bias = -0.6; // Pole angle offset 
deCbias = -1.95; 11 Pole deflection offset 

11 other parameters 
motor_off= I; 
limen = 0; 
limep = 0.1; 

IIlowpass fliter 
fcut= 2.0; 
wcut = 2.0*3.14*fcut; 
kfl = wcut*ts/(2+wcut*ts); 
kf2 = (wcut*ts-2)/(wcut*ts+2); 

// start with motor off 
11 initialize real time 

11 procedure to print the values 
void printval(void) 
{ 

textcolor(GREEN); 
gotoxy(l.l); cprintf(" REAL TIME DATA"); 
gotoxy(l.2); cprintfC'Real time (sec) = %6.lf',timen); 
gotoxy(1.3); cprintf("Voltage applied = %6.4f' ,voltage); 
gotoxy(1.4); cprintf("Cart position (cm) = %6.4f x_n = %6.4f',x,x_n); 
gotoxy(1.5); cprintf("Pole anlge (deg) = %6.4f a_n = %6.4f',alpha,a_n); 
gotoxy(1.6); cprintf("Cart velocity (cm) = %6.4f x_dn = %6.4f',x_d,x_dn); 
gotoxy(1.7); cprintf("Pole velocity (djs) = %6.4f a_dn = %6.4f'.alpha_d,a_dn); 
gotoxy(1.8); cprintfC'Pole deflection = %6.4f d_n = %6.4f' ,def.d_n); 
gotoxy(l,9); cprintf("Velocity of def = %6.4f d_dn = %6.4f',def_d,d_dn); 
gotoxy(l5,20);cprintf("ctr = %d",ctr); 
gotoxy(15.l8); /* move cursor to the choice position *' 

/* printval */ 

// procedure to reset the AD/DA controllers 
void reseCad_da_con(void) 
{ 

reseCadO; 
resecdaO; 
daout(O,2048); 
daout(l,2048); 
daout(2,2048); 
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II Procedure to set up the architecture of the neural network 
void seCneuraCnet( void) 
{ 

backp.geUayednfoO; 
backp.secup_networkO; 

/I get layer information 
/I set up the network connections 

/I read in the weight matrix defmed by a backpropagation simulator 
if ((weigbts_file-ptr=f'open(WEIGHfS_FILE,"r"))==NULL) 
( 

cout « "problem opening weights file\n"; 
exit(l); 

} 
backp.read_weigbts(weigbtsJde_ptr); 
fclose(weigbtsJIle_ptr); 
/I seCneural_net 

void gecvoltagejrom_neuraCnet(void) 
( 

a_n = alpba/4S.0; 
x_n = x/SO.O; 
a_dn = alpba_d/SO.O; 
x_dn = x_d/SO.O; 
d_dn = deed/SO.O; 

/I normalized angle 
/I normalized cart position 
/I normalized angular velocity 
/I normalized cart velocity 
/I normalized deflection velcity 

vectors_in_buffer = backp.geCdata_from_adc(a_n,x_dn,a_dn,d_dn); 
for (i=O; i<vectors_in_buffer; I++) /I Assigu data from sensor to FNN buffer 
( /I process vectors 

backp.secup-pattem(i); /I get next pattern 
backp.forward-propO; /I forward propagate 
voltage = backp.getJmal_outputO*S; 

} 
if ((x> l4)&&(alpba> 1.0l)&&(x_d>0.01)) 

voltage += 2.0; 11 bring the cart to the center of the track 
if ((x> l4)&&(alpba> 1.0l)&&(x_d<-0.01)) 

voltage += 1.1; /I bring the cart to the center of the track 
if ((x<-14)&&(alpba<-I.Ol)&&(x_d<-0.01)) 

voltage += -0.5; 11 bring the cart to the center of the track 
if ((x<-14)&&(alpha<-I.Ol)&&(x_d>0.01)) 

voltage += -0.2; 11 bring the cart to the center of the track 

if ((alpba>l.OI)&&(alpba_d>O.OI)) 
voltage += 3.0; IIbalance the pole 

if ((alpha<-l.OI)&&(alpha_d<-O.O I)) 
voltage += -3.0; l!balance the pole 

if (alpba>2.3l) 
voltage += 55; l!balance the pole. 

if (alpba<-2.31) 
voltage += -55; l!balance the pole 

/I get voltage from neural network 
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extern void interrupt far newtimer(. .. ) 
{ 

char *data87[94]; 
asm fsave data87 
_clear870; 
timen= timen+ts; 

11 Get data from sensors measurement 
x_pf=xj; 
x_p=x; 
x_int = adin(4); 
x = itov(x_int)*ca'-constancx - x_bias; 
xj = kfl *(x+x_p)-kt2*xj; 
x_d = (xj-x_pf)/ts; 

11 ISR real time operation 

11 save previous filtered data 
/I save previous raw data 
/I sample the A to D channel 
11 actual cart displacement 
11 digital low pass filtering 
11 actual cart velocity 

alpha_pf = alphaj; 11 save previous filtered data 
alpha_p = alpha; 11 save previous raw data 
alpha_int = adin(5); 11 sample the A to D channel 
alpha = itov(alpha_int)*cal_constant_alpha - alpha_bias; 11 actual pole angle 
alpha_f = kfl *(alpha+alpha_p)-kt2*alphaj; 11 digital low pass filtering 
alpha_d = (alphaj-alpha_pf)/ts; 11 actual velocity of the pole 

deCpf=deU; 
def-IJ = def; 

. deCint = adin(IO); 
def = itov(def_int)*cal_constant_def -<leCbias; 
deCf = kfl *(def-HIef_p)-kt2*defj; 

11 save previous filtered data 
11 save previous raw data 
11 sample the A to D channel 
11 actual deflection of the pole 
11 digital low pass filtering 

----def_df = def_df-HIeCd*wcut*ts; 
deed = wcut*def - deCdf; 11 actual velocity of pole deflection 

if(motor_off >0) 
voltage = 0; 

11 procedure to get actual voltage required to 
/I control the sytem from FNN 

11 make sure that it will not exceed the capacity of the actuator 
if(voltage > 4.95) voltage = 4.95; 
if(voltage < -4.95) voltage = -4.95; 

11 prepare for storing results to external file 
if «abs(ctr) < no_oCdata)&&(motor_off < 0)) 
{ 

ctr++; 
ctrl = ctr; 
x_data[ctrl] = x; 
a_data[ctr I] = alpha; 
d_data[ctr I] = def; 
v_data[ctrl] = voltage; 
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11 output the voltage calculated to the actuator for operation via DA converter 
volts_o = voltage; 
volUnt = volts_o*2048/5.0+2047; 
daout(O.voIUnt); 
asm frstor data87 
11 end of newtimer 

11 procedure to go back to old timer 
void gecold_timer(void) 
( 

disableO; 
setvect(Oxcl.oldtimer); 
enableO; 
outportb(0x43.0x36); 
outportb(Ox40.Oxff); 
outportb(0x40.0xff); 
daout(0.2048); 
daout(i.2048); 
daout(2.2048); 
1* get_old_timer *1 

1* procedure to set the clock frequency for real time *1 
void seCclockjrequency(void) 
( 

running 

base_freq = 1193000.0; 
cdiv = ceil(base_freq*ts); 
outportb(Ox43.0x36); 
cdiv_hi = cdiv 1255; 
cdiv _10 = fmod(cdiv.255); 
outportb(Ox40.cdiv _10); 
outportb(0x40,cdiv _hi); 

disableO; 
oldtirner = getvect(Oxlc); 
setvect(Oxlc,newtimer); 
enableO; 

111.193 MIlz is the base frequency of the clock in an AT 
11 setup clock divider 
11 setup clock number 2 
11 high byte of cdiv 
//low byte of cdiv 
11 write out low byte 
1/ then high byte 

1/ diable interrupts 
I/save old isr address 
1/ setup the new isr 

1/ enable interrupts. at this point newtimer starts 

} seCclock_frequency 

11 procedure to display the main menu for user options 
void main_menu(void) 
( 

clrscr(); 
textcolor(RED + BLINK); 
gotoxy(i,l5); 
if (motor_off> 0) 

cprintf("MOTOR IS OFF"); 
else 

cprintf("MOTOR IS ON"); 
textcolor(BLUE); 
gotoxy(l.l6); 
cprintf("[Q] to quit"); 
gotoxy(l.l7); 
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cprintf("[S] to start/stop motor"); 
gotoxy(1,18); textcolor(CY AN); 
cprintf("Your choice = "); 
1/ main_menu 

1/ Procedure to operate the controller with the interaction of the user 
void main_loop(void) 
{ char choice; 

clrscrO; 
reseCad_da_conO; 
_fpresetO; 
initialize_dataO; 
seCcloclcfrequencyO; 
main_menuO; 
do 
{ 

choice = "; 
if (kbhitO) 
{ 

I 

choice = getchO; 
flushallO; 

if «choice=='Q')II(choice='q'» 
get_old_timerO; 

if «choice=='S')II(choice=='s')) 
{ 

1/ reset floating point processor 

1/ get the character 
/I flush the keyboard buffer 

/I quit program 

/I stop operation 

motocoff = -I *motocoff;11 initially motor is off 
main_menuO; 

I 
if «timen-timep»del_time) 

I 

timep = timen; 
printvalO; 

I while«choice!='Q,)&&(choice!='q,); 
textcolor(UGHTGRA Y); 
clrscrO; 
1* main_loop *1 

/I Procedure in puting data to external file 
void save_data_toJlle(void) 
{ 

FILE*fl; 
int i; 

if «fl = fopen("xn_dat22.m","w"»=NULL) 
{ 

puts(''\ncannot open file xn_data"); 
exit(l); 
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for (i=l;i<ctrl;i++) 
fprinlf(fl,"%S.3t\n",x_data[i]); 

fclose(fl); 

if «fl = fopen("an_dat22.m", "w"»=NULL) 
{ 

} 

puts("'ncannot open me an_data"); 
exit(1); 

for (i = 1 ;i<ctr 1 ;i++) 
fprinlf(fl,"%S.3t\n",a_data[i]); 

fclose(f1); 

if «fl = fopen("dn_dat22.m", "w"»=NULL) 
{ 

} 

puts("\ncannot open me dn_data"); 
exit(l); 

for (i = 1 ;i<ctr 1 ;i++) 
fprinlf(fl,"%S.3t\n",d_data[i]); 

fclose(fl); 

if «fl = fopen("vn_dat22.m", "w"»=NULL) 
{ 

} 

puts("\ncannot open me dn_data"); 
exit(1); 

for (i = l;i<ctrl;i++) 
fprinlf(fl, "%S.3t\n" ,v _data[i]); 

fclose(f1); 

11 This is the main body of the program 
voidmainO 
{ 

set_neura'-netO; 
main_loopO; 
save_data_toJJ.!eO; 
/lend main 
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11 This is the file that contains the neural network procedures "Layer4.cpp" 
#include <stdio.h> 
#include <iostream.h> 
#include <stdlib.h> 
#include <math.h> 
#include <time.h> 
#include "layer4.h" 

11 This is the squashing function that uses sigmoid 
inline float squash(float input) 

I 
if (input < -50) 

returu 0.0; 
else if (input> 50) 

return 1.0; 
else returu (float)(l/(l-+exp(-(double)input»); 

11 This a random number generator that will return a floating point value between -I and I 
inline float randomweight(unsigned init) 

I 
intnum; 
if (init==I) 
srand «unsigned)time(NULL»; 
num=randO % lOO; 
returu 2*(float(num/lOO.OO»-i; 

11 seed the generator 

11 This function is needed for Turbo C++ and Borland C++ to link in the appropriate functions for fscanf 
11 floating point formats: 
static void forcejpfO 

I 
float x, *y; 
y=&x; 
x=*y; 

11 This is for the input layer 
inpuUayer: :inpuUayer(int i, int 0) 

I 
num_inputs=i; 
num_outputs=o; 
outputs = new float[num_outputs]; 
oril!-.outputs = new float[num_outputs]; 
if «outpuls=-O)II(oril!-.outputs==O» 
I 

cout« "not enough memory"""; 
cout« "choose a smaller architecture"""; 
exit(1); 
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noisejactor=O; 

inpuUayer::-inpuUayerO 
I 

delete [num_outputs] outputs; 
delete [num_outputs] oI1&-outputs; 

void input_Iayer::calc_outO 
( 

11 This wiII add noise to inputs randomweight returns a random number between ·1 and I 
int i; 
for (i=O; i<num_ontputs; i++) 

outputs(i] =OI1&-outputs[i]* 
(I +noisejactor*randomweight(O)); 

11 This is for the output layer 
outpuUayer::outpuUayer(int ins. int outs) 
( 

int i. j. k; 
num_inputs=ins; 
num_outputs=outs; 
weights = new float[num_inputs*num_outputs]; 
output_errors = new float[num_outputs]; 
back3rrors = new float[num_inputs]; 
outputs = new float[num_outputs]; 
expected_values = new float[num_outputs]; 
cum_deltas = new float[num_inputs*num_outputs]; 
past_deltas = new float[num_inputs*num_outputs]; 

if «weights=O)II(outpucerrors==O)II(back3rrors==O) 
lI(outputs==O)II(expecte('-values=O) 11 (pascdeltas=O)II(cum_deltas==O)) 

cout« "not enough memory\n"; 
cout« "choose a smaller architecture\n"; 
exit(!); 

11 zero cum_deltas ·and pasCdeltas matrix 
for (i=O; i< num_inputs; i++) 
( 

k=i*num_outputs; 
for G=O; j< num_outputs; j++) 
( 

CUID_deltas[k+j]=O; 
pascdeltas[k+j]=O; 
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outpuclayer::-outpuUayerO 
{ 

delete [num_outputs*num_inputs] weights; 
delete [num_outputs] output_errors; 
delete [num_inputs] bacl,-errors; 
delete [num_outputs] outputs; 
delete [num_outputs*num_inputs] pascdeltas; 
delete [num_outputs*num_inputs] cum_deltas; 

void outpuUayer::calc_outO 
{ 

int ij.i<; 
float accumulator=O.O; 
for G=O; j<num_outputs; j++) 
{ 

} 

for (i=O; knum_inputs; i++) 
{ 

} 

k=i*num_outputs; 
if (weights[k+j]*weights[k+j] > 1000000.0) 
{ 

cout« "weights are blowing up\n"; 
cout« "try a smaller learning constant\n"; 
cout« "e.g. be18=O.02 aborting ... \n"; 
exit(l); . 

} 
outputs[j]=weights[k+j]*(*(inputs+i)); 
accumulator+=outputs(j]; 

11 use the sigmoid squasb functioD 
outputs(j]=squash(accumulator); 
accumulator=O; 

void outpuUayer::read_weights(int layer_Do,FILE * weights_file_ptr) 
{ 

int i, j, k; 
while (I) 
{ 

. fscanf( weights_file_ptr, "%i" ,&j); 
if (G=layeCDo)1I (feof(weightsJIle-ptr))) 

break; 
else 
{ 

} 

while (fgetc(weightsJJ1e-ptr) != \n') 
{ ; } 11 get rest of line 
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if (!(feof(weights_file_ptr») 
I 11 continue getting first line 

i=O; 
for G=O; j< num_outputs; j++) 

fscanf(weightsJLle-IJtr,"O/Of',&weights[j]); 11 i*num_outputs = 0 
fscanf(weights_file_ptr,''\n''); 

11 now get the other lines 
for (i= I; k num_inputs; i++) 
( 

fscanf(weights_flle-IJtr,"O/Oi",&layer_no); 
k=i*num_outputs; 
for G=O; j< num_outputs; j++) 

scanf(weights_flle-IJtr,"O/Of',&weights[k+j]); 
} 
fscanf(weights_flle_ptr,''\n''); 

else cout« "end of file reached\n"; 

void output_layer: :liscoutputsO 

I 
intj; 
for G=O; j< num_outputs; j++) 

caut« "outputs["<<j<<"] is: "«outputs[j]«''\n''; 

11 This is for the middle layer 
middle_layer::middle_layer(int i, int 0): 

outpuUayer(i,o) 

I 

middle_layer::-middle_layerO 

I 
delete [num_outputs*num_inputs] weights; 
delete [num_outputs] outpuCerrors; 
delete [num_inputs] back_errors; 
delete [num_outputs] outputs; 

void middle_layer::calc_error() 

I 
int i, j, k; 
float accumulator=O; 
for (i=0; knum_inputs; i++) 

I 
k=i*num_outputs; 
for G=O; j<num_outputs; j++) 
{ 
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back_errors[i]= 
weights[k+j]*(*(oUlpucerrors+j»; 
accumulator+=back_errors[i]; 

back_errors[i]=accumulator; 
accumulator=O; 
" now multiply by derivative of sigmoid squashing function, which is 
/I just the input*(l-input) 
back_errors[i]*=(*(inputs+i) )*( l-(*(inputs+i»); 

} , 

network: :networkO 
{ 

position=OL; 

network::-networkO 
{ 

int ij,k; 
i=layer_ptr[O]->num_oulputs; 
j=layer-ptr[number_oClayers-l]->num_onlpnts; 
k=MAX_ VECfORS; 
delete [(i+j)*k]buffer; 

void network::sectraining(const unsigned & value) 
{ 

training=valne; 
} 
unsigned network::geCtraining..salueO 
{ 

return training; 

void network: :geUayecinfoO 
{ 

" 

int i; 
11 Get layer sizes for the network 
number_of_layers = 4; 
layecsize[O] = 4; 
layer_size[I] = 8; 
layecsize[2] = 8; 
layecsize[3] = 2; 

/I inputs 
//outputs 

cout «"'n Enter the total number of layers for your network [3-5]."; 
cout «''\n 3 means 1 hidden layer, 4 means 2, 5 means 3 = "; 
cin » number_oClayers; 

cont «''\n Enter the layer sizes separated by spaces."; 
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cout «"\n Example; for 3 layers having 3 input neurons, 6 hidden"; 
cout «'\11 neurons, and I output neuron just type 3 6 I "; 
cout «'\11 Enter please = 

for (i=O; knumber_oClayers; i++) 
{ 

*1 

cin »Iayer_size[i]; 
} 

11 ------------------------------------------------------
1/ size of layers: 
11 inpuUayer layer_size[O] 
1/ outpuUayer layer_size[numbecoUayers-l] 
1/ middle_layers layer_size[l] 
Iloptional: layer_size[number_oUayers-3] 
Iloptional: layer_size[number_oClayers-2] 
1/-------------------------------------------------------
} 

void network::seLup_networkO 
{ 

int ij,k; 
11 Construct the layers 
layer-ptr[O] = new inpuUayer(O,layer_size[O]); 
for (i=O;k(number_oClayers-I);i++) 
{ 

layer-ptr[i+I] = 
new middle_Iayer(layecsize[i],layecsize[i+I]); 

} 
layer_ptr[number_oClayers-1] = new 
outpuUayer(layer_size[number_oClayers-2] Jayer_size[number_oClayers-1 I); 
for (i=O;k(number_oUayers-I);i++) 
{ 

} 

if (Iayer-ptr[i] == 0) 
{ 

} 

cout« "insufficient memory\n"; 
cout« "use a smaller architecture\n"; 
exit(!); 

11 Connect the layers 
1/ set inputs to previous layer outputs for all layers, except the input layer 
for (i=l; k number_oClayers; i++) 

layer_ptr[i]->inputs = layer_ptr[i-I]->outputs; 

11 for back_propagation, set output_errors to next layer 
l!back_errors for all layers except the output layer and input layer 
for (i=l; k number_oClayers -I; i++) 

«outpuUayer *)layer_ptr[i])->outpuLerrors = 
«outpuUayer *)Iayecptr[i+ I])->back_errors; 
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11 defme the IObuffer that caches data from the dataf!le 
i=layer_ptr[O]->num_outputs; 
j=laye,-ptr[numbe,-oClayers-I]->num_outputs; 
k=MAX_ VECTORS; 
buffer=new 
float[(i+j)*k]; 
if (buffer==O) 
( 

cout« "insufficient memory for buffeh"; 
exit(l); 

void network::read_weights(FILE * weights_file_ptr) 
( 

int i; 
for (i=l; knumber_oC!ayers; i++) 

11 inputs 
/loutputs 

«outpuUayer *)layer_ptr[i])->read_ weights(i,weights_file.-Jltr); 

void network::!isLoutputsO 
{ 

int i; 
for (i=l; knumbe,-oC!ayers; i++) 
{ 

) 

cout« "layer number: " «i« ''\0''; 
«output_layer *)laye,-ptr[i])->!isLOUtputsO; 

void network::write_outputs(FILE *outfile) 
( 

int i. ins. outs; 
ins=layer.-Jltr[O]->num_outputs; 
outs=layer_ptr[number_oClayers-l]->num_outputs; 
float temp; 
fprintf(outf!le,"for input vector:\n"); 
printf("for input vector:\n"); 
for (i=O; kins; i++) 
( 

temp=layer_ptr[O]->oulputs[i]; 
fprintf(outf!le,"%f ",temp); 
printf("%f ",temp); 

fprintf(outfile,"\noutput vector is:\n"); 
printf("\noutput vector is:\n"); 
for (i=O; kouts; i++) 
( 

temp=layer_ptr[numbe,-oC!ayers-I]->outputs[i]; 
fprintf(outf!le,"%f ",temp); 
printf("%f ",temp); 
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I 
if (training==l) 
( 

I 

fprintf(outfile,"\nexpected output vector is:\n"); 
printf('\nexpected output vector is:\n"); 
for (i=O; i<outs; i++) 
( 

temp=« outpuUayer *)(layer_ptr[number_oClayers-l]))->expected_ values[i]; 
fprintf(outfIle,"%f ",temp); 
printf(,,%f ",temp); 

fprintf( ou tfIle, '\n ----------------------\n "); 
printf('\n----------------------\n"); 

11 This is the procedure to get the fmal output value of the network.. 
fINote that this is the magnitude and direction of the applied voltage. 
float network::geLfmal_outputO 
( 

float voltage,sign; 
sign=layer_ptr[number_of_layers-l]-> outputs[l]; 
if (sign> 0.5) 

sign = 1.0; 
else 

sign = -1.0; 
voltage=layer_ptr[number_oClayers-I]-> outputs[O]*sign; 
return voltage; 

11 A procedure to get real data from ade 
int network::get_datajrom_adc(float a,float x_d,float a_d.float d_d) 
( 

buffer[O] = a; 
buffer[l] = x_d; 
buffer[2] = a_d; 
buffer[3] = d_d; 
return (I); 

void network::seLup_pattern(int buffer_index) 
( 
11 read one vector into the network 

int i, k; 
int ins, outs; 
ins=layer-ptr[O]->num_outputs; 
outs=layer_ptr[numbecof_layers-l]->num_outputs; 
if (training==l) 

k=buffer_index*(ins-HJUts); 
else 

k=buffer_index*ins; 
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for (i=O; i<ins; i++) 
«input_layer*)layer_ptr[O])->ori~outputs[il=buffer[k+il; 

if (training== 1) 
( 

for (i=O; kouts; i++) 
«outpuClayer *)layecptr[numbecoC!ayers-ll)-> 

expected_values[il=buffer[k+i+insl; 

void network::forward_propO 
( 

int i; 
for (i=O; knumbecoClayers; i++) 
( 

layer-ptr[il-xalc_outO; /lA polymorphic function 
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APPENDIXD 

The Fuzzy Logic On-Line Program for the Flexible Pole-cart Balancing 
System 

Important procedures in the program: 

1. iniCnbrm_fuzzy _system( ) - A procedure to initialise all the parameters used in 

fuzzy logic system. 

2. init_nbrmJules( ) - A procedure to initialise values of fuzzy logic rules. 

3. init_nbrm_mem_fns() - A procedure to initialise values of fuzzy logic membership 

functions. 

4. init_trapz() - A procedure to assign locations of points of trapezoid used as 

membership function. 

S. main_loop( ) - A procedure used to operate the controller and interact with the user. 

6. reseCad_da_con() - A procedure used to prepare the analog/digital digital/analog 

converter for operation. 

7. initialize_data( ) - A procedure used to initialize the values of the sensors. 

8. seCclockJrequency() - A procedure used to set the clock frequency for real time 

operation. 

9. newtimer() - A tc++ built in procedure used to instruct the interrupt vectors to 

operate in real time. 

10. enable() - A tc++ buit in procedure used to enable the interrupt service routine (isr). 

At this point newtimer( ) start operating in real time and sensors are getting data from 

the plant. 

11. geC voltage_from_fuzzy _con( ) - A procedure to get the voltage needed to operate 

the actuator and control the system from a fuzzy logic controller. 

12. fuzzy _Iogicforce( ) - A procedure that will assign appropriate input variables to 

fuzzify and obtain the required output value. 
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13. fuzzy_system( ) - A procedure used to obtain the required output value by 

deffuzzification using centroid method. 

14. main_menu() - A procedure to display user options on operations the controller. 

15. printval( ) - A procedure to display the status of the system. (i.g. position and 

velocity of the cart, the pole angle, and the pole deflection). 

16. save_data_to_file() - A procedure used to save the informations needed to examine 

the performance of the controller. The data are saved in MATLAB format and are 

ready for MATLAB graphical representation. 

C Language Class/Structures Used in the Program 

1* File FLOGICS.H Fuzzy logic header file *1 

#ifndef FLOGIC5_H 
#defme FLOGICS_H 

#include "uttypes.h" 

#defme MNCNO_OF _INPUfS 8 
fuzzy 

typedef enum (regular,left.right) trapz_type; 
use as a 

typedef struct trapezoid 
( 

) ; 

trapz_type tp; 
float a,b.c,d; 
float Cslope.r_slope; 

typedef struct rule 
( 

} ; 

inp_fuzzy_set[MNCNO_OF _INPUfS). 
outJuzzy _set; 
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11 The number of input variables that a 

11 logic controller operates. 
11 The number of membership functions that 
11 the controller operates. 
11 The number of poosible fuzzy logic 
11 output value. 

11 The specific sides of a trapezoid 

11 membership function. 
11 Components of a trapezoid. 

11 Exact end points of a trapezoid. 
11 Slope of the left and right lines. 

11 The components of a rule. 

11 Holds the index number of an input 
11 variables. 
11 Holds the index number of fuzzy rules. 
liThe fuzzy set output value. 



typedef struct fuzzy _system_rec 
( 

short allocated; 

/I The complete structure of the fuzzy 
I/logic system 

struct trapezoid inp_memjns [MA}CNO_OF _INPUfS] [MAX_NO_OF _INP _REGIONS]; 
far struct rule *rules; 
int no_oCinputs.no_oCinp_regions,no_oCrules,no_oCoutputs; 
float outpuCvalues[MA}LNO_OF _OUfPUT_ VALUES]; 

J; 

typedef struct p_cart_state_rec 
( 

J; 

float ang. 
ans-vel. 
x.JlOS. 
x_dot. 
deflec. 
def3el; 
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11 Holds the data of the plant 

11 Pole angle 
/I Pole velocity 
11 Cart position 
/I Cart velocity 
/I Pole deflection 
/I Pole deflection velocity 



The Fuzzy Logic Controller Program 
by: 

Elmer P. Dadios 
Manufacturing Engineering Department 

Loughborough University of technology, UK 
August 1995 

#pragma inline 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include <bios.h> 
#include <dos.h> 
#include <io.h> 
#include <floath> 
#include <stdlib.h> 
#include <graphics.h> 
#include <d:\research\neu'dt281I.drv> 
extern void interrupt newtimerO; 
static void interrupt (*oldtimer)O; 

#include "fl3pb9.c" 

const int no_oCdata = 3000; 
int i; 
unsigned int ctr .ctr 1; 

11 declaration for inline assembly 

11 For data translation AD/D A converter 
11 Declare other functions for real time operation 

11 Contains fuzzy logic procedures 

11 Number of result values to store 

float x_data[3000],a_data[3000],d_data[3000],v_data[3000]; 11 Array for result values 

float alpha,alpha_d,x,x_d,def,deCd.voltage; 11 Plant variables 
float alpha...Jlf.alpha...Jl.alpha_f.x_pf.x_p,x3.deCpf.deCp.deCf.deCdf; l/filtered and raw data 
float cal_constancx.cal_constant_alpha,cal_constanCdef; 11 sensor constant value 
float wCllticut.kfl.kf2.tsisamp; 11 for low pass fIlter *1 
int ivolts.alpha_int.x_int,deCint.motor_off; 11 Integer values of raw data for AD/DA converter 
float x_bias,alpha_bias.deCbias; 11 offsetfmitial value of sensor in volts 
int gdriver.gmode.cdiv.cdiv_Io.cdiv_hi; 11 graphics & clock devider 
float timen.timep.u_freq,del_time.base3req; 11 frequency for printing realtime data to 
screen 
float volts_o; 
int volCint; 

void initializedata(void) 
{ 

11 sampling frequency 
fsamp = 200.0; 
ts = l/fsamp; 
ctr = 0; ctrl = 0; 

1* setup printvalO frequency *1 
u3req =5; 
del_time = l./u_freq; 

11 Actual voltage value for actuator 
11 Integer voltage value for AD/DA converter 

11 Refresh realtime data on screen at 5 Hz 
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// sensor calibration constant 
cal_constanCx = 91/10.00; //91 cm over entire range 
cal_constancalpha = 352.0/24; 11 full turn over 24 volts 
cal_constant_def = 2.54; //I inch per volt = 2.54 cm per volt but you should calibrate fIrst 
x_bias = 0; // cart displacement offset 
alpha_bias = -0.1; 11 Pole angle offset 
deCbias = -0.6; 11 Pole deflection offset 

// other parameters 
moto,-off= 1; 
timen = 0; 
timep = 0.1; 

/* lowpass filter */ 
fcut= 2.0; 
wcut = 2.0*3.l4*fcut; 
kf1 = wcut*ts/(2+wcut*ts); 
kf2 = (wcut*ts-2)/(wcut*ts+2); 

// start with motor off 
// initialize real time 

// procedure to display plant data on screen 
void printval(void) 
{ 

textcolor(GREEN); 
gotoxy(l.l); cprintf(" REAL TIME DATA"); 
gotoxy(l.2); cprintf(''Real time (sec) = %6.lf'.timen); 
gotoxy(l,3); cprintf("Voltage applied = %6.4f',voltage); 
gotoxy(l,4); cprintf("Cart position (cm) = %6.4f'.x); 
gotoxy(l,5); cprintf("Cart velocity (cm) = %6.4f',x_d); 
gotoxy(l,6); cprintf("Pole angle (deg) = %6.4f' ,alpha); 
gotoxy(l,7); cprintf(''P _angle velocity = %6.4f',alpha_d); 
gotoxy(l,8); cprintf("Pole deflection = %6.4f',def); 
gotoxy(l,9); cprintf("Velocity of def = %6.4f' ,deCd); 
if «abs(ctr) < no_oCdata)&&(motor_off < 0» 
{ 

gotoxy(15,20); 
cprintf("CIr = %d",ctr); 

gotoxy(l5,18); /* move cursor to the choice position */ 
/* printval */ 

/* procedure to reset the ad da controllers */ 
void reseCad_da_con(void) 
{ 

resecadO; 
reseCdaO; 
daout(O,2048); 
daout(l,2048); 
daout(2,2048); 
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extern void interrupt far newtimerO 
{ 

char *data87[94]; 
asm fsave data87 
_clear870; 
timen= timen+ts; 

11 Sensor measurements 
x_pf=xj; 
x-p = x; 
x_int = adin(4); 
x = itov(x_int)*caCconstanCx - x_bias; 
xj = kfl*(x+x_p)-kf2*xj; 
x_d = (xj-x--pf)/ts; 

11 save previous filtered data 
11 save previous raw data 
11 sample the A to D channel 
11 actual cart displacement 
11 digita1low pass filtering 
11 actual cart velocity 

alpha_pf = alphaj; 11 save previous filtered data 
alpha--p = alpha; 11 save previous raw data 
alpha_int = adin(5); 11 sample the A to D channel 
alpha = itov(alpha_int)*cal_constanCalpha - alpha_bias; 11 actual pole angle 
alphaj = kfl*(alpha+alpha_p)-kf2*alphaj; 11 digital low pass filtering 
alpha_d = (alphaj-alpha_pf)/ts; 11 actual pole angle velocity 

deCpf=deU; 
deCp=def; 
deCint = adin(10); 
def = itov(deCint)*cal_constant_def -deCbias; 
deU = kfl *(def+def_p)-kf2*deU; 

11 save previous filtered data 
11 save previous raw data 
11 sample the A to D channel 
11 actual pole deflection 
11 digital low pass filtering 

deCdf = deCdf+def_d*wcut*ts; 
deCd = wcut*def - deCdf; 11 actual pole deflection 

11 run the fuzzy logic controller 
gecvoltagejrom_fuzzy_con(alpha.alpha_d.x,x_d.def.deCd.&voltage); 

11 Insure the voltage to be on actuator's capacity 
if(voltage> 4.95) voltage = 4.95; 
if(voltage < -4.95) voltage = -4.95; 

11 prepare for saving results to external file 
if «abs(ctr) < no_oCdata)&&(motor_off < 0» 
{ 

if(molor_off >0) 
voltage = 0; 

ctr++; 
ctrl = etr; 
x_data[etr I] = x; 
a_data[etr 1] = alpha; 
d_data[etr I] = def; 
v _data[ctr I] = voltage; 
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/I apply voltage to actuator 
volts_o = voltage; 
volUnt = volts_o*2048/5.0+2047; 
daout(O.volUnt); 

asrn frstor data87 

/I procedure to go back to old timer 
void gecold_timer(void) 
{ 

disableO; 
setvect(Oxcl.oldtimer); 
enableO; 
outportb(Ox43.0x36); 
outportb(Ox40.0xff); 
outportb(Ox40.0xff); 
daout(0.2048); 
daout(l.2048); 
daout(2.2048); 
1* gecold_timer *1 

/I procedure to set the clock frequency for real time 
void seCclockjrequency(void) 
{ 

running 

base_freq = 1193000.0; 
cdiv = ceil(base_freq*ts); 
outportb(0x43.0x36); 
cdiv_hi = cdiv 1255; 
cdiv _10 = fmod(cdiv.255); 
outportb(Ox40.cdiv _10); 
outportb(Ox40.cdiv _hi); 

disableO; 
oldtimer = getvect(Oxlc); 
setvect(Oxlc.newtimer); 
enableO; 

} /I seCclock_frequency 

/I procedure to write menu for user options 
void main_menu(void) 
{ 

cIrscr(); 
textcolor(RED + BLINK); 
gotoxy(l,15); 
if (motor_off> 0) 

/11.193 MIlz is the base frequency of the clock in an AT 
/I setup clock divider 
/I setup clock number 2 
/I high byte of cdiv 
/I low byte of cdiv 
/I write out low byte 
/I then high byte 

/I diable interrupts 
/I save old isr address 
/I setup the new isr 

/I enable interrupts. at this point newtimer starts 

cprintf("MOTOR IS OFF"); 
else 

cprintf("MOTOR IS ON"); 
textcolor(BLUE); 
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gotoxy(l.l6); 
cprintf("[Q] to quit"); 
gotoxy(l,17); 
cprintf("[S] to start/stop motor"); 
gotoxy(l,i8); textcoior(CY AN); 
cprintf("Your choice = "); 
1* main_menu *1 

11 procedure running the system with the interaction of the user 
void main_loop(void) 
( char choice; 

clrscr(); 
reseCad_da_conO; 
jpresetO; 
initialize_dataO; 
secclockjrequencyO; 
main_menuO; 
do 
( 

choice = to; 
if (kbhitO) 
( 

I 

choice = getchO; 
flushallO; 

if «choice=='Q')II(choice='q'» 
get_old_timerO; 

if «choice=='S')II(choice=='s'» 
( 

11 reset floating point processor 

11 get the character 
11 flush the keyboard buffer 

11 quit program 

11 stop operationt 

motocoff = -1 *motocoff;/1 initially motor is off 
main_menuO; 

I 
if «timen-timep»deLtime) 

I 

timep = timen; 
printvalO; 

I while«choice!='Q')&&(choice!='q'); 
textcolor(LIGHfGRA Y); 
clrscrO; 
11 main_loop 

1* Procedure in puting data to external file *1 
void save_data_toJIie(void) 
{ 

int i; 
FILE *f!; 

if «f! = fopen("x_dataI6.m","w"»==NULL) 
( 
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11 frequency of printing real time data to 
IIscreen *1 



I 

puls('\ncannot open fIle x_data"); 
exit(l); 

for (i = 1 ;i<ctr 1 ;i++) 
fprintf(fl."%5 .3f\n" .x_data[i]); 

fclose(fl); 

if «fl = fopenCa_datal6.m". "w"»=NULL) 
{ 

I 

puts('\ncannot open file a_data"); 
exit(l); 

for (i = l;i<ctrl;i++) 
fprintf(fl."%S.3f\n".a_data[i]); 

fclose(fl); 

if «fl = fopen("d_datal6.m". "w"»==NULL) 
{ 

I 

puts('\ncannot open fIle d_data"); 
exit(l); 

for (i = l;i<ctrl;i++) 
fprintf(fl. "%5 .3f\n" .d_data[iJ); 

fclose(fl); 

if «fl = fopen("v_datal6.m". "w"»==NULL) 
{ 

I 

puts('\ncannot open fIle d_data"); 
exit(l); 

for (i = l;i<ctrl;i++) 
fprintf(fl. "%5 .3f\n".v _data[i]); 

fclose(fl); 

1/ This is main body of the program 
void main(void) 
{ 

iniUlbrmjuzzy _system(&g .. Juzzy _system); 
main_loopO; 
save_data_toJIieO; 
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11 This is the file that contain the fuzzy logic procedures 
IIFileFL]PB9.C 

#ifndefFL_FPB9_C 
#defmeFL_FPB9_C 

#include <math.h> 
#include <conio.h> 
#include <alloc.h> 
#include <stdio.h> 
#include "flbrm5.h" 
#include "flprcs5.c" 
#include "flbini27.c" 
#include "flogic5.h" 

11 Holds the header files and structures used 
11 Holds the process procedures 
11 Holds initialization procedures 
11 Holds the header files and structures used 

float fuzzy_logic3orce (struct p_carcstate_rec the_state) 
( 

float x[61.y[31Jorce; 

11 assigning input variable 
x[in_thetal = the_state.ang; 
x[in_theta_dotl = the_state.anlL vel; 
x[in_xl = the_state.x_pos; 
x[in_x_dotl = the_state.x_dot; 
x[in_dl = the_state.deflec; 
x[in_d_dotl = the_state.deC vel; 

11 get output result for each set of input variables 
y[m_thetal = fuzzy_system(x.lLfuzzy_system.O.13); 
y[in_theta_dotl = fuzzy_system(x.lLfuzzy_system.l3.26); 
y[in_xl = fuzzy_system(x.lLfuzzy _system.26.39); 
y[in_x_dotl = fuzzy_system(Y-l!-fuzzy_system.39.52); 

force = fuzzy_system(y -l!-fuzzy _system.52.65); 

return force; 

void gecvoltage_from_fuzzy_con(float a.float a_d.float x.float x_d. 
float def.float deCd.float 'voltage) 

struct p_cart_state_rec sys_state_rec; 
float volt; 

sys_state_rec.ang = a; 
sys_state_rec.anlLvel = a_d; 
sys_state_rec.x_pos = x; 
sys_state_rec.x_dot = x_d; 
sys_state_rec.deflec = def; 
sys_state_rec.deCvel = deCd; 
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11 theta & theta_d fuzzy result 
1/ x & x_d fuzzy result 
1/ def & deed fuzzy result 
1/ y[in_thetal & y[in_xl fuzzy 
1/ result 
1/ y[in_theta_dotl & y[in_x_dotl 
I/fuzzy result 



} 
#endif 

if «x>IO)&&(a> 1.01)&&(x_d>O.01)) 
volt += 2.0; 11 bring the cart to the center of the track 

if «x>IO)&&(a>I.OI)&&(x_d<-O.OI)) 
volt += 1.1; 11 bring the cart to the center of the track 

if «x<-IO)&&(a<-l.OI)&&(x_d<-O.OI)) 
volt += -1.0; 11 bring the cart to the center of the track 

if «x<-IO)&&(a<-l.OI)&&(x_d>O.OI)) 
volt += -0.6; 11 bring the cart to the center of the track 

if «a>l.OI)&&(a_d>O.OI)) 
volt += 3.0; !/balance the pole 

if «a<-I.Ol)&&(a_d<-O.Ol)) 
volt += -3.0; !/balance the pole 

if (a>2.31) 
volt += 5.5; !/balance the pole 

if (a<-2.31) 
volt += -5.5; !/balance the pole 

'voltage = volt; 
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/I File FLPRCS5.C - this is the file that hold the fuzzy logi c procedures and functions *' 

#ifndefFLPRCSS_C 
#defme FLPRCSS_C 

#ioclude <stdlib.h> 
#ioclude <math.h> 
#ioclude <conio.h> 

#ioclude "flogic5.h" 

struct fuzzy _system_rec /Lfuzzy _system; 

struct trapezoid iniCtrapz (float xl.float x2.float x3.float x4.trapz_type typ); 
float fuzzy_system (float ioputsD,struct fuzzy _system_rec fl,int ctrl ,iot ctr2); 
void free_fuzzy _rules (struct fuzzy_system_rec *fz); 

/I Implementation 
struct trapezoid iniCtrapz (float xl.float x2.float x3.float x4,trapz_Iype typ) 
I 

struct trapezoid trz; 

trz.a = xl; 
trz.b = x2; 
trz.c = x3; 
trz.d = x4; 
trz.tp = typ; 
switch (trz.tp) 

I 
case regular: 

case left 

trz.Ulope = 1.0/(trz.b - trz.a); 
trz.r_slope = 1.0/(trz.c - trz.d); 
break; 

trz.r_slope = 1.0/(trz.a - trz.b); 
trz.Cslope = 0.0; 
break; 

case right; 
trz.Ulope = 1.0/(trz.b - trz.a); 
trz.r_slope = 0.0; 
break; 

} /I end switch 
return trz; 
/I end function 
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float trapz (float x. struet trapezoid trz) 

I 
switch (trz.tp) 

I 
case left: 

if (x <= trz.a) 
return 1.0; 

if (x >= trz.b) 
return 0.0; 

I/a<x<b 
return trz.r_slope * (x - trz.b); 

case right: 
if (x <= trz.a) 

return 0.0; 
if (x >= trz.b) 

return 1.0; 
I/a<x<b 
return trz.l_slope * (x - trz.a); 

case regular: 
if «x <= trz.a) 11 (x >= trz.d» 

return 0.0; 
if «x >= trz.b) && (x <= trz.e» 

return 1.0; 
if «x >= trz.a) && (x <= trz.b» 

return trz.l_slope * (x - trz.a); 
if «x >= trz.e) && (x <= trz.d» 

return trz.f_slope * (x - trz.d); 
} //End switch 
return 0.0; 1/ should not get to this point 
1/ End function 

float min_of (float valuesD.int no_oCinps) 

I 
int i; 
float val; 
val = values [0]; 
for (i = l;i < no_of_inps;i++) 

I 
if (values[i] < val) 
val = values [i]; 

return val; 
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float fuzzy _system (float inputsD.struct fuzzy_system_rec fz,int ctrl.int ctr2) 
{ 

#endif 

int ij; 
short variable_index,fuzzy _set; 
float suml = 0.0.sum2 = O.O.weight; 
float m3alues[MA}CNO_OF _INPUTSl; 
for (i=ctrl;i<ctr2;i++) 
{ 

for G = O;j < fz.no_oCinputs;j++) 
{ 

variable_index = fz.rules[il.inp_index[j]; 
fuzzy_set = fz.rules[i].inp_fuzzy_set[j]; 
m_values[j] = trapz(inputs[variable_indexl. 
fz.inp_mem_fus[ variable_index][fuzzy _set]); 
/I endj 

weight = min_of (m_values.fz.no_oCinputs); 
suml += weight * fz.outpuCvalues[fz.rules[i].out_fuzzy_setl; 
sum2 += weight; 

} 11 end i 
if (fabs(sum2) < TOO_SMAlL) 

return 0.0; 
return (suml/sum2); 
11 end fuzzy_system 
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/I FLBINIJ7.C - this file contains the Initialization procedures 

#ifndef FLBINII7_H 
#define FLBINII7_H 

#include <alloc.h> 
#include "flbrmS.h" 

void iniCflbrm_rules (struct fuzzy _system_rec *fll 
{ 

const int 
no_oCx_rules = 13; 
int i; 
for (i = O;i < no_oCx_rules;i++l 
{ 

fl->ruJes[i].inp_index[O] = in_theta; 
fl->rules[i].inp_index[l] = in_theta_dot; 

1/ Regions for theta and theta_dot: 
fl->rules[O].inp_fuzzy_set[O] = in_negl; 
fl->rules[O].inp_fuzzy _set[ I] = in_negl; 
fl->rules[O].out_fuzzy _set = oucnt; 
fl->rules[I].inp_fuzzy_set[O] = in_negl; 
fl->rules[l].inp_fuzzy_set[l] = in_ze; 
fl->rules[l].ouCfuzzy_set = out_run; 
fl->rules[2].inp_fuzzy _set[O] = in_negl; 
fl->rules[2].inp_fuzzy_set[l] = in-pos1; 
fl->rules[2].ouCfuzzy _set = out_ze; 

fl->rules[3].inp_fuzzy_set[0] = in_negm; 
fl->rules[3].inp_fuzzy_set[l] = in_negm; 
fl->rules[3].ouCfuzzy_set = out_run; 
fl->rules[4].inp_fuzzy_set[0] = in_negm; 
fl->rules[4].inp_fuzzy_set[J] = in_posm; 
fl->rules[4].ouCfuzzy_set = oucns; 

fl->ru!es[S].inp_fuzzy_set[O] = in_ze; 
fl->rules[S].inp_fuzzy _set[l] = in_negl; 
fl->rules[S].ouCfuzzy _set = oucns; 
fl->rules[6].inp_fuzzy_set[0] = in_ze; 
fl->rules[6].inp_fuzzy_set[l] = in_ze; 
fl->rules[6].oucfuzzy_set = oucze; 
fl->rules[7].inp_fuzzy _set[O] = in_ze; 
fl->rules[7].inp_fuzzy _set[l] = in_posl; 
fl->ru!es[7].ouCfuzzy _set = out-ps; 

fl->rules[8].inp_fuzzy_set[0] = in-posm; 
fl->rules[8].inp_fuzzy_set[J] = in_negm; 
fl->ru!es[8].ouCfuzzy_set = ouCps; 
fl->rules[9].inp_fuzzy_set[0] = in-posm; 
fl->rules[9].inp_fuzzy_set[l] = in.JJOSffi; 
fl->rules[9].ouCfuzzy_set = oucpm; 
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fl->rules[lO].inp_fuzzy_set[O] = in--POSl; 
fl->rules[lO].inp_fuzzy_set[l] = in_negl; 
fl->rules[lO].ouLfuzzy_set = ouLze; 
fl->rules[ll].inp_fuzzy _set[O] = in_posl; 
fl->rules[ll].inp_fuzzy_set[l] = in_ze; 
fl->rules[ll].ouLfuzzy _set = out_pm; 
fl->rules[l2].inp_fuzzy_set[Ol = in_posl; 
fl->rules[l2].inp_fuzzy_set[1] = in_posl; 
fl->rules[12].oULfuzzy_set = oULpl; 

for (i = O;i < no_oCx_rules;i++) 
I 

fl->rules[i + no_oCx_rules].inp_index[O] = in_x; 
fl->rules[i + no_oCx_rules].inp_index[l] = in_x_dot; 

} 
f* Regions for x and x_dot: *f 
fl->rules[13].inp_fuzzy_set[O] = in_negl; 
fl->rules[l3].inp_fuzzy_set[l] = in_negl; 
fl->rules[l3].OULfuzzy_set = ouLn1; 
fl->rules[l4].inp_fuzzy_set[O] = in_negl; 
fl->rules[l4].inp_fuzzy_set[l] = in_ze; 
fl->rules[l4].OULfuzzy_set = out_mn; 
fl->rules[lS].inp_fuzzy_set[O] = in_negl; 
fl->rules[IS].inp_fuzzy_set[l] = in_posl; 
fl->rules[lS].out_fuzzy_set = out-ps; 

fl->rules[16].inp_fuzzy_set[O] = in_negm; 
fl->rules[l6].inp_fuzzy_set[1] = in_negm; 
fl->rules[16].oULfuzzy_set = ouLmn; 
fl->rules[l7].inp_fuzzy_set[O] = in_negm; 
fl->rules[17].inp_fuzzy_set[l] = in_posm; 
fl->rules[17].oULfuzzy_set = out_ns; 

fl->rules[l8].inp_fuzzy_set[O] = in_ze; 
fl->rules[l8].inp_fuzzy_set[l] = in_negl; 
fl->rules[18].out_fuzzy_set = out_ns; 
fl->rules[l9].inp_fuzzy_set[O] = in_ze; 
fl->rules[l9].inp_fuzzy_set[1] = in_ze; 
fl->rules[19].ouLfuzzy_set = ouLze; 
fl->ru!es[20].inp_fuzzy_set[O] = in_ze; 
fl->rules[20].inp_fuzzy_set[l] = in_posl; 
fl->ru!es[20].OULfuzzy _set = out_ps; 

fl->rules[21].inp_fuzzy_set[O] = in_posm; 
fl->rules[2l].inp_fuzzy_set[l] = in_negm; 
fl->ru!es[21].OULfuzzy _set = out_ps; 
fl->rules[22].inp_fuzzy_set[O] = in_posm; 
fl->rules[22].inp_fuzzy_set[l] = in_posm; 
fl->rules[22].OULfuzzy_set = ouLpm; 

fl->rules[23].inp_fuzzy_set[O] = in_posl; 
fl->rules[23].inp_fuzzy _set[l] = in_negl; 
fl->rules[23].OULfuzzy_set = ouLns; 
fl->rules[24].inp_fuzzy_set[O] = in_posl; 
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fl->rules[24J,inpjuzzy_set[1] = in_ze; 
fl->rules[24].ouCfuzzy_set = ouCpm; 
fl->rules[25].inp_fuzzy _set[O] = in-POs1; 
fl->rules[25J,inp_fuzzy_set[l] = in-POsl; 
fl->rules[25].ouCfuzzy_set = ouCpl; 

for (i = O;i < no_oCxJules;i++) 
( 

fl->rules[i + 2*no_oCx_rules].inp_index[01 = in_d; 
fl->rules[i + 2*no_oCx_rules].inp_index[1] = in_d_dot; 

) 
1* Regions for deflection and deflection velocity: *1 
fl->rules[26].inp_fuzzy_set[O] = in_negl; 
fl->rules[26J,inp_fuzzy_set[l] = in_negl; 
fl->rules[26J,ouCfuzzy _set = ouCn!; 
fl->rules[27].inp_fuzzy_set[0] = in_negl; 
fl->rules[27J,inp_fuzzy_set[1] = in_ze; 
fl->rules[27J,oucfuzzy_set = out_nm; 
fl->rules[28J,inp_fuzzy_set[0] = in_negl; 
fl->rules[28J,inp_fuzzy _set[1] = in_posl; 
fl->rules[28].ouCfuzzy_set = ouCze; 

fl->rules[29J,inp_fuzzy_set[0] = in_negm; 
fl->rules[29J,inp_fuzzy_set[1] = in_negm; 
fl->rules[29J,out_fuzzy_set = ouCnm; 
fl->rules[30].inp_fuzzy_set[01 = in_negm; 
fl->rules[30].inp_fuzzy_set[l] = in_posm; 
fl->rules[30].ouCfuzzy_set = oucns; 

fl->rules[31J,inp_fuzzy_set[0] = in_ze; 
fl->rules[31J,inp_fuzzy_set[1] = in_negl; 
fl->rules[31].out_fuzzy_set = out_ns; 
fl->rules[32J,inp_fuzzy _set[O] = in_ze; 
fl->rules[32].inp_fuzzy_set[l] = in_ze; 
fl->rules[32].ouCfuzzy _set = ouCze; 
fl->rules[33].inp_fuzzy _set[O] = in_ze; 
fl->rules[33].inp_fuzzy_set[l] = in_posl; 
fl->rules[33].ouCfuzzy _set = out_ps; 

fl->rules[34J,inp_fuzzy _set[O] = in_posm; 
fl->rules[34J,inp_fuzzy_set[1] = in_negm; 
fl->rules[34J,ouCfuzzy _set = ouCps; 
fl->rules[35].inp_fuzzy _set[O] = in_posm; 
fl->rules[35J,inp_fuzzy _set[l] = in-JlOSffi; 
fl->rules[35].ouCfuzzy_set = ouCpm; 

fl->rules[36].inp_fuzzy_set[0] = in-JlOSl; 
fl->rules[36].inp_fuzzy _set[ll = in_negl; 
fl->rules[36].ouCfuzzy_set = OUCze; 
fl->rules[37].inp_fuzzy _set[O] = in-POsl; 
fl->rules[37J,inp_fuzzy_set[l] = in_ze; 
fl->rules[37].ouCfuzzy_set = out_pm; 
fl->rules[38].inp_fuzzy_set[O] = in-POs1; 
fl->rules[38].inp_fuzzy_set[1] = in-POsl; 
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fl->rules[38].outjuzzy _set = ouepl; 

for (i = O;i < no_oCx_rules;i++) 
{ 

I 

fl->ruIes[i + 3*no_oCx_rules].inp_index[O] = in_theta; //tllis is YIO]=theta+theta_dot 
fl->ruIes[i + 3*no_oCx_rules].inp_indexl1] = in_x; //tllis is Y[2]=def+deCdot 

1* Regions for combined theta_theta_d and d_d_d: *1 
fl->rules[39].inpjuzzy_set[O] = in_negl; 
fl->rules[39].inp_fuzzy_set[l] = in_negl; 
fl->rules[39].ouefuzzy_set = ouenl; 
fl->rules[40].inp_fuzzy_set[O] = in_negl; 
fl->rules[40].inp_fuzzy_set[l] = in_ze; 
fl->rules[40].out_fuzzy_set = .ouenm; 
fl->rules[41].inp_fuzzy_set[O] = in_negl; 
fl->rules[41].inpjuzzy_set[l] = in_posl; 
fl->ruIes[41].out_fuzzy_set = ouens; 

fl->ruIes[ 42].inp_fuzzy _set[O] = in_negm; 
fl->rules[42].inp_fuzzy_set[l] = in_negm; 
fl->ruIes[42].outjuzzy_set = ouenm; 
fl->ruIes[43].inp_fuzzy_set[O] = in_negm; 
fl->rules[43].inp_fuzzy_set[l] = in_posm; 
fl->ruIes[43].ouefuzzy_set = out_os; 

fl->rules[44].inp_fuzzy_set[Ol = in_ze; 
fl->ruIes[44].inp_fuzzy_set[l] = in_negl; 
fl->rules[44].ouefuzzy_set = oueos; 
fl->rules[45].inp_fuzzy_set[O] = in_ze; 
fl->ru!es[45].inp_fuzzy_set[l] = in_ze; 
fl->ruIes[45].out_fuzzy_set = out_ze; 
fl->rules[46].inp_fuzzy_setlO] = in_ze; 
fl->rules[ 46].inp_fuzzy _set[l] = in_posl; 
fl->rules[46].ouefuzzy _set = oueps; 

fl->ruIes[47].inp_fuzzy_set[O] = in...JlOsm; 
fl->ruIes[47].inp_fuzzy_set[l] = in_negm; 
fl->rules[47].ouefuzzy_set = out-ps; 
fl->rules[48].inp_fuzzy_set[O] = in_posm; 
fl->ruIes[48].inp_fuzzy_set[l] = in_posm; 
fl->ruIes[48].ouefuzzy_set = out-pm; 

fl->ruIes[49].inp_fuzzy_set[O] = in_posl; 
fl->ruIes[49].inp_fuzzy_set[l] = in_negl; 
fl->ruIes[49].ouefuzzy _set = out-ps; 
fl->ruIes[50].inp_fuzzy_set[O] = in_posl; 
fl->ru!es[50].inp_fuzzy_set[l] = in_ze; 
fl->rules[50].ouefuzzy_set = ouepm; 
fl->ruIes[51].inp_fuzzy_set[O] = in_posl; 
fl->rules[51].inp_fuzzy_set[l] = in_posl; 
fl->rules[51].out_fuzzy _set = ouepl; 

for (i = O;i < no_oCx_ru!es;i++) 
{ 
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fl->rules[i + 4*no_oCx_rules].inp_index[O] = in_theta_dot; /lthis is Y[l]=x+x_dot 
fl->rules[i + 4*no_oCx_rules].inp_indexU] = in_x_dot; /lthis is 
Y[3]=theta+theta_d+def+deCd 

} 
1* Regions for combined x_xd. theta_theta_d and d_d_d: *1 
fl->rules[52J.inp_fuzzy_set[O] = in_negl; 
fl->rules[52].inp_fuzzy_set[l] = in_negl; 
fl->rules[52J.out3uzzy _set = out_n1; 
fl->rules[53J.inp_fuzzy _set[O] = in_negl; 
fl->rules[53J.inp_fuzzy_set[1] = in_ze; 
fl->rules[53].ouCfuzzy_set = ouCnm; 
fl->rules[54J.inp_fuzzy_set[O] = in_negl; 
fl->rules[54].inp_fuzzy_set[1] = in...Jlosl; 
fl->rules[54J.out_fuzzy _set = out_ns; 

fl->rules[55].inp_fuzzy _set[O] = in_negm; 
fl->rules[55].inp_fuzzy_set[l] = in_negm; 
fl->rules[55J.out_fuzzy _set = ouCnm; 
fl->rules[56].inp_fuzzy _set[O] = in_negm; 
fl->rules[56].inp_fuzzy_set[l] = in...JlOSlll; 
fl->rules[56].ouCfuzzy_set = out_ns; 

fl->rules[57J.inp_fuzzy_set[O] = in_ze; 
fl->rules[57].inp_fuzzy_setU] = in_negl; 
fl->rules[57].ouCfuzzy_set = ouCns; 
fl->rules[58].inp_fuzzy_set[O] = in_ze; 
fl->rules[58].inp_fuzzy_set[l] = in_ze; 
fl->rules[58J.ouCfuzzy_set = out_ze; 
fl->rules[59].inp_fuzzy_set[O] = in_ze; 
fl->rules[59J.inp_fuzzy_set[l] = in_posl; 
fl->rules[59].out_fuzzy _set = out...Jls; 

fl->rules[60].inp_fuzzy_set[O] = in...JlOsm; 
fl->rules[60].inp_fuzzy_set[l] = in_negm; 
fl->rules[60].out_fuzzy_set = ouCps; 
fl->rules[61].inp_fuzzy_set[O] = in_posm; 
fl->rules[61].inp_fuzzy_set[l] = in_posm; 
fl->rules[61].ouCfuzzy_set = ouCpm; 

fl->rules[62].inp_fuzzy_set[O] = in_posl; 
fl->rules[62].inp_fuzzy_set[l] = in_negl; 
fl->rules[62].ouCfuzzy _set = ouCps; 
fl->rules[63].inp_fuzzy_set[O] = in_posl; 
fl->rules[63].inp_fuzzy_set[1] = in_ze; 
fl->rules[63].ouCfuzzy _set = ouCpm; 
fl->rules[64].inp_fuzzy_set[O] = in...JlOSl; 
fl->rules[64].inp_fuzzy_set[l] = in...JlOSl; 
fl->rules[64].ouCfuzzy _set = out...Jll; 

return; 
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void inieflbrm_mem_fns (struct fuzzy _system_fee *fl) 
{ 

1* The X membership functions *1 
fl->inp_memjns[in_xUin_negl] = iniurapz (-5.0.-0.5.0.0,left); 
fl->inp_mem_fns[in_xUin_negm] = iniurapz (-2.0.-1.0.-1.0.0.0,regular); 
fl->inp_mem_fns[in_xUin_ze] = iniurapz (-0.5.0.0.0.0.0.5.regular); 
fl->inp_mem_fns[in_xUin_posm] = iniurapz (0.0.1.0.1.0.2.0,regular); 
fl->inp_memjns[in_xUin_posl] = iniurapz (0.5.5.0.0.0,right); 
1* The X dot membership functions *1 
fl->inp_mem_fns[in_x_dotUin_negl] = iniurapz (-5.0.-1.0.0.0,left); 
fl->inp_mem_fns[in_x_dotUin_negm] = iniurapz (-2.0.-1.0.-1.0.0.0,regular); 
fl->inp_memjns[in_x_dotUin_ze] = iniurapz (-0.5.0.0.0.0.0.5.regular); 
fl->inp_memjns[in_x_dotUin..,posm] = inietrapz (0.0.1.0.1.0.2.0.regular); 
fl->inp_memjns[in_x_dotUin.Jlosl] = init_trapz (1.0.5.0.0.0,rigbt); 
1* The theta membership functions *1 
fl->inp_memjns[in_theta][in_negl] = inietrapz (-5.0.-1.0.-0.0.-0.0,left); 
fl->inp_mem_fns[in_ thetaUin_negm] = inietrapz (-2.0. -1.0.-1.0.0.0,regular); 
fl->inp_memjns[in_theta][in_ze] = init_trapz (-0.5.0.0.0.0.0.5.regular); 
fl->inp_memjns[in_thetaUin_posm] =inietrapz (0.0.1.0.1.0.2.0,regular); 
fl->inp_mem_fns[in_thetaUin_posl] =inietrapz (l.0.5.0.0.0.0.0,right); 
1* The theta dot membership functions *1 
fl->inp_mem_fns[in_theta_dotUin_negl] = init_trapz (-5.0.-1.0.-0.0.-0.0,left); 
fl->inp_memjns[in_theta_dotUin_negm] = inietrapz (-2.0.-1.0.-1.0.0.0,regular); 
fl->inp_mem_fns[in_theta_dotUin_ze] = inietrapz (-0.5.0.0.0.0.0.5,regular); 
fl->inp_memjns[in_theta_dotUin.Jlosm] = inietrapz (0.0.1.0.1.0.2.0,regular); 
fl->inp_mem_fns[in_theta_dotUin_pos1l = init_trapz (1.0.5.0.0.0.0.0,rigbt); 
1* The deflection membership functions *1 
fl->inp_memjns[in_d][in_negl] = inietrapz (-3.0.-1.0.0.0.0.0,left); 
fl->inp_memjns[in_d][in_negm] = inietrapz (-2.0.-1.0.-1.0.0.0.regular); 
fl->inp_mem_fns[in_dUin_ze] = inietrapz (-0.5.0.0.0.0.0.5.regular); 
fl->inp_memjns[in_d][in_posm] =init_trapz (0.0.1.0.1.0.2.0,regular); 
fl->inp_mem_fns[in_dUin_posl] =inietrapz (1.0.3 .0.0.0,right); 
1* The deflection dot membership functions *1 
fl->inp_mem_fns[in_d_dotUin_negl] = inietrapz (-3.0.-1.0.0.0.0.0,left); 
fl->inp_memjns[in_d_dotUin_negm] = init_trapz (-2.0.-1.0.-1.0.0.0,regular); 
fl->inp_memjns[in_d_dotUin_ze] = init_trapz (-0.5.0.0.0.0.0.5,regular); 
fl->inp_memjns[in_d_dotUin_posm] = inietrapz (0.0.1.0.1.0.2.0.regular); 
fl->inp_memjns[in_d_dot][in_posl] = inietrapz (1.0.3.0.0.0,rigbt); 
return; 

void init_flbrm_fuzzy_system (struct fuzzy _system_fee *fl) 
{ 

fl->no_oCinputs = 2; 1* Inputs are handled 2 at a time ouly *1 
fl->no_oCrules = 65; 
fl->no_oCinp_regions = 5; 
fl->no_oCoutputs = 7; 
fl->outpucvalues [ouenl] = -4.75; 
fl->outpuevalues [out_nm] = -2.65; 
fl->outpue values [ouens] = -1.35; 
fl->outpucvalues [ouCze] = 0.0; 
fl->outpucvalues [OUCps] = 1.35; 
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#endif 

fl->outpuC values [ouLpm] = 2.65; 
fl->outpuCvalues [oucpI] = 4.75; 
if«fl->ruIes = (struct rule *) malloc «size_t)(fl->no_oCrules*sizeof(struct rule»)))==NULL) 
( 

printf(''\n\nOut of memory. Press any key to exit. "); 
getchO; 
exit(l); 

) 
iniCflbrm_rules(fl); 
init_flbrm_memjns(fl); 
return: 
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APPENDIXE 

The Fuzzy-Genetic Algorithm Program for Flexible Pole-cart Balancing 
System 

Important procedures in the program: 

1. init_nga_mem_fns - Sets up the membership functions using a scheme based on the 

number of fuzzy sets. 

2. iniCnga..setup - Initialize the input parameters. It assigns names of external files used 

for the process and data storage. 

3. iniCngaJules - Allocates memory for the storage offuzzy rules. 

4. ga_ vector _to_fuzzy Jules - Translates the chromosomes from the genetic algorithm 

to FAM matrix entries. 

5. n_evaluation_fn - Caries out the optimization process of the genetic algorithm. 

6. n...genetictraining - Handles the training process of the fuzzy system. It is 

accomplished by running the genetic algorithm operating on the fuzzy system 

evaluation function. 

7. runjuzzy _model - Handles the details of running the trained fuzzy system. 
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1* File FL_GA]R4 - Genetic Algorithm-Fuzzy optimization program for flexible pole-cart *1 
1* balancing problem By: Elmer P. Dadios *1 
I*Note that some of the techniques used here are based on the public-domain routines in chapter 13*1 
1* of Neural Networks and Fuzzy Logic Applications in C/C++. by S. T. Welstead. 1994. *1 

#include <alloc.h> 
#include <string.h> 

#include "flginit2.c" 
#include "flprcs.c" 
#include "gaproc3.c" 
#inc1ude "utvect.c" 
#include "utprcs.c" 
#include "trnprocs.c" 
#include "utmatrix.c" 
#include "utfiles.c" 
#include "flItles.c" 
#include "flgeval.c" 
#include "flgrun.c" 
#include "flgtrain.c" 

void print_flga_setup (tfl~setup_rec *f!) 
( 

printf("\nno_oCfl_inputs = %d \n",fl->no_oCfl_inputs); 
printf("no_of_fl_inp_regions = %d\n" ,fl->no_of_fl_inp_regions); 
printf("fuzz_system_file = %s\n" ,fl->fuzzy _system_ftle_name); 
printf("training_file = %s\n",fl->training_file_name); 
printf(" output data_file = %s\n" ,fl->ouCdataJtle_name); 
return: 

I 1* end proc *1 

void prinLga_seCrec(tga_setup_rec *fl) 
( 

printf("\npopulation_size = %d \n" ,fl->population_size); 
printf("vecUen = %d\n" ,fl->vecUen); 
printf("chrom_len = %d\n",fl->chrom_len); 
printf("max-&ens = %d\n" ,fl->max-&ens); 
printf("crossover prob = %f\n",fl->crossovecprob); 
printf("mutation prob = %f\n",fl->mutation_prob); 
return; 

} 1* end proc *1 

void print_flga_fuzzy _system(fuzzy_system_rec *fl) 
( 

int i; 
printf("\nno_of_rules = %d \n",fl->no_of_rnles); 
printf("no_oCinputs = %d \n",fl->no_oCinputs); 
printf("no_oCinp_regions = %d\n" ,fl->no_oCinp_regions); 
printf("no_of_outputs = %d\n",fl->no_of_outputs); 
for (i=O;i<fl->no_oCoutputs;i++) 

printf("fuzzy->output[%dl = %f\n",i,fl->output_values[i]); 
return; 

} 1* end proc *1 
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1/ procedure to show program menu 
void menu(char *choice) 
{ 

clrscrO; 
gotoxy(l7,5); 
printf("*************************************************"); 
gotoxy(l7.6); 
printf("* on); 
gotoxy(17.7); 
printf("* Fuzzy Logic with Genetic Algorithm Controller on); 
gotoxy(l7.8); 
printf(nO for the Flexible Pole-Cart Balancing Problem on); 
gotoxy(l7.9); 
printf("* By: Elmer P. Dadios & David J. Williams on); 
gotoxy(l7,lO); 
printf("* '''); 
gotoxy(l7,ll); 
printf("*************************************************"); 

gotoxy(22.15); 
printf("***************************************"); 
gotoxy(22.16); 
printf("* Enter I for running the controller '''); 
gotoxy(22.l7); 
printf("* Enter 2 for training the controller on); 
gotoxy(22.18); 
printf("* Enter 0 to exit program .n); 
gotoxy(22,l9); 
printf("***************************************"); 
do 
{ 

gotoxy(22.20); 
printf("Your choice please: n); 
'choice = getchO; 

while('choice != '1' && 'choice != '2' && 'choice != '0'); 

void main(void) 
{ 

1/ 

char choice; 
const int pop_size = 54. biUen = 3; 
intj. gener. no_oCrules = I; 
tfl8..setup_rec 8..fl8..rec; 
fuzzy_system_rec theJuzzy_system; 

iniCflga_setup(&8..JI8-rec); 
for G=I; j<= 8..fl8..rec.no_oCfl_inputs;j++) 

do 
{ 

no_of_rules *= 8-fl8-rec.no_oCfl_inp_regions; 
initialize..sa_setup(pop_size.biUen.no_of_rules.&ga_setup_rec); 
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menu(&choice); 
switch(choice) 
( 

I 

case '0' : break; 
case '1': runjuzzy_model(g.JIg..rec); 

break; 
case '2': if«fi = fopen( .. ga_stat.dat ..... w .. »=NULL) 

( 

I 

prlntf(''\n\nSorry can not open file ga_stat.dat"); 
exit(l); 

fprlntf(fi."time Gen Maxj Minj Avej Sum_fit\n"); 
initialize--sa_setup(pop_size.biUen,no_oCrules.&ga_setup_rec); 
fl--senetic_training(&g..flg..rec,&ga_setup_rec.&ga_rec); 
fclose(fi); 
break; 

I while (choice != '0'); 
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This is file flgini2.c. It contains the Initialization functions for Fuzzy Logic-Genetic 
Modeling 

#ifndefFLGINIT_C 
#defme FLGINIT_C 

#include <alloc.h> 
#include <string.h> 

#include "flga.h" 

void init_flga_setup (tfllLsetuP_= *fI) { 
fl->no_oCfl_inputs = 4; 
fl->no_oCfl_inp_regions = 3; 
fl->no_oCfl_outpucvalues = 8; 
fl->read_in_fuzzy_system = 0; 
fl->norm_inJange = 5.0; 
fl->norm_in_min = -2.5; 
fl->norm_oucrange = 2.0; 
fl->norm_oucmin = -1.0; 
strcpy(fl->fuzzy_system_fIIe_name.·'FL_GA.FZS"); 
strcpy(fl->traininlLfIle_narile. "FL_ G A. TRN"); 
strcpy(fl->oucdata_fIIe_name.·'FL_GA.DAT"); 
return: 
I f* end proc *f 

void iniCflga_rules (fuzzy _system_= *fz) { 
int iO.il.i2.i3.i4.i = OJ.n = l.ouCvalue = fz->no_oCoulputs!2; 
for G = 1;j<=fz->no_oCinputs;j++) 

n *= fz->no_oCinp_regions; 
fz->no_oCrules = n; 
fz->rules = (rule *) malloc «size_t)(fz->no_oCrules*sizeof(rule»); 
for (iO = O;iO < fz->no_oCinp_regions;iO++) 

for (il = O;il < fz->no_oCinp_regions;il++) 

return; 

for (i2 = 0;i2 < fz->no_oCinp_regions;i2++) 
for (i3 = 0;i3 < fz->no_oUnp_regions;i3++) 

/I for (i4 = 0;i4 < fz->no_oUnp_regions;i4++) 
{ 

for G=O;j<fz->no_oCinputs;j++) 
fz->rules[i].inp_index[j] = j; 
fz->rules[i].inp_fuzzy_set[OJ = iO; 
fz->rules[iJ.inp_fuzzy_setUJ = il; 
fz->rules[iJ.inp_fuzzy _set[2J = i2; 
fz->rules[iJ.inp_fuzzy _set[3J = i3; 
fz->rules[iJ.inp_fuzzy_set[4J = i4; 
fz->rules[i].out_fuzzy _set = ouC value; 
i++: 
I f* end loop *f 

I f* end proc *f 
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int ij.k; 
float *a.a_ine; 
int no_oCrgns,no_oCpts = 2 * fl.no_oCfl_inpJegions; 
no_oCrgns = no_oCpts - I; 
a_ine = fl.norDl_in_range f no_oCrgns; 
a = (float *)malloc(no_oCpts*sizeof(float»; 
a[D] = fl.norDl_in_min; 
for (i = 1;i<no_oCpts;i++) 

aliI = a[i -I] + a_inc; 
f* The input membership functions *f 
for (i = O;i<fl.no_oCfl_inputs;i++) ( 

fz->inp_memjns[i][O] = iniurapz (a[l].a[21,O.O,left); 
k = I; 
for G = l;j«fl.no_oCfl_inp_regions - I);j++) ( 

fz->inp_memjns[iJlj] = 
iniurapz (a[k].a[k+I].a[k+2].a[k+3].regular); 

k+=2; 
} f* endj *f 

fz->inp_memjns[i][fl.no_oCfl_inp_regions-l] = 
iniurapz (a[kl,a[k+1l.0.0.right); 

} f* end i *f 
return; 
} f* end proc *f 

void inicflgajuzzy_system (tflg"setup_rec fliuzzy_system_rec *fz) ( 
float ouCine. ouCval; 
int i; 

fz->no_oCinputs = 4; 
fz->no_oCinp_regions = 3; 
fz->no_oCoutputs = 8; 
init_flga_memjns(flJz); 
inicflga_rnles(fz); 
ouCine = fl.norDl_outJangef(fz->no_oCoutputs - I); 
out_ val = fl.norDl_oucmin; 
for (i = O;i<fz->no_oCoutputs;i++) ( 
fz->output3alues [i] = ouCval; 
oue val += out_ine; 
} f* end i *f 

fZ->allocated = TRUE; 
return; 

} f* end proc *f 

#endif 
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This is file gaproc3. This contains the Functions and procedures for genetic algorithm. 

#ifndef GAPROCS_C 
#defme GAPROCS_C 

#include <stdlib.h> 
#include <conio.h> 
#include <alloc.h> 
#include <mem.h> 
#include <math.h> 
#include <time.h> 

#include "uttypes.h" 
#include "ut.h" 
#include "gal.h" 

#defme TOO_SMALL le-6 '* Used for fitness scaling *' 

tga_setnp_rec ga_setup_rec; 
tga_ree ga_rec; 
FILE *fi; 

float powcr_oC2 (int n); 
void initialize...ga_rec (tga_rec *ga); 
short initializc...genetic_alg (tga_setup_rec *setup.tga_rec *ga. 

float (*the_objjunct)(ui_veetor v»; 
void generation (tga_setup_rec *setup.tga_rec *ga. 

float (*the_objjunct)(ui3ector v»; 
void statistics (tga_setup_rec setup.ppopulation the_population.tga_ree *ga. 

short *new _opt); 
void display (int gen.tga_setnp_rec setup,tga_rec ga,short *cancel, 

short *tolecflag); 
void move_individual (tga_setup_rec setup,individual src_ind, 

individual *desCind); 
void free...ga_pointers (tga_setup_rec setup,tga_rec *ga); 
void initialize...ga_setup (int pop_size.int biUen,int veeUen, 

tga_setup_rec *the_ree); 

'* Implementation *' 

void initialize...ga_rec (tga_rec *ga) { 
ga->allocated = 0; 
ga->populations[O] = NUIL; 
ga->populations[l] = NUIL; 
ga->opCindividual.chrom = NUIL; 
ga->opCindividual.raw _fitness = 0.0; 
ga->opt_individual.scaled_fitness = 0.0; 
ga->opCindividual.parentl = 0; 
ga->opCindividual.parent2 = 0; 
ga->opCindividual.xsite = 0;; 
ga->opCveetor = NUIL; 
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ga->~old = 0; 
ga->g_new = I; 
ga->opt3itness = 0.0; 
ga->sUDl_fitness = 0.0; 
ga->nmutation = 0; 
ga->ncross = 0; 
ga->avg = 0.0; 
ga->max = 0.0; 
ga->min = 0.0; 
return; 

I 

float power_oC2 (int n) { 
int i; 
float val; 
val = 1.0; 
if (n > 0) { 

for (i = l;i <= n;i++) 
val *= 2.0; 

return val; 

I 
if (n <0) { 

for (i = l;i <= n;i++) 
val *= 0.5; 

return val; 
I 1* end fn *1 

short flip (float prob) { 
1* prob is a probability (Le .. between 0 and 1) *1 
1* frandO is defmed in ur.H *1 
if (frandO < prob) return 1; 
return 0; 
I 1* end fn *1 

int rnd(int low _Iim.int up_Iim) { 
1* return random between low_Iim and up_Iim *1 
int range.result; 
range = up_Iim - low _Iim + 1; 
result = random (range); 1* Result is between 0 and range - 1 *1 
return (result + low _Iim); 
I 1* end fn *1 

int select (int popsize. float sumfitness.ppopulation the_population) { 
float rand.sum = 0.0; 
intj = 0; 
rand = frandO * surnfitness; 
do { 

sum += (*the_population)GJ->scaled_fitness; 
j++; 
I while «sum < rand) && G < popsize»; 

return G - I); 
I 1* end fn *1 
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short mutation (short val,fJoat pmutation,long int *nmutation) { 
short mutate; 
mutate = flip (pmutation); 
if (mutate) { 

(*nmutation)++; 
return !val; 
} 

else 
return val; 

} 1* end fn *1 

void crossover (chromosome parenti.chromosome parent2. 
chromosome childl.chromosome child2. 
int Ichrom,long int *ncross.long int *nmutation.int *jcross. 
float pcross,fJoat pmutation) { 
1* Cross two parent strings. place in two child strings *1 
intj; 
if (flip (pcross)) { 

*jcross = rnd (O,lchrom - 2); 
(*ncross)++; 
} 

else 
*jcross = Ichrom - I; 

for G = O;j <= *jcross;j++) { 
child I [j] = mutation (parent! [j].pmutation,nmutation); 
child2 [j] = mutation (parent2 (i].pmutation,nmutation); 
} 1* endj *1 

if (*jcross != (lchrom - I)) 
for G = *jcross + I;j <= Ichrom - !;j++) { 

child I [j] = mutation (parent2 (il.pmutation,nmutation); 
child2 [j] = mutation (parent I [j].pmutation,nmutation); 
} 1* endj *1 

return; 
} 1* end proc *1 

float scale_fitness (float x.float fmin.float fmax) { 
if (fabs (fmax - fmin) > TOO_SMALL) 

return (x - fmin)*0.95/(fmax - fmin) + 0.05; 
1* else *1 

retnrn 1.0; 
} 1* endfn *1 

void rescale_population_fitness (tga_setup_rec setup. 
tgaJec ga.ppopulation the_population) { 
intj; 
float max_fitness.min_fimess; 
min_fitness = (*the_population)[O]->raw_fitness; 
max_fimess = (*the_population)[O]->raw _fimess; 
for G = O;j < setnp.population_size;j++) { 

if «*lhe_population)[j]->raw_fimess < min_fimess) 
min_fitness = (*the_population)[j]->raw _fimess; 

if «*lhe_population)[j]->raw _fimess > max_fitness) 
max_fimess = (*the-.POPulation)[j]->raw _filness; 
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if (ga.opUnclividual.raw _fitness> max_fitness) 
max_fitness = ga.opUnclividual.raw _fitness; 

if (max_fitness - min_fitness < TOO_SMALL) 
min_fitness = 0.9 * max_fitness; 

for G = O;j < setup.population_size;j++) 
(*the_population)[j]->scale<Lfitness = 

scale_fitness «*the_population)[j]->raw_fitness. 
min_fitness.max_fitness); 

return; 

I '* end proc *' 

void pick_fittest (tga_setup_rec setup. 
ppopulation the_old.ppopulation the_new) { 
int ij,min_index = 0; 
float min_fitness; 
'* Replace min fitness members of new population with fitter members *' 
1* from old population. *' 
min_fitness = (*the_new)[O]->raw_fitness; 
for G = l;j<setup.population_size;j++) 

if «*the_new)[j]->raw_fitness < min_fitness) { 
min_fitness = (*the_new)[j]->raw_fitness; 
min_index = j; 

I 
for (i = O;i<setup.population_size;i++) 

if «*the_old)[i]->raw _fitness> min_fitness) { 
'* Replace min inclividual with new individual *' 
move_individual (setup.*(*the_old)[il. 

(*the_new)[min_index]); 
'* Determine min of new population *' 
min_fitness = (*the_new)[O]->raw _fitness; 
min_index = 0; 
for G = l;j<setup.population_size;j++) 

if «*the_new)[j]->raw_fitness < min_fitness) { 
min_fitness = (*the_new)[j]->raw_fitness; 
min_index = j; 
I'*endif.j*' 

'* if.i *' return; 
1'* end proc *' 

void decode (tga_setup_rec setup. chromosome chrom.ui_vector v) { '* Decode from chromosome to vector *' 
int i.k.count = 0; 
unsigoed int accum.apower_of_2; 
int starCpos = O.end_pos = setup.biClen; 
for (i = O;i<setup.vecUen;i++) { 

accum= 0; 
apower_oC2 = I; 
for (k = starcpos;k < end_pos;k++) { 

if (chrom [count]) 
accum += apowecoC2; 
count += I; 
apower_of_2 *= 2; 
1'* end k *' 
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return; 

vIi) = accum; 
starcpos += setup.biUen; 
end_pos += setup.biUen; 
} /* end i */ 

} /* end proc */ 

void generation (tga_setup_rec *setup,tga_rec *ga, 
float (*the_objjunct)(uLvector v» { 
/* Note: Population size must be even */ 
intj = O,k,matel,mate2jcross; 
uLvectorv; 
v = allocate_ui_vector (O,setup->vecUen - I); 
do { 

matel = select (setup->population_size, 
ga->sum_fitness,ga->populations[ga->g..old); 

mate2 = select (setup->population_size, 
ga->sum_fitness,ga->populations[ga->g..old); 

crossover «*(ga->populations)[ga->g..old))[matel)->chrom, 
(*(ga->populations)[ga->g..old))[mate2)->chrom, 

(*(ga->populations)[ga->g..new)[j)-xhrom, 
(*(ga->populations)[ga->g..new)[j+l)->chrom, 
setup->chrom_len,&(ga->ncross),&(ga->nmutation),&jcross, 
setup-xrossover_prob, 
setup->mutation_prob); 

for (k = j;k <= j + l;k++) { 
decode (*setup'(*(ga->populations)[ga->g..new))[k)-xhrom,v); 
(*(ga->populations)[ga->g..new ))[k)->raw _fitness = 

thcobLfunct (v); 
(*(ga->populations)[ga->g..new)[k)->parentl = mate I ; 
(*(ga->populations)[ga->g..new])[k)->parent2 = mate2; 
(*(ga->populations)[ga->g..new])[k)->xsite = jcross; 
} 

j += 2; 
} while (j < setup->population_size); 
free_ui_vector (v,O); 
if (setup->pick_fittest) 

pick_fittest (*setup,(ga->populations)[ga->g..old), 
(ga->populations)[ga->g..new)); 

rescalcpopulation_fitness (*setup, *ga,ga->populations[ga->g..new I); 
return; 
} /* end proc */ 

void statistics (tga_setup_rec setup,ppopulation the_population,tga_rec *ga, 
short *new _opt) { 
intj; 
*new_opt = FALSE; 
ga->sum_fitness = (*the..JlOpulation)[O)->scaled_fitness; 
ga->min = (*the_population)[O)->raw _fitness; 
ga->max = (*the_population)[O)->raw_fitness; 
if (ga->max > ga->opt_individual.raw_fitness) { 

move_individual (setup, *(*the_population)[O),&(ga->opCindividual»; 
'new_opt = TRUE; 
} 
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for G = lJ<setup.population_sizeJ++) ( 
ga->sum_fitness += (*the-POpulation)[j]->scaled_fitness; 
if ((*the-POpulation)[j]->raw_fitness > ga->max) 

ga->max = (*the_population)[j]->raw _fitness; 
if ((*the-population)[j]->raw_fitness < ga->min) 

ga->min = (*the_population)[j]->raw_fitness; 
if (ga->max > (ga->opCindividual).raw _fitness) 

move_individual (setup.*(*the_population)[j].&(ga->opt_individual»; 
1/* endj *f 

if ((ga->opCindividual).raw_fitness > ga->oPcfitness) ( 
decode (setup.ga->opcindividual.chrom.ga->opt3ector); 
ga->opt_fitness = ga->opt_individual.raw _fitness; 
*new _opt = TRUE; 
} 

ga->avg = ga->sum_fitnessfsetup.population_size; 
return; 
} f* end proc *f 

void display_vector (ui_vector v.int vlen) ( 
int i; 
int display _len = v len; 
const max_display _len = 8; 
if (display_len > max_display_len) 

display_len = max_display_len; 
cprintf ("'An"); 
for (i = O;i<display_len;i++) 

cprintf("%6u ".v[i)); 
cprintf ('V\n"); 
return; 
} f* end proc *f 

void display (int gen.tga_setup_rec setup.lga_rec ga.short *cancel. 
short *tolecflag) 

( 
time_t secsnow; 
intj; 
unsigned gen_time; 
*toler_flag = FALSE; 
clrscrO; 
cprintf ("Gen: %3d\An" .gen); 
for G = OJ<setup.population_size;j++) ( 

cprintf (''\r\n%3d: (%3d.%3d) %3d ". 
j.(*ga.populations[ga.&.-new])[j]->parentl. 
(*ga.populations[ga.&.-new])[j]->parena. 
(*ga. populations[ga.&.-new ))[j]->xsite); 

cprintf (''Fitness: %6.4f. Scaled: %6.4f', 
(*ga. populations[ga.&.-new ])[j]->raw _fitness. 
(*ga. populations[ga.&.-new ])[j]->scaled_fitness); 

} f* j *f 
cprintf ('V\nGeneration %3d\An" ,gen); 
cprintf ("Max: %6.4f, Min: %6.4f, Scaled Avg: %6.4f\r\n", 

ga.max,ga.min,ga.avg); 
cprintf ("Sum: %6.4f, Nmutation: %ld, Ncross: %1d\An\n", 

ga.sum_fitness,ga.nmutation,ga.ncross); 
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time(&secsnow); 
gen_time = secsnow; 
fprintf(fi,"%d %d %8.4f %8.4f %8.4f %8.4f\n" ,gen_time,gen,ga.max,ga.min,ga.avg, 

ga.sum_fitness); 
if (fabs (MAJCGA_OBI_FN_ VALUE - ga.max) < setup. tolerance) { 

*tolecflag = TRUE; 
cprintf (''\r\nThe following chromosomes are within fitness tolerance " 

"(%1O.8f): \!\n",setup.tolerance); 
for G = O;j< setup.population_size;j++) 

if (fabs (MA)CGA_OBI_FN_ V ALUE-
(*ga. populations[ga.~new Dlil->raw _fitness) < 

setup. tolerance) 
cprintf ("%2d: Fitness: %6.4t\r\n"j, 

(*ga.populations[ga.~new Dlil->raw _fitness); 
} 

cprintf("\I\nOptimum Individual Fitness: %7.4f', 
ga.opCindividual.raw _fitness); 

cprintf(''\r\nOptimum Vector Fitness: %7 .4f' ,ga.opCfitness); 
display_vector (ga.opt_ vector ,setup.vecUen); 
cprintf (''\r\nPress ese to cancel: "); 
if (kbhitO && (getch 0 == ESCKEY) *cancel = TRUE; 
else *cancel = FALSE: 
return; 
} 1* end proc *1 

void display_stats (int gen, tga_setup_rec setup,tga_recga) { 
clrscrO; 
cprintf (''\r\n''); 
cprintf ("Generation %2d\r\n" ,gen); 
cprintf ("Max: %6.4f, Min: %6.4f, Avg: %6.4t\r\n", 

ga.max,ga.min,ga.avg); 
cprintf ("Sum: %6.4f, Nmutation: %d, Ncross: %d\r\n\n", 

ga.sum3itness,ga.nmutation,ga.ncross); 
if (fabs (MAX_GA_OBI_FN_ VALUE - ga.opCindividual.rawjitness) 

< setup. tolerance) { 
cprintf (''\r\nOptimum individual is within fitness tolerance " 

"(% IO.8f): \!\n:",setup.tolerance); 
cprintf ("Opt Individual Fitness: %6.4t\r\n", 

ga.opt_individual.raw _fitness); 
} 1* end if *1 

return; 
} 1* end proc *1 

void move_individual (tga_setup_rec setup,individual src_ind, 
individual *desCind) { 
1* Move content of src_ind to descind *1 
1* Need to move contents of chrom, not the pointer value chrom ! */ 
memmove(descind-xhrom,src_ind.chrom, 

(sizeof(src_ind.chrom[OJ»*setup.chrOID_len); 
desCind->raw _fitness = src_ind.raw _fitness; 
desCind->sealed_fitness = src_ind.sealed_fitness; 
descind->parentl = src_ind.parentl; 
descind->parent2 = src_ind.parent2; 
descind->xsite = src_ind.xsite; 
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return; 
I 1* end proc *1 

short allocate_population (tga_setup_rec setup. 
ppopulation the_population) { 
intj; 
*the_population = 

(population)malloc(setup.population_size*sizeof(pindividual)); 
if (!('the_population)) return 0; 
for G = OJ<setup.population_size;j++) { 

(*the_population)[j] = (pindividual) malloc(sizeof(individual)); 
if (!(*the_population)[j]) return 0; 
(*the_population)[j]->chrom = 

(short *)malloc(setup.chrom_len*sizeof(short)); 
if (!«*the_population)[j]->chrom)) return 0; 
I 

return I; 
1/* end proc *1 

void free-POpulation (tga_setup_rec setup. 
ppopulation the_population) { 
intj; 
if (the_population) 
for G = OJ<setup.population_size;j++) { 

if «*the_population)[j]->chrom) free «*the..,population)[j]->chrom); 
if «*the..,population)[j]) free «*the_population)[j]); 
I 

return; 
1/* end proc *1 

void initialize_population (tga_setup_rec setup.tga_rec *ga. 
ppopulation the..,population. pindividual the_opt. 
float (*the_objjunct)(ui_vector v)) { 
int ij.k; 
float max_fitness; 
int opeindex; 
ui_ vector v; 
v = allocate_ni_vector (O.setup.vecUen - I); 
/* Initialize ga.ope vector *1 
ga->opevector = allocate_ni_vector (O.setup.vecelen - I); 
for G = OJ<setup.population_size;j++) { 

for (k = O;k < setup.chrom_len;k++) 
(*the-POpulation)[j]->chrom [le] = flip (0.5); 

decode (setup.(*the_population)[j]->chrom.v); 
(*the-POpulation)[j]->rawjitness = the_obLfunct (v); 
(*the_population)[j]->scaled_fitness = 0.0; 
(*the-POpulation)[j]->parentl = 0; 
(*the_population)[j]->parent2 = 0; 
(*the_population)[j]->xsite = 0; 
cprintf ("\r\nIndividual %2d initialized. "j); 
I 1* endj *1 

max_fitness = (*the_population)[O]->raw _fitness; 
opeindex = 0; 
for G = I;j < setup.population_size;j++) 
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if (mruUitness < (*the_population)(j]->raw _fitness) I 
max_fitness = (*the-POpulation)[j]->raw_fitness; 
opt_index = j; 
} 

move_individual(setup,*«*the_population)[opcindex]),the_opt); 
decode (setup,the_opt->chrom,ga->opCvector); 
ga->opcfitness = max_fitness; 
rescale-IJopulation_fitness (setup, *ga,the_population); 
free_ui_vector (v,O); 
return; 
} /* end proc */ 

void initial_display (tga_setup_rec setup,tga_rec ga,short 'cancel) 

I 
clrscrO; 
textcolor(YELLOW); 
cprintf ("Population size: %d\r\n",setup.population_size); 
cprintf ("Chromosome length: %d\r\n" ,setup.chrom_len); 
cprintf ("Max No. of Generations: %d\i\n" ,setup.max-llens); 
cprintf ("Crossover Probability: %6.4f\t..n", 

setup.crossover_prob); 
cprintf ("Mutation Probability: %6.4f\t..n" , 

setup.mutation_prob); 
cprintf ('VlnInitial Population Statistics: v'n'n "); 
cprintf ("Max Fitness: %1O.5f\t..n" ,ga.max); 
cprintf ("Avg Fitness: %1O.5fV'n" ,ga.avg); 
cprintf ("Min Fitness: % 1O.5t\f..n" ,ga.min); 
cprintf ("Sum of Fitness: %1O.5f\t..n",ga.sum_fitness); 
cprintf (''\r\n'n'n''); 

fprintf(fi,"%05d %d %8.4f %8.4f %8.4f %8.4t\n" ,O,O,ga.max,ga.min,ga.avg, 
ga.sum_fitness); 

cprintf (''Press key to continue (esc to cancel): "); 
if (getchO == ESCKEY) *cancel = TRUE; 
else 

*cancel = FALSE; 
retwn; 
} /* end proc */ 

short initialize-llenetic_alg (tga_setup_rec *setup,tga_rec *ga, 
float (*the_objjunct)(ui_vector v» I 
short opt_flag,cancel; 
int i; 
initialize--1!a_rec (ga); 
ga->populations[ga->/Lold] = (ppopulation)malloc (sizeof(population)); 
if (!(ga->populations)[ga->/Lold]) 
I 

printf(''\n Error allocating ga->populations[ga->/Lold]\n"); 
getchO; 
return 0; 

ga->populations[ga->/Lnew] = (ppopulation)malloc (sizeof(population»; 
if (!(ga->populations)[ga->/Lnew]) 
I 

printf(''\n Error allocating ga->populations[ga->/Lnew]\n"); 
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} 

getchO; 
return 0; 

Ilprintf(''\n done .. , allocating ga->populations[ga->new]\n"); 
if Oallocate_population (*setup,ga->populations[ga->lLold)) 
( 

printf(''\n Error allocate_population *setup,ga->populations[ga->lLold]\n"); 
getchO; 
return 0; 

} 
Ilprintf(''\n done .. ' allocate_population ga->lLold\n"); 

if (! allocate_population (*setup,ga->populations[ga->lLnew J)) 
( 

printf(''\n Error allocate"'population 'setup,ga->populations[ga->lLnew]\n"); 
getchO; 
return 0; 

} 
Ilprintf(''\n done .. , allocate_population ga->g_new\n"); 

ga->opCindividual.chrom = 
(short *)malloc(setup->chrom_len*sizeof(short»; 

if (!(ga->opCindividual.chrom» 
{ 

printf(''\n Error allocating ga->opt_individual.chrom\n"); 
getchO; 
return 0; 

} 
Ilprintf(''\n done ... allocating ga->opt_individual.chrom\n"); 

ga->allocated = 1; 
initialize_population (*setup,ga,ga->populations[ga->lLold), 

&(ga->opCindividual),the_objjunct); 
cprintf (''\An\nMemory Available: %Iu"\n",(unsigned long)coreleftO); 
cprintf ('''-¥\nDoing statistics for initial population ... "); 
statistics (*setup,ga->populations[ga->lLold),ga,&opcflag); 
initial_display (*setup, *ga,&Cancel); 
if (cancel) return 0; 
return I; 
} 1* end proc *1 

void free.,ga_pointers (tga_setup_ree setup,tga_rec 'ga) { 
if (ga->allocated) { 

free_population (setup.ga->populations[O); 
free"'population (setup.ga->populations[!); 
free_ni_vector (ga->opc vector,O); 
} 

ga->allocated = 0; 
cprintf ('V\nfree.,ga_pointers. heapcheck = %d" ,heapcheckO); 
getchO; 
return; 
} 1* end proc *1 

void initialize.,ga_setup (int pop_size.int biUen,int vecUen, 
tga_setup_ree *the_ree) 
{ 
int i,gener; 
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printfC'\n\n Please enter total number of generations: "); 
scanf("%d" .&gener); 
the_rec->population_size = pop_size; 
the_rec->biUen = biUen; 
the_rec->vecUen = vecUen; 
the_rec->chrom_len = biClen*vecUen; 
the_rec->max-l!ens = gener-l; 
the_rec->pick_fittest = lRUE; 
the_rec->crossover_prob = 0.6; 
the_rec->mutation-prob = 1.0fpop_size; 
the_rec->tolerance = 0.01; 
return; 
} f* end proc *f 

#endif 
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This is fIle trnprocs.c. This contains Procedures and functions for processing training file. 

1* Note: All arrays for input and output have starting index I (not 0) !*I 

#ifndef TRNPROCS_C 
#defme TRNPROCS_C 

#include <conio.1D 
#include <string.h> 
#include <alloc.1D 
#include <math.ID 

#include "uttypes.h" 
#include "ut.h" 
#include "trn.h" 

const float zero_check = le-8; 

void free_training..pointers (training..ree *tr_ree); 
short process_training_Jile (path_str the_me_name,int no_oCinputs, 

int no_oCoutputs,traininlLree *tr_ree); 
void normalize_data (Cvector x,Cvector norm_x,int no_of...pts, 

Cvector x_maxJ_ vector x_min.float norm_range.float norm_min); 
void normalize_traininlLset (int no_oCinputs,int no_oCoutputs. 

float norm_in_range.float norm_in_min.float norm_out_range, 
float norm_oucmin,training_ree tr_ree); 

void denormalize_output (C vector y,C vector denorm_out,int no_oCoutputs, 
float norm_oucrange.float norm_out_min,training..ree tr_ree); 

1* Implementation *1 

void free_training..pointers (training..ree *tr_ree) I 
if (tr_rec->allocated) I 

free_matrix2d (tr_ree->traininlLarray,l,I); 
free_matrix2d (tr_ree->correccanswers,l,l); 
free_matrix2d (tr_ree->norm_answers,l,l); 
} 

if (tr_ree->max_min_allocated) I 
free_C vector (tr_ree->max_in,l); 
free_Cvector (tr_ree->min_in,l); 
free_Cvector (tr_ree->max_out,l); 
free_Cvector (tr_ree->min_out,l); 
} 

tr_rec->allocated = FALSE; 
tr_rec->max_min_allocated = FALSE; 
return; 
} 1* end proc *1 

short check_network_size (int set_in,int set_out.FILE *inflie,int line) I 
int D_in.D_out; 
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fscanf (infile."%d %d\a".&n_in.&n_out); 
gotoxy (l.Iine); 
cprintf ("No. of input nodes; %d".n_in); 
gotoxy (1.Iine + 2); 
cprintf ("No. of output nodes: %d" .n_out); 
cprintf (''\i\nSetup inputs: %d outputs: %d '\i\n". 

seCin.set_out); 
if «n_in != seCin) 11 (n_out != seCout)) I 

gotoxy (I.line + 6); 
cputs ('These numbers do not agree with setup."""''' 

''Press any key to cancel: "); 
getchO; 
return 0; 
} 

return 1; 
} f* end func *f 

short process_training,Jile (path_str theJ!le_name.int no_oCinputs. 
int no_oCoutputs.trainin&.-rec *tr_rec) I 

#deflne FIELD_LEN 255 
float value; f* used with sscanf to avoid potential addressing problems *f 
int ij,k.rec_Ien; 
const display_line = 7; 
long f!lcsize_in_bytes.remainin&...bytes.currencpos; 
char char_buffer[FIELD_LENl.*the_str; 
FILE *the_f!le; 
tr_rec->aIlocated = FALSE; 
tr_rec->max_min_allocated = FALSE; 
tr_rec->no_oCtrainin&.-items = 0; 
tr_rec->no_oCtrainin&.-items_inv = 1; 
tr_rec->norm_error_scaling = I; 
tr_rec->trainin&.-array = NULL; 
tr_rec->correct_answers = NULL; 
tr_rec->norm_answers = NULL; 
tr_rec->max_in = NULL; 
tr_rec->min_in = NULL; 
tr_rec->max_out = NULL; 
tr_rec->min_out = NULL; 
clrscrO; 
gotoxy (1.5); 
f!le_size_in_bytes = open_inpuCtextJ!le (&theJ!le.theJJ.!e_name); 
if (f!le_sizcin_bytes = 0) return 0; f* File name not found *f 
if (!check_network_size (no_oCinputs.no_oCoutputs. 

theJ!le.display_line» return 0; 
cputs ("\r\nReading training/test items ... \r\n"); 
f* Allocate space max and min arrays *f 
tr_rec->max_in = allocate_Cvector (I.no_of_inputs); 
tr_rec->min_in = allocate_Cvector (I,no_of_inputs); 
tr_rec->max_out = allocate_Cvector (l.no_oCoutputs); 
tr_rec->min_out = allocate_Cvector (l,no_of_outputs); 
tr_rec->max_min_allocated = TRUE; 
f* Read past "minimum" *f 
the_str = fgets(char_buffer.FIELD_LEN.the_f!le); 
if (!the_str) return 0; 
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f* Read min input data *f 
for (i=I;i<=no_oCinputs;i++) { 

if (!fgets(chacbuffer.FIELD _LEN,the_file» 
I 

cprintf(,,\IIReading fIrst line error ... press any key. "); 
getchO; 
return 0; 

I 
sscanf(char_buffer,"%f',&value); 
tcrec->min_in[iJ = value; 
I f* end i *f 

f* Read min output data *f 
for (i=I;i<=no_oCoutputs;i++) { 

if (!fgets(char_buffer .FIELD _LEN,tbe_file» 
( 

cprintfC\oReading line %d error ... press any key. ",i); 
getchO; 
return 0; 

I 
sscanf(char_buffer,"%f',&value); 
tr_rec->min_out[iJ = value; 

I 
f* Read past "maximum" *f 
if (!fgets(char_buffer.FIELD _LEN,the_file» return 0; 
f* Read max input data *f 
for (i=I;i<=no_oCinputs;i++) ( 

if (!fgets(char_buffer.FlELD_LEN,theJlie» return 0; 
sscanf(char_buffer,"%f',&value); 
tr_rec->max_in[iJ = value; 
I 

f* Read max output data *f 
for (i=I;i<=no_oCoutputs;i++) ( 

if (!fgets(char_buffer.FlELD_LEN,the_fIle» return 0; 
sscanf(char_buffer,"%f',&value); 
tr_rec->max_out[iJ = value; 

I 

f* Read past 'Training Data" *f 
if (!fgets(char_buffer.FIELD_LEN,theJlie» return 0; 
f* Determine remaining size of fIle so we can calculate number of *f 
f* training items (for memory allocation). *f 
current_pos = ftell(theJlie); 
remaininlLbytes = file_size_in_bytes - currenCpos; 
if (remaininlLbytes > 0) ( 
f* First, we need the length of one record *f 
f* When creating training fIles, be sure that all data records * f 
f* in the file have the same length, otherwise this read method * f 
/* won't work. *f 
if (!fgets(char_buffer.FlELD_LEN,theJlie» return 0; 
rec_len = ftell(the_file) - currenCpos; 
f* Restore file to start of data * f 
fseek (the_file,currencpos,sEEICSEf); 
tr_rec->no_of_training,.items = 

remaininlLbytesf«no_of_inputs + no_of_outputs) * rec_len)-l; 

316 



trJec->no_oCtraininlLitems_inv = 
1.0/(tr_rec->no_oCtraininl!-items); 

/* Now do dynamic allocation for training items *1 
tr_rec->traininl!-array = 

matrix2d O,tr_rec->no_oCtraining_items,I,no_of_inputs); 
tr_rec->correct_answers = 

matrix2d (l,tr_rec->no_oCtraininl!-items,l.no_of_outputs); 
tr_rec->norm_answers = 

matrix2d (l,tr_rec->no_oCtraininl!-items,l.no_of_outputs); 
trJec->allocated = TRUE; 
for (i=I;i<=tr_rec->no_of_traininl!-items;i++) 
{ 

for G=I;j<=no_oCinputs;j++) 
{ 

if (!fgets(chacbuffer.FIELD _LEN ,the_file» 
{ 

cprintf("\n Reading training data_in %d,%d error ... press any key. ",ij); 
getchO; 
return 0; 

} 
sscanf(char_buffer," %f',&value); 
tr_rec->traininlLarray[i][j] = value; 

} I*endj *1 
for G=I;j<=no_of_outputs;j++) 
{ 

if (!fgets(char_buffer.FIELD _LEN ,the_file» 
{ 

cprintf("'n Reading training data_out o/od,%d error ... press any key. ",ij); 
getchO; 
return 0; 

} 
sscanf(char_buffer," %f' ,&value); 
tr_rec->correcLanswers[i][j] = value; 

I*endj *1 
} 1* end i *1 
1/* if *1 

fclose (the_file); 
gotoxy O,whereyO + 2); 
cprintf ("Done. "); 
gotoxy (l,whereyO + 2); 
cprintf ("%d training items processed." ,tr_rec->no_of_traininl!-items); 
gotoxy (l,whereyO + 2); 
cprintf ("Press key to continue (esc to cancel): "); 
if (getchO == ESCKEy) return 0; 
return I; 
} 1* end func *1 

void normalize_data (C vector x,Cvector norm_x.int no_of..,pts, 
C vector x_max,C vector x_min,float norm_range.float norm_min) { 
1* Same normalization routine used for both inputs and outputs *1 
1* Assumes vector index range is l..no_oCpts for all vectors *1 
int i; 
for (i=I;i<=no_of..,pts;i++) { 
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if (fabs (x_max[i] - x_min[i]) > zero_check) { 
if (x[i) >= x_max[i) 1* Greater than max. set equal to max *1 

norm_xli) = norm_range + norm_min; 
if (x[i) <= x_min[i)) 1* Less than min. set equal to min *1 

norm_xli) = norm_min; 
if «x[i) > x_min[i)) && (x [i) < x_max[i))) { 

norm_x [i) = (x[i) - x_min[i)1 
(x_max[i) - x_min[i)); 

norm_xli) = norm_range * norm_xli) + norm_min; 

I 

else 
1* Max = min. so data is constant: *1 
norm_xli) = 0.5 * norm_range + norm_min; 
I 1* end i *1 

return; 
I 1* end func *1 

void normalize_traininlLset (int no_oCinputs.int no_oCoutputs. 
float norm_inJange.float norm_in_min.float norm_outJange. 
float norm_ouLmin.traininlLree tr_ree) { 
int ij; 
1* Normalize training set input and output *1 
for (i=I;i<=tr_rec.no_oCtraininlLitems;i++) { 

normalize_data (trJec.training_array[iJ. 
tr_ree.traininlLarray[i). 
no_oCinputs.tr_ree.max_in.tr_ree.min_in.norm_in_range. 
norm_in_min); 

normalize_data (tr_ree.correcLanswers[i). 
tr_ree.norm_answers[i). 
no_of_outputs.tr_ree.max_out.tr_ree.min_out,norm_ouLrange. 
norm_out_min); 

I 1* end i *1 
if (fabs(norm_ouuange) > le-6) 

trJec.norm_error_scaling = tr_ree.no_oCtraininlLitems_inv/norm_ouLrange; 
return; 
I 1* end proc *1 

void denormalize_output (Cvector y $_ vector denorm_out,int no_oCoutputs. 
float norm_OULrangdloat norm_ouLmin.trairliIJ!Lree tr_ree) { 
1* Translate normalized output values to regular output value range. *1 
1* Assumes index range for vectors is l..no_of-pts. *1 
int i; 
for (i=I;i<=no_oCoutputs;i++) { 

denorm_out[i) = (y[i) - norm_ouLmin)/norm_ouLrange; 
denorm_out[i) = denorm_out[i) * 

(tr_rec.max_out[i) - tr_ree.min_out[i) + 
tr_ree.min_out[i); 

1* i *1 
return; 
I 1* end procedure *1 

#endif 
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This is file flgrun.c. It contains procedures for running GA-Fuzzy logic model in forward 
mode 

#ifndefFLGRUN_C 
#defIne FLGRUN_C 

#include <stdio.h> 
#include <coniO.h> 
#include <math.h> 
#include <alloc.h> 

#include "ut.h" 
#include "tm.h" 
#include "flga.h" 

void runjuzzy _model (tfllLsetuP_rec fl) { 
fuzzy_system_rec the_fuzzy_system; 
float fl_out = O. *pfl_out.denorm_fl_out = O. *pdenorm_fl_out, 

norm_ans = O.*pnorm_ans; 
const int one_fl_output = I; 
trainin&-rec tr_rec = {O.O.I.O.I.O.NULL.NULL.NULL.O. 

NULL.NULL.NULL.NULL} ; 
int i; 
FILE *outfIle; 
/* We need to treat output values as arrays (of size 1) that start *1 
1* at index 1 (so we can interface with the normalization procedures). *1 
pfl_out = &fl_out - 1; 
pdenorm_fl_out = &denorm_fl_out - 1; 
pnorm_ans = &norm_ans - 1; 
the_fuzzy_system.allocated = FALSE; 
clrscr 0; 
textcolor (YELLOW); 
gotoxy 0.5); 
if (fliuzzy _system_file_name[O] = 'iJ') { 

cprintf (,,'-hll'uzzy System File Name is blank.\nn"); 
cputs ("Press key to cancel: "); 
getchO; 
return; 
} 

if (fl.traininlLfile_name[O] = 'iJ') { 
cprintf ('\nnTraining File Name is blank.\nn"); 
cputs ("Press key to cancel: "); 
getchO; 
return; 
} 

if (fl.out_dataJtle_name[O] == 'il') { 
cprintf ('\nnOutput Data File Name is blank.\nn"); 
cputs ("Press key to cancel: "); 
getchO; 
return; 
} 
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cprintf (''Run Fuzzy Model. "); 
gotoxy (1.7); 
cprintf ("Fuzzy System File Name: %s" .fl.fuzzy _systemJIlcname); 
gotoxy (1.9); 
cprintf ("Training File Name: %s" .fl.training_file_name); 
gotoxy (1,11); 
cprintf ("Output Data File Name: %s" .fl.ouCdataJJ.!e_name); 
gotoxy (1.13); 
cprintf (''Press key to continue (esc to cancel): "); 
if (getchO == ESCKEy) goto exiCproc; 
cirscrO; 
initjlga_fuzzy_system (fl.&the_fuzzy_system); 
if (!process_trainingjile (fl.trainin/Lfile_name. 

fl.no_oCfl_inputs.one_fl_output.&tr_rec» goto exit-proc; 
clrscrO; 
gotoxy (1,5); 
cprintf ("Initializing system ... "); 
normalize_trainin/Lset (fl.no_oCfl_inputs.one_fl_output. 

fl.norm_in_range.fl.norm_in_min.fl.norm_oucrange.fl.norm_oucmin. 
tr_ree); 

if (!read_fuzzy_system (fliuzzy _systemjile_name. 
fl.no_oCfl_inputs.fl.no_oCfl_inp_regions. 
the_fuzzy_system.no_of_rules.fl.no_oCfl_outpuCvalues. 
&the_fuzzy _system» goto exit_proc; 

if (!open_output_text_file (&outfile.fl.ouCdataJIle_name» goto exit-proc; 
cirscrO; 
for (i = l;i<=tr_rec.no_oCtrainingjtems;i++) { 

fl_out = fuzzy_system (tr_rec.trainin/Larray[i].the_fuzzy_system); 
denormalize_output (pfl_out.pdenorm_fl_out,one_fl_output. 

fl.norm_oucrange.fl.norm_ouLmin.tr_rec); 
normalize_data (tr_rec.correcCanswers[i].pnorm_ans.one_fl_output. 

tr_rec.max_out.tr_rec.min_out.fl.norm_oucrange.fl.norm_out_min): 
cprintf ("\nn%2d: Fz: %8.5f. Act: %8.5f. Err: %8.5f. NErr: %8.5f·. 

i.denorm_fl_out.tr_rec.correccanswers[i][l]. 
(denorm_fl_out - tr_rec.correct_answers[i][l]). 
fabs(fl_out - norm_ans»; 

fprintf(outfile."%2d %8.5f %8.5f %8.5f %8.5f\n". 
i.denorm_fl_out.tr_rec.correcLanswers[i] [1]. 
(denorm_fl_out - tr_rec.correcCanswers[i][lD. 
fabs(fl_out - norm_ans»; 

I /* end i */ 
fclose (outfile); 
cprintf (''\r\nDone. Data saved to file: %s".fl.oucdataJJ.!e_name); 
cprintf C'\r\n\nHit key to continue: "); 
getchO; 

exicproc: 
free_fuzzYJules (&the_fuzzy_system); 
free_trainin&...pointers(&tr_rec); 
textrnode (LASTMODE); 
return; 
I /* end proc */ 

#endif 
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This is ftle flgtrain.c. It contains procedures for training GA-Fuzzy system output rules 
using genetic optimization. 

#ifndefFLGTRAIN_C 
#defIne FLGTRAIN_C 

#include <conio.h> 
#include <alloc.h> 

#include "ut.h" 
#include "tm.h" 
#include "flga.h" 

void fl--8enetic_training (tfl&-setup_rec *fl.tga_setup_rec *ga_setup, 
tga_rec *ga); 

'* Implementation *' 

void fl~netic_training (tfllLsetuP_rec *fl,tga_setup_rec *ga_setup, 
tga_rec *ga) ( 

int gen = 0; 
const int one_fl_output = 1; 
short canceLflag = O,new _optimum = O,wilhin_to1erance = 0; 
int i; 
clrserO; 
textcolor (YELLOW); 
gotoxy (1,5); 
if (fl->fuzzy_system_fIle_name[O] = '\0') { 

cprintf (,'\r\nFuzzy System File Name is blank.\r\n"); 
cputs ("Press key to cancel: "); 
getchO; 
return; 
} 

if (fl->training_fIle_name[O] == '\0') ( 
cprintf C\r\nTraining File Name is blank.\r\n"); 
cputs ("Press key to cancel: "); 
getchO; 
return; 
} 

cprintf ("Fuzzy - Genetic Modeling"); 
cprintf C'\r\n\nNumber of Inputs: %d".fl->no_oCfl_inputs); 
cprintf C'\r\n\nNumber of Input Fuzzy Sets: %d" .fl->no_oCfl_inp_regions); 
cprintf C'\r\n\nPopulation Size: %d" ,ga_setup->population_size); 
cprintf C'\r\n\nBit Length: %d Chromosome Length: %d", 

ga_setup->biclen,ga_setup-xhrom_len); 
cprintf C\r\n\nFuzzy System File Name: %s".fl->fuzzy_systemJile_name); 
cprintf C'\r\n\nTraining File Name: %s".fl->trainingJile_name); 
cprintf C'\r\n\nPress key to continue (esc to cancel): "); 
if (getchO == ESC_KEY) return; 
inicflga_fuzzy_system (*fl,&&...fuzzy_system); 
'* fl_evaluationjn needs to use global&...tr_rec: *' 
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if (!process_training_file (fl->training.Jile_name. 
fl->no_oLfCinputs.one_fl_output,&8.-tr_rec» goto exicproc; 

8.-tr_rec.norm_error_sca1ing = 
I.Of<8.-tr_rec.no_ oLtrainin8.-items * (fl->norm_ouuange)); 

clrscrO; 
gotoxy (1.5); 
cprintf ("Initializing system ..... ); 
normalize_trainin8.-set (fl->no_oLfl_inputs.one_fl_output. 

fl->norm_in_range.fl->norm_in_min.fJ->norm_outJange.fl->norm_oucmin. 
8.-tr_rec); 

if (!initialize-8enetic_alg (ga_setup.ga.&fl_evaluation_fo)) 
goto exit-proc; 

cprintf (''\I\n\nStarting first generation ..... ); 
do { 

gen += 1; 
generation (ga_setup,ga.&fl3valuation_fo); 
statistics (*ga_setup.ga->populations{ga->8.-new l.ga.&new _optimum); 
if (new_optimum) { 

ga_ vector_tojuzzy Jules (ga->opc vector.&8.-fuzzy _system); 
write_fuzzy _system (fl->fuzzy _systemJile_name.8--fuzzy _system); 
} 

display (gen.*ga_setup.*ga.&cancel_flag.&within_tolerance); 
ga->8.-0ld = (ga->lLold + 1)%2; 
ga->8.-new = (ga->8.-new + 1)%2; 

} wltile «gen <= ga_setup->max-8ens) && (!within_tolerance) 
&& (!canceCflag)); 

exicproc: 
free_fuzzy_rules (&8.-fuzzy_system); 
free-8a_pointers (*ga_setup,ga); 
free_trainin8.-pointers(&8.-tr_rec); 
cprintf (''\r'cl'LGTRAIN: heapcheck = %d",heapcheckO); 
getchO; 
return; 
} f* end proc *f 

#endif 

322 



This is file flgeval.c. It contains procedures for Evaluation (objective) function for fuzzy 
logic-genetic algorithm system 

#ifndefFLGEVAL_C 
#defmeFLGEVAL_C 

#include <conio.h> 
#include <stdlib.h> 
#include <math.h> 

#include "!m.b" 
#include "flga.b" 

float fl_evaluation_fn (ui_ vector v); 
void ga_ vector_to juzzy _rules (ni_vector v .fuzzy _system_rec *fz); 

1* Implementation *1 

void ga_ vector_tojuzzy_rules (ni_vector v.fuzzy_system_rec *fz) { 
int i; 
for (i=O;i<fz->no_oCrules;i++) 

fz->rules[i].out_fuzzy_set = vIi]; 
) 1* end func *1 

float fl3valuation_fn (ui_vector v) ( 
int i; 
float cum_error = O.O.fl_out; 
ga3ector_to_ fuzzy _rules (v.&!!-fuzzy _system); 
1* Compute cumulative absolute error over training set *1 
for (i=l;i<=g_tr_rec.no_oCtrainin!!-items;i++) ( 

fl_out = fuzzy_system (!!-tr_rec.trainin!!-array[il.!!-fuzzy _system); 
cum_error += fabs(fl_out - !!-tr_rec.norm_answers[i][l]); 
) 1* end i *1 

cum_error *= g_tr_rec.norm3rrocscaling; 
return MAJCGA_OBJ_FN_ V ALUE - cum_error; 

1* values should be between 1 and 2 *1 
) 1* end func *1 

#endif 
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