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Abstract 

Liquid menisci in small pores exhibit a curved surface across which there is a significant 

pressure difference. The capillary propenies of such surfaces are important in many areas 

of science and technology. Pores of uniform section can be broadly classified according to 

whether the perimeter is smooth (as in cylindrical tubes) or angular (as in triangular tubes). 

A meniscus that is entirely bounded by the pore walls has a curvature that is inversely 

proponional to the tubes' hydraulic radius. A meniscus in an angular tube, however, has 

liquid wedges in the corners and this reduces the effecti ve area of the pore. In the past it has 

been difficult to calculate the curvatures, of this class of menisci. Some recent studies have 

shown that a relatively straightforward, but hitherto neglected, method originated by Mayer 

& Stowe (1965) and Princen (\969a) can be applied to analyse wedging menisci. However, 

the method has lacked a comprehensive experimental verification. 

This investigation follows on from the previously limited studies. A standardised 

method for the application of the analysis is described, the results from which are compared 

to observations made using modified experimental procedures. The behaviour of the 

capillary surfaces formed in several model pores are analysed with the method. The model 

systems studied are rectangular ducts, the pores formed by a rod in an angled corner, by two 

contacting rods and a plate and the space between a rod and a plate. For the latter two shapes 

the analysis is extended to include systems of mixed wettability which have a particular 

bearing on enhanced oil recovery operations. Experiments in which curvatures are inferred 

from observations of capillary rise, are performed using two comparative techniques. An 

involved procedure confurns predictions of meniscus curvature to within 0.3%. Use of a 

more straightforward, though less accurate, technique enables variations of curvature with 

tube shape or contact angle(s) to be conveniently studied. Results obtained are excellent and 

confmn the theory within the determined experimental errors. 

In addition the analysis has been extended to predict more complex meniscus 
\ 

behaviour. The tubular space formed by three rods and a plate gives rise to a whole family 

of meniscus shapes. With certain geometries a capillary surface regards the tube as a pore 

doublet where the behaviour in one neighbouring pore. depends on that in the other. The 

capillary properties of this model system shed light on .the .behaviour of adjacent pores in a 

porous medium undergoing drainage (ordesorption). Experiments show excellent agreement 

with predictions of meniscus shapes, curvatures and, most interestingly, points of 

spontaneous transition from one meniscus shape to another. The system also has a potential 

future application because one panicular arrangement of rods produces a meniscus with a 

curvature virtually independent of the geometry. This makes it suitable for producing a 

standard meniscus of known curvature. 
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CHAPTER! 

Introduction 

The phenomenon of the capillary rise of liquids in cylindrical tubes is familiar to 

school pupils everywhere. The simple school physics experiments illustrate only a small 

part a broad and sDmetimes cDmplex science called capillarity. The study Df capillarity 

Driginates in the earliest days of modem science and many eminent piDneering scientists 

have been involved in its develDpment. LeDnardD da Vinci is known to. have observed 

capillary rise in the 15 '" century and the equations fDr rise in cylindrical tubes were 

knDwn befDre the 18'" century, but it was in the 19'" century that the fundamental 

relationships were proPDSed in general fDrm by, amDngstDthers, Laplace, Gauss, Young, 

Lord Kelvin and Gibbs - all nDW famDus names. 

Derived from the Latin fDr hair, the term capillarity encDmpasses a wide subject 

area cDncerning fluid interfaces. Studies are perfDrmed in all the majDr scientific 

disciplines by chemists, physicists, mathematicians, biDIDgists and engineers. 

ApplicatiDns are alSo. diverse; detergency, oil recDvery, sDil studies, the waterproofing 

Df fabrics and even the design Df stDrage tanks fDr spacecraft are but a few examples. 

AlthDugh there is no. strict definitiDn, capillarity can be said to. CDncern the prDpenies Df 

systems having at least two. fluid phases separated by an interface. Usually Dne Dr mDre 

solid surfaces bounds the interface. 

A liquid interface in a capillary Dr pDre normally exhibits a curved surface, Dr 

meniscus, across which there is a pressure difference. This pressure difference, usually 

called the-capillary pressure, is propDniDnal to. the curvature Df th~surface and the 

interfacial, Dr surface, tensiDn between the two. phases cDmprising the interface. For a 

given tube shape and wetting cDnditiDn, Dr contact angle, the mean curvature varies 

inversely with tube size. These relatiDns are central to. methods ofinterfacial tension and 

cDntact angle measurement and are alSo. used to determine Dther liquid propenies such 

as the sDlderability Df metals and alloys. 

Today the mDst important area for the applicatiDn Df capillarity is in the study Df 

porous materials, Df which there are many occurring naturally in the envirDnment. In 

addition there are numerous synthetic media employed by modem technolDgy. A large 

econDmic stimulus fDr research in the area has arisen from the need to. develDp enhanced 

Dil recDvery (EOR) techniques. The prDpenies Df a PDrouS material that is partially 

saturated with a liquid are dDminated by the behaviour Df the liquid menisci in the pore 

space. The basic equatiDns Df capillarity are alSo. used in characterising a porous material 

by processes such as mercury-intrusiDn porosimetry or the desDrptiDn Df capillary 
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condensed gases because they relate the capillary pressure measured across an interface 

to the size of a model pore; the actual pore shapes usually being irregular. Alternatively, 

the pore size and interfacial tension may be known and the capillary pressure may be 

the variable to be determined, as for example in two phase laminar flow or in predictions 

of the behaviour of blobs of crude oil when treated with surfactant. ' 

In situations when gravity is not significant the solution of the fundamental 

equations of capillarity is fairly straightforward as a meniscus will have constant m~ 

_ curvature, but their applications have been restricted due to difficulties in obtaining 

solutions for particular geometries and contact angles. In the applications mentioned 

above a pore is frequently assumed to have a circular crosSosection so that the curvature 

of the menisci contained in the.pores mi\Y be easily deduced. If the pore geometry is 

obviously more complex, for example of converging-diverging section (akin to an egg 

timer's shape - see Figure 1.1), simple appr9ximations are usually used forthe curvature. 

An example is the well known Haines incircle approximation. 

o Ou 
(a) (b) (c) (d) 

Figure 1.1 - Classification of tube shapes. (a) A cylindrical tube; unifonn and axisymmetric. 
(b) A triangular tube; an example of a unifonn non-axisymmetric tube.(e) An "egg timer" 
like example of a converging-diverging axisymmetric tube. (d) An irregular tub of 
converging-diverging non-axisymmetric shape. 

In fact the shape of a me!!iscus in a pore of non-circular section, such as that formed 

by contacting spheres, is quite complex. Mathematically the interface is one of constant 

mean curvature or, when gravity is important, one of minimum surface energy, which 

meets the boundary conditions. These boundary conditions are the solid geometry and 

the contact angle which the liquid makes with the solid. There have been many attempts 

to solve the basic equation to yield particular interfacial configurations. Almost all the 
- ~.-

past work has concentrated on the behaviour ofaxisymrnetric drops and bubbles where 

the axis of symmetry greatly simplifies the_problem to one that solves relatively easily 

with the use of numerical integration techniques. 
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. Only recently, with the availability of powerful computers, have solutions been 

attempted forthe more widespread non-axisymmetric surfaces (Fig. 1.1), but the systems 

investigated must be carefully selected and the solid surface must comprise simple 

geometric elements. The time involved in arriving at such solutions is still so great that 

it is not a convenient method to use on a regular basis. Much of the complexity in these 

solutions arises from considering the interfaces to be distoned by gravity, to be in 

converging-diverging and/or non-axisymmetric geometry.:... There is, however, a vinually 

neglected class of non-axisymmetric interfaces for which solutions can be rela~vely 

easily obtained if gravity effects are small - those in uniform non-axisymmetric tubes. 

Examined in this thesis is a method first put forward by Mayer & Stowe (as it turns 

out, mistakenly) for pores formed by contacting spheres !\rid subsequently, but 

independently, by Princen (correctly) for tubes given by parallel cylindrical rods .. \ 

Unfonunately this method has remained largely unused since its inception primarily 

because. no attempt was made by the authors to validate their theory by experiment, apan 

from a single experiment reponed by Princen. In addition the authors 'a1so obscured the 

true usefulness of their analyses by applying them to inappropriate systems. The theories 

proposed by Mayer & Stowe and Princen, here referred to as the MS-P method, give 

identical results. Mayer & ~towe assumed their analysis was exact for the menisci 

between contacting spheres whereas it applies exactly to uniform tubes. Whilst 

subsequent studies have shown it to provide a useful approximation at zero contact angle, 

it can be expected that errors in calculated curvatures will increase significantly ~th 

increasing contact angle. Princen too hid the power and exactness of the method by 

applying it approximately to gravity distoned menisci, although he did apply the analysis 

to uniform geometries. 

Although possible applications of the method were cited soon after Princen 's work, 

its potential has remained unfulfilled. Only recently have attempts been made to test the 

theory and these only for relatively simple systems. However, the method is gradually 

finding more widespread applications. It was the objective of the work reported here to 

calculate the meniscus behaviour in some non-axisyrnmetric uniform pores and to test 

the validity of the theory's predictions. In addition the limited published work that 

invol ves the method will be brought together and further potential applications suggested. 

Obtaining solutions with the MS-P method is relatively straightforward, but this 

does not mean that the meniscus behaviour is simple as it transpires that multiple solutions' 

. are possible. Some work on utilizing the method had already been conducted by the 

supervisor of this work, Mason, prior to the stan of this investigation, establishing the 

basic princip/iIS of the experimental procedures and indicating the validity of the theory 

in the limited number of systems they studied. This study is a continuation of the work 

of Mason and co-workers, its purpose to confirm, and hopefully improve upon, past 

results and to extend the analyses to look at the effects on meniscus behaviour of both 
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panial and mixed wettability and of interactions between neighbouring pores. Figure 

1.2 shows some examples of the menisci investigated during the course of the study -

the legend is given below'. 

The structure of the thesis broadly follows that of the above outline. After a 

discussion of the relevant aspects of surface chemistry in which the fundamental 

equations of capillarity will be introduced, a brief overview is given of the most important 

area of application; porous materials. Attention will then turn to a review of alternative 

methods of interfacial configuration determination before the limited number of past 

investigations involving the MS-P method itself are discussed. The second pan of the 

thesis is devoted to the application of the theory and its validation in specific systems. 

The investigative procedures are detailed before the panicular experimental results are 

given. Conclusions will be drawn from these q:sults. 

'Figure 1.2 - Menisci in unifonn non-axisymmetric model pores. The photographs show the 
menisci fonned when a welting liquid, isooctane, undergoes capillary rise in the various tube 
shapes. (a) Rectangular ducts, high aspect ratio (d/R = 5.14 and 3.85 - cf section 9.2). (b) 
One rod away from a plate, low nonnalised spacing (1/4" rod, 15 thou. shims d/R = 0.06 -
cf section 9.3). (c) Rod in a 30' corner (I/S" rod - cf section 9.4). (d) Two equal rods and 
a plate (2x3 mm rods - cf section 9.5). (e) Three unequal rods and a plate. symmetrically 
arranged, high half angle (2x 1/16" + Ix 1/8" rods - see chapter 11). {fJ Three equal rods and 
a plate, intennediate half angle (3xl/8" rods - see chapter 11). (g) - (i) Three unequal rods 
and a plate, non-symmetrically arranged, intennediate, high and very high halfangles 
(2x3/32" + Ix 3/64" rods - see chapter 11) 



Figure 1.2 - Menisci in uniform non-axisymmetric model pores 5 

(a) (b) (c) 

(g) (h) (i) 



CHAPTER 2 

Chemistry of interfaces 

2.1 INTRODUCTION 

The behaviour of fluids in a capillary or porous material, is essentially determined 

by interfaces between fluid and fluid; be it liquid/liquid or liquid/gas, and fluid and solid. 

It is a prerequisite of the idea of an "interface" to have "surfaces" which can come into 

contact. 

Thomas Young (1805) and Josiah Gibbs (1872) introduced the fundamental 

concepts of surface chemistry. Young related the mechanical properties of the "surface" 

to those of a hypothetical stretched membrane, he described the tension in this 

"membrane" as the surface tension. Its position allowed a simple mechanical model to 

describe the complex region between two bulk phases in contact. In order to describe 

this region thermodynamically Gibbs conceived a two dimensional geometrical surface; 

the Gibbs dividing surface. 

The developments of these two eminent scientists should not be underestimated 

just because they happened comparatively early in the history of modern science, before 

many of todays measuring techniques and the theories of molecular science were known. 

Other scientists of the nineteenth century involved in surface chemistry include the well 

known names of Laplace, Dupre, Rayleigh, Gauss, Poisson and Kelvin. 

2.2 SURFACE TENSION 

Nowadays with established theories of the molecular nature of liquids, surface 

tension can be more rigourously defined. Consider a drop of liquid surrounded by its 

vapour. A molecule in the interior of the liquid experiences the attraction of all the 

molecules around it. Due to the symmetry of attraction, there is no resultant force on the 

molecules in the bulk. In the surface the molecules are attracted more strOngly by the 

dense liquid than the rare vapour. This difference in attraction causes the liquid to behave 

as though it were enclosed in Young's "stretched membrane". Work must be done to 

raise molecules to the boundary when the surface is extended. The work done against 

the molecular forces during this process is called the work required against surface 

tension. 



7 

The units of surface tension are force per unit length or energy per unit area. These 

are dimensionally identical. The energy units can be appreciated if surface tension is 

expressed as a measure of the free energy of a material in contact with its own vapour, 

hence the equivalent term of surface free energy. When a liquid is in contact with a 

substance other than its own vapour (a gas, immiscible liquid or a solid) the now 

interfacial free energy is called the interfacial tension. 

The interchangeability of the two terms and their units can be illustrated by 

considering a soap film stretched over a wire frame as shown in Figure 2.1. If one end 

of the frame is mobile, as shown by the arrow, it will be noticed experimentally that 

there is a force acting in a direction opposite to the arrow. If the value of this' force per 

unit length is denoted cr, the work done in extending the surface a distance, dx, is 

W = crldx = crdA (2.1) 

where dA = ldx and so denotes the change in area. Thus Cl appears to be an energy per 

unit area. The usual units of ergslcm2 (SI 11m2) or dynes/cm (SI N/m) can thus be seen 

to be identical. 

Figure 2.1 - Wire frame supporting a soap rum. 

2.3 THERMODYNAMIC DESCRIPTION OF AN INTERFACE 

Gibbs' original thermodynamic treatment of interfaces has since been elucidated 

by van der Waals and Bakker, as discussed by Guggenheim (1967). Below the term 

"interface" is defined and some thermodynamics relevant to capillarity, to which 

reference will be made later, is given. A complete description of the thermodynamics 

of interfaces is not required here, but the interested reader may refer to Guggenheim's 

book. 

2.3.1 The interrace 

The junction between two homogeneous bulk phases is often described as a two 

dimensional plane without thickness. Although this is a useful approximation for many 

calculations, the interface is in fact, a region between two phases where molecules of 
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each exist together. Across this region there is a gradual change in any thennodynamic 

propeny. Unless the two phases are completely miscible, the region's thickness is finite 

due to the limited range of the intennolecular forces. These interactions have been 

identified by Fowkes (1965) and include dispersion forces (London - van der Waals 

forces), hydrogen bonds, dipole - dipole interactions, It bonds, dipole induced dipole 

interactions, donor acceptor bonds and electrostatic interactions. Dispersion forces are 

usually dominant. Surface and interfacial tensions are direct measures of the 

intennolecular forces, which may extend over distances of 1 - 100 molecular diameters 

(Jaycock & Parfitt 1987) before behaviour reflects that of the bulk material. 

An "interface" with both area and thickness should more properly be called an 

interphase, and this may exist in the solid, liquid or gaseous states. The tenn "surface" 

is usually only applied when one of the phases is a gas or a vapour. The interphase is 

imagined as being submicroscopic in thickness, about 1 to 10 nm (Jaycock & Parfitt 

1987). However, it is common practice throughout the literature to use the tenns interface 

and interphase (and sometimes surface) interchangeably and this convention is followed 

in the rest of this text. 

Dupre (1869) developed the relationship between the interfacial tension and the 

individual surface tensions, which for a planar liquid/liquid interface is; 

W L,L, = <\ v + O"L,v - O"L,L, (2.2) 

where = work of adhesion 

O"L,v = surface tension of liquid 1 

O"L,v = surface tension of liquid 2 

O"L,L, = interfacial tension 

The work of adhesion may be visualised as the amount of work required to separate unit 

area of interface between liquids L1 and~. A sign convention is adopted such that when 

work is done on the system it is positive. Thus when new surface is created, energy is 

consumed and when interface area is decreased, energy is released. 

2.3.2 Interfacial tension at a plane interface 

Consider two homogeneous bulk phases, et and IJ , separated by an interfacial layer, 

s, (Fig. 2.2). The boundary between the interphase and bulk phase et is AA' and that 

between the interphase and phase ~ is BB'. 
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Figure 2.2 - Defmition of an interphase. 

The propenies of the plane interphase are assumed to be uniform in any plane 

parallel to AA' or BB', but not in any other plane in the interphase. At or near the plane 

AA' the propenies of s are identical with those of et. Moving from AA' to BB' represents 

a gradual change in the propenies of the interphase, from those of et to those of ~ . 

