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SUMMARY

Emerging techniques of intelligent or learning control seem attractive for
applications in manufacturing and robotics. It is however important to understand the
capabilities of such control systems. In the past the inverted pendulum has been used as a
test case.

The thesis begins with an- examination of whether the inverted pendulum or pole-
cart balancing problem is a representative problem for experimentation for learning
controllers for complex nonlinear systems. Results of previous research concerning the
inverted pendulum problem are presented to show that this problem is not sufficiently
testing.

This thesis therefore concentrates on the control of the inverted pendulum with an
additional degree of freedom as a testing demonstrator problem for learning control
system experimentation. A flexible pole is vsed in place of a rigid one. The transverse
displacement of the flexible pole adds a degree of freedom to the system. The dynamics of
this new system are more complex as the system needs additional parameters to be
defined due to the pole’s elastic deflection. This problem also has many of the significant
features associated with flexible robots with lightweight links as applied in manufacturing.

Novel neural network and fuzzy control systems are presented that control such a
system both in simulation and real time. A fuzzy-genetic approach is also demonstrated

that allows the creation of fuzzy control systems without the use of extensive knowledge.
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ABBREVIATIONS

NN Neural network.

FLS Fuzzy logic systems.

PD Proportional plus derivative control.

e(t) Steady state error.

t Time

P Proportional control.

PI Proportional plus integral control.

PID Proportional plus integral pus derivative control.

x(k) = x(r)  State equation,
y(k) Output vector.
u(k) Input vector.
G(k)y=A(r) State matrix.
H(k) =B() Input matrix.

C(k) Output matrix.

D(k) Direct transmission matrix.
o(t) State of the plant.

i(t) Input of the plant.

p(t) Performance vector.

a(t) Weighting input.

m(t) Measuring device.

ADALINE  Adaptive linear element.

ACE Adaptive critic element.
ASE Adaptive search element.
BOXES A system that learned to control an inverted pendulum using a state space

representation of discrete regions.
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SG(t) A subgoal that represents a weighted vector distance of the state of the

system at time 7 from the origin of the state space.

Al Artificial Intelligence.

PC Personal computer.

/O Input-output.

DC Direct current.

UDC Up down counter.

IBM A computer trademark.

m, Mass of the pole.

m, Mass of the cart.

a, Acceleration of the cart.

a® Acceleration of the pole.

L Total length of the pole.

g Acceleration due to gravity

e, A unit vector for tangential component.
e, A unit vector for normal component.
a, Tangential acceleration.

a, Normal acceleration.

x Displacement of the cart.

x =dx/dt Velocity of the cart.

0 =0, Rigid pole angle.

06 = ér Rigid pole angle velocity

6 = B P Rigid pole angular acceleration.
0, Elastic pole angle.

ée Elastic pole angular velocity.

"e Elastic pole angular acceleration.

d=d Deflection of the pole.
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Velocity of the deflection of the pole.

a, The highest value of the acceleration for the entire time of

balancing excluding the first one.

Time,,, The value of time for the first a,, .

Time,,,, The time it takes to have another acceleration approximately equal
to a_,.

fot_time The sum of the time recorded from Time,,, to Time,_,, .

N The final time of balancing the pole.

f Average frequency.

MAYMAY A computer program that will simulate the dynamics of the flexible pole
cart balancing system.

RUNGE() A numerical integration process that uses fourth order Runge-Kutta.

time_co Time elapsed.

t_angle Total angle of the flexible pole.

angle_co Value of rigid pole angle.

c_ac Cart acceleration

PE Processing element of a neural network ; a neurone.
Xi Number of inputs for each processing elements.
Wi Connection weight.

Yj Qutput signal

Y Momentum parameter.

A Learning rate parameter for hidden layer.

! Learning rate parameter for the output layer.

€ ith component of output error at the output layer.
; ith component of output error at the hidden layer.

el_ang n Normalised value of the flexible pole’s angle.
el_ang r Raw value of the flexible pole’s angle.

max_el_ang Largest absolute value of the flexible pole’s angle.



cart_vel n
cart_vel_r
max_cart_vel
cart_dis_n
cart_dis_r
max_el_ang
force_n
max_force
TMAX
AD

DA

FNN
PLANT
MF

FAM

NL

NS

NM

ZE

PL

PS

PM

GA
max_gen

Pop_size

Normalised value of the cart velocity

Raw value of the cart velocity.

Largest absolute value of the cart’s velocity.
Normalised value of the cart displacement.
Raw value of the cart’s displacement.

Largest absolute valtue of the cart displacement.
Normalised value of the force exerted to the cart.
Maximum force exerted to the cart.

Total computer simulation time.

Analog to digital converter.

Digital to analog converter.

Feedforward neural network.

The flexible pole cart balancing system.
Membership function.

Fuzzy associative matrix.

Negatively large.

Negatively small.

Negatively medium,

Zero.

Positively large.

Positively small

Positively medium.

Genetic algorithm.

The maximum number of cycles that the GA’s operate.

The size of the population in GA’s operation.

max_tolerance A value that flags GA’s operation to stop.

LQR

MATLARB control system design technique.
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CHAPTER 1

1.1. Introduction

There has been a considerable development of nonlinear control theory in the last
10 years with the exploration of such ideas as feedback linearization, input output
linearization, fuzzy control theory [1], and neural networks [2]. However, actual
implementations of these techniques in manufacturing industries have been rare. This may
be because of the considerable computational requirement needed by these new
algorithms, and a lack of communication between theoreticians and industrial practitioners
of control engineering. l

However, due to technological breakthroughs in digital signal processors and
other technologies, the capabilities of computational hardware have steadily increased.
Thus, the implementation of complex nonlinear learning control algorithms with relatively
inexpensive components may now be possible.

The inverted pendulum (pole-cart balancing) problem has received a great deal of
attention as a model problem for the establishment of learning control systems [3, 4, 5, 6,
9, 10, 11]. That authors are successful in this field can be seen in results of their published
work. However, using a rigid pole as the pendulum, analysis shows that this system has
only two degrees of freedom and little non-linearity. As a result of these limitations the
learning controllers developed using such a demonstrator problem have limited power and
are unlikely to have broad applications to manufacturing industries. Because of the
limitattons mentioned, this author modifies the pole-cart balancing problem to give a more
exacting testbed for learning controllers by replacing the rigid pole by an elastic pole. The
dynamics of this new system are more complex and highly nonlinear when compared to
the traditional rigid pole-cart balancing system as a result of the additional degree of

freedom within the system, e.g., the transverse displacement of the elastic pole.



Modelling and control of flexible robot systems has attracted much interest in
recent years [12, 29, 30, 31, 37, 38, 39). This has arisen, in particular, in the area of space
and industrial robots that require lightweight and flexible links [43]. Flexible robot
manipulators have many advantages compared to robot manipulators constructed from
rigid links. This is discussed in section 3.1, If the advantages associated with the
lightweight machine elements are not to be sacrificed then advanced control systems for
such ﬂexible robot manipulators have to be developed [29]. The flexible pole testbed
explored in this thesis allows the examination of some of the control issues within flexible

linked robots.

1.2. The Area of Investigation

The author began his work by investigating the limitations of the inverted
pendulum as a benchmark for learning controllers. Here, the objective was to investigate
the inverted pendulum problem and analyse its usefulness as a benchmark for developing
learning control systems and their application in manufacturing industries. It shows
particularly that the pole-cart problem may not be sufficiently testing, hence, the author
extended the problem using a flexible pole as a replacement for the rigid pole.

To verify the feasibility of solving the flexible pole-cart balancing problem, the
author has generated a computer simulation of this system. Equations of the dynamics of
this system have been derived and a rule based bang-bang control system developed. A
graphical representation of the system behaviour has been made to show the cart
balancing the pole along a track in real time. Having shown by computer simulation that it
is possible to control the flexible pole-cart balancing problem under its first mode of
vibration, the next stage of the research addressed this in the real application.

This thesis therefore, focuses on developing and testing on line and off line

learning controllers that balance a flexible pole hinged by its root on top of a cart moving



along a limited track. The capabilities of neural network algorithms, fuzzy logic systems

and genetic algorithms have been investigated and tested in control of the system.

1.3. Structure of the Thesis

There are 7 further chapters within this document. Chapter 2 first provides an
introduction to the general problems associated with control engineering. Reviews of the
concepts used in developing classical and intelligent controllers are discussed and
particular attention is paid to the inverted pendulum problem as a testbed for learning
controllers.

‘ Chapter 3 presents a new model problem (a highly nonlinear system) to be used as
a testbed application for developing intelligent controllers. Simplified mathematical
equations of the dynamics of the flexible pole-cart balancing problem are derived and a
computer simulation conducted in order to verify the validity of these equations. A rule
based controller is implemented to control the system off line and a graphical
representation of the motion of the system is presented.

Chapters 4 and 5 concentrate on controlling the flexible pole-cart balancing system
using neural network techniques. Chapter 4 discusses particularly the development and
testing of off-line controller using backpropagation (feedforward neural network) and a
Kohonen’s Self Organising Map to control the system. Chapter 5 focuses on developing
and testing an on line controller for the real system. A physical flexible pole-cart balancing
system is developed and controlled in real time.

Chapter 6 concentrates on developing and testing an on-line fuzzy logic system
controller for the flexible pole-cart balancing system. Chapter 7 deals with development of
a genetic algorithm combined with a fuzzy logic systems controller. This is a particularly
novel approach to solving the problem since the fuzzy logic system does not need human
expertise to calculate the values of its parameters. Chapter 8 reviews the contribution of

the thesis, and identifies areas in which it will be fruitful to conduct future work. The



diagram of figure 1.1 shows the general structure of the thesis and the relationships

between the individual elements of the work
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CHAPTER 2

Literature Review

2.1. Introduction

The objective of this chapter is to review and investigate the inverted pendulum
problem and analyse its usefulness as a benchmark for developing learning control
systems and their application. Results of previous research concerning the inverted
pendulum problem are presented. A review and analysis of the dynamics of this problem
is undertaken. This chapter also summarises key elements of the theory of conventional
control and trainable control.

A common problem in controlling a system is to provide the correct input vector
to drive a nonlinear plant from an initial state to a subsequent desired state. The typical
approach to solve this problem involves linearizing the plant around a number of
operating points, and then building a controller [3]. For nonlinear plants this approach is
usually computationally intensive and requires considerable design effort,

When constructing a controller there are three kinds of information available. The
first is numerical information from measuring instruments, the second is the linguistic
information from human experts, and the third is the behavioural characteristics of the
plant and its environment. Most of the supervised learning methods associated with
neural networks, such as the perceptron, the back-propagation algorithm, and reduced
coulomb energy network, utilise only numerical data [8]. The unsupervised learning
methods of neural networks have demonstrated the capability to handle behavioural
characteristics of the plant and environment. Fuzzy control is one of the most useful

approaches for utilising expert knowledge. Many hybrid techniques of fuzzy control



systems and neural networks have been also proposed for utilising numerical data [21]-
[26]. In these techniques, the learning ability of neural networks has been incorporated
into fuzzy control systems to generate and adjust fuzzy if-then rules using numerical
data. Other proposed techniques use learning methods of neural networks to utilise not
only numerical data but also expert knowledge represented by fuzzy if-then rules [8].
The idea of this technique is to utilise fuzzy if-then rules obtained from human experts in
support of neural network learning.

This chapter begins by reviewing the concepts of developing traditional
controllers, and it continues by the discussion of the concepts of constructing adaptive
and learning control systems. Also, reviews of the past and recent work pertaining to the

pole-cart balancing problem (inverted pendulum) are presented.

2.2. Technological Control Systems

The Merriam - Webster dictionary defines control as a device for regulating a
mechanism. It is a mean of directing and influencing an object in order for that object to
behave in a desired way. The term "control system" can be substituted by "cybernetical
system"” where cybernetics is defined by Wiener as the science of control and
communication in the animal and the machine [13].

There are two major objectives in designing control systems [54]. The first one is
to make the state or output of the system to be very close or equal, if possible to the set
points or reference input. In short it is necessary to have a very small steady state error
e(t) with time t. The second objective is to maintain the transient performance of the

system within reasonable limits.



Conventional or basic control systems are classified into two categories. The
open-loop control system and the closed-loop control system. In an open-loop control,
the amount of the corrective effort is determined by the desired value of the controlled
variable. An example for this is a gasoline engine whose function is to drive a load. Since
a small pressure on the engine throttle will cause a large change in the power output, the
speed of the shaft for a constant load is a function of the position of the throttle.

In a closed-loop control system the amount of corrective effort is determined by
the actual value of both the controlled variable and the desired value. The closed-loop
control system uses feedback to regulate the mechanism. Hence, sometimes, it is called
the feedback control system (see figure 2.1). The actual output of the system in this
case is returned to the controlling system. The error is determined from the difference of
the actual output and the prescribed reference input. This error is used by the controller
to adjust the mechanism in order for this to give the correct, desired behaviour.

A "conventional" control system can also be divided into sub-groups depending
on the relationship of the output of the controller to the error. Among this group are:
proportional control (P), proportional-plus-derivative control (PD), proportional-plus-
integral control (PI), and proportional-plus-integral-plus-derivative control (PID) [13].

The proporticnal (P) control system is a feedback control system in which the
output of the controller is directly proportional to the error (see figure 2.2). The
proportional-plus-derivative (PD) control is a feedback control system in which the
output of the controller is a linear combination of the error and its first time derivative
(see figure 2.3). Derivative control causes the changes in the output of the controller in
anticipation of an error in the immediate future. The proportional-plus-integral (PI)
control is a feedback control system in which the output of the controller is a linear
combination of the error and its first time integral (see figure 2.4). The use of integral
control in addition to proportional control eliminates steady state errors. The

proportional-plus-integral-plus-derivative (PID) control is a feedback control system in



which the output of the controller is a linear combination of the error, its first time
integral, and its first time derivative (see figure 2.5). This type of controller is particularly

useful for high steady-state accuracy and high speed settling.
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2.3. State Space Analysis

Section 2.2 introduced conventional control systems (open loop and closed loop
control system). The analysis and designed of such systems is based on converting a
system’s differential equation to a transfer function, thus generating a mathematical
model of the system that ‘algebrajcally relates a representation of the output to a
representation of the input. Conventional methods are conceptually simple and require
only a reasonable number of computations, but they are applicable only to linear timne-
invariant systems having a single input and single output [70].

With the arrival of space exploration, requirements for control systems increased
in scope. A modern control system may have many inputs and many outputs, and these
may be interrelated in a complicated manner. Modelling systems by using linear, time
invariant differential equations and subsequent transfer functions became inadequate. The
state-space approach (also referred to as the modern, or time-domain, approach) is a
unified method for modelling, analysing, and designing a wide range of systems [71].
This type of approach can handle, conveniently, systems with nonzero initial conditions.
Multiple-input multiple-output systems (e.g., a vehicle with input direction and input
velocity yielding an output direction and an output velocity) can be compactly
represented in state space with a model similar in form and complexity to that used for
single input, single-output systems. The state-space approach can be used to represent
systems with a digital computer in the loop or to model systerns for digital simulations. It
can be used also for the same class of systems modelled by the classical approach which
gives the control systems designer another perspective from which to create a design.
The disadvantage of the state-space approach is that it is not intuitive as the conventional
approach. The designer has to engage in several calculations before the physical
interpretation of the model is apparent, whereas in conventional control, some

straightforward calculations or a graphic presentation of data rapidly yields the physical
interpretation.
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The concept of the state-space approach is based on the description of system

equations in terms of n first-order differential equations, which may be combined into a

first-order vector-matrix differential - equations [70]. The use of the vector-matrix

notation greatly simplifies the mathematical representation of the system equations.

2.3.1. General Representation of State-Space Approach

In order to formalise the representation of state-space approach it is necessary to

define the following terms {70, 71].

State - The state of a dynamic system is the smallest set of variables (called state
variables) such that the knowledge of these variables at ¢ = 1,, together with the
knowledge of the input for ¢ >= ¢, completely determines the behaviour of the
system for any time 7 >= ¢,

State variables - The state variables of a dynamic system are the variables making up
the smallest set of variables that determine the state of the dynamic system, If at least

n variables x,,x,,...,x, are needed to completely describe the behaviour of a
dynamic system (so that once the input is given for ¢ >= ¢, and the initial state at ¢ =
to, is specifted, the future of the system is completely determined), then such n

variables are a set of state variables.

State vector - A state vector is a vector that determines uniquely the system state x{t)
for any time ¢t >= f,, once the state at ¢ = ¢, is specified. It is a vector whose
elements are the state variables.

State Space - The n-dimensional space whose coordinate axes are the state variables.
Any state can be represented by a point in the state space. This is a new term and is

illustrated in figure 2.6, where the state variables are assumed to be, v

e

and v,.

These variables form the axes of the state space. A trajectory can be thought of as

11



being mapped out by the state vector, x(1), for a range of ¢. Also shown is the state
vector at the particular time ¢t = 4.

e State Equations - A set of n simultaneous, first order differential equations with n
variables, where the n variables to be solved are the state variables.

¢ OQutput Equation - The algebraic equation that expresses the output variables of a

system as linear combinations of the state variables and the inputs.

Now that the definitions have been formally stated, a state-space representation

of a system is determined using the following equations [70].

1. For time-varying (linear or nonlinear) discrete-time systems the state equation may

be written as:

x(k+1) = fx(k), u(k), ] (2.1)
and the output equation as:

y(b) = gix(k), u(k), ] 2.2)
For linear time-varying discrete-time systems, the state equation and output equation
may be simplified to:

x(k+1) = GK)x(k) + H(ku(k) (2.3)

y(k) = C)x(k) + D(kju(k) (2.4)
where

x(k) = n-vector (state vector)

y(k) = m-vector (output vector)

u(k) = r-vector (input vector)

G(k) = nxnmatrix (state matrix)

H(k) = nxr matrix (input matrix)

C{(k) = m x nmatrix (output matrix)

D(k) = m xr matrix (direct transmission matrix)

Note that the appearance of the variable k in the arguments of matrices G(k),
H(k), C(k), D(k) implies that these matrices are time varying.

12



If the system is time-invariant, then the state equation and output equation may

be simplified to:
x(k+1) = Gx(k) + Hu(k) (2.5)
yk) = Cx(k) + Du(k) (2.6)

2. For continuous-time (linear or nonlinear) systems, the state equation may be written

as:

x(t) = fIx(0), u(o), 1 @7
and the output equation as:

y(k) = glx(®, u(®}, 1] (2.8)

For linear time-varying continuous-time systems, the state equation and output

equation may be written as:

XD = AOX@) + B@u() 2.9)

y@© = COx() + D@u(® (2.10)
If the system is time-invariant, then the state equation and output equation may be
simplified to

x() = Ax(®) + Bu(® @.11)

y(©) = Cx(f) + Du() (2.12)

Figure 2.7 shows the block diagram representation of a discrete-time control
system defined by equations 2.5 and 2.6, and figure 2.8 shows the continuous-time
control system defined by equations 2.11 and 2.12 [70].

13



4 State space

v

r

State vector x(¢)

State vector x(4)

State vector trajectory

Figure 2.6
Graphic Representation of state space and a state vector

u(k) ................... X(k+!) ,.............--....5

Figure 2.7
Block diagram of the linear time-invariant discrete-time control
system represented in stale space

u(r)

x(2)

e ¥0)

Figure 2.
Block diagram of the linear time-invariant continuous-time control

system represented in state space

14



2.4. Adaptive Control Systems

Researchers from different fields give different meanings to the word adaptation.
For engineers adaptation often is equated to learning. For the psychologist adaptation
and learning are totally different. Life scientists take an intermediate position.

In 1965 Sklansky [17] made a formal distinction between adaptation and learning.
He defines learning and self-repair as a special form of adaptation. He considers a
species, an organism, or a cell to be adaptive if its behaviour in a changing environment
is successful in some sense. In a machine, success can be distinguished either by stability
or reliability. Thus, to an engineer adaptation is demonstrated by the presence of
reliability, or stability, or both.

Ashby [18] defines adaptation as a form of behaviour that maintains its essential
variables within physiological limits, like homeostasis. This means that for an
unpredictable environment persistence of success should be attained. This definition
strengthens the requirement of stability. Glorioso [13] defines adaptation as a pre-
requisite to reliability. He said that if a portion of a system is damaged and the effect of
the damage is gradually masked until the system performance reaches an acceptable
level, then the system is adaptive.

Thus, adaptation can be defined formally as the property or a system that reacts
favourably with respect to any performance function in the face of changes into
environment or to its own internal structure. There are two major functional elements of
an adaptive control system [13], a controller and a plant to be controlled. The design of
the controller is usually based on the nominal but inexact mathematical model of the
plant and/or its environment.

Figure 2.9 describes the functional block diagram of an adaptive control system.

Achieving satisfactory response of the plant state o(t) to an input i(t) is the objective of

15



the system. Inputs i(t) are applied to the controller. Normally this is unknown a priori.
The controller then generates an output which is used as the input to the plant. Direct or
indirect measurement of the plant state is carried out through the measuring devices.
These measurements are compared with the input i(t) via performance assessment
identification in order to establish the present performance vector p(t). The adaptation
algorithm then maps p(t) to a weighting input a(t). The output of the measuring devices
m(t) and the weighting input a(t) are used as the inputs of the variable structure
controller to modify the relationship between the command and the plant inputs. Hence,

the behaviour of the system can be improved by changing dynamically the original

nominal design.

ADAPTIVE CONTROLLER

................. R L T L L T T T T T T PP

INPUT i(1) PLANT INPUT e(t) STATE oft)
: : PLANT >
a(t)
performance :
: adaptation assessment H measuring
i = algorithm and / or : devices e
: p(} identification m(t)
Figure 2.9

Functional block diagram of.an adaptive control system
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2.5. Learning Control Systems

A system is learning if it reacts favourably with respect to performance function p
in some time ¢ after a change in its environment [13]. Learning is dependent on time,
One can say that a system learns if given a change in the state of environment at ¢ = 0,
the performance index at ¢ > 0 is greater than the performance index at time ¢ = 0.

In order that learning controllers know the acceptable reactions of the systemn at
any given time it is necessary to classify the performance of the system resulting from
any change in the controller. This classification can be either good or bad and the system
must be awarded or punished, respectively. Moreover, since the learning process is
dependent on time , the learning control system must have memory. In determining the
future behaviour of the system it must be capable of using past and present behaviour
results.

Learning controllers generally show performance which gradually improves with
time. When there are reductions in the bounds of prescribed information or the improved
identification of certain attributes then the system is learning. A learning controller can
be defined [11] as a control design that improves the performance of the system being
controlled without knowing completely its mathematical model. In this case learning is
derived from the behaviour of the plant, either from its operation or experimentation.
This learned information is used as the knowledge to influence future decisions to be
executed by the controller.

There are various techniques applied when designing learning controllers, It can be
that the learning process is obtained by considering all possible answers, that is
consolidating short term memory into long term memory, and exhibiting altered
behaviour because of what was remembered [32]. It is possible also that the controller
itself employs a performance measure to supervise learning. Whenever the same situation
occurs the experience of the controller based on learned information is used to improve

the quality of control. The information extracted from different control situations
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constitutes different experiences. Learning schemes like, supervised learning,

unsupervised learning, are explained in section 2.8.2

2.6. The Algorithms used for Developing Intelligent Controllers

An intelligent control system is a system that possess the properties of an adaptive
control system or a learning control system (see section 2.4 and 2.5). There are many
techniques that can be used in developing intelligent controllers. Among them are neural
networks , fuzzy logic systems, and genetic algorithms. Each of these techniques has its
own strengths and weaknesses.

A neural network is an information processing system that is nonalgorithmic,
nondigital, and intensely parallel [44]. It consists of groups of very simple and highly
interconnected processors called neurons or processing elements. A neurone is an
analogue of the biological neural cell in the brain. Detailed explanations of neural
network techniques are contained in chapter 4.

A fuzzy logic system describes complex systems with linguistic descriptions {54].
Here, the information is described in terms of fuzzy sets. The concept of a fuzzy set is
made precise through the definition of an associated membership function. Again chapter
6 contains more discussion of these techniques.

Genetic algorithms are algorithms for optimisation and learning based on the
mechanism of genetic evolution [63]. They give solutions to problems using a
probabilistic optimisation method based on evolution strategies as nature solves the
problem of adapting living organisms to the harsh realities of life in a hostile world.

Chapter 7 includes a detailed explanation of this topic.
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2.7. The Inverted Pendulum

2.7.1. The Problem

The inverted pendulum system consists of a pole hinged at the top of a wheeled
cart that travels along a limited track. The task of the controller applied to this system is
to balance the pole when the cart is pushed back and forth by a force of magnitude F.
The pole can only swing in a vertical plane parallel to the direction of motion of the cart.
Balancing fails when the cart hits the end of the track or the inclination of the pole
exceeds .presct limits. The overall goal is to find a controller that prevents the system
from failing. A more demanding version of the inverted pendulum experiments requires

the controller to balance the pole and bring back the cart to the centre of the track [10].
Figure 2.10 describes the system.

The state of the inverted pendulum system is described by four variables :

x .' = the position of the cart in a track.

v = dx/dt = the velocity of the cart.

the angular position of the pole.

®w = dO/dt =the angular velocity of the pole.

Assuming that the system is frictionless the dynamic equations [10] are:

do _ gsinB ~0dcos® - ,w?/cosOsind

= 1
dt l(%-3upcoszﬁ)
4, (4, _
dv 58 +(§CD l—-gcose)upsme
P (2)

4
§—3upcosze
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The inverted pendulum
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2.7.2. The Reasons for using the Inverted Pendulum as a Contro!

where |1, is the reduced mass of the pole

_ 'nP

K, =
m,+m,
and
F
0 =
m, +m,

with the standard parameters as

acceleration due to gravity =g
length of the pole =1
mass of the cart = m

mass of the pole = m

magnitude of the control force =F

Benchmark.

The inverted pendulum problem is popular in the field of research in leamning

control systems for the following reasons [10]:

1)
2)

3)
4)

The problem is apparently difficult but it is easy to understand and simple to describe.
It is a textbook example of an inherently unstable control system. This has been
analysed in detail with conventional control theory providing a convenient reference
for assessing neural network controllers [20].
The system is not too expensive. Thus, it is easier to develop and demonstrate.

There are constraints on the response time of any controller because the cart-pole is

a real time problem.
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2.8. Previous Research in Control of the Inverted Pendulum

2.8.1. General Experiments

Widrow and Smith [6] pioneered the inverted pendulum problem in 1963 as an
application for neural network based control. They demonstrated that a network of one
computing element, an adaptive linear element (ADALINE), was capable of balancing an
inverted pendulum if the ADALINE input consisted of the four state variables, each
encoded with an n-bit linearly independent code [9]. The force produced by the
ADALINE approximated that called for by the equation

F= ksgn(W,-0 +W, -0+ W, x+W, x)
Where:
® F is the force required to stabilise the system at any time.

¢ k is a positive constant representing the magnitude of the force to be applied to the

system.
* sgn is the sign (or direction) of the applied force.

The coefficients W,, W,, W,, W,, are derived from the physical characteristics of the

pendulum system and optimal bang-bang control theory.

Widrow and Smith trained the network using the Widrow-Hoff least mean square
(LMS) algorithm with the output on an optimal controller in a form of the equation
above as the teacher. The teaching signal was obtained by linearizing the dynamics of the
system and applying a conventional control law. In this work they were able to show that
a linear control law is sufficient to solve the problem.

In 1983 Barto, Sutton, and Anderson [5] used the inverted pendulum to simulate
reinforcement leaming control. They used two neuronlike adaptive elements. The first

one is an adaptive critic element (ACE), and the second one the adaptive search element

(ASE).
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The ACE provides an indication of what the reinforcement should be. It evaluates
every state of the inverted pendulum system that is used to steer the learning process of
the controller [10]. The ACE receives the externally supplied reinforcement signal which
it uses to determine how to compute, on the basis of the current system state vector, an
improved reinforcement signal that it sends to the ASE [5]. Expressed in terms of the
BOXES system [27], the job of the ACE is to store in each box a prediction or
expectation of the environment by choosing an action for that box. A BOXES systern
can learn to control an inverted pendulum using a state representation of discrete
regions. For example, in [27] the regions of the state space were formed by the
intersections of six intervals along the 6 dimension and three intervals along the B . X,
and x dimensions, making a total of 162 regions. The ACE uses this prediction to
determine a reinforcement signal that it delivers to the ASE whenever the box is entered
by the inverted pendulum state. Specific knowledge of the dynamics of the inverted
pendulum is not necessary. Weights in both the controller and the ACE are adjusted in
proportion to the change in prediction from one time step to the next [10]. Initially all
the weights of the ACE are set to zero and consequently the prediction is zero for all
states. Nonzero predictions spread out gradually from the final failure states as more
trials are conducted. The controller is nondeterministic, its output biases a random
process towards one of the two control actions.

If the environment cannot provide the necessary responses the ASE must discover
what responses lead to improvements in performance. It employs a trial-and-error, or
generate-and-test, search process. In the presence of input signals, it generates actions by
a random process. Based on feedback that evaluates the problem-solving consequences
of the actions, the ASE "tunes in" input signals to bias the action generation process,
conditionally on the input, so that it will more likely to generate the actions leading to

improve performance [5]. Actions that lead to improved performance when taken in the
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presence of certain input signals become associated with those signals in a developing
input-output mapping.

The work of Barto et al shows that at least 60 trial runs are needed before the
controller successfully balances the system. However, the authors do not mention
whether the controller was able to centre the cart.

Anderson [4] in 1989 presented a further paper on the inverted pendulum problem.
His paper describes a neural network that learns to generate successful action sequences
by acquiring two networks: the action network and the evaluation network.

The action network learns to select actions as a function of states. It consists of a
single unit having two possible outputs, one for each of the two allowable control
actions of pushing left or right on the cart with a fixed-magnitude force. The output of
the unit is probabilistic. The probability of generating each action depends on the
weighted sum of the unit’s inputs, i.e., the inner product of the input vector and the
unit’s weight vector.

The evaluation network is needed to apportion the blame for the failure among the
actions in the sequence leading to the failure. It consists of a single unit. The evaluation
unit learns the expected value of a discounted sum of future failure signals by means of a
prediction method called temporal difference. Temporal difference methods learn
associations among signals separated in time, such as the inverted pendulum state
vectors and failure signals. Through learning, the output of the evaluation network
comes to predict the failure signal, with the strength of the prediction indicating how
soon failure can be expected to occur. The predictions are adjusted after each step by an
amount proportional to the network’s input and the difference between the new
prediction, based on the current state of the inverted pendulum, and the previous
prediction, based on the previous state, i.e., the temporal difference or change in

prediction of failure. The temporal difference method allows learning to occur



continuously using the learned evaluation function and differences in its output as
reinforcement, rather than waiting for further failure.

The experiments described in Anderson’s work were motivated by the work of
Michie and Chambers [27], the BOXES system. To compare with the performance of
the BOXES learning system, Anderson uses the same state representation (162 regions).
The resulting networks are shown in figure 2.11. Each unit receives the 162 binary input
components, and the evaluation unit’s output directs the learning process for both units.
The result of this experiment is shown in figure 2.13.

Anderson extended his experiment by using two layer networks with unquantized
state variables. His motive is primarily to improve learning speed. A very fine
quantization with many regions permits accurate approximation of complex functions,
but learning the correct output for each of the many regions fequires much experience.
Learning can be faster for a course quantization because learning from one state in a
region is transferred to all states in the region, but only functions whose output remains
relatively constant over regions can be represented. The architecture of this network is
shown in figure 2.12 and the result of this experiment is shown in figure 2.14.

The most recent research into the control of the inverted pendulum problem was
carried out in 1991 by Bing Zhang [11], and in 1993 by Geva and Sitte [10]. The results

of these experiments are discussed separately.
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2.8.2. Bing Zhang's Experiment

The objective of Zhang's experiment is to demonstrate by physical experimentation
and software simulation, how the ideas of neurocomputing can be used to build adaptive
learning controllers to control complex dynamic systems [11]. He presented supervised
learning, reinforcement learning, and unsupervised learning solutions to the inverted
pendulumn problem.

In the reinforcement learning technique, learning is achieved through
backpropagation of reinforcement signals provided by a subgoal. Here the learning
process is achieved through adopting a reinforcement scheme based on an evaluation of
a subgoal which is related to the desired overall system performance. Reinforcement is a
feedback process that provides information about the correctness of the actions taken by
the system but does not provide information to indicate what the correct action is. The
feedback is provided by the environment. Here the system only receives feedback
indicating the value of the system’s action. This method can be used with systems that
vary with the external environment provided the system variables can be measured {11].
The advantage of this method is that less a priori information needs to be known about
the system. It is useful in those cases where supervisory information is not available and
leads to the development of more autonomous system.

Zhang believed that the overall goal of the inverted pendulum balancing task is
hard to formulate mathematically, and also that such a goal does not provide any hint as
to whether the control action decided by the action network is a good control choice or a
bad one. In other words the goal cannot supply the action network with the necessary
reinforcement signal required to adjust the connection weights of the action network.

In view of the problem mentioned above Zhang used an approach to establish a

subgoal that can be mathematically formulated as a cost function (in this case a quadratic
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cost function) so it can be used to direct the updating of action network weights. This
subgoal can be expressed as:
Subgoal = SG(1) = X(1)GX(t)

where :

* SG(t) = achosen subgoal that represents a weighted vector distance of the state of
the system at time ¢ from the origin of the state space.

® X{(t) = asystem state variable at time .

¢ (G = a positive definite diagonal matrix with elements (g,,,....£,,) which may be
either pre-assigned or determined through a learning process.

The best value for & depends on the plant as well as the system overall goal
through trial and error. In practice, one of the elements of G may be chosen as 1, others
can be pre-assigned initially and then learned precisely through a secondary learning loop
to give a result which optimises the system overall goal. This secondary learning loop
consists of standard Al techniques (breadth-first, depth-first, best-first, etc.).

Zhang chooses a subgoal equal to:
SG(t) = g,x* () + 8y X(1) + 80 () + £, O()
Here, g,, was intentionally chosen as 1 because the weighting factors are all relative to

each other.

2.8.2.1. Bing Zhang’s Computer Simulation Experiment

1. The program was run 50 times.
2. Each run consists of n number of trials

3. Each trial starts with the pole cart system set to a random state and ends with a

system failure.
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4. The length of track is 2.4 - 4.8 meters

Computer simulation results

1. In all 50 runs the system learned to balance the pole for 100000 time steps,
equivalent to 33 minutes of balancing.

2. In most runs, the system learned to balance in less than 20 trials, sometimes as few as
4 trials, the average is 17 trials.

3. Zhang did not mention whether the cart stayed at the centre.

2.8.2.2. Bing Zhang’s Physical Model Experiment

The physical system hardware for Zhang’s inverted pendulum experiment is shown

in figure 2.15. This experiment uses the following parameters :

Mass of the pole =0.1kg
Mass of the cart =1.0kg
Length of the pole = 1 meter
Length of the track = 2 meters

The cart is mounted on a parallel track and controlled by a direct current motor
that provides propulsion for bang-bang control by applying a constant left or righf force
only. The voltage of the power amplifier is applied to the motor through two relays. A
negative or positive voltage of the same amplitude is applied to the motor, depending on
the relays, moving the cart in one direction or another via a steel wire. The relays are
controlled by two signals coming from the serial RS232 port of a PC. These two signals

are controlled also by the I/O command in the control program.
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Two reed switches are placed at each end of the track to detect if the cart has
reached the end (the failure signal used in learning algorithm). The switches are activated
by a magnet mounted on the cart. The status of the switches is determined through the
serial I/O port of the IBM PC/AT computer. This PC is also responsible for the
execution of whichever control algorithm currently is under test.

An optical shaft encoder mounted on the cart is used for computing the pole angle
and velocity. The angular velocity is calculated as the average rate of change in angle
relative to the previous time period. The position of the cart along the track is also
sensed using another shaft encoder. The resolution of the two encoders used is 1000
counts per revolution. This gave a resolution of 0.009 centimetre per count for the cart
position on the track and 0.36 degree per count for the pole angle.

The computer establishes the current status of the pole and the cart by decoding
the count readings from the two encoders attached to the physical system. An 8-bit up-
down counter was used to count the pulses from the encoder attached to the pole, and a
16-bit up-dbwn counter is used to count the pulses from the encoder and therefore
sensed the position of the cart along the track. The decoding circuit together with the
necessary I/O interface with the computer was built on a prototype board which could be

easily plugged into one of the I/O slots of the PC.
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2.8.2.2.1. Bing Zhang’s Physical Model Experiment Results

Figure 2.16 shows the results of this experiment. The system learned to balance the
pole in less than 20 trials, for a period of 5 minutes which was the cut-off time for this
experiment. The final pattern of movements of the system in some of the trials which
lasted for more than 3 minutes were unexpected. This is shown in figure 2.17. From this
figure, it can be seen that the inverted pendulum system is not oscillating around the
centre of the track. Also, further learning was found not to improved the result. The
reason for this according to Zhang was that the network had reached a local minimum
and not the global optimum. Another reason was due to the effects of the unknown
friction between the cart and the track.

Zhang encountered a number of problems in this experiment. He mentioned that
for most of the time the change in pole angle between subsequent two samplings was
too small for the computer to detect. This was because the control decision was
calculated and executed very quickly. Direct sensing of pole and cart velocities were not
provided. Another problem was the count readings decoded by the computer. It tended
to increment or decrement erroneously while the position of the pole remained
unchanged. According to Zhang, the reason for this was the shaky vertical movements
between the cart and the track during the horizontal movements of the cart along the
track. This problem created considerable difficulties in the experiment. The pole often
biased in one direction or another, causing the cart to move in the same direction, that
eventually resulted in failure (hitting the track end). Zhang solved this problem by
remounting the encoder in such a way that when the pole was almost vertical (angle = 0),
the reference signal produces an effective low signal which in turn cleared the up-down

counters of the decoding logic. In this way, the pole angle (encoder count readings)
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sensed by the computer was calibrated to zero whenever the pole passed the straight
vertical position.

In an another attempt to solve the problems Zhang retained reinforcement learning,
but this time he divided the learning task into two sub-tasks. The first subtask is the pole
angle learning control strategy, and the other second subtask is the cart position learning
strategy. According to Zhang, this attempt is supported by the fact that, when the
pendulum is almost vertical (6 = 0), the fourth order system could be approximated as
two decoupled second order systems.

The results of this experiment are:

I) The decoupled system learned to balance for 100000 time steps in an average of 12
trials.

IT ) When the condition of applying uneven forces was tested, the system failed in all 20
test runs. Figure 2.18 shows the learning curve of Zhang's algorithm and others.

In supervised learning the system learns through a human teacher. This is good in
highly complex systems where it is very difficult to construct a composite subgoal
function to promote reinforcement learning due to various unspecified parameters. The
human can assess the situations and make decisions based on qualitative data. However,
using this technique, Zhang had difficulties in doing his experiment physically, since in
real time the human teacher itself can not balance the system. The data that was fed to
the computer was incorrect because the human teacher failed to do his job in balancing
the pole.

Unsupervised leamning is a technique used in neural network to control a system
without requiring a teacher. The neural network controllers can autonomously learn to
control the unknown complex system and adapt the changing environment. In this type
of control, Zhang mentioned that he developed two separate learning algorithms to

provide adaptive learning of state-space partitioning. Unfortunately this is not reported.
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At the conclusion to his experiment Zhang recommended the following for future
work.
I) Establish satisfactory subgoals which can successfully guide the learning process.
II) Ideally such subgoals should be learned, and not specified by human being in
advance.
IIT ) By incorporating powerful subgoal learning mechanics, the reinforcement scheme
based on immediate feedback will provide faster and practically more feasible

solutions to the real-time control problems.
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Figure 2.16
Learning curve obtained on physical experiments
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2.8.3. Geva & Sitte's Experiment

The objectives of Geva & Sitte's experiment is to present a thorough analysis of the
inverted pendulum problem, to clear up implied or explicit misconceptions contained in
earlier work, and to propose a set of conditions to make it a useful and well defined
benchmark for neural network training a}goritlnns [10].

The paper of Geva & Sitte presents control laws that are linear in the state
variables of the inverted pendulum, for both bang-bang and proportional control
strategies. The experiment reveals that it is easy to find by random search in weight
space, single neuron controllers that achieve the fundamental control objectives of
maintaining the pole upright and bringing the cart to the centre of the track.

Geva & Sitte claimed that demonstration of supervised learning is no longer
needed for the cart-pole problem because a linear control law is sufficient. Therefore a

single neuron is sufficient for a satisfactory controller.

2.8.3.1. The Dynamics of the Inverted Pendulum by Geva & Sitte.

As has been described already the earliest application of neural networks to the
inverted pendulum was conducted by Widrow and Smith [6]. Their analysis was based

on a traditional control approach. They assumed that the applied control force F is a

linear function of four state variables (x,x,0,0, with constant coefficients W,...W,).
F= ksgn(W, -0 +W, 0+ W, -x+W, -x)

The state of the system was sampled at regular intervals and classified. The output
of the classification determined the sign of the fixed force k, that was applied to the cart
for the duration of sampling interval. For the linearized dynamic equations the linear
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control force F = k(W, -0+ W, 0+ W, x+W, -;c) = k(w.s) minimises the quadratic
error measured by the time integral of the square of the four state variables and the
control force [19].

Geva and Sitte [10] recently conducted a qualitative analysis of the linear control
law of the above equation. They found out that the weights WO have to be positive.
With this analysis they were able to dissect and understand the control strategy embodied
in the linear control law. From their experiments it was found out that if the cart is in
equilibrium at the centre of the track, and the pole is leaning at a positive angle with no
angular velocity then the control action is F = kW0 . In this case only positive force

will erect the pole, and W, has to be positive. Similarly, if the pole angle is zero, but the

angular velocity is positive and the cart is in equilibrium at the centre then only positive
W, will produce the force that reduces the angular velocity.

On the other hand if the cart is in equilibrium somewhere on the right side of the
track , and the pole is balanced perfectly, then the control force is determined by W;. A
positive weight will cause the force to accelerate the cart away from the centre of the
track. This action will initially move the cart further away from the centre. However, as a
result of this action the pole will start falling to the left, making the angular position and
velocity negative. As the angular position and velocity become more negative their
negative contribution to the force equation k(w.s), attempting to balance the pole, will
overcome the positive contribution from x. The net effect over time of the spoiling

effect of W,, and correcting effect of W, and W, is to accelerate the cart towards the

centre. To verify how much this net effect happens consider the pole in a stationary
upright position. Because of gravity, a sequence of m control actions in the reverse
direction are required to compensate the work done by the gravity during the fall and the
pull of gravity during recovery. Thus, the inverted pendulum receives a net acceleration
in the direction opposite to the initial direction of force application.

When the cart is accelerating towards the centre of the track it will eventually
overshoot. In order to bring it back to the centre another opposite sequence of control

actions is necessary. Because of this condition the cart will continue oscillating about the
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centre of the track. To stop the oscillation, a mechanism like damping is needed. The
weight W, provides exactly this mechanism. The analysis of this is as follows. Suppose
the pole is balanced and the cart is at the centre of the track moving with constant
velocity to the right. Positive weight W, induced braking through angular contribution,

in the same way as positive weight W, induced centring. The cart will accelerate to the

right because of the contribution of the velocity to the force , hence the cart velocity also
will increased. However, the increase of cart velocity to the right will cause the pole to
fall to the left. So the next action of the control is to balance the pole. This control action
produce the desired net result of slowing down the cart.

With the knowledge of the inverted pendulum dynamics using a linear control
strategy Geva and Sitte [10] concluded the following; The angular position weight W,
and angular velocity weight W, work towards maintaining the pole in a balance position.
The horizontal displacement weight W, indirectly causes the cart to accelerate towards
the centre of the track. Finally, the velocity weight W, indirectly slows down the cart, by

causing the pole to lean in a direction opposite to the direction of movement.

2.8.3.2. Random Searches in Weight Space

Geva and Sitte raise the possibility that a random search in weight space might be
effective in balancing the pole. To test this hypothesis they generated 10,000 unitary
weight vectors with random orientations. Linear controllers with these weight vectors
were tested in a computer simulation for their ability to prevent the cart-pole from failing
within the first 300 s after release from various initial conditions. The parameters used
with this simulation were those of Barto et al [5]. The control force was updated at
every integration time step of 0.02 s (50 Hz sampling). The controllers were tested in
the bang-bang and continuous force control mode. The maximum force deliverable by

the motor is limited to 10 N with K=50. Because Geva and Sitte knew that the weight



vectors have to have positive components they used a second population of 10,000
vectors chosen from the positive quadrant. The results shows that one out of twelve
random weight vectors could balance the pole for at least 5 minutes in the bang-bang
regime when the cart was released from the centre of the track and with the pole in
equilibrium. For continuous force this inihial condition is trivial since the control force is

always zero and there is nothing in the simulations to break the unstable equilibrium.

Almost as many controllers from the totally random population pass the test as
from the positive quadrant population. The explanation for it according to Geva and
Sitte is that controllers with small negative W, and W, will survive the first 5 minutes,
although they will not stay at the centre but rather oscillate or drift away slowly. When
the initial condition is made slightly more difficult by releasing the cart at 1 meter to the
right of the centre, the controllers of dubious quality no longer pass the test. When the
knowledge that the weights have to be positive is discarded (search over all orientations)
controllers that pass the test from a difficult initial position become hard to find. Figures

2.19, 2.20, and 2.21 show the results of Geva and Sitte’s experiment.
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2.9. Limitations of the Inverted Pendulum as a Benchmark for

Learning Controllers

It has been known for many years that a linear control law, implemented by a single
artificial neuron can control the inverted pendulum. An investigation of the literature on
unsupervised learning methods for the inverted pendulum controllers reveals that it is
hard to compare the published results. Also, it shows that most of the methods used

present no clear evidence of better performance than the random search method.

What was not recognised before was that the random search in weight space can
quickly uncover coefficients (weights) for controllers that work over a wide range of
initial conditions [10]. This was tested by Geva and Sitte using linear controllers with
those weight vectors in a computer simulations (see section 2.8.3.2). The result of
random search in weight space indicates that success in finding a satisfactory neural
controller is not sufficient proof for the effectiveness of unsupervised learning method.

Dissecting the dynamics of the inverted pendulum system it is obvious that it has
limitations. The system has only two degrees of freedom. Hence, its capability and its
ability to represent complex problems is limited. For example, robots need extra degrees
of freedom to avoid degeneracies [15] or to manoeuvre past obstacles in ‘the
environment [16]. The techniques using neural networks to solve the control problem
lacks stability. This is because disturbances and uncertain initial conditions are not well
defined in the experiments. What happens if the interval between control force updates is
increased or if unequal magnitude forces are applied? The authors above assume that the
system 1is frictionless, in actual or physical simulattons, friction does really exist. The
controller developed also lacks flexibility and adaptability. Successful research in neural
network learning control did not mention about what happens to the system if external

disturbances are applied to the plant.



2.10. Summary

This chapter gave an overview of the problem and limitations imposed by the
present methods of modelling a control system. A review of the concepts used in
developing a conventional and an intelligent control system had been discussed. Special
attention has been paid to the rigid pole-cart balancing problem (inverted pendulum) as a
benchmark for learning controllers, A comparison of the works of different authors
addressing this problem has been presented. It is pointed out that there are limitations on
this problem, as, controlling this system is not a difficult nonlinear problem, and the
learning controller developed may have limited application to manufacturing industries.

Armed with this knowledge therefore, there are many issues that remain unsolved,
that need further investigation. For example, can the techniques developed for learning
control applied to a more complex nonlinear system? Can we scale up this new
techniques to larger, more complex system without suffering from local minima problems
(local minima are the inevitable problem in least minimum squares error methods of
learning [7]). To answer these questions it would therefore be better to conduct future
work using a model problem which is more complex than the current inverted pendulum
problem.

The author therefore conducted research on inverted pendulum learning control
using an elastic pole. This type of pole gives an additional degree of freedom to the
system, e.g. its elastic transverse displacement and therefore has much more complex
dynamics.

The next chapters of this thesis concentrate on the discussion and presentation of
the development and test of learning controllers to balance a flexible pole hinged on top

of a cart moving along a limited track.
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CHAPTER 3

A Model of a Flexible Pole-Cart Balancing
System Under its First Mode of Vibration

3.1. Introduction

Flexible beams have been a topic of research in the field of robotics since the
early 1970’s [37]. Beams of this type have been used to model flexibility in robotic
members, a phenomenon that has gained an importance as a result of widespread
attempt to lighten robotic assemblies for increased speed and efficiency [38]. The
present day industrial robot is easy to control because it is designed to be very heavy,
rigid and slow. This, however, gives high weight to payload ratios which increase cost
and decrease the speed of the robot. To improve this ratio, several researchers have
proposed the use of lightweight robots with links that are allowed to flex during
operation [33,34,35,36].

When compared with the traditional robot manipulators constructed from rigid
links, flexible robot manipulators have many advantages; among them are [30]; the
moving of larger payloads without increasing the mass of the linkages, requirements for
less material and smaller actuators, less link weight, less power consumption, and the
machines are more maneuverable and transportable. Flexible robot manipulators are not
presently used in production industries because robot manipulators are required to have
a reasonable accuracy in the response of the manipulator end-effector to the input
command from its control system. The experiments described in [30,31,37,38] were
directed towards developing controller for flexible robot manipulators. Building this type
of controller is a difficult and very challenging task. One major step in making this
controller is to analyze the dynamic behavior of the system. Computer simulation is

necessary to evaluate whether the derived dynamics of the system are correct. It is



therefore most appropriate to study analogues of such systems. The flexible pole-cart
system provides such an analogue.

This chapter presents a rule based control system for the flexible pole-cart
balancing problem (the inverted pendulum using an eleistic pole) that operates on a
simulation of the system. The task of this system is to balance an elastic pole that is
hinged on a movable cart. It is assumed that the hinge is frictionless. The cart is allowed
to move along a track with limited length and that has friction. Forces of different
magnitude are applied to the cart in either a left or right direction. The initial angle of the
pole can be varied up to 30 degrees. This is more difficult than the conventional rigid
pole-cart system because of the complexity in its dynamics. The deflection of the elastic
pole gives additional degrees of freedom to this system. A computer simulation of the
use of the cart to balance a flexible pole under first mode of vibration is presented here.
The dynamic equations of the system were derived using Newton’s laws, Bernoulli-
Euler analysis, and beam theories. The system was analyzed with the presence of
friction. Numerical integration using fourth order Runge-Kutta was conducted.
Computer graphics of the cart balancing the pole along the track in real time have been
made and are shown. Results on the analysis of the behavior of the system under various
conditions has also been obtained in order to explore the practicality of attempting to
control such a system.

The chapter begins by presenting the mechanics of the system. It then continues
by describing a simulation of these mechanics. The chapter closes by describing the
operation of the rule based controller on the simulated dynamics. The code for

simulations program and the controller are presented in full in Appendix A.

3.2. Mechanics
This section discusses the dynamics of the flexible pole-cart balancing system.

The analysis of the system is based on the dynamics of the rigid pole-cart, together with

beam theories.
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3.2.1. Diagram of the Flexible Pole-Cart Balancing System.

Figure 3.1 shows the dynamics of the system. The free body diagrams of the

system are shown in figures 3.2 and 3.3.

e

o, fdry, i do / di

elastic pole rigid pole

x, dx/dt —/

Force

Figure 3.1
The flexible pole-cart balancing system
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FREE BODY DIAGRAM

Figure 3.2
Forces acting on the pole

Figure 3.3
Tangential and normal forces acting on the center of the pole
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3.2.2. Derivation of the Equations

3.2.2.1. Solution for Rigid Pole Angle, Velocity, Acceleration, and Cart
Velocity.

This section presents the analysis that relates the motion of the cart to the motion

of the pole. It begins by considering the dynamics of the rigid pole.

Let
m, = mass of the pole.
m, = mass of the cart.
a, = acceleration of the cart.
L = total length of the pole.
0 = the angle of the pole from y axis.
é = angular velocity of the pole.
%) = angular acceleration of the pole.
g = acceleration due to gravity

Applying Newton's law to the rigid pole:
Summation of forces at the center of the pole = (mass)(acceleration of pole)
Y F=m,a" (B.1)
Using definitions from figures 3.2 and 3.3.

e, = aunit vector for tangential component.

)
It

. = aunit vector for normal component.

Q
]

. = tangential acceleration.
a, = normal acceleration; then

e, = cos(B)*e, —sin(0)*e, (3.2)
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e, = —sin(@)*e, —cos(@)*e, 3.3

a, = ro = %*é’ (3.4)
o2
a, =rw? =+8 (3.5)

and using equations 3.2 to 3.5:

B _ o % *
a =a*e +a,*e,

a® = %g(cos(ﬂ Je, —sin(® )ey) + %éz(—sin(e Je, —cos(® Je, ) (3.6)
then from figure 3.2:

Eﬁ =(-m,a, +R,)e, +(R, —m,gle, =m,a°

(—mpac +R, )ex +(Ry -mpg)ey = mp{%é'(cos(ﬁ)ex —sin(@)e,) +

L2
50 (—sin(®)e, —cos(B)e, )}

Equating terms of the e, and e, components:
_ Lee L2 ‘
-m,a, +R, = mp{-2—8 cos() +EB(—sm(8 N}

Lz L2
-m,a.+R, =m, {56 cos(0) —56 sin(0)}

-m,a.+R, =m, -121{6008(9) —ézsin(e)} 3.8
Lo L2
R, -—mpg:mp{—ie(—sm(e)—EB cos(0)} 3.9
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From the Euler equations, the summation of the moments at point Q is equal to the

product of the moment of inertia (I) and the angular acceleration (a ) of the pole.

ZM":I"cx

where:

Therefore using figure 3.2 apply equation 3.10:
s 1 1)
my8 2 sin®) ~m,a, = cos®) = I8 =T m, L'
L 1 ,» L
a,—cos(0)=—L*0- g—sin(®
> cos(0) 3 87 ©)

sincelL/2=r

arcos@) = %rz 6 grsin(©)

(3.10)

(3.11)

Equation 3.11 shows the relationship of the cart acceleration to the angular acceleration of

the pole.

To establish the forces acting on the cart it is assumed that the mass of the

wheels is very small compared to the mass of the cart and the pole. Figure 3.4

shows the free body diagram of the cart.
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Figure 3.4
Forces acting on the cart
Applying Newton’s law to figure 3.4:

Y F=ma,
FC _RX _f= mcac
Ry =N f= nN
F,=ma +R, +UR, 3.12)

This is the force needed to move the cart.

Then substituting equations 3.8 & 3.9 into 3.12

L1 2
F,=m.a, +mya, +mp%(6 cosO —0sinf) +

wim,g+m, %(—é.sinﬁ —ézcosﬂ))

Fo=(m +m,)a, +Wm,g +é.mp %(cos@ —Usin@) +

2 L
Om, —2-(—sin6 — WcosO)
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F, —{un,g +é.mp%(cose —usin6)+ézmp %(—sine —WcosB)

(mp + mc)

Let
m=m,+m,
r =L/2
then
' L]
a = F.—{um,g +90 mpr(cosﬁ —usinf)+0 mpr(—sinB - HcosB) (3.13)

m

and substituting 3.13 to 3.11

- v
(r‘cosB‘Fc —{pm,g +0 m,r(cos® — LsinB)+0O m,r(~sinB — [ cosO) )
’ m

4 . .
—r“0-grsin
3 8

gré-_-e-mprcose(cose —-Usind)  gsind -

m

cosB

{F, =[um_,g —ézmpr(sinﬁ + Lcos0)]}

m

B[—:;mr —mprcosze + Jum,r cosB sine] = mgsinQ -

cosB{F, —[jm,g -8 m,r(sind + 1 cosH)]}
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é- _ Mngsind —cosO{F, —[um, g —ézmpr(sine + W cosO)]}

, (3.14)
3 cos’0 + lm,rcosO sind®

This represents the angular acceleration of the rigid pole hinge root on top of the

cart that move dependent on the magnitude and direction of the applied force F,.

3.2.2.2. Solution for Elastic Pole Angle, Velocity, and Acceleration.

It is now necessary to extend this analysis to include the elastic pole.

Let

0, = total elastic pole’s angle from the vertical axis.

3

é, = elastic pole’s velocity.

0= elastic pole’s acceleration

For the elastic pole, it is assumed that the total angle 8, (the pole’s actual

position with respect to vertical axis) is equal to the actual angle of the rigid pole
0 plus the pole’s angle due to its elastic deflection 0, .

B,=6 +6, (3.15)



To find O, it is assumed that the pole behaves as a cantilever with uniform
distributed load as is shown in figure 3.5. From [40]

L

W / unit length

O = deflection at any point

Figuree3.5
Cantilever carrying a uniformly distributed load
E = Young’s modulus of elasticity.
I = Second moment of area
= BD*/12
B = Breadth of the beam
D = Depth of the beam
W = Weight per unit length

The bending moment at a distance Z from C is :

-1
M=—W(L-2)’
but
d*d
dz?

-M = Ef
hence;

d*

1
El—r=7(L- zZ)y = EW(LZ -2LZ+Z") Integrating this equation gives
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a1 1
El— = EW( ’Z-L7* + 523 + A) further integrating this equation gives

1 1 1 1
EId =—W(=I1*Z*—=1LZ+—Z*+ AZ+B
2 (2 3 12 )

At the built in end, Z =0, and we have

dd
;;E=0 andd =0, ThusA=B =0

Then
1
EIS = HW(stz2 -417*+Z%)

1
5= —zZW(GLzzz ~4LZ3 +Z*) [ (ED) (3.16)

At the freeend D, Z =L

_wit
° 8K

(3.17)

It is now necessary to fit the cantilever analysis to the flexible pole. To find the
value of W within the cantilever analysis, the pole can be analyzed by considering both
the concentrated and uniform load as shown in figures 3.6 and 3.7.

_____

Figure 3.6
Concentrated load of the pole at any position
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For the pole at uniform load using F at figure 3.6:

NS

(this component is used only if there is buckling or the hinge has
friction; bence it will not affect the value of W)

Figure 3.7
Uniform load of the pole at any position

Therefore :

m_gsinf
W= pT (3.18)

To determine the total elastic pole angle 0,, at any time, consider figure 3.8 below.

Figure 3.8
Position of the rigid and elastic pole at any time t
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tan@, =6TD ; from equation 3.17
wL* L
tand, = SEIL ST ; from equation 3.18
L’m _gsin®
tan® , s i ; but I = BD*/12
8EI
12L%m g sin® 12L%m
tan©, =__p_33_ ; let K:-—-—’;g
8EBD 8EBD
tan®, = K'sinB ; hence
0, =tan"' (K sinB ) (3.19)

Substitute equation 3.19 into equation 3.15

0, =0 +tan”' (Ksin0) (3.20)

To find the elastic pole’s angular velocity, differentiate 3.20:

. . K cosB .
9, =0+ (——F—-—
(1+(Ksin8)2
. . K cosB
0, =0{l+(—— .
r =0 +(1+(Ksin8)2)} (3.2

To find the elastic pole’s angular acceleration, differentiate 3.21.

5, =81s Kood 1,
14+ (Ksin0)

; (—K sin8)(©)(1 + (K sin®)*) - (K cos0)(2K sin®)(K cos0)(@)
(1+(Ksin0)?)?
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§,=§ 1+—~———Kc°_se = [+
1+ (Ksin0)

g (=K sin®)(1 + (K sin0)*) — (K cos®)(2K sin®)(K cos0)
[ 1+ (K sin0)?)?

" l.— = » . 1 2 . ) _ 2 2
8, =61+ chse |+ 62 Ksin(-1-K (sm-e) 222]( (cos0)”)
| 1+(KsinB)” | (1+ (K sinB)?)
[ sl = ol - R 5 B 2 :
6, =61+ KcolsB i +02 KsinB{l+KX ((51-116)2+22(c0s6) Y
| 1+ (KsinB)" (1+(KsinB)")

(3.22)

w e K cosB 2 K sinf(1+ K*(1 + (cos0)?)
e‘"e[1+1+(1<sine)2]+ [ (1+(Ksin0)*)* ]

This presents the angular acceleration of the flexible pole hinge on top on the

moving cart.

3.2.2.3. Solution for Cart Acceleration and Displacement due to

Balance the Elastic Pole.

This section discusses the mechanics to find the displacement of the cart

due to the applied force in order to balance the elastic pole. The acceleration of

the cart in order to balance the pole is derived from equation 3.13 with 0 ,0.,0
replaced by 6. , 6.; , 0, respectively. Hence,
e 2 A
_F.—{um,g+0,m,r(cos®, —UsinO,)+0. m r(-sinB, - ncosd,)

a = (3.23)

¢
m




From the computer simulation using numerical integration (fourth order

Runge-Kutta) the value of the acceleration a_, is found to be a cosine function

(refer to section 3.3.4 figures 3.17c, 3.18c, and 3.19c). The reason for this is that
the acceleration of the cart is dependent upon the force applied to it. This force is
being controlled in order to balance the pole and it is experimentaily observed to
be periodic. At time ¢ equal to zero initial force is already applied to the cart.
Because of this, at this point in time, the cart is already accelerating at a magnitude
equivalent to force/mass.

Thus, the acceleration of the cart for balancing the flexible pole at any time ¢ is:

a,, = kcoswt (3.24)

The velocity of the cart at any time ¢ for balancing the flexible pole is obtained by
integrating equation 3.24.

t t

v, = ! a, = )[k coswt = £sin wi (3.25)
w

The displacement of the cart at any time # for balancing the flexible pole is obtained

by integrating equation 3.25.

it ]
—kcoswt

Xee = | Vee = [ SIN wi = 2
w w

but from equation 3.24 a_ =kcosw? , hence

and
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w =2nf

f = average frequency

x, = (3.26)

To find the frequency f it is necessary to obtain the total number of cycles
during the total time of pole balancing. Below is the algorithm to determine this.
1. Determine the highest value of the acceleration for the entire time of

balancing excluding the first one (a,, ).
2. Starting from time t > 0.0 record the value of time for the first a,, (Time,,, ).
3. Record the time it takes to have another acceleration approximately equal to
a, {Time,,,)
4. Record the frequency from (Time__,, ) to (Time,,,, } = one cycle.
5. Repeat process 2 & 3 by substituting Time_,, to Time,,,, for/toN.

I & N can be any value of time fromt > 0.0 to the final time of balancing the pole.
Record the total number of cycles for this process (fot_cycles).

6. Get the sum of the time recorded from Time,,, to Time,,, (tot_time).

N

tot_time = Z(Timeac,,; + Time )
I=1

7. Average frequency is

f =rtot_cycles ! tot_time (3.27)
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3.2.2.4. Solution for the Location of the Pole at Any Time in XY

Plane.

This section discussed the mechanics to find the coordinates of the flexible
pole on XY plane at any angle. See figure 3.9. The equations derived from this
analysis are very important in displaying the pole graphically. Every point of the
pole is plotted. This analysis uses equation 3.16 as its starting point.

Let
(x1,yl) = the coordinate at any point of the pole without elastic deflection (say p1).

(x2,y2) = the new coordinate of pl due to elastic deflection.
The deflection of the elastic pole at any point is derived from equation 3.16.

1
S = EW(6L222 —4LZ> +ZHYJ(ED

From figure 3.9

The value of L1is from 0.0to L.

x1=(sin® )(L1) (3.28)
yl = (cosO)(L1) (3.29)
L2= J(LD? +5? (3.30)
0, = tan‘l(%] (3.31)
x2 = sin(® +0,)(L2) (3.32)
y2 = cos(6 +6,)(L2) (3.33)
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Figure 3.9

The coordinates of the elastic pole at any point in xy plane



3.3. Software Simulation

3.3.1. The Program

MAYMAY is a computer program that will simulate the pole-cart balancing
system. This program is written in the Turbo Pascal language and implemented on an
IBM PC machine. MAYMAY can simulate both rigid and elastic pole-cart balancing with
or without friction. The program is a menu driven. The user has nine options to choose
from the main menu (see figure 3.10),

Option number one is to simulate rigid pole-cart balancing and option number two
is to simulate elastic pole-cart balancing. Both options one and two can be carried out
either with or without friction. The user must enter data for these options. These data
represent the characteristics of the i)ole, the system initial condition, and the simulation
time (see tables 3.1 and 3.2). Once the data are entered into the computer, the program,
using numerical integration (fourth order Runge-Kutta, see figure 3.11) calculates the
values of the derived dynamic equations presented previously. The outputs of this
process are the values at any given time of the angle of the pole from the vertical axis,
the angular velocity and acceleration of the pole, the force applied to the cart, the
velocity of the cart, the acceleration of the cart, and the displacement of the cart. All of
this data are stored in an external file for future use. After calculating these values, the
process then will go back to the main menu.

Option number four plots the behavior of the rigid pole at any given time. This is
a graphic representation of the rigid pole’s angle versus time. Option number five is
similar to number four, but extends the simulation to an elastic pole. Option number six is
a real time graphical pole-cart simulation. This process will display the cart moving along
the track (forward and backward), and balancing the pole that is hinged at its root.
Option number seven plots the graph of the displacement of the cart versus time.
Option number eight presents the graph of the cart’s acceleration versus time, and option

number nine presents the graph of the cart’s velocity versus time. The data for option 4 is
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taken from the result of process 1, while for options 5, 6,7, 8, and 9 it is taken from the
result of process 2. Finally, to exit from the program, the user should choose option

number zero.

Table 3.1
(The data that the user must enter for option 1 - rigid pole )
Mass of the pole (in kilograms)

Total mass of the pole and the cart (in kilograms)

Total length of the pole (in meters)

Initial force applied (in Newton)

CoefTicient of friction

Step size (H) (the increment of integral calculation)

Upper limit of integration (tmax)

Freq. intermediate printouts (Ifreq) (display result for given increment)

Initial pole angle (theta in degrees)
Limitations of pole angle (in degrees)

Table 3.2

(The data that the user must enter for option 2 - elastic pole)

Mass of the pole (in kilograms)

Total mass of the pole and the cart (in kilograms)

Total length of the pole (in meters)

Breadth of the pole (in meiers)

Depth of the pole (in meters)

Young’s modulus - elasticity of the pole (in Newton/square meter)

Initial force applied (in Newton)

CoefTicient of friction

Step size (H) (the increment of integral calculation)

Upper limit of integration {tmax)

Freq. intermediate printouts (Ifreq) (display result for given increment)

Initial pole angle (theta in degrees)

Limitations of pole angle (in degrees)




3.3.2. The Algorithm

This section presents the algorithm of program MAYMAY. Figure 3.10 is
the complete structure of the program. Detailed algorithms of every option are shown in
figures 3.11 to 3.15. The code is in appendix A.

/ START /

l?
CHOICE N\ "
124567
8.9.0 :
b s k2d :gs E e 3, L sio
1 2 4 5 6 7 8 9 0
T H * H
END
DATA L. % # v & 4 2% T
STORAGE
(EXTERNAL FILE) |
DESIRED
OUTPUT *
Figure 3.10
(Program MAYMAY)

Elastic pole-cart balancing system computer simulation
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INPUT DATA

data
storage
(external file)
RUNGE(M.K2,V.ETH)
F
K=1
Vi
ngid pole angle
6 =vin
GET FORCE
Y
0 -EQN.3.14 nitial acceleration
= force/mass

rigid pole
elastic acceleration elastic velocity cart acceleration
= equation 3.21 = equation 3.20 = equation 3.13
elastic angle cart acceleration
= equation 3.19 = equation 3.23 e
DATA
STORAGE
(external file)
Figure 3.11
option1 & 2

Numerical integration to find the behavior of elastic/rigid pole-cart balancing system
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' START |

{ GET SCALE FACTOR |

GET DATA FROM
EXTERNAL FILE

INITIALIZE
GRAPHICS MODE

|

PLOT LINES
XY COORDINATES

PLOT DESIRED
POINTS

WRITE STRING
HEADINGS

CLOSE
GRAPHICS MODE

GOBACKTO
MAIN MENU

Figure 3.12
options 4,5,7, 8,and 9
Graphical representation of the behavior of the pole-cart balancing system
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GET INITIAL DATA

FROM EXT

ERNAL FILE

GET TIME
( time_co)

GET ELASTIC
pole angle
(t_angle)

GET RIGID
pole angle
(angle_co)

v

GET CART
acceleration
(c_ac)

hvd

Find Amplitude

of acceleration

(positive & negative)

N /}\ Y
end

i FIND CART
{ displacement

Figure 3.13
Process get data from external file
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check
option
?

E: ASSIGN VALUES|
of elastic angle
to array
angle co

ASSIGN VALUES
of cart acceleration
to array

angle co




GET DATA FROM
external file

v

INITIALIZE
GRAPHICS MODE

DRAW
TRACK

DRAW
CART

DRAW
WHEEL

Figure 3.14
option 6
Real time simulation of the cart balancing the pole along a track
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WRIITE
SUCCESSFUL
*
WRITE GO BACK
FAILURE to main menu




GOBACKTO

MAIN MENU

\ofy
7
CLEAR FIND X1

SCREEN (EQN. 28)

FIND CART

FIND Y1
displacement

(EQN.29)

(X1.Y1)

FIND &

(EQN. 16)
TRACK 20 back to

calling process

FIND L2
(EQN. 30)
DRAW

FIND 0
(EQN. 31)

DRAW

WHEEL |

FIND X2

(EON. 32)

DRAW |
HINGE FIND Y2 |
(EQN. 33)

PLOT
(X2,Y2)

Figure 3.15

Process in drawing the pole at any given time
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3.3.3. The Controller

The task of the controller is to balance the flexible pole on top of the cart moving
along a limited track for a given time. The algorithm for this process is shown in figure
3.11 section 3.3.2. This process uses numerical_integration. Subprocess RUNGE( ) will
calculate the values of the pole’s angle, velocity, and acceleration for every time step set
by the user. These values are taken from the parameters V and F of RUNGE( ). For every
increment of the time step, the controiler will check if it has exceeded the total simulation
time. If the total simulation time has been attained process numerical_integration will end
otherwise subprocess RUNGE( ) will be executed.

The motion of the cart is dependent on the force applied to its body. Hence, it is
necessary to control the magnitude and direction of this applied force. However, this
force is directly proportional to the angle of the pole from the vertical axis and the total
mass of the cart and pole. The angle of the pole is obtained from equation 3.14 by
applying numerical integration using fourth order Runge-Kutta. This is the subprocess
RUNGEC().

To determine the actual magnitude and direction of the force, the controller will
check first the magnitude and direction of the pole’s angle. This is the subprocess
check_pole_angle. If the angle of the pole exceeds the prescribed limit then it will report a
failure and go back to the main menu, otherwise the process will continue. If the
inclination of the angle of the pole is going left (negative) then the direction of the force
applied to the cart is going left (also negative), otherwise it is in the opposite direction.
The magnitude of the force is chosen using a simple rule-based system in a manner of a
look up table (see Appendix A). For 0.0009 to 0.001 degrees inclination this corresponds
to 0.1 Newton of force applied to the cart. Above this value an increment of 0.003 degree
angle will correspond to an increase ’of 0.1 Newton in the applied force. The controller
can apply a maximum force of 15 Newton’s, although the user may enter an initial force
greater than this. The author conducted a number of experiments in simulation the values

relating the applied forces on the cart and the angles of the pole, to determine satisfactory
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values of the parameter. The control algorithm can be modified to accommodate changes
in mass. The above controller is set for a total mass of 1.1 kilograms. Figure 3.16 show
the results of the flexible pole cart balancing controller operating with different

parameters.

3.3.4. Computer Simulation Results

The figures that follow show the behavior of the pole cart simulation programme
under varying conditions:

Section 3.3.4.1 to 3.3.4.3 described the behavior of the system for a number of
conditions. Figure 3.16 shows the animation of the system when parameters are changed.
Examples 1, 2, and 3 present the oscillations of the displacement of the cart, velocity of
the cart, acceleration of the cart, positions of the pole, and the graphical representation of

the motion of the entire system.
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Figure 3.16
Animation of the flexible pole-cart balancing system
when parameters are changed

a) Initial angle = +10 degrees
Initial force = 10 Newtons
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3.3.4.1. Example 1:

A computer simulation of the flexible pole-cart balancing system using the

following data.

Mass of the pole =0.1000 kg
Total mass of the pole and the cart =1.1000 kg
Total length of the pole = 1.0000 meters
Breadth of the pole = (.0300 meters
Depth of the pole = 0.0050 meters
Elasticity of the pole = (.1800 Pascal
Initial force applied = 7.0000 Newton
Coefficient of friction = 0.0000

Step size (H) =0.0010

Upper limit of integration (tmax) = 10.0000

Freq. intermediate printouts (Ifreq) =50

Initial time (t sec) =0.0

Initial pole angle (theta in deg) = 10.000 degrees
Limitations of pole angle = 50.000 degrees
Initial pole velocity (theta/dt) =0.0
Acceleration due to gravity =9.81 m/sq sec.
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Figures 3.17a to 3.17¢ show the dynamic behaviour of the flexible pole-cart

balancing systern for example 1.

Figure 3.17a
Displacaement of the cart on the track
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“elocity of the cart
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Figure3.17¢

Accelgration of the cart

Acceleration in meter per square second
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Figure 3.17d
Flexible pole angle
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Figure 3.17¢
Rigid pole angle
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The figures below represent the real time movement of the cart and the whip of the

pole for example 1.
.,  ~———rigid pole
elastic polx-_"t :

:__elastic pole

rigid pole—

Time = 0.0 (X1000 steps)
CART POLE BALANCING SYSTEM CART POLE BAILANCING SYSTEM
Real time simulation

Real time simulation

Do

| elastic pole . £—elastic pole
: po rigid pole_: :

rigid pole—:’

g
o
-

R

- T i et !
Time = 1.2 (X1000 steps) Time = 1.8 (X1000 steps)
CART POLE BALANCING SYSTEM CART POLE BALANCING SYSTEM
Real time simulation

Real time sirnulation

rigid pole—— .
., ——elastic pole

'__rigid pole

.
H

elastic pole——

Time = 4.0 (X1000 steps)

Time = 3.4 (X1000 steps)
CART POLE BALANCING SYSTEM CART POLE BALANCING SYSTEM
Real time simulation Real time simulation
i f—elastic pole
elastic pole——: rigid pole—,
B

i

Time = 4.6 (X1000 steps) Time = 5.2 (X1000 steps)
CART POLE BALANCING SYSTEM CART POLE BALANCING SYSTEM
Real time simulation Real time simulation
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3.3.4.2. Example 2:

In this simulation the values of the size of the cart, the length of the pole, and the

initial force were changed. The following data is as below.

Mass of the pole =0.0500 kg
Total mass of the pole and the cart = (.5050 kg
Total length of the pole = (.5000 meters
Breadth of the pole = 0.0150 meters
Depth of the pole = 0.0025 meters
Elasticity of the pole = (,1800 Pascal
Initial force applied = 1.0000 Newton
Coefficient of friction = 0.0800

Step size (H) =0.0010

Upper limit of integration (tmax) = 10.0000

Freq. intermediate printouts (Ifreq) =350

Initial time (t sec) =0.0

Initial pole angle (theta in deg) = 5.0000 degrees
Limitations of pole angle = 50.000 degrees
Initial pole velocity (theta/dt) =0.0
Acceleration due to gravity =9.81 m/sq sec.

80



Figures 3.18a to 3.18e¢ show the dynamic behaviour of the flexible pole-cart

balancing system for example 2

Figure 3.18a

Digplacement of the cart on the track
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Figure 3.18b
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Pole angle in radians

Acceleration in meter per square secand

Pole angle in radians
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Figure 3.18¢

Accelaration of the cart
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The figures below represent the real time movement of the cart and the whip of the
pole for example 2.

&—elastic pole

: elastic pole

rigid pole— * rigid pole——"

Time = 0.0 (X1000 steps) Time = 1.0 (X1000 steps)
CART POLE BALANCING SYSTEM CART POLE BALANCING SYSTEM
Real time simulation ' Real time simulation

?
i .
elastic pole.__',‘E rigid pole elastic polo_‘: rigid pole

H -

Time = 2.0 (X1000 steps) Time = 3.0 (X1000 steps)
CART POLE BALANCING SYSTEM CART POLE BALANCING SYSTEM

Real time simulation Real time simulation

1
L1 elastic pole - . elastic pole
rigid pok 2 rigid pole—ma_ K

B
;

Time = 4.0 (X1000 steps)
CART POLE BALANCING SYSTEM
Real time simulation

Time = 5.0 (X1000 sieps)
CART POLE BALANCING SYSTEM

Real time simulation
. -_ elastic pole f'r
rigid pot elastic polh....e‘ N rigid pole
b P = :
"’ 3 = 3
& . - ;
b b
Time = 6.0 (X1000 steps) Time = 7.0 (X1000 steps)

CART POLE BALANCING SYSTEM

CART POLE BALANCING SYSTEM
Real time simulation

Real time simulation
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Example 3:

In this simulation the initial values of the pole angle and the force applied to the

cart were changed. The data are as below.

Mass of the pole =0.1000 kg

Total mass of the pole and the cart = 1,1000 kg
Total length of the pole = 1.0000 meters
Breadth of the pole = 0.0300 meters
Depth of the pole = (0.0050 meters
Elasticity of the pole = ().1800 Pascal
Initial force applied = 5.0000 Newton
Coefficient of friction = 0.0000

Step size (H) =0.0010

Upper limit of integration (tmax) = 10.0000

Freq. intermediate printouts (Ifreq) =50

Initial time (t sec) =0.0

Initial pole angle (theta in deg) = 5.0000 degrees
Limitations of pole angle = 50.000 degrees
Initial pole velocity (theta/dt) =0.0
Acceleration due to gravity = 9.81 m/sq sec.



Figures 3.19a to 3.19¢ show the dynamic behaviour of the flexible pole-cart

balancing system for example 3

Figure 3.1%9a
Displacement of the cart on the track
0.15 ¥ - v T
0.1} .
v .05} 4
=@
=
=
= o .
S
=
o -0.05 —
-0.1 F R
- _15 I L A a a
o [} 20 40 B0 BO 100 120
Time steps X1000)
Figure 3.19b
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Figure 3.19¢

Accelaration of the cart
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The figures below represent the real time movement of the cart and the whip of the
pole for example 3.

rigid pole—.:.
pepe {——clastic pole

A

" 1_elastic pole
rigid pole— i

R

Time = 0.0 (X1000 steps) © Time = 0.2 (X1000 steps)

CART POLE BALANCING SYSTEM CART POLE BALANCING SYSTEM
Real time simulation Real time simulation

i N :. elastic le_'-- -
elastic pole—-_t. rigid pole po: ;-é__ng,d pole

Time =04 (X1000 steps)
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Real time simulation Real time simulation
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; rigid pole— *

X ;

; H

- H

4
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Time = 1.2 (X1000 steps) Time = 14 (X1000 steps)
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Real time simulation Real time simulation
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3.4. Analysis of Results

The program MAYMAY has been used to simulate the mathematical equations
derived in Section 3.2. The output of this program indicates that this analysis is
qualitatively correct. This needs to be verified by experiment. In order to balance the pole
on top of the cart it is necessary to control the force that is applied to the cart. The
magnitude of this force is directly proportional to the angle of the pole from the vertical
axis and the total weight of the cart and pole. If the angle of the pole increases or the total
weight of pole and cart increases then the magnitude of the force also increases. The
direction of the force is dependent on the direction of the angle. If the pole is inclined to
the left (angle is negative) then the direction of the force is also to the left, otherwise it is
the opposite. The value of the force used is selected based upon experiment within the
simulation. Figure 3.11 section 3.3.2 shows the algorithm of the controller for this.

The initial condition of the program is, at time ¢ equal to zero, the velocity and
displacement of the cart are zero. The force and the pole angle can be initialised to any
value (positive or negative). However, since there is a limitation to the length of the track,
the value of the pole angle is limited to plus and minus forty degrees. The movement of
the cart is dependent on the rate of change of the magnitude of the force and direction.
The faster the applied force changes in one direction, the more oscillation there is in of the
movement of the cart. Furthermore, the larger magnitude of force applied to the cart the
further it travels.

In order to centre the cart on the track, the distance it travels should be
controlled. This is derived and explained in section 3.2.2.3. The average frequency of the
cart’s acceleration is very important here. The frequency should not be small in order to
prevent the cart from hitting the track limit. The frequency should not also be too large, in

this case the cart will not move sufficiently far (see equation 26).
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The strength, efficiency and capability of program MAYMAY has been tested by
running it under various conditions to indicate that it appears that the flexible pole cart

problem can be controlled.

3.5. Summary

A computer simulation of the simple rule based control of a cart balancing a
flexible pole under its first mode of vibration was presented. The appropriate dynamic
equations of the system have been derived using Newton’s laws, Euler analysis, and Beam
theories. The system can be assumed to be with or without friction. Numerical integration
using fourth order Runge-Kutta was implemented. A real time graphics representation of
the cart balancing the flexible pole on a limited track can be displayed. The behaviour of
the system can be analysed and observed by viewing the graphs of the pole’s angle versus
time (either with or without friction), the acceleration of the cart versus time, the velocity
of the cart versus time, and the displacement of the cart versus time. The Turbo Pascal
language has been used to implement the computer program on an IBM PC machine.

The simulation program indicated that it was likely to be possible to balance a
flexible pole-cart system. It was therefore decided to proceed to demonstrations on a real
system without the necessary simplifications made to the model system and to explore the
applicability of non-conventional control techniques to the system..

The next chapters of this thesis are therefore focused on the development and
testing of on line and off line intelligent controllers using neural network algorithms and
fuzzy logic systems on a real system, and the simulation of the application of genetic

algorithms as an extension of the non-conventional control approaches.
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CHAPTER 4

Off Line Application of Neural Networks to the Flexible Pole-
Cart Balancing Problem

4.1. Introduction

Over recent years, neural networks have received a great deal of attention and are
being proposed as powerful computational tools [46]. The structures of neural networks
are roughly based on our present understanding of the biological nervous system. The
potential benefits of neural networks extend beyond the high computation rates provided
by massive parallelism. The application phase of neural networks takes relatively little time
compared to its training phase and therefore offers potentially faster solutions for problem
solving. The basic architecture of a neural network is presented in section 4.2.

This work presents a simulation of the flexible pole-cart balancing problem as a
test bed for neural network applications. As has been discussed earlier this type of problem
is more complex and highly nonlinear when compared to the classical rigid pole-cart
balancing problem because it gives an additional degree of freedom to the classical system,
e.g. its transverse displacement. The author has derived (see section 3.2) the mathematical
equations of the dynamics of this system and used computer simulation to test the validity
of the mathematical model. The results of this computer simulation have been used as the
training data for the neural network.

The objective of the work presented in this chapter is to develop and test neural
network based software that learns to predict the value of the force applied to the cart at
any given time in order to balance the flexible pole hinged at its root on the top of the cart.
The Backpropagation neural network architecture and Kohonen’s self organizing map
have been used to test the capability of neural networks to control the flexible pole-cart

balancing problem in simulation. A Backpropagation neural network has been trained by



supervised learning. The network was presented with training data set made up of pairs of
patterns i.e, an input pattern paired with a target output. Upon the presentation of this
data, weights within the network were adjusted to decrease the difference between the
network’s output and the target output (see section 4.2.2). The inputs are the elastic pole
angle, rigid pole angle, velocity of the cart, and the displacement of the cart, while the
output is the force applied to the cart.

A Kohonen’s self organizing map neural network is trained by unsupervised
learning. It modifies the connection strengths based only on the characteristics of the input
pattern presented to the network. It does not require any feedback (see section 4.2.3). In
the previous chapter the author used a rule based system to determine the force to be
applied to the cart using only the value of the pole’s angle. All this data were presented
to the neural network which learned to imitate these values using competitive learning.

This chapter begins with the discussion of neural network architectures and it
continues to the processes needed for the application of this neural network to the flexible
pole cart balancing problem. Results of the experiments conducted using neural network

controllers are presented.

4.2. Neural Networks

A neural network is an information processing system that is nonalgorithmic,
nondigital, and intensely parallel {44]. It consists of groups of very simple and highly
interconnected processors called neurons or processing elements (PE). PE’s are analogue
of the biological neural cells in the brain. A subgroup of PE’s is called a layer in the
network. The first layer is the input layer and the last layer is the output layer. The layers
that are placed between the input and the output layer are called hidden layers. The PE are
connected by a large number of weighted links, over which signals can pass. Each PE
typically receives many signals over‘ its incoming connections. These signals may arise

from other PE or from the external environment. A PE in a neural network receives input
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stimuli along its input connections and translates those stimuli into a single output
response, which is then transmitted along the PE’s output connections. The mathematical
expression that describes the translation of input stimulus pattern to output response signal
is called the transfer function of the PE [45].

Figure 4.1 is a typical neural network architecture. The circular nodes represent
PE’s. There are three layers, an input layer, a hidden layer, and an output layer. The
directed graph shows the connections from layer to layer. Although there may be more
than one incoming connection, there is never more than one outgoing line from each PE.
The outgoing connection often branches to carry the PE’s single output signal to many
destinations.

Figure 4.2 summarizes how a PE works. Each PE has a number of inputs (Xi),
each of which must store a connection weight (Wi) and compute one and only one output
signal (Y7). This output is a function (f) of the weighted sum EWl X, . The function (f)
maybe a sigmoid function, sine function, hyperbolic tangent function or various threshold

and linear functions. Weights (Wi) are variables and can be adjusted dynamically to
produce (Y)).
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4.2.1. Training and Learning in Neural Network

Traininé and learning are fundamental to nearly all neural networks. A network in
which learning is employed must be trained. Training is an external process or regimen. It
is the procedure by which the network learns. Learning is the result that takes place
internal to the network. It is the process by which a neural network modifies its weights in
response to external inputs. Weights are changed when the output(s) are not what is
expected.

Training is done using examples, and it can take place in three distinct ways [44],
namely; supervised, reinforcement, and unsupervised. In supervised training the network
is provided with an input stimulus pattern along with the corresponding desired output
pattern. The learning law for such a network typically computes an error, that is, how far
from the desired output the network’s actual output really is. This error is then used to
modify the weights on the interconnections between the PE’s. Initial weights can be set
randomly. Using this technique, a network can do things like make decisions, map
associations, “memorize” information, or generalize.

Reinforcement training is similar to supervised training except that the exact
desired output is not provided; only a “grade” of how well the network is working. In this
type of training the neural network only receives feedback indicating the value of the
system’s action. The weights are reinforced for properly performed actions and punished
for inappropriate ones. This technique is useful in those cases where supervisory
information is not available.

Unsupervised training is sometimes called self organization training. In this type of
training the network is presented only with a series of input patterns and is given no
information or feedback at all about its performance levels. The network uses no external
influences to adjust its weights. It looks for regularities or trends in the input signals, and
makes adaptations according to the function of the network. Even without being told
whether it’s right or wrong, the network still must have some information about how to

organize itself. Competition between PE’s can also form the basis for learning. Training
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of competitive clusters can amplify the responses of specific groups to specific stimuli and
associate those groups with each other. For example, processing elements could be
organized to discriminate between various pattern features, such as vertical edges or left-

hand and right-hand edges.

4.2.2. The Backpropagation Neural Network Architecture

The backpropagation neural network is one of the most important historical
developments of neurocomputing [47]. It is a powerful mapping network that has been
successfully applied to a wide variety of problems ranging from credit application scoring
to image compression. It was originally introduced by Paul Werbos in 1974 [48], and
extended by David Parker [49], and by David Rumelhart [50] in 1986.

The architecture of the backpropagation neural network is a hierarchical design
consisting of fully interconnected layers or rows of processing units (see figure 4.3). Each
unit is itself comprised of several individual processing elements. This architecture does
not have feedback connections, but errors are backpropagated during training, Errors in
the output determine measures of hidden layer output errors, which are used as a basis for
adjusting of connection weights between the input and hidden layers. Adjusting the two
sets of weights between the pairs of layers and recalculating the outputs is an iterative
process that is carried on until the errors fall below a tolerance level. Learning rate
parameters scale the adjustments to weights. A momentum parameter can also be used in
scaling the adjustments from a previous iteration and adding to the adjustments in the
current iteration,

The backpropagation network undergoes supervised training, with a finite number
of pattern pairs consisting of an input pattern and a desired output pattern. An input
pattern is presented at the input layer. The PE’s then pass the pattern digits to the next
layer of PE’s, the hidden layer. The outputs of the hidden layer PE’s are obtained by using
perhaps a bias, and a threshold function with the activations determined by the weights
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and the inputs. These hidden layer outputs become inputs to the outer PE’s, which also
process using possibly a bias and a threshold function with their activations to determine
the final output from the network. Once training is completed, the weights are set and the
network can be used to find outputs for new inputs. The number of PE’s in the input layer
determines the dimension of the inputs, and the number of PE’s in the output layer

determines the dimension of the outputs.

4.2.3. The Kohonen’s Self Organizing Map Neural Network

The self organizing map neural network was developed by Teuvo Kohonen of
Helsinki University of Technology during the period 1979 - 1982 [51, 52]. It is employed
only in unsupervised learning network applications, where no expected outputs are
presented to a neural network. A network, by its self organizing properties, is able to infer
relationships and learn more as more inputs are presented to it. One advantage to this
scheme is that the system will change whenever the conditions and inputs vary.

In this technique the processing elements compete for the opportunity of learning,
The processing element with the largest output is declared the winner and has the
capability of inhibiting its competitors as well as exciting its neighbors. Only the winner is
permitted as output, and only the winner plus its neighbors are permitted to adjust their
weights. The size of this neighborhood can vary during the training period. Inputs are fed
into each of the PE’s in the Kohonen layer from the input layer (see figure 4.4). Each PE
determines its output according to a weighted sum formula. The weights and the inputs
are usually normalized, which means that the magnitude of the weight and input vectors

are set from 0.0 to 1.0.
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Figure 4.3
Macroscopic architecture of the backpropagation neural network.
The boxes and circles are processing elements or neurons.
(X, .. X, areinputs; y, ... y, are outpuls; y,...y, are output errors )

97



Figure 4.4
A Kohonen Network

Figure 4.5
Winner PE with a neighborhood size of 2 for a Kohonen map
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4.3. The Flexible Pole-Cart Balancing System

The task of the flexible pole-cart balancing system is to balance an elastic pole that
is hinged on a movable cart. It is assumed that the hinge is frictionless. The cart is allowed
to move along a track with limited length and that has friction. Forces of different
magnitude are applied to the cart in either a left or right direction to balance the pole. The

dynamics of this system have been shown in Chapter 3.

4.4. Processes Involved In The Formulation Of The Flexible Pole-

Cart Balancing Control: Neural Network Perspective

This section describes the various processes involved in formulating the problem
from a neural network perspective and provides an effective specification of the
application of a neural network to the flexible pole-cart balancing system. These
processes are briefly described below.

(1) The decision on how the information for presentation to the neural network should be
represented is very important. Since neural networks are patfern matchers, the
representation of the data contained in the training sets is critical to a successful neural
network solution. Clear understanding of the problem is necessary. Writing a brief
narrative description of what the neural network will do is known to support this. For
this work, the goal is to develop a neural network that learns to predict the amount of
force exerted on the cart to balance the pole given the position of the pole,
displacement of the cart, and the velocity of the cart.

(2) It is important to have enough data to yield sufficient training and test sets to train and
evaluate the performance of the neural network effectively. The architecture of the
network, the training method, and the problem being addressed are dependent on the

amount of data required for training a network. In this research, the data used to train



the network are elastic pole angle, rigid pole angle, velocity of the cart, displacement
of the cart, and the force applied to the cart.

(3) The data sets in the input training set, as well as the desired output, should be as
orthogonal as possible; that is, the variables contained in the data sets should be
independent with no correlation.

(4) Generally, the majority of effort in developing a neural network goes into collecting
data examples and preprocessing them appropriately. The standard process is to
normalize the data. Here the requirement is that the input to each input processing
elements should be in the interval between -1.0 to 1.0 and the output to each output
processing element should be between 0.0 to 1.0. The following approaches have been
adopted for normalizing the raw data to the pole balancing problem before using it in
the neural network.

(A) For input values:
(i) el_ang n=el_ang_r/max_el ang;
where:
el_ang n =normalized value of the flexible pole’s angle.
el_ang_r = raw value of the flexible pole’s angle.
max_el_ang = largest absolute value of the flexible pole’s angle.
(ii) ri_ang n=ri_ang r/max_ri_ang;
where:
ri_ang_n = normalized value of the rigid pole’s angle.
ri_ang_r =raw value of the rigid pole’s angle.
max_ri_ang = largest absolute value of the rigid pole’s angle.
(iii) cart_vel_n = cart_vel_r/max_car_vel;
where:
cart_vel_n = normalized value of the cart velocity.
cart_vel_r = raw value of cart velocity.
max_cart_vel = largest absolute value of cart velocity.
(iv) cart_dis_n = cart_dis_r/max_car_dis;

where:
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cart_dis_n = normalized value of the cart displacement.
cart_dis_r = raw value of cart displacement.
max_cart_dis = largest absolute value of cart displacement.
(B) For output values:
force_n = force_r/max_force;
where:
force n = normalized value of the force exerted to the cart.
max_force = maximum value of the force exerted to the cart.
= 15 Newton
Since the output range is from 0.0 to 1.0 the author has used two output vectors
in order for the network to identify the direction of the force (negative & positive values)
as well as its magnitude.
Example :
For a normalized force of -0.5 the corresponding output data are
0.5 and 0.0.
0.0 indicates that the force is going left (-).
For a normalized force of 0.5 the corresponding output data are
0.5 and 1.0
1.0 indicates that the force is going right (+).

(5) Experiments must be carried out to train and test the neural network. The
“architecture” is a specification of the neural network topology, with other attributes
of the neural network such as the learning rule; activation function; update function;
learning and momentum factors. It should be kept in mind that the number of hidden
layers and number of nodes in each layer are problem dependent and are empirically
selected. It is necessary to vary the parameters used in the neural network such as the

learning rate, error tolerance, momentum, ¢tc. in order to get the fastest convergence.
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4.5. Discussions: The Neural Network Simulator

This section describes the construction of the neural network software for the
flexible pole-cart balancing problem. There are two algorithms used as a representative
networks; the Backpropagation, and the Kohonen’s Self Organizing Map. The code is
presented as Appendix C.

4.5.1. The Backpropagation Model

The architecture of backpropagation neural network has been discussed in
section 4.2.2. For the problem of interest the input layer consists of four PE’s because
there are four input variables to the network. The output layer has two PE’s since the
neural network needs two outputs in order to identify the direction and magnitude of the
force. In this program the best result was obtained by using two hidden layers, each layer
consisting of eight PE’s (see figure 4.6 for the complete structure). The following
equations [53] are used in the program,;

O = desired output pattern.

x = output of input layer

Y = momentum parameter.

A = learning rate parameter for the hidden layer.

n

= learning rate parameter for the output layer.
y;=f ((Z W[/ +0 ;) = output of jth hidden layer PE.
z; = (), yW,l1[j1)+7 ;) = output of jth output layer PE.
0, - z; = ith component of vector output difference.
g, = z,(1-z,)(0, — z;) = ith component of output error at the output layer.

t; = y,(1=y,X)_ jW,[i1[ jle,) = ith component of output error at the hidden layer.
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AW,[ALJ1= Wy.e; +YAW,[i1[j1(t —1) = adjustment for weight between ith PE in
hidden layer and jth output PE.

AW [ j]1= Ax;t it YAW,[i1[j1( — 1) = adjustment for weight between ith input
PE and jth PE in hidden layer.

At = [le; = adjustment to the threshold value or bias for the jth output PE.

AD; = Ae; =adjustment to the threshold value or bias for the jth hidden layer PE.

f(x)= = thresholding function.

(1+e™)

The program needs the following information from the user:

(a) Error tolerance - this is the difference between desired output and networks computed
output. If this is attained the program simulation will stop.

(b) Learning parameter - used in scaling the adjustment to weights.

{c) Maximum number of cycles - a cycle is one pass for the whole training data. This will
insure the program stops even if the error tolerance is not attained.

(d) The total number of layers.

(e) The total number of processing elements for every layer.

(f) Momentum parameter - used in scaling the adjustments from the previous iteration
and adding the adjustments in the current iteration.

(g) Noise - a random number added to each input component of the input vector as it is
applied to the network. This will avoid getting stuck to local minima.

The momentum and noise terms are described more fully in section 4.5.2, There
are two major processes to be undertaken to construct the backpropagation network. The
first one is the training process and the second one is the testing process. All of this
processes use external files for data storage. The training process uses files input.dat,
weights.dat, and results.dat. File input.dat contains exemplar pairs, or patterns. Each
pattern has four input variables and two output variable (see table 4.1). Once the training
process reaches the error tolerance or the maximum number of cycles, the program keeps
the state of the network, by saving all its weights in file weights.dat. Results of the last

pattern are stored in file results.dat. In the testing process the user will enter only the
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number of layers of the network and the processing elements for each layer. The program
has assumed that the network has already been trained. External files testing.dat,
weights.dat and results.dat are used in this process. File testing.dat contains only the input
patterns. When this file is presented to the network it then uses the weights from file
weights.dat to evaluate the output. The outputs from the network for all input patterns

are then generated and stored in the file results.dat.

4.5.2. The Momentum and Noise Terms

Addition of the momentum term to the training law is a simple change that
sometimes results in much faster training process. The weight change, in the absence of
error, would be a constant multiple of the previous weight change, i.e. the weight change
continues in the direction it was heading [53]. The momentumn term is an attempt to try to
keep the weight change process moving, and thereby not get stuck in a local minima. The
training law for backpropagation as implemented in this simulator is:

Weight change = learning_rate * input * error_ouput +

momentum_parameter * previous_weight _change

The second term in this equation is the momentum term. The momentum term
could be implemented either using the weight change for the previous pattern or using the
weight change accumulated over the previous cycle. Although both of these
implementations are valid, the second is particularly useful, since it adds a term that is
significant for all patterns, and hence would contribute to global error reduction.

Another approach to avoid local minima is to introduce some noise in the input
during training. A random number is added to each input component of the input vector as
it is applied to the network. This is scaled by an overall noise factor, which has a value
from O to 1. The noise factor is reduced at regular intervals because as the solution is

closer and have reached a satisfactory minimum, it is not needed to interfere with
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convergence to the minimum. In this simulation, noise factor decreases as the number of

cycles increases.

Cart

Figure 4.6
Backpropagation neural network model for flexible
pole-cart balancing system
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4.5.3. Kohonen’s Self Organizing Map Model

The Kohonen model is composed of two layers. The input layer and the Kohonen
layer (see figure 4.4). Information from the external environment is fed into the input
layer. In this program the external information is solely the position of the pole. A rule
based system is then used to search for the range of this position (maximum and minimum
angle) and the equivalent force applied to the cart for this position. This inputs are fed into
each of the processing elements in the Kohonen layer. The Kohonen layer uses a winner-
take-all strategy. The processing elements with the highest output is the winner. Each
processing element determines its output according to a weighted sum formula [53):

output = ZW.jx'. .

i

The weights and the inputs in this program are normalized, which means that the
magnitude of the weight and input vectors are set equal to one. The reason for this is that
the training law uses subtraction of the weight vector from the input vector and
normalization reduces both vectors to unit-less status, and hence, makes the subtraction of
like quantities possible. Normalization of a vector is obtained by dividing each component

by the square root of the sum of squares of all the components.

Example: let a vector V = k,x + k,y + kyz ; sq = JE K]+ K]
then the normalized vector is :
_hx Ky k2
sq sq 3q

The training law for the Kohonen model is straightforward. The change in weight

|4

n

vector for a given output neuron is given by the formula [10]:
W, =W, ta(l, —W,_,); where . = gain constant between 0 and 1.
I = Input vector
The neighborhood size normally has an initial value and it will gradually be
decreased as the input pattern cycles continue. The same is true for the gain constant o .

This program uses two external files for data storage. The input patterns are stored in file
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input.dat and the outputs of the network when the simulation finished are stored in file

results.dat. In order to run the program the user must enter the following information.

a) Neighborhood size.

b) Gain constant o .

¢) Maximum cycles for the simulation; a cycle is one iteration through the data set.

d) Period; this is the number of cycles after which the o and neighborhood size
decrement.

e) The size of the input layer and the Kohonen layer.

4.6. Discussion of Results

The author conducted a number of different sets of experiments in this program.
The training data consisted of 40 patterns (see table 4.1). Different methods were used to
normalize the data and the best method being the one described in section 4.4. In the
application of backpropagation algorithm a number of different layers and processing
elements were tried. For a three layer architecture the simulation did not converge. Good
results were obtained for four layers. The time of convergence depended on the number of
processing elements in each hidden layer. The addition of momentum parameter and noise
factor also helped the simulation to converge. In this program the best result was obtained
using the following input parameters (see section 4.5.1 for parameter definition).

a) Error tolerance = 0.007039

b) Learning parameter = 0.01

¢} Maximum number of cycles = 3050

d) Total number of layers = 4

e) Total number of processing elements for every layer

(input hidden hidden output =4 8 8 2)
f) Momentum parameter = 0.01

g) Noise factor = 0.05
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Samples of the results of the backpropagation simulation are shown in tables 4.1 and 4.2

The program for the Kohonen network is straightforward. Here the number of the
processing elements of the Kohonen layer should be greater than the number of the
processing elements of the input layer. During some training sessions the winning distance
achieved an incorrect value, this was solved by reducing the initial value of the
neighborhood size. In this program the best result was obtained using the following input
parameters (see section 4.5.3 for parameter definition).

A) Alpha =06

b) Neighborhood size = 10

c¢) Period =40

d) Maximum cycle = 30.

Samples of the results of Kohonen program are shown in table 4.3.
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Table 4.1: Examples of the results of the backpropagation simulation using 2
outputs.

Samples of the training data for backpropagation model with 2 outputs
(The first 4 columns are the input data and the last 2 are the desired output)
(This is the training data used for examples 1, 2,3, & 4)

INPUT DATA : QUTPUT DATA
ngld pole : Elasuc pole § Carl i Cat {  Force : Force
* : B . . CLOCLLY : *_directi
0. 838203 . 0. 846334 0. 482706 i -0.866357 : 0 847458 : 10
0647774 0660336 @ 0.685901 : 0694884 : 0661017 @ 10
0402434 : 0413959 : 0.845998 : -0457932 : 0423729 | 1.0
0.121891 : 0.126050 : 0952937 : -0.165491 : 0.152542 @ 1.0
-0459220 : -0471551 : 0368853 : 0521115 : 0474576 . 00
20186079 : -0.192290 : 0125581 : 0230196 : 0203390 : 0.0
0.105567 : 0.109182 @ -0.125581 : -0.146711 : 0135593 : 1.0
0387285 0398548 © -0363852 : -0440001 - 0406780 : 1.0
Example 1
Inputs:

a) Error tolerance = 0.007039

b) Learning parameter = 0.01

¢) Maximum number of cycles = 3050

d) Total number of layers =4

e) Total number of processing elements for every layer
{input hidden hidden output =48 8 2)

f) Momentum parameter = 0.01

&) Noise factor = 0.05

Oulputs of example 1:
INPUT VECTORS . OUTPUT VALUES
Rigid pole : Elastic pole ; Cart : Cart Force : Force
angle angle _ : displacement :  velocity @ magnitude direction

0838203 - 0846334 : 0482706 : -0.866357 : 0.841673 0999996
0647774 : 0660336 : 0685901 : -0.694884 : 0673766 ? 0.999993
0402434 | 0413959 : 0.845998 : -0457932 : 0384845 : 0999978
0.121891 @ 0.126050 : 0.952937 @ -0.165491 : 0.162709 : 0.999701
-0459220 : -0471551 : 0368853 : 0521115 : 0487629 : 0.000157
-0.186079 @ -0.192290 : 0.125581 : 0230196 : 0.177145 : 0.002171

0.105567 : 0.I09182 : -0.125581 : -0.146711 : 0.143045 " 0995773
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Example 2

Inputs:

a) Error tolerance = 0.0075
b) Learning parameter = .01

¢) Maximum number of cycles = 2525

d) Total number of layers =4
e) Total number of processing elements for every layer
{input hidden hidden output =4 12 12 2)

) Momentum parameter = .01
g) Noise factor = 0.05

QOutputs of example 2:
INPUT VECTORS QUTPUT VALUES
Rigid pole : Elastic pole : Cart : Cart Force . Force
angle angle : displacement :  velocity | magnitude @ direction
0.838203 0846334 | 0482706 @ -0.866357 : 0.853668 : 0.999984
0.647774 0.660336 0.685901 -0.694884 @  0.693899 : 0.999962
0.402434 0.413959 0.845998 -0.457932 0392296 : 0999860
0.121891 0.126050 0.952937 -0.165491 |  (.167283 : 0998675
-0.459220 -0.471551 0.368853 0521115 © 0483844 - 0.000078
-0.186079 -0.192290 0.125581 0.230196 0.176161 - 0.002150
0.105567 0.109182 -0.125581 -0.146711 : 0.131581 : 0.991830
(0.387285 0.398548 -0.368852 0440001 0382929 _: 0999813
Example 3
Inputs:

a) Error tolerance = 0.0075
b) Learning parameter = 0.01

¢) Maximum number of cycies = 1360

d} Total number of layers = 4
e) Total number of processing elements for every layer
{input hidden hidden output =4 16 16 2)

J) Momentum parameter = 0.01
g) Noise factor = 0.05

Outpuis of example 3:
INPUT VECTORS QUTPUT VALUES
Rigid pole : Elastic pole : Cart : Cart : Force :  Force
angle angle . displacement :__ velocity | magnitude : direction
0.838203 0.846334 0482706 : -0.866357 @ 0.861767 : 0.999988
0.647774 0.660336 0685901 _: -0.694884 : 0726439 : 0.999981
0.402434 0413959 0.845998 -0.457932 . 0411485  : 0.999946
0.121891 0.126050 0.952937 -0.165491 : 0.142722 : (.999201
-0.459220 -0.471551 0.368853 0521115 : 0474354 0.000141
-0.186079 -0.192290 0.125581 0230196 : 0.186945 : 0.003093
0.105567 0.109182 -0.125581 -0.146711 :  0.134045  : 0.990485
0387285 (.398548 0368852 -044000] (390488 0999867 |
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Example 4

Inputs:
a) Error tolerance = 0.0075
b) Learning parameter = (.01
¢) Maximum number of cycles = 1394
d) Total number of layers =4
¢) Total number of processing elements for every layer
(input hidden hidden output = 420 20 2)
f) Momentum parameter = 0.01
g) Noise factor = 0.05
Outputs of example 4:
INPUT VECTORS OUTPUT VALUES
Rigidpole : Elastic pole ; Cart : Cart : Force :  Force
angle | angle ¢ displacement : velocity . _magnitude : direction
0.838203 0.846334 0482706 : -0.866357 : 0.847876 : 0.999994
0.647774 0.660336 0.685901 : -0.694884 : 0705844 : 0.999988
0.402434 0.413959 0.845998 : -0457932 - 0409977 _: 0.999956
0.121891 0.126050 0.952937 -0.165491 :  0.153431 : 0.999167
-0459220 -0471551 0.368853 0521115 - 0486288  : 0.000050
-0.186079 -0.192290 0.125581 0230196 0.183329 : 0.002801
0.105567 0.109182 -0.125581 -0.146711 :  0.116891 @ 0.990446
.387283 0.398548 -0.368832 0440001 0332119 0999927
Example 5
Inputs:
a) Error tolerance = 0.0075
b) Learning parameter = 0.01
c) Maximum number of cycles = 5000
d) Total number of layers = 3
e) Total number of processing elements for every layer
{input hidden output =4 16 2)
f} Momentum parameter = 0.01
g) Noise factor = 0.05
Quiputs of example 5:

(The simulation experience local minima at: error = (.045711, max. cycles = 5000)

INPUT VECTORS OUTPUT VALUES

Rigid pole | Elastic pole : Cart : Cart ; Force :  Force

angle angle  : displacement : velocity @ magnitude : direction
0.838203 0.846334 : 0.482706 @ -0.866357 : 0.709629 : 1.000000
0.647774 0.660336 0.685901 _: -0.694884 : 0678095  : 1.000000
0.402434 0.413959 0.845998  -0457932 : 0.571376 : 1.000000
0.12189]1 0.126050 0952937  -0.165491 : 0433940 _: 0.999979
-0.459220 -0.471551 0.363353 0521115 0632237 : 0.000001
-0.186079 -0.192290 0.125581 0230196 :  0.630291 _: 0.000390
0.105567 0.109182 -0.125581 -0.146711 0.605158 : 0.998291
0387285 (1398548 -0 368852 -rm_w
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Table 4.2: Example of the results of the backpropagation simulation using 1
output.

Samples of the training data for backpropagation model with one output
(The first 4 columns are the input data and the last 1 is the desired output)
(This is the training data used in example 6)

INPUT DATA * _QUTPUT DATA
Rigid pole | Elastic pole ; Cart ; Cart . Force magmtude
angle : Ang li : i ___an ;
0.838203 : 0. 846334 . 0 482706 -0, 866357 5 0. 847458
0647774  0.660336 r 0.685901 _ : -0.6948834 0.661017
0402434 : 0413959 : 0.845998 : -0.457932 0423729
0121801 0126050 : 0952937 : -0.16549] 0152542
-0459220 : 0471551 ‘  0.368853 : 0.521115 -0.474576
-0.186079 @ -0.192290 @ 0.125581 : 0.230196 : -0.203390
0.105567 : 0.109182 @ -0.125581 : -0.146711 : 0.135593
1387285 : (398548 ° -0368852 : -0440001 : 0406780
Example 6
Inpufs:

a) Error tolerance = 0.0075

b) Learning parameter = 0.01

¢) Maximum number of cycles = 4000

d) Total number of layers = 4

e) Total number of processing elements for every layer

{input hidden hidden output =416 16 1)
) Momentum parameter = 0.01
g) Noise factor = 0.05
Outputs of example 6:

(The simulation experience local minima at: error = 0.082327, max. Cycles = 4000)
(When maximum cycles reached 4388 the weights blown up and the program stopped)

INPUT VECTORS : QUTPUT VALUES
Rigid pole § Elastic pole Cart : Cart : Force magnitude
angle angle @ displacement : velocity :  and direction
0.838203 E 0.846334 : 0482706 _: -0.866357 : 0.856467
0647774 . 0660336 : 0685901 @ -0.694884 : 0.744855
0402434 : 0413959 :  0.845998 : -0457932 : 0.296580
0.121891 : 0.126050 : 0952937 : -0.16549] : 0.340751
-0459220 : -0471551 : 0368853 i 0521115 : 0.000000
0186079 0192290 ©  0.125581 0230196 _ __ 0.000000
0.105567 : 0109182 @ -0.125581 : -0.146711 : 0.067407
0387285  *  (139R854K% i (368132 ' .044009] 0453112
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Table 4.3: Examples of the results of the Kohonen’s simulation.

. __Actual angle Max. Angle Min, Angle Force Cycles
Tnputdata . 0002000 | 0003000 | 0001001 0200000
Output pattern :  0.002000 ; 0.002996 : 0.001004 i 0200011 : 7
Inputdata  : 0003500 { 0006000 | 0003001 ;i 0300000 :
Output pattern :  0.003499 : 0.005995 : 0.002995 : 0300068 : 7
Inputdata  © 0355000 | 0357000 | 0354000 : 12000009 :
Outputpattern | 0355012 | 0357029 | 0354005 | 11997505 @ 1
Inputdata 0200000 | 0201000 | 0.98001 | 679999
Outputpattern © 0200040 | 0201061  : 0198270  : 6794923 : 3

4.7. Summary

This chapter has demonstrated the use of neural networks in the control of a highly
nonlinear system. A computer simulation of a neural network controlling a model of a
cart balancing a flexible pole under its first mode of vibration has been presented. The
backpropagation algorithm and Kohonen’s self organizing map had been used as neural
network examples. The networks learned from a set of training data taken from the
results of a computer simulation of the derived dynamics of the flexible pole-cart
balancing system (see chapter 4).

The next chapter of this thesis shows the application of a neural network based

controller to a real physical flexible pole-cart balancing system.
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CHAPTER 5

On Line Application of Neural Networks to the Flexible Pole-
Cart Balancing Problem

5.1. Introduction

This chapter presents an on line neural-net based hybrid controller that controls a
cart balancing a flexible pole under its first mode of vibration. The networks learned from
a set of training data derived from a real system and were initially tested against a
computer simulation of the derived dynamics of the flexible pole-cart balancing systermn and
then applied to the real system. The architecture of the neural network is the same as that
described in section 4.5.1 with the force output directly mapped to a voltage required by
the actuator in controlling the motion of the cart (see figure 5.4). The controller developed
had been tested on the physical system and it not only balances the elastic pole for infinite
time but also brings the cart nearly to the centre of the track. The controller can still
balance the system even if external disturbances are applied to the plant (i.g., pushing the
pole in any direction, elevating and shaking the track on either side, etc.). The system can
also be initialised anywhere on the track. The controller’s action is sufficiently fast that it
can balance the system at an initial angle of -19.8 degrees. This is superior to the
performance of even rigid pole controllers such those of [3, 4, 5, 6, 9, 10, 11]. The real
physical system was constructed by the Quanzer Consulting Company to the authors
specification. It was the first such system to be built. Results of experiments on the system
are shown in section 5 4.

This chapter begins with the discussion of the hardware architecture of the real
flexible pole-cart balancing system and it follows with the application of the neural

network. The results of the physical experiments at different conditions are presented.
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5.2. The Physical Architecture of the Flexible Pole-Cart Balancing
System

A photograph of the real system and the hardware architecture are shown in
figures 5.1 and 5.2. The specifications of the physical system are given below. Appendix B

also describes the proprietory control system.

914 cm
®  Pole length = 41.0cm

® Track length

* Mass of the cart & camera sensor = 0.755 kg
® Additional load on the tip of the pole = 0.35 kg
® Period of the elastic pole = 2 seconds

e Camera system = coupled at the base of the pole and a light bulb is attached to the

tip of the pole.

In the real physical system a camera system is used to detect the deflection of the
pole. This is coupled at the base of the flexible pole and will detect the light coming from
the bulb attached to the tip of the pole. The deflection of this light corresponds to the
deflection of the pole. A potentiometer is attached to the base of the elastic pole in order
to obtain its angular position. To determine the distance travelled by the cart, another
potentiometer is attached to the wheel that rolls on the track. The values of these sensors
are then fed to the computer via an analog to digital / digital to analog converter (AD/DA
converter) see figure 5.2. In order to make the problem more complex an additional load
was attached on the tip of the pole equivalent to 0.35 kilograms. This has the effect of

increasing the period of the elastic pole to 2 seconds.
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Figure 5.1
A photograph of the real flexible pole-cart balancing system
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5.3. Application of Neural Network Model to the Flexible Pole-Cart
Balancing System

Figure 5.3 shows the on line hybrid controller block diagram for the flexible pole-
cart balancing problem. The backpropagation controller described in section 4.2.2 was
applied to the real system with the outputs directly mapped as voltages to the actuator
(see figure 5.4). The training data was taken from observations of the inputs and outputs
of the real system with its existing controller. Discussions of the training and testing
process of this controller was similar to that shown in section 4.5. The backpropagation
based controller successfully balanced the pole for a limited period. However, this control
system frequently failed due to the cart running out of track. In order to solve this
problem, a hybrid control system (see figure 5.3) was then applied to the physical system,
the backpropagation system being overridden in extreme cases by a small rule based
supervisory system that periodically corrected extreme angles of the pole that caused the
cart to decentralise on the track.

It can be seen from figure 5.5 that the feedforward neural network
(backpropagation algorithm) used to control the system has 2 hidden layers. Each hidden
Iayei:' has 8 processing elements (neurons). The input layer has 4 processing elements and
the output layer has 2 processing elements. The actual value of the weights connecting
each processing element is shown in table 5.1. Here, the leftmost value corresponds to the
n@bcr of the layer and the number of lines having the same leftmost value corresponds to
the number of processing elements for that layer. For example, the first four lines have a
leftmost value of 1. The number one corresponds to the first layer, and the four lines
correspond to the four processing elements of this layer. The next 8 lines have 2 leftmost
value of 2 indicating the second layer, and the last 8 lines have a leftmost value of 3 for
‘the tLird layer.

The values next to the leftmost number on each line correspond to the weights that
connect a processing element of that layer to all of the processing elements of the next
layer. For example, each processing element of the first layer is connected to 8 processing

elements of the second layer, hence, there are 8 values next to the leftmost number 1. The
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same is true for the second layer, each processing element is connected to 8 processing
elements of the third layer, hence, there are 8 values after the leftmost number 2. Finally,
the third layer has only two values after number 3 because each processing element is
connected only to the two processing elements of the output layer. It is worth noting that
the arrangement of the weight values are sequential, meaning, a processing element of a
layer is connected to the first processing element, second processing element, third
processing element, and so on, of the next layer. The first line of the same leftmost value
corresponds to the first processing element of this layer, the second line corresponds to
the second processing element of this layer, etc.

Table 5.2 describes the rule base of the evaluator used to correct extreme

behaviours of the neural network.

NEURAL -NETWORK %
In BASED LEARNING | ..
—T 1 CONTROLLER [~ "PLANT

(FNN)

4o

4

PERFORMANCE
EVALUATOR

Figure 5.3
Hybrid controller block diagram for the flexible
pole-cart balancing problem (on line)
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Figure 5.4
Backpropagation neural network model for the flexible
pole-cart balancing problem (on line)
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Table 5.1
The values of the weights connecting each processing element of the on line feedforward
neural network controller

1-0.188662 -14.036287 -3.352839 -2.473303 1.985948 19.490234 11.239498 0.481953
14.956312 -2.398801 -4.827594 -7.715945 0.969971 0.219576 0.509925 -12.291900
1 1.993420 -2.410884 -16.832338 9.828149 0.335660 1.427019 -0.122610 -14.757426
17.953069 -4.432342 7.229471 0.493617 1.000431 -0.147754 5.767792 -7.396082

2 -2.260085 2.721589 -0.617301 0.991330 -7.796785 1.129860 5.016824 -3.787388

2 -0.694484 -13.195033 -4.532439 4.279198 1.135099 3.270727 -7.059445 -2270613
2 -7.269268 -14.795992 -4.052489 5.050180 1.482505 1.696126 -2.924294 2.483483
2 5.767020 1,752683 -0.856498 1.665344 -7.655233 -3.964407 -0.737276 -3.415481
20.008674 0.932936 1.678631 0.618250 -3.230417 0.894155 -1.421489 -1.976010

2 0.980527 13.268960 5.889343 -1.131561 0.221078 -7.700460 0.936903 3.213932
20.087941 10.657167 4.582888 -0.344960 -2.330751 1.065558 -0.837586 -1.921857
22.037073 -14.794135 -5.376902 3.622092 7.990932 1.187436 1.665400 3.076303

3 -0.107427 -8.428615

31.923418 26984537

3 -7.034989 -0.344512

3 0.184818 -5.594577

3 3.655073 10.139201

3 -1.026488 -8.348601

3 8.367657 1.654985

3-0.067262 6.702623
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Table 5.2
The rule based evaluator

Rule 1 If (pole angle > 2.31 degrees) then applied voltage = 5.0.
Rule 2 If (pole angle < -2.31 degrees) then applied voltage = -5.0.
Rule 3 If (pole angle > 1.01 degrees} and ( pole angular velocity > 0.01 degls)

then applied voltage = 3.0.
Rule 4 If (pole angle < -1.01 degrees) and ( pole angular velocity < -0.01 degls)
then applied voltage = -3.0.
Rule 5 If (displacement of the cart > 14 cm.} and (velocity of the cart >
0.01 cmisec)and (pole angle > 1.01 degrees)
then applied voltage = 2.0).
Rule 6 If (displacement of the cart > 14 ¢cm.) and (velocity of the cart < -0.01
cmisec) and (pole angle > 1.01 degrees)
then applied voltage = 1.1.
Rule 7 If (displacement of the cart < -14 cm.) and (velocity of the cart < -0.01
cmisec) and (pole angle < -1.01 degrees)
then applied voltage = -0.5.
Rule 8 If (displacement of the cart < -14 cm.) and (velocity of the cart > 0.01
cmisec)and (pole angle < -1.01 degrees)
then applied voltage = -0.2.

It can be seen from these rules that rules 1 to 4 take care of balancing the pole
under extreme conditions, rules 5 to 8 bring the cart to the centre of the track. Rule 1 is
the condition when the pole angle inclines more to the right, while rule 2 inclines more to
the left. Rules 3 and 4 is the condition when the pole move fast towards the inclination.
Rule 5 is the condition when the cart stays to the right, pole angle inclines to the right, and
the cart moves to the right. Rule 6 is the same as rule 5 but the cart moves to the left. Rule
7 is the condition when the cart stays to the left, pole angle inclines to the left, and the cart

moves to the left. Rule 8 is the same as rule 7 but the cart moves to the right.
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5.4. Results of the Physical Experiments

In this work the author conducted several experiments on the real physical system.
The graphs of figures 5.5(i) to 5.15(i) show the actual behaviour of the flexible pole-cart
balancing system under different conditions. Each of these graphs depicts the motion and
position of the system at any time, the X-coordinate. The Y-coordinate corresponds to the
measurements of the angle of the pole in degrees, the deflection of the pole in centimetres,
and the location of the cart on the track in centimetres.

The motion of the cart can be analysed by reviewing the graph of the cart
displacement. The graph of the pole angle and the pole deflection shows the motion and
position of the flexible pole on top of the cart. For example, figure 5.5(i) shows the
behaviour of the system when it was initialised at -19.8 degrees. Here, in order to balance
the flexible pole, the cart moves quickly to the left direction and after 0.4 seconds the pole
angle reached 4 degrees. To bring back the pole angle to the centre the cart then moved
back to the right. The system then stabilised after 0.7 seconds and the controller tried to
bring the cart to the centre of the track. Also, it can be seen from this figure that the faster
the motion of the cart, the larger is the deflection of the pole.

Figures 5.7(i) and 5.8(i) show the behaviour of the system when it was initialised
nearly at the end of the track. The controller effectively balances the flexible pole and
gradually brings the cart to centre of the track. In figures 5.14(i) and 5.15(i) the controller
still balances the system even when the system is initialised at the extreme end of the track
with the pole inclined over the end of the track. The controller developed was tested to
establish how it react to external disturbances applied to the flexible pole. Figure 5.9(i)
shows the behaviour of the system when an external force is applied to the pole. Here, at
2.75 seconds the pole was pushed to the left. Immediately the controller reaction was to
move the cart quickly to the left. The controller easily stabilises the system and brings
back the cart to the centre of the track.
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External disturbances to the track were also applied to the system. Figures 5.10(i)
and 5.11(i) show the graphical results of the behaviour of the system when the right and
left ends of the track were elevated. Here, the controller balances the pole easily and the
cart oscillates around the centre of the track. Figure 5.12(1) shows the graphical result of
the behaviour of the system when the track was shaken randomly laterally and figure
5.13(i) shows the behaviour of the system under normal operation. It should be
emphasised that for all of the test cases presented the controller developed was able to
control the system for infinite time. This represents an improvement on the Quanzer

controller, particularly the results shown in figures 5.14(i) and 5.15(i).
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Figure 5.7(i)

Cart started almost at left end of the track
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Elastic pole angle in degrees

Figure 5.7(iii)
Cart started almost at left end of the track
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Elastic pole deflection in centimetars

Elastic pole angle in degrees

Figure 5.8(ii)
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Figure 5.9(i)

Applying external forces to the pole
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Elastic pole angle in degrees
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Elastic pole deflection in centimeters

Elastic pole angle in degrees
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Elevating the left side of the track
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Figure 5.11(iii)
Elevating the left end of the track
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Elastic pole deflection in centimeters

Figure 5.12(ii)
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Elastic pole deflection in centimeters
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5.5. Summary

An on line reinforcement learning hybrid neural network controller was developed
to balance a flexible pole hinged root on top of the cart moving along a limited track. The
physical experiments show that the controller not only balances the flexible pole but also
brings the cart to the centre of the track for infinite time. The learning controller
developed is sufficiently robust to control the system at different initial pole angles and
different initial cart positions on the track. The stability, flexibility, and adaptability of this
learning controller was tested by applying external disturbances to the plant.

The next chapter of this thesis discusses the development and test of an on line
intelligent controller that controls the flexible pole-cart balancing system without knowing
the mathematical descriptions of the dynamics of the system, using a fuzzy logic control

system.
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CHAPTER 6

Multiple Fuzzy Logic Systems: An on line controller for the
Flexible Pole-Cart Balancing Problem

6.1. Introduction

Classical controllers are designed on the basis of mathematical descriptions such as
differential equations or transfer functions, while modern controllers use first order vector
matrix differential equations based on the state space method [54]. In these techniques, a
controller designer has to possess extensive knowledge of both mathematics and the
system under control. However, an experienced person can skillfully control vehicles,
machines and manufacturing plants even though the systems under control are very
complex and nonlinear. These experts mostly use know-how which has been gathered
from experience. This suggests that there is another technique which can facilitate the
control of a complicated system without knowledge of its mathematical description. This
technique is popularly known as fuzzy logic control - the use of fuzzy inference to control
a system.

The concept of fuzzy logic was introduced by Zadeh in 1965 [55]. This system is
unique in that it is able to simultaneously handle numerical data and linguistic knowledge.
It is a nonlinear mapping of an input data vector into a scalar output, i.e. it maps numbers
into numbers but fuzzy set theory and fuzzy logic establish the specifics of the nonlinear
mapping [56]. The applications of this technique are multi-disciplinary in nature. These
include, for example, automatic control, consumer electronics, signal processing,
information retrieval, time series prediction, database management, computer vision, data
classification and decision making [57]. The application of fuzzy logic to control
problems was introduced by Mamdani in 1975 [59, 59].

This work presents the flexible pole-cart balancing problem as a testbed for fuzzy

logic applications. Here, the objective is to develop and test an on line fuzzy logic
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controller that predicts the value of the force applied to the cart at any given time in
order to balance the flexible pole hinged at its root on top of the cart. In this work
multiple fuzzy logic systems have been used to fuzzify the input data from the
environment. There are six input data to the systern (the elastic pole deflection, deflection
velocity, angular position, angular velocity, cart displacement, and cart velocity). Results
of the physical experiments are shown graphically in section 6.9.2.

This chapter begins by the discussion of the concepts and architecture of a fuzzy
logic systems and it continues by the development of a fuzzy logic controller for the
flexible pole-cart balancing problem. The results of on line experiments conducted on this

controller are presented.

6.2. Fuzzy Logic System

A fuzzy logic system is a system design that is based on how the human brain
thinks. It arose from the desire to describe complex systems with linguistic description
[54]. Fuzzy logic looks at the world in imprecise terms in much the same way that our
own brain takes in information. The information is described in terms of fuzzy linguistic
terms. These fuzzy linguistic terms are called fuzzy sets and can be regarded as sets of
singletons, the grades of which are not only 1 but also ranging from 0 to 1. Each singleton
is an element of fuzzy sets.

The concept of fuzzy sets is made precise through the definition of an associated
membership function. This membership function indicates a grade of membership of each
element (physical value) in a fuzzy linguistic term of interest. Fuzzy membership functions
are the mechanism through which the fuzzy system interfaces with the outside world [60].
The domain of the membership function is the set of possible values for a given variable.
The possible output values of the membership function is the set of all real numbers from
0 to 1. A typical choice of the shape of the fuzzy membership function is a triangular,

trapezoidal, or a gaussian function.
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Fuzzy sets can be combined through fuzzy rules to define specific actions. The
fuzzy system can provide insight into their own operation because the fuzzy rules provide
a commonsense description of the system own action. The technique used to store and
represent fuzzy rules is the fuzzy associative memory matrix (see section 6.6). This matrix
may have dimensions higher than two. Usually the number of inputs, or antecedents, to
the fuzzy rules determines the dimension of the matrix.

Figure 6.1 depicts a fuzzy logic system that is widely used in fuzzy logic
controllers and signal processing applications [56). It contains four components: fuzzifier,
rules, inference engine, and defuzzifier. Once the rules have been established, a fuzzy logic
system can be viewed as a mapping of inputs to outputs.

Rules are expressed as a collection of IF-THEN statements, e.g. IF the cart
position is far left and the pole angle inclined more to the right THEN apply a force
to the right. This rule reveals that it is necessary to understand linguistic variables versus
numerical values of a variable (e.g., angle inclined more to the right versus 20 degrees). It
is also necessary to quantify linguistic variables (e.g., how much force will be applied to
the right). This can easily be done using fuzzy membership functions (see section 6.7).

The fuzzifier maps crisp input numbers into fuzzy sets. It is needed in order to
activate rules which are in the terms of linguistic variables, which have fuzzy sets
associated with them. The inference engine maps fuzzy sets into fuzzy sets. It handles the
way in which rules are combined. The defuzzifier maps output set into crisp numbers (e.g.,

in control application, such a number corresponds to the control action).
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6.3. The Flexible Pole-Cart Balancing System

The task of the flexible pole-cart balancing system is to balance an elastic pole that is
hinged on a movable cart [72, 73, 74, 75]. It is assumed that the hinge is frictionless. The
cart is allowed to move along a track with limited length and that has friction. Forces of
different magnitude are applied to the cart in either a left or right direction to balance the
pole. Figure 3.1 shows the diagram of the dynamics of the system. As has been described
earlier, in the real physical system (see section 5.2), the length of the track that the cart
can travel is 91.4 cm . The length of the pole is 41.0 cm. The total mass of the cart and the
camera sensor is 0.755 kg. An additional load of 0.35 kg is attached on the tip of the pole

to increase its elastic deflection to make the control problem more testing.

6.4. Processes Involved in the Formuiation of the Flexible Pole-
Cart Balancing Control: Fuzzy Logic Perspective

This section describes the various processes involved in formulating the problem
from a fuzzy logic perspective and provides a specification of the application of a fuzzy
logic controller to the flexible pole-cart balancing system. These processes are briefly
discussed below.

It is important to know all the variables to be used in the controller including the
input data, the variables within the fuzzy rules (e.g. antecedents and consequents) and
their maximum and minimum values. In this controller, there are 6 input data (the cart
displacement, cart velocity, pole deflection, pole deflection velocity, pole angle, and pole
angular velocity). The rules have 2 variables for the antecedents and 7 variables for the
consequents. It has been found helpful sub-divide the complex problem into its elements.
Therefore cart displacement, pole angle, and pole deflection are handled separately, to

make the controller design simple.
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It is necessary to establish the shape of membership function suitable for describing
each problem element (triangular, trapezoidal, gaussian, etc.) and number of regions and
their range for each membership function. The shape is not necessarily the same for each
problem element. The number of membership functions corresponds to the number of the
input regions of the fuzzy rules. In this controller, there are 5 regions created (see section
6.7) to limit the usage of computer memory which increases with the number of fuzzy
rules and regions. _

It is also important to know the strategy to be used in selecting useful sets of fuzzy
rules and the conjunctions within the rules. Knowledge of how and when to combine more
than one rule is helpful. In this controller each fuzzy logic system has only 13 rules (see
section 6.6). Note that, in this application, we are particularly concerned with cart
position if the cart is in the negative, left, part of the track and heading further left, or in
the positive, right, track and heading further right. Similarly, if the pole angle and
deflection is too large or changing too fast, this should be corrected regardless of the
location of the cart on the track. In this controller we have used 6 variables and 5 input
regions. If all of these variables were used in the antecedents and 5 regions are adopted for
each variable, 5°= 15625 rules must be examined. It is impossible for the designer to
generate this large rule set. In order to cope with this problem, the number of variables
must be reduced. In order to achieve this the author has implemented multiple fuzzy logic
systems (see section 6.5).

Any controller must be tested until it works as effectively as possible. The effect
of varying the fuzzy rules, the variables and the range of the values and shape of the
membership f_unctions was explored by experiment. It was also found necessary to check

the values of the sensors (e.g. the input data).
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6.5. Application of Fuzzy Logic Controller to the Real Physical
Flexible Pole-Cart Balancing System

Figure 6.2 shows the fuzzy logic controller generated for the flexible pole-cart
balancing problem. 5 fuzzy logic systems (FLS) and a rule based evaluator are used to
control the flexible pole-cart balancing system. The architecture of the fuzzy logic systems
is shown and discussed in full in section 6.2. The importance of using multiple FLS is to
minimize the memory consumption of the computer, and each FLS serves as a good filter
to the noise on the input data. FLS1 is a fuzzy logic system that maps the cart
displacement and cart velocity to the crisp outputl. Crisp outputl corresponds to the crisp
numerical value that will compensate for the effect of the movement of the cart on the
overall system, FLS2 is a fuzzy logic system that maps the pole angle and angular velocity
to crisp output2. Crisp output2 corresponds to the crisp numerical value that will
compensate for the effect of the movement of the flexible pole on the overall system.
FLS3 is a fuzzy logic system that maps the pole’s deflection and deflection velocity to
crisp output3. Crisp output3 is the crisp numerical value that will compensate for the
effect of the movement of the flexible pole, due to its deflection and deflection velocity, on
the overall system.

Since the contribution of the effects of crisp output2 and crisp output3 to the
plant are similar, the two of them can be fuzzified further using FLS4. This maps crisp
output2 and crisp output3 to crisp outputd. Crisp output4 is the crisp numerical value that
will compensate the fuzzified effect of the movement of the pole due to its angular
position, angular velocity, deflection, and deflection velocity, on the overall system. In
order to obtain the overall crisp value that will compensate the effect of the total
movement of the system, crisp outputl and crisp output4 map to crisp output5 through
FLS5 which will fuzzify further the fuzzified effect in FLS1 and FLS4. The FLS5 process
filters the noise on the final data required to control the system. Finally, to ensure that the
cart stays at the center of the track a rule based evaluator (see figure 6.2) is used to

evaluate the condition of the plant. The evaluator adds additional constant forces to those
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supplied by the fuzzy system when the cart exceeds particular displacements. The output
of the rule based evaluator is then fed to the plant for appropriate action. External
disturbances can be applied to the plant at any time without affecting the performance of

the controller.

6.6. Fuzzy Associative Memory (FAM) Matrix

The FAM matrix is a method of storing and representing fuzzy rules. In this
controller, each fuzzy logic system (FLS) has two inputs. Each input variable has 5 fuzzy
sets associated with it, which are labeled NL (negatively large), NS (negatively small), ZE
(zero), PS (positively small), and PL (positively large). Note that here ZE is a fuzzy set
that would typically represent a range of values near 0, not just a single numerical value 0.
The output variable has 7 fuzzy sets associated with it: NL (negatively large), NM
(negatively medium), NS (negatively small), ZE (zero), PS (positively small), PM
(positively medium), and PL (positively large). The number of inputs, or antecedents, to
the fuzzy rules determines the dimension of FAM matrix. Thus, in this controller we are
using a 2 dimensional FAM matrix.

Note that, we are particularly concerned with the pole position if the pole angle is
too large and increasing. The same is true for its deflection. These need to be corrected
regardless of the location of the cart in the track by applying maximum force to the cart
with the same direction as the inclination of the pole. Similarly, if the cart is too near the
end of the track, this should be corrected regardless of the state of the flexible pole (angle
and deflection) by applying maximum force to the cart towards the end of the track,
making the flexible pole incline more in the other direction, thus in turn allowing the
controller action to balance the flexible pole by applying more force to the opposite side of
the cart and at the same time bringing it to the center of the track.

The FAM matrix for FLS1 is shown in table 6.1. This is used to fuzzify the cart’s

displacement and velocity to obtain a crisp result (output) that can compensate the effect
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of the dynamic movement of the cart (due to its displacement and velocity) on the system.

These rules can be interpreted as :

Rulel : IF Xis NLand X is NL THEN the output result is NL.
Rule2: IF X is NL and X is ZE THEN the output result is NM.

Rule3: IF X is NL and X is PL. THEN the output result is PS.
and so on
Note that :

X = the displacement of the cart.

X = the velocity of the cart.
The FAM of the other FLS’s are shown in tables 6.2 to 6.5. The operations of these are

similar to table 6.1.

149



Final Qutput (volts)

‘ """"" £ 1 FLS1 crisp outputl FLSS crisp output$
1 X
’ asssaiesaiasnsn +
Pl
N
L : : 9
: : Rule
PP ey .
gl A iF0 g |FLs2 [t Based
' » U ) Evaluator
Nl b FLS4 7
N b crisp output4
T }W{a
s p|Fs3|——
: besveeessoneeed 2 crisp output3
....[..'
Figure 6.2

Multiple fuzzy logic controller block diagram

150



NL | NS ZE PS PL
NL NL NM PS
NS NM NS
X ZE | NS ZE PS
PS PS PM
PL NS PM PL
Table 6.1

(Fuzzy associative memory matrix for FLS1)

0
NL|[NS | ZE | PS | PL
NL | NL ZE ZE
NS NM NS
0 |ZE | NS ZE PS
PS PS PM
PL | 7ZE ZE PL
Table 6.2

(Fuzzy associative memory mairix for FLS2)

This is used to fuzzify the pole’s angle and angular velocity to obtain a crisp result
(output) that will compensate the effect of the movement of the pole (due to its angular

position and angular velocity) to the entire system.
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D

NL NS ZE PS PL
NL NL ZE ZE
NS NM NS
D |ZE NS ZE PS
PS PS PM |
PL ZE ZE PL
Table 6.3

(Fuzzy associative memory matrix for FLS3)
This is used to fuzzify the pole’s deflection and deflection velocity to obtain a crisp
result ( outpur) that will compensate the effect of the movement of the pole (due to its
deflection and deflection velocity) to the entire system.

0 fsO

NL |NS ZE |PS PL
NL NL NS PS

NS NM PS
DftsD|ZE {ZE ZE ZE

PS NS PM
PL. __|NS PS PL

Table 6.4

(Fuzzy associative memory matrix for FLS4)

This is used to fuzzify further the fuzzified effect of the movement of the pole’s angle
and angular velocity with the fuzzified effect of the movement of the pole’s deflection
and deflection velocity to obtain a crisp result (output) that will compensate the effect of
the movement of the pole (due to its angular position, angular velocity, deflection, and
deflection velocity) to the entire system.
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© fsé)fS(D fs b)

NL NS ZE PS PL
NL |NL NM NS
NS NM NS
X fs X |ZE__[NS ZE PS
PS PS PM
PL PS PM PL
Table 6.5

(Fuzzy associative memory matrix for FLS5)

This is used to fuzzify further the fuzzified effect of the movement of the pole’s angle,
angular velocity, deflection, and deflection velocity with the fuzzified effect of the
movement of the cart’s displacement and velocity to obtain a crisp result (output) that
will compensate the effect of the total movement of the entire system.
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6.7. Membership Functions (MF’s)

Membership functions map each element of “universe of discourse” to a
continuous membership value (or membership grade) between 0 and 1. The “universe of
discourse” may contain either discrete objects or continuous values. In this controller
each membership function is sampled to discrete grades, whose representation depends on
the type of input variables (e.g., -5.0 to 5.0 centimeters for the cart displacement, -5.0 to
5.0 degrees for the pole angle, etc.). The shape and the regions of the membership
function can be changed by reassigning its grade distribution as shown in figures 6.3 to
6.5. Determination of the shapes of each membership function usually requires some trial
and error [60]. The exact shape of the functions, as well as where they intersect the
horizontal axis and how much overlap exists between adjacent functions, is open to
experimentation.

There are two shapes of membership functions used in this controller (see section 6.9.1).

1. Trapezoidal MF’'s specified by four parameters {a.,b,c,d} which determine the x

b-a
2. Triangular MF’s specified by three parameters {a,b.c] which determine the x

d —_
coordinate as follows: trapezoid(x; a,b,c,d) = max(min( ,l,d—x),O) 6.1)
-

coordinate as follows: triangle(x; a,b,c) = max(min(; —4 , °- ;),0) (6.2)

The leftmost and rightmost regions of the MF of figures 6.3 to 6.5 are an open
trapezoid whose values for d and c are equal to 0. Other shapes of MF are triangles.

Obviously a triangular function is a special case of a trapezoidal function.

154



Figure 6.3
Membership functions for the cart’s displacement
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6.8. Defuzzifier

A defuzzifier is a way of obtaining a deterministic value, in the universe of
discourse, from a fuzzy value (membership function). The most popular method of
defuzzification is a center-of-gravity method {61, 62). In this research our “universe of
discourse” contains discrete objects, thus our membership function is represented by a
sampled data (a set of elements). The center-of-gravity (C.G.) for discrete membership

functions can be calculated using equation 6.3.

ios "My

jo]

iu;

isl

Crisp output = C.G. = (6.3)

where n represents the number of elements of the sampled membership function, U, the
grade of ith element, and o, the output variable of the ith fuzzy set. The maximum value
of n is equal to the total number of fuzzy rules in the FLS. The value of |, can be
calculated using equation 6.1 or 6.2. For this particular system the output variable o, has
7 fuzzy sets associated with it. (e.g. NLNM,NS,ZE,PS,PM,PL). The value of the output
variable is based on the voltage capacity of the actuator, hence has specific values in volts:
NL =-475,NM =-2.65,NS =-1.35,ZE =0.0, S = 1.35, PM = 2.65, PL = 4.75.
These values were derived through experimental observation of the flexible pole-cart

balancing process.
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6.9. Resuits of the Physical Experiments

6.9.1. Discussion and analysis

The author conducted a number of different sets of experiments in this work. The
first experiment was to attempt to develop a single fuzzy logic system (FLS) to control the
plant (the flexible pole-cart balancing system). The application of this controller was not
encouraging. The controller was very sensitive to noise from the pole deflection as the
values of the deflection of the pole and the deflection velocity can vary abruptly. In order
to further eliminate this noise a controller was built with multiple FLS. This technique is
effective because each FLS acts as a noise filter.

In this work, different total numbers of fuzzy rules were also applied. Attempts
were made using 27, 75, 135 rules, etc. Unfortunately the results of the application of
these controllers are not appropriate because increasing the number of rules increased the
memory consumption of the computer program. Attempts to change the number of input
regions (number of membership functions) to 3 regions did not give encouraging results.
Best results were obtained using 5 regions (see figures 6.3 to 6.5). The size of these
regions plays an important role. The more regions overlap each other, the better is the
result, because of the design aim to use minimum number of rules. Choosing the exact
position where regions overlap is critical and depends on knowledge of the physical
structure of the plant and the capability of the sensors (e.g. knowing the exact size of the
track, the minimum and maximum deflection of the pole as well as its angle for the system
to operate, etc.). The shape of the regions is also important. It can be seen in figures 6.3 to
6.5 that open trapezoids were used in the leftmost and rightmost regions. Whenever the
plant reaches these positions (the beginning of the horizontal line and beyond), the
controller gives a maximum output value to the system.

Since the output of the FLS is based on generalized results, the pairing of input
variables (antecedents of the fuzzy rules) for fuzzification is particularly important. Good
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results occur when input data that have similar characteristics (e.g., [X,X], [0.,0],

[D,D], etc.) are combined. This technique is effective in building multiple FLS. As

discussed earlier this eliminates the excessive noise on the flexible pole’s deflection sensor,

After fuzzifying [0 8 1 and [D,i)], we further fuzzify the two results together.

Selecting the fuzzy associative memory (FAM) matrix plays a vital role in the
process. FAM matrices of smaller dimensions are easier to deal with. Although we have
6 inputs from our plant, we have been able to reduce the size of our FAM matrix by
considering two inputs at a time. It can be seen from section 6.6 that the input of each
FAM matrix has 5 fuzzy sets. This means that we have 5x5 = 25 possible fuzzy rules
generated. However, there is no need to assign all of these rules because membership
functions (see figures 6.3, 6.4, 6.5) are assigned in such a way that neighboring
membership functions penetrate each other. This means that a defect in one rule can be
compensated (interpolated) by the surrounding four rules [1]. Thus this technique enables
us to minimize the total number of fuzzy rules in our FL.S.

In this work, the accuracy of the sensor initial values (offsets) are important. The
fuzzy controller design assumes that there are zero sensor values when the system is
balanced. Unfortunately, in the real physical system it is extremely difficult to achieve this
(i.e., all the values of the sensors = 0 when the pole is perfectly balanced on the center of
the track). This initialization difficulty causes a slight offset in the data to the controller
that leads to the cart traversing off the track. This problem was resolved using by the rule

based evaluator (see figure 6.2) thus correcting for the initial transducer offset errors.

6.9.2. Graphical results

The graphs of figures 6.6(i) to 6.9(i) present the results of on line application of
the fuzzy logic controller. These figures show the complete status of the system with

respect to time (i.e. the pole angle, pole deflection, and the cart displacement). The
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movement of the cart is shown by the graph of the cart displacement, and the movement
of the pole by the graphs of pole deflection and angle.

Figure 6.6(1) shows the result of operating the system a.t an initial condition of:
pole angle = -20.5 degrees, pole deflection = 1 em, and cart displacement = 5 cm. Here,
the cart initially moved quickly to the left in order to balance the pole. After 0.5 seconds
the pole position changed to 10 degrees causing the cart to move back to the right.
Because of this movement, the pole moved back towards the left, even though it reaches
18 degrees at 0.8 second. The movement of the pole going left is best seen on the graph of
the pole deflection. It can be seen that at 0.75 second the pole deflection is -3.0 cm. This
means that the pole moved quickly towards the left. Finally, at 1.0 second the system
stabilized.

Figure 6.7(i) shows the result of operating the system initially on the left end of the
track. It can be seen that the controller brings the cart to the center of the track after 4.7
seconds without any difficulties in balancing the pole. Figure 6.8(i) shows the result of
applying external forces to the pole. Here, at 1.3 seconds the pole was pushed towards the
left and stabilized at 2.3 seconds. At 3.1 seconds the pole was again pushed towards the
right direction and stabilized at 4.1 seconds. Figure 6.9(1) shows the result of elevating the
right end of the track. Here, the graph shows that the cart moved towards the center of
the track, keeping the pole balanced. It can be seen from the graphs that the deflection of
the pole stays below 1.0 cm as soon as the system stabilizes. The figures also show a
superposed vibration at the natural frequency of the pole/mass system.

Other results of operating the system at different conditions are shown in figure
6.10(i) to 6.16(1). This represents an improvement on the Quanzer controller. It should be
emphasized that for all test cases presented the controller develoveped was able to control

the system for infinite time.
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Figure 6.10(i)
Initial angle at 15.3 degrees
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Figure 6.11(i)

Initial distance at 40.3 cm
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Figure 6.11(iii)

Initial distance at 40.3 centimeters
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Figure 6.12(ii)

Elevating the left end of the track
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Figure 6.13(i)
Applying External forces to the car
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Pole deflection in centimeters
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Figure 6.14(i)
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Pole angle in degrees
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Figure 6.15(ii)

Initial distance = -40.1 cm, Initial angle = -7.1 deg
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6.10. Summary

This chapter presented the applicability of fuzzy logic based algorithms to control a
cart balancing a flexible pole. The controller design includes 5 fuzzy logic systems (FLS)
and a single rule based evaluator that centres the pole on the track. Results of physical
experiments show that the controller not only balances the flexible pole indefinitely but
also brings the cart to the centre of the track. The controller can also easily adapt to
disturbances from the external environment (e.g. moving or shaking the track randomly,
elevating the height of the track on either side, pushing the pole in any direction,
preventing the pole from moving further by putting an obstacle in its path). The operation
of the system can also be initialised anywhere in the track. The controller is sufficiently
fast to balance the system from an initial angle of 20 degrees.

The next chapter presents the application of a combination of genetic algorithm
and fuzzy logic system techniques in the control of the flexible pole-cart balancing

problem.
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CHAPTER 7

A Fuzzy-Genetic Controller for the Flexible Pole-Cart
Balancing Problem

7.1. Introduction

A fuzzy logic system is a nonlinear mapping of an input data vector into a scalar
output, i.e. it maps numbers into numbers [56]. Such systems were introduced by Zadeh in
1965 {55]. Section 6.2 of this thesis explained the concepts and architectures of the fuzzy
logic systems. The application of fuzzy logic to control problems was introduced by
Mamdani in 1975 [58, 59]. Mamdani uses fuzzy logic to control the plant using fuzzy
inference with rules preconstructed by an expert. Here, the most important task is to
formulate the rule base which represents the experience and intuition of human experts. |
However, when a rule base from a human expert is not available, efficient control may not
be possible [65]. Also, tuning the fuzzy logic membership functions requires the
adjustment of many parameters simultaneously and is difficult to do manually. A
probabilistic optimisation method utilising evolution strategies such as genetic algorithms
can be employed to solve this problem.

Genetic algorithms are algorithms for optimisation and learning based on the
mechanism of genetic evolution [63]. They were proposed by John Holland in 1975 and
are a search procedure based on the mechanics of natural selection. A probabilistic
component provides a means to search poorly understood, irregular spaces. This makes it
likely that the system converges towards the global solution because it simultaneously
evaluates many points in the parameter space. Genetic algorithms have been successfully
applied to a variety of function optimisations, self-adaptive control systems, and learning
systems [64].

The objective of this research is to test the capability of a genetic algorithm

approach to formulate and optimise the parameters (i.e. fuzzy rules, membership
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functions, and fuzzy associative memory matrix) necessary to implement a fuzzy logic
controller to control the flexible pole-cart balancing problem (see section 3.2 for the
dynamics of this problem). This minirnises the role of a human expert in the design of a
fuzzy logic controller.

In this chapter, the objective function (a function on which an optimisation
algorithm operates seeking its maximum or minimum point) of the genetic algorithm used
to obtain the fitness of each chromosome is calculated from the evaluation function of the
fuzzy logic system. The data used to train the genetic emulation is taken from the results
of a rule based controller acting, in simulation, on the derived dynamics of the flexible
pole-cart balancing problem [72, 74] as described in chapter 3.

This chapter begins by the discussion of the concepts and architecture of a Genetic
Algorithms and continues by the development of an off-line fuzzy-genetic controller as an
application to the flexible pole-cart balancing problem. The results of the experiments

conducted on this controller are presented.

7.2. Genetic Algorithms

Genetic Algorithms (GA’s) are a biologically inspired class of algorithms that can
be applied to, among other things, the optimisation of nonlinear multimodal (many local
maxima and minima) functions [60]. They solve problems in the same way that nature
solves the problem of adapting living organisms to the harsh realities of life in a hostile
world.

The major concepts of the genetic algorithm are that of chromosomes, and the
operations of mutation and reproduction. The GA maintains a set of trial solutions called
chromosomes and forces them to evolve towards an acceptable solution. The algorithm
uses survival of the fittest as well as thé knowledge of the previous gene pool to improve
each generation’s ability to solve the problem [67]. A chromosome is constructed by

stringing binary representations of vector components end to end (see figure 7.1). This

176



represents an encoding of information upon which the algorithm operates. The length of a
chromosome depends on the vector dimension and the desired accuracy.

In order to obtain acceptable problem solutions the operation of reproduction and
mutation is applied. A reproduction (or crossover) is a form of mating which combines
two chromosomes to produce two new chromosomes (see figure 7.2). It is in this process
that the GA can exploit the knowledge of the gene pool by allowing good chromosomes
to combine with chromosomes that are not as good. This is based on the assumption that
each individual, no matter how good it is does not have the answer to the problem [67]. Tt
randomly selects a site along the length of the chromosome, and then splits the two
chromosomes into two pieces. The new chromosomes are then formed by matching the
top piece of one chromosome with the bottom of the other. The process of mutation will
randomly change the bit value of the chromosomes (see figure 7.3). This is based on the
idea that while each generation is better than the previous, the individuals that provide no
offspring might have some information that is essential to the solution. Also, this will
reinject information to the population because it might be that the initial population did not

get all the necessary information.
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Figure 7.1
A chromosome - consists of a string of bits
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Figure 7.3
Mutation operation of a chromosome
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7.3. Application of Fuzzy-Genetic Controller to the Flexible Pole-Cart
Balancing System

The main objective of this research is to develop a hybrid genetic fuzzy logic
controller that can predict the value of the force applied to the cart at any given time in
order to balance a flexible pole hinged at its root on the top of the cart without the
knowledge of a human expert. As mentioned earlier formulating the parameters (fuzzy
rules and membership functions) for the fuzzy logic controller is extremely difficult
without the knowledge of an expert. In this work a genetic algorithm is used to formulate

| these parameters by training the system using a training data set taken from the results of
the rule base controller simulating the derived dynamics of the flexible pole cart balancing
problem. This is equivalent to, for example, copying system data that is obtained from a
system under human control. Figure 7.4 shows the block diagram of the entire process.
The genetic algorithm determines its chromosomes fitness through the objective function
calculated from the fuzzy logic system evaluation function. The trained information
consists of the parameters needed by the fuzzy logic system (i.e., fuzzy rules, membership
functions, input regions, etc.). A comparison of the result of the fuzzy-genetic controller
and the rule based controller is shown in section 7.4. The Genetic Algorithm source code

is shown in Appendix E.
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7.3.1. Fuzzy-Genetic operation

In this controller there are two major processes involved: fraining and
implementing the trained system. Training is accomplished by running the GA operating
on the fuzzy system evaluation function. The function to be optimised by the GA is called
the evaluation function. Here, the goal is to minimise the error function, that is, the
accumulation over the training set of the absolute difference between the fuzzy system
output and the desired output value. The GA seeks to maximise its evaluation function, it
is therefore necessary to turn the error function upside down by subfracting it from a fixed
constant that is larger than the largest error [60]. Here, the fixed constant value is equal to
2, and in order to insure that the maximum value of the accumulated error should not
exceed 1, this is multiplied by an inverse of the maximum cumulative error. Thus, the
value of the evaluation function is assigned to be between 1 and 2, with the 2
corresponding to minimum error. Every time an optimum value is attained, the fuzzy
system parameters are saved to a file.

During the training process, GA’s operate in cycles called generations, and a
population of chromosomes is maintained. An individual chromosome is assigned a fitness
value based on a problem-specific evaluation function [60]. Fitness values can be
normalised, scaled, shared or left unchanged [68]. Maximum fitness is rewarded, the
evaluation function must be chosen so that its maximum corresponds to the desired value
of the function to be optimised. For every generation, pairs of individual chromosomes are
chosen for the reproduction operation. The fitness of an individual determines the
likelihood that it will be selected for this operation. During the reproduction operation
mutation is randomly applied and a new population is determined. Over the course of a
number of generations, the average fitness of the population increases, and the fittest
individuals approach acceptable solutions to the application problem.

The implementation of the fuzzy logic system controller is straightforward,
following the determination of the relevant parameters. These parameters are passed to the

fuzzy system described in full in chapter 6 and in [74]. Thus, the parameters of the trained
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fuzzy system are taken from a file, this is then interfaced with the training file and

normalisation procedures. Since the system is now trained the GA is not needed further.

7.3.2. Adaptation of the Fuzzy Logic System Parameters Using Genetic
Optimisation '

The most important parameter in determining the fuzzy logic system output is
representing and manipulating the fuzzy set of rules. The Fuzzy Associative Memory
(FAM) matrix i1s responsible for doing this, hence, we will focus much attention on
adapting the FAM. To apply genetic optimisation to FAM matrix adaptation, the matrix
entries are strung together into a single long vector. Binary representation is used so that
each matrix entry itself is a vector of 0’s and 1’s. This is the chromosome upon which the
genetic algorithm operates.

In this system we use 4 input variables (the pole angle, the pole deflection, the cart
displacement, and the cart velocity) and 1 output (the force applied to the cart) variable.
We use a single FAM matrix that deals with all inputs simultaneously. Also, we use 3
input fuzzy sets for every input variable, hence the FAM matrix has 3* = 81 entries. Take
note that this number will grow very quickly if we increase either the number of input
variables or the number of input fuzzy set for each variable. Since each FAM matrix entry
is an output fuzzy set, we use 3-bit binary representation for this, giving 8 possible output
fuzzy sets. As we mentioned earlier, these FAM matrix can be thought of as 0’s and 1’s,
stringing these together end to end, we get a chromosome of length 3 x 81 = 243 for our
genetic optimisation.

The number of fuzzy membership functions is equal to 3 since it is equivalent to
the number of input fuzzy sets. The shape of the membership function is assumed to be
trapezoidal, hence we have 4 points defining each membership function. However,
assuming that each trapezium penetrates each other, then adjacent trapeziums share two of
their defining points (subintervals), thus, each membership function, with the exception of

the final right trapezoid, increases the total number of defining points by two (see figure
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7.5). Hence, if N is the number of membership functions, then there are a total of 2(N-1)

defining points [60].
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Figure 7.5
Defining points for 3 membership functions
(There are 5 equal length subintervals)
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7.3.3. The GA Program

Figure 7.6 shows the step by step process of the genetic algorithm program for the
flexible pole cart balancing problem. Refer to Appendix E for the source code. Below are
the parameters used in this program
* Population size = 54

Typical population sizes range from 40 to 100 individuals. Longer chromosomes

may require larger population.

e Mutation probability = 1/population size = 0.0185

This is the probability of mutation for a single bit during crossover operation.
¢ Reproduction/crossover probability = 0.6

This is the probability to determine if reproduction operation is to be applied to

selected pair. If reproduction is not applied, the pair is sent on to the next

generation unchanged except for possible mutation.
¢ Total number of generations = 150

A generation is a step or a cycle of GA’s operation. Pairs of chromosomes are

chosen for the reproduction operation.
¢ Bitlength = 3

This determines numeric accuracy or, alternately, dynamic range when the problem

involves optimisation over numeric vectors.
e Vector length = 81

The number of components in each vector when optimisation is over a set of

vectors.

» Chromosome length = (bit length)x(vector length) =243

Length of each chromosome.
¢ Maximum tolerance = 0.01

An error tolerance use to terminate the generation. If an individual is found with a

fitness within tolerance of maximum fitness, the algorithm stops.

e Maximum fitness = 2.0
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The maximum fitness for each chromosome.

The program shown in figure 7.6 starts with the initialisation of variables needed in

fuzzy logic system and genetic algorithm (see pages 301, 302, 303 and 310 appendix E).

The training data is taken from the external file fl_ga.trn and normatised for GA's

operation (see page 317 appendix E). The process then continue by starting the ldop for

the optimisation operation. The loop will terminate only when the prescribed number of

generations or the error tolerance is attained. The optimisation process involves the

following operations:

Selection of pairs of chromosomes based on its fitness (see page 304 appendix E).
Reproduction and mutation operation (see page 305 appendix E).

Calculation of the chromosomes fitness using fuzzy logic evaluation function (these
are the chromosomes for the new population; see page 323 appendix E).

Obtained X fittest chromosomes from the pool of X new and X old population (these
are the X chromosomes for the new population; see page 306 appendix E).

Re-scale the fitness of the new X population (see page 305 appendix E).

Finally, if new optimum value found, then store information to external file fl_ga.fzs.

These are the parameters used for fuzzy logic controller.

185



START

Setup Genetic
Algorithm Variables
and Fuzzy Logic
System Variables

w

Get Training Data &
Allocate Memory

Normalise
Training Data

h 4

Initialise Variables:
Fuzzy Logic System
Genetic Algorithm
Population

Tolerance <=

max_tolerance

Pop_size < =
total population
X

L

Select pairs of
chromosomes
according to fitness

Start
Generation

Apply reproduction
& mutation process

Calculate
chromosomes fitness
using fuzzy logic
evaluation function

Pick X Fittest
chromosomes
from X new and X old
population

h 4

Re-scale the fitness
of new X population

if there is new
optionum
value

Store information to
file. These are the
parameters used for
fuzzy logic controller

—{ Display information i

Figure 7.6

The genetic algorithm computer program
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7.4. Discussion of Results

A comparison of the result of application of the fuzzy-genetic controller to the
desired output for the flexible pole-cart balancing problem is shown in figure 7.7. The
graph shows that the controller is able to predict the desired behaviour with a high
accuracy. Slight errors appear at the maximum values of the output because this is the
time when the cart abruptly changes its direction. The predicted error of the fuzzy-genetic
model is shown in figure 7.8. The error is measured from the absolute difference of the
actual output of the fuzzy logic impleinentor and the desired output behaviour. The
convergence speed of the GA is shown in figure 7.9. It can be seen from this graph that it
took only 200 seconds to get the optimum fitness of 1.9693. Figure 7.10 shows the graph
of the chromosomes fitness versus the number of generations. Here, the maximum fitness
had been aftained in less than 50 generations.

As the GA progresses, the average fitness of the population increases. Since there
is an upper bound of fitness, this has the effect of compressing the range of fitness values
for the population (e.g. the difference between the largest and smallest fitness values
shrinks). In order to solve this problem the concept of scaling was introduced. The scaling
simply magnifies the range of fitness values in a linear way [60]. For example, suppose the
algorithm reaches a point where all of the fitness values are between 1.935 and 1.945
(with an optimal maximum value of 2.0). For purposes of reproduction selection, scaling
would change the upper value 1.945 to 1.0, and the lower value 1.935 to 0.05. The effect
of this is that the individual chromosome with a fitness value 1.0 has a better chance of
selection for the next reproduction than the individual whose fitness value is nearly equal
to 0.0. '

In order to improve the convergence speed, the GA uses a survival of the fittest
approach by picking the fittest individual from the old and new population to participate in
the next generation. For example, if the standard size of the population is P, mutation and
reproduction operations will produce a new population of size P, then the old and the new

population can be combined together, producing a superpopulation of size 2P. The GA
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then picked the P fittest individuals from this superpopulé.tion for the next generation’s

population. This technique proved to be very effective on the training process.

Figure 7.7
A comparison of a fuzzy-genetic output to the desired output

Fuzzy-genetic force (-), Desired force () tn Newton

0 05 1 1.6 2 25 3 35 4 45
Number of steps (X1000)
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Figure7.8

Prediction errors for the fuzzy-genetic model
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Figure 7.10

Genetic Algorithm fitness measured from 1 to 2
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7.5. Summary

This chapter investigates the applicability of developing a controller based on
genetic algorithms combined with fuzzy logic to control the flexible pole-cart balancing
problem. The genetic algorithm is used to obtain the values of the variables required by the
fuzzy logic controller, removing the need for expert knowledge. The system employs
genetic search to extract the fuzzy rules and membership functions using an objective
function calculated from the fuzzy logic system evaluation function. The extracted rules
are used in the fuzzy associative memory matrix entries so that the fuzzy logic system
performance fits the desired behaviour. Results show that the controller developed is able
to predict the desired output for the flexible pole-cart balancing problem with high

ACCuracy.
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CHAPTER 8

Conclusions

8.1. The Inverted Pendulum Problem

For the past decade many researchers have used the inverted pendulum problem as a
model for the development of learning control systems [3,4,5,6,9,10,11]. Many authors
have successfully used neural network techniques to construct these control systems.
Although it is true that the dynamics of the inverted pendulum is nonlinear, Geva and
Sitte[10] discovered that it is easy to find, by simple random search in weight space, linear
controllers that not only balance the pole but also centre the cart. With this discovery
Geva and Sitte concluded that controlling an inverted pendulum is not as difficult a
nonlinear problem as has been assumed by many authors.:

Further the inverted pendulum systern. has only two degrees of freedom and
therefore any learning controller demonstrated on this application is likely to have limited
application in more demanding applications such as those encountered in manufacturing
industries. Such a controller would be hard to use in a robot with flexible joints for
example. Flexible robot manipulator research is'active [29,30,31,12] because when
compared with the traditional robot manipulators constructed by rigid links, the flexible
robot manipulators not only are able to move larger payloads without increasing the mass
of the linkages, but also have many other advantages: They require less material and
smaller actuators, have less link weight, consume less power, and are more manoeuvrable
and transportable [29]. They have not been widely used in production industries due in
part to the fact that manipulators are required to have a reasonable accuracy in the
response of the manipulator end-effector to the input commands from their control
systems. Hence, if the advantages associated with lightweight are to be sacrificed,

advanced control systems for flexible robot manipulators have to be developed [29]. The
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flexible pole-cart problem described in this thesis both extends the complexity of the pole
balancing test case and includes features of the flexible robot arm problem and therefore

allows many relevant issues to be explored.

8.2. The Mathematical Model of the Flexible Pole-Cart Balancing
Problem

To design advanced controllers for a cart balancing an elastic pole, it is important
to derive a set of closed and explicit dynamic equations of motion describing the
behaviour of the system. Section 3.2.2 of this thesis presented the mathematical
derivations of equations approximating the behaviour of the system. It was found that the
system equations are highly nonlinear. The correctness of these equations was verified
qualitatively by reviewing the graphical output of the computer simulation using the
program MAYMAY. This program simulates a controller balancing an elastic pole on top
of a cart moving on a limited track in real time. The design of the algorithm of this
program is shown in section 3.3. Numerical integration using fourth order Runge-Kutta
was implemented. The results of this program are shown in section 3.3.4. The efficiency of
the program is tested by running it under various initial conditions. In this simulation the
size of the cart, the track, and the pole may change. It can be seen from the results that the
system still balances the pole and brings the cart to the centre of the track even though
the magnitude of the force applied to the cart and the initial angle of the pole are changed.

Based on the results of the computer simulation, the author established that
theoretically, it is likely to be possible to balance an elastic pole in its first mode of
vibration on top of a cart moving along a limited track. It is therefore of considerable
interest to implement this in the real world. This had not been demonstrated at this stage
of the work. A flexible pole-cart was commissioned and supplied together with a PD
based controller of limited capability. It was therefore a logical step to attempt to develop

and benchmark novel non-conventional controllers for this problem.
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8.3. Off-Line Neural Network Controller for the Flexible Pole-Cart
Balancing Problem

As a first step neural networks based upon feedforward backpropagation and
Kohonen networks were used to learn the forces required to balance a flexible pole on a
cart by generating a learning controller in simulation. The information fed to the neural
network was taken from the results of the computer simulation of the derived dynamics of
the flexible pole-cart balancing problem.

The method of normalising input patterns prior to their application to the neural
network 1s important. For the backpropagation network, difficulty was encountered in
determining the direction of the required force. The neural network experienced local
minima and did not converge for a bipolar value of force from -1.0 to + 1.0 (see table
4.2). This problem was resolved by adding an additional vector to the output. For the
leftwards force the additional output vector must have a value of 0.0, otherwise 1.0. The

application of momentum and noise terms helped also in avoiding local minima.

8.4. On-Line Neural Network Controller for the Flexible Pole-Cart
Balancing Problem

Following the off-line implementation an on line hybrid controller using
feedforward neural network (FNN) and a rule based evaluator was developed and tested
to control the flexible pole-cart balancing problem on a testbed. The feedforward neural
network learned from a set of training data derived from a real system and was initially
tested against the computer simulation of the derived dynamics of the flexible pole-cart

balancing system. The inputs to the neural network were the elastic pole deflection, the
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elastic pole angle, the displacement of the cart, and the velocity of the cart. An electric
motor has been used to control the motion of the cart, hence, the neural network output is
a voltage needed for the electric motor to operate (-5 to +5 volts) rather than the fore
used in the earlier simulation..

The FNN based controller developed then successfully balanced the real pole for a
limited period. The control system frequently failed due to the cart running out of track.
The inaccuracy of the initial value of all sensors was the main contributor to this failure.
This problem was resolved using the performance evaluator (see figure 5.4). The FNN
system was overridden by a small rule based supervisory system that periodically corrected
extreme angles of the pole or caused the cart to decentralise on the track.

The results of the physical experiments on this controller were shown and
discussed in section 5.4. Here, the robustness of the controller developed was verified and

tested. This results also show the stability, flexibility and adaptability of the controller.

8.5. Fuzzy Logic System Controller for the Flexible Pole-Cart
Balancing Problem

An on line fuzzy logic controller was then developed to balance the flexible pole
hinged at its root on top of a cart moving along a limuted track. The controller design uses
5 fuzzy logic systems and a rule based evaluator. A reduction of the number of fuzzy logic
rules required for good control to 13 has been made in spite of the fact that the controller
uses 6 input variables. The crisp output of the controller can be directly used as the input
voltage of the actuator (motor). The controller, for most initial conditions of the system, is
able to balance the flexible pole indefinitely and bring the cart to the centre of the track.
The controller can accommodate external disturbances to the system (e.g., shaking the
track randomly, elevating the end of the track, applying external forces and obstacles to

the pole in any direction, etc.). The response of the controller is fast enough to balance the
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flexible pole from an initial angle of 20 degrees. Nesting the fuzzy logic systems
supported the filtering of noisy inputs.

This research confirms that a multiple fuzzy controller can be developed to control
a complex and nonlinear system such as the flexible pole-cart balancing system without
knowing its mathematical description. It should be observed, however, that such a system
requires rule based additions to accommodate initial sensor offsets and extreme

displacement conditions.

8.6. A Fuzzy-Genetic Controller for the Flexible Pole-Cart
Balancing Problem

In this element of the work the author was able to apply a combination of fuzzy
logic systems and genetic algorithm techniques to the control of the flexible pole-cart
balancing problem. The controller developed uses the genetic algorithm as a trainer and
the fuzzy logic system as a controller. The construction of the fuzzy logic system did not
require the prior knowledge of a human expert because the genetic algorithm was able to
achieve the optimal parameter entries necessary for the fuzzy logic system to perform and
control the desired behaviour.

In this work, apart from being applied as a process controller, the fuzzy logic
system is also being used as a universal approximator. The fuzzy logic system has been
applied as a means of adjusting the system parameters so that the system output matches
the training data (the desired behaviour of the flexible pole-cart balancing problem) with
the aid of a genetic algorithm. This suggests that this system can be applied to a broad
range of problems perhaps even including approximating a feedforward neural network
(FNN). The advantage of this technique (when compared to the black box approach of
FNN) is that, it is easy to look inside a FAM matrix and infer what it will do with the
given input data. This is important for the user who requires transparent models of the
control algorithms applied.
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8.7. Summary

Table 8.1 shows the comparison of functions of the controllers developed and the
route of their evolution. The following should be noted:
The neural network experiment determined that the pole deflection was the

variable most prone to error. This was therefore measured directly in the fuzzy controller.

The fuzzy controller uses six inputs x, i‘,B,,B,,de,de while the neural network
and evaluator only uses x,;c,e,,Be (noting that 8, =d, /L, where d, is deflection and L

is the length of the pole). The neural network structure does not use therefore c.i, and ér

as input variables. A fuzzy controller using x,;,er and ée as inputs was not able to
balance the pole for infinite time. The 4-8-8-2 neural network structure built upon the
understanding of the mechanics and control of the system determined during the
construction of the simulation. It would appear that the 4-8-8-2 structure includes some

implicit knowledge of the nonlinear dynamics of the system and the relationships between

0.,0,,and d.. The weights structures of the network used to control the simulation and

the test bed are different,

The fuzzy control system was the only system to use the input C}e. This is a

particularly noisy input. The cascaded approach was therefore implemented to remove the

effect of the noise.
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8.8. Suggestions for Future Work

There are four areas that can be identified for further work.

1. An implementation of the fuzzy-genetic controller presented in Chapter 7 on the real
physical flexible pole-cart balancing system. The major limitations in such an
experiment is the availability of a fast processing machine, a parallel processing
machine is most likely to be appropriate. If the real GA’s learming process requires a
long time (e.g., longer chromosomes, more input variables or more input fuzzy sets are
required) then a delay might occur that results in failure. The mapping of simulated

force output to real voltage output must also be resolved.

2. The construction of an on-line and off-line hybrid fuzzy-neural network controller to
control the flexible pole-cart balancing system. Critical here is the determination of
whether there is an improvement in the performance of the overall system by
identifying new sets of parameters for fuzzy logic system decision making using
gradient-descent optimisation techniques based on a neural network formulation of the
problem. It is anticipated that learning can be take place in the neural network
elements of the system and the implementation of control can be carried out by the

fuzzy logic system.

3. The development of an intelligent controller for a flexible pole-cart balancing problem
on which the flexible pole undergoes multi-mode vibrations by for example using a
thinner beam with a higher elastic deflection. This adds further input parameters
(variables) to the system. This problem may be resolved by adding a further fuzzy logic

system to the multiple fuzzy logic controller.

4, Perhaps the most demanding task is to develop an intelligent controller that can

control the position of the tip of the flexible pole irrespective of the position and
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movement of the cart. This problem is much more representative of the true needs of
the application of flexible robots. Determining the appropriate input-output variables
for the task would make a good starting point for this work. It maybe possible to apply
the multiple fuzzy logic systems technique described earlier. In this case, knowledge of

the dynamic equations of the system may not be needed.
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Appendix A
Program MAYMAY source code

This is a Pascal language computer program that will simulate the

mathematical model of the flexible pole cart-balancing system

The following are the options to choose for the user to run the program
1. Simulate new values for rigid pole.

2, Simulate new values for elastic pole.

3. Plot the graph: rigid pole angle vs. time without friction.

4. Plot the graph: rigid pole angle vs. time with friction.

7. Plot the graph cart displacement vs. time (elastic pole).

8. Plot the graph cart acceleration vs. time (elastic pole).

9. Plot the graph cart velocity vs. time (elastic pole).

0. To quit program.

Important procedures in the program:

1. runge() - A procedure to solve differential equations using Runge-Kutta algorithm,

2. check_pole_angle( ) - A procedure to check the position of the pole and apply the
force necessary to balance the pole.

3. find_elas_pole_acc_vel_ang() - A procedure to find the elastic pole velocity and
acceleration.

4. numerical_integration( ) - A procedure used to simulate the system by solving
differential equations using numerical integration technique.

5. find_elastic_angle() - A procedure to find the elastic pole angle.

6. solve_cart_displacement() - A procedure to find the cart displacement and velocity.
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7. find_cart_acceleration() - A procedure to find the acceleration of the cart.

8. start_g r_wof( ) - A procedure used to plot the graphs of pole angle, cart

displacement, cart velocity, cart acceleration versus time.

9. draw_pole_cart() - A procedure to draw graphically the entire pole-cart balancing

system in real time.

[** The main Program **?
program maymay;

uses crt,gra28_car,glob_dat;
const n=2;

type
order = array[1..0] of real;

var
f1.12 :text;
T.in_force,c_forcec f:REAL;

HTMAX numedoume.t_limit:REAL;

M.IFREQ. Icount k ctr INTEGER,;

BV :order;
ch :char;
failu;-e :boolean;

[ **** procedure to enter data ***}
procedure in_data(ch:char);
var x.y :integer;
begin
clrscr; textcolor(yellow);

write('Mass of the pole =

readln(mp);

{array use to store the value of pole angle and velocity}

{text file use for storing data)

{T=time; in_force=initial force; ¢_force=the force at any
angle; c_f=coeficient of friction}

{H=integration time step; TMAX=tota! simulation time;
{nume=numerator; dnume=denomenator; t_limit=time limit}

{V[1]=pole angle; V[2] = F[1]=pole velocity)
{F[2]=pole acceleartion}

%

write('Total mass of the pole and the cart = ");

readln(mt);
write("Total length of the pole
readln(pl};

=)

if ch <> 'l" then {for elastic pole}

begin
write(Breadth of the pole
readln(pb);
write('Depth of the pole
readln(pd);
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write('Elasticity of the pole ="
readIln(E);
end
else
begin {this is for rigid pole)
pb:=0.0;pd :=0.0;e:=0.0
end;
x := wherex; y := wherey;
repeat
gotoxy(x.y):
write('Initial force applied (not zero) =");
readln(in_force);
until in_force <> 0.0;
write('Coefficient of friction ="
readln(c_f);
write('Step size (H) =";
readIn(H);
write('Upper limit of integration (tmax) =");
readln({tmax);
write(Freq. intermediate printouts (Ifreq) =)
readIn(TFREQ);

T:=0.0; {time}

g:=9.81; {acceleration due to gravity }
write(Initial pole angle (degrees) ="
readln(V[1]);

V[1] := V[1]1¥6.283185/360;
write('Limitation of pole angle (degrees) =");
readln(t_limit);

t_limit ;= t_limit*6.283185/360;

V[2]:=0.0; {initial velocity of the pole}
Icount ;= 0;
ctr:=1; {first array element}

¢_force := in_force,
c_ac[1] := in_force/mt; {initial acceleration of the cart}
end; {in_data}

{*** procedure to write initial values to external file **}
procedure write_init_values_to_file;

begin
writeln(f1);
wn[eln(fl" Ekdkkk Illltlal Data ******');
writeln(f1,” Mass of the pole =", mp:10:6);
writeln(f1," Total mass of the pole and the cart ='mt:10:6);
writeln(fl,” Total length of the pole =" pl:10:6);
writeln(fl,' Breadth of the pole =',pb:10:6};
writeln(f1,' Depth of the pole ='pd:10:6);
writeln(f1," Elasticity of the pole ="e:12:2);
writeln(f1,’ Initial force applied =",in_force:10:6);
writeln(fl," Coifficient of friction ='¢_f:10:6);

writeln(fl,' Step size (H) * h:10:6);
writeln(f1," Upper limit of integration (tmax) ="tmax:10:6);
writeln(f1,' Freq. intermediate printouts (Ifreq) =.ifreq: 10);
writeln(fl,’ Initial time (t sec) = 0.0
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writeln(f1,’ Initial pole angle (theta in rad) ='V[1]:10:6);

writeln(f1,’ Limitations of pole angle ="t_limit:10:6);
writeln(f1,' Initial pole velocity (dtheta/dt) =0.0"):;
writeln(fl," Acceleration due to gravity =9.81 m/sq sec.);

wrteln(fl.! OQUTPUT VALUES:");
end; {write_init_values}

{*** procedure to write initial values to external file **}
procedure write_init_values_to_file2;

begin
writeln(f2);
writeln(f2,”  ***** Initial Data ******"),
writeln(f2,' Mass of the pole ='mp:10:6);
writeln(f2,' Total mass of the pole and the cart =" mt:10:6);
writeln(f2,' Total length of the pole ='pl:10:6);
writeln(f2," Breadth of the pole =" pb:10:6);
writeln(f2," Depth of the pole =",pd:10:6);
writeln(f2,' Elasticity of the pole ='e:12:2);
writeln{f2,' Initial force applied =',in_force:10:6);
writeln(f2,' Coifficient of friction ="¢c _£:10:6);
writeln(f2,’ Step size (H) ="h:10:6);

writeln(f2.' Upper limit of integration (tmax) ='tmax:10:6});
writeIn(f2, Freq. intermediate printouts (Ifreq) =',ifreq: 10);

writeln{f2, Initial time (t sec) =0.0;

writeln(f2,' Initial pole angle (theta in rad) =',V[1]:10:6);
writeln(f2," Limitations of pole angle ='t_limit:10:6);
writeln(f2," Initial pole velocity (dtheta/dt) =0.0;
writeln(f2,” Acceleration due to gravity = 9.81 m/sq sec.’);

writeln(f2,' OUTPUT VALUES:");
end; {write_init_values}

{*** procedure to output data to external file *****}

procedure out_file;

begin
write_init_values_to_file;
writeln(fl, Time":8,'C_accel:13.Pole_ang":13,Pole_ang vel:14,'Force"7.P_accel’: 14);
write(f1,T:10:6." '.c_ac[1]:10:6, "VI1]:10:6, ' V[2]:10:6,' "in_force:10:6);
time_colctr] :=T;
angle_cofctr] := V[1];

end; {out_file}

{**** procedure to use runge kutta algorithm ***}
procedure runge(var m k:integer;n:integer;var Y F:order;var x.h:real);
var
J iateger;
savey,phu :array[1..50] of real;
begin
m:=m+1;
case m of
Lk:=1;
2: begin
forj:=1tondo
begin
savey(jl := Y[jI;
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phi(j] := F[jI;
Y[j] := saveylj] + 0.5*H*F[j]:
end;
x:=x+05*H;
k:=1;
end;
3: begin
forj:=1tondo
begin
philj] := philjl + 2.0*F[j1;
Y[j] := savey[jl + 0.5*H*F[j];
end;
k:=1;
end;
4: begin
forj:=1tondo
begin
phi(j] := philj] + 2.0*F[j];
Y[j] := saveylj] + H*F[jl:
end;
x:=x+05*H;
k=1
end;
5: begin
forj:=1tondo
Y31 := savey[j] + (philj] + F[j)*H/6.0;
m:==0;
k:=0;
end;
end; {case}
end; { *** runge **}

{ #** procedure to check the location of the pole ****}
{procedure check_pole_angle;
begin
if (V[11> t_limit) or (V[1] < (-1)*t_limit) then
begin
clrser;
writeln(' Failure !!!! angle reached the limit (in radians) = ".t_limit:10:6);
writeln(' Press return to exit .... ');
failure := true;
readln; close(f1);
exit;
end
else if (V[1] > 0.0) then
begin
if ¢_force < 0.0 then
¢_force := ¢_force*(-1);
end
else if (V[1] < 0.0) then
begin
if c_force > 0.0 then
c_force ;= c_force*(-1)
end
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end; } {check_pole_angle}

{*** procedure to check the location of the pole ****}
procedure check_pole_angle;
begin
if (VI1]1> t_limit) or (V[1] < (-1)*t_limit) then
begin
clrscr;
writeln(" Failure !!!! angle reached the limit (in radians) = '.t_limit:10:6);
write(' Press return to exit .... ');

failure := true;
readln;
exit;
end;
if ((V[1] »>= -0.0009)and(V[1] <= 0.0009)) then
c_force := 0.0 {theta is at O angle don't apply force}

else if ((V[1] > -0.00D)and(V[1] <= -0.0009)) then
¢_force :=-0.1

else if ((V[1] > 0.0009)and(V[1] <= 0.001)) then
c_force :=0.1

else if ((V[1] > -0.003)and(V[1] <= -0.001)) then
c_force :=-0.2

else if ((V[1] > 0.001)and(V[1] <= 0.003)) then
¢_force :=0.2

else if ((V[1] > -0.006)and(V[1] <= -0.003)) then
c_force :=-0.3

else if ((V[1] > 0.003)and(V[1] <= 0.006)) then
c_force :=03

else if ((V[1] > -0.009and(V[1] <= -0.006)) then
c_force :=-0.4

else if ((V[1] > 0.006)and(V[1] <= 0.009)) then
c_force =04

else if ((V[1] » -0.011)and(V]1] <=-0.009)) then
¢_force :=-0.5

else if ((V[1] > 0.009)and(V[1] <= 0.011)) then
c_force :=0.5

else if ((V[1] » -0.013)and(V[1] <=-0.011)) then
c_force ;= -0.6

else if ((V[1]> 0.011)and(V{1] <= 0.013)) then
c_force :=0.6

else if ((V[1] > -0.015)and(V[1] <= -0.013)) then
¢_force :=-0.7

else if ((V[1] > 0.013)and(V[1] <= 0.015)) then
c_force :=07

else if (V[1]> -0.017)and(V{1] <= -0.015)) then
c_force :=-0.8

else if ((V[1]> 0.015)and(V[1] <= 0.017)) then
c_force :=0.8

else if ((V[1] > -0.019)and(V[1] <= -0.017)) then
c_force :=-0.9

else if ((V[1] > 0.017)and(V[1] <= 0.019)) then
c_force :=0.9

else f ((V[1]> -0.020)and(V[1] <= -0.019)) then
c_force :=-1.0
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else if ((V[1] > 0.019)and(V[1]} <= 0.020)) then
c_force := 1.0

else if ((V[1] > -0.022)and(V[1] <= -0.020)) then
c_force :=-1.1

else if ((V[1] > 0.020)and(V[1] <= 0.022)) then
c_force :=1.1

else if ((V[1] > -0.024)and{V[1] <= -0.022)) then
c_force :=-1.2

else if ((V[1] > 0.02Dand(V[1] <= 0.024)) then
c_force :=1.2

else if ((V[1] > -0.026)and(V[1] <= -0.024)) then
¢_force :=-1.3

else if ((V[1] > 0.02)and(V[1] <= 0.026)) then
c_force := 1.3

else if ((V[1] > -0.028)and(V[1] <= -0.026)) then
c_force :=-1.4

else if ((V[1] > 0.026)and(V[1] <= 0.028)) then
¢ force:=14

else if ((V[1] > -0.03)and(V[1] <= -0.028)) then
c_force :=-1.5

else if ((V[1] > 0.028)and(V[1] <= 0.030)) then
c_force := 1.5

else if ((V[1] > -0.032)and(V[1] <= -0.030)) then
c_force :=-16

else if ((V[1] > 0.030)and(V[1] <= 0.032)) then
¢_force :=1.6

else if ((V[1] > -0.034)and(V[1] <= -0.032)) then
c_force :=-1.7

else if ((V[1] > 0.032)and(V[1] <= 0.034)) then
¢_force :=1.7

else if ((V[1] > -0.036)and(V[1] <= -0.034)) then
c_force :=-1.8

else if ((V[1] > 0.034)and(V{1] <= 0.036)) then
c_force ;= 1.8

else if ((V[1] > -0.038)and(V[1] <= -0.036)) then
c_force :=-19

else if ((V[1] > 0.036)and(V[1] <= 0.038)) then
c_force: =19

else if ((V{1] > -0.040)and(V[1] <= -0.038)) then
¢_force :=-2.0

else if ((V[1] > 0.038)and(V[1] <= 0.040)) then
c_force :=2.0

else if ((V[1] > -0.043)and(V[1] <= -0.040)) then
c_force :=-2.1

else if ((V[1] > 0.040)and(V[1] <= 0.043)) then
¢_force :=2.1

else if ((V[1] > -0.046)and(V[1] <= -0.043)) then
c_force :=-22

else if ((V[1] > 0.043)and(V[1] <= 0.046)) then
c_force :=2.2

else if ((V[1] > -0.049)and(V[1] <= -0.046)) then
¢_force :=-2.3

else if (V{1]> 0.046)and(V[1] <= 0.049)) then
c_force :=2.3
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else if (V[1] > -0.052)and(V[1] <= -0.049)) then
¢_force :=-24

else if ((V[1] > 0.049)and(V[1] <= 0.052)) then
c_force :=24

else if ((V[1] > -0.055)and(V[1] <= -0.052)) then
c_force :=-2.5

else if ((V[1] > 0.052)and(V[1} <= 0.055)) then
c_force :=25

else if ((V[1] > -0.058)and(V[1] <= -0.055)) then
c_force :=-2.6

else if ((V[1] > 0.055)and(V[1] <= 0.058)) then
c_force :=2.6

else if ((V[1] > -0.061)and(V]1] <= -0.058)) then
c_force :=-2.7

else if ((V{1] > 0.058)and(V[1] <= 0.061)) then
c_force :=27

else if ((V[1] > -0.064)and(V[1] <= -0.061)) then
c_force :=-2.8

else if (V11> 0.061)and(V[1] <= 0.064)) then
c_force :=2.8

else if ((V{1] > -0.067)and(V[1] <= -0.064)) then
c_force :=-29

else if ((V[1]> 0.064)and(V[1] <=0.067)) then
c_force ;=29

else if (V[1] > -0.070)and(V[1] <= -0.067)) then
c_force :=-3.0

else if (V[1] > 0.067)and(V[1] <= 0.070)) then
¢_force := 3.0

else if ((V[1] > -0.073)and(V[1]} <= -0.070)) then
c_force :=-3.1

else if (V[1] > 0.070)and(V[1] <= 0.073)) then
¢_force :=3.1

else if ((V[1] > -0.076)and(V[1} <=-0.073)) then
c_force :=-32

else if ((V[1] > 0.073)and(V[1] <= 0.076)) then
¢c_force :=3.2 .

else if ((V[1] > -0.079)and(V[1] <= -0.076)) then
¢_force :=-3.3

else if (V[1]> 0.076)and(V[1] <= 0.079)) then
c_force :=33

else if ((V[1] > -0.082)and(V[1] <= -0.079)) then
c_force :=-3.4

else if ((V[1]> 0.079)and(V[1] <= 0.082)) then
¢_force :=34

else if (V{11 > -0.085)and(V[1] <= -0.082)) then
c_force :=-3.5

else if ((V[1} > 0.082)and(V[1] <= 0.085)) then
¢_force :=3.5

else if (V11> -0.088)and(V[1] <= -0.085)) then
c_force :=-3.6

else if (V[1] > 0.085)and(V[1] <= 0.088)) then
¢_force := 3.6 '

else if ((V[1] > -0.091)and(V[1] <= -0.088)) then
¢_force :=-3.7
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else if ((V[1] > 0.088)and(V[1]} <= 0.091)) then
¢_force :=3.7

else if ((V[1] > -0.094)and(V[1] <=-0.091)) then
¢_force :=-3.8

else if ((V[1] > 0.091)and(V[1] <= 0.094)) then
¢_force :=3.8

else if ((V[1] > -0.097)and(V[1] <= -0.094)) then
c_force :=-3.9

else if ((V[1] > 0.094)and(V[1] <= 0.097)) then
c_force :=3.9

else if ((V[1] > -0.100)and(V[1] <= -0.097)) then
¢_force :=-4.0

else if (V1] > 0.097)and(V[1] <=0.100)) then
c_force :=4.0

else if (V1] > -0.103)and(V[1] <= -0.100)) then
c_force :=-4.1

else if (V1] > 0.100)and(VI1] <= 0.103)) then
c_force :=4.1

else if ((V[1] > -0.106)and(V[1] <= -0.103)) then
c_force ;== -42

else if ((V[1] > 0.103)and(Vi1] <= 0.106)) then
c_force :=4.2

else if ((V[1] > -0.109)and(V[1] <= -0.106)) then
c_force :=-4.3

else if ((V[1] > 0.106)and(V[1] <= 0.109)) then
c_force :=4.3

else if ((V[1] > -0.112)and(V[1] <= -0.109)) then
c_force :=-4.4 '

else if ((V[1] > 0.109)and(V[1] <=0.112)) then
c_force :=4.4

else if ((V[1] > -0.115)and(V[1] <= -0.112)) then
c_force :=-4.5

else if ((V[1] > 0.112)and(V[1] <= 0.115)) then
c_force :=4.5

else if ((V[1] > -0.118)and(V[1] <= -0.115)) then
c_force :=-4.6

else if (V[1]1> 0.115)and(V[1]1 <=0.118)) then
c_force :=4.6

else if ((V[1] > -0.121)and(V[1] <= -0.118)) then
c_force ;= -4.7

else  ((V[1] > 0.118)and(V[1] <= 0.121)) then
c_force ;=47

else if ((V[1] > -0.124)and(V[1] <= -0.121)) then
c_force :=-4.8

else tf ((V[1] > 0.121)and(V[1] <= 0.124)) then
c_force :=4.8

else if ((V[1] > -0.127)and(V[1] <= -0.124)) then
c_force :=-4.9

else if ((V[1] > 0.124)and(V[1] <= 0.127)) then
c_force :=4.9

else if ((V[1] > -0.130)and(V[1] <=-0.127)) then
c_force :=-5.0

else if ((V[1] > 0.127)and(V[1] <= 0.130)) then
c_force :=5.0
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else if ((V[1] > -0.133)and(V{1] <= -0.130)) then
c_force := -5.1

else if (V[1] > 0.130)and(V[1] <= 0.133)) then
c_force :=5.1

else if ((V[1] > -0.136)and(V[1] <=-0.133)) then
c_force :=-5.2

else if ((V[1] > 0.133)and(V[1] <= 0.136)) then
c_force :=5.2

else if ((V[1] > -0.139)and(V[1] <= -0.136)) then
¢_force :=-5.3

else if ((V[1] > 0.136)and(V[i] <=0.139)) then
c_force := 5.3

else if ((V[1] > -0.142)and(V[1] <= -0.139)) then
c_force :=-54

else if (V[1]> 0.13%and(V{1] <=0.142)) then
¢_force:=54

else if ((V[1] > -0.145)and(V[1] <= -0.142)) then
c_force :=-5.5

else if ((V[1] > 0.142)and(V[1] <= 0.145)) then
c_force :=5.5

else if ((V[1] > -0.148)and(V[1] <= -0.145)) then
¢_force :=-5.6

else if (V1] > 0.143)and(V[1] <= 0.148)) then
c_force :=5.6

else if ((VI1] > -0.151D)and(V[1] <=-0.148)) then
c_force :=-5.7

else if ((V[1] > 0.148)and(V[1] <= 0.151)) then
¢_force :=5.7

else if ((V[1] > -0.154)and(V[1] <= -0.151)) then
¢_force :=-5.8

else if ((V[1]1 > 0.151)and(V[1]} <=0.154)) then
¢_force :=5.8

else if ((V[1] > -0.157)and(V[1] <= -0.154)) then
c_force :=-5.9

else if ((V[1] > 0.154)and(V[1] <= 0.157)) then
c_force :=5.9

else if ((V[1] > -0.160)and(V[1] <= -0.157)) then
c_force :=-6.0

else if ((V[1] > 0.157)and(V[1] <= 0.160)) then
¢_force :=6.0

else if ((V[1] > -0.163)and(V[1] <= -0.160)) then
¢_force :=-6.1

else if ((V[1] > 0.160)and(V[1] <= 0.163)) then
¢_force :=6.1

else if ((V[1] > -0.166)and(V[1] <= -0.163)) then
c_force :=-6.2

else if ((V[1] > 0.163)and(V[1] <= 0.166)) then
¢_force := 6.2

else if ((V[1] > -0.169)and(V[1] <= -0.166)) then
¢_force :=-6.3

else if (V[1] > 0.166)and(V[1} <= 0.169)) then
¢_force ;=63

else if ((V[1] > -0.172)and(V[1] <= -0.169)} then
c_force :=-6.4
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else if ((V[1] > 0.169)and(V[1] <= 0.172)) then
c_force :=6.4

else if (V[1] > -0.175)and(V[1] <= -0.172)) then
¢_force ;= -6.5

else if ((V[1] > 0.172)and(V[1] <= 0.175)) then
¢_force :=6.5

else if ((V[1] > -0.178)and(V[1] <= -0.175)) then
¢_force ;= -6.6

else if ((V[1] > 0.175)and(V[1] <=0.178)} then
c_force :=6.6

else if ((V[1] > -0.181)and(V[1] <= -0.178)) thken
c_force :=-6.7

else if ((V[1] > 0.178)and(V[1] <=0.181)) then
c_force ;= 6.7

else if ((V[1] > -0.184)and(V[1] <= -0.181)) then
c_force ;= -6.8

else if ((V[1] > 0.181)and(V{1] <= 0.184)) then
c_force ;= 6.8

else if ((V[1] > -0.187)and(V[1] <= -0.184)) then
c_force :=-6.9

else if ((V[1] > 0.184)and(V[1] <= 0.187)) then
c_force =69

else if ((V[1] > -0.190)and(V[1] <=-0.187)) then
c_force :=-7.0

else if ((V[] > 0.18Dand(V[1] <= 0.190)) then
¢_force :=7.0

else if ((V[1] > -0.193)and(V[1] <= -0.190)) then
¢_force :=-7.1

else if ((V[1] > 0.19Mand(V[1] <= 0.193)) then
c_force :=7.1

else if ((V[1] > -0.196)and(V[1] <=-0.193)) then
c_force :=-7.2

else if ((VI1] > 0.193)and(V[1] <= 0.196)) then
¢_force :=7.2

else if ((V[1] > -0.199)and(V[1] <=-0.196)) then
¢_force :=-7.3

else if ((V[1] > 0.196)and(V{1] <= 0.199)) then
c_force :=7.3

else if ((V[1] > -0.202)and(V[1] <= -0.199)) then
c_force :=-7.4

else if ((V[1] > 0.169)and(V[1] <= 0.202)) then
c_force :=7.4

else if ((V[1] > -0.205)and(V[1] <=-0.202)) then
¢_force :=-7.5

else if ((V[1] > 0.202)and(V[1] <= 0.205)) then
¢_force :=7.5

else if ((V[1] > -0.208)and(V[1] <= -0.205)) then
c_force :=-7.6

else if ((V[1] > 0.205)and(V[1] <= 0.208)) then
¢_force :=7.6

else if (V1] > -0.211)and(V[1] <= -0.208)) then
c_force :=-7.7

else if ((V[1] > 0.208)and(V[1] <= 0.211)) then
c_force :=7.7

216



else if ((V[1] > -0.214)and(V[1] <= -0.211)) then
c_force :=-7.8

else if ((V[1] > 0.211)and(V[1] <= 0.214)) then
c_force :=7.8

else if ((V[1] > -0.217and(V[1] <= -0.214)) then
c_force :=-79

else if ((V([1] > 0.214)and(V[1] <=0.217)) then
c_force :=79

else if ((V[1] > -0.220)and(V[1] <= -0.217)) then
¢_force :=-8.0

else if ((V[1]> 0.217and(V[1] <= 0.220)) then
¢_force .= 8.0

else if ((V[1] > -0.223)and(V[1] <= -0.220)) then
¢_force :=-8.1

else if (V[1] > 0.220)and(V[1] <= 0.223)) then
c_force ;= 8.1

else if ((V[1] > -0.226)and(V([1] <= -0.223)) then
¢_force :=-8.2

else if ((V[1] > 0.223)and(V[1] <= 0.226)) then
c_force = 8.2

else if ((V[1] > -0.229)and(V[1] <= -0.226)) then
c_force :=-8.3

else if ((V[1] > 0.226)and(V[1] <= 0.229)) then
¢_force ;= 8.3

else if ((V[1] > -0.232)and(V[1] <= -0.229)) then
c_force :=-8.4

else if (V[1] > 0.229)and(V[1] <= 0.232)) then
¢_force :=8.4

else if ((V[1] > -0.235)and(V[1] <= -0.232)) then
c_force :=-8.5

else if (V[1] > 0.232)and(V[1] <= 0.235)) then
c_force := 8.5

else if ((V[1] > -0.238)and(V[1] <= -0.235)) then
c_force :=-8.6

else if ((V[1]1 > 0.235)and(V[1] <= 0.238)) then
¢_force := 8.6

else if ((V[1] > -0.241)and(V[1] <= -0.238)) then
¢_force :=-8.7

else if ((V[1] > 0.238)and(V[1] <= 0.241)) then
¢_force := 8.7

else if ((V[1] > -0.244)and(V[1] <=-0.241)} then
¢_force :=-8.8

else if ((V[1] > 0.241)and(V{1] <= 0.244)) then
¢_force := 8.8

else if (V11> -0.247)and(V[1] <= -0.244)) then
c_force :=-8.9

else if ((V[1] > 0.244)and(V[1] <= 0.247)) then
c_force := 8.9

else if (V[1] > -0.250)and(V[1] <= -0.247)) then
c_force :=-9.0

else if ((V[11 > 0.247and(V[1] <= 0.250)) then
¢_force :=9.0

else if ((V[1] > -0.253)and(V[1] <=-0.250)) then
¢_force :=-9.1
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else if ((V[1]1> 0.250)and(V[1] <=0.253)) then
¢_force := 9.1

else if ((V[1] > -0.256)and(V[1] <= -0.253)) then
c_force :=-9.2

else if ((V[1] > 0.253and(V[1] <= 0.256)) then
¢_force :=9.2

else if ((V[1] > -0.259)and(V[1] <= -0.256)) then
¢_force :==-9.3

else if ((V[1] > 0.256)and(V[1] <= 0.259)) then
¢_force :=9.3

else if ((V[1] > -0.262)and(V[1] <= -0.259)) then
c_force :=-94

else if ((V[1] > 0.259)and(V[1] <= 0.262)) then
¢_force =94

else if ((V[1] > -0.265)and(V[1] <= -0.262)) then
c_force :=-9.5

else if ((V[1] > 0.262)and(V[1] <= 0.265)) then
c_force :=9.5

else if ((V[1] > -0.268)and(V[1] <= -0.265)) then
c_force :=-9.6

else if ((V[1] > 0.265)and(V[1] <= 0.268)) then
c_force :=9.6

else if ((V[1] > -0.271)and(V[1] <= -0.268)) then
c_force :=-9.7 .

else if ((V[1] > 0.268)and(V[1] <= 0.271)) then
¢_force :=9.7

else if ((V[1] > -0.274)and(V[1] <= -0.271)) then
c_force :=-9.8

else if ((V[1]> 0.271)and(V[1] <= 0.274)) then
¢_force :=9.8

else if ((V[1] > -0.277)and(V[1] <= -0.274)) then
c_force :=-9.9

else if ((V[1] > 0.274)and(V[1] <= 0.277)) then
c_force :=9.9;

if ((V11] > -0.280and(V[1] <= -0.277)) then
c_force :=-10.0

else if ((V[1] > 0.277)and(V[1] <= 0.280)) then
c_force ;= 10.0

else if ((V[1] > -0.283)and(V[1] <= -0.280)) then
c_force :=-10.1

else if ((V[1] > 0.280)and(V[1] <= 0.283)) then
¢_force := 10.1

else if ((V[1] > -0.286)and(V[1] <=-0.283)) then
¢_force :=-10.2

else if ((V[1] > 0.283)and(V[1] <= 0.286)) then
c_force ;= 10.2

else if ((V[1] > -0.28%and(V[1] <= -0.286)) then
¢_force :=-10.3

else if ((V[1] > 0.286)and(V[1] <= 0.289)) then
c_force :==10.3

else if ((V[1] > -0.292)and(V[1] <= -0.289)) then
¢_force :=-104

else if ((V[1] > 0.289)and(V[1] <=0.292)) then
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c_force := 104

else if ((V[1] > -0.295)and(V[1] <= -0.292)) then
¢_force :=-10.5

else if ((V[1] > 0.292)and(V[1] <= 0.295)) then
c_force := 10.5 .

else if ((V[1] > -0.298)and(V[1] <= -0.295)) then
c_force == -10.6

else if ((V[1] > 0.295)and(V[1] <= 0.298)) then
c_force := 10.6

else if ((V[1] > -0.301)and(V[1] <= -0.298)) then
c_force := -10.7

else if ((V[1] > 0.298)and(V[1] <= 0.301)) then
c_force := 10.7

else if (V{11 > -0.304)and(V[1] <= -0.301)) then
¢_force :=-10.8

else if ((V[1]1 > 0.30D)and(V[1] <= 0.304)) then
¢_foree := 10.8

else if (V[1] > -0.307)and(V[1] <= -0.304)) then
c_force := -10.9

else if ((V[1]> 0.304)and(V[1] <= 0.307)) then
¢_force := 10.9

else if ((V[1] > -0.310)and(V[1] <=-0.307)) then
c_force :=-11.0

else if ((V[1] > 0.307)and(VI1] <= 0.310)) then
¢_force :=11.0

else if ((V[1] » -0.313)and(V[1] <=-0.310)) then
c_force :=-11.1

else if ((V[1] > 0.310)and(V[1] <= 0.313)) then
¢_force := 11.1

else if ((V[1] > -0.316)and(V[1] <=-0.313)} then
c_force :=-11.2

else if ((V[1] > 0.313)and(V[1] <= 0.316)) then
c_force ;= 11.2

else if ((V[1] > -0.319)and(V[1] <=-0.316)) then
c_force :=-11.3

else if ((V[1] > 0.316)and(V[1] <=0.319)) then
c_force :=11.3

else if (V1] > -0.322)and(V[1] <= -0.319)) then
c_force :=-114

else if ((V[1] > 0.319and(V[1] <= 0.322)) then
c_force := 114

else if ((V[1] > -0.325)and(V[1] <= -0.322)) then
¢_force :=-11.5

else if ((V[1] > 0.322)and(V[1] <= 0.325)) then
c_force ;= 11.5

else if ((V[1] > -0.328)and(V[1] <= -0.325)) then
c_force :=-11.6

else if ((V[1] > 0.325)and(V[1] <= 0.328)) then
c_force :=11.6

else if ((V[1] » -0.331)and(V[1] <=-0.328)} then
c_force :=-11.7

else if ((V[1]> 0.328)and(V[1] <= 0.331)) then
c_force :=11.7

else if ((V{1] > -0.334)and(V[1] <= -0.331)) then
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c_force :=-11.8

else if ((V[1] > 0.331)and(V[1} <= 0.334)) then
c_force :==11.8

else if (V[1] > -0.337)and(V[1] <=-0.334)) then
¢_force :=-11.9

else if (V[1]> 0.334)and(V[1] <= 0.337)) then
c_force :=11.9

else if ((V[1] > -0.340)and({V[1] <= -0.337)) then
c_force :=-12.0

else if ((V{1] > 0.337)and(V[1] <= 0.340)) then
c_force :=12.0

else if ((V[1] > -0.343)and(V[1] <= -0.340)) then
c_force :==-12.1

else if ((V[1]> 0.340)and(V[1] «=0.343)) then
c_force :=12.1

else if ((V[1] > -0.346)and(V[1] <= -0.343)) then
c_force :=-12.2

else if (V1] > 0.343)and(V[1] <= 0.346)) then
¢_force := 122

else if ((V[1] > -0.349)and(V[1] <= -0.346)) then
c_force :=-123

else if ((V[1]> 0.346)and(V[1] <= 0.349)) then
c_force :=12.3

else if ((V[1] > -0.352)and(V[1] <= -0.349)) then
¢_force :=-124

else if ((V[1] > 0.349and(V[1] <= 0.352)) then
c_force :=12.4

else if ((V[1] > -0.355)and(V[1] <=-0.352)) then
c_force :=-12.5

else if ((V[1] > 0.352)and(V[1] <= 0.355)) then
¢_force ;=125

else if (V1] > -0.358)and(V[1] <= -0.355)) then
c_force :=-12.6

else if ((V[1] > 0.355)and(V[1] <= 0.358)) then
c_force := 12.6

else if ((V[1] > -0.361)and(V[1] <= -0.358)) then
c_force :=-12.7

else if ((V[1] > 0.358)and(V[1] <= 0.361)) then
c_force :=12.7

else if ((V[1] > -0.364)and(V[1] <= -0.361)) then
c_force :=-12.8

else if ((V[1] > 0.361)and(V[1] <= 0.364)) then
c_force :=12.8

else if ((V[1] > -0.367)and(V[1] <= -0.364)) then
c_force :=-12.9

else if ((V[1] > 0.364)and(V[1] <= 0.367)) then
c_force :=12.9

else if ((V[1]1> -0.370)and(V[1] <= -0.367)) then
c_force :=-13.0

else if ((V[1] > 0.367)and(V[1] <= 0.370)) then
¢_force :=13.0

else if ((V[1] > -0.373)and(V[1] <=-0.370)) then
c_force ;= -13.1

else if ((V[1] > 0.370)and(V[1] <=0.373)) then
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c_force :=13.1

else if ((V[1] > -0.376)and(V[1] <= -0.373)) then
¢_force ;= -13.2

else if ((V[1] > 0.373)and(V[1] <= 0.376)) then
¢_force :=13.2

else if ((V[1] > -0.379)and(V[1] <=-0.376)) then
¢_force :=-13.3

else if ((V[1] > 0.376)and(V[1] <= 0.379)) then
c_force := 133

else if ((V[1] > -0.382)and(V[1] <= -0.379)) then
¢_force :=-13.4

else if ((V[1] > 0.379)and(V[1] <= 0.382)) then
¢_force :=13.4

else if ((V[1] > -0.385)and(V{1] <= -0.382)) then
c_force :=-13.5

else if ((V[1] > 0.382)and(V{1] <= 0.385)) then
¢_force :=135

else if ((V[1] > -0.388)and(V[1] <=-0.383)) then
c_force :=-13.6

else if ((V[1] > 0.385)and(V[1] <= 0.388)) then
c_force :=13.6

else if ((V[1] > -0.391D)and(V[1] <=-0.388)) then
c_force :=-13.7

else if ((V[1] > 0.388)and(V[1] <= 0.391)) then
¢_force :=13.7

else if (V1] > -0.394)and(V[1] <= -0.391)) then
¢_force :=-13.8

else if ((V[1] > 0.391)and(V[1] <= 0.394)) then
¢_force :=13.8

else if (V{11 > -0.397)and(V[1] <=-0.394)) then
c_force :=-13.9

else if (V[1] > 0.394)and(V[1] <= 0.397)) then
¢_force :=13.9

else if (V[1] > -0.400)and(V[1] <=-0.397)) then
c_force :=-14.0

else if ((V[1] > 0.397)and(V[1] <= 0.400)) then
c_force := 14.0

else if ((V[1] > -0.403)and(VI1] <= -0.400)) then
¢_force :=-14.1

else if ((V[1] > 0.400)and(V[1] <= 0.403)) then
c_force :=14.1

else if (V1] > -0.406)and(V[1] <= -0.403)) then
c_force :=-14.2

else if (V1] > 0.403)and(V[1] <= 0.406)) then
c_force ;= 14.2

else if ((V[1] > -0.409)and(V[1] <= -0.406)) then
¢_force := -14.3

else if ((V[1] > 0.406)and(V[1] <= 0.409)) then
c_force :=14.3

else if ((V[1] > -0.412)and(V[1] <= -0.409)) then
c_force :=-14.4

else if ((V[1] > 0.409)and(V[1] <= 0.412)) then
c_force ;=144

else if ((V[1] > -0.415)and(V[1] <= -0.412)) then
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c_force :==-14.5
else if (V[1] > 0.412)and(V[1] <= 0.4153)) then

c_force :=14.5

else if ((V[1] > -0418)and(V[1] <=-0.415)) then
c_force :=-14.6

else if (V1] > 0.415)and(V[1] <= 0.418)) then
¢_force :=14.6

else if (V[1] > -0421)and(V[1] <=-0.418)) then
c_force :=-14.7

else if ((V[1] > 0.418)and(V[1] <= 0.421)) then
¢_force :=14.7

else if ((V[1] > -0.424)and(V[1] <=-0.421)) then
c_force :=-14.8

else if ((V[1] > 0.421)and(V[1] <= 0.424)) then
c_force := 14.8

else if ((V[1] > -0.427)and(V[1] <=-0.424)) then
c_force :=-14.9

else if (V11> 0.424)and(V[1] <= 0.427)) then
c_force := 149

else if ((V[1] <-0.427) or (V[1] > 0.427)) then

begin
{ c¢_force :=0+in_force;}
¢_force := 15;
if (V[11> 0.0) then
begin { the pole angle is positive going down}

if c_force < 0.0 then {force currently is going left}
¢_force ;= c_force*(-1); {change direction}
end )
else if (V[1] < 0.0) then {the pole angle is negative going down}
begin
if ¢_force > 0.0 then {force currently is going right}
¢_force ;=c_force*(-1)  [change direction}

end;
end; {theta is not zero}
if mt < 0.6 then {reduce force since mass is very small)
c_force := c_force*0.2 {reduce size of experiment}

else if mt < 1.0 then
c_force :=¢_force*0.5
else if mt > 1.1 then
¢_force := ¢_force*mt
end; {check_pole_angle}

{ *** procedure to find the elastic pole velocity and acceleration **}
procedure find_elas_pole_acc_vel_ang(k:real;var e_acc.e_vel,t_angle:real);
var nl.n2 n3:real;
begin
e_vel := V[2] + V[2]*k*cos(V[1D/(1 + k*sin(V[1])*k*sin(V[1]1));
nl =1 + (k*cos(VIID/A1 4 k*sin(V[ 1])*k*sin(V[11))};
n2 = -k*sin(V[1D*(1 + k*k*(1 + cos(V[1])*cos(V[1]))):
3 := (1 + (k*sin(VI11)*k*sin(VI1))*(1 + (k*sin(V[1])*k*sin(V[1]));
e_acc := F{2]*nl + V[2]*V[2]*(n2/n3);
end; {find_elas_pole_acc_vel_angle}
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{*** procedure to find cart acceleration **}
procedure find_cart_acceleration(ch:char);
vark.e_acc.e_vel,nl.n2.n3.t_angle.c_dis :real;
begin
nl ;= c_f*mp*g;
if ch = "2' then {elastic pole}
begin
k := (12*¥pl*pl*mp*g)/(8*E*pb*pd *pd*pd);
find_elas_pole_acc_vel_ang(k.e_acc.e_vel.t_angle);
t_angle ;= V[1] + arctan(k*sin(V[1]));  {total elastic angle in radians}
n2 := e_acc*mp*pl/2*(cos(t_angle)c_f*sin(t_angle));
n3 :=e_vel*e_vel*mp*pl2*(-sin(i_angle)<_f*cos(t_angle));
¢_aclctr] := (c_force-(nl+n2+n3))/mt;
writeln(f2,T:10:6," '.t_angle*57.2957795:10:6, ",V[1}¥57.2957795:10:6." ".c_ac[ctr]:10:6);
end
else [rigid pole}
begin
n2 := F[2]*mp*pl2*(cos(V[1])-c_f*sin(V[1D));
n3 := V[2]*V[2]*mp*pl2*(-sin(V[1])<c_f*cos(V[1]));
c_acfctr] := (c_force-(n1+n2+n3))/mt;
end;
end; {find_cart acceleration}

{*** proceudre to solve differential equation using numerical integration*}
procedure numerical_integration(ch:char);
var t_angle:real; {total elastic angle}
begin {main}
in_data(ch);
failure := false;
case ch of
"1’ : assign(fl,'c:vesearch\n_iv_out.dat’); {rigid pole}
"2 : begin
assign(f1,'c:\research\n_i\e_out.dat’); {elastic pole]
assign(f2,'c:\research\n_i\r_angle.dat’);
rewrite(f2);
write_init_values_to_file2;
writeln(f2, Time": 8, Elastic pole’:15,Rigid pole":12,'Cart":7);
writeln(f2.'angle"20,'angle": 12, 'acceleration’: 1 8);
t_angle := V[1] + arctan(sin(V[11}*(12*pl*pl*mp*g)/(8*E*pb*pd*pd*pd));  {total elastic

angle}
writeln(f2,T:10:6,' "t_angle*57.2957795:10:6," '.V[1]*57.2957795:10:6," '¢c_ac[11:10:6);
end;
end; [case}
rewrite(f1);
out_file; {print data to file}

writeln("Time":8,'C_accel': 13, Pole_ang": 13, Pole_ang_vel':14, Force"7,P_accel:14);
write(T:10:6," "c_ac[1]:10:6,' ', V[1]*57.2957795:10:6," ' V[2]:10:6," '.in_force:10:6);
repeat

m:=(;

runge(M.K,2,V F.T H);

while k =1 do

begin

Fl[1]:=V[2];
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check_pole_angle;
if failure then
begin
close(f1); close(f2);
exit;
end;
dnume := (4/3*mt*pl/2 - mp*pl2*cos(V[1)*cos(V1]) + c_f*mp*pl2*cos(VI1D*sin(V[1D));
nume ;= mt*g*sin(V[1]) - cos(V[11)*(¢c_force - (¢_f*mp*g -
mp*pl2*V[2]*V[2]*(sin{V[1D+c_f*cos(VI1D))):
F[2] := nume/dnume;
if T =0.0 then
begin
writeln(’ " F[2]:10:6);
writeln(f1," ' F[2]:10:6);
end;
runge(M.K.2,V.F.T H);
end;
if (T <= tmax) then
begin
icount := icount + 1;
if (icount = ifreq) then
begin
tcount := (;
ctr ;= cir+1; {total number of elements in array}
find_cart_acceleration(ch); {finds elastic angle,velocity,accelaration,displacemen }
writeln(T:10:6," 'c_ac[ctr]:10:6," "V[11¥57.295779:10:6, 'V[2]:10:6," ' c_force:10:6,' "F[2]:10:6);
writeln(f1,T:10:6," '¢_aclctr]:10:6," '\V[11¥57.295779:10:6," " V[2]:10:6," 'c_force:10:6," 'F[21:10:6);
time_col[ctr] := T; angle_co[ctr] := V[1];
end;
end;
until {T >tmax);
writeln;
write('  Thank you for waiting. Just press enter to continue ... ');
readln;
close(fl);
if ch <> '1' then close(f2);
end; {numerical_integration)

{this is the menu to choosr topic on the program }

procedure menu(var ch:char);

VAR y:integer;

begin
clrscr; gotoxy(1,3);
textcolor(blue);
writeln('********- L2 21 ] LS LT ************':63):
textcolor(red+blinK);
writeln("* CART-POLE BALANCING SYSTEM *.63);
textcolor(blue);
writeln('* Computer simulation using *:63);
WRITELN('* Fourth order runge-kutta *63);
textcolor(magenta+blink);
writeln('* By: Elmer P. Dadios *163);
textcolor(blue);
writeln('************************************************':63);
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writeln;

textcolor(green);

writeln('#*£¥*%xxxx ook ek EEEFFFERRERREEEE R AR ().
writeln('* MAIN MENU *-64);

writeln('* 1. Simulate new values for rigid pole *:64);

writeln("* 2. Simulate new values for elastic pole *:.64);

writeln('* 3. Plot the graph: rigid pole without friction *'.64);}
writeln(* 4. Plot the graph: rigid pole angle vs. time *:64);
writeln(™* 5. Plot the graph: elastic pole angle vs.time *:64);
writeln("* 6. Real time elastic pole cart simulation  *'.64);
writeln("* 7. Cart displacement vs. time (elastic pole) *:64);
writeln("™* 8. Cart acceleration vs. time (elastic pole) *':64);
writeln(™* 9. Cart velocity vs. time  (elastic pole) *:64);
writeln("* 0. To quit program. *:64);
writeln('* *:64);
wrile]_n('*************************************************':64);
y := wherey,
repeat

gotoxy(27.y);

write("Y our choice please : );

read(ch);
until ch in ['0,'1,2'/4'.5',6',)'7".8'.9'];
end; {menu}

{*** procedure to find the elastic angle **+**}
procedure find_elastic_angle;
var k.t_angle :real;
i :integer;
begin
assign(fl,'c;vesearch\n_i\r_angle.dat?;
rewrite(f1);
write_init_values_to_file;
writeln(f1,'Time':8,'t_pole_ang"15,r_pole_ang"12,'C_accel’:10);
k := pl*pl*mp*g*12/(§*E*pb*pd*pd*pd);
fori:=1toctrdo
begin
t angle := angle_coli] + arctan(k*sin(angle_col[i])):
writeln(f] time_colil:10:6,’ ".t_angle:10:6," '.angle_co[i):10:6.' ".¢_ac[i]:10:6);
end;
close(f1);
end; {find_elastic_angle}

BEGIN {MAIN PROGRAM }
repeat
MENU(ch);
case ch of
'1' ; numerical_integration{(ch);
'2' : numerical_integration(ch):
'4',5'.'7'.'8.'9": start_g_r_wof(ch); {call program that will graph theta vs time }
'6' : draw_pole_cart('6');
end; {case)
until ch = '0;
textcolor(white);
end. {MAIN PROGRM}

225



f/¥** This is the file that contain the procedures for displaying graphically the ***/
[*** dynamic behaviour of the system ***/

unit gra28_car; {graph of moving pole and cart}
INTERFACE
uses crt,graph,glob_dat;
type fillpaterrn Type = array[1..8] of byte;
const gray50: fillpatterntype = (JAA.$55.5AA 855.3AA, 355,3AA,855);
var

grdriver,grmode errcode x.y i time_sc,j :integer;

scale :longint;

1l : text;

t_angle :array[1..n] of real;

fatlure :boolean;

in_force.c_f.ac_amp :real;

procedure get_pole_data(var data:real);

procedure get_freq_neg(i:integer;var tl t2:real;var cycles:integer);
procedure solve_cart_displacement(ch:char);

procedure get_ex_data(choice:char);

procedure plot_line(choice:char);

procedure write_theta(the_pos,the_neg:real);

procedure write_time(time:integer);

procedure plot_points;

procedure init_graph;

procedure write_strings(ch:char);

procedure start_g_r wof(choice:char);

procedure write_cart_pole_heading;

procedure draw_track;

procedure draw_cart(change:real);

procedure draw_hinge(change:real);

procedure draw_elastic_pole(L1 change:real;n:integer;var TL:real);
procedure draw_system_at_any_time(n,scale:integer;var change:real);
procedure draw_pole(change:real);

procedure draw_pole_cart(ch:char);

IMPLEMENTATION

{*** procedure to initialize global data ***}
procedure init_global_data;

begin

fori:=1tondo

begin
time_coli]l := 0.0;
t_anglefi] := 0.0;
angle_coli] := 0.0;
c_acli] :=0.0;

end;

end;  {init_global_data}
{*** procedure to read poles data from file ***}
procedure get_pole_data(var data:real);
var ch:char;
begin
repeat
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" read(f1.ch);

until ch ="'=";

readln(f1,data);
end; {get_pole_data)

{*** procedure to get frequency that start at the first negative side ***}
procedure get freq_neg(i:integer;var tl.t2:real;var cycles:integer);
begin

cycles :=cycles + 1;

if cycles= 1then 12 :=0.0

else t2 ;=12 + (time_co[i]-t1);

tl := time_coli];
end; {get_freq neg}

'{ *%* procedure to find the cart displacement and velocity **#*}
procedure solve_cart_displacement(ch:char);
var tl t2 freq.cart_velreal;
icycles:integer;
flag :boolean;
begin
assign(fl,'c:\research\n_i\c_dis.dat’);
rewrite(f1),
writeln(f1, Time':8,Elas_angle':15,'Cart_accel’:12,'Cart_velocity’:14,'Cari_displacement': 18);
writeln(fl time_co[1]:10:6,' "t_angle[1]*57.2957795:10:6,' "¢_ac[1]:10:6," ',0.0:10:6, '0.0:10:6);
tl :=0.0; cycles :=0;
if in_force > 0.0 then
begin
flag := true;
fori:=1tojdo
begin
if (flag) and (c_ac[i] < 0.0) then ([first negative}
begin
get_freq neg(i,t1,i2,cycles);
flag := false;
end
else if (not flag) and (c_ac[i] > 0.0) then {first positive}
begin
12 := t2 + (time_coli])-t1);
tl := time_colil;
flag := true;
end;
end; {for}
end {if in_force > 0.0}
else
begin
flag := false;
fori:=1tojdo
begin
if (not flag) and (c_ac[i] > 0.0) then {first negative}
begin
get_freq_neg(i,t1.t2 cycles);
flag := true;
end
else if (flag) and (c_ac[i} < 0.0} then {first positive}
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begin
t2 =2 + (time_co[i]-t1);
tl ;= time_colil;
flag .= false;
end;
end; ([for} )
end; {if in_force < 0.0}
freq := 2/cycles;
fori:=2tojdo fatt>0}
begin {values for cart displacement}
cart_vel := ac_amp*sin(6.283185*freq*time_co[i])/(6.283185*freq); {Ksin(wt)/w = cart velocity}
write(f1 time_coli]:10:6," '.t_angleTil*57.2957795:10:6, "¢_ac[i):10:6," 'cart_vel:10:6);
if ch ='6' then {draw the entire system}
begin _
c_acli] := -c_ac[i]/(freq*freq*39.4784); {cart displacement = -acceleration/omega*omega)
writeln(f1,’ 'c_ac[i]:1(:6);
end
else if ch = '7' then { plot cart displacement vs time}
begin .
angle_coli] := -c_ac{i]lfreq*freq*39.4784);
writeln(fl,’ ‘,angle_co[il:10:6);
end
else if ch ="9" then { plot cart velocity vs time}
begin
angle_colil := cart_vel; [in plotting points angle_co is always used}
writeln(f1);
end;
end: {for}
if ch = '6' then c_ac[1] := 0.0; {initial displacement in plotting the entire system }
if (ch = '9or(ch="7") then
angle_co[l] := 0.0; {initial velocity and displacement}
close(f1);

end; {solve_cart displacement}

{*** procedure to read data from external file ¥**}

procedure get_ex_data(choice:char);
var ch :char;

amp_p,amp_n:real; {minimimum and maximum value of amplitude}

begin

init_global_data;
case choice of
'3''4’: assign (fl,'c\research\n_i\_out.dat’); {rigid pole w/o friction)
‘4. assign (f1,'cN\vesearch\n_iv_angle.dat);} {rigid pole w/ friction)
56,789 assign (f1,'c\vesearch\n_i\r_angle dat’); {rigid pole w/ friction}
end;
reset(f1);
fori:=1t020do }
fori:=1to2do

readIn(f1);
get_pole_data(mp); {mass of the pole}
get_pole_data(mt); {total mass of the pole and the cart)
get_pole_data(pl); {length of the pole}
get_pole_data(pb); {breadth of the pole}
get_pole_data(pd); {depth of the pole}
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get_pole_data(E);
get_pole_data(in_force);
get_pole_data(c_f);
fori:=1to11do
readIn(f1);
j:=0; amp_p:=0; amp_n :=0;
while (not eof(f1)) do
begin
j=j+l;
fori:=1to2do
read(fl.ch);
read(f1time_co[j1);
fori:=1to2do
read(f1.ch);
read(f1.t_anglelj]):
t_angle[j] := t_angle[j]/57.2957795;
fori:=1to2do
read(f1,ch);
read(fl.angle_colj]):
angle_col[j] := angle_co[j1/57.2957795;
fori=1to2do

{elasticity of the pole}

{the time}

read(f1,ch);
readln{f1.c_ac{jl); {cart acceleration}
if §>2) then
begin {exclude at =0}

if (¢_aclj] < amp_n) then
amp_n = ¢_aclj]
else if (c_acljl > amp_p) then
amp_p :=c_ac[jl;
end;
end; {while}
ac_amp := (amp_p + abs(amp_n))/2;
close(f1);
if (choice="6") or (choice="7") or (choice="9") then
solve_cart_displacement(choice)
else if choice = '8' then  {for cart acceleration}
fori:=1ltojdo
angle_coli] := c¢_ac[i]
else if choice =5’ then
fori:=1tojdo
angle coli] :=t_angle[i];
end: {[get_ex_data)
{#*** procedure to draw center line ¥***}
procedure plot_line(choice:char);
begin
x := round(getmaxx/2-270);
y = round(getmaxy/2);
for i := x to getmaxx-10 do
Putpixel(i,y,blue);
fori:=5toy*2-5do
putpixel(x-1,i,blue);
setcolor(brown);
SetTextstyle(defaultFont,Horizdir,2); {charsize =1}

{horizontal line}

{vertical line}
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{convert to radians}

{the rigid pole angle}
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SetTextjustify(centertext.centertext);
case choice of
‘4":begin
if ¢_f=0.0 then
OutTextXY (x+290,y-200,RIGID POLE WITHOUT FRICTION") {THE TITLE}
else
OutTextX Y (x+290,y-200,RIGID POLE WITH FRICTION"; {THE TITLE}
end;
'5"begin
if ¢_f <> 0.0 then
QutTextXY (x+290,y-200,ELASTIC POLE WITH FRICTION) {THE TITLE}
else
OutTextXY (x+290,y-200, ELASTIC POLE WITHOUT FRICTION');
end;
7" QutTextXY(x+290,y-200, TIME VS. CART DISPLACEMENT"; {THE TITLE}
8" OutTextXY (x+290,y-200, TIME V8. CART ACCELERATION"); {THE TITLE}
9" QuitTextXY(x+290,y-200, TIME VS. CART VELOCITY"); {THE TITLE}
END;
end; [plot_line}

[ #%#* procedure to plot the coordinates of the anlge ***}
procedure write_theta(the_pos.the_neg:real);

begin

x := round(getmaxx/2-270);

{*** for positive angle ****}

y := round{scale*the_pos);

y := round(getmaxy/2 - y); {coordinate of theta}
fori:= (x-1) to (x+1) do

putpixel(i,y.green); {draw horizintal line }
x = x-30;

if the_pos = (.0 then
OutTextXY(x,y.'0.00

else if the_pos <= 0.00175 then
OutTextXY(x.y,'0.0018")

else if the_pos <= 0.00345 then
OutTextXY(x.y,'0.0035)

else if the_pos <=0.005232 then
OutTextXY(x.y,'0.0052")

else if the_pos <= 0.00698 then
OutTextXY(x,y,'0.007)

else if the pos <= 0.00873 then
OutTextXY(x,y,'0.0087")

else if the_pos <= 0.01047 then
OuiTextXY(x,y,'0.01059

else if the_pos <= 0.01220 then
OutTextXY(x,y,'0.0122")

else if the_pos <= 0.01396 then
OutTextXY(x.y.'0.014)

else if the_pos <= 0.01570 then
OutTextXY(x,y,'0.0157)

else if the_pos <= 0.01745 then
CufTextXY(x,y,’0.0175"

else if the_pos <= 0.01919 then
OutTextXY(x,y.'0.0192)
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else if the_pos <= (0.02090 then
OutTextXY(x,y.'0.0209)

else if the_pos <= 0.02269 then
OutTextXY(x,y,'0.0227)

else if the_pos <= 0.02443 then
OutTextXY(x,y,'0.0244")

else if the_pos <= 0.02618 then
OQutTextXY(x,y,'0.0262")

else if the_pos <= 0.02793 then
OutTextXY(x,y.'0.0279)

else if the_pos <= 0.02967 then
OutTextXY(x,y,0.0297")

else if the_pos <= 0.03142 then
OutTextXY(x.y,'0.0314")

else if the_pos <= 0.03316 then
OutTextXY(x.y,'0.0332")

else if the_pos <= 0.03491 then
OutTextXY(x,y,'0.0349")

else if the_pos <= 0.03665 then
OutTextXY(x,y.'0.0367")

else if the_pos <= 0.03839 then
OutTextXY(x.y.'0.0384")

else if the_pos <= 0.04014 then
OutTextXY(x,y.'0.0401")

else if the_pos <= 0.04189 then
OutTextXY(x,y,'0.0419")

else if the_pos <= 0.04363 then
OutTextXY(x.y,'0.0436")

else if the_pos <= 0.04538 then
OutTextXY(x.y,'0.0454")

else if the_pos <= 0.04712 then
OutTextXY(x.y,'0.0471"

else if the_pos <= 0.04887 then
OutTextXY(x,y,'0.0489")

else if the_pos <= 0.05061 then
OutTextXY(x.y.'0.0506"

else if the_pos <= 0.05236 then
OutTextXY(x,y,0.0524")

else if the_pos <= 0,05410 then
OufTextXY(x,y,'0.0541")

else if the_pos <= 0.05585 then
OutTextXY(x,y,'0.0559"

else if the_pos <= 0.05760 then
OutTextXY(x,y,'0.0576")

else if the_pos <= 0.05934 then
OutTextXY(x,y,'0.0593")

else if the_pos <= 0.06100 then
OutTextXY(x,y,'0.061"

else if the_pos <= 0.06283 then
OutTextXY(x,y,'0.0628"

else if the_pos <= 0.06458 then
OutTextXY(x,y,'0.0646")

else if the_pos <= 0.06632 then
OutTextXY(x,y,'0.0663")
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else if the_pos <= 0.06807 then
OutTextXY(x,y,0.0681"

else if the pos <= 0.06981 then
CutTextXY(x,y,'0.0698")

else if the_pos <= 0.07156 then
OutTextXY(x,y,0.0716"

else if the_pos <= 0.07330 then
OutTextXY(x,y,'0.0733")

else if the_pos <= 0.07500 then
OutTextXY(x,y,'0.075")

else if the_pos <= 0.07679 then
OutTextXY(x,y,'0.0768")

else if the_pos <= 0.07853 then
OuTextXY(x.y.'0.0785")

else if the_pos <= (,08028 then
OutTextXY(x,y,'0.0803")

else if the_pos <= 0.08203 then
OutTextXY(x,y,0.082")

else if the pos <= 0.08378 then
OutTextXY(x,y,'0.0838")

else if the_pos <= 0.08552 then
OuiTextXY(x,y,'0.0855")

else if the_pos <= 0.087273 then
OutTextXY(x,y,’0.0873"

else if the_pos <= (0.08901 then
OutTextXY(x,y,'0.089")

else if the_pos <= 0.09076 then
OutTextXY(x,y,'0.0908")

else if the_pos <= 0.09250 then
OutTextXY(x,y,'0.0925"

else if the_pos <= 0.09425 then
OutTextXY(x,y,'0.0943")

else if the_pos <= 0.09599 then
OutTextXY(x,y,'0.096")

else if the_pos <= 0.09777 then
OutTextXY(x,y.'0.0978"

else if the_pos <= 0.09948 then
OutTextXY{x,y,'0.0995")

else if the_pos <= 0.10123 then
OutTextXY(x,y,'0.1012"

else if the_pos <=0.10297 then
OutTextXY(x,y.'0.103")

else if the_pos <= 0.10472 then
OutTextXY(x,y,'0.1047")

else if the_pos <= 0.10821 then
OutTextXY(x,y,'0.1082")

else if the_pos <= 0.11170 then
OutTextXY(x,y,'0.1117)

else if the_pos <= 0.11519 then
OutTextXY(x,y,'0.1152")

else if the_pos <= 0.11868 then
OutTextXY(x.y,'0.1187")

else if the_pos <= 0.12217 then
OutTextXY(x,y,0.1222)

232



else if the_pos <= 0.12566 then
OutTextXY(x,y,'0.1257)

else if the_pos <= 0.12915 then
QutTextXY(x,y,'0.1292")

else if the_pos <= 0.13264 then
OutTextXY(x.y.'0.1326")

else if the pos <= 0.13614 then
OutTextXY(x,y.'0.1361")

else if the_pos <= 0.13962 then
OutTextXY(x,y,'0.1396"

else if the_pos <= 0,14312 then
OutTextXY(x,y,'0.1431")

else if the_pos <= 0.14661 then
OutTextXY{(x,y,'0.1466"

else if the_pos <= 0.15010 then
OutTextXY{(x,y,'0.1501")

else if the pos <= 0.153689 then
OutTextXY(x,y,'0.1537")

else if the_pos <= 0.15708 then
OutTextXY(x,y.'0.1571")

else if the_pos <= 0.16057 then
OutTextXY(x,y.'0.1606")

else if the_pos <= 0.16406 then
OutTextXY(x,y,'0.1641")

else if the_pos <= 0.16755 then
OutTextXY(x,y,'0.1676")

else if the_pos <= 0.17104 then
OutTextXY(x,y,'0.171"

else if the_pos <= 0.17453 then
OuiTextXY(x,y,'0.1745"

else if the_pos <= 0.191986 then
OutTextXY(x,y.'0.192")

else if the_pos <= 0.2094395 then

OutTextXY(x.y,'0.2094")

else if the_pos <= 0226892 then
OutTextXY(x.y.'0.2269")

else if the_pos <= 0.24435 then
OutTextXY(x.y,'0.2444")

else if the_pos <= (.26180 then
OutTextXY(x,y,'0.2618")

else if the_pos <= 0.27923 then
OutTextXY(x,y,'0.2793")

else if the_pos <= 0.29671 then
OutTextXY(x,y,'0.2967")

else if the_pos <= 0.31416 then
OutTextXY(x,y,'0.3142)

else if the_pos <= 0.33161 then
OutTextXY(x.y,'0.3316)

else if the_pos <= 0.34907 then
OutTextXY(x.y,'0.3491")

else if the_pos <= 0.36652 then
OutTextXY(x,y,'0.3665")

else if the_pos <= (0.38397 then
OutTextXY(x,y,'0.384")
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else if the_pos <= 0.40143 then
CutTextXY(x,y,'0.4014")

else if the_pos <= 0.41883 then
OutTextXY(x,y,'0.4189"

else if the_pos <= 0.43633 then
OutTextXY(x,y,'0.4363")

else if the_pos <= 0.453786 then
OutTextXY(x,y,'0.4538")

else if the_pos <= 0.47124 then
OutTextXY(x,y,'04712")

else if the_pos <= 0.48870 then
QuiTextXY(x,y.'0.4887")

else if the_pos <= 0.506145 then
OutTextXY(x,y,'0.5061")

else if the_pos <= 0.523599 then
OutTextXY(x.y,'0.5236");

{*** for negative ****}

x = x4+30;

y := round(scale*the_neg);

y := round(abs(y) + getmaxy/2);

fori:=(x-1)to (x+1) do

putpixel(i,y,green);

X = x-30;

if the_neg = 0.0 then
OutTextXY(x,y.'0.0")

else if the_neg >= -0.00175 then
OutTextXY(x,y,” 0.0018")

else if the_neg >= -0.00345 then
QutTextXY(x,y,” 0.0035")

else if the_neg >= -0.00523
OutTextXY(x.y.'0.0052"

else if the_neg >= -0.00698
OutTextXY(x,y,'0.007")

else if the_neg >= -0.00873
OutTextXY(x,y,'0.0087")

else if the_neg >= -0.01047
OutTextXY(x.y,0.0105"

else if the_neg >= -0.01220 then
OutTextXY(x,y,'0.0122"

else if the_neg >=-0.01396 then
OutTextXY(x,y,'0.014")

else if the_neg >=-0.01570 then
OutTextXY(x.y.'0.0157")

else if the_neg >=-0.01745
OutTextXY(x,y,'0.0175"

else if the_neg >= -0.01919 then
OutTextXY(x.y,'0.0192")

else if the_neg >= -0.02090 then
OutTextXY(x,y,'0.0209")

else if the_neg >= -0.02269
OutTextXY(x.y,'0.0227")

else if the_neg >= -0.02443
OutTextXY(x.y.'0.0244")

then
then
then

then

then

then

then

{for horizontal line marker}
{coordinate of theta}

{draw horizintal line}
{for theta coordinate }
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else if the_neg >= -0.02618 then
OutTextXY(x,y.'0.0262")
else if the_neg >= -0.02793 then
OutTextXY(x,y,'0.0279")
else if the_neg >= -0.02967 then
-OQuiTextXY(x,y,'0.0297")
else if the_neg >= -0.03142 then
OutTextXY(x,y,'0.0314")
else if the_neg >= -0.03316 then
OutTextXY(x,y,'0.0332")
else if the_neg >= -0.03491 then
CutTextXY(x.y.'0.0349")
else if the_neg >= -0.03665 then
OutTextXY(x,y,'0.0367")
else if the_neg >= -0.03839 then
OutTextXY(x.y,'0.0384")
else if the_neg >= -0.04014 then
OutTextXY(x,y,'0.0401")
else if the_neg >= -0.04189 then
OutTextXY(x,y,'0.0419")
else if the_neg >=-0.04363 then
OutTextXY(x,y,'0.0436"
else if the_neg >= -0.04538 then
OutTextXY(x,y,'0.0454")
else if the_neg >= -0.04712 then
OutTextXY(x,y,'0.0471"
else if the_neg >= -0.04887 then
OutTextXY(x,y,'0.0489"
else if the_neg >= -0.05061 then
OutTextXY(x.y,'0.0506"
else if the_neg >= -0.05236 then
OutTextXY(x,y,'0.0524")
else if the_neg >= -0.05410 then
OutTextXY(x,y,'0.0541"
else if the_neg >= -0.05585 then
OutTextXY(x,y.'0.0559")
else if the_neg >= -0.05760 then
OutTextXY(x,y.'0.0576"
else if the_neg >= -0.05934 then
OutTextXY(x,y,'0.0593"
else if the_neg »>=-0.06100 then
OQutTextXY(x,y,'0.061")
else if the_neg >= -0.06283 then
OutTextXY(x,y,'0.0628")
else if the_neg >=-0.06458 then
OutTextXY(x,y,'0.0646")
else if the_neg >= -0.06632 then
OutTextXY(x,y,'0.0663")
else if the_neg >= -0.06807 then
OutTextXY(x,y,'0.0681"
else if the_neg >=-0.06981 then
OutTextXY(x,y, 0.0698")
else if the_neg >= -0.07156 then
OutTextXY(x,y,'0.07169
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else if the_neg >=-0.07330 then
OutTextXY(x.y,0.0733")

else if the_neg >= -0.07500 then
OutTextXY(x,y,'0.075)

else if the_neg >= -0.07679 then
OutTextXY(x,y,'0.0768)

else if the_neg >= -0.07853 then
OutTextXY(x,y,'0.0785")

else if the_neg >= -0.08028 then
OutTextXY(x,y,'0.0803")

else if the_neg >= -0.08203 then
OuiTextXY(x.y,'0.082)

else if the_neg >= -0.08378 then
OutTextXY(x,y,'0.0838")

else if the_neg >=-0.08552 then
OutTextXY(x,y,'0.0855")

else if the_neg >= -0.087273 then
OutTextXY(x,y,'0.0873)

else if the_neg >= -0.08901 then
OutTextXY(x,y,'0.089")

else if the_neg >= -0.09076 then
OutTextXY(x,y,'0.0908)

else if the_neg >=-0.09250 then
OutTextXY(x,y.'0.0925"

else if the_neg >= -0.09425 then
OutTextXY(x,y.0.0943")

else if the_neg >= -0.09599 then
OutTextXY(x,y.'0.096")

else if the_neg >= -0.09777 then
OutTextXY(x.y,'0.0978")

else if the_neg >= -0.09948 then
OutTextXY(x,y.'0.0995")

else if the_neg »>= -0.10123 then
OutTextXY(x,y,'0.1012"

else if the_neg >= -0.10297 then
OutTextXY(x,y,0.103)

else if the_neg >= -0.10472 then
OuiTextXY(x.y.'0.1047")

else if the_neg >=-0.10821 then
OutTextXY(x,y,'0.1082")

else if the neg >=-0.11170 then
OutTextXY(x.y,'0.1117")

else if the neg >=-0.11519 then
OutTextXY(x.y,'0.1152")

else if the_neg >= -0.11868 then
OutTextXY(x.y,'0.1187")

else if the_neg >= -0.12217 then
OutTextXY(x.y,'0.1222"

else if the_neg >= -0.12566 then
OutTextXY(x,y,'0.1257")

else if the_neg >= -0.12915 then
OutTextXY(x,y,'0.1292")

else if the_neg >= -0.13264 then
OutTextXY(x.y,'0.1326)
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else if the_neg >=-0.13614 then
OutTextXY(x,y,'0.1361")

else if the_neg >= -0.13962 then
OutTextXY(x,y,'0.1396")

else if the neg >= -0.14312 then
OutTextXY(x,y,'0.1431)

else if the_neg >=-0.14661 then
OutTextXY(x,y.'0.1466")

else if the_neg >= -0.15010 then
OutTextXY(x,y,'0.1501"

else if the_neg >= -0.153689 then
OutTextXY(x,y,'0.1537)

else if the_neg >= -0.15708 then
OutTextXY(x,y,'0.1571"

else if the_neg >= -0.16057 then
OutTextXY(x,y,'0.1606")

else if the_neg >= -0.16406 then
OutTextXY(x,y,'0.1641")

else if the neg >=-0.16755 then
OutTextXY(x,y,'0.1676)

else if the_neg >= -0.17104 then
OuiTextXY(x,y,0.171)

else if the_neg >= -0.17453 then
OutTextXY(x,y,'0.1745)

else if the_neg >= -0.191986 then
OutTextXY(x,y,0.192)

else if the_neg >= -0.2094395 then
OutTextXY(x,y,'0.2004")

else if the_neg >= -0.226892 then
OuiTextXY(x,y,'0.2269)

else if the_neg >=-0.24435 then
OutTextXY(x,y,'0.2444")

else if the_neg >= -0.26180 then
OutTextXY(x,y,'0.2618")

else if the_neg >=-0.27925 then
OutTextXY(x,y,'0.2793")

else if the_neg >= -0,29671 then
OutTextXY(x,y,'0.2967"

else if the _neg >=-0.31416 then
OutTextXY(x.y,0.3142)

else if the_neg >=-0.33161 then
OutTextXY(x,y,0.3316)

else if the_neg >= -0.34907 then
OutTextXY(x,y,'0.3491"

else if the_neg >= -0.36652 then
OutTextXY(x,y,'0.3665"

else if the_neg >= -0.38397 then
OutTextXY(x,y,'0.384")

else if the_neg >= -0.40143 then
OutTextXY(x,y,'0.4014")

else if the_neg >=-0.41888 then
OutTextXY(x,y.'0.4189"

else if the_neg >= -0.43633 then
OutTextXY(x,y,'0.4363")
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else if the_neg >= -0.453786 then
OutTextXY(x.y,'0.4538")

else if the_neg >=-0.47124 then
OutTextXY(x,y,'0.4712"

else if the_neg >= -0.48870 then
OutTextXY(x,y.'0.4887")

else if the_neg >= -0.506145 then
OutTextXY(x.y,'0.5061"

else if the_neg >= -0,523599 then
OutTextXY(x.y,'0.5236"%;

end; {write_theta}
{*#** procedure to print time covered ***}

procedure write_time(time:integer);
var | xt, yt:integer;

begin
xt := round(getmaxx/2-270+time*time_sc), {x coordinate of time}
yt := round(getmaxy/2+5); {y coordinate of time}
for | := round(getmaxy/2-1) to round(getmaxy/2+1) do
putpixel(xt,l,green);
setcolor(yellow);
SetTextstyle(defaultfont horizdir,1); {charsize =1}
SetTextjustify(LeftText, Toptext);
case time of

1: OutTextXY(xt-2,yt,'1");

2: OutTextXY(xt-2,yt,'2";

: OutTextXY(xt-2,yt.'3");

: QuiTextXY(xt-2,yt,'4");

: OutTextXY(xt-2,yt,'5");

: OutTextXY(xt-2,vt,'6";

: OutTextXY(xt-2,yt,'7");

: OutTextXY(xt-2,vt,'8);

s OutTextX Y (xt-2,yt,'9";
10: OutTextXY(xt-2,yt,' 10";
11: OutTextXY(xt-2,yt,'11%;
12: OutTextXY(xt-2,yt,'12";
13: OutTextXY(xt-2,yt,'13";
14: OutTextXY(xt-2,yt,'14");
15; OutTextXY(xt-2,yt,'15;
16: OutTextXY(xt-2,yt,'16");
17: OutTextXY(xt-2,yt.'17);
18: OutTextXY(xt-2,yt,'18");
19: OutTextXY{(xt-2yt,'19');
20: OutTextXY(xt-2,yt,207;

end;
end; {write_time}

oo~ W

{**** procedure to plot points on the graph ***#%}
procedure plot_points;
var timer :integer;
max_the_pos,max_the_neg :real;
begin
timer := 1; {value of time}
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max_the pos ;= 0; [maximum positive angle}
max_the_neg :=0;
fori:=1tojdo
begin
x := round(getmaxx/2-270 + time_sc*time_co[il); {time}
y := round(scale*angle_coli]);
if (angle_coli] > 0) then {positive angle}
begin
if angle_co[i] > max_the_pos then
max_the_pos := angle_colil;
y := round(getmaxy/2 - y); {coordinate of theta}
end
else if (angle_coli] < 0) then
begin {negative angle}
if angle_coli] < max_the_neg then
max_the neg := angle_col[il;
y :=round(abs(y) + getmaxy/2)

end
else
y := round(getmaxy/2);
putpixel(x,y red); {at 0 angle}
if (round(time_co[i]) = timer) then  {check the value of time}
begin
write_time(timer); {plot time coordinate }
timer := timer +1;
end;
end;

write_theta(max_the pos,max_the neg); {plot anlge coordinates}
end; {plot_points}

{ ##* procedure to initialize graphics mode **%*}
procedure init_graph;
begin
grdriver := detect;
Initgraph(grdriver,grmode, c:\ip6\bgi ;
errcode := graphresult;
if errcode <> grok then
begin
writeln('Graphics erro : ", GraphErrorMsg(Errcode));
readln;
hali(1);
end
end; {init_graph}

{*** procedure to write string values on screen **%+*)

procedure write_strings(ch:char);

begin
setcolor(green);
SetTextstyle(defaultFont,Horizdir,2); {charsize =1}
SetTextjustify(centertext,centertext);

OutTextXY (350,280, Time (seconds)’); {CP is updated }
setcolor(green);
SetTextstyle(defaultfont, Vertdir,2); {charsize =1}

SetTextjustify(centertext,centertext);
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if ch ="'7" then
OutTextXY(10,240,'(-) Cart displacement [m] (+)")
else if ch ="' then
begin
OutTextXY(10,240,'(-) Cart acceleration (+));
OutTextXY(25.240, [m/sqs])
end
else if ch = "9 then
QutTextXY(10,240,'(-) Cart velocity [m/s] (+)")
else
OutTextXY(10.240.'(-) Theta (radians) (+));

end; {write_strings}

{** procedure to start graph of rigid pole without friction*#*%*}
procedure start_g_r_wof(choice:char);

var i :integer;

begin

clrscr;

write("Scale factor of the vertical coordinate (1-10600) =");
readIn(scale);

write('Scale factor of the horizontal coordinate (1-50) =");
readln(time_sc);

get_ex_data(choice);

init_graph;
plot_line{choice);
plot_points;
write_strings(choice);
readln;

closegraph;

end; {START_G_R WOF}

{*** procedure to write heading on the pole cart balancing system ***}
procedure write_cart_pole_heading;

var i:integer;

begin

setcolor(cyan);
SetTextstyle(defaultFont, Horizdir,2); {charsize =1}
SetTextjustify(centertext.centertext);
OutTextXY (round(getmaxx/2}.round(getmaxy/2+95),'CART POLE BALANCING SYSTEM');
setcolor(13);
SetTextstyle(defaultFont, Horizdir,2); {charsize =1}
SetTextjustify(centertext.centertext);
OutTextXY (round(getmaxx/2),round(getmaxy/2+115),Real time simulation');
fori:=1to80do
putpixel{round(getmaxx/2-150+i),round{getmaxy/2+150),green);
setcolor(green);
SetTextstyle(defaultFont, Horizdir,0); {charsize =1}
SetTextjustify(centertext,centertext);
OutTextXY (round(getmaxx/2).round(getmaxy/2+150), Elastic pole);
fori:=1t080do
putpixel(round(getmaxx/2- 150+i),round(getmaxy/2+165),blue);
setcolor(blue);
SetTextstyle(defaultFont, Horizdir,0); {charsize =1}
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SetTextjustify(centertext,centertext);
OutTextXY (round(getmaxx/2) round(getmaxy/2+165), Rigid pole');
end; {write_cart-pole_headng}

{ #** procedure to draw the track ****}

procedure draw_track;

begin
write_cart_pole_heading;
setcolor{white);
setfillpattern({gray50,brown);
bar3d{round(getmaxx/2-

280) round{getmaxy/2+35) round(getmaxx/2+270) round (getmaxy/2+55),10,topof);
bar(round(getmaxx/2-280),round(getmaxy/2-35) round(getmaxx/2-270) round(getmaxy/2+45));
bar(round(getmaxx/2+270) round(getmaxy/2-35) round(getmaxx/2+280) round(getmaxy/2+55));

end; {draw_track}

{*** procedure to draw the cart ¥**}
procedure draw_cart(change:real);
begin
setfillpattern(gray30,red);
if mt < 0.6 then
bar(round(getmaxx/2- .
25+change),round(getmaxy/2+10), round(getmaxx/2+25+change) round(getmaxy/2+30))
else
bar(round(getmaxx/2-50+change) round(getmaxy/2-
£0),round(getmaxx/2+50+change) round(getmaxy/2+30));
end; {draw_cart}
{ **** procedure to draw the wheel **}
procedure draw_wheel(change:real);
begin
setcolor{white);
setfillpattern(gray50,white};
if mt < 0.6 then
begin
pieslice(round(getmaxx/2-15+change).round(getmaxy/2+30),0,360,5);
pieslice(round(getmaxx/2+15+change) round(getmaxy/2+30),0,360,5);
end
else
begin
pieslice(round (getmaxx/2-30+change) round(getmaxy/2+30),0,360,9);
pieslice(round(getmaxx/2+30+change) round(getmaxy/2+30),0,360,9);
end;
end; {draw_wheel}

{*** procedure to draw the hinge **)
procedure draw_hinge(change:real);
begin
setcolor(yellow);
if mt < 0.6 then
begin
arc(round(getmaxx/2+change).round(getmaxy/2+10),0,180.,9);
circle(round(getmaxx/2+change) round(getmaxy/2+6),3);
circle(round(getmaxx/2+change),round(getmaxy/2+6).1);
end
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else
begin
arc(round(getmaxx/2+change).round(getmaxy/2-10).0,180,10);
circle{round(getmaxx/2+change) round(getmaxy/2-15),3);
circle(round(getmaxx/24change) round(getmaxy/2-15),1);
end;
end; {draw_hinge}

{*** procedure to draw the elastic pole ***}
procedure draw_elastic_pole(L 1 change:real;n:integer;var TL:real);
var L.x2,y2,g.elong, 1.2k i:real;
scale :integer; ratio:real;
begin
ratio := getmaxy/getmaxx;
scale = 200;
g:=938l;
k := pb*pd*pd*pd*E/12;  [EI}
L :=pl;
elong ;= (mp*g*sin(angle_col[n])/L)/24 * (6*L*L*L1*L1 - 4*L*L1*L1*L1 + L1*L1*Li*L1)/k;
L2 := sqri(L1*L1 + elong*elong); {distance of elastic pole at any point I}
if L1 <> 0 then
TL := arctan{elong/L.1) {the angle due to elasticity }
else tl ;= 0.0;
x2 := sin(angle_co[n]+TL)*L2*scale*ratio;
y2 .= cos(angle_co[n]+TL)*L2*scale;

x2 := sin(T _ANGLE[N]*L2*scale*ratio;
v2 := cos(T_angle[N])}*L2*scale;

if mt < 0.6 then {small cart}
putpixel{round(getmaxx/2+change+x2) round(getmaxy/2+6-y2).green)
else
putpixel{round(getmaxx/2+change+x2).round(getmaxy/2- 15-y2).green);
end; {draw_elastic_pole}

{*** procedure to calculate the displacement of the cart *#*}
procedure find_cart_displacement(n,scale:integer;var change:real);
var ch :char;
begin
change := (scale}*c_ac[nl];
{ c_ac[n] X = distance covered by cart = cart acceleration }
if (change <= -220.0) or (change >= 220.0) then
begin {failure cart hit limit of track}
setcolor(RED);
SetTextstyle(defaultFont Horizdir,1); {charsize =1}
SetTextjustify(centertext,centertext);
OutTextXY(round(getmaxx/2) round(getmaxy-25), FAILURE !!! CART HIT THE, TRACK
LIMIT);
OuiTextXY (round(getmaxx/2) round(getmaxy-15),Press return for main menu.');
failure := true;
readln(ch);
end;
end; {find_cart_displacement}
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[*** procedure to draw the entire system at any time n ***}
{*** this will calculate the position of the cart ***}
procedure draw_system_at_any_time(n scale:integer;var change:real);
begin

find_cart_displacement(n,scale,change);

draw_track;

draw_cart{change);

draw_wheel(change);

draw_hinge{change);

end; {draw_system_at_any_time}

[ ***#* procedure to draw the pole ****}
procedure draw_pole{change:real);
var x,y,L1L.TL taratio:real;
n,scale : integer;
begin
ratio ;= getmaxy/getmaxx;
L:=pL {1.0;}
scale :=200;
forn:=1tojdo {jis the total number of elements)
begin
L1 :=0.004;
repeat
x := sin(angle_co[n])*L1*ratio;
y := cos{angle_col[n])*L1;
if mt < 0.6 then
putpixel(round(getmaxx/2+change+x*scale) round(getmaxy/2+6-y*scale) blue)
else
putpixel(round(getmaxx/2+change+x*scale) round(getmaxy/2-15-y*scale),blue);
draw_elastic_pole(L1.change.n,TL);
L1:=L1+0004;
until L1 »>=L;
{ if time_co[n] = 0.02 then
begin
setcolor(RED);
SetTextstyle(defaultFont, Horizdir, 1);

SetTextjustify(centertext,centertext);
QutTextX Y (round(getmaxx/2).round(getmaxy-175),' Time Cart displacement Elastic pole
angle Rigid pole angle");
OutTextXY (round(getmaxx/2).round(getmaxy-165),'0.02 -0.2994 30.52 degrees
9.924 degrees’);
readln; clearviewport;
end;

{ ta := angle_cofn] + TL; } {total elastic pole angle}
f writeln(fl,ime_co[n]:10:6, "t1:10:6, '.angle_coln]:10:6); }
delay(3000);
{ RESTORECRTMODE;
GOTCXY(10,24); WRITE('X = \CHANGE/scale:10:6, Time =".time_co{n]:10:6);
delay(1000):
SETGRAPHMODE(getgraphmode);
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setviewport(round(getmaxx/2-269) round(getmaxy/2-235),(getmaxx-
51).round{(getmaxy/2+35),clipon):

clearviewport;

setviewport(0.0.getmaxx, getmaxy,clipon);

draw_system_at_any_time(n+1,scale.change);

if failure then exit;

end; {for}

end; {draw_pole}

{*** procedure to draw the cart and the pole ****}
procedure draw_pole_cart{ch:char);
var 1 :integer;

change : real; {X displacement of the cart}
begin

get_ex_data(ch);

failure := false;

init_graph;
{ change :=0;}

write_cart_pole_heading;

draw_system_at_any_time(1,200.change);
[ draw_track;

draw_cart(change);

draw_wheel(change);

draw_hinge(change);

draw_pole{change);;
if (not failure) then
begin
setcolor(RED);
SetTextstyle(defanltFont Horizdir,1); {charsize =1}
SetTextjustify(centertext.centertext);
OutTextXY (round(getmaxx/2) round(getmaxy-25),'SUCCESSFUL !!! SIMULATION TIME
FINISHED),
OutTextXY (round{getmaxx/2),round{getmaxy- 15), Press return for main menu.);
readin(ch);
end;
closegraph;
end; {DRAW_POLE_CART}
end. {UNIT GRA28}
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APPENDIX B

The Quanzer Consulting Incorporated Controller for the
Flexible Pole-Cart Balancing Problem

1. Description

The Quanzer company make a range of devices for control engineéring
experiment. This experiment designed for this thesis combines the inverted pendulum and
the flexible link module to obtain an interesting variation of the classical inverted
pcndulu'm.

The system is assembled as shown in figure B.1. Note that you can either use the
full pendulum or just a small shaft to couple the flexible link to the cart. The two masses
supplied with the system must also be attached to the tip of the link as shown in figure
B.1.

This appendix describes the problem for deriving the proprietory control system

used by Quanzer.

2. Mathematical model

Consider the simplified diagram shown in figure B.2. The stiffness of the link is
assumed to be collocated at the point of attachment to the pendulum. The rotational

stiffness is represented by K,. The masses of the moving elements are as shown in the

figure. In order to derive the differential equations of the system, we need to obtain the
kinetic and potential energy for each element in the system. These are obtained as follows:
Consider the coordinate frames defined in the figure B.3. Using transformation

matrices, we have the following transformations:
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0 0 0 0
0 0 0 1|
[Ccos(t) 0 -sin(ot) hsin(ot)]
0 1 0 0
T12 =
sinfct) 1 cos(cx) hcos(cr)
0 0 0 1
[ cos(B) 0 -sin(B) L,sin(B) |
0 1 0 0
T32 =

sin(B) 1 cos(B) L,cos(B)

0 0 o 1

The last column in each matrix represents the position of the frame relative to the
previous frame. The transformation 7% =7%T" represents the position and orientation
of the camera relative to the base frame and T% =7%T"T® is the position and

orientation of the load attached at the tip (bulb plus two masses) relative to the base

frame,
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Defining

o2 _ [R”:I
P e

Take note that there is no motion along the ‘y’ direction. Then the kinetic energy of the

camera is given by:
2 2 2
dP.* OP*
ke, =0sM.(| |+ 050 [22
ot ot ot

and the potential energy of the camera is given by:

PEcamem = MCgPCz
Similarly for the load at the end of the link,

— P -
0

TOREE I:RB] ]
P,

Then, the kinetic energy of the load is:

oP=T [oP:T
KE,, =05M, (22— | +| 22
o]
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and the potential energy of the load is given by:

PE,,, = M_gP/’
The potential energy in the spring (equivalent stiffness of the link collocated at the
mounting to the pendulum) is:

PE_. =05K,B’

spring
The potential energy of the pendulum is derived as for the camera by substituting L _p for

hin 7 and M_p for M., in the energy equations. It is assumed the pendulum is a point

mass located at a distance L_p from the joint (L_p is half the actual physical length of the
pendulum).
The kinetic energy of the cart is given by:

KE__ =05M_x°

cart
All of the above equations are implemented in a MAPLE program that computes the
Langrarian about each independent axis and derives the nonlinear differential equations.
The nonlinear differential equations are written to disk.. A second program reads the
nonlinear equations and linearizes them about the operating point (0,0,0). The linearized

model results in the matrix equation:

: ©o 0o 0o 1t o0 o [x 0
o 0 0 0 0 1 o |& 0
B 0 0 0 0 o 1| |B 0
x - a, d; 0 0 0 x * b, F
a a;, d; 0 0 a bs
B 0 ap am 0 0 0 g bg

The values for the constants in the matrix are then used in MATLAB to design the

coniroller.
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3. Control system design

The design proceeds as with the inverted pendulum experiment. Substituting

system parameters into the matrix equation obtained:

: 6o 0 o t o o [« 0

o 0 0 0 0 1 0f |a o

: o 0 0o o o 1f [p lo

x| = Jo ss4700 of [x| * [i3]F
* 0 496 %28 0 0 of |¢ 43

P 01147 947 0 0 o |P |0.96

The force output must be converted to a voltage input since the motor is driven by a

voltage:

2 2
T _KaKln _ KoK, KK -

F 2
r r Rr Rr

substituting parameter values into the matrix equation results in:

: o 0 o 1 o o] [x 0

o o0 0 0 1 0 |« 0

B o 0 o o o 1| |p 0

x = fo 58 47001 0 of [x | * 3|V
o 0496 %28 32 0 of (¢ 43

b 011479774 0 of |P 0.96
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A controller is then generated using the LQR method within MATLAB. The Q and the r
weighting factors chosen are:
Q = diag(0.1 1 0 0 0 0.1)
r =0.001
resulting in the feedback gains:
K = [-10 62.7 48.5 -16 -11.4 -10.7] for units in metres and radians.
and

K = [-01 -1.1 085 -0.16 -0.2 -0.19 for units in centimetres and degrees.

The closed loop eigenvalues for the above gain are:
[-154+-j6.2]
[-1.7+-j7.9]
[-14+-j0.92]

Figure FP4 compares the response of the modelled system to a step command in
cart position using the gains obtained above and a set of gains with K3 and K6 set to zero.

Clearly, the feedback gains K3 and K6 are necessary to stabilized the system.
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Figure B.1

Assembly of flexible inverted pendulum
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Figure B.2
Simplified model of the flexible inverted pendulum
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Coordinate frame definitions
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4. Results

The above controller is implemented on an actual system and works well. Figure
B.4 compares the response of the modelled system to a step command in cart position
using the gains obtained above and a set of gains with K3 and K6 set to zero. Figure B.5
shows the deflection response to a tap to the pendulum. Note that the system does not
stabilize but there is a limit cycle due to friction and other nonlinearities. Figure B.6 shows

the response of the system when the feedback gains K3 and K6 are set to zero.

vwomreQmo

Figure B.4
Deflection ( B ) Response with and without camera feedback
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Figure B.5
Deflection (B ) Response to a tap on the pendulum using full state feedback
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Figure B.6

Deflection (B ) Response when K3 and K6 are set to zero

5. Reference

1. P.P. Richard “Robot Manipulators: Mathematics, Programming and Control ,”, The
MIT press, 1981.
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APPENDIX C

The Neural Network On-Line Program for the Flexible Pole-Cart
Balancing System

Important procedures in the program:

=

10.

11.

get_neural_net( ) - A procedure used to set up the architecture of the neural network.
get_layer_info( ) - A procedure used to get the neural network parameters.
set_up_network( ) - A procedure used to construct and interconnect the layers of the
neural network. This includes memory allocation of the neural network to the
computer.

read_weights( ) - A procedure used to get the trained weight values of the neural
network from an external file wed2_111.dat and allocate it to each layer connections.
main_loop( ) - A procedure used to operate the controller with an interaction of the
user.

reset_ad_da_con( ) - A procedure used fo prepare the analog/digital digital/analog
converter for operation.

initialize_data() - A procedure used to initialize the values of the sensors.
set_clock_frequency( ) - A procedure used to set the clock frequency for real time
operation.

newtimer( ) - A tc++ built in procedure used to instruct the interrupt vectors to
operate in real time,

enable() - A tc++ buit in procedure used to enable the interrupt service routine (isr).
At this point newtimer( ) start operating in real time and sensors are getting data from
the plant,

get_voltage_from_neural_net( ) - A procedure used to get the voltage needed to

operate the actuator and control the system.
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12.

13.

14,

15.
16.

17.

get_data_from_acd( ) - A procedure used to assign the normalized data taken from
the sensors to the neural network input buffers.

forward_prop( ) - A procedure used to obtain the required output of the neural
network to control the system by forwardly propagating the sum of the weights and
the input values of each layer. This uses a sigmoid function in procedure calc_out( )
to a value between O to 1.

get_final_value( ) - A procedure for determining the actual magnitude and direction
of the final output of the neural network controller.

main_menu{ ) - A procedure to display user options on operations the controller.
printval( ) - A procedure use to display the status of the system. (i.g. position and
velocity of the cart, the pole angle, and the pole deflection).

save_data_to_file( ) - A procedure used to save the informations needed to examine
the performance of the controller. The data are save in MATLAB format and are

ready for MATLAB graphical representation.
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C++ Object Oriented Class/Structures Used in the Program

/*
This classes are stored inside file layer4.h
*

#define MAX_LAYERS 5
#define MAX_VECTORS 500

class network;
class layer /{ The components of a layer
{
protected:
int num_inputs;
int num_outputs;
float *outputs; /f pointer to array of outputs
float *inputs; // pointer to array of inputs, which are outputs of
/f some other layer
friend network:

public:
virtual void calc_out()=0;
b
class input_layer: public layer {// The components of input layer
{
private:
float noise_factor; // Noise parameter applied to input data
float * orig_outputs;
public:
input_layer(int, int);
~input_layer(});
virtual void calc_out();
void set_NF(float);
friend network;
IR
class middle_layer; // The components of hidden layers
class output_layer: public layer
{
protected:
float * weights; // Pointers of weight values
float * output_errors; // array of errors at output
float * back_errors; /! array of errors back-propagated
float * expected_values; /{ to inputs
float * cum_deltas; /{ for momentum
float * past_deltas; // for momentum

friend network;

258



public:

b

output_layer(int, int);
~gutput_layer();

virtual void calc_out();

void list_weights();

void read_weights(int, FILE *);
void list_outputs();

class middle_layer: public output_layer

{
private:
public;

K

middle_layer(int, int);
~middle_layer():
void calc_error();

class network /f The components of FNN architecture

{

private:

public:

layer *layer_ptr[MAX_LAYERS]; // Pointer for every layer

int number_of_layers; // Actual number of layers in the network
int layer_size[MAX L.AYERS];

float *buffer; // Input data storage

fpos_t position; / Flag for status of system

unsigned training; // Flag for testing or training operation

network();

~network();

void set_training(const unsigned &);
unsigned get_training_value();

void get_layer_info();

void set_up_network();

void read_weights(FILE *);

float get_final output();

void write_outputs(FILE *);

void list_outputs();

void forward_prop();

int get_data_from_adc(float a.float x_d.float a_d.float d_d);
void set_up_pattern(int);
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I*
This is the main program to test capability of feedforward neural network
controller to control the flexible pole-cart balancing problem.
By: Elmer P. Dadios
Manufacturing Engineering Department
Loughborough University of Technology, UK

#pragma inline . {/ Inline assembly declaration

#include <stdio.h>

#include <conio.b>

#include <math h>

#include <bios.h>

#include <dos.h>

#include <io.h>

#include <float.h>

#include <stdlib.h>

#include <graphics.h>

#include <d:\research\neu\dt2811.drv> // Use for data translation AD/DA converter
extern void interrupt newtimer(...); // Declare other functions for real time operarion
static void interrupt (*oldtimer)(...);

#include "layerd.cpp”

#define WEIGHTS_FILE "wed2_111.dat"
network backp; /fcreate a network object
long int vectors_in_buffer;

const int no_of _data = 3000;

int Lctr.ctrl; .

float x_data[3000].a_data[3000].d_data[3000].v_data[3000];
FILE * weights_file_ptr;

floata_nd_nx_nx_dna dnd dn; // Normalized values of data from the plant

float alpha,alpha_d.x,x_d.def.def_d.voltage.vf.force,t_mass;

float alpha_pf alpha_p,alpha_f.x_pfx_p.x_f.def pfdef p.def fdef df; // Raw data

float cal_constant_xcal_constant_alpha cal_constant_def; // Sensors constant value
float weut, fout kf1 k€2, ts fsamp; // For low pass filter
int ivolts,alpha_int,x_int.def_int,motor_off; // Integer values of raw data for AD/DA converter
float x_bias.alpha_bias,def_bias:; {/ Offset/initial value of sensor in volis

int gdriver,gmode.cdiv.cdiv_lo,cdiv_hi; // Graphics & clock devider

float timen timep.u_freq.del_time,base_freq; // Frequency for printing realtime data to
screen

float volts_o; /f Actual voltage value for actuator

int volt_int; // Integer voltage value for AD/DA converter

void initialize_data(void)
{
{// sampling frequency
fsamp = 200.0;
ts = [/fsamp;
ctr = 0;
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// setup printval() frequency
u_freq = 5; /* refresh realtime data on screen at 5 Hz */
del_time = 1.Au_freq;

{/sensor calibration constant

cal_constant_x = 91/10.00; // 91 ¢m over entire range
cal_constant_alpha = 352.0/24; J/ full turn over 24 volts
cal_constant_def = 2.54; // 1 inch per volt = 2,54 cm per volt but you should calibrate first
x_bias = 0; // cart displacement offset
alpha_bias = -0.6; {f Pole angle offset
def_bias = -1.95; // Pole deflection offset

// other parameters

motor_off = 1; /f start with motor off
timen = 0; /{ initialize real time

timep = 0.1;

// lowpass filter

feut =2.0;

went = 2.0%3.14*fcut;
kfl = weut*ts/(24+weut*ts);
kf2 = (wcut*ts-2)/(wecut*ts+2);

/{ procedure to print the values

void printval(void)

{
textcolor{GREEN);
gotoxy(1,1); cprintf(" REAL TIME DATA");
gotoxy(1,2); cprintf("Real time (sec) = %6.1f" timen);
gotoxy(1.3); cprintf("Voltage applied = %6.4f" voltage);
gotoxy(1,4); cprintf("Cart position (cm) = %6.4f x_n = %6.4f" x.x_n);
gotoxy(1.5); cprintf("Pole anlge (deg) = %6.4f a_n = %6.4{".alpha.a_n);
gotoxy(1.6); cprintf("Cart velocity (cm)} = %6.4f x_dn = %6.4f" x_d.x_dn);
gotoxy(1.7); cprintf(""Pole velocity (d/s) = %6.4f a_dn = %6.4f" alpha_d.a_dn);
gotoxy(1.8); cprintf("Pole deflection = %6.4f d_n = %6.4f" def d_n);
gotoxy(1,9); cprintf("Velocity of def = %6.4f d_dn = %6.4f",def_d.d_dn);
gotoxy(15.20);cprintf("ctr = %d" ctr);
gotoxy(15,18); /* move cursor to the choice position */

} /* printval */

{f procedure to reset the AD/DA controllers
void reset_ad_da_con(void)
{

reset_ad();

reset_da();

daout(0,2048);

daout(1,2048);

daout(2,2048);
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// Procedure to set up the architecture of the neural network

void set_neural_net(void)

{
backp.get_layer_info(); /I get layer information
backp.set_vp_network(); // set up the network connections

// read in the weight matrix defined by a backpropagation simulator
if ((weights_file_ptr=fopen(WEIGHTS_FILE,"r"))==NULL)
{
cout << "problem opening weights file\n";
exit(l);
}
backp.read_weights(weights_file_ptr);
fclose(weights_file ptr);
} // set_neural_net

void get_voltage_from_neural_net(void)

{

a_n = alpha/45.0; {/ normalized angle

x_n = x/50.0; {/ normalized cart position

a_dn = alpha_d/50.0; {/ normalized angular velocity

x_dn = x_d/50.0; // normalized cart velocity

d_dn = def_d/50.0; // normalized deflection velcity

vectors_in_buffer = backp.get data_from_adc(a_n,x_dn,a_dn,d_dn);

for (i=0; i<vectors_in_buffer; I++) // Assign data from sensor to FNN buffer

{ f{ process vectors
backp.set_up_pattern(i); {/ get next pattern
backp.forward_prop(); /{ forward propagate

voltage = backp.get_final _output()*5;

}
if ((x>14)&&(alpha>1.01)&&(x_d>0.01))

voltage += 2.0; //bring the cart to the center of the track
if ((x>14)&&(alpha>1.01)&&(x_d<-0.01))

voltage += 1.1; // bring the cart to the center of the track
if ((x<-14)& &(alpha<-1.01)&&(x_d<-0.01))

voltage += -0.5; //bring the cart to the center of the track
if ((x<-14)&&(alpha<-1.01)&&(x_d>0.01))

voltage += -0.2; //bring the cart to the center of the track

if ((alpha>1.01)&&(alpha_d>0.01})
voltage += 3.0; //balance the pole

if ((alpha<-1.01)&&(alpha_d<-0.01))
voltage += -3.0; //balance the pole

if (alpha>2.31)

voltage += 5.5; //balance the pole .
if (alpha<-2.31)

voltage += -5.5; //balance the pole

] // get voltage from neural network
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extern void interrupt far newtimer(...) // ISR real time operation

{

char *data87[94];
asm fsave data87
_clear870);

timen= timen-+ts;

// Get data from sensors measurement

x_pf=x_f; /f save previous filtered data
X pP=X /I save previous raw data
x_int = adin(4); // sample the A to D chanpel
x = itov(x_int)*cal_constant_x - x_bias; /f actual cart displacement
x_f = kf1*(x+x_p)-kf2*x_{; // digital low pass filtering
x_d = (x_f-x_phits; /f actual cart velocity
alpha_pf = alpha_f; /! save previous filtered data
alpha_p = alpha; /f save previous raw data
alpha_int = adin(5); /{ sample the A to D channel
alpha = itov(alpha_int)*cal_constant_alpha - alpha_bias; // actual pole angle
alpha_f = kf1*(alpha+alpha_p)-kf2*alpha_f; /{ digital low pass filtering
alpha_d = (alpha_f-alpha_pf)/ts; // actual velocity of the pole
def_pf = def_f; // save previous filtered data
def_p = def; // save previous raw data

- def_int = adin(10); {/ sample the A to D channel
def = itov(def_int)*cal_constant_def -def_bias: { actual deflection of the pole
def_f = kft*(def+def_p)-kf2*def_f; // digital low pass filtering
def_df = def df+def_d*wcut*ts; -
def_d = weut*def - def_df; {/ actual velocity of pole deflection
get_voltage_from_neural_net(); /f procedure to get actual voltage required to

{f control the sytem from FNN

if(motor_off >0)
voltage = 0;
J// make sure that it will not exceed the capacity of the actuator
if(voltage > 4.95) voltage = 4.95;
if(voltage < -4.95) voltage = -4.95;

/1 prepare for storing results to external file
if ((abs(ctr) < no_of _data)&&(motor_off < ()
i .

Ctr4+;

ctrl = ctr;

x_datafctrl] = x;

a_datalctrl] = alpha;

d_datafctrl] = def;

v_datalctrl] = voltage;
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// output the voltage calculated to the actuator for operation via DA converter

volts_o = voltage;

volt_int = volts_o*2048/5.0+2047;
daout(0,volt_int);

asm frstor data87

/f end of newtimer

/f procedure to go back to old timer
void get_old_timer(void)

{

}

disable();

setvect(Oxcl oldtimer);
enable();
outportb(0x43,0x36);
outportb(0x40,0x{T);
outportb(0x40,0xff),
daout(0,2048);
daout(1,2048);
daout(2,2048);

f* get_old_timer */

/* procedure to set the clock frequency for real time */
void set_clock_frequency(void)

{

ninning

}

base_freq = 1193000.0;
cdiv = ceil(base_freq*ts);
outportb(0x43,0x36);
cdiv_hi = cdiv / 255;
cdiv_lo = fmod(cdiv,255);
outportb(0x40.cdiv_lo);
outportb(0x40 cdiv_hi);

disable();

oldtimer = getvect(Ox 1c);
setvect(Ox l¢.newtimer);
enable();

set_clock_frequency

/1 1.193 MHz is the base frequency of the clock in an AT
// setup clock divider

/! setup clock number 2

// high byte of cdiv

Hlow byte of cdiv

/{ write out low byte

// then high byte

// diable interrupts
/fsave old isr address
/ setup the new isr
/ enable interrupts, at this point newtimer starts

/{ procedure to display the main menu for user options
void main_menmu(void)

(

clrscr();

textcolor(RED + BLINK);
gotoxy(1,15);

if (motor_off > 0)

cprintf("MOTOR IS OFF");

else

cprintf("MOTOR IS ON™);

textcolor(BLUE);
gotoxy(1,16);
cprintf("[Q] to quit™);
gotoxy(1,17);
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cprintf("[S] to start/stop motor™);
gotoxy(1,18); textcolor(CYAN);
cprintf("Your choice = ");

} /f main_menu

/{ Procedure to operate the controller with the interaction of the user
void main_loop(void)
{ char choice;

clrscr();

reset_ad_da_con();

_fpreset(); // reset floating point processor
initialize _data(};

set_clock_frequency();

main_menu();

do
{
choice =",
if (kbhit())
{
choice = getch(); [/ get the character
flushall(}; // flush the keyboard buffer
H
if ({choice=="Q")ll(choice=="q")) // quit program
get_old_timer();
if ((choice=="S")l(choice=='s")) /f stop operation
{
motor_off = -1*motor_off;// initially motor is off
main_menu();
)
if ((timen-timep)>del_time) /{ frequency of printing realtime data to
// screen
{
timep = timen;
printval();
}
} while((choice!="Q")&&(choice!="q"));
textcolor(LIGHTGRAY);
clrser();
} /* main_loop */

/{ Procedure in puting data to external file
void save_data_to_file(void)
{

FILE *f1;

int i;

if ((f1 = fopen("xn_dat22.m","w"))==NULL)
{

puts("\ncannot open file xn_data");
exit(1);
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]

for (i=1;i<cirl;i++)
fprintf(f1,"%5.3\n" ,x_data[i]);
fclose(f1);

if ((f1 = fopen("an_da22.m", "w"})==NULL)

{ N
puts("™acannot open file an_data™);
exit(1);

}

for (i = lii<ctrl;i++)
fprintf(f1,"%5.30\n".a_data[i]);

fclose(fl);

if ((f! = fopen("dn_dat22.m", "w"))==NULL)
{
puts("\ncannot open file dn_data");
exit(1);
}
for (i = l;i<ctrL;i++)
fprintf(f1,"%5.3f\n" .d_data[i]);
fclose(f1);

if ((f1 = fopen("vn_dat22.m", "w"))==NULL)
{
puts('"\ncannot open file dn_data"):
exit(1);
}
for (i = Lii<ctrl;i++)
fprintf(f1,"%5.3Mn" v_data[i]);
fclose(f1);

// This is the main body of the program
void main()

{

set_neural_pet();
main_loop();
save_data_to_file();
// end main
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// This is the file that contains the neural network procedures “Layerd.cpp”
#include <stdio.h>

#include <iostream.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include "layer4 h"

// This is the squashing function that uses sigmoid
inlice float squash(float input)
{
if (input < -50)
return 0.0;
else if (input > 50)
return 1.0;
else return (float)(1/(1+exp(-(double)input)));

// This a random number generator that will return a floating point value between -1 and 1
inline float randomweight(unsigned init)
{

int num;

if (init==1) // seed the generator

srand ((unsigned)time(NULL));

num=rand() % 100;

return 2*(float(oum/100.00))-1;

// This function is needed for Turbo C++ and Borland C++ to link in the appropriate functions for fscanf
// floating point formats;
static void force_fpf()
{
float x, *y;
y=&x;

x="*y;

/{ This is for the input layer
input_layer::input_layer(int i, int ¢)
{
num_inputs=i;
num_ouiputs=o,
outputs = new float[num_outputs];
orig_outputs = new float[num_outputs];
if ({outputs==0)ll{orig_outputs==0))
i
cout << "not enough memory\n";
cout << "choose a smaller architecture\n”;
exit(1);
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noise_factor=0;

}

input_layer::~input_layer()

{
delete [num_outputs] outputs;
delete [num_outputs] orig_outputs;

void input_layer::calc_out()
(
{/ This will add noise to inputs randomweight returns a random number between -1 and 1
int i;
for (i=0; i<num_outputs; i++)
outputs[i] =orig_outputs[i]*
(1+noise_factor*randomweight(());

// This is for the output layer

output_laver::output_layer(int ins, int outs)

{
inti,j k;
num_inputs=ins;
num_outputs=outs;
weights = new float[num_inputs*num_outputs];
output_errors = new float{num_outputs];
back_errors = new float[num_inputs];
outputs = new float[num_outputs];
expected_values = new float[num_outputs];
cum_deltas = new float[num_inputs*num_outputs];
past_deltas = new float[num_inputs*num_outputs];

if ((weights==0)ll(output_errors==0)ll(back_errors==0)
outputs==0)ll(expected_values==0) Il (past_deltas==0)l(cum_deltas==0))

{
cout << "not enough memory\n";
cout << "choose a smaller architecture\n”;
exit(1);

}

{/ zero cum_deltas and past_deltas matrix
for (i=0; i< num_inputs; i++)
{
k=i*num_outputs;
for (j=0: j< num_outputs; j++)
{
cum_deltas[k+j]=0;
past_deltas[k+j]=0;
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output_layer::~output_layer()

{

delete [num_gutputs*num_inputs] weights;
delete [num_outputs] output_errors;

delete [num_inputs] back_errors;

delete [num_outputs] gutputs;

delete [num_outputs*num_inputs] past_deltas;
delete [mum_outputs*num_inputs] cum_deltas;

void output_layer::calc_out()

{

int ij.k;
float accumulator=0.0;
for (j=0; j<num_ocutputs; j++)
{
for (i=0; i<num_inputs; i++)
{
k=i*num_outputs;
if (weights[k+j*weights[k+j] > 1000000.0)
{
cout << "weights are blowing up\n";
cout << "try a smaller learning constant\n";
cout << "e.g. beta=0.02  aborting..\n";
exit(1);
}
outputs[jl=weights[k+j1*(*(inputs+i));
accumulator+=outputs[j1;
}
/[ use the sigmoid squash function
outputs[jl=squash(accumulator);
accumulator=0;

void output_layer::read_weights(int layer_no FILE * weights_file ptr)

{

int i, j, k:
while (1)
{
‘fscanf(weights_file_ptr,"%i".&j);
if ((j==layer_no)ll (feof(weights_file_ptr)))

break;
else
{
while (fgetc(weights_file_ptr) I=\n")
{:} // get rest of line
}
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if ({(feof(weights_file_ptr)))
{ // continue getting first line
i=0;
for (j=0: j< num_outputs; j++)
fscanf(weights_file_ptr,"%f" &weights[jl); // i*num_outputs = 0
fscanf(weights_file_ptr,"\n");

// now get the other lines

for (i=1; i< pum_inputs; i4++)

{
fscanf(weights_file_ptr,"%i" &layer_no);
k=i*num_outputs;
for (j=0: j< num_outputs; j++)

scanf(weights_file_ptr,"%f" . &weights[k+j]);
}
fscanf(weights_file ptr,"\n");
}

else cout << "end of file reached\n”;

void output_layer::list_outputs()
{ - -
int J:
for (j=0; j< num_outputs; j++)
cout << “outputs["<<j<<"] is: "<<outputs[jl<<"a";

/f This is for the middie layer

middle_layer::middle_layer(int i, int 0):
output_layer(i,o0)

{

}

middle_layer::~middle_layer()
{
delete [num_outputs*num_inputs] weights;
delete [num_ocutputs} output_errors;
delete [num_inputs] back_errors;
delete [num_outputs] outputs;

void middle_layer::calc_error()
{
inti,j, k;
float accumulator=0;
for (i=0; i<oum_inputs; i++)
{
k=i*num_outputs;
for (j=0; j<num_outputs; j++)

{
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back_errors[i]=
weights[k+j1*(*(output_errors+j));
accumulator+=back_errorsfil;
}
back_errors[i]=accumulator;
accumulator=0;
{f now multiply by derivative of sigmoid squashing function, which is
// just the input*(1-input)
back_errors[i]*=(*(inputs+i))*(1 -(*(inputs+i)));

network::network()

{
position=0L;
}
network::~network()
{
intijk;
i=layer_ptr[0]->num_outputs; // inputs

jelayer_ptr[number_of _layers-1]->num_outputs; {foutputs
k=MAX_VECTORS;
delete [(i+j)*k]buffer;

void network::set_training(const unsigned & value)

{
}
unsigned network::get_training_value()
{

}

training=value;

return training;

void network::get_layer_info()

{ . .
int i;
/I Get layer sizes for the network
number_of _layers = 4;
layer_size[0] = 4;
layer_size[l] = 8;
layer_sizef2] = §;
layer_size[3]=2;

/%

cout <<"\n Enter the total number of layers for your network [3-51.";
cout <<™n 3 means 1 hidden layer, 4 means 2, 5means 3 =";
cin >> number_of_layers;

cout <<"\n Enter the layer sizes separated by spaces.”;
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cout <<\n Example; for 3 layers having 3 input neurons, 6 hidden";
cout <<™\n neurons, and 1 output neuron just type 36 1 ;
cout <<"\n Enter please ="

for (i=0; i<number_of_layers; i++)

{
cin >> layer_sizel[i];
}
*/
/) -
// size of layers:
/f input_layer layer_size[0]
{/ output_layer layer_size[number of layers-1]
// middle_layers layer_size[1}
/foptional: layer_size[number of layers-3]
ffoptional: layer_size[number_of_layers-2]
/-
1

void network::set_up_network()
{
int i,j.k;
// Construct the layers
tayer_ptr[0] = new input_layer({,layer_size[0]};
for (i=0;i<(number_of layers-1);i++)
{
layer_ptr{i+1] =
new middle_layer(layer_size[illayer_size[i+11);
}
layer_ptr[number_of layers-1] = new
output_layer(layer_size[number_of_layers-2].layer_size[number_of layers-11);
for (i=0si<(number_of_layers-1);i++)

{
if (layer_ptr{i] == )
{
cout << "insufficient memory\n";
cout << "use a smaller architecture\n";
exit(1);
}
1
// Connect the layers

// set inputs to previous layer outputs for all layers, except the input layer
for (i=1; i< number_of_layers; i++)
layer_ptr[i]->inputs = layer_ptr[i-1]->outputs;

/! for back_propagation, set output_errors to next layer
/fback_errors for all layers except the output layer and input layer
for (i=1; i< number_of layers -1; i++)
((output_layer *)layer_ptr]i]}->output_errors =
((output_layer *)layer_ptr[i+1])->back_errors;
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{/ define the IObuffer that caches data from the datafile
i=layer_ptr[0]->num_outputs; {f inputs
j=layer_ptr[number_of_layers-1]->num_outputs; /foutputs
k=MAX_VECTORS:
buffer=new
float[(i+j)*k];
if (buffer==0)
{

cout << "insufficient memory for buffetn”;

exit(1);

void network::read_weights(FILE * weights_file_ptr)
[ .
mt i;
for (i=1; i<number_of_layers; i++)
{(output_layer *)layer_ptr[i])->read_weights(i,weights_file_ptr);

void network::list_outputs()

{
inti;
for (i=1; i<number_of_layers; i++)
{
cout << "layer number : " <<i<< "\n";
((output_layer *Mayer_ptr[i]})->list_outputs();
}
)

void network::write_outputs(FILE *outfile)
{
int i, ins, outs;
ins=layer_ptr{0]->num_outputs;
outs=layer_ptr[oumber_of_layers-1]->num_outputs;
float temp;
fprintf(outfile,"for input vector\n™);
printf("“for input vector:\n");
for (i=0; i<ins; i++)

{
temp=layer_ptr[0]->outputs[i];
fprintf(outfile,"%f " temp);
printf("%f * temp);

}

fprintf{outfile. noutput vector is:\n™);

printf("\noutput vector is:\n");

for (i=0; i<outs; i++)

{
temp=layer_ptr[number_of_layers-1]->outputsil;
fprintf(outfile,"%f ".temp);
printf("%f " temp);
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}

if (training==1)

{
fprintf{outfile, “nexpected output vector is\n");
printf("\nexpected output vector is\n");
for (i=0; i<outs; i++)

{
temp=((output_layer *)(layer_ptr[number_of_layers-1]))->expected_values[i];
fprintf(outfile,"%f ".temp);
printf("%f ".temp);
1
}
fprintf(outfile,"\n \n");
printf("\n \n");

// This is the procedure to get the final output value of the retwork..
//Note that this is the magnitude and direction of the applied voltage.
float network::get_final output()
{
float voltage,sign;
sign=layer_ptr[number_of_layers-11-> outputs[1];
if (sign > 0.5)
sign = 1.0;
else
sign=-1,0;
voltage=layer_ptrinumber_of_layers-1]-> outputs{0}*sign;
return voltage;

{{ A procedure to get real data from adc
int network::get_data_from_adc(float a float x_d.float a_d,float d_d)

{
buffer[0] = a;
buffer[1] = x_d;
buffer[2]) = a_d;
buffer{3] = d_d;
return (1);

}

void network::set_up_pattern(int buffer_index)
{
/f read one vector into the network
inti, k;
int ins, outs;
ins=layer_ptr[0]->num_outputs;
outs=layer_ptrinumber_of_layers-1]->num_outputs;
if (training==1)
k=buffer_index*(ins+outs);
else
k=buffer_index*ins;
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for (i=0; i<ins; i++)
((input_layer*)layer_ptr[0])->orig_outputs[il=buffer[k+i];
if (training==1)
{
for (i=0; i<outs; i++)
((output_layer *)layer_ptr[number_of_lavers-1])->
expected_values[i]=buffer[k+i+ins];

void network::forward_prop()

{
inti;
for (i=0; i<number_of_layers; i++)
{
layer_ptrli]->calc_out(); /{A polymorphic function
) ’
1
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APPENDIX D

The Fuzzy Logic On-Line Program for the Flexible Pole-cart Balancing

System

Important procedures in the program:

L

10.

11.

12.

. init_flbrm_fuzzy_system( ) - A procedure to initialise all the parameters used in

fuzzy logic system.

init_flbrm_rules( ) - A procedure to initialise values of fuzzy logic rules.
init_flbrm_mem_fns( ) - A procedure to initialise values of fuzzy logic membership
functions.

init_trapz( ) - A procedure to assign locations of points of trapezoid used as
membership function.

main_loop() - A procedure used to operate the controller and interact with the user.
reset_ad_da_con( ) - A procedure used to prepare the analog/digital digital/analog
converter for operation.

initialize_data( ) - A procedure used to initialize the values of the sensors.
set_clock_frequency( ) - A procedure used to set the clock frequency for real time
operation.

newtimer( ) - A tc++ built in procedure used to instruct the interrupt vectors to
operate in real time.

enable( ) - A tc++ buit in procedure used to enable the interrupt service routine (isr).
At this point newtimer( ) start operating in real time and sensors are getting data from
the plant.

get_voltage_from_fuzzy_con() - A procedure to get the voltage needed to operate
the actuator and control the system from a fuzzy logic controller.

fuzzy_logic_force( ) - A procedure that will assign appropriate input variables to

fuzzify and obtain the required output value.
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13. fuzzy_system( ) - A procedure used to obtain the required output value by
deffuzzification using centroid method.

14. main_menu() - A procedure to display user options on operations the controller.

15. printval( ) - A procedure to display the status of the system. (1.g. position and
velocity of the cart, the pole angle, and the pole deflection).

16. save_data_to_file( ) - A procedure used to save the informations needed to examine
the performance of the controller, The data are saved in MATLAB format and are

ready for MATLAB graphical representation.

C Language Class/Structures Used in the Program

f* File FLOGIC5 H Fuzzy logic header file */

#ifndef FLOGIC5_H
#define FLOGIC5_H

#include "uttypes.h”

#define MAX_NQ_OF_INPUTS 8 // The number of input variables that a
fuzzy
/f logic controller operates.
#idefine MAX_NO_OF_INP_REGIONS 5 // The number of membership functions that
/I the controller operates.
#define MAX_NO_OF_OUTPUT_VALUES 8 // The number of possible fuzzy logic

{/ output value.

typedef enum {regular left right} trapz_type; /! The specific sides of a trapezoid
usg asa
// membership function,
typedef struct trapezoid J Components of a trapezoid.
{
trapz_type tp.
float a.bcd; // Exact end points of a trapezoid.
float 1_slope. r_slope; // Slope of the left and right lines.
L
typedef struct rule {{ The components of a rule.
A
short inp_index[MAX_NO_OF_INPUTS]. {// Holds the index number of an input
/f variables.
inp_fuzzy_setfMAX_NO_OF_INPUTSI, // Holds the index number of fuzzy rules.
out_fuzzy_set; / The fuzzy set output value.
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typedef struct fuzzy_system_rec {/ The complete structure of the fuzzy
{ // logic system
short allocated;
struct trapezoid inp_mem_fns [MAX_NO_OF_INPUTS] [MAX_NO_OF_INP_REGIONS];
far struct rule *rules;
int no_of_inputs.no_of_inp_regions.no_of_rules.no_of_outputs;
float output_values[MAX NO_OF_OQUTPUT_VALUESI;

typedef struct p_cart_state_rec // Holds the data of the plant
{

float ang, {/ Pole angle

ang_vel, {/ Pole velocity

x_pos, /f Cart position

x_dot, / Cart velocity

deflec, {/ Pole deflection

def_vel; /{ Pole deflection velocity

278



The Fuzzy Logic Controller Program
by:

Elmer P. Dadios
Manufacturing Engineering Department
Loughborough University of technology, UK
August 1995

#pragma inline /f declaration for inline assembly
#include <stdio.h>

#include <conio.h>

#include <math.h>

#include <bios.h>

#include <dos.h>

#include <io.h>

#include <float.h>

#include <stdlib.h>

#include <graphics.h>

#include <d\researchwneuNdt2811.drv> // For data translation AD/DA converter
extern void interrupt newtimer(); {/ Declare other functions for real time operation
static void interrupt (*oldtimer)();

#include "fl_fpb9.c" /f Contains fuzzy logic procedures

const int no_of_data = 3000; // Number of result values to store
int i;

unsigned int ctrctrl;

float x_data[3000],a_data[3000].d_data[3000],v_data[3000]; // Array for result values

float alpha.alpha_d.xx_d,def.def_d,voltage; // Plant variables

float alpha_pf.alpha_p,alpha_f.x_pf.x_px_f.def pfdef_p.def_fdef df; {filtered and raw data
float cal_constant_x.cal_constant_alpha cal_constant_def; // sensor constant value
float weut.fout kf1 kf2,ts fsamp; // for low pass filter */

int ivolts,alpha_int,x_int,def_int,motor_off; // Integer values of raw data for AD/DA converter
float x_bias.alpha_bias,def bias; /f offsetfinitial value of sensor in volts

int gdriver.gmode cdiv.cdiv_lo.cdiv_hi; // graphics & clock devider

float timen, timep,u_freq.del_time, base_freq; {/ frequency for printing realtime data to
screen

float volts_o; {/ Actual voltage value for actmator

int volt_int; {/ Integer voltage value for AD/DA converter

void initialize_data(void)
{
// sampling frequency
fsamp = 200.0;
ts = 1/fsamp;
ctr=0; ctrl = 0;

/* setup printval() frequency */

u_freq = 5; // Refresh realtime data on screen at 5 Hz
del_time = 1.fu_freq;

279



/f sensor calibration constant

cal_constant_x = 91/10.00; // 91 cm over entire range

cal_constant_alpha = 352.0/24; {/ full turn over 24 volts

cal_constant_def = 2.54; //1 inch per volt = 2.54 cm per volt but you should calibrate first
x_bias=0; {{ cart displacement offset

alpha_bias = -0.1; // Pole angle offset

def_bias = -0.6; {{ Pole deflection offset

// other parameters

motor_off = 1; M/ start with motor off

timen = 0; {/ initialize real time

timep = 0.1;

/* lowpass filter */

fcut=2.0;

weut = 2,0¥3, 14*fcut;

kfl = weut¥ts/(2+wcut*ts);
kf2 = (weut*ts-2)/(weut*ts+2);

{/ procedure to display plant data on screen

void printval(void)

{
textcolor{GREEN);
gotoxy(l,1); cprindf(" REAL TIME DATA");
gotoxy(1.,2); cprintf("Real time (sec) = %6.1f" timen);
gotoxy(1,3); cprintf("Voltage applied = %6.4f" voltage);
gotoxy(1,4); cprintf(""Cart position (cm) = %6.4f" x);
gotoxy(1,5); cprintf("Cart velocity (cm) = %6.41" x_d);
gotoxy(1,6); cprintf("Pole angle (deg) = %6.41" ,alpha);
gotoxy(1,7); cprintf("P_angle velocity = %6.4{" alpha_d);
gotoxy(1,8); cprintf("Pole deflection = %6.4f" def);
gotoxy(1,9); cprintf("Velocity of def = %6.4f" def_d);
if ((abs(ctr) < no_of_data)&&(motor_off < 0))
{

gotoxy(15,20);
cprintf("ctr = %d".ctr);

}
gotoxy(15,18); /* move cursor to the choice position */

) /* printval */

* procedure to reset the ad da controllers */
void reset_ad_da_con(void)
{

reset_ad();

reset_da():

daout(0,2048);

daout(1,2048);

daout(2,2048);

230



extern void interrupt far newtimer()

{

char *data87[94];
asm fsave data87
_clear87();

timen= timen+ts;

// Sensor measurements

x_pf=x_f

X_p=x;

x_int = adin(4);

x = itov(x_int)*cal_constant_x - x_bias;
x_f = kf 1 *(x+x_p)-kf2*x_{;

x_d = (x_f-x_pDits;

alpha_pf = alpha_f;
alpha_p = alpha;
alpha_int = adin(5);

/f save previous filtered data
/I save previous raw data

// sample the A to D channel
{/l actual cart displacement

// digital low pass filtering
/f actual cart velocity

{/ save previous filtered data
{/ save previous raw data
// sample the A to D channel

alpha = itov(alpha_int)*cal_constant_alpha - alpha_bias; // actual pole angle

alpha_f = kf1*(alpha+alpha_p)-kf2*alpha_f;
alpha_d = (alpha_f-alpha_pf)/ts;

def_pf = def_f{;

def_p = def;

def_int = adin(10);

def = itov(def_int)*cal_constant_def -def_bias:
def_f = kf1*(def+def p)-kf2*def f;

def_df = def_df+def_d*wcut*ts;

// digital low pass filtering
/f actual pole angle velocity

// save previous filtered data
// save previous raw data

/I sample the A to D channel
// actual pole deflection

/! digital low pass filtering

def_d = weut*def - def_df; /f actual pole deflection

// run the fuzzy logic controller

get_voltage from_fuzzy_con(alpha,alpha_d.x.x_d.def def_d.&voltage);

// Insure the voltage to be on actuator’s capacity
if(voltage > 4.95) voltage = 4.95;
if(voltage < -4.95) voltage = -4.95;

/I prepare for saving results to external file

if ((abs(ctr) < no_of_data)&&(motor_off < 0))

{
Cir++;
ctrl = ctr;
x_datalctrl] = x;
a_data[ctrl] = alpha;
d_datalctrl] = def;
v_data[ctrl] = voltage;

}

if(motor_off >0)
voltage = 0;
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// apply voltage to actuator
volts_o = voltage;

volt_int = volts_o*2043/5.0+2047;

daout(0.volt_int);

asm frstor data87

J/{ procedure to go back to old timer

void get_old_timer(void)

{
disable();
setvect(Oxcl,oldtimer);
enable();
outportb(0x43,0x36);
outportb(0x40,0xff);
outportb(0x40,0xf);
daout(0,2048);
daout(1,2043);
daout(2,2048);

} /* get_old_timer */

// procedure to set the clock frequency for real time

void set_clock frequency(void)

{
base_freq = 1193000.0;
cdiv = ceil(base_freq*ts);
outporth(0x43,0x36);
cdiv_hi = cdiv / 255;
cdiv_lo = fmod(cdiv,255);
outportb(0x40.cdiv_lo};
outportb(0x40,cdiv_hi);

disable();
oldtimer = getvect(Ox ic);
setvect(0x1c.newtimer);
enable(};

running

} / set_clock_frequency

/f procedure to write menu for user options

void main_menu(void)

{
clrser(};
textcolor(RED + BLINK);
gotoxy(1,15);
if (motor_off > 0)

// 1.193 MHz is the base frequency of the clock in an AT
{1 setup clock divider

{/ setup clock number 2

// high byte of cdiv

// low byte of cdiv

{/ write out low byte

{/ then high byte

// diable interrupts
/f save old isr address
/1 setup the new isr
// enable interrupts, at this point newtimer starts

cprintf("MOTOR IS OFF");

else

cprintf("MOTOR IS ON™);

textcolor(BLUE);
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gotoxy(1,16);
cprintf("[Q] to quit");
gotoxy(1,17);
cprintf("[S] to start/stop motor™);
gotoxy(1,18); texicolor(CYAN);
cprintf("Your choice = ");

} /¥ main_menu ¥/

// procedure running the system with the interaction of the user
void main_loop(void)
{ char choice;

clrser();

reset_ad_da_con();

_fpreset(); /{ reset floating point processor
initialize_data(};

set_clock_frequency();

main_menu();

do
{
choice =";
if (kbhit(})
{
choice = getch(); // get the character
flushall(); // flush the keyboard buffer
1
if {(choice=="Q")li(choice=="q")) /! quit program
get_old_timer(};
if ((choice=='S")ll{choice=='s")) /{ stop operationt
{

motor_off = -1*motor_off;// initially motor is off
main_menu();
}
if ((timen-timep)>del_time) // frequency of printing realtime data to
{fscreen */
{

timep = timen;
printval(};
}
} while({choice!="Q" & &{choice!='q"));
textcolor(LIGHTGRAY);
clrscr();
] // main_loop

/* Procedure in puting data to external file */
void save_data_to_file(void)
{

int i;

FILE *fl;

if ((f1 = fopen("x_datal6.m","w"))==NULL)
{
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puts("\ncannot open file x_data");
exit(1);
}
for (i = lji<ctrl;i++)
fprintf(f1,"%5.3\n" ,x_data[i]);
felose(f1);

if ((F1 = fopen('a_datal6.m", "w"))==NULL)
{
puts("\ecannot open file a_data");
exit(1);
1
for (i = 1;i<ctrl;i++)
fprind(f1,"%5.3f\n",a_data[il);
fclose(f1);

if ((f1 = fopen("d_datal6.m", "w"))==NULL)

{
puts(™\ncannot open file d_data");
exit(1);

}

for (1 = L:i<cirl;i++)
fprintf(f1,"%5.3M\n",d_datali));

felose(fl);
if ((f1 = fopen("v_datal6.m", "w"))==NULL)
{
puts("™ncannot open file d_data™);
exit(l);
}

for (i = l;i<ctrl;i+)
fprintdf(f1,"%5.3Mn" v_data[i]);
fclose(f1);

// This is main body of the program
void main(void)

{.
init flbrm_fuzzy_system{&g_fuzzy_system);
main_loop();
save_data_to_file();

}
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// This is the file that contain the fuzzy logic procedures
// File F1._FPB9.C

#ifndef FL_FPB9_C
#define FL_FPB9_C

#include <math.h>
#include <conio.h>
#include <alloc.h>
#include <stdio.h>
#include "flbrm5.h"
#include "flpresS.c”
#include "flbini27.c”
#include "flogic5.h”

float fuzzy_logic_force (struct p_cart_state_rec the_state)

{
float x[6].y[3].force;

// assigning input variable
x[in_theta] = the_state.ang;
x[in_theta_dot] = the_state.ang_vel;
x[in_x] = the_state.x_pos;
x{in_x_dot] = the_state.x_dot;
x[lin_d] = the_state.deflec;
x[in_d_dot] = the_state.def_vel;

// get output result for each set of input variables

{/ Holds the header files and structures used
{/ Holds the process procedures

// Holds initialization procedures

// Holds the header files and structures used

void get_voltage_from_fuzzy_con(float afloat a_d float x.float x_d,
float def float def_d,float *voltage)

{

ylin_theta] = fuzzy_system(x.g fuzzy_system,0,13);
vlin_theta_dot] = fuzzy_system(x,g_fuzzy_system,13,26);
ylin_x] =fuzzy_system(x.g fuzzy system,26,39);
ylin_x_dot] = fuzzy_system(y.g_fuzzy_ system,39,52);

force = fuzzy_system(y,g_fuzzy_system,52,65);

return force;

struct p_cart_state_rec Sys_state_rec;
float volt;

sys_state_rec.ang = a;
sys_state_rec.ang_vel = a_d;
sys_state_rec.x_pos = xi
sys_state_rec.x_dot = x_d;
sys_state_rec.deflec = def;
sys_state_rec.def_vel = def_d;
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// theta & theta_d fuzzy result
// x & x_d fuzzy result

{/ def & def_d fuzzy result

{f ylin_theta] & y[lin_x] fuzzy

// result

{/ y[in_theta_dot] & y[in_x_dot]
[/ffuzzy result



#endif

volt = fuzzy_logic_force(sys_state_rec);

if ((x>10)&&(a>1.01)&&(x_d>0.01))

volt += 2.0; // bring the cart to the center of the track
if ((x>10)&&(a>1.011&&(x_d<-0.01))

volt += 1.1; // bring the cart to the center of the track
if (x<-10)& & (a<-1.01)&&(x_d<-0.01))

volt += -1.0; //bring the cart to the center of the track
if (x<-10)&&(a<-1.01)&&(x_d>0.01))

volt += -0.6; // bring the cart to the center of the track

if ((a>1.01)&&(a_d>0.01))

volt += 3.0; //balance the pole
if ((a<-1.01)&&(a_d<-0.01))

volt += -3.0; //balance the pole

if (a>2.31)

volt += 5.5; //balance the pole
if (a<-2.31)

volt +=-5.5; /fbalance the pole

*voltage = volt;
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{/ File FLPRCS5.C - this is the file that hold the fuzzy logi ¢ procedures and functions */

#ifndef FLPRCS5_C
#define FLPRCS5_C

#define TOO_SMALL le-6

#include <stdlib.h>
#include <math.h>
#include <conio.h>

#include "flogic5.h"
struct fuzzy_system_rec g_fuzzy_systemn;

struct trapezoid init_trapz (float x1.float x2 float x3 float x4,trapz_type typ);
float fuzzy_system (float inputs[].struct fuzzy_system_rec fl,int ctrl int ctr2);
void free_fuzzy_rules (struct fuzzy_system_rec *fz);

// Implementation
struct trapezoid init_trapz (float x1float x2 float x3.float x4.trapz_type typ)

{
struct trapezoid trz;

trz.a =x1;

trz.b = x2;

trz.c = x3;

trz.d = x4,

trz.tp = typ;

switch (trz.tp)

{

case regular:
trz._slope = 1.0/(trz.b - trz.a);
trz.r_slope = 1.0/(trz.c - trz.d);

break;

case left:
trz.r_slope = 1.0/(trz.a - trz.b);
trz.l_slope = 0.0;
break;

case right:
trz.l_slope = 1.0/(trz.b - trz.a);
trz.r_slope = 0.0;
break;

} // end switch

return trz;

} // end function
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float trapz (float x. struct trapezoid trz)
{
switch (trz.tp)
{
case left:
if (x <= trz.a)
return 1.0;
if (x >= trz.b)
return 0.0;
/fa<x<b
return trz.r_slope * (x - trz.b);
case right:
if (x <=trz.a)
return 0.0;
if (x >= trz.b}
return 1.0;
[fa<x<b
return trz.l_slope * (x - trz.a);
case regular;
if (x <= wz.a) ll (x >= trz.d))
return 0.0;
if ((x >=trz.b) && (x <= trz.c))
return 1.0;
if ((x >= trz.a) && (x <= trz.b))
return trz.l_slope * (x - trz.a);
if (x >=trz.c) && (x <= trz.d))
return trz.r_slope * (x - trz.d);
} H/End switch
return 0.0; // should not get to this point
} // End function

float min_of (float values{].int no_of_inps)
{

int i;

float val;

val = values [0];

for (i= 1;i < no_of_inps;i++)

{
if (values[i] < val)
val = values [i];

}

return val;

283



float fuzzy_system (float inputs[],struct fuzzy system_rec fz int ctrl,int ctr2)
{
int ij;
short variable_index fuzzy set;
float sum] = 0.0,s5um2 = 0.0,weight;
float m_valuesfMAX_NO_OF_INPUTS];
for (i=ctrl;i<ctr2;i++)
{
for (j = 0;j < fzno_of_inputs;j++)
{
variable_index = fz.rules[il.inp_indexI[j];
fuzzy_set = fz rules[il.inp_fuzzy_set[j];
m_values[j] = trapz(inputs[variable_index],
fz.inp_mem_fns[variable_index][fuzzy_set]);
} /fendj
weight = min_of (m_values,fz.no_of_inputs);
suml += weight * fz.output_values[fz.rules{il.out_fuzzy_set];
sum?2 += weight;
} ffend i
if (fabs(sum2) < TOO_SMALL)
return 0.0;
return (suml/sum2);
} // end fuzzy_system

#endif
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/f FLBINIT7.C - this file contains the Initialization procedures

#ifndef FLBINIT7_H
#define FLBINIT7_H

#include <alloc.h>
#include "flbrm5.h"

void init_flbrm_rules (struct fuzzy_system_rec *fl)
{
const int
no_of x_rules=13;
int i;
for (i = 0;i < no_of_x_rules;i++)
{
fl->rules[il.inp_index[0] = in_theta;
fl->rules(i].inp_index{1] = in_theta_dot;
1

// Regions for theta and theta_dot:
fl->rules{0].inp_fuzzy_set[0] = in_neg!;
fl->rules[0].inp_fuzzy_set[1] = in_negl;
fl->rules[0).out_fuzzy_set = out_nl;
fl->rules[1Linp fuzzy_set[0] = in_negl;
fl->rulesf1).inp_fuzzy set[1] = in_ze;
fl->rules[1].out_fuzzy_set = out_nm;
fl->rules[2).inp_fuzzy_set[0] = in_negl;
fl->rules[2].inp_fuzzy_set[1] = in_posl;
fl->rules[2].out_fuzzy_set = out_ze;

fl->rules[3].inp_fuzzy_set[0] = in_negm;
fl->rules[3Linp_fuzzy_set[1] = in_negm:
fl->rules[3].out_fuzzy_set = out_nm;
fl->rules[4).inp_fuzzy set[0] = in_negm;
fl->rules[4].inp_fuzzy_set[1] = in_posm;
fl->rules[4].out_fuzzy_set = out_ns;

fl->rules[5].inp_fuzzy_set[0] = in_ze;
fl->rules[5).inp_fuzzy_set[1] = in_negl;
fl->rules[5].out_fuzzy_set = out_ns;
fl->rules(6).inp_fuzzy_setf0] = in_ze;
fl->rules[6).inp_fuzzy_set[1] = in_ze;
fl->rules[6].out_fuzzy set = out_ze:
fl->rules[7]).inp_fuzzy_set{(] = in_ze;
fl->rules[7].inp_fuzzy_set[1] = in_posl;
fl->rules[7].out_fuzzy_set = out_ps;

fl->rules[8].inp_fuzzy_set[0] = in_posm;
fl->rules[8l.inp_fuzzy_set[!] = in_negm:
fl->rules[8].out_fuzzy_set = out_ps;
fl->rules[9].inp_fuzzy_set[0] = in_posm;
fl->rules[9].inp_fuzzy set[1] = in_posm;
fl->rules[9].out_fuzzy_set = out_pm;
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fl->rules[10].inp_fuzzy_set[0] = in_pos!;
fl->rules[10).inp_fuzzy_set[1] = in_negl;
fl->rules[10].out_fuzzy_set = out_ze;
fl->rules[11]).inp_fuzzy_set[0] = in_posl;
fl->rules[ 1 1].inp_fuzzy_set[1] = in_ze;
fl->rules[11].out_fuzzy_set = out_pm;
fl->rules[12].inp_fuzzy_set[0] = in_posl;
fl->rules{12].inp_fuzzy_set[l] = in_posl;
fl->rules[12].out_fuzzy_set = out_pl;

for (1 = 0;i < no_of_x_rules;i++)

{
fl->rules[i + no_of_x_rulesl.inp_index[0] = in_x;
fl->rules[i + no_of_x_rules].inp_index[1] = in_x_dot;

}

/* Regions for x and x_dot: */
fl->rules[13L.inp_fuzzy_set[0] = in_negl;
fl->rules[13).inp_fuzzy_set[1] = in_negl;
fl->rules[13).out_fuzzy_set = out_nl;
fl->rules[14).inp_fuzzy_set[0] = in_neg];
fl->rules{14).inp_fuzzy_set[1] = in_ze;
fl->rules[14].out_fuzzy_set = out_nm;
fl->rules[15).inp_fuzzy_set[0] = in_neg];
fl->rules[15).inp_fuzzy_set[1] = in_posl;

fl->rules[15).out_fuzzy_set = out_ps;

fl->rules[16].inp_fuzzy_set[0] = in_negm;
fl->rules{16].inp_fuzzy_set[1] = in_negm;
fl->rules[16].out_fuzzy_set = cut_nm;
fl->rulesf17].inp_fuzzy_set[0] = in_negm;
fl->rules[17).inp_fuzzy_set[1] = in_posm;
fl->rules[17].out_fuzzy_set = out_ns;

fl->rules[18].inp_fuzzy_set[0] = in_ze;
fl->rules[18].inp_fuzzy_set[1] = in_negl;
fl->rules[18].out_fuzzy_set = out_ns;
fl->rules[19).inp_fuzzy_set[0] = in_ze;
fl->rules[19).inp_fuzzy set[1]=in_ze;
fl->rules[19].out_fuzzy_set = out_ze;
fl->rules[20).inp_fuzzy_set[0] = in_ze;
fl->rules[20].inp_fuzzy_set[1] = in_posl;
fl->rules[20).out_fuzzy_set = out_ps;

fl->rules{21].inp_fuzzy_set[0] = in_posm;
fl->rules[21).inp_fuzzy_set[1] = in_negm;
fl->rules[21].out_fuzzy_set = out_ps:
fl->rules[22].inp_fuzzy_set[0] = in_posm;
fl->rules[22].inp_fuzzy_set[1] = in_posm;
fl->rules[22].out_fuzzy_set = out_pm;

fl->rules[23).inp_fuzzy_set[0] = in_posl;
fl->rules[23).inp_fuzzy_set[1] = in_negl;
fl->rules[23].out_fuzzy_set = out_ns;

fl->rules[24].inp_fuzzy_set{0] = in_posl;
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fl->rules[24].inp_fuzzy set[1] = in_ze;
fl->rules[24].out_fuzzy_set = out_pm;
fl->rules[25).inp_fuzzy_set[0] = in_posl;
fl->rules[25).inp_fuzzy setf1] = in_posl;
fl->rules[25).out_fuzzy_set = out_pl;

for (i = 0;i < po_of_x_rules:i++)
{
fl->rulesli + 2*no_of_x_rules].inp_index[0] = in_d;
fl->rules[i + 2*no_of_x_rules].inp_index[1] = in_d_dot;
1
/* Regions for deflection and deflection velocity: */
fl->rules[26].inp_fuzzy_set[0] = in_negl;
fl->rules[26].inp_fuzzy_set[1] = in_negl;
fl->rules[26].out_fuzzy_set = out_nl;
fl->rules[27].inp_fuzzy_set[0] = in_negl;
fl->rules[27).inp_fuzzy_set[1] = in_ze;
fl->rules[27].out_fuzzy_set = out_nm;
fl->rules[28].inp_fuzzy_set[0] = in_negl;
fl-»rules[28).inp_fuzzy_set[1] = in_posl:
fl->rules[28]).out_fuzzy_set = out_ze;

fl->rules[29].inp_fuzzy_set{0] = in_negm;
fl->rules[29].inp_fuzzy_set[1] = in_negm;
fl->rules[29].out_fuzzy_set = out_nm;
fl->mles[30].inp_fuzzy_set|0] = in_negm;
fl->rules[30].inp_fuzzy_set[1] = in_posm;
fl->rules[30].out_fuzzy_set = out_ns;

fl->rules[31].inp_fuzzy_set[0] = in_ze;
fl->rules[31].inp_fuzzy_set[1] = in_negl;
fl->rules[31].out_fuzzy_set = cut_ns;
fl->rules[32].inp_fuzzy_set[0] = in_ze;
fl->rules[32].inp_fuzzy_set[1] = in_ze;
fl->rules[32]).out_fuzzy_set = out_ze;
fl->rules[33].inp_fuzzy_set[0) = in_ze;
fl->rules[33).inp_fuzzy_set[1] = in_posl;
fl->rules[33).out_fuzzy_set = out_ps:

fl->rules(34).inp_fuzzy_set[0] = in_posm;
fl->rules{34].inp_fuzzy_set[1] = in_negm;
fl->rules(34).out_fuzzy_set = out_ps;
fl->rules(35].inp_fuzzy_set[0] = in_posm;
fl->rules{35).inp_fuzzy_set[1]= in_posm;
fl->rules[35].out_fuzzy_set = out_pm:

fl->rules[36].inp_fuzzy_set[0] = in_posl;
fl->rules[36].inp_fuzzy_set[1] = in_negl:
fl->rules[36).out_fuzzy_set = out_ze;
fl->rules[37].inp_fuzzy_set{0] = in_posl;
fl->rules[37].inp_fuzzy_set[1] = in_ze;
fl->rules[37].out_fuzzy_set = out_pm;
fl->rules[38].inp_fuzzy_set[0] = in_posl;
fl->rules[38].inp_fuzzy_set[1] = in_posl;
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fl->rules[38].out_fuzzy_set = out_pl;

for (i=0:i < no_of_x_rules;i++)

{
fl->rules[i + 3*no_of_x_rules].inp_index[0] = in_theta; //this is Y[0}=theta+theta_dot
fl->rules[i + 3*no_of_x_rulesl.inp_index{1] = in_x; //this is Y[2]=def+def_dot

H

/* Regions for combined theta_theta_d and d_d_d: */

fl->rules[39].inp_fuzzy_set[0] = in_negl;

fl->rules[39].inp_fuzzy_set[1] = in_negl;

fl->rules[39].out_fuzzy_set = out_nl;

fl->rules[40].inp_fuzzy_set[0] = in_negl;

fl->rules[40].inp_fuzzy_set[1] = in_ze;

fl->rules[40].out_fuzzy_set = out_nm;

fl->rules[41].inp_fuzzy_set[0] = in_negl;

fl->rules[41}.inp_fuzzy set[1] = in_posl;

fl->rules[41).out_fuzzy_set = out_ns;

fl->rules[42].inp_fuzzy_set[0] = in_negm;
fl->rules[42].inp_fuzzy_set[1] = in_negm;
fl->rules[42]. out_fuzzy_set = out_nm;
fl->rules[43).inp_fuzzy_set[0] = in_negm;
fl->rules[43].inp_fuzzy set[1] = in_posm;
fl->rules[43].out_fuzzy_set = out_ns;

fl->rules[44].inp_fuzzy_set[0] = in_ze;
fl->rules[44].inp_fuzzy_set[1] = in_negl;
fl->rules[44].out_fuzzy_set = out_ns:
fl->rules[45).inp_fuzzy_set[0] = in_ze;
fl->rules[45]).inp_fuzzy_set{1] = in_ze;
fl->rules[45).out_fuzzy_set = out_ze;
fl->rules[46].inp_fuzzy_set[0] = in_ze;
fl->rules[46].inp_fuzzy_set[1] = in_posl;
fl->rules[46].out_fuzzy_set = out_ps;

fl->rulesf47].inp_fuzzy_set[0] = in_posm;
fl->rules[47].inp_fuzzy_set[1] = in_negm;
fl->rules[47].out_fuzzy_set = out_ps;
fl->rules[48].inp_fuzzy_set[0] = in_posm;
fl->rules[48).inp_fuzzy_set[1] = in_posm;
fl->rules[48].out_fuzzy_set = out_pm;

fl->rules[49).inp_fuzzy_set[0] = in_posl;
fl->rules[49].inp_fuzzy_set[1] = in_negl;
fl->rules[49].out_fuzzy_set = out_ps;
fl->rules[50).inp_fuzzy_set[0] = in_posl;
fl->rules[50].inp_fuzzy_set[1] = in_ze;
fl->rules[50].out_fuzzy_set = out_pm;
fl->rules[51].inp_fuzzy_set[0] = in_posl;
fl->rules[51].inp_fuzzy_set[1] = in_posl;
fl->rules[51].out_fuzzy_set = out_pl;

for (i = 0;i < no_of_x_rules;i++)

{
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fl->rules[i + 4*no_of_x_rules].inp_index[0] = in_theta_dot; //this is Y[1]=x+x_dot
fl->rules[i + 4*no_of_x_rules].inp_index[1] = in_x_dot; /fthis is
Y[3]=theta-+theta_d+def+def_d
}
/* Regions for combined x_xd, theta_theta_d and d_d_d: */
fl->rules{52].inp_fuzzy_set[0] = in_neg|;
fi->rules{52}.inp_fuzzy_set[1] = in_negl;
fl->rules[52].out_fuzzy set = out_ni;
fl->rules[53).inp_fuzzy_set[0] = in_negl;
fl->rules[53).inp_fuzzy set[1]= in_ze;
fl->rules[53).out_fuzzy set= out_nm;
fl->rules[54].inp_fuzzy_set[0] = in_neg!;
fl->rules[54}.inp_fuzzy_set[1]= in_posl;
fl->rules[54]).out_fuzzy_set = out_ns;

fl->rules[55).inp_fuzzy_set[0] = in_negm;
fl->rules[55).inp_fuzzy_set[1] = in_negm;
fl->rules[55].out_fuzzy_set = out_nm;
fl->rules[56]).inp_fuzzy_set[0] = in_negm;
fl->rules[56].inp_fuzzy_set[1] = in_posm;
fl->rules[56].out_fuzzy_set = out_ns;

fl->rules[57].inp_fuzzy_set[0] = in_ze;
fl->rules[57].inp_fuzzy_set[1] = in_neg];
fl->rules[57).out_fuzzy set = out_ns;
fl->rules[58.inp_fuzzy_set[0] = in_ze;
fl->rules[58].inp_fuzzy_set[1] = in_ze;
fl->rules[58).out_fuzzy set = out_ze;
fl->rules[59].inp_fuzzy_set[0] = in_ze;
fl->rules[59).inp_fuzzy_set[1] = in_posl;
fl->rules[59).out_fuzzy_set = out_ps;

fl->rules[60].inp_fuzzy_set[0] = in_posm;
fl->rules[60).inp_fuzzy_set[1] = in_negm;
fi->rules[60].out_fuzzy_set = out_ps;
fl->rules[61].inp_fuzzy_set[0] = in_posm;
fl->rules[61].inp_fuzzy set[1] = in_posm;
fl->rules[61].out_fuzzy_set = out_pm;

fl->rules[62].inp_fuzzy_set[0] = in_posl;
fl->rules[62].inp_fuzzy_set{1] = in_negl;
fl->rules[62].out_fuzzy_set = out_ps:
fl->mles[63].inp_fuzzy_set[0] = in_posl;
fl->rules[63]).inp_fuzzy set[1] = in_ze;
fl->mules[63].out_fuzzy_set = out_pm;
fl->rules[64].inp_fuzzy_set[0] = in_posl;
fl->rules[64].inp_fuzzy_set[1] = in_posl;
fl->rules[64].out_fuzzy_set = out_pl;

return;
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void init_flbrm_mem_fns (struct fuzzy_system_rec *{1)

{

/* The X membership functions */

fl->inp_mem_fns[in_x][in_negl] = init_trapz (-5.0,-0.5,0.0.left);
fl->inp_mem_fns[in_x][in_negm] = init_trapz (-2.0,-1.0,-1.0,0.0regular);
fl->inp_mem_fns[in_x][in_ze] = init_trapz (-0.5,0.0,0.0,0.5 regular);
fl->inp_mem_fns[in_x][in_posm] = init_trapz (0.0,1.0,1.0.2.0,regular);
fl->inp_mem_fns[in_x][in_posl] = init_trapz (0.5.5.0.0.0.right);

/* The X dot membership functions */

fl->inp_mem_fns[in_x_dot][in_negl] = init_trapz (-5.0,-1.0,0,0 left);
fl->inp_mem_fns[in_x_dot][in_negm] = init_trapz (-2.0,-1.0,-1.0,0.0 regular),
fl->inp_mem_fns[in_x_dot][in_ze] = init_trapz (-0.5.0.0,0.0,0.5 regular);
fl->inp_mem_fns[in_x_dot][in_posm] = init_trapz (0.0,1.0,1.0,2.0.regular);
fl->inp_mem_fns[in_x_dot][in_posl] = init_trapz (1.0,5.0.0.0 right);

f* The theta membership functions */

fl->inp_mem_fns[in_theta]lin_negl] = init_trapz (-5.0,-1.0,-0.0,-0.0,left);
fl->inp_mem_{ns[in_theta){in_negm] = init_trapz (-2.0,-1.0.-1.0,0.0.regular};
fl->inp_mem_fns[in_thetal(in_ze] = init_trapz (-0.5,0.0,0.0.0.5,regular);
fl->inp mem_fns[in_theta][in_posm] =init_trapz (0.0,1.0,1.0,2.0.regular);
fl->inp_mem_fns[in_thetallin_posl] =init_trapz (1.0.5.0,0.0,0.0,right);

f* The theta dot membership functions */
fl->inp_mem_fns{in_theta_dot][in_negl] = init_trapz (-3.0,-1.0,-0.0,-0.0,left);
fl->inp_mem_fns[in_theta_dot][in_negm] = init_trapz {-2.0.-1.0,-1.0,0.0.regular);
fl->inp_mem_fns[in_theta_dot][in_ze] = init_trapz (-0.5,0.0,0.0,0.5 regular);
fl->inp_mem_fns[in_theta_dot][in_posm] = init_trapz (0.0,1.0,1.0,2.0,regular);
fl->inp_mem_fos[in_theta_dot][in_posl} = init_trapz (1.0,5.0,0.0,0.0,right);
f* The deflection membership functions */

fl->inp_mem_fos(in_d]llin_negi] = init_trapz (-3.0,-1.0,0.0,0.0,left):;
fl->inp_mem_fns[in_d](in_negm] = init_trapz (-2.0,-1.0,-1.0,0.0 regular);
fl->inp_mem_fns[in_d][in_ze] = init_trapz (-0.5,0.0,0.0,0.5 regular);
fl->inp_mem_fns[in_d][in_posm] =init_trapz (0.0,1.0,1.0.2.0 regular):
fl->inp_mem_fns[in_dl[in_posl] =init_trapz (1.0,3.0,0,0.right);

/* The deflection dot membership functions */

fl->inp mem_fns[in_d_dotl(in_negl] = init_trapz (-3.0,-1.0,0.0,0.0.left);
fl->inp_mem_fns[in_d_dot][in_negm] = init_trapz (-2.0,-1.0,-1.0,0.0 regular);
fl->inp_mem_fns[in_d_dot][in_ze] = init_trapz (-0.5,0.0,0.0.0 5 regular);
fl->inp_mem_fns[in_d_dot][in_posm] = init_trapz (0.0,1.0,1.0,2.0,regular);
fl->inp_mem_fns[in_d_dot][in_posl] = init_trapz (1.0,3.0,0,0 right);

return;

void init_flbrm_fuzzy_system (struct fuzzy_system_rec *f1)

(

fl->no_of_inputs = 2; /* Inputs are handled 2 at a time only */
fl->no_of_rules = 65;

fl->no_of_inp_regions = 5;

fl->no_of_outputs = 7;

fl->output_values [out_nl] = -4.75;

fl->output_values [out_nm] = -2.65;

fl->output_values [out_ns] = -1.35;

fl->output_values [out_ze] = 0.0;

fl->output_values [out_ps] = 1.35;
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fl->output_values [out_pm] = 2.65;
fl->output_values [out_pl] =4.75;
if((fl->rules = (struct rule *) malloc ((size_t)(fl->no_of_rules*sizeof(struct rule))))==NULL)
{
printdf("n\nOut of memory. Press any key to exit. ");
getch():
exit(1);
)
init_flbrm_rules(fl);
init_flbrm_mem _fns(fl);
return;

#endif
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APPENDIX E

The Fuzzy-Genetic Algorithm Program for Flexible Pole-cart Balancing
System

Important procedures in the program:

1. init_flga_mem_fns - Sets up the membership functions using a scheme based on the
number of fuzzy sets.

2. init_flga_setup - Initialize the input parameters. It assigns names of external files used
for the process and data storage.

3. init_flga_rules - Allocates memory for the storage of fuzzy rules.

4. ga_vector_to_fuzzy_rules - Translates the chromosomes from the genetic algorithm
to FAM matrix entries.

5. M_evaluation_fn - Caries out the optimization process of the genetic algorithm,

6. fl_genetic_training - Handles the training process of the fuzzy system. It is
accomplished by running the genetic algorithm operating on the fuzzy system

evaluation function.

7. run_fuzzy_model - Handles the details of running the trained fuzzy system.
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f* File FL_GA_PR4 - Genetic Algorithm-Fuzzy optimization program for flexible pole-cart */

/* balancing problem By: Elmer P. Dadios */

/*Note that some of the techniques used here are based on the public-domain routines in chapter 13%f
f* of Neural Networks and Fuzzy Logic Applications in C/C++, by S. T. Welstead, 1994, */

#hinclude <alloc.h>
#include <string. h>

#include "flginit2.c"
#include "flpres.c”
#include "gaproc3.c”
#include "utvect.c”
#include "utpres.c”
#include "trnprocs.c”
#include "utmatrix.c”
#include "uffiles.c"
#include "flfiles.c”
#include "flgeval c”
#include "flgrun.c”
#include "flgtrain.c”

void print_flga_setup (tflg_setup_rec *f1)
{
printf("\ano_of_fl_inputs = %d \n" fl1->no_of_fl_inputs);

printf("no_of_f1_inp_regions = %dwn" fl->no_of_fl_inp_regions);
printf("fuzz_system_file = %s\a" fl->fuzzy_system_file name);
printf("training _file = %s\n" fl->training_file_name);

printf(" output data_file = %s\n".fl->out_data_file_name);
return;

} /* end proc */

void print_ga_set_rec(tga_setup_rec *fl)

{
printf("\npopulation_size = %d \n" fl->population_size);
printf("vect_len = %d\a" fl->vect_len);
printf("chrom_len = %d\n" fl->chrom_len);
printf("max_gens = %dwa" fl->max_gens);
printf("crossover prob = %f\n" fl->crossover_prob);
printf("mutation prob = %f\n" fl->mutation_prob);
return,

} #* end proc */

void print_flga fuzzy_system(fuzzy_system_rec *fl)

{
int i;
printf("\ano_of_rules = %d \n" fl->no_of rules);
printf("no_of_inputs = %d \n".fl->no_of_inputs);
printf("no_of_inp_regions = %dw" fl->no_of_inp_regions);
printf("no_of_outputs = %d\n" fl->no_of_outputs);
for (i=0:i<fl->no_of_outputs;i++) '

printf("fuzzy->output{%d] = %f\a" i fl->output_values[i]);

return,

} /* end proc */
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/f procedure to show program menu
void menu(char *choice)

{

}

clrscr();

gotoxy(17.5);
pri_n(f("*************************************************");
gotoxy(17.6);

printf("* =Y

gotoxy(17,7);

printf("* Fuzzy Logic with Genetic Algorithm Controller *");
gotoxy(17.8);

printf("* for the Flexible Pole-Cart Balancing Problem *");
gotoxy(17,9);

printf("* By: Elmer P. Dadios & David J. Williams *");
gotoxy(17,10);

printf("* *%
gotoxy(17.11);

priutf("*****#****#**************************************")-
,

gotoxy(22,15);

pr'lnd'("***************************************")
gotoxy(22,16);
printf("* Enter 1 for rmunning the controller *");

gotoxy(22,17);

printf("* Enter 2 for training the controller *");
gotoxy(22,18);

printf("* Enter Q to exit program *");
gotoxy(22,19);

pl—intf("*****#*********************************“)
do

.

gotoxy(22,20);
printf("" Your choice please : ");
*choice = getch();
} while(*choice !="'1' && *choice !="2' && *choice !='0");

void main{void)

{

i

char choice;

const int pop_size = 54, bit_len = 3;
int j. gener, no_of_rules = 1;
tflg_setup_rec g_flg rec;
fuzzy_system_rec the_fuzzy_system;

init_flga_setup(&g flg rec);
for (j=1; j<=g_flg rec.no_of fl_inputs;j++)
no_of_rules *=g_flg recno_of_fl_inp_regions;

initialize_ga_setup(pop_size,bit_len.no_of_rules,&ga_setup_rec);
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menu(&choice);

switch(choice)
{
case '0' : break;
case 'l': run_fuzzy_model(g_flg rec);

break;
case '2': if{(fi = fopen("ga_stat.dat","w"))=NULL)
{
printf("\o\aSorry can not open file ga_stat.dat");
exit(1);
}
fprintf(fi,"time Gen Max f Min f Ave f Sum_fitwnn");
initialize_ga_setup(pop_size.bit_len no_of_rules,&ga_setup_rec);
fl_genetic_training(&g flg rec.&ga_setup_rec &ga_rec):
fclose(fi);
break;
}
} while (choice !='0);
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This is file flgini2.c. It contains the Initialization functions for Fuzzy Logic-Genetic
Modeling

#ifndef FLGINIT_C
#define FLGINIT_C

#include <alloc.h>
#include <string.h>

#include "flga.h"

void init_figa_setup (tflg_setup_rec *f1) {
fl->no_of fl_inputs = 4;
fl->no_of_fl_inp_regions = 3;
fl->no_of_fl_output_values = §;
fl->read_in_fuzzy_system = 0;
fl->norm_in_range = 5.0;
fl->norm_in_min = -2.5;
fl->norm_out_range = 2.0;
fl->porm_out_min = -1.0;
strepy(fl->fuzzy_system_file_name,"FL_GA.FZS");
strepy(fl->training_file_name,"FL_GA TRN");
strepy(fl->out_data_file_name, " F1._GA.DAT");
return;
} /* end proc */

void init_flga_rules (fuzzy_system_rec *fz) {
int 10,i1,i2,i3,i4.i = 04.n = 1,out_valve = fz->no_of_outputs/2;
for (j = 1;j<=fz->no_of_inputs;j++)
n *= fz->no_of_inp_regions:

fz->no_of_rules =n;

fz->rules = (rule *) malloc ((size_t)(fz->no_of_rules*sizeof(rule)));

for (i) = 0;i0 < fz->no_of_inp_regions;i04+)

for (il = 0;il < fz->no_of_inp_regions;il++)
for (i2 = 0;i2 < fz->no_of_inp_regions;i2++)
for (i3 = 0;i3 < fz->no_of_inp_regions;i3++)
// for (14 = 0;i4 < fz->no_of _inp_regions;id++)
{
for (j=0;j<fz->no_of _inputs:j++)

fz->rules[il.inp_index(j] = j;
fz->rules[il.inp_fuzzy_set[0] = i0;
fz->rules[il.inp_fuzzy_sei[1] =il;
fz->rules[il.inp_fuzzy_set|2] = i2;
fz->rules[il.inp_fuzzy_set[3] = i3;
fz->rules[il.inp fuzzy set[4] =id;
fz->rules[i].out_fuzzy_set = out_value;
i+
} /* end loop */

return;

} /* end proc ¥/

void init_flga_mem_fns (tflg_setup_rec fl.fuzzy_system_rec *fz) {

301



intig.k;
float *a,a_inc;
int no_of_rgns,no_of_pts =2 * flL.no_of fl_inp_regions;
no_of_rgns = no_of_pts - 1;
a_inc = fl.norm_in_range / no_of_rgns;
a = (float *)malloc{no_of_pts*sizeof(float));
a[0] = fl.norm_in_min;
for (i = L;i<no_of_pts:i++)
a[i] = afi-1] + a_inc;
f* The input membership functions */
for (i = Osi<fl.no_of_f1_inputs;i++) {
fz->inp_mem_fns{i][0] = init_trapz (a[1].a[2],0,0,left);
k=1;
for (j = 1;j<(fl.no_of _fl_inp_regions - 1}:;j4++) {
fz->inp_mem_fns[i][j] =
init_trapz (a[k],alk+1].a[k+2].alk+3].regular);
k+=2;
} /*endj*f
fz->inp_mem_fos[i][fl.no_of_fl_inp_regions-1] =
init_trapz (alk].a[k+1].0,0.right);
) /Fendi*
return;
} /* end proc */

void init flga_fuzzy system (tflg setup_rec flfuzzy system_rec *fz) {
float out_inc, out_val;
int i;
fz->no_of_inputs = 4;
fz->no_of_inp_regions = 3;
fz->no_of_outputs = §;
init_flga_mem_fns(fl fz);
init_flga_rules(fz);
out_inc = fl.norm_out_range/(fz->no_of _outputs - 1);
out_val = fl.norm_out_min;
for (i = 0;i<fz->no_of_outputs;i++) {
fz->output_values [i] = out_val;
out_val += out_inc;

} /* endi*
fz->allocated = TRUE;
return;

} /* end proc */

#endif
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This is file gaproc3. This contains the Functions and procedures for genetic algorithm.

#ifndef GAPROCS_C
#define GAPROCS_C

#include <stdlib.h>
#include <conio.h>
#include <alloc.h>
#include <mem.h>
#include <math.h>
#include <time.h>

#include "uttypes.h”
#include "ut.h"
#include "gal h"

#define TOO_SMALL le-6 /* Used for fitness scaling */

tga_setup_rec ga_setup_rec;
tga_rec ga_rec;
FILE *fi;

float power_of_2 (int n);

void initialize_ga_rec (tga_rec ¥ga);

short initialize_genetic_alg (1ga_setup_rec *setup,tga_rec *ga,
float (*the_obj_funct)(ui_vector v));

void generation (tga_setup_rec *setp,tga_rec *ga,
float (*the_obj_funct)(ui_vector v));

void statistics (tga_setup_rec setup,ppopulation the_population,tga_rec *ga,
short *new_opt);

void display (int gen,tga_setup_rec setup,tga_rec ga,short *cancel,
short *toler_flag);

void move_individual (tga_setup_rec setup,individual src_ind,
individual *dest_ind);

void free_ga_pointers (tga_setup_rec setup.tga_rec *ga);

void initialize_ga_setup (int pop_size.int bit_len,int vect_len,
tga_setup_rec *the_rec);

/* Implementation */

void initialize_ga_rec (tga_rec *ga) {
ga->allocated = 0;
ga->populations[0] = NULL;
ga->populations[1] = NULL;
ga->opt_individual.chrom = NULL;
ga->opt_individual.raw_fitness = 0.0;
ga->opt_individual.scaled_fimess = (0.0;
ga->opt_individual parent] = 0;
ga->opt_individual.parent2 = 0;
ga->opt_individual xsite = 0;;
ga->opt_vector = NULL,;
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ga->g old=0;
ga->g_new =1,
ga->opt_fitness = 0.0;
ga->sum_fitness = 0.0;
ga->amutation = 0;
ga->ncross = §;
ga->avg = 0.0;
ga->max = 0.0;
ga->min = 0.0;

return;

]

float power_of_2 (int n) {
inti;
float val;
val = 1.0;
if(n>0){
for (i = 1:i <=n:i++)
val *= 2.0;
return val;
}
if (n<0){
for (i = 1;i <= n;i++)
val *=(.5;
H
return val;
} /* end fn */

short flip (float prob) {
/* prob is a probability (i.e., between 0 and 1) */
/* frand(} is defined in UT.H */
if (frand() < prob) return 1;
return 0;
} /¥ end fn */

int rnd(int low_lim,int up_lim) {
/* return random between low_lim and up_lim */
int range.result;
range = up_lim - low_lim + 1;
result = random (range); /* Result is between 0 and range - 1 */
return (result + low_lim);
} /*end fn */

int select (int popsize, float sumfitness,ppopulation the_population) {
float rand.sum = 0.0;
intj=0;
rand = frand() * sumfitness;
do { :
sum += (*the_population){jl->scaled_fimess;
J++
} while ((sum < rand) && (j < popsize));
return (j - 1);
} /*end fn ¥/
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short mutation (short val float pmutation long int *nmutation) {
short mutate;
mutate = flip (pmutation);
if (mutate) {
(*nmutation)++;
return lval;
1
else
return val;
} /*end fn */

void crossover (chromosome parentl ,chromosome parent2,
chromosome childl chromosome child2,
int Ichrom long int *ncross,long int *nmutation,int *jcross,
float pcross,float pmutation) {
/* Cross two parent strings, place in two child strings ¥/
int j;
if (flip (peross)) {
*¥jcross = md (0,Ichrom - 2);
(*ncross)++;
}
else
*jcross = Ichrom - 1;
for (j = 0;j <= *jcross;j++) {
childl [j] = mutation (parent! [jl,pmutation nmutation);
child2 [j] = mutation (parent2 [j],pmutation,nmutation);
} /*endj*
if (*jcross != (Ichrom - 1))
for (j = *jcross + 1;j <= Ichrom - 1;j4++) {
childl [j] = mutation (parent2 [j].pmutation,nmutation);
child2 [j} = mutation (parentl [j],pmutation,nmutation);
} MFendj*
return;
} /* end proc */

float scale_fitness (float x,float fmin,float fmax) {
if (fabs (fmax - fmin) > TOO_SMALL)
return (x - fmin)*0.95/(fmax - fmin) + 0.05;
/* else */
return 1.0;
} /¥ end fn */

void rescale_population_fitness (tga_setup_rec setup,
tga_rec ga,ppopulation the_population) {
int j;
float max_fitness,min_fitness;
min_fitness = (*the_population)[0]->raw_{fitness;
max_fitmess = (*the_population)[0]->raw_fitness;
for (j = 0;j < setup.population_size;j++) {
if ((*the_population)[j]->raw_fitness < min_fitness)
min_{fitness = (*the_population)[j]->raw_{fitness;
if ((*the_population)[j]->raw_fitmess > max_fitness)
max_fitness = (*the_population){jl->raw_{fitness;
}
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if (ga.opt_individual.raw_fimess > max_fitness)
max_fitness = ga.opt_individual raw_fitness;
if (max_fitness - min_fitness < TOO_SMALL)
min_fitness = 0.9 * max_fitness;
for (j = 0;j < setup.population_size;j++)
(*the_population)[j]->scaled_fitness =
scale_fitness ((*the_population)[jl->raw_{fitness,
min_fitness,max_fitness);
return;
} /*end proc */

void pick_fittest (tga_setup_rec setup,
ppopulation the_old.ppopulation the_new) {
int i,j,min_index = 0;
float min_fitness;
/* Replace min fitness members of new population with fitter members */
f* from old population. */
min_fitness = (¥*the_new){(]->raw_fimess;
for (j = 1;j<setup.population_size;j++)
if (*the_new)[j]->raw_fitness < min_fitness) {
min_fitress = (*the_new)[j]->raw_fitness;
min_index = j;
1
for (i = (:i<setup.population_size;i++)
if ((*the_old)[i]->raw_{fitness > min_fitness) {
/* Replace min individual with new individual */
move_individual (setup,*(*the_old)[il,
(*the_new)[min_index]);
/* Determine min of new population */
min_fitness = (¥the new)[0]->raw_fitness;
min_index = 0;
for (j = 1;j<setup.population_size:;j++)
if ((*the_new)[j]->raw_fitness < min_fitness) {
min_fitoess = (*the_new)[j]->raw_fitness;
min_index = j;
} *endif,j*/
Jxifi ¥
return;
} /* end proc */

void decode (tga_setup_rec setup, chromosome chrom,ui_vector v) |
/* Decode from chromosome to vector */
int i.k,count = 0;
unsigned int accum,apower_of _2;
int start_pos = 0.end_pos = setup.bit_len;
for (i = Osi<semp.vect_len;i++) {
accum = (;
apower of 2=1;
for (k = start_pos;k < end_pos:k++) {
if (chrom [count])
accum += apower_of_2;
count += 1;
apower_of_2 *=2;
} /*end k */
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v[i]l = accum;
start_pos += setup.bit_len;
end_pos += setup.bit_len;
} Fendi*

return;

} * end proc */

void generation (tga_setup_rec *setup,tga_rec *ga,
float (*the_obj_funct)(ui_vector v)) {
/* Note: Population size must be even */
int j = 0.k, mate ] mate2 jcross;
ul_vector v;
v = allocate_ui_vector (0,setup->vect_len - 1);
do {
matel = select (setup->population_size,
ga->sum_{itness ga->populations[ga->g_old]);
mate2 = select (setup->population_size,
ga->sum_fitness,ga->populations[ga->g_old});
crossover ((*(ga->populations)[ga->g_old])[matel]->chrom,
(*(ga->populations)[ga->g_old])[mate2]->chrom,
(*(ga->populations)[ga->g_new])[jl->chrom,
(*(ga->populations)[ga->g_new])[j+1]->chrom,
setup->chrom_len,&(ga->ncross),&(ga->nmutation).&jcross,
setup->crossover_prob,
setup->mutation_prob);
for (k=jk<=j+ Lik++) {
decode (*setup (¥{(ga->populations){ga->g new])[k]->chrom,v);
(*(ga->populations)[ga->g new])[k]->raw_{fitness =
the_obj_funct (v);
(*(ga->populations)[ga->g_new])[k]->parent] = matel;
(*(ga->populations)[ga->g_new])[k]->parent2 = mate2;
(*(ga->populations)[ga->g_new])[k]->xsite = jcross;
}
i+=2
} while {j < setup->population_size);
free_ui_vector (v,0);
if (setup->pick_fittest)
pick_fittest (*setup,(ga->populations)[ga->g_old].
(ga->populations)[ga->g_new]);
rescale_population_fimess (*setup,*ga ga->populations[ga->g_new]);
return;
} /* end proc */

void statistics (tga_setup_rec setup,ppopulation the population,tga_rec *ga,
short *new_opt) {

int j;

*new_opt = FALSE;

ga->sum_fitness = (*the_population){0]->scaled_fitness;

ga->min = (*the_population)[0]->raw_fitness;

ga->max = (*the_population}[0}->raw_fitness;

if (ga->max > ga->opt_individual.raw_fitness) {
move_individual (setup,*(*the_population)[0].&(ga->opt_individual));
*new_opt = TRUE,;
}
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for (j = 1;j<setup.population_size;j++) §
ga->sum_fitness += (*the_population)[j]->scaled_fimess;
if ((*the_population)[j]->raw_fitness > ga->max)
ga->max = (*the_population)[j]->raw_fimess;
if ((*the_population)[j]->raw_fitness < ga->min)
ga->min = (*the _population)[jl->raw_fitness;
if (ga->max > (ga->opt_individual).raw_{itness)
move_individual (setup,*(*the_population)[j].&(ga->opt_individual));
} /*end j*/
if ((ga->opt_individual).raw_fitness > ga->opt_fitness) {
decode (setup,ga->opt_individual chrom,ga->0pt_vector);
ga->opt_fitness = ga->opt_individual.raw_fitness;
*new_opt = TRUE;
}
ga->avg = ga->sum_fitness/setup.population_size;
return,
} /* end proc */

-void display_vector (ui_vector v.int vlen) {

int i;

int display_len = vlen;

const max_display_len = &;

if (display_len > max_display_len)
display_len = max_display_len;

cprintf ("\t\n");

for (i = 0;i<display_len;i++)
cprintf("%6u " v[il);

cprintf ("\t\a");

return;

} /*end proc */

void display (int gentga_setup_rec setup,tga_rec ga,short *cancel,
short *toler_flag)
{
time_t secsnow;
int j;
unsigned gen_time;
*toler_flag = FALSE;
clrscr();
cprintf ("Gen: %3dv\n",gen);
for (j = 0;j<setup.population_size;j++) {
cprintf ("v\n%3d: (%3d.%3d) %3d ",
j«(*ga.populations[ga.g_new1)[j}->parentl,
(*ga.populationsga.g_new])[j}->parent2,
(*ga.populations[ga.g_new])[j]->xsite);
cprintf ("Fitness: %6.4f, Scaled: %6.4f",
(*ga.populations{ga.g_new])[j]->raw_fitness,
(*ga.populations[ga.g_new])(j]->scaled_fitness);
YR
cprintf ("\AnGeneration %3d\v\n",gen);
cprintf ("Max: %6.4f, Min: %6.4f, Scaled Avg: %6.4f\\n",
ga.max,ga.min,ga.avg);
cprintf ("Sum: %6.4f, Nmutation: %Id, Ncross: %ldv\na”,
ga.sum_fitness,ga.nmutation,ga ncross);
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time(&secsnow):
gen_time = secsnow;
fprintf(fi." %d %d %8.4f %8.4f %8.4f %8.4f\n" gen_time,gen.ga.max,ga.min,ga.avg,
ga.sum_fitness);
if (fabs (MAX_GA_OBJ_FN_VALUE - ga.max) < setup.tolerance) {
*toler_flag = TRUE;
cprintf ("“‘\iThe following chromosomes are within fitness tolerance "
"(%10.8f): V\n" setup.tolerance);
for (j = O;j< setup.population_sizej++)
if (fabs (MAX_GA_OBJ_FN_VALUE -
(*ga.populations[ga.g_new])[j]->raw_fitness) <
setup.tolerance)
cprintf {"%?2d: Fitness: %6.4f\'\n"j,
(*ga.populations{ga.g_newl)[j]->raw_fitness);
I
cprintf("\\nOptimum Individual Fitness: %7.4f",
ga.opt_individual raw_fitness);
cprintf{"\t\aCOptimum Vector Fitness: %7 41" ga.opt_fitness);
display_vector (ga.opt_vector,setup.vect_len);
cpringf ("\"\nPress esc to cancel: ");
if (kbhit() && (getch () == ESC_KEY)) *cancel = TRUE;
else *cancel = FALSE;
return;
} /* end proc */

void display_stats (int gen, tga_setup_rec setup,tga_rec ga) {
clrscr();
cprintf ("\\n");
cprintf ("Generation %2d\i\n",gen);
cprintf ("Max: %6.4f, Min: %6.4f, Avg: %6.4f\\n",
ga.max,ga.min ga.avg);
cprintf ("Sum: %6.4f, Nmutation: %d, Ncross: %d\\n\n”,
ga.sum_{fitness,ga.nmutation,gancross);
if (fabs (MAX_GA_OBJ_FN_VALUE - ga.opt_individual.raw_fitness)
< setup.tolerance) {
cprintf ("\\nOptimum individual is within fitness tolerance "
"(%10.80): \\n:" setup.tolerance);
cprintf ("Opt Individual Fitness: %6.4{\t\n",
ga.opt_individual.raw_fitness);
} /*end if */
return;
} /*end proc */

void move_individual (tga_setup_rec setup.individual src_ind,
individual *dest_ind) {
/* Move content of src_ind to dest_ind */
/* Need to move contents of chrom, not the pointer value chrom ! */
memmove(dest_ind->chrom src_ind.chrom,

(sizeof(src_ind chrom[0]))*setup.chrom_len);
dest_ind->raw_fitness = src_ind.raw_fitness;
dest_ind->scaled_fitness = src_ind.scaled_fitness;
dest_ind->parent] = src_ind parentl;
dest_ind->parent2 = src_ind parent2;
dest_ind->xsite = src_ind.xsite;
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return;
} /* end proc */

short allocate_population (tga_setup_rec setup,

ppopulation the_population) {

int j;

*the_population =
(population)malloc(setup.population_size¥sizeof(pindividual));

if ({(*the_population)) return 0;

for (j = O;j<setup.population_size;j++) {
(*the_population){jl = (pindividual) malloc(sizeof(individual});
if (1(*the_population)[j]) return 0;
(*the_population)[j]->chrom =

(short *)malloc(setup.chrom_len*sizeof(short));
if (1((*the_population)[j]->chrom)) return 0;
!
return 1,
) /* end proc */

void free_population (tga_setup_rec setup,

ppopulation the_population) {

int j;

if (the_population)

for (j = 0;j<setup.population_sizej++} {
if ((*the_popuiation)[jl->chrom) free ((*the_population)[j]->chrom);
if ((*the_population)[j]} free ((*the_population)[j1);
}

return;

} /¥ end proc */

void initialize_population (tga_setup_rec setup.tga_rec *ga,

ppopulation the_population, pindividual the_opt,

float (*the_obj_funct){ui_vector v)) {

int ij.k;

float max_fitness;

int opt_index;

ui_vector v;

v = allocate_ui_vector (0.setup.vect_len - 1};

/* Initialize ga.opt_vector */

ga->opt_vector = allocate_ui_vector (0,setup.vect_len - 1);

for (j = O;j<setup.population_size:j++) {
for (k = 0:k < setup.chrom_len;k++)

(*the_population)[j]->chrom [k] = flip (0.5);

decode (setup.(*the_population)[j]->chrom,v);
(*the_population)[j]->raw_fitness = the_obj_funct (v);
(*the_populaton){jj->scaled_fitness = 0.0;
(*the_population)[j]->parent] = ;
(*the_population)[j]->parent2 = 0;
(*the_population)[j]->xsite = 0;
cprintf ("\P\nIndividual %2d initialized." j);
} /*endj*/

max_fitness = (*the_population}[0]->raw_fitness;

opt_index = (;

for (j = 1;j < setup.population_size;j++)
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if (max_fitness < (*the_population)([j]->raw_fitness) {
max_{fitness = (*the_population)[j]->raw_{fitness;
opt_index =Jj;

}
move_individual{setup,*((*the_population)[opt_index]).the_opt);
decode (setup,the_opt->chrom.ga->opt_vector);
ga->opt_fitness = max_fitness;
rescale_population_fimess (setup,*ga,the_population);
free_ui_vector (v,0);
return;

} /* end proc */

void initial_display (iga_setup_rec setup.tga_rec ga.short *cancel)
{
clrscr();
textcolor(YELLOW);
cprintf ("Population size: %ed\t\n" setup.population_size);
cprintf ("Chromosome length:  %d\i\n" setup.chrom_len);
cprintf ("Max No. of Generations: %d\’\n" setup.max_gens);
cprintf ("Crossover Probability: %6.4f\\n",
setup.crossover_prob);
cprintf ("Mutation Probability: %6.4f\An",
setup.mutation_prob);
cprintf ("\t\nlnitial Population Statistics: \\o\a");
cprintf ("Max Fitness:  %10.5f\r\n" ga.max);
cprintf ("Avg Fitness:  %10.5f\"\n" ga.avg);
cprintf ("Min Fitness:  %10.5f\f\n",ga.min);
cprintf ("Sum of Fimess: %10.5f\\n".ga.sum_fitness);
cprintf ("\P\n\n\a");
fprintf(fi,"%05d %d %8 .4f %8.4f %8.4f %8.4f\n",0,0,ga.max ga.min ga.avg,
ga.sum_fitness);
cprintf {"Press key to continue (esc to cancel): ");
if (getch() == ESC_KEY) *cancel = TRUE;
else
*cancel = FALSE;
return;
1 /* end proc */

short initialize_genetic_alg (tga_setup_rec *setup.tga_rec *ga,
float (*the_obj_funct)(ui_vector v)) {
short opt_flag.cancel;
int i;
initialize_ga_rec (ga);
ga->populations[ga->g_old] = (ppopulation)malloc (sizeof(population));
if (!(ga->populations)[ga->g_old])
(
printf("\n Error allocating ga->populations[ga->g_old\a");
getch();
return 0;
}
ga->populations[ga->g_new] = (ppopulation)malloc (sizeof(population));
if (!(ga->populations)[ga->g_new])
{
printf('"\n Error allocating ga->populations[ga->g new\n");
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getch();
return 0;
}
{/fprintf("n done ... allocating ga->populations{ga->new\n");
if (fallocate_population (*setup.ga->populations{ga->g_old]))
{
printf("\n Error allocate_population *setup,ga->populations[ga->g_old\");
getch();
return 0:
}
{fprintf{"\n done ... allocate_population ga->g_old\n™);
if (fallocate_population (*setup,ga->populations(ga->g_new]))
{
printf("\n Error allocate_population *setup,.ga->populations[ga->g_new]\n");
getch();
return 0;
}
/fprintf("\n done ... allocate_population ga->g_new\n");
ga->opt_individual.chrom =
(short *)malloc(setup->chrom_len*sizeof(short));
if ((ga->opt_individual.chrom))
{
printf("\a Error allocating ga->opt_individual.chrom\n™);
getch();
return
)
/fprintf("\a done ... allocating ga->opt_individual.chrom\n™);
ga->allocated = 1;
initialize_population (*setup,ga.ga->populationsiga->g_old],
&(ga->opt_individual),the_obj_funct);
cprintf ("\\\o\nMemory Available: Z%luN\n” (unsigned long)coreleft());
cprintf ("\\\nDoing statistics for initial population...”);
statistics (*setup,ga->populations[ga->g_old].ga.&opt_flag);
initial_display (*setup,*ga&cancel);
if (cancel) return 0;
return 1;
} /* end proc */

void free_ga_pointers (tga_setup_rec setup,tga_rec *ga) {

if (ga->allocated) {
free_population (setup.ga->populations[0]);
free_population (setup,ga->populations[1]);
free_ui_vector (ga->opt_vector,0);
)

ga->allocated = 0;

cprintf ("\P\nfree_ga_pointers. heapcheck = %d" heapcheck());

getch();

return;

} /* end proc */

void initialize_ga_setup (int pop_size.int bit_len,int vect_len,
tga_setup_rec *the_rec)

{

int i,gener;
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printf("\n\n Please enter total number of generations : ");
scanf("%d" . &gener),
the_rec->population_size = pop_size;
the_rec->bit_len = bit_len;
the_rec->vect_len = vect_len;

the _rec->chrom_len = bit_len*vect_len;
the_rec->max_gens = gener-1;
the_rec->pick_fittest = TRUE;
the_rec->crossover_prob = 0.6;
the_rec->mutation_prob = 1.0/pop_size;
the_rec->tolerance = 0.01;

return;

} /*end proc */

#endif
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This is file trnprocs.c. This contains Procedures and functions for processing training file.

/* Note: All arrays for input and output have starting index 1 (not 0) !*/

#ifndef TRNPROCS_C
#define TRNPROCS_C

#include <conio.h>
#include <string.h>
ftinclude <alloc.h>

#include <math h>

#include "uttypes.h”
#include "ut.h”
#iinclude "trn.h"

training_rec g _tr_rec;
const float zero_check = le-8;

void free_training_pointers (training_rec *tr_rec);
short process_training_file (path_str the_file_name,int no_of_inputs,
int no_of_outputs.training_rec *tr_rec);
void normalize_data (f_vector x.f_vector norm_x.int no_of_pts,
f_vector x_max f_vector x_min float norm_range float norm_min);
void normalize_training set (int no_of_inputs,int no_of_outputs,
float norm_in_range float norm_in_min.float norm_out_range,
float norm_out_min training_rec tr_rec);
void denormalize_output (f_vector y,f_vector denorm_out,int no_of_outputs,
float norm_out_range float norm_out_min,training rec tr_rec);

/* Implementation */

void free_training_pointers (training_rec *tr_rec) {
if (tr_rec->allocated) {
free_matrix2d (tr_rec->training_array,1,1);
free_matrix2d (tr_rec->correct_answers,1,1):
free_matrix2d (tr_rec->norm_answers,1,1);
}
if (tr_rec->max_min_allocated) {
free_f vector (tr_rec->max_in,1);
free_f vector (tr_rec->min_in,1);
free_f_vector (r_rec->max_out,1);
free_f vector (tr_rec->min_cut,1);
]
tr_rec->allocated = FALSE;
tr_rec->max_min_allocated = FALSE;
return;
} /* end proc */

short check_network_size (int set_in.int set_out,FILE *infile,int line) {
int n_in.n_out;
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fscanf (infile,"%d %d\n".&n_in,&n_out);
gotoxy (1 line);
cprintf ("No. of input nodes: %d".n_in);
gotoxy (1.lne + 2);
cprintf ("No. of output nodes: %d".n_out);
cprintf ("\P\nSetup inputs: %d outputs: %d ",
set_in,set_out);
if ((n_in '= set_in) Il {(n_out != set_out)) {
gotoxy (1 line + 6);
cputs ("These numbers do not agree with setup.\An"
"Press any key to cancel: ™);
getch(;
return 0;
)
return 1;
} /* end func */

short process_training_file (path_str the_file_name int no_of_inputs,
int no_of_outputs,training_rec *tr_rec) {
#define FIEL.D_LEN 255
float value; /* used with sscanf to avoid potential addressing problems */
int i,jkrec_len;
const display_line = 7;
long file_size_in_bytes,remaining bytes,current_pos;
char char_buffer[FIELD _LEN].*the_str;
FILE #the_file;
tr_rec->allocated = FALSE;
tr_rec->max_min_allocated = FALSE,;
tr_rec->no_of_training_items = 0;
tr_rec->no_of_training_items_inv = 1;
tr_rec->norm_error_scaling = 1;
tr_rec->training_array = NULL;
tr_rec->correct_answers = NULL:
tr_rec->norm_answers = NULL;
tr_rec->max_in = NULL;
tr_rec->min_in = NULL;
tr_rec->max_out = NULL;
tr_rec->min_out = NULL;
clrscr();
gotoxy (1.5);
file_size_in_bytes = open_input_text_file (&the_file the_file_name);
if (file_size_in_bytes == Q) return 0; /* File name not found */
if (‘check_network_size (no_of_inputs,no_of _outputs,
the file display_line)} return 0;
cputs ("“"\aReading training/test items.. \\n™);
/* Allocate space max and min arrays */
tr_rec->max_in = allocate_f_vector (1.no_of_inputs);
tr_rec->min_in = allocate_f_vector (1,no_of_inputs);
tr_rec->max_out = allocate_f_vector (1,n0_of_outputs);
tr_rec->min_out = allocate_f_vector {1,no_of_cutputs);
tr_rec->max_min_allocated = TRUE;
/* Read past "minimum” */
the_str = fgets(char_buffer FIELD_LEN, the_file);
if (Jthe_str) return 0;
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/* Read min input data */

for (i=1;i<=no_of inputs;i++) {
if ({fgets(char_buffer FIELD_LEN,the_file))
{

cprintf("\nReading first line error ... press any key.

getch();
return 0;
}
sscanf(char_buffer," %" &value);
tr_rec->min_infi] = value;
} /* endi */
/* Read min output data */
for (i=1;i<=no_of_outputs;i++) {
if (Hgets(char buffer FIELD LEN,the_file))
{
cprintf("\nReading line %d error ... press any key.
getch();
return 0;
l
sscanf(char_buffer,"%f" &value);
tr_rec->min_out[i] = value;
}
/* Read past "maximuem" */
if (Mfgets(char_buffer FIELD_LEN.the_file)) return 0;
/* Read max input data ¥/
for (i=1;i<=no_of_inputs;i++) {
if (fgets(char_buffer FIELD_LEN the_file)} return 0;
sscanf(char_buffer,"%f" &value);
tr_rec->max_in(i] = value;
}
f* Read max output data */
for (i=1;i<=no_of _outputs;i++) {
if (fgets(char_buffer FIELD_LEN the_file)) return 0;
sscanf(char_buffer,"%f" &value);
tr_rec->max_out[i] = value;

}

/* Read past "Training Data" */
if (Ifgets(char_buffer, FIELD_LEN,the_file)) return 0;
/* Determine remaining size of file so we can calculate number of */
/* training items (for memory allocation), */
cwrrent_pos = ftell(the_file);
remaining_bytes = file_size_in_bytes - current_pos;
if (remaining_bytes > () {
/* First, we need the length of one record */
/* When creating training files, be sure that all data records */
/* in the file have the same length, otherwise this read method */
/* won't work, ¥/
if (!fgets(char_buffer FIELD_LEN, the_file)) return 0;
rec_len = ftell(the_file) - current_pos;
/* Restore file to start of data */
fseek (the_file,current_pos,SEEK_SET);
tr_rec->no_of training_items =
remaining_bytes/((no_of_inputs + no_of_outputs) * rec_len)-1;
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tr rec->no_of_training_items_inv =
1.0/(tr_rec->no_of_training_items);
/* Now do dynamic allocation for training items */
tr_rec->training_array =
matrix2d (1,tr_rec->no_of _training_items,1.no_of_inputs);
tr_rec->correct_answers =
matrix2d (1.tr_rec->no_of_training_items,1,no_of_outputs);
tr_rec->norm_answers =
matrix2d (1,tr_rec->no_of_training_items,l,no_of_outputs);
tr_rec->allocated = TRUE;
for (i=1;i<=tr_rec->no_of_training_items;i++)
{
for (j=1;j<=no_of_inputs;j++)
{
if (fgets(char_buffer FIELD_LENthe_file))
{
cprintf("“\n Reading training data_in %d,%d error ... press any key. ",ij);
getch();
return O;
}
sscanf(char_buffer,” %f".&value);
tr_rec->training_array[il[j] = value;
} /#endj ¥/
for (j=1;j<=no_of_outputs;j++)
{
if (Ifgets(char_buffer FIELD_LEN,the_file))
{
cprintf("\n Reading training data_out %d,%d error ... press any key. ".1,));
getch();
return 0;
}
sscanf(char buffer,” %f" &value);
tr_rec->correct_answers[il[j] = value;

} f*endj */
} /* endi ¥/
} A if

fclose (the_file);

gotoxy (1,wherey() + 2);

cprintf ("Done.™);

gotoxy (1,wherey() + 2);

cprintf ("%d training items processed.” tr_rec->no_of_training _items);
gotoxy (1,wherey() + 2);

cprintf ("Press key to continue (esc to cancel): ");

if (getch() == ESC_KEY) return 0;

return 1;

} /*end func */

void normalize_data {f_vector x,f_vector norm_x.int no_of _pts,
f_vector x_max.f_vector x_min float norm_range.float norm_min) {
/* Same normalization routine used for both inputs and outputs */
f* Assumes vector index range is 1..n0_of_pts for all vectors */
nt 1;
for (i=1;i<=no_of pts;i++) {
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if (fabs (x_max[i] - x_min[i]) > zero_check) {
if (x[i] >= x_max[il) /* Greater than max, set equal to max */
norm_x[i] = norm_range + norm_min;
if (x[i] <= x_min[i]) /* Less than min, set equal to min */
norm_x[i] = norm_min;
if ((x[i] > x_min[i]) && (x[i] < x_max[il}) {
norm_x[i] = (x[i] - x_min[i]}/
(x_max[i} - x_min[i]);
norm_x[i] = norm_range * norm_x[i] + norm_min;
}
1
else
/* Max = min, so data is constant; */
norm_x[i] = 0.5 * norm_range + norm_min;
} /*endi*
return;
} /* end func */

void normalize_training_set (int no_of_inputs,int no_of_outputs,
float norm_in_range float norm_in_min float norm_out_range,
float norm_out_min,training_rec tr_rec) {
int 1,j;
/* Normalize training set input and output */
for (i=1;i<=tr_rec.no_of_training items;i4++) {
normalize_data (tr_rec.training_array[i],
tr_rec.training_array[il,
no_of_inputs tr_rec.max_in tr_rec.min_in,norm_in_range,
norta_in_min);
normalize_data {tr_rec.correct_answers[i],
tr_rec.norm_answers{i],
no_of_outputs,ir_rec.max_out,tr_rec.min_out,norm_out_range,
norm_out_min);
} /* endi*f
if (fabs(norm_out_range) > le-6)
tr_rec.norm_error_scaling = tr_rec.no_of_training_items_inv/norm_out_range;
return;
} /* end proc *f

void denormalize_output (f_vector y.f_vector derorm_out,int no_of_outputs,

float norm_out_range float norm_out_min, training_rec tr_rec) {
/* Translate normalized output values to regular output value range. */
/* Assumes index range for vectors is 1..no_of pts. */
int i;
for (i=1;i<=no_of_outputs;i++) {

denorm_out[i] = (y[i] - norm_out_min)/norm_out_range;

denorm_cut[i] = denorm_outli] *

{tr_rec.max_out[i] - tr_rec.min_out[i]) +
tr_rec.min_out[i];

} /Fixf
return;
} /* end procedure */

#endif
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This is file flgrun.c. It contains procedures for running GA-Fuzzy logic model in forward
mode

#ifndef FLGRUN_C
#define FLGRUN_C

#include <stdio.h>
#include <conio.h>
#include <math.h>
#include <alloc.h>

#include "ut.h”
#include "trn.h"
#include "flga.h"”

void mn_fuzzy_model (tflg_setup_rec fI) {
fuzzy_system_rec the_fuzzy_system;
float f1_out = 0,*pfl_out.denorm_f1_out = 0,*pdenorm_f£l_out,
norm_ans = {,*pnorm_ans;
const int one_{l_output = 1;
training_rec tr_rec = {0.0,1.0,1. 0. NULL NULL ,NULL.0,
NULLNULLNULLNULL};
int i;
FILE *outfile;
/* We need to treat output values as arrays (of size 1) that start  */
/* atindex 1 (so we can interface with the normalization procedures). */
pfl_out = &fl_out- 1;
pdenorm_fl_out = &denorm_{l_out - 1;
pnorm_ans = &norm_ans - 1;
the_fuzzy_system.allocated = FALSE;
clrser Q;
textcolor (YELLOW);
gotoxy (1,5);
if (fl.fuzzy_system_file_name[0] = \0) {
cprintf ("\*nFuzzy System File Name is blank \f\n");
cputs ("Press key to cancel: ");
getch();
return;
}
if (fl.training_file name[0] = 0" {
cprintf ("\\nTraining File Name is blank \t\n");
cputs ("Press key to cancel: "):
getch();
return;
}
if (fl.out_data_file_name[0] == \0') {
cprintf ("\taOutput Data File Name is blank \fa");
cputs ("Press key to cancel: ");
getch();
return;

}
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cprintf ("Run Fuzzy Model.™);

gotoxy (1,7);

cprintf ("Fuzzy System File Name: %s" fl.fuzzy_system_file_name);

gotoxy (1,9);

cprintf ("Training File Name: %s" fl.training_file_name);

gotoxy (1,11);

cprintf ("Output Data File Name: %s" fl.out_data_file name);

gotoxy (1,13);

cprintf ("Press key to continue (esc to cancel): ™);

if (getch() == ESC_KEY) goto exit_proc;

clrser();

init_flga_fuzzy_ system (fl &the_fuzzy system);

if (!process_training_file (fl.training_file_name,
fl.no_of_fl_inputs.one_fl_output.&tr_rec)) goto exit_proc;

clrscr();

gotoxy (1,5):

cprintf ("Initializing system...");

normalize_training set (fl.no_of_f1_inputs.one_fl_output,
flrorm_in_range.fl.norm_in_min fl.norm_out_range.fl.norm_out_min,
tr_rec);

if (Iread_fuzzy_system (fl fuzzy_system_file_name,
fl.no_of _fl_inputs.fl.no_of fl_inp regions,

the_fuzzy_system.no_of rules.fl.no_of _fl_output_values,
&the_fuzzy_system)) goto exit_proc;
if (!open_output_text_file (&outfile fl.out_data_file_name)) goto exit_proc;
clrscr();
for (i = l;ix=tr_rec.no_of_training_items;i++) {
fl_out = fuzzy_system (tr_rec.training_array[i] the_fuzzy_ system);
denormalize _output (pfl_out,pdenorm_f£l_out,one_£1_output,
fl.norm_out_range.fl.norm_out_min,tr_rec);
normalize_data (tr_rec.correct_answers[il.pnorm_ans,one_fl_output,
tr_rec.max_out,tr_rec.min_out,fl.norm_out_range fl.norm_out_min);
cprintf ("*\n%2d: Fz: %8.5f, Act: %8.5f, Err: %8.5f, NErr: %8.51",
i,denorm_f1_out,tr_rec.correct_answers[i][ 1],
(denorm_f1_out - tr_rec.correct_answers[i][1]),
fabs(fl_out - norm_ans));
fprintf(outfile,"%2d %8.5f %8.5f %8.5f %8.5f\n",
i.denorm_fI_out.tr_rec.correct_answers[i][1],
{denorm_fl_out - tr_rec.correct_answers[il[L]),
fabs(fl_out - norm_ans));
} /¥ endi */
fclose (outfile);
cprintf ("\"\nDone. Data saved to file: %s" fl.out_data_file_name);
cprintf (""\An\nHit key to continue: “);
getch():
exit_proc:
free_fuzzy_rules (&the_fuzzy_system);
free_training pointers(&tr_rec);
textmode (LASTMODE);
return;
} /* end proc ¥/

#endif
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This is file flgtrain.c. It contains procedures for training GA-Fuzzy system output rules
using genetic optimization.

#ifndef FLGTRAIN_C
#define FLGTRAIN_C

#include <conio.h>
#include <alloc.h>

#include "ut.h"
#include "trn.h”
#include "flga.h”

void fl_genetic_training (tflg_setup_rec *fl.tga_setup_rec *ga_setup,
tga_rec *ga);

/* Implementation */

void fl_genetic_training (flg_setup_rec *fl tga_setup_rec *ga_setup,
tga_rec *ga) {
int gen=0;
const int one_fl_output = 1;
short cancel_flag = 0.new_optimum = 0,within_tolerance = 0;
int i;
clrser();
textcolor (YELLOWY;
gotoxy (1,5);
if (fl->fuzzy_system_file name[0] == \D") {
cprintf ("\“\aFuzzy System File Name is blank\f\n");
cputs ("Press key to cancel: ");
getch().
return;
1
if (fl->training_file_name[0] == "0) {
cprintf ("\PnTraining File Name is blank \f\n");
cputs ("Press key to cancel: ");
getch();
return;
}
cprintf ("Fuzzy - Genetic Modeling");
cprintf ("t\o\aNumber of Inputs: %d" fl->no_of_fl_inputs);
cprintf ("“\\no\aNumber of Input Fuzzy Sets: %d" fl->no_of_f1_inp_regions);
cprintf ("\P\n\nPopulation Size: %d".ga_setup->population_size);
cprintf ("\"\o\nBit Length: %d  Chromosome Length: %d",
ga_setup->bit_len.ga_setup->chrom_len);
cprintf (\"\n\nFuzzy System File Name: %s" fl->fuzzy_system_file_name);
cprintf ("v\o\nTraining File Name: %s" fl->training file_name);
cprintf ("\\n\nPress key to continue (esc to cancel): );
if (getch() == ESC_KEY) return;
init flga_fuzzy system (*fl.&g fuzzy_system);
/¥ fl_evaluation_fn needs to use global g tr_rec: */
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if ({process_training_file (fl->training file_name,
fl->no_of_fl_inputs,one_fl_output,&g_tr_rec)) goto exit_proc;
g tr_rec.norm_error_scaling =
1.0/(g_tr_rec.no_of _training items * (fl->norm_out_range));
clrscr();
gotoxy (1,5);
cprintf ("Initializing system...");
normalize_training set (fl->no_of_fl_inputs,one_fl_output,
fl->norm_in_range fl->norm_in_min fl->norm_out_range.fl->norm_out_min,
g_tr_rec);
if (!initialize_genetic_alg (ga_setup,ga,&fl_evaluation_fn))
goto exit_proc;
cprintf ("\P\n\nStarting first generation...");
do {
gen += 1;
generation (ga_setup,ga.&fl_evaluation_fn);
statistics (*ga_setup,ga->populations[ga->g_new],ga.&new_optimum);
if (new_optimum}) {
ga_vector_to_fuzzy_rules (ga->opt_vector,&g fuzzy system);
write_fuzzy_system (fl->fuzzy_system_file name,g fuzzy_system);
)
display (gen *ga_setup.*ga.&cancel_flag.&within_tolerance);
ga->g_old = (ga->g_old + 1)%2;
ga->g_new = (ga->g_pew + 1)%2;
} while ((gen <= ga_setup->max_gens) && (!within_tolerance)
&& (Icancel_flag));
exit_proc:
free_fuzzy_rules (&g fuzzy_system);
free_ga_pointers (*ga_setup.ga);
free_training pointers(&g_tr rec);
cprintf ("\\nFLGTRAIN: heapcheck = %d" heapcheck());
getch();
return;
} /* end proc */

#endif
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This is file flgeval.c. It contains procedures for Evaluation (objective) function for fuzzy
logic-genetic algorithm system

#ifndef FLGEVAL_C
#define FLGEVAL_C

#include <conio.h>
#include <stdlib h>
#include <math. h>

#include "trn.h"
#include "flga.h"”

float f1_evaluation_fn (ui_vector v);
void ga_vector_to_fuzzy_rules (ui_vector v fuzzy_system_rec *{z);

/* Implementation */

void ga_vector_to_fuzzy_rules (ui_vector v.fuzzy_system_rec *{z) {
int 1;
for (i=0;i<fz->no_of_rules;i++)
fz->rulesfil.out_fuzzy_set = v[il;
} /* end func */

float f1_evaluation_fn (ui_vector v) {

int i;

float cum_error = 0.0.fl_out;

ga_vector_to_fuzzy rules (v.&g fuzzy_system);

f* Compute cumulative absolute error over training set */

for (i=1;ix=g_tr_recno_of_training_items;i4++) {
fl_out = fuzzy_system (g_tr_rec.training_array[il.g_fuzzy_system);
cum_error += fabs(fl_out - g_tr_rec.norm_answers[i][1]);
} /5 endi ¥

cum_error *= g_{r_rec.norm_error_scaling;

return MAX_GA_OBJ_FN_VALUE - cum_error;

* values should be between 1 and 2 */
} /* end func */

#endif
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