The interphase described may be treated as a thermodynamic system, either open 

or in cenain cases closed. A thermodynamic system is defined as open if both energy 

and matter may be transferred across the boundaries of that system. It is closed if no 

matter is allowed to move across the boundary. 

The thermodynamics of an interphase differ form those of a bulk phase in that work 

must be done against interfacial tension. In the bulk phase the force across any unit area 

is equal in all directions, as is the pressu~, but in the interphase the force is not the same 

in all directions. 

If a plane is chosen perpendicular to AA' then the situation is different from that 

in the bulk phase. Let this plane be represented by a rectangle of height t , the thickness 

of the interphase (AB), and of length, I, perpendicular to the plane of the diagram. The 

force across this plane will be equal to 

Ptl - cri 

The difference in sign being the difference between the work done on the system by the 

pressure, P, and the work done by the system against the interfacial tension forces. The 

interfacial volume, V, is defined as 

V = 1:.4 

where A is the interfacial area. If the thickness is increased by dt , the area by dA and 

the volume by dV with the material content remaining unaltered then the work done on 

the interphase across the planes AA' and BB' is -PAdt . The work done by forces parallel 

to the planes AA' and BB' is independent of the shape of the perimeter, which can for 
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simplicity be assumed to be a rectangle. Consequently the work done on the interphase 

by the latter forces is -(Pt - cr)dA and the total work done, dW, is given by the sum 

dW = -PAdt-(Pt-cr)dA 

= -P(Adt+tdA)+crdA 

= -PdV +crdA (2.3) 

Equation 2.3 is the analogous work term for an interphase which corresponds to the three 

dimensional-PdV for a bulk phase. 

2.3.3 Free energy of an interface 

a) Closed systems 

Consider a closed planar interface that is of fixed composition with cr , the interfacial 

tension (or tangential stress), as an intensive variable (as are for example temperature 

and pressure). Introducing the first law of thermodynamics through the equation 

dU = dQ + dW (2.4) 

and the second law through 

dQ, ... nibl, = T dS 

Combining equation 2.3 with the above yields 

dU = TdS - PdV + crdA 

The usual thermodynamic function definitions are: 

enthalpy H = U + PV 

free energy F. = U - TS 

Gibbs free energy G = H - TS = U + PV - TS . 

Considering the free energy first. Differentiation of 2.8 gives 

dF = dU -TdS -SdT 

which on substitution gives 

dF = -SdT-PdV+crdA 

and consequently 

[~~lv = cr 

[~l.A = -S 

[~~l.A = -P 

At constant temperature 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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ctA = dU -TdS 

= -Wmax 

= -PdV+actA (2.15) 

if no other work other than that associated with volume and area changes is involved. 

Similarly differentiation and substitution on 2.7 and 2.9 yields 

dH = TdS + VdP +adA 

dO = -SdT + VdP + actA 

b) Open systems 

(2.16) 

(2.17) 

For an open system, with varying composition, where Ili and ni are the chemical 

potential and number of moles of component j, respectively then 

dU = TdS-PdV+actA+1illidni (2.18) 

Hence dH = TdS + VdP + actA + 1i Ilidni 

dF -SdT -PdV + actA + 1illidni 

dO = -S dT + V dP + actA +li Ilidni 

2.4 LIQUID INTERFACES 

(2.19) 

(2.20) 

(2.21) 

When considering capilhiry rise, planar liquid surfaces are rarely present, rather 

the surface or interface is curved. Non-planar surfaces can give rise to variations in 

vapour pressure above the liquid and pressure differences across the curved interface. 

These problems were tackled in the 19'" century by Lord Kelvin (1871) and Laplace 

(1805), who derived the equations that bear their names. 

In the following three sections the two fundamental equations of capillarity are 

discussed together with the application of the Laplace equation to capillary rise in 

cylindrical capillaries and surface tension measurement. The more complex solutions 

are reviewed in a later section. 

2.4.1 The Laplace equation 

The derivation of the Laplace (or Young-Laplace) equation can be approached via 

a second illustration involving a soap film. Consider a soap bubble filled with air of 

radius, r, in the absence of any external field (e.g. electrical or gravitational), as shown 

in Figure 2.3. 
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, Gas 

Captlla,y 

Figure 2.3 • A bubble of gas in a liquid 

If the bubble is enlarged by introducing additional gas then the work done can be 

expressed in terms of that done against the forces of surface tension and in increasing 

the volume of the drop. In section 2.3.3 the free energy of a planar interface at constant 

temperature was derived as 

dF = -PdV + adA (2.15) 

This will remain true for curved interfaces so long as a is unaffected by curvature. 

Applied to the soap bubble (at equilibrium i.e. dA = 0) 2.15 becomes; 

adA = oM'dV (2.22) 

where oM' is the change in pressure across the bubble surface. The volume and surface 

area of the bubble are given by 41tr3f3 and 41tr2 respectively, thus dV = 41tr2dr and 

dA = 81trdr . Hence 

dA 
2dV 

r 

Substitution in equation 2.22 gives 

2a 
oM' = 

r 

(2.23) 

(2.24) 
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Equation 2.24 is the form of the Laplace equation for a spherical surface, and shows 

that the smaller the bubble, the greater is the pressure of the air inside as compared to 

that surrounding the bubble. This accounts for the behaviour of the two different sized 

bubbles connected as in Figure 2.4, the small bubble is seen to inflate the larger one until 

mechanical equilibrium is reached (dotted lines) such that the radii of curvature are equal. 

Figure 2.4 - Illustration of the Laplace equation. 

In 1805 both Laplace and Young published a general relationship for the pressure 

across a curved interface of which equation 2.24 is a specific case for spherical surfaces. 

Generally it is necessary to invoke two radii of curvature to describe the degree to which 

a surface is curved (these are equal for a sphere). 

Adamson (1976) gives a description of how radii of curvature are obtained for an 

arbitrarily curved surface. 

"One erects a nonnal to the surface at the point in question and then passes a plane 
through the surface and containing the nonnal. The line of intersection in general will be 
curved, and the radius of curvature is that for a circle tangent to the line at the point involved. 

The second radius of curvature is obtained by passing a second plane through the surface, 
also containing the nonnal, but perpendicular to the fIrst plane. This gives a second line of 

intersection and a second radius of curvature." 

"If the fIrst plane is fOtaled through a full circle, the fIrst radius of curvature will go 
through a maximum, and its value at this maximum is called the principal radius of curvature. 

The second principal radius of curvature is then that in the second plane kept at right angles 
to the fIrst" 
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Figure 2.5 ·A section of an arbitrarily curved surface. 

Consider the section of surface shown in Figure 2.5. The two radii of curvature are 

indicated by', and '2. The size of the section is such that the radii remain effectively 

constant. The surface is displaced a small amount, resulting in a change in area of dA, 

given by 

dA = (x +dx)(y +dy)-xy 

= xdy+ydx 

The work of formation of this additional area is then; 

dW = cr(xdy + ydx) 

(2.25) 

(2.26) 

As with a spherical surface there is also work performed against the pressure difference 

across the surface, it acts on area, xy, through a distance, dz, giving an expression for 

the work done: 

dW = M'xydz 

Comparing similar triangles reveals 

(x +dx)/(" +dz) = xl" 

and 

or 

or 

dx = xdz/" 

dy = xdz/'2 

(2.27) 

(2.28) 

(2.29) 

For the surface to be in mechanical equilibrium then the two work terms must be equal, 

equating 2.26 and 2.27 and substituting for dx and dy gives 

M' = cr (.!. +.!.) (2.30) 
" '2 

Equation 2.30 is a general statement of the Lap/ace equation. It is the fundamental 

equation of capillarity, it dictates the shape of all macroscopic menisci and from it come 

all techniques for the determination of interfacial configurations. 
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2.4.2 The Kelvin equation 

The Kelvin equation describes the change in vapour pressure over an interface 

produced by variations in curvature and is the second fundamental equation of surface 

chemistry. The equation may be explicitly derived by thermodynamic reasoning. 

Consider the effect of atomising a quantity of bulk liquid. The interface would be 

greatly increased by such a process, and since the interfacial free energy is greater than 

the bulk free energy, work will have to be done on the system in order to carry out the 

process. In consequence the chemical potential of the material of the drops will be larger 

than that of the bulk liquid, and there will be a corresponding increase in vapour pressure 

over a convex liquid surface. Unlike the Laplace phenomena an open system must be 

considered. 

In section 2.3.3 the Gibbs free energy of an interface was expressed as 

dG = -SdT + VdP + adA + I· "dn. ,,.... I (2.21) 

This equation gives rise to the definition of chemical potential 

r
aG] 11 - -

i - anj "j.T ,P.A 
(2.31) 

Whilst this definition is useful in the description of the transpon of a material across a 

planar interface, for small spherical droplet the addition of material must necessarily 

cause a change in A. The associated volume change can be written 

dV = Ivdn " , (2.32) 

where Vi is the panial molar volume of the ith component of the liquid. In deriving the 

Laplace equation an expression for dA was deduced (equation 2.23), combination with 

2.32 gives 

dA 
2v· = I-'dn. 
'r ' 

(2.33) 

Substituting for dA in equation 2.21 yields 

[
2v.a J 

dG = -SdT+VdP+li -;:-+Ili dni (2.34) 

The chemical potential ~ of the ith component in the drop is thus 

J.l~ [~lTP 
2via 

= = -+J1i 
r 

r' 

(2.35) 

or 2via • Ili -Ili = r 
(2.36) 
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Now the chemical potential tenns for the planar and curved interfaces may be 

written as 

Ili = Il~ + RTln Pi 

and Il~ = Il~ + RTln P," 

(2.37) 

(2.38) 

where Pi is the vapour pressure over a planar interface andP: that over a curved interface. 

If these relations are substituted in equation 2.36 then 

P~ 
In-' 

Pi 

2vi cr 
= --

rRT 

which is a statement of the Kelvin equation. 

(2.39) 

If instead of a drop of liquid in a vapour, a bubble of vapour in a liquid were 

considered then the radius of curvature is assumed to be negative. Dropping the subscripts 

and allowing for an arbitrarily curved surface the equation may now be written in the 

familiar fonn 

In~ = vcr (.!. +.!.) 
po RT r, r2 

(2.40) 

Although of a finn thennodynamic basis for macroscopic systems the validity of 

the Kelvin equation when the interface dimensions approach molecular sizes is the 

subject of an on-going debate. Lisganen et al. (1971) have reviewed attempts at 

validation. Claims have been made for the equations' accuracy at radii of curvature of 

only a few molecular diameters (Fisher & Israelachvili 1981) but the uncertainty remains 

(Everett 1988). 

2.4.3 Capillary rise and surface tension measurement 

The capillary rise of liquids in cylindrical tubes is considered one of the most 

accurate methods of measuring surface tension (to hundredths of a percent - Jaycock & 

Parfitt 1987), panly because the theory has been worked out to a high degree of precision 

and panly because the experiment can be closely controlled. On the other hand, the 

capillary rise method is only applicable when the interfacial tension is constant and the 

liquid or solution completely wets the capillary tube (that is the contact angle is zero). 

In addition, there must be fairly large volumes of liquid are available. Consequently 

there are many other methods of measuring surface tension, the most common are 

summarised in Table 2.1. 



Table 2.1 Methods of measuring the surface tension of single liquids and solutions. 

Method Suitability 
Pure liquids Solutions 

Capillary he igh t 

Sessile drop 

Pendent drop 

WiJheJmy plate 

Maximum pull 
on a cylinder 

Very satisfactory when the 
capillary wets reproducibly. 

Very satisfactory. 

Very satisfactory but has 
experimental difficulties. 

With a good experimental 
set up, very ac.curate and 
convenient. 

Very satisfactory. Easy to 
operate with simple 
apparatus. 

Difficult when the contact 
angle is nOl 0° or variable. 

Very useful for studying 
surface ageing. 

Useful for studying surface 
ageing. 

Provides accurate data on 
surface ageing. 

Satisfactory if used with care 
and small displacements near 

. maximum pull. 

Maximum pull 
on a cone 

Similar to cylinder method, but since the cone constant is 
universal, the results are easier to calculate. 

Du ~ouy ring Satisfactory 

Drop weight or Very satisfactory 
drop volume 

Maximum bubble Has experimental problems 
pressure but useful where other 

methods are difficult to use. 

Unsatisfactory 

Poor when ageing effects 
suspected. 

Gives problems with ageing 
solutions. 
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All the methods in Table 2.1 rely on the application of the Laplace equation for a 

given interface shape. The solution of the Laplace equation can be difficult for other 

than two dimensional cylindrical menisci where one of the principal radii of curvature 

is infinite, or spherical menisci, where both radii are equal, as in equation 2.6. Solution 

is helped considerably if the interface shape possesses axial symmetry as, for example, 

do pendent and sessile drops. Except forthe Wilhemy plate method (cylindrical menisci), 

all methods shown in Table 2.1 are based on axially symmetric menisci. These more 

complex solutions to the Laplace equation are discussed later (see section 5.2). 

It is not within the scope of this study to report details of the numerous methods 

of surface tension measurement, these may be found in the standard texts on surface 
chemistry (such as Jaycock & Parfitt 1987, Adamson 1976 or Bikennan 1970). However, 

the consideration of the capillary rise method introduces important relationships on which 

the experiments in this study are based. 

Capillary rise in tubes is a well known phenomenon, its science was developed in 

the 19th century and involved some notable scientists of the day, such as Poisson and 

Mathieu. Liquid rises, or is depressed, in tubes due to the pressure difference created by 

a curved surface. A liquid rises in a tube if the contact angle, that is the angle with which 
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the liquid interface meets the solid wall, is less than 9()<> and it is depressed if the angle 

is greater than 90°. Figures 2.6 and 2.7 show situations where the contact angle is zero 

and 180' respectively. It is worth noting that the radii of curvature will always lie on the 

high pressure side of the interface, provided the meniscus is clastic: a meniscus that has 

radii of curvature that are of opposi te sign is said to be anticlastic (van Brackel & Heertjes 

1978). 

T 

/// 
/ / / / 

/ ////// // 
Figure 2.6 . Capillary rise of a liquid in 

cylindrical tube. 
Figure 2.7 - Capillary depression. 

For the situation shown in Figure 2.6, if the tube radius is small and the liquid 

completely wets the wall (a contact angle of zero) then the meniscus will be 

approximately hemispherical. So from the Laplace equation 2.30: 

M = 2cr/R (2.41) 

whereR is the radius of the tube, of equal magnitude to the two principal radii of curvature, 

r. For the system to be stable, the pressure difference across the interface must be balanced 

by the hydrostatic pressure drop. If the liquid above the (convenient to measure) height, 
. . -----

h, is neglected then the hydrostatic head for the meniscus above the planar surface of 

the liquid is given by; 

M= hpg 

where p is the relative density difference, defined as the density inside the meniscus 

profile minus that outside it, and g is the acceleration due to gravity. Equating the 

hydrostatic head terms gives 

hR = 2cr/pg (2.42) 

The term 2cr/pg is constant at a given temperature and defines the capillary constant, 

a: 

a 2 = 2cr/pg (2.43) 
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where a has units of length. Engineers often prefer to use a dimension less parameter, 

the Bond number, given by 

B = gL'p/a (2.44) 

where L is a characteristic reference length of the system under consideration. Both the 

capillary constant and the Bond number give a measure of the ratio of viscous to capillary 

forces. 

For the general case where the liquid meets the wall with contact angle 9, the radii 

of curvature no longer equate to the tube radius. Consideration of the geometry in Figure 

2.6 yields; 

r = Rcos9 

so M = hpg = 2alr 

= 2acos91R (2.45) 

Equation 2.45 is commonly known as the Washburn equation (after Washburn 1921). 

For surface tension measurement the equation is written: 

a = Rhpgl2cos9 

which, using the definition of the capillary constant (equation 2.43), becomes 

a 2 = Rhlcos9 

(2.46) 

(2.47) 

Equation 2.43 was known before the 18'" century and, although not strictly correct, 

it works well for small bore capillaries. The frrstcorrection to it came from Jurin (1718). 

Usually capillary rise is measured to the bottom of a meniscus as this is the most 

convenient point. However, the bottom of a meniscus does not correspond to its mean 

curvature. In a capillary rise experiment a meniscus cannot satisfy the constant curvature 

condition assumed by the above theory as curvature varies directly with height due to 

the influence of gravity. The region spanned by the meniscus will always be of a 

measurably finite height unless the height of rise is incredibly large. 

Jurin determined a frrst order correction to bring the measured level near to that 

corresponding to a menisci's mean curvature. Assuming the meniscus in a tube to be 
hemispherical, Jurin drew a plane across the meniscus where the volume of liquid held 

above the plane equalled the volume of space below it. Utilising simple geometry he 

arrived at a correction that amounts to the addition of one third of the tube radius to the 

height of the bottom of the meniscus. Thus 

a 2 = R (h + R 13) (2.48) 

However, even in small tubes there is a deviation from the spherical caused by 

gravity. Lord Rayleigh (1915) obtained a series approximation for nearly spherical 
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menisci in tubes up to a diameter of about 1 mm for water, equivalent to a Rlh ratio of 
• 

0.02. He expressed the capillary constant as; 

a 2 = R(h + RI3 - 0.1288R 21h + O.l312R 31h 2 
••• (2.49) 

Hagen and Desains (see Rayleigh 1915) had previously obtained a similar result by 

considering the meniscus to be elliptical: 

a 2 = R(h + RI3 - O.ll11R 21h + 0.0741R 31h 2 
••• (2.50) 

These correction factors are actually very small, even at the limit of Rlh = 0.02 the 

total multiplication factor only amounts to 1.007. If the Jurin correction is used alone it 

is only in error by + 0.005%, equivalent to an error of about I ~ in the measurement 

ofR andh. 

For cases where h « R, as in very wide tubes, Rayleigh obtained a different series 

approximation: 

R:! -In(h~) = 0.8381 +0.2798 R~+0.51{ R:!) (2.51) 

This equation can be used to show that for a 5 cm diameter tube and water the capillary 

rise is in the order of I ~m. This equation has been validated for R..{ila > 6, equivalent 

to water in tubes of greater than 32mm diameter. 

A more comprehensive approach was developed by Bashforth and Adams (1883) 

and later extended by Sugden (1921), to cover the range of Rlh values not covered by 

Rayleigh's equations. Its basis is an axially symmetric figure of revolution. At the apex 

the two radii of curvature must be equal. For capillary rise the apex is at the bottom of 

the meniscus. If the radii of curvature at the apex are both b, and the height from the 

apex of a general point on the surface is z, where z = y - h as shown in Figure 2.8. 
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Figure 2.8 . The meniscus in a capillary as a figure of revolution. 

The Laplace equation (2.30) can be written in the fonn, 

cr (..!. +..!.) = pgz + 2cr/b r, r2 
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(2.52) 

So at z = 0, M = 2cr/b and at any other value of z the change in M is given by a change 

in pgz. At a point S, on the surface where r, and r 2 are the radii of curvature, r, in the 

plane of the paper and r 2 in a plane perpendicular to the plane of the paper, and q, is the 

angle between the tangent at S and the vertical. The length PS corresponds to r
2 

=x/sinq, 

and this radius rotates around the symmetrical axis AA'. Equation 2.52 can now be 
written in a dimensionless fonn; 

1 sinq, 
2 13(z/b) (2.53) + = + (r,/b) (x/b) 

where 
13 = pgb 2/cr = 2b 2/a 2 

(2.54) 

The parameter, 13 , defines the shape of the meniscus, being positive for oblate figures; 

sessile drops, captive bubbles and a meniscus in capillary rise. 13 is negative for prolate 

figures such as pendent drops, emerging bubbles and menisci in capillary depression. 

Before the days of computers Bashforth and Adarns obtained solutions for equation 

2.53. Their results were given as tables of values of xlb and z/b for closely spaced values 

of13 andq,. Fora given 13 value, a plot of z/b versusx/b reveals the profileofa particular 

figure of revolution satisfying equation 2.53. The tables can be usedinan iterative fashion 

to obtain surface tension values from data collected from various measuring techniques 
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including capillary rise. Sugden presents the tables of Bashforth and Adams and his own 

extension in tenns of tube radius. Values of RIb are given for closely spaced values of 

Rla. The tables may also be employed to yield corrected heights of rise in tubes of varying 

diameter and with liquids of various contact angles. Table 2.2 shows the relative accuracy 

of the various approximations used to interpret capillary rise data described above. 

Sugden 's tables give the most accurate results for Rlh > 0.03. 

Table 2.2 Comparison of the methods of calculating capillary rise resullS in the form 
a'=rhxF 

Jurin term Raylei&h term Hagen term Sugden's TabJe3' 

'Ih 
F F F F 

0.00001 1.000 0 1.000 0 1.000 0 1.000 0 
0.0001 1.000 0 1.000 0 1.000 0 1.000 I 
0.001 1.000 3 1.0003 1.0003 1.0003 
0.01 1.003 3 1.0033 1.0033 1.003 2 
0.03 1.010 0 1.0099 1.0099 1.0100 
0.06 1.0200 1.0196 1.0196 1.0196 
0.10 1.033 3 1.0322 1.0323 1.0321 
0:15 1.0500 1.0475 1.04 7 8 1.04 7 2 
0.20 1.066 7 1.0626 1.0628 1.0622 
0.50 1.1667 1.151 0 1.1482 1.1444 
0.70 1.233 3 1.2156 1.2043 1.1942 
1.00 1.333 3 1.3367 1.2963 1.2636 

Today, with the advent of powerful microcomputers the hassle of the hand 
calculations can be negated. Boucher et al. (1987) have published such a program, 

covering an extensive range of meniscus configurations. 

2.5 SOLID SURF ACES 

All curved fluid interfaces interact with the solid surfaces that surround them. 

Quantifying the way in which they interact is vital if a meaningful solution is to be found, 

hence an understanding of the fundamentals of solid surfaces is required. 

Descriptions of solid surfaces as applied to capillarity have recently been reviewed 

by Good (1979) and Morrow (1970), whilst standard texts, such as Adarnson (1976) and 

Jaycock and Parfiu (1987), also cover the area in more detail than can be afforded here. 

2.5.1 The solid surface 

Solids possess cohesion, that is they remain the same shape unless changed by 

external forces, due to the much larger intennolecular attraction forces than those in 

liquids or gases. Many solid objects are so familiar that they tend to be thought of as 

thennodynamically stable, which generally they are not. If solid surfaces were in 
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thennodynamic equilibrium (i.e. possessing minimum energy) then common processes 

such as annealing and sintering would not be possible. A lOp piece is in a 

thennodynamically unstable state, yet no observable change occurs in a conceivable 

time-span, for entirely kinetic reasons. 

Solids have a considerable range of surface free energies'. Surface energy is likely 

to vary from place to place across the surface and at any particular point the surface 

tension need not be the same in all directions as is the case with a liquid surface. These 

surface energies are not usually measurable. However, values have been calculated for 

pure, prefect crystals (see Jaycock & Parfitt 1987), but are of little practical value, since 

it is virtually impossible to grow a crystal free from impurity and structural defects that 

the calculation assumes. 

Essentially the shapes of solids are detennined more by past history than surface 

tension forces. There are exceptions however, these concern solids near their melting • 
point. An example is the fusing together of ice cubes in a bucket in a freezer, they develop 

a "neck" at the points of contact. 

It has been possible to characterise some solids on the basis of their specific surface 

energies as either "high energy" or "Iow energy" (Fox & Zisman 1950). Substances 
• 

which have surface energies of the same order as most liquids « 100 ergs/cm2), mainly 

organic polymers such as teflon (PTFE), are described as low energy solids. Most hard 

solids, such as rocks, with specific surface energies in the range 500 to 5000 ergs/cm2 

are referred to as high energy solids. Certain properties of a solid surface can be 

determined if the solid is characterised in this way (Good 1979). 

The above discussion illustrates some of the difficulties involved in treating solid 

surfaces theoretically. If the solid surface cannot be adequately treated then obviously 

the study of solid/fluid(s) interfaces will also lack thennodynamic clarity. 

2.5.2 Surface roughness 

This tenn also has been noted as having a somewhat unclear meaning in the 

literature (Bikennan 1970), but the degree of roughness of a surface is important in 

capillary applications particularly where the liquid does not completely wet the solid. 

However, the concept of rough and smooth is subject to the closeness of the observation. 

For instance,you could be happily cycling along reflecting on the "smooth" surface of 

the road until you fall off and are grazed by the "roughness" of the tarmac. 

• Morrow (1970) notes that there is no accepted terminology for the surface energies of solid surfaces 
and that the terms; surface tension, superficial tension, interfacial tension, adhesion tension, surface stress, 
stress tension, surface free energy, superficial densities of energy, specific free energy, free surface energy, 
surface energy, surface energy density, Helmholtz free energy, surface Helmholtz free energy, specific 
surface free energy, pure surface energy, actual surface energy, theoretical free surface energy, free energy 
of formation and relative surface free energy have all appeared in the literature on solid surfaces. 
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There is a level of variation at which the tenn "roughness" becomes inappropriate. 

A surface that is flat on a molecular scale is almost unattainable. Good (1979) cites 

carefully cleaved mica as the only probable exception, but all atoms and molecules 

vibrate with a measurable amplitude. So in general roughness is confined to changes in 

the surface representing movements of the surface larger than the interalOmic distances 

(Jaycock & Parfitt 1987), and one criterion for an ideal solid surface is that it is smooth 

to a molecular level. 

All the solid surfaces used in this study were prepared in some way; sawn, cut, 

turned, polished, ground or chemically treated. These methods all leave the surface rough. 

The simplest method for describing the degree to which th!!se surfaces are rough is the 

roughness factor, r W' given by Wenzel (1936) as 

actual surface area 
r = (2.55) 

w geometric surface area 

where the geometrical surface is that measured in the plane of the interface corresponding 

to the surface area of a smooth interface. 

Wenzel's ratio tells us nothing about the appearance of the roughness, and there is 

no consensus in the literature on fonnal descriptions that are more detailed. Bikennan 

(1970) gives a general method based upon the relative heights of hills and valleys and 

cenain idealised configurations have been analysed by Johnson & Dettre (1964a, b) and 

by Eick et al. (1975). The distribution of hills and valleys will affect the behaviour of 

liquids in contact with that surface as will the degree to which ridges and valleys are 

parallel or organised into ranges (Jaycock & Parfitt 1987, CarrollI984). It may be that 

in the future fractal analysis will be utilized to offer a more realistic description of solid 

surfaces (see Mandelbrot 1977). 

2.5.3 Other surface defects 

Other well known depanures from the ideal solid surface are elastic distonion, the 

swelling of the solid by a liquid that wets the surface and the degree and extent of surface 

heterogeneity (Good 1979). There are three acknowledged causes for the heterogeneous 

nature of common surfaces: 

i) Differing chemical composition of matter on the surface. Eithercomponents 

essential to a material (as with steel) or surface impurities (nearly always 

present). 

ii) Different crystallographic faces on a chemically homogeneous solid (more 

correctly described as a homotattic solid in substances containing more than 

one type of atom (Jaycock & Parfitt 1987». This may be visualised as the 



difference in the density of atom packing in a (lOO) plane to that in a (Ill) 

plane or the presence of different kinds of molecular groups exposed in 

different planes. 

iii) The existence of grain boundaries, crystal edges or corners and steps or 

ledges. Dislocations give rise to high energy sites where they intersect a 

surface, disturbing the uniformity. 
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Thus all surfaces that are not homogeneous, uniform or homotattic may be described 

as heterogeneous. 

2.6 THE SOLID/GAS INTERFACE (ADSORPTION OF GASES) 

The term sorption is commonly encountered in capillary applications. It is usually 

encountered with a prefix; commonly abo, ad- or de-. The term is used to denote the 

separation of achemical species between bulk and interface. Absorption generally applies 

to the solution of gases in liquids. Whereas adsorption refers to the concentration of a 

substance on a surface, such as the molecules or of a dissolved or a suspended substance 

on the surface of a solid. Desorption is the reverse of the latter mechanism. 

In the context of capillarity, absorption is of little importance. 

Adsorption/desorption processes are however, directly relevant. Adsorption is often 

defined in terms of degrees of freedom. A molecule or atom, an adsorbate, is drawn 

towards a surface, an adsorbent, by the intermolecular attractive forces between them. 

This process results in a net decrease in the internal energy of the system as a whole. If 

the translational kinetic energy of the adsorbate is less than the adsorption energy the 

molecule will be "caught" on the surface. A molecule or atom is adsorbed if it has lost 

at least one degree of translational freedom. 

If the forces causing loss of translational freedom are essentially London - van der 

Waals forces and electrical field - dipole interactions then the process is called physical 

adsorption. Chemisorption involves the formation of chemical bonds which results in 

much larger energies or heats of adsorption, typically 80 - 400 KJ/mol of adsorbate as 

compared to 0 - 40 KJ/mol for physical adsorption (Jaycock & Parfitt 1987). A molecule 

adsorbed by chemisorption must, by necessity, first be physically adsorbed as chemical 

forces only act over a very short range. The transition from physical to chemical 

adsorption may be associated with an activation energy barrier. 

Since the interface between an adsorbed phase and its gas is just like any other, 

there is an associated equilibrium between them, and this must represent a balance 

between adsorption and de sorption rates. With physical adsorption these rates are 

obviously much larger than those associated with chemisorption and thus it is physical 

adsorption that is of interest when applying capillary models. 
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2.6.1 Adsorption isotherms 

The volume of a gas or vapour, V, that is adsorbed increases with the equilibrium 

pressure, P, and the distt:ibution is usually also temperature dependent giving a 

description of the process in terms of an adsorption function: 

V = f(P,T) (2.56) 

where V is usually expressed as the equivalent volume of pure adsorbate at STP. An 

adsorption isotherm can thus be written as 

VT = ftP) (2.57) 

When a gas or vapour is adsorbed it does not necessarily remain as a gaseous layer, 

but may collect together to form liquid. This phenomena gives rise to the process of 

capillary condensation of gases in porous materials. Polanyi (1914) postulated three 

different cases which describe the state of the adsorbed film in terms of the critical 

temperature of the adsorbate, T,: 

Case I For T « T, the adsorbed film will be a liquid; 

Case IT T < T" at temperatures just below T, the adsorbed layer will be a 

mixture of liquid and compressed gas; 

Case ITI For T > T, the adsorbed phase is a compressed gas. 

Early workers thought adsorption was limited to a single monolayer of adsorbate 

molecules and formulated their models accordingly (see for example that of Langmuir 

1918). However, it was soon realised that adsorption did not usually stop at a monolayer 

and that multilayer adsorption is the norm when the relative pressure: 

PIp· > 0.1 (2.58) 

where p. is the saturation vapour pressure of the adsorbate. 

Adsorption is normally reported graphically using isotherms. Brunauer (1945) 

noted five distinct types of isotherm (Figure 2.9). Type I describes the adsorption of a 

monolayer showing an asymptotic approach to the monolayer volume, reached at p. , 

and corresponds to Langmuir's isotherm. Types Il and III show multi1ayer formation on 

surfaces of high and low adsorption potential respectively. Finally, types IV and V are 

analogous to 11 and Ill, but cover adsorption on porous materials. The adsorption is seen 

to level off at a pressure less than p. as it is limited by the volume of the pores. Both 

involve condensation phenomena and can show hysteresis. 
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P p. 

Figure 2.9 . Brunauer's (1945) classification of five types of adsorption isotherm. 

Brunauer, Emmett and Teller (1938) (the latter of atomic bomb fame) developed 

the first successful multilayer adsorption model, commonly known as the BET theory. 

It is still in use today in the determination of solid surface areas, details of which may 

be found in any standard text on the subject. Adsorption/desorption methods are used 

in conjunction with capillary models for the determination of pore size distributions of 

some porous materials. 

2.7 THE SOLIDILIQUID INTERFACE 

Capillarity is the study of the macroscopic effects which arise at the point of contact 

between a liquid, or liquids and a solid. The physical aspects of this interface are manifest 

by the phenomena of wetting and spreading. The effects of the forces that act at the 

interface are governed by surface free energies and contact angles, which in turn depend 

on microscopic events at the. interface with which they are associated. 

Most of the following discussion and the experiments described later are concerned 

with pure liquids, as the forces involved in their molecular contact with a solid are better 

understood. However in many real situations involving the solid/liquid interface more 

than one component of a liquid phase needs to be considered. In addition, the surface 

geometry of the solid is often so complex as to preclude any exact mathematical 

treatment. 

The literature concerned with the solidlliquid interface is extensive and no attempt 

is made to cover the entire field here. Wettability, as applied to oil recovery, has recently 

been reviewed by Anderson (1986a, b, c & 1987a, b). Contact angle phenomena and 

their measurement were the subject of reviews by Good (1979) and Neumann and Good 

(1979) respectively. The standard texts also cover this area in some detail. 
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2.7.1 Free energy of nu id interfaces bound by a solid 

In section 2.3 an expression for the free (available) energy of a planar interphase 

was derived 

dF = -SdT-PdV+adA+I·lldn. ,''''', I 
(2.20) 

In capillarity the usefulness of this relationship (and the corresponding expressions 

for enthalpy and Gibbs free energy) is limited as the fluid/fluid interfaces encountered 

are usually curved and bound, at least in part, by a solid surface. Equation 2.20 may be 

generalised via consideration of the situation in Figure 2.10. This system is defined by 

three "dividing" surfaces: that of the solid,S, the liquid,L, and the gas, G. Three different 

interfaces must now be considered: those between solid and gas, solid and liquid and 

liquid and gas. 

i 
i 

heat -----'1 -, 

f==p 

Figure 2.10 - An idealized system showing a small displacement of a liquid surface bound 
by solid and gas. 

Equation 2.20 may be written (in the manner of Melrose 1966), 

dF = -SdT-PsdVs-PLdVL -PGdVG 

(2.59) 

Several simplifying assumptions may be made for the model system shown in the Figure 

assuming variations to correspond to reversible, isothermal changes of state, in which 

no exchange of matter takes place (i.e. a closed system): 

dT = 0 

dVs = 0 

dni = 0 

dASG = -<lALG 
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where 

Substituting these relations in 2.59 yields 

dF = -PGdVIO,+(PG-PL)dVL + (crSL -crSG)dASL +crLGdALG (2.60) 

Now from the first law of thermodynamics (equation 2.4) the total change in free energy 

is given by the external work, hence 

dF = dFu , = PGdV"" 

Therefore we may write 

(Pa-PJdVL+(crsL-crSG)dAsL+crLGdALG = 0 

Dropping the subscripts for the liquid and writing P L - PG = M' gives 

M'dV = crdA + (crSL - crSddAsL 

(2.61) 

(2.62) 

(2.63) 

Equation 2.63 describes the internal work performed and is a general equation that is 

very helpful in discussions on capillarity. For detailed analysis of the thermodynamics 

of interfaces as applied to capillarity the reader should refer to studies by Melrose (1966), 

Everett & Haynes (1972, 1975) and Boucher (1978). 

2.7.2 Wetting 

Wettability has been defined as "the tendency of one fluid to spread on or adhere 

to a solid surface in the presence of other immiscible fluids" (Anderson 1986b). Thus 

whenever a process involves the wetting of a solid by a liquid, three different interfaces 

are present. To illustrate this consider a rock/oiVwater system, the interfaces are rock/oil. 

rock/water and water/oil. Any point where all three components meet is said to be on 

the three phase line. If the water preferentially wets the rock the solid is termed water-wet. 

Similarly the rock may be oil-wet if the rock is preferentially in contact with the oil. If 

the rock has no preference for either liquid it is termed as having intermediate or neutral 

wettability. It is important to note that the term wettability refers to the preference of the 

solid and does not necessarily refer to the fluid that is in contact with the solid at any 

given time. 

The spontaneous imbibition (loosely this means suction - see later) of say, water 

into an water-wet pore occupied by oil indicates that the rock surface prefers to be in 

contact with water rather than oil. As the water imbibes into the pore an area of rock/oil 

interface is replaced by an equal ru:ea of rock/water interface. The changes in the total 

extent of each interface results in a net decrease in the total surface energy. Wetting is 

thus a thermodynamic process, and the magnitude of the free energy change involved 
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detennines whether or not wetting will proceed spontaneously, at what rate and how far 

it can progress against any external forces, or alternatively, how large an external force 

is needed to overcome resistance to wetting. 

The basic measure of the wetting properties of a liquid on a particular solid is 

provided by the contact angle, but it is not the only method of measuring wettability. 

Although relatively reliable in the simple systems in which they are measured, contact 

angles have, as yet, not proved superior to other methods when applied to porous materials 

or other geometrically complex systems that make up the majority of capillarity's 

practical applications. In these instances other quantitative techniques that have found 

widespread acceptance are the imbibition and/arced displacement, or Ammotl method 

and the USBM wellability index or even a combined AmmollfUSBM method. These and 

many qualitative methods are described in Anderson's review. 

2.7.3 Contact Angle 

Contact angle is the wettability measurement employed in this study, so an 

understanding of its meaning, limitations and measurement is desirable. When a liquid 

is brought into contact with a flat solid surface the final shape taken up by the liquid 

depends on the relative magnitudes of the molecular forces that exist within the liquid 

(cohesive) and between the liquid and the solid (adhesive). Or in other words, the liquid 

spreads until equilibrium is obtained between the cohesive and adhesive forces. 

The index of this effect is the contact angle which the liquid subtends with the 

solid, as shown in Figure 2.1 1. By convention the contact angle is measured through the 

more dense fluid. The angle varies between 0 and 1800 
• When the contact angle a , is 

o the liquid is said to perfectly wet the solid. As the angle increases the liquid only 

panially wets the solid and the sessile drop of Figure 2.11 is pan of a sphere, until at 

1800 no wetting is seen and "the sessile drop is a complete sphere. Contact angles can 

also be observed in liquid/liquid/solid and liquid/liquid/gas systems. 
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v 

Figure 2.11 -The shape of a drop of liquid in contact with a solid surface when 9 < 90' 
(a). and the forces that exist at the three phase line (b). 
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A contact angle on a solid can only be defined with physical meaning when a unique 

tangent plane to the solid surface can be drawn; i.e. the plane through which the contact 

angle is measured must be "effectively flat" (Good 1979). on the scale of observation. 

In section 2.5 it was shown that a surface that is truly flat to a molecular level is a virtual 

impossibility. For contact angle purposes a surface may be said to be effectively flat 

only if contact angles measured on it give a single. unambiguous measurement (i.e. no 

hysteresis). 

2.7.4 The Gauss equation of capillarity 

The Gauss equation, first derived in the 19'" century by Gauss (1830). has only 

comparatively recently found the widespread usage that has lead to it being proposed as 

a fundamental equation of capillarity (as are the Kelvin and Laplace equations) (see 

Everett & Haynes 1972,1975, Iczkowski 1972, or Hwang 1977). The equation relates 

variations of fluid/fluid and solid/fluid interfacial areas with variations ofliquid volume. 

the mean curvature of the liquid/gas interface and the contact angle. 

The following derivation follows Hwang (1977). Consider a slight displacement 

of the liquid/gas interface shown previously in Figure 2.1 O. This displacement will cause 

a change in the liquid/gas interfacial area. dA, and an associated volume change, dV. 

This volume change is actually the volume swept by the meniscus during displacement. 

A unit normal vector can be defined at every point on the liquid/gas interface, 

generating a continuous vector field within the volume element, dV. This enables the 

Gauss divergence theorem to be applied to the interface: 

(2.64) 
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In differential geometry, it can be shown that the divergence of a unit normal vector of 

any arbitrary surface is equal to the negative sum of the principal curvatures: 

V· n = - (-.!. + -.!.) = -J (2.65) 
rl r2 

Substituting this identity in 2.64 yields 

Defining 

and 

f If JdV = dA - I fCOS6dA sL 
SI. 

(J) = 

(cos 6) = 

f IfJdV 

fJJdV 
av 

J J cos6dAsL 
iloISI. 

Equation 2.65 can be written as 

aA = - (J)i.lV + (cos 6)i.lAsL 

At the limit av -70 equation 2.68 is reduced to the differential form 

JdV = dA - dAsLcos6 

(2.66) 

(2.67) 

(2.68) 

(2.68) 

(2.69) 

Which is a statement of the Gauss equation a/capillarity. Note that although the equation 

may be applied to any surface the derivation assumes constant mean curvature and hence 

2.69 is only valid for gravity free systems. Boucher (1980) has proposed a more general 

form: 

f JaV = dA - dAsLcos6 (2.70) 

for changes of interfacial areas in systems where the volume changes byaV in dz. 

2.7.5 Spreading and Contact Angle 

It is generally found that liquids of low surface tension wet most solid surfaces 

(6 = 0), whereas those with high surface energies usually give a finite contact angle. In 

the fonner case the molecular adhesion between solid and liquid is greater than the 

cohesion between the liquid molecules and in the latter it is the cohesion forces that are 

dominant. 

.' 
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The situation was illustrated in Figure 2.11. The relationship between contact angle 

and the individual surface energies was first considered by Young (1805). He postulated 

the relationship in words in his "Essay on the Cohesion o/Fluids" (1805). Dupre (1869) 

later put it in mathematical terms. The expression may be deduced simply and directly 

from the Gauss equation. 

Multiplication of the Gauss equation (2.69) by a gives 

of dV = odA - odAsL cos 9 (2.70) 

In section 2.7.1 an expression for the free energy of a fluid/fluid interface was derived; 

LV'dV = odA + (OSL - 0SG)dASL (2.63) 

simply comparing the coefficients of 2.70 and 2.63 yields 

LV' = of 

which is the Laplace equation and 

osl - 0SG = a cos 9 

(2.30) 

(2.71) 

which is a statement of the Young or Young-Dupre equation. Note however that both 

these equations are more general than implied here. In panicular they are valid for 

reversible changes which are not closed with respect to exchange of matter and the 

inclusion of gravitational effects, whilst complicating the derivations, does not affect 

the final results (Everett & Haynes 1972). 

When applied to the solidlliquid/gas system the Dupre equation (2.2) is written as;' 

(2.72) 

where WSLG is the work of adhesion. When combined with the Young equation the Dupre 

equation yields 

WSLG = 0(-1 + cos 9) (2.73) 

This equation was that stated by Dupre in 1869. Another useful quantity is the adhesion 

tension, AsLG• It was first used by Wenzel (1936) in his theory of surface roughness and 

is defined as 

(2.74) 

It is worth noting that 0SG refers to a solid surface in equilibrium with an adsorbed 

film of the gas or liquid vapour, and is not equal to the surface energy of the bare solid, 

as . In terms of as equation 2.71 becomes 

where 1t = as - CJSG 

(2.75) 

(2.76) 

1t is called the film pressure. It is still a matter of debate as to whether 1t is negligible 

on smooth, homogeneous, low energy surfaces. On nonhomogeneous, rough surfaces 

1t will be appreciable (Good 1979). 
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It is perhaps worth noting that the general validity of the Young equation is still 

the subject of much debate. Equation 2.71 is exactly the same as that obtained by taking 

horizontal components of the surface forces (Fig. 2.11). It does not take the vertical 

component of the liquid surface tension, cr sin e , into account, and there is evidence for 

the distortion of solid surfaces by this component. Michaels and Dean (1962) have shown 

that on soft solid surfaces a circular ridge is raised at the three phase line, further 

confurnation has been provided by Lester (1967) for mercury on mica, together with a 

theoretical treatment. On hard surfaces no visible effect is seen, but the surface tension 

component must be balanced by strain within the solid. 

Young's equation does not hold when the contact angle is zero, and the imbalance 

of surface free energies is then defined by the spreading tension, Ssw: 

SSLG = crSG - (cr+crSL ) (2.77) 

The spreading tension is positive if spreading is accompanied by a decrease in surface 

free energy, that is if it is spontaneous. 

Equations 2.73 and 2.74 are often far more useful than Young's equation since the 

latter contains two solid surface tensions which cannot be measured with any accuracy 

(as explained in section 2.5). As a consequence there have been virtually no successful 

attempts 10 verify the Young equation experimentally. In addition to the problems already 

discussed, other specific objections have been raised about the equation, but these are 

discussed elsewhere (see for example Bikerman 1970 and Morrow 1970). 

To reiterate, the contact angle is only a fundamental property of the system when 

the surface of the solid is smooth, non-deformable and homogeneous with respect to 

surface energy and when the fluids are free of polar impurities. In such cases the 

equilibrium contact angle can be referred to as the intrinsic contact angle, e, , (Johnson 

& Dettre 1964a). 

Fox and Zisman (1950) have shown that these conditions are closely met by pure 

liquids against air on the smoothed surfaces of certain low-energy organic polymers, 

including polytetrafloroethylene (PTFE or teflon). Reproducible contact angles can be 

obtained that exhibit strong dependence on the surface tension of the liquid. A critical 

surface tension, cr, , below which the contact angle will be zero, can be predicted from 

a plot of surface tension against cos e, for a homologous series of liquids (Adamson 

1976), although different series have been seen to give slightly different values of cr, . 

2.7.6 Contact Angle Hysteresis 

VaIues of contact angles in most real systems depend on whether the three phase 

line is advancing or receding over the solid surface. It is generally found that a liquid 

drop on a surface can have many different stable contact angles. Those that are usually 
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measured are the maximum and minimum values corresponding to the recently 

advancing or recently receding conditions, as these are the most meaningful and 

reproducible. Since two fluids are involved, one fluid's advancing angle equates to the 

other's receding angle. The difference between the advancing angle, 9. ,and the receding 

angle, 9, , is defined as the contact angle hysteresis, Ha : 

Ha = 9. - 9, (2.78) 

An every day example of this phenomena is that of the appearance of a rain drop 

on a dirty window, as shown in Figure 2.12. The effect can be quite large; for water on 

minerals hysteresis of 500 is common and a value of 1540 has been recorded for mercury 

on steel. 

Figure 2.12· Appearance of a rain drop on a dirty window. 

Contact angle hysteresis was recognized before this century and three principal 

causes have been well documented (see for example Adamson 1976, Johnson & Dettre 

1964a or Morrow 1970), these are: 

i) Surface roughness 

ii) Surface heterogeneity 

. iii) Surface immobility on a macromolecular scale. 

Surface roughness effects can be visualised by considering a horizontal but rough 

homogeneous plate. A liquid drop will generally be attached to a part of the surface that 

is not flat because the rough surface contains peaks and valleys. So the apparent contact 

angle, measured from the tangent to the horizontal plane of the surface, will be different 

to the true contact angle at the actual point of contact. The surface roughness will allow 

many metastable states of the drop to exist with differing contact angles. 

/ 
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Hysteresis due to surface heterogeneity can result from either heterogeneity in the 

solid surface as described in section 2.5 or from differential adsorption of wettability 

altering compounds and impurities in the liquid. Finally, surface immobility can cause 

hysteresis by preventing the fluid motion necessary for the contact angle to reach its 

equilibrium value. This problem is encountered in oil recovery operations; slow 

adsorption of a surfactant from the solidlliquid interface into the bulk liquid can cause 

hysteresis, some crodes actually form a solid film at the oiVwater interface (Anderson 

1986b). 

Other factors affecting hysteresis have been documented, such as the dependence 

of contact angles on interface velocity (dynamic effects) (Morrow & Nguyen 1982, 

Larson et al. 1981). Good (1979) also reports diffusion, swelling and reorientation 

effects. However, it is principally surface roughness that relevant to this study and it is 

discussed in greater detail below. 

2.7.6.1 Wenzel's theory 

There have been several attempts to relate the surface roughness to contact angle. 

One of the earliest is that ofWenzel (1936). He introduced "effective adhesion tensions" 

(equation 2.74) to obtain a modified form of the Young equation, in which roughness 

changed the effective solid/vapour and solidlliquid surface tensions in proportion to his 

roughness factor, rw , (equation 2.55). By combining the modified form with the actual 

Young equation Wenzel obtained a relationship between the intrinsic contact angle, e, , 
and the angle observed at a rough surface, e" ; 

(2.79) 

Cassie (1948) and Shuttle worth & Bailey (1948) also arrived at this equation.However 

equation 2.79 takes no account of hysteresi~, and it is the presence of hysteresis at rough 

surfaces that poses a fundamental objection to any theory of surface roughness based on 

equilibrium concepts (Morrow 1974). 

In his experiments Wenzel notes that contact angles must be measured under water 

advancing conditions so as to obtain reproducible results relevant to the study of 

water-repellency, implying that equation 2.79 is applicable to advancing angles only. 

Variations in e" are put down to local changes in rw' 

According to equation 2.79 as surface roughness increases advancing contact angles 

decrease if e < 90°, and increase if e > 90°. Experimental data has been presented in an 

attempt to show the validity of Wenzel's theory, see for example Fox & Zisman (1950) 

but none have found the theory to be generally applicable. 
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The roughness ratio, rw , is defined by Wenzel as an independent property of the 

solid. Shepard & Banell (1953) and Morrow (1974), on paraffin wax and PTFE surfaces 

respectively, found a marked dependence of rw on the inoinsic angle, 9, . These more 

recent works also agreed that only at values of9, less than about 45 0 were contact angles 
seen to decrease with increasing surface roughness. 

2.7.6.2 Cassie's theory 

Working with patchy, heterogeneous, or composite, surfaces Cassie (1948) 
proposed that the equilibrium contact angle on such surfaces, g

e 
, should be taken as an 

area weighted average such that, 

cos ge = It cos 9, + !zcos 9, (2.80) 

where!, and!, are the fractional areas occupied by the composite components 1 and 2. 

However ge can only be measured experimentally when hysteresis is absent, such as in 

the case of a flat surface with parallel bands of components 1 and 2 running parallel to 
liquid motion. 

Cassie's theory has found application in water-repellency studies (see for example 

Adam 1958). The area!, becomes the fraction of open area and 9, the contact angle on 
a single fabric, hence, 

cosge = It cos 9, - !z (2.81) 

Note that the negative sign results from the incorporation of Young's equation in equation 
2.80. 

Roughness and composite effects may both. be manifest at the same time. For 

instance, if the contact angle is sufficiently large and the surface sufficiently rough, as 

in Figure 2.13, such that air becomes trapped by the liquid in-between surface aspersities 

causing a composite effect, equation 2.81, on application ofWenzel's theory, becomes; 

cos 9""p = r.J, cos 9, - !z 

where 9""p is the apparent contact angle. 

(2.82) 
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Figure 2.13 • Effects of surface roughness on apparent contact angle 9 .... 9, is the contact 
angle measured on a smooth flat surface. (a) The droplet is the preferenUally wetting fluid, 

so 9 < 90'. (b) the droplet is the non.wetting fluid, so 9, > 90'. 
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Although the relationships discussed above are useful in modelistic terms, they are 

difficult to apply to real systems as these are generally far more complex than the models. 

The surface rugosity, or the geometry of the surface roughness, plays an important pan 

in determining the wetting behaviour and the extent of hysteresis (Anderson 1986b). For 

example a surface with a high roughness ratio, but with the roughness in the form of 

uniform ridges running parallel to the liquid motion, little or no hysteresis is seen. If the 

same ridges are perpendicular to the liquid motion hysteresis is at its maximum value. 

Most real surfaces are rough, but in a haphazard manner, equivalent to a surface 

with random, intersecting systems of ridges. Shepard & Banell (1953) successfully 

modelled such a surface as a regular array of pyramids and found that contact angles 

varied with the angle of inclination of the pyramids' faces, but not with their height, a 

conclusion subsequently confIrmed elsewhere (Morrow 1974 and Tamai & Aratani 

1972). Carroll (1984) discusses similar surface rugosity effects, but on cylinders as 

opposed to horizontal surfaces and arrives at the same conclusions. 

Work of more general applicability and specifically relevant to this study is the 

detailed investigation of "the Effects of Surface Roughness on Contact Angles" by 

Morrow (1974). He used a series ofliquids to quantify the effects ofroughness on low 

energy PTFE surfaces. Using capillary tubes roughened with dolomite powders to 

measure contact angles from capillary rise, three distinct classes of contact angle 

hysteresis were found: 

Class I behaviour, smoothedPTFE tubes gaveessentia\ly no hysteresis under 

advancing and receding conditions yielding the intrinsic contact angles. 



Class D behaviour, the tubes as supplied by the manufacturer exhibited 

slight contact angle hysteresis that was empirically related to the intrinsic 

contact angle, see Figure 2.14. Slight roughening of the tubes did not change 

this behaviour. 

Class DJ beha"iour, with sufficient roughening of the internal surfaces of 

the tubes, class II behaviour was markedly increased to give class III 

behaviour, see Figure 2.15. This behaviour was obtained for a variety of 

roughness conditions and was found to be independent of the particle size of 

the abrasive dolomite powder, the extent of further roughening and possible 

composite surface effects. Class III behaviour was also empirically related to 

the intrinsic contact angles. 
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Morrow's results are consistent in that when the angle observed at a smooth surface 

9, • is replaced by iis complement. 1800 
- 9, • and the advancing and receding angles 

interchanged the results overlap the curves given by the results in their original form. 

Significantly Morrow found specific classes of hysteresis exhibiting reproducible values 

of 9. and 9, for wide ranges of surface roughness. and not a graduation in roughness 

effects. This enables his results to be employed without regard to the exact nature of the 

surface roughness. The work of Tamai & Aratani (1972) suppons that of Morrow in that 

they found two-tiered hysteresis for mercury on silica plates. corresponding to classes 

I and Ill. The hysteresis was again independent of the grade of roughening abrasive. 

despite roughening giving up to a tenfold variation in the average height of the surface 

asperities. 

2.7.7 The measurement of contact angles 

Many different methods have been used to measure contact angles. Perhaps the 

most common is the direct measurement of 9 by placing a drop on a horizontal plate 

and observing the angle at the three phase line (the sessile drop method). as previously 
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illustrated in Figure 2.11. Advancing and receding angles are obtained by adding or 

removing liquid from the drop and taking the maximum or minimum value before the 

three phase line moves. 

Reasonably reproducible results can be obtained in this way (to within 0.3°, Jaycock 

& Parfitt 1987). However changes in the measured contact angle have been observed 

with variation in the curvature of the three phase line (i.e. a change in drop size). For 

example, water on a teflon sample gave a receding angle of about 95° for drops larger 

than 5 mm in diameter, but declined to about 80° if the drops were smaller than 1.5 mm. 
Similar effects have also occurred with advancing angles over the past 40 years and have 

yet to be satisfactorily explained. 

Other popular methods for measuring contact angles include the tilting plate 

method, sessile bubbles, the vertical rod method, tensiometric methods, the cylinder 

method and the capillary rise method. Descriptions of these and other techniques can be 

found in reviews by Adamson (1976) and Neumann & Good (1979). 

The choice of method depends greatly on the geometry of the solid system and on 

the quantity of liquid available. Techniques have been developed for specific systems 

where standard methods are inapplicable such as for fine textile fibres (Carroll 1976), 

and coal granules (Clark & Mason 1968). 

Absolute values of 9, and 9. are not found, values differ by up to several degrees 

from laboratory to laboratory and with different measuring techniques. Values of contact 

angles on low energy surfaces are more reliable and reproducible than those on high 

energy surfaces. The author prefers those methods which involve indirect measurement 

of contact angle, over a larger perimeter, such as the capillary rise method, to those that 

employ direct measurement as they produce markedly less scatter. 

The above discussion illustrates the limitations of contact angle measurement and 

that while a useful tool in the determination of the characteristics of the solid/liquid 

interlace, contact angles are by necessity an approximation of the interface properties 

except on truly flat surfaces. Until hysteresis is properly understood, the uncertainties 

over contact angles will remain. 

2.8 SUMMARY 

Over the previous pages the basics of surface chemistry, as applied to capillarity, 

were discussed. The fundamental equations of capillarity - the Laplace, Young, Kelvin 

and Gauss equations - have been derived and points of debate about their application 

and validity noted. The concepts of interfacial tension, wettability and contact angle 

were defined and the limitations of each discussed in relation to the interfaces to which 

they apply. Attention is now directed towards the applications of capillarity. 
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CHAPTER 3 

Porous materials 

3.1 INTRODUCTION 

A porous material may simply be defined as any solid with holes in it, that is it 

comprises a solid phase dispersed in such a way that a non-solid phase remains 

in-between. The solid phase is termed the matrix, and the non-solid phase the pore space 

(or void space), of the porous medium. 

Porous materials occur widely in the natural environment and there are many 

synthetic media in use in the home and industry. They can be broadly classified as either 

consolidated or unconsolidated. Some examples of unconsolidated media are sand, glass 

beads, catalyst pellets, column packings and soils. Most naturally occurring rocks, like 

sandstone and limestone, are consolidated materials as are many man made materials 

like bricks, concrete, paper, membranes, adsorbents and textiles. Wood, human lungs 

and even insect hair are classifiable as porous media. The list of scientific disciplines 

involved in' their study reflects the diversity of the materials: including biology, 

biophysics, soil physics, hydrology, catalysis, geology and chemical, building and . 

petroleum engineering. 

The shape of the pore space is usually very complex, consisting of irregularly 

shaped cavities or cracks connected together in an intricate and variable network. In 

order to describe a porous material it is usual to visualise the pore space to be made up 

of a number of interconnected "pores", although the reality of their concept is doubted 

by some authors (van Brackel 1975 and Everett 1988). A single pore is defined as a 

central cavity connected by one or more constrictions to neighbouring pores. The average 

number of connecting constrictions defines the interconnectivity or branchiness of the 

porous material. Porous materials are imponant in capillarity as when a porous medium 

is panially saturated with liquid the holes or pores act as capillaries and its propenies 

are dominated by the behaviour of the liquid menisci in the pore space. 

Obtaining fundamental information on the physical characteristics of porous solids 

like density; total porosity (and its sub-division into open and stacate (dead-end) pores): 

surface area (both accessible and inaccessible); wettability; pore size and pore size 

distribution; pore shape and connectivity is beset by many problems and uncenainties, 

in that even the simplest characteristics are difficult to measure in absolute terms due to 

the complex and irregular geometry. 
',. 
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On the other hand, the practical performance of a porous solid is important. Here 

the major concerns of technologists include adsorption-desorption processes, molecular 

sieving, permeability and fluid flow, drainage and imbibition (wetting and dewetting), 

catalytic properties and fluid-fluid displacement. 

In principal characterisation and performance properties are linked, although in 

real systems the relationship is usually complicated. Tremendous effort within the 

literature has been devoted to the establishment of these relationships. As a consequence, 

many different characterisation techniques have been developed. Most are indirect, being 

based on some secondary, non-geometrical propeny related to the pore structure, but 

also relevant to the practical performance of the material. 

The characterisation procedure normally involves the use of a model to represent 

the complex structure of the real pore system in a more mathematically tractable form. 

These models are nearly always a gross simplification of the real solid matrix, but are 

of value if they can rationalise experimental data. 

Many of the practical applications of capillarity, and much of the economic stimulus 

forthe on-going research to elucidate its fundamental relationships, involve porous media 

of some kind. At present an increasingly significant area of research arises from the need 

~o apply secondary and tertiary oil recovery techniques (collectively EaR) to retrieve 

valuable oil left behind in the reservoirs by conventional drilling (so called primary 

recovery). Over the following pages some of the models are discussed in connection 

with the process explanations and characterisation techniques of which they form an 

integral pan. A more complete description of porosity is beyond the scope of this study, 

but it is covered in detail elsewhere, for example see Dullien & Batra (1970), Modry & 

Svata (1973), Everett (1975), Gregg & Sing (1982) and Unger et al. (1988), although, 

as yet, there is no comprehensive standard text for the reader to refer. 

3.2 CHARACTERISATION OF POROUS MATERIALS 

Direct observation of the of the structures of porous media, or stereology, was 

previously of limited use in evaluating the performance of the media. However, it is 

expected that direct measurement will become increasingly important with the 

application of new techniques such as small angle X-ray scattering (SAXS) and small 

angle neutron scattering (SANS) which can give statistical information about pore 

structures in three dimensions. 

Indirect characterisation techniques are normally employed to yield information 

that is directly relevant to the materials practical performance. There are three popular 

methods that are also particularly relevant here, namely adsorption-desorption, mercury 

porosimetry, and drainage-imbibition. All three techniques involve liquids entering or 

leaving pore space. 



Adsorption-desorption. (Fig 3.1). In many adsorption- desorption processes 

a gas becomes capillary condensed in individual pores and is then evaporated 

from the pore space. 

Figure 3.1 - A typical adsorption-desorption curve. 

Mercury porosimetry. (Fig 3.2). In the analysis of pore structure by mercury 

porosimetry a non-wetting liquid, mercury, is forced into the pore space under 

pressure and then allowed to extrude again when pressure is relaxed. 

o 

Figure 3.2 - An example of the capillary pressure curve obtained from mercury pnrosimeuy 
experiments. 

Drainage-imbibition. (Fig. 3.3). In drainage-imbibition processes a wetting 

liquid that initially fills the pore space is drained by the application of suction 

pressure and then allowed to imbibe again as the pressure deficiency is 

reduced. 
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These techniques are relatively simple experimentally and they can, when 

combined with an appropriate model, give parameters that accurately describe the pore 

space if the results are correctly interpreted. All three processes show similar behaviour 

if the results are plotted in a comparable way. They show a distinct threshold and 

hysteresis between filling and emptying (Fig. 3.4). Several explanations have been 

proposed for this behaviour (see section 3.5), but there is little doubt that it is caused by 
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Figure 3.3 • A grnph showing a typical capillary ~ure curve obtained wilh a wetting liquid 
undergoing dIainage foUowed by imbibition. 
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a combination of the properties of the liquid menisci and the complicated network of 

pores that make up a porous solid. 

Ttw .. nold 

I 
Amount 

Figure 3.4 . A hysteresis curve showing a distinctlhreshold. Adsorption-desorption. mercury 
porosimetry and drainage·imbibition exhibit similar behaviour. 

3.2.1 Classification by pore size 

Most work on the pore sizes of finely porous materials has been based on 

measurements of de sorption or fluid penetration. There is little overlap between each of 

these methods and stereological techniques. Pores are usually classified on the basis of 

their interaction with nitrogen adsorbate molecules in a manner reported by Gregg & 

Sing (1982) and recently recommended by IUPAC (the International Union of Pure and 

Applied Chemistry) (see Stacey 1988). Pores are divided roughly into the following 

groups based on mean pore width: 

Micropores with dimensions < 2 nm 

Mesopores in the range 2 - 50 nm 

. Macropores with dimensions> 50 nm. 
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Micropores have also been subdivided into ulrramicropores « 0.6 nm) and 

supennicropores (0.6 - 1.6 nm) to differentiate between adsorption mechanisms. Unlike 

smaller sized pores, macropores cannot be investigated using adsorption methods as they 

are too similar to plane surfaces for adsorption differences to be significant, but they can 

be examined using mercury porosimetry. 

3.2.2 Porosity 

The porosity of a material is defined as that fraction of the bulk volume of the 

material that is not occupied by the solid matrix. There are two common forms of porosity 

in use, absolute porosity, E , and effective porosity, E</I • Absolute porosity is a measure 

of the total void space (including both open and stacate pores) with respect to the bulk 

volume. Effective porosity is the percentage of interconnected pore space (only the open 

pores). In other words, effective porosity is an indication of the conductivity to fluid, 

but not a measure of it. 

3.2.3 Saturation and saturation states 

The saturation of a porous material with respect to a particular fluid is defined as 

that fraction of pore space filled by the fluid. If the fluid is denoted by the subscript w 

the fractional saturation is given by 

s = volume of fluid in the medium 
'" total pore volume 

(3.1) 

and varies from 0 to 1. Fractional saturation usually refers to the wetting phase. 

As the saturation of a porous medium increases three distinct fluid saturation states 

can be distinguished, namely pendular, funicular and insular. Figure 3.5 shows the 

situations for an air/water system where the porous media is in the form of an 

unconsolidated bed of granules. At very low saturations the wetting phase water,}orms 

immobile rings around the contact points of the granules; these rings are called pendular 

rings and are toroidal in shape. At slightly higher saturations the wetting phase fo':fOs 

into a continuous body around the granules and is said to be in the funicular state. As 

the saturation is further increased a situation develops where the non-wetting fluid, air, 

can no longer exist in a continuous (funicular) phase and it breaks down into individual 

globules or ganglia. This dispersed condition is called the insular saturation state. 

3.2.4 Capillary pressure curves 

The void space in a porous solid usually contains many sharp recesses. If the wetting 

phase saturation is increased from an initially dry state the liquid will first collect in 



An idealised apparatus for the measurement of capillary pressures for 

drainage-imbibition processes in porous solids is shown in Figure 3.6. Normally the 

medium is initially saturated with the wetting phase, in this case water, and in contact 

with a fmely pored membrane which remains saturated with water. The pressure on the 

water, P "" is the measured gas pressure acting on a frictionless piston. The non-wetting 

phase, oil, is in direct contact with the porous solid and its pressure is given by the gas 

pressure,P """ acting on a second piston. Usually one phase is kept at atmospheric pressure 

through the experiment. The capillary pressure, P" is given by 

(3.2) 

The saturation of water in the solid is found from volumetric displacement 

measurements. The displacement of a volume of water, ~V", , is related to a saturation 

change, !::.S", , by 

(3.3) 

where Vb is the bulk volume of the porous sample and E its porosity. Each capillary 

pressure data point is obtained by holding the external pressure constant until fluid flow 

from the solid ceases. Volumetric displacement is indicated by the position of the piston 

acting on the water phase. Data points are usually referred to as capillary pressure 

equilibria, but this can be misleading as not all the stability requirements for equilibrium 

are met (Morrow 1970). 

3.2.4.1 Generalform of capillary pressure data 

The saturation changes which result from changes in capillary pressure do not 

follow a unique functional relationship. A typical example of a set of capillary pressure 

curves is shown in Figure 3.7, although the exact form will depend on the individual 

media. Several terms are commonly used to describe them. 

Irreducible saturation, S.,: the volume of wetting phase retained at high 

pressures when the saturation is independent of further increases in the 

externally measured pressure. 

Residual saturation, S.,: the volume of non-wetting phase which is entrapped 

when the capillary pressure is reduced from a high value to zero. 

Drainage curve, D: the relationship characteristic of displacement of wetting 

phase from 100% saturation to the irreducible wetting phase saturation, Sw;. 
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• WATER DAIR ~soLID 

Figure 3.5 • Saturation stales of porous media. On increasing the amount of fluid the saturation stake 
changes from a pendular 10 funicular 10 insular. 

these recesses to fonn arc menisci (pendular type rings). Funher increases in saturation 

causes the radii of curvature of the fluid-fluid interface to alter, which consequently 

changes the pressure difference across the interface in accordance with the Laplace 

equation. 

Wetting phase menisci are concave towards the non-wetting phase in porous solids, 

hence the pressure in the wetting phase just below the surface, is lower than the pressure 

in the non-wetting phase. So as the pressure differential across the porous material is 

lowered the wetting phase saturation increases. This pressure difference is known 

variously as, capillary suction, capillary tension, capillary potential or capillary pressure. 

Much "aluable infonnation . _ about pore structure and flow propenies can be 

gleaned from experimental curves relating capillary pressure to saturation - called 

capillary pressure curves. 
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Figure 3.6 - Idealised capillary pressure apparatus. 



Imbibition curve, I: the increase in wetting phase saturation from the 

irreducible wetting phase saturation to the residual non-wetting phase 

saturation. Sor 
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Figure 3.7 • Capillary pressure data for microbeads showing primary scanning curves in addition to the 
drainage and imbibition curves. 

The drainage and imbibition curves constitute a closed and reproducible hysteresis 

loop. DJ. and represent the extreme range over which hysteresis occurs. Primary 

scanning curves within the main hysteresis loop are obtained by reversing the direction 

of the pressure change at some intennediate point along either the drainage or imbibition 

curve. Similarly if the path along a primary scanning curve is reversed before the limit 

of the boundary curve is reached. another path is traversed. Such paths are known as 

secondary scanning curves. 

3.1.4.1 The pF scale 

Capillary pressures are sometimes expressed as an equivalent height of a column 

of water in ergs per unit weight, instead of the more usual units of energy per unit volume 

as in equation 2.52. Between the limits of saturation capillary potential expressed in this 

. way can vary by a factor greater than a million. Hence the potential is often plotted on 

a logarithmic scale. 

Schofield (1935) was the first to express capillary potential in terms of a log scale 

which he called the pF scale (analogous to the pH scale for acidity-alkalinity). The pF 

is defined as 

(3.4) 

where h,. is the height of a liquid column of unit density which is equivalent to the 

capillary potential. 
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Drainage-imbibition of the son described above is characteristic of mesa- to 

macroporous materials. Mercury porosimetry is the reverse of this process, with extrusion 

corresponding to imbibition and intrusion to drainage. Mercury is a non-wetting liquid. 

3.2.5 Adsorption-desorption pressure curves (sorption isotherms) 

The adsorption of a gas by a porous material occurs in several stages as the relative 

vapour pressure, PIp· ,the actual vapour pressure, P, as a fraction of the saturated vapour 
pressure, p. , is increased. Initially gas molecules adsorb at panicular sites on the inner 

surface by the same mechanisms they adsorb to non-porous surfaces (section 2.6), to 

form first a monolayer and latermultilayers. When these multi layers become sufficiently 

thick the adsorbed material behaves like a liquid and is said to be capillary condensed. 

Eventually at the saturated vapour pressure the liquid fills all the pore space. During 

progressive equilibrium desorption (evaporation) hysteresis, analogous to that in 

drainage-imbibition, is seen as the relative vapour pressure is reduced. Results of 

experiments are plotted, as amount adsorbed versus relative vapour pressure, and 

typically appear like that shown on Figure 3.1. The adsorption ponion of the hysteresis, 

loop is analogous to imbibition whilst the desorption ponion is similar to drainage. 

3.3 MODELS OF PORE SPACE 

To manipulate a physical process to produce the greatest efficiency requires that 

one must first understand the mechanisms underlying that process, With a seemingly 

incomprehensible system the first logical step is to simplify it to one that can be more 

readily understood. Newton did this in developing the theory of motion; the trajectory, 

of a solid object of complex shape could be easily followed if the object was reduced to 

. a point mass - thereby behaving in a manner akin to a ball - whose trajectory is simply 

followed. In shon, Newton created a simplified model of a complicated system. 

The brief description of porous material characterisation techniques given above 

is merely qualitative. To extract characteristic information from capillary pressure 

curves, such as pore size distribution, requires that the shapes of both the solid/fluid and 

fluid/fluid interfaces are known. To be of use practical characterisations of porous 

materials must yield parameters that describe the actual pore structure sufficiently well 

too allow explanations to be given of the process(es) under investigation. 

It might be possible to obtain detailed mathematical maps of the topology of normal 

porous materials, but it would be impossible to predict the meniscus shapes inside the 

pore space. The relevant equation of capillarity could not be solved owing to the complex 
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and random nature of the solid geometry. Thus the problem for researchers is essentially 

to find not just one, but two models; one of the matrix and a second for the shape of the 

capillary surfaces in the modelled matrix. 

The requirements of an effective pore space model are that it is simple enough to 

be amenable to theoretical treatment, whilst quantitatively capable of explaining the 

various interfacial, hydrodynamic and other properties of practical interest. A 

compromise is sought between oversimplification on the one hand and elaboration of 

the model to such an extent that the convenience is lost. Haynes (1975) states that the 

best justification for a rigOUTOUS theoretical treatment of a particular model is found when 

an experimental study of the same model is practicable - a seemingly obvious 

requirement, but it is often ignored. 

Many models simply represent the pore structure as number of variously sized 

capillaries of some easily definable shape be they cylindrical, angular or made up of 

channels formed from parallel plates, arrays of parallel cylinders or packed spheres. 

These simple geometrical shapes enable the interfacial configurations to be easily 

calculated from the equations of capillarity, or simply approximated with the use of 

hydraulic or "insphere" radii. 

Many different models have been used, but few pretend to rationalise all porous 

material processes. Fewer still give reliable quantitative explanations of a single process 

over the entire range of porous material types (van Brackel 1975). However the 

development of models has facilitated a much improved understanding of the 

mechanisms of many processes. 

3.3.1 Classification of pore space models 

The modeling of pore structure is not a recent phenomena. In the last century a soil 

physicist, C.S. Slichter (1897) published a model consisting of packed spheres in a 

attempt to evaluate the dependence of the saturated permeability of a soil on its particle 

size and porosity. Similar models are still in use today although no satisfactory 

explanation of the original problem has yet been offered in terms of a packed sphere 

model. 

Pore space models have several other uses other than to characterise a medium. In 

the study of transport phenomena in porous materials (molecular diffusion, viscous flow, 

dispersion, fluid/fluid displacement, infiltration, drying and even heat conduction) 

models are used to obtain values of the transport coefficient (effective diffusion 

coefficient,permeabilityetc.) and, when applicable, the driving force (capillary pressure) 

for the transport equation. Models are employed to obtain particle size distributions and 

" 
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to simulate sphere packings. Others are purely analytical devices for the definition of 

coefficients. Finally there are those that are used as overall descriptions of phenomena 

in which the macro- or microscopic pore structure is not accounted for. 

In addition to simplifying the pore geometry most models make several other 

assumptions. Usually the solid must be homogeneous and isotropic; the pore space 

continuous; the solid interface fixed (no swelling or consolidation) and inert to the other 

phases; the number of phases and components restricted and only very simply initial and 
boundary conditions considered (one dimensional movement). 

A comprehensive review of pore space models was given by van Brackel (1975) 

and Haynes (1975) discusses models used for porous material characterisation. More 
recently many current developments were discussed at the IUPAC conference (Unger 

et al. 1988). The models have been classified according to the number of geometrical 

parameters needed to describe them (Everett 1958) and with reference to the pore space 
interconnectivity by (van BrackeO. The latter method is more comprehensive giving 

four classes: 

i) One dimensional interconnectivity. This class includes the simplest and 
most common models; tubes in parallel or series; tubes with constrictions and 

adjacent slices (plates). The fluid may move in only one direction. Some 

examples are shown in Figure 3.8. 

U) Two dimensional i!lterconnectivity. Broadly these comprise networked 

models of one dimensional models and consequently flow may occur in the 

plane of the network. See Figure 3.9. 

Ui) Three dimensional interconnectivity. Here flow also occurs in a plane 
perpendicular to the overall transport direction. These are the most promising 

type and include sphere packings, tetrahedral networks and tubes and 

junctions (bonds and sites or motorway and interchange) regularly or 

randomly arranged. See Figure 3.10. 

iv) Strictly zero dimensional interconnectivity. Figure 3.11 shows some 

examples. These models consist of simple capillary elements used in 

explanations of particular phenomena, like ink bottle hysteresis or the 

independent domain theory (see section 3.5.2). 

3.4 MODELS OF INTERFACIAL CONFIGURATIONS 

The shapes of capillary surfaces are given by the fundamental equations of 

capillarity. In only a few simple cases is a trivial exact solution afforded by the Laplace . 

or Kelvin equation. One such example is the case of the meniscus in a cylindrical tube 

under zero gravity conditions. Here the meniscus is part of a sphere and is described by 



Figure 3.8 . Some elements of pore space models 
with one dimensional connectivity. 

Figure 3.10 . Elements of pore space with two 
dimensional connectivity. 
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Figure 3.9 - Elements of pore space with two 
dimensional connectivity. 
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Figure 3.11 - Simple capillary models used in 
explanations of specific behaviour of porous media 
having strictly zero-dimensional interconnectivity. 

a single radius of curvature (see section 2.4.3). The vast majority of proposed pore space 

models for capillary processes are made up of tubular cylindrical elements in order to 

facilitate this one parameter solution. 

Solution for the exact shapes of capillary surfaces that are not given by a single 

radius of curvature involve complicated integrations of the Laplace equation even if 

simplifying assumptions are made. The effects of a gravitational field on fluid behaviour 

is al ways ignored in porous materials, the scale of the pore space ensuring that interfacial 

forces dominate (i.e. low Bond number - eq. 2.44). Even in pore space models comprising 

basic geometrical objects, such as spheres, determining the meniscus shape necessitates 

complicated numerical integrations that often require considerable computer time (see 

section 4.2). 
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The difficulties in predicting interface shapes has restricted development of 

non-cylinder based models (geometrically the most complicated pore models used are 

sphere packings). In those that have been employed the interfacial configuration is 

usually approlCirnated, almost always as a zone of a sphere. The use of sphere 

approlCimations has been justified on the grounds that the matrilC model is itself only an 

approlCimation of the actual pore space (van Brackel 1975). Thus the time involved in 

obtaining accurate interfacial configurations outweighs the benefits provided to the 

model. Van Brackel & Heenjes (1978) and Mason & Morrow (l984b) have reviewed 

methods for affecting approlCimation and the latter compared the results of each against 

elCperimental data from sphere packs. 

3.4.1 Hydraulic radius models 

In connection to porous matenals the hydraulic radius, Rh has been defined as both 

the ratio of tube area to tube perimeter (Hwang 1977) and as that of pore volume to pore 

area (Anderson 1987a). For a capillary of cylindrical cross-section the tube and hydraulic 

radii are equivalent. 

The hydraulic radius gives elCact curvatures for menisci in uniform tubes when the 

sphere portion spans the entire cross-section of the tube (Carman 1941). Hwang (1977) 

attempted to elCtend its application to tubes containing angular corners (polygons, 

contacting cylinders etc.), but found his results differed significantly from the elCact 

solutions of Princen (1969a). In wedge-shaped corners a wetting capillary surface must 

rise in the corners, in the manner derived by Concus & Finn (1969), in order to satisfy 

boundary conditions. Hence the complete tube cross-section is not spanned by the sphere 

ponion. In the case of sphere packings this phenomena is manifest by the formation of 

pendular rings around points of contact. Commenting on Hwang's results, Mason & 

Morrow (1984b) found wide deviations for systems that form liquid wedges or rings. 

This was demonstrated by both elCperimental data and other semi-theoretical 

approlCimations. 

Carman applied the hydraulic radius model to triangular pores given by close 

packing of equal spheres (closed triangular pores) and found, for a perfectly wetting 

liquid, a malCimum normalised curvature of 19.5, in poor agreement with the accepted 
elCperimental value of approximately 11.4 for pore drainage (Haynes 1975). 

3.4.2 The Haines incircle approximation 

Haines (1927) arrived at an empirical approximation for interfacial configurations 

after observing capillary displacement in the various pore shapes that arise in regular 

sphere packings. He proposed that the curvature of a meniscus that just passes through 
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the central consniction of a pore (that associated with drainage) can be approximated 

by that of a sphere which just touches the spheres defining the pore throat. Essentially, 

Haines redefined the local geometry to that of a cylindrical tube. 

Application of the Haines "incircle" or "insphere" approximation is straightforward 

and it has been employed in many studies concerning processes such as mercury 

porosimetry, sorption, drainage-imbibition and fluid/fluid displacement (see Haynes 

1975). It has also been proposed that the curvature associated with imbibition can be 

modelled using the radius of the sphere that just touches the spheres defining the pore 

cavity (van Brackel 1975). However neither model is very precise. The maximum 

normalised curvature obtained in the niangular packing is 12.9. 

3.4.3 The Mayer & Stowe - Princen analysis 

The Mayer & Stowe - Princen theory, or the MS-P theory (named as such after 

Mason & Morrow 1984a), is a method for the determination of exact, one parameter, 

interfacial configurations of non-axisymmenic capillary surfaces in uniform tubes when 

gravitational forces are absent. It is the subject of the experiments conducted for this 

study and will be discussed in detail later (see chapter 5). The analysis was developed 

(separately) by Mayer & Stowe (1965) and Princen (l969a) as models for capillary 

surfaces in porous media. The following discussion serves as a brief historical 

background to the method and its application (funher details are given in chapter 4). 

a) Mayer & Stowe proposed what they believed to be an exact solution for the 

maximum curvature in regular sphere packings based upon what amounts to an integrated 

form of the Gauss equation (2.69). The cross-section of the meniscus in the pore throat 

is defined in pan by circular arcs spanning the points of contact between the spheres . 

. Pore shapes varied from the closed niangular to the closed square arrangement. 

The underlying theory presented by Mayer & Stowe was queried at the time of 

publication by Melrose (l965a) and later by Haynes (1975) on the grounds that exact 

solution of the sphere problem must take into account the converging-diverging nature 

of the sphere geometry (see section 4.2). The analysis has however proved successful 

as a method of determining pore size disnibutions by mercury porosimetry (section 4.3) 

b) Princen (l969b) arrived at an identical, but exact solution for the curvature 

between three contacting cylinders to that of Mayer & Stowe for closed niangular 

packings of spheres, reflecting the true nature of the Mayer & Stowe analysis. A 

normalised curvature of 11.3 is given by both analyses, much closer to the experimental 

value in triangular sphere packings, indicating the validity of the method as an 

approximation for curvatures in the regular sphere packing. Figure 3.12 shows the 

hydraulic, incircle and MS-P approximations compared with experimental data of 
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Hackett & Strettan (1928). Van Brackel & Heenjes (1978) have also found Princen's 

analysis to yield results closer to experimental data . 

" 

" 
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Figure 3.12 Com~son of the experimental results of Hackeu & Sarenan from sphere packs with the 
Haines inclICle approximation, Hwang's hydraulic radius method and the MS-P method. 

Princen was interested in capillary rise in bundles of rods where gravity plays a 

significant pan. Here the analysis only approximates the height of rise, but is still of 

much greater accuracy than other methods available; the capiIlary tube and hydraulic 

radius models. 

3.4.4 The Dodds approximation 

Dodds (1978) noted the close agreement between Princen's results for rods and· 

the experimental results ofHackett & Strettan (1928) for spheres. He went on to calculate 

displacement curvatures for pores formed by three cylinders with size and spacings 

varied. These configurations were then taken as models for pores found in sphere 

packings 

Dodds also noted an approximate empirical relationship between his results and 

those given by the Haines incircle approximation, 

(3.5) 

suggesting a very simple approximation method. The factor 0.875 is derived from the 

ratio of MS-P to incircle curvatures for the closed triangular pore. However, Mason & 

Morrow (1984b) found a different relationship for equal, but variably spaced spheres. 
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(3.6) 

where C denotes the normalised curvature, R Ir , the ratio of sphere radius to the radius 

of curvature. It appears that this type of correlation must only be applied selectively. 

All the above modeling techniques for interfacial configurations have also been 

applied in situations where the contact angle is non-zero. The hydraulic radius and incircle 

approximations are simply multiplied by a cos e factor; agreement with experiment is 

poor (see below). Only the MS-P analysis uses a less trivial correction. There is some 

evidence that, although not providing as accurate an approximation as at zero contact 

angle, the MS-P analysis qualitatively agrees with experimental data from sphere 

packings (van Brackel & Heertjes 1978, Bell et al. 1981) 

3.5 HYSTERESIS IN POROUS MATERIALS 

Explanation of observed hysteresis in mercury porosimetry, drainage-imbibition 

and adsorption-desorption is central to the understanding of other processes involving 

the movement of fluid/fluid interfaces in porous materials. The following discussion 

illustrates the application of pore space and interfacial configuration models. 

Physical characteristics of porous materials derived from capillary pressure curves 

or sorption isotherms, such as pore size distributions, can only be said to be realistic 

when the model from which they are determined is itself capable of explaining the 

observed hysteresis. 

Hysteresis shown by liquids entering and leaving pore space cannot be explained 

as simply as that shown by liquids on non-porous materials (section 2.7.6). To date, 

hysteresis has been attributed to a number of possible causes, but is generally understood 

to be dependent on the interaction of wettability, pore geometry and saturation history. 

It is fair to say that at the present time a full understanding of the mechanisms ofhysteresis 

is missing (Everen 1988). 

3.5.1 Contact angle hysteresis and one dimensional models 

Many attempts to characterise porous solids, model fluid flow or account for 

hysteresis in porous media have represented the pore space as assemblages of one 

dimensional tubes. most commonly by the capillary tube model. The spontaneous 

invasion of pore space by a wetting fluid is a manifestation of the same capillary forces 

that cause capillary rise in thin· tubes, where the capillary pressure is given by the 

Wash bum equation: 
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P = 2crcose 
, R (2.45) 

It is common practice for pore size distributions to be determined using the capillary 

tube model by porosimetry, Kelvin analysis or, more recently, thermoporometry. The 

hydraulic radius model finds use in a more general sense to compare similar media. 

3.5.1.1 Porosimetry 
In mercury intrusion porosimetry non-wetting mercury is forced into the pore space 

under external pressure. This process is distinguished from suctional porosimetry where 

a wetting liquid is used. In either case, if all pores are equally accessible then, at a 

particular pressure, P; , only those with constriction radii given by 

2cose 
Rp < J where 

p' 
J = ....:.. 

cr 

will be filled. Each increment of applied pressure causes the next smaller group of pores 

to be filled. 

The measurement of pore size in this way was first proposed by Wash burn (1921), 

but did not find widespread acceptance until Ritter & Drake (1945) published the first 

experimental work. Intrusion pressures of up to 60,000 psi were used. 

The analysis of the data of volume penetrated versus pressure is as follows. If dV 

is the volume of pores with radii between Rp and Rp + dRp and dVis related to Rp by some 

distribution function, D (Rp) (usually normal or Gaussian), then 

dV = D(Rp) dRp (3.7) 

From the Laplace equation (2.30) 

P,dRp + RpdP, = 0 (3.8) 

Combining 3.7 and 3.8 yields 

D(R) = Pc dV (3.9) 
p Rp dPc 

D (R) is obtained from a plot of V versus Pc' The accessible pore volume and the surface 

area may also be determined from the data. Porosimetry (suctional, in addition to 

mercury) is used on meso- to macroporous materials. Capillary tube model results can 

compare well with BET analysis. It will not detect significant numbers of pores of less 

than 5 nm in size even if extended to sufficiently high pressures. 

Mason (1988a) (and others) objects to the use of the capillary tube model in 

porosimetry as it gives pore size distributions in the region of the threshold (see Fig. 3.2) 

that are so narrow as to be unlikely. Other debate concerns which value of the contact 

angle to apply. 
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3.5.1.2 Kelvin analysis 

Kelvin analysis is analogous to porosimetry but makes use of Kelvin phenomena 

in meso- to microporous media. The desorption branch of a nitrogen isotherm is used 

in conjunction with the Kelvin equation (2.40) to detennine pore size distributions. 

The original analysis with the capillary tube model is due to Cohan (1938). He 

assumed that the pore radius, Rp, was equal to the Kelvin radius, r., given by 

2crv 
RTln(P/P·) 

(3.10) 

Current procedures recognize the requirement to add an adsorbed film thickness, t, to 

the Kelvin radius (see Adamson 1976) giving 

Rp = r. + t (3.11) 

In order to evaluate Rp values of t must be obtained from a standard isotherm that is 

either experimentally determined on a similar, but non-porous, surface or theoretically 

derived. 

The accuracy of Kelvin analysis is in doubt over what thickness of adsorbed layer 

to add in addition to the on-going debate over the validity of the equation itself (section 

2.4.2). Usually the contact angle is taken to be zero, but this assumption is also a matter 

of debate (Everett 1988). 

3.5.1.3 Thermoporometry 

A porous material characterisation technique only developed over the last decade, 

thermoporometry is a; 

"method oftextuaJ characterisation which is based on the thennal analysis of the liquid/solid 
transfonnation of a pure capillary condensate inside a porous body" (Quinson & Brun 1988). 

Broadly, the method takes advantage of triphasic systems: liquid/solid/vapour capillary 

condensates. When a porous solid is totally saturated the usually divariant triphasic 

system becomes univariant; the curvature of the gas-solid interface being zero. 

Like porosimerry and Kelvin analysis the method can be used for pore size 

distribution, pore volume and surface area determination. It relies on equating the 

curvature of a solid/liquid interface, J, to the pore radius by a relationship between the 

curvature and the equilibrium temperature, T: 

T = T. (3.12) 



where To : normal temperature of the triphasic equilibrium 

al.S : surface tension of the liquid solid interface 

l:lST : molar entropy of fusion 

v
L 

: molar volume of the liquid 

and J l.S = 2lR. 
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The thermoporometric radius, R .. is again different to the pore radius, Rp, due to 

the existence of an interphase of thickness t made up of molecules which are not involved 

in the thermal effect of the change of state. 

3.5.1.4 The Leverettj-function 
Although the shapes of capillary pressure curves vary from material to material, 

they have several features in common and this has lead to attempts to devise some general 

method to describe all such curves. Leverett (1941) approached the problem from the 

stand-point of dimensional analysis, reasoning that capillary pressure should depend 

upon porosity, E, interfacial tension, a , and some kind of mean pore radius. He defined 

a dimensionless function which is known as the Leverettj-function: 

j(Sw) = ('-I~E !,(Sw) (3.13) 

where k is the permeability of the porous solid, as defined by Darcy's law, and relates 

to the ease with which a fluid may be made to flow through a material by an applied 

pressure gradient. The ratio of permeability to porosity is taken as being representative 

of a mean pore radius. The ratio is related to the hydraulic radius Rh' via the well known 

Darcy and Kozeny-Carman equations and is the ratio of the volume of pore space to the 

wetted area (Morrow 1970). 

For a given wettability, the Leverettj-function should be the same for each set of 

geometrically and topologic ally similar porous media. The dimensionless "Leverett 

number" is also used by some authors (for example, Melrose & Brandner 1974): 

Nu = J'-IkIE (3.14) 

where J = Pia; the curvature of a spherical meniscus. 

The j-function finds application within the oil industry as a means by which th,e 

capillary pressure curves measured on different cores from the same reservoir can be 

compared (Anderson 1987a): 

Most early investigators, such as Zsigmondy (1911), attempted to explain the 

hysteresis phenomena on the pressure-saturation curves in terms of contact angle 

hysteresis in cylindrical capillaries. Their analyses were shown to be deficient when 

hysteresis in porous materials was found to be exhibited by wetting liquids, a phenomena 
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not possible in capillary tubes (see for example Morrow 1976). However, the drainage 

of wetting liquids from bundles of capillary tubes has been successfully used to model 

drainage from real porous solids (see for example Washburn 1921, Purcell 1949). 

However, the model has proved incapable of successfully accounting for imbibition 

curves. 

The simple capillary tube model is inadequate in at least three ways as a physical 

description of porous media (Larson 1981) 

i) The form "cos a " does not adequately describe the wettability behaviour 

of real porous media. 

ii) The model completely ignores the irregular geometry of real porous 

matrices. 

iii) The model does not account for the branchiness of the actual pore space. 

Despite the inadequacy of contact angles to fully describe capillary pressure 

hysteresis in porous materials, there is little doubt that wettability can be a major factor 

(Anderson 1987a). As described in section 2.7.6 the wettability which one fluid of a 

fluid pair displays towards a flat solid surface is difficult to quantify in tenns of an 

unambiguous measurement of contact angle. The direct measurement of contact angle 

within a porous material has not yet been achieved. The analysis of contact angle 

phenomena in porous media is very complex and little experimental data exists. 

Morrow, who's work on contact angle hysteresis on the rough surfaces of 

non-porous media (1974) was described previously, has however conducted extensive 

studies on contact angle phenomena in six sintered teflon porous media (1976). Air and 

the pure organic fluids employed in the earlier study were used to vary the wettability 

whilst the geometry was fixed. The use of PTFE media ensured that surfaces were 

chemically inert, homogeneous and of uniform wettability. 

Among Morrow's findings were that drainage capillary pressure curves are almost 

independent of contact angle fora < 50° whilst imbibition curves showed no wettability 

effects for a < 20° (these results are supported by experiments on oil field cores: 

Anderson 1987a). He also found strong evidence that the flat surface contact angles for 

receding menisci 9, , and for advancing menisci a. , are those angles operative during 

capillary invasion of porous media of homogeneous wettability, but that the situation is 

complicated by roughness and pore geometry. 

On a smooth surface the contact angle is fixed, but on the sharp edges found in 

porous media this condition is relaxed and there are a wide range of possible contact 

angles (Good 1979). Morrow (1970) postulates that most of the three phase contact line 
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will be located at the sharp edges as at these edges the contact angle can vary without 

moving the position of the contact line. Thus pore geometry will influence the three 
phase line and can change the apparent contact angle. /:;0 

Although porous systems cannot be classified accordingMheir operative contact 

angles they can be classified by their imbibition behaviour as wetted, intermediate or 

non-wetted (Anderson 1987a). Porous media need not exhibit uniform wettability over 

their entire internal surface. For example, surface heterogeneity within porous media is 

almost the norm for oil bearing rocks and is cenainly responsible for the observed 

instances in which an oil field core imbibes both oil and water (Anderson 1987a). 

Other, less regular, one dimensional models have been proposed for porosimetry 

and drainage-imbibition and can partially account for the irregular geometry of real 

porous materials. For example, lenkins & Rao (1977) used an elliptical tube model for 

mercury porosimetry in which the curvature of a meniscus was found from the hydraulic 

radius of the tube. Different sized capillary tubes in series and cylindrical tubes with 

constrictions (Svata 1971) have also been employed as models, but again in conjunction 

with the Washburn equation. 

A consequence of the normally irregular geometry of porous materials is that some 

wetting liquid is retained after drainage: the irreducible wetting phase saturation. In 

unconsolidated media most of this liquid is held as pendular rings around particulate 

contacts and as liquid wedges in consolidated media. No non-angular one-dimensional 

model can account for this phenomena as each model pore empties completely on 

drainage. Mason & Morrow (1989) have noted some success in this area by using a 

triangular pore model combined with an exact MS-P analysis for the interfacial 

configuration. The model shows a distinct threshold, a significant hysteresis between 

drainage and imbibition, and an irreducible wetting phase saturation. Angular models 

of this type also have the advantage that under partially wetting conditions the 

dependence of the MS-P curvature on contact angle is not given by the simplistic cos e 
factor, but depends upon the particular geometry. 

Despite the proven failings of both the capillary tube model and/or contact angle 

hysteresis to account for capillary pressure (hydrostatic) hysteresis both still find 

widespread application. Its simplicity is attractive, and few of the more complex models 

provide quantitative results significantly closer to those observed in practice. 

3.5.2 Independent behaviour and zero dimensional models 

3.5.2.1 The ink bottle effect 

Contact angle hysteresis, though imponant, cannot entirely account for capillary 

pressure hysteresis. A fluid pair for which the intrinsic contact angle, e, , is zero has no 

rough surface contact angle hysteresis yet considerable capillary pressure hysteresis is 
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still seen (Morrow 1976). At least part of this remaining hysteresis is attributable to what 

has become known as the ink bottle effect (see for example, Haines 1930 and Melrose 

1975). 

As a meniscus or two-fluid interface passes through the converging-diverging 

geometry that comprises an ink bottle pore, it is subjected to local expansions and 

contractions as the cross-section changes during motion. Consequently the meniscus is 

compelled to adopt instantaneous shapes which represent considerable departures from 

equilibrium. The meniscus passes through such shapes rapidly but continuously, and 

performs "Haines jumps" (so called after their discoverer, Haines 1927). An alternative 

designation of rheon has been suggested (Morrow 1970, Melrose & Brandner 1974). 

The accompanying energy dissipation is a source of capillary hysteresis. These jumps 

are manifested by pressure fluctuations during drainage or imbibition. 

DRAINAGE IMBIBITION 

p : 2 ... ___ --,.trb r2 

Figure 3.13 - Hysteresis in capillary rise due 10 pore geomelry illustrating the ink bottle effect 

Consider a variable radius capillary tube with a circular cross-section as shown in 

Figure 3.13. To drain completely wetting fluid from the tube requires drawing the 

meniscus through small cross-sections. Thus the drainage capillary pressure is given by . 

P <iT = 2crlr1 (3.15) 

where r1 is the radius of the smallest cross-section. The rheons correspond to a process 

in which the wetting phase saturation is decreasing and are called xerons. To imbibe, on 

the other hand, requires that the meniscus be drawn back through the larger cross-sections 

so that 

(3.16) 

where r2 is the radius of the largest cross-section. Here, the increasing wetting phase 

saturation classifies the rheons as hydrons. Since pores in real porous media are certainly 

of variable cross-section, ink bottle hysteresis is to be expected. 
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The pressure fluctuations caused by Haines jumps can be seen easily with 

converging-diverging capillaries and with packings of spheres (Morrow 1970). In media 

having very fine pores or particles these pressure fluctuations are generally too small to 

be observed, but ink bottle hysteresis will be present. 

If an ink bottle pore is stacate (dead-end) then liquids may become entrapped. This 

phenomenon is particularly apparent with non wetting liquids such as mercury, used in 

porosimetry experiments (Adarnson 1976), and oil ganglia in displacement studies 

(Anderson 1986b). Consideration of entrapment was a factor in the choice of mercury 

intrusion, as opposed to extrusion, for pore size distribution determination. 

The ink bottle effect illustrates a mechanism of capillary pressure hysteresis, but 

converging-diverging models with only a one dimensional transpon direction are still 

limited in accounting even qualitatively for hysteresis. 

3.5.2.2 The Independent Domain Theory 

Discussions of hysteresis indicate that informa~ion about the pore structure is 

contained not only in both the ascending and descending branches of the hysteresis loop, 

but also in the families of adsorption and desorption (or drainage and imbibition) 

scanning curves within the loop. 

Hysteresis can be regarded as representing the macroscopic behaviour of a porous 

medium, whilst it is reasonable to assume that the mechanisms responsible for hysteresis 

must, like Haines jumps, occur at a microscopic level. Everett and co-workers (see Everett 

1958) proposed such a mechanism where the net behaviour of the whole medium is 

governed by the average behaviour of a set of micro-systems or domains. 

The independent domain theory can be thought of as an extension of the ink bottle 

. effect. It regards the difference between the pressures at which ink bottle pores fill and 

empty as the prime cause of hysteresis. The interconnected void space within a medium 

are regarded as being sub-divided into a series of voids or cavities which are connected 

together via smaller openings usually called windows. If the cavities and windows vary 

in size, then for a small change in pressure only a small fraction of cavities will empty 

or fill. 

Everett's domains consist of those elements of the medium that fill at a particular 

pressure, Ph and empty at another panicular pressure, P2, independently of other 

elements. The associated volume change, V, is the third characteristic variable. A plot 

of the function V(P',P2) produces a surface in three dimensions from which it is possible, 

in theory, to calculate a family of adsorption scanning curves from a family of desorption 

curves and vice versa. 



65 

The independent domain model accounts qualitatively for a wide range of 

properties of systems exhibiting hysteresis. However it does not always give a 

satisfactory quantitative representation. The model has been verified in a number of 

systems including the wetting-dewetting of rocks (Lai et al. 1981) and in soils 

(poulavassilis 1962), but it breaks down completely in others (see for example Topp & 

Miller 1966, Topp 1969, van Brackel & Heertjes 1978). 

Morrow (1970) attributes the weakness of the independent domain theory to two 

fundamental causes: 

i) The assignment of draining and filling pressures to a given region can be 

unrealistic as displacement pressures are alsodeterrnined by phase continuity 

and accessibility, so called dependent behaviour. 

ii) Pore space cannot be divided into volumetric zones which show one to 

one correspondence with respect to drainage and imbibition behaviour. 

3.5.3 Dependent behaviour and two and three dimensional models 

Problems in the independent domain theory centre on whether Evereu' s assumption 

that the domains are independent is justified. Independent behaviour is relatively obvious 

for the adsorption of a gas in porous media. The gas is able to penetrate into every 

connected cavity independently of the behaviour in neighbouring pores. However, many 

other processes exhibit dependent behaviour, such as network and pore blocking effects. 

In the desaturation of capillary condensed gases and drainage processes pore blocking 

effects, or neighbouring pore effects, can be important This effect is illustrated in Figure 

3.14, where a pore cannot empty until at least one of its near neighbours has emptied, 

indicating dependent or co-operative behaviour. 

Figure 3.14· Illustration of the "pore block!"g e~ect". Pore A wiU emp~ when a m~iscus ~ pass 
through throat constriction B. The drainage IS thus nO! solely "determm~ by the Immediate 

characteristics of pore A. but depends on liS neighbour . 
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That pore blocking may account for the inaccuracies within the independent domain 

theory was recognized quite early at the Colston symposium by Barker (1958) and by 

Everett himself (1958). Since this time methods have been developed that account for 

pore blocking effects and liquid entrapment with the use of randomly interconnected 

models of the pore space. 

Neighbouring pores may also cause distortions of pore size distributions. With the 

application of the MS-P theory in regular sphere packings Mason & Morrow (1984b) 

have shown that drainage of one pore can effect drainage of its neighbour by altering 

boundary conditions. This can result either in simultaneous drainage of both pores or. 

if the neighbouring pore remains filled. its drainage curvature may be reduced. Both 

these mechanisms will tend to cause pore sizes estimated from capillary pressure data 
to be narrower than that given by the geometrical structure of the packing. 

Diametrically opposed to the independent domain theory is the idea that the whole 

of hysteresis can be explained by network effects. The implication is that each cavity 

within the pore structure has at least one window to it with the same radius of the cavity 

so that the filling and emptying of a single pore is reversible (Everett 1988). This has 

been demonstrated for a random sphere packing by Mason (1971). 

Models made up of contacting spheres have several useful propenies; including 

network effects (co-operative behaviour) and ink bottle hysteresis. The use of packed 

sphere models to account for hysteresis and other porous material phenomena has. like 

the capillary tube model. a long history. In 1897 a soil scientist. C.S. Slichter. published 

the first proposal for such a model. comprised of regular lattice packings of equal spheres . 

. This model is now known as the ideal soil model. Slichter was attempting to calculate 

the dependence of the saturated permeability of a soil on its particle size and porosity. 

His attempt was only partially successful and until recently most work in this area has 

employed simpler models based on cylindrical tubes. 

In the 1920's the ideal soil model was first applied to capillary pressure hysteresis 

by way of a long running controversy over points of mathematical detail between W.B. 

Haines (1925.1927.1928.1930) and R.A. Fisher (1926. 1928). Haines had the last word, 

but boths' points were proven lacking in the end! Some years later packed sphere inode Is 

were applied to hysteresis in capillary condensation (Higuti & Utsugi 1952. Carman 

1953) and mercury porosimetry (Kruyer 1958. Mayer & Stowe 1965. 1966). 

Development of the regular and random model continue to the present day in all three 
areas (see Haynes's 1975 review for details and for more recent developments Unger et 

al. 1988). , 

Sphere packed models have yet to yield much in the way of quantitative 

explanations of hysteresis in real media. They suffer from several drawbacks: there are 

no pore blocking effects in the regular model and also very little experimental data. 

whilst the theoty for the irregular model remains thin. but the experiments numerous. 
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In common with other geometrically non-simple models it is very difficult to determine 

interfacial configurations of menisci. This has proved a major drawback to the 

development of packed sphere models (Haynes 1975). 

Recent thinking on hydrostatic hysteresis in porous materials concludes that it 

seems more likely that the hysteresis mechanism is most porous media will be a 

combination of both network and domain behaviour. Aspects of the behaviour of a fluid 

in a porous medium can be determined using a two or three dimensional network model 

and statistical "percolation theory" (see for example Chatzis & Dullien 1977, Larson & 

Morrow 1981, Larson et al. 1981). 

With the application of percolation theory, together with a model of the connectivity 

of the pore space in terms of a Bethe tree of sites (cavities) and bonds (windows), Mason 

(l988b) has shown that hysteresis depends on the distribution of both cavity and window 

sizes and on the connectivity of the network. Dependent behaviour in this model, is 

present except along the adsorption boundary curve and during the refilling of pores that 

have been emptied in a de sorption scanning curve. A detailed analysis of experimental 

data obtained for xenon sorption in porous glass suppons Mason's theory. 

3.6 SUMMARY 

The above discussion serves to broadly illuminate the study of porous materials -

a major area of application of capillarity. The complicated relationships between 

characterisation on the one hand, and the practical performance of porous media on the 

other have been considered. The imponance of modeling, both of the pore space and of 

the capillary surfaces it may contain, has been illustrated. The review concentrates on 

only one of the many processes to which models must be applied in orde~ to comprehend 

observed phenomena. That the understanding of hysteresis is incomplete and some of 

the evidence contradictory is indicative of not only the wide diversity of porous material 

types, but of the complexity of fluid/fluid behaviour in the pore space. 
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CHAPTER 4 

Interfacial configurations 

4.1 INTRODUCTION 

The shape of fluid/fluid interfaces are important in instances where the capillary 

properties of a liquid or liquids dominate. In chapter 3 many processes that occur in 

porous materials were shown to be dependant on capillary properties ofliquids contained 

in the pore space. Outside the study of porous media the configurations ofliquid interfaces 

are significant in diverse areas such as the shape and stability of liquid .drops, the 

waterproofing of fabrics, solderability of electrical wires and the design of storage tanks 

for use in space. 

Table 4.1 summarises some of the areas where interfacial configurations play a 

substantial part together with introductory references to the literature. Note that in many 

of the areas mentioned the detailed shape of the interface is not required, merely its mean 

curvature. Once the curvature is known other parameters can be obtained such as the 

volume of liquid, the surface area of the interface or the forces acting on the solid surfaces. 

The shapes of the fluid interfaces encountered in the areas highlighted in the Table 

4.1 vary from simple constant curvature surfaces - like drops in space - to highly 

complicated configurations such as those contained within many porous media. To 

theoretically predict the shape of any fluid interface requires the solution of the Laplace 

equation (or the Kelvin equation for adsorption phenomena). 

In section 2.4.3 some solutions of the Laplace equation were given for menisci in 

cylindrical tubes, for both constant curvature and gravity distorted menisci, in the context 

of capillary rise. The approximate nature of some of the equations (for example the 

Rayleigh equations; 2.49 and 2.51) for these moderately simple systems is indicative of 

the difficulties encountered when predicting the shapes of more complicated menisci. It 

is in order to avoid these difficulties that such gross approximations are employed in 

some'pore space models (section 3.4). 

Since its inception in 1805 there have been many attempts to solve the Laplace 

equation to yield the exact shapes of liquid interfaces when their configuration is not 

straightforward. The majority of this work has involved the behaviour of drops and 

bubbles where an axis of rotational symmetry greatly simplifies the problem. Only 

recently have techniques been developed that, in principal, enable tlie computation of 

the shapes offluid bodies that are neitherrotationally or translationally symmetric. Much 
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Table 4.1 Areas where the interfacial configurations of fluid interfaces have an imponant role. Some 
specific applications are shown togrther with references containing details. 

Subject 

MEASUREMENT OF LIQUID PROPERTIES 

Interfacial tension 
Contact angle 

on fibres 
Solderability 

EQUILIBRIUM & STABILITY OF BUBBLES & DROPS 

Retention of pesticide sprays on leaves 
Condensation of drops in a condenser 

POROUS MATERIALS 

Enhanced oil recovery 
Blob mobilisation 
Connate water distribution 
Threshold pressure 
Behaviour of foams 

Fluid flow 
Two phase laminar flow 

Characterisation 
Porosimetry 
Adsorption·desorption 
Drainage·imbibition 

Wetting and Capillary rise 
Sap rise in uees 
Wetting & wicking in paper & textiles 

Soil studies and hydrology 
Determination of soil saturation 
Deformation of moist soils 

References 

Jaycock & Parfiu '87 
Neumann & Good '79 
CarroU '76, Herb et al. '83 
Schumacher et al. '45, Shipley '75 

Boucher '80 Michael & Williams '81 

Furmidge '62 
Graham & Griffith '73 

CHAPTER 3 

Law '80 
Mason & Yadav '83 
Morrow '7\ 
Thomas et al. '68 
Mast '72, Ransohoff et al. '87 

Greenkom '83 
Legait '83 

see 
chapter 3 

van Brackel '75 
Pickard '81 
Princen '69b, Schwanz '69 

Emmerson et al. '78 
Haines '25, Fisher '26 
Haines '25, '27 Fisher '26 

Adhesion of dust & powder to surfaces Zimon '69 
Dispersion of pigments & wetting of powders Carman '53 
Dryin Keey '72 
Film ~rmation from latices Sheetz '65, Mason '73 
Heterogeneous catalysis Youngquist '70 
Liquid phase sintering of finely divided metals and polymers Heady & Cahn '70 
Mechanical dewatering of powders and sluge Fricke et al. '73 
Porous electrodes Karan & Grens '71 
Rising damp Mason '74 
Tensile strength of moist powders Clark & Mason '67 Mason '72 
Waterproofing of fabrics Adam '58 

MISCELLANEOUS 

Coating processes on wires and fIlaments 
Crystal growth from the melt 
Detergency 
Floation 
Proposed Spacelab experiments 
Storage tank design for use in space 

CarroU '84 
Tatarchenko 'n 
Jaycock & Parfiu '87 
Kitchener 'n 
ESA '76 
Petrash & Otto '64 
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of the complexity of the various analyses arises from considering the interface to be 

distorted by gravity, to be in converging-diverging geometry or to be in 

non-axisymmetric tubes. 

For fully three dimensional interfaces the Laplace equation must be solved in the 

form of a non-linear, partial differential equation for either specific or free boundary 

conditions. To date only a small number of successful studies have been published. These 

depend heavily on the choice of specific boundary conditions: the solid geometry, the 

location of the three phase line and the solid/fluid contact angle. The methods employed 

are too time consuming to be employed on a regular basis and it is for this reason that 

techniques giving quick, reliable approximations of interfacial configurations still find 

widespread applications. 

Over the following pages, common solution methods for the shapes of capillary 

surfaces are discussed in terms of the geometry of the interface and the solid that bounds 

it. The limitations of the methods are highlighted. There appear to be no texts that cover 

this area adequately, but much of the information presented here is discussed in reviews 

by Boucher (1980) and Michael & Williams (1981) (axisymmetric surfaces) where 

details of the solution methods can be found. Brown (1979) gives a detailed analysis of 

finite element methods (FEMs) used for some non-axisymmetric surfaces. 

4.2 CLASSIFICATION OF INTERFACIAL CONFIGURATIONS 

Michael & Williams (1981) classify (axisymmetric) capillary surfaces according 

to the nature of the force field governing the equilibrium: 

i) Menisci supporting a constant or zero pressure difference as, for example, 

with soap bubbles and interfaces between neutrally buoyant fluids. 

ii) Interfaces between two fluids of different density in an external 

gravitational field, characteristic of drops or bubbles formed in immiscible 

fluids of different densities under ordinary terrestrial conditions. 

jjj) Equilibrium studies describing menisci formed at the surface of rotating 

bodies of fluid. 

ivY Equilibrium of the meniscus under the action of electrostatic fields in 

which the electrical stresses enter into the force balance at the meniscus 

surface. 

For the purposes of this study only the first two classes are considered., but in addition, 

the shape of the solid geometry bounding the meniscus is important as this determines 
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the nature of the problem - solution with free or fixed boundary conditions. Table 4.2 

shows capillary surfaces classified in this way with indications of the degree of difficulty 

encountered when solving the Laplace equation. 

The exact equations governing an interfacial configuration are definable, but can 

only be solved analytically for a few simple cases. Usually solution is effected using 

non-exact numerical integration techniques. The equations may require simplification, 

particularly with the more complicated shapes. The near-exact solutions referred to here 

are distinguished from the approximate configurations discussed in chapter 3 by the 

much reduced level of approximation. 

4.3 REVIEW OF PAST SOLUTIONS 

4.3.1 Axisymmetric interfaces 

Classes 1 and 2 (Table 4.2) are comprehensively covered by the reviews and the 

following notes merely serve to illuminate the main solution methods and shapes covered. 

4.3.1.1 Surfaces bound by uniform geometry 

The simplest interfacial configurations are contained in this class - the classic 

example is the meniscus in a cylindrical capillary tube. Solution is moderately simple 

owing to the axis of symmetry and the uniform geometry. 

aJ Gravity free interfaces 

Boucher (1980) gives the five basic meridians from which undistoned 

axisymmetric menisci take their shape. These capillary surfaces have constant mean 
curvature and are the cylinder, sphere, catenoid, nodoid and unduloid. 

A meniscus bounded by a cylindrical tube is fully described by a single radius of 

curvature and is a sphere section. The Laplace equation may be written 

l:!.P = 2alr (2.24) 

Fluidlfluid interfaces meeting a plane wall are also described by a single radius of 

curvature, that of a cylinder, the second principal radius of curvature beinginfmite, hence 

l:!.P = aIr (4.1) 

The WiIhemy plate method of interfacial tension and contact angle measurement makes 

use of this propeny. 

The remaining meridians are obtaine4 by roIling an ellipse or hyperbola along the 

axis of symmetry to solve a non-linear differential form of the Laplace equation where 

the mean curvature J, is given by 



Table 4.2 Classification of interfacial configurations by rolational symmetry, the presence 
of an extemal force field, and shape of the solid geometry across the d!ree phase line: degree 
of difficulty and common method(s) of solution are shown. 

Shape of Force Solid geometry bounding meniscus 

meniscus field Uniform Corn'erging-diverging 
(fixed boundary problems) (free boundary problems) 

1 (a) 2 (a) 
Simple. Moderately simple. 

No 
Analytical solution. Some 

Axisymmetrlc analytical solutions. 

surface 1 (b) 2 (b) 
Intermediate. Moderately complicated. 

Yes 
Numerical solutions. Numerical or approximate. 

solution 

3 (a) 4 
Moderately simple. Very complicated. 

No 
MS-P tbeory 

Non- (this study). 

Axisymmetrlc 3 (b) 
Complicated. Few numerical 

Yes solutions - mostly 
Numerical or approximate 

solution. 
approximate. 

21 = d
2
y/dx

2 
+ dy/dx 

{1+(dx/dy)~312 x{I+(dx/dy)~'12 
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(4.2) 

in cartesian coordinates. Equation 4.2 solves analytically foreven quite complex interface 

shapes such as drops on cylindrical elements (Carroll 1976), but involves elliptical 

integrals of the fIrst and second kind. 

b) Gravity distorted interfaces 

For a capillary surface in a gravitational fIeld it is not possible to solve the Laplace 

equation analytically regardless of the geometry. The mean surface curvature now 

depends on the vertical position, z, but the interface has minil1Ull7l surface energy. 

Interfacial confIgurations are represented by rotated sections of distorted nodoid 

profIles - sessile drops and captive bubbles, distorted unduloid profIles - pendant drops 

and emergent bubbles, catenoid shapes - holms, and liquid bridges between solids - light 

and heavy bridges. To obtain the exact interface shape requires solution of eq. 4.2, but 

with an added term: 



where 

Bz+ 2IoL = 

B = gL2p/a - the Bond number 

L = some characteristic length of the system 

lo = J at z =0 
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(4.3) 

This equation can usually be solved by employing a numerical integration method such 

as that of Runge-Kutta-Merson or Adams-Bashforth-Moulton. Bakker (1928) reviewed 

early attempts at solution. The Bashforth and Adams tables (section 2.4.3) were obtained 

in this way. With the advent of powerful computers their tables have been updated and 

considerably extended: Paddy (1971) has made available a 400 page book of them and 

Boucher et al. (1987) a computer program. Huh & Scriven (1969) cover some surfaces 

that do not cross the axis of symmetry, called unbounded menisci (such as the 

rod-in-a-free-surface system). 

In recent years many attempts have been made to compute the profiles of menisci 

not covered by the existing tables, see for example Pitts (1974), Michael & Williams 

(1'976), Hartland & Hartley (1976), Boucher (1978) and Boucher & Evans (1980) (parts 

iv and xii of a series of solutions for various shapes). Sometimes boundary conditions 

must be restricted in order that the mathematics are tractable. 

Another approach, that also appears to hold promise for systems lacking simple 

symmetry (see sections 4.3.3 and 4.3.4) is thatofOrr et af. (1975a). They have presented 

. a solution obtained by a finite element method (FEM) for the case of a 

rod-in-a-free-surface that shows good agreement with that of Huh & Scriven. 

43.1.2 Surfaces bound by converging-diverging geometry 

Solving for the shape of capillary surfaces in converging-diverging geometry (such 

as the space between spheres) requires the solution of equation 4.2 or 4.3 with a free 
boundary: the location of the three phase line not now known. This added difficulty has 
restricted the systems studied to those involving simple geometric shapes like spheres 

and cones. 

a) Gravity free interfaces. 
Each of the five constant curvature meridians have been applied to the problem of 

pendular rings between contacting spheres (or the half problem of a sphere and a plate). 

Oark, Haynes & Mason (1968) approximated the sphere-on-plate system by assuming 

that the liquid bridge configuration to be a cylindrical toroid instead of the actual nodoill 

Mason & Clark (1965) had earlier given an exact solution for zero force fluid bridges 

between two unequal spheres (that formed with two immiscible liquids of equal density). 

In this case the bridge profile is an arc of a circle and the surface part of a sphere. 
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Melrose (1966) and ErIe et al. (1971) gave some exact analytical solutions for 

nodoid and unduloid bridges between equal spheres, but the problem was not covered 

comprehensively until 1975. Orretal. (1975b) gave analytic forms for constant curvature 

meridians of unduloids, catenoids and nodoids for all possible types of pendular rings 

between a sphere and a plate. By allowing for different contaCt angles at the sphere and 

plate Orr et al.'s analyses can also be applied to the two sphere system. 

b) Gravity distorted interfaces 

The shapes of capillary surfaces in this class can be obtained with similar methods 

to those of class 1 (b), but the equations have an extra degree of freedom that often forces 

simplifying assumptions to be made. Boucher and co-workers have applied 

phenomenological, thermodynamic and variational approaches, together with numerical 

computation to systems involving spheres (Boucher 1978, Boucher & Kent 1977a, 1978 

see also Hotta et al. 1974) and cones (Boucher & Kent 1977b, Boucher & lones 1982). 

Benjamin & Cocker (1984) have presented solutions for free boundary problems arising 

from liquid drops suspended by soap films. 

4.3.2 Non-axisymmetric interfaces 

When the geometry of a fluid/fluid interface and/or its fluid/solid boundary is not 

definable in simple mathematical terms (i.e. one paranneter) the exact solution of the 

partial differential form of Laplace equation is, at best, difficult and, depending on the 

complexity of the geometry, can be impossible. To date very few successful studies 

predicting the shapes of non-axisymmetric interfaces have been published. Potential 

applications of these classes are however abundant, particularly within the field of porous 

materials'. The literature that is available has not been well reviewed although Brown 

(1979) and Concus & Finn (1974) discuss general problems relating to gravity distoned 

capillary surfaces in complex geometries. 

4.3.2.1 Surfaces bound by uniform geometry 

This class comprises any fluid/fluid interface that does not possess a rotational axis 

of symmetry, but that is bound by uniform non-axisymmetric geometry. Simple examples 

are a meniscus in a square tube or a surface between two spaced cylinders. 

• The likelihood of a method being developed for the prediction of interface shapes in a porous material 
of non-trivial internal geometry is remote. The location of the three pbao>e line is unknown a priori and 
the contact angle boundary condition is also free as the interface is likely to form at solid edges where the 
contact angle.on a flat surface has no meaning (section 3.5.1). However the shapes of menisci in these 
classes could/of considerable aid in simple and model media. 

"bQ. . 
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a) Gravity free interfaces 
For any fluid interface where gravitational effects are negligible and the solid 

geometry non-converging-diverging a moderately simple, but non-trivial, method 

attributable to Mayer and Stowe (1965) and Princen (1969a) can be used. It is known 
as the MS-P method (after Mason & Morrow 1984a). It is exact for interfaces in this 

class, solves analytically for some simpler cases and by straightforward numerical 

iteration (not integration) in any system where the geometry can be defined. The 

experiments perfonned as part of this study examine the method, the basis of which wiU 
be discussed in detail later (Chapter 6) 

The MS-P method can be applied to a wide variety of tube shapes, including 

configurations in which the cross-section does not define a closed region. It yields the 
exact shapes of the unbounded cylindrical menisci that fonn in wedge like corners or 

between spaced unifonn elements and the mean curvature of other undistorted surface 

configurations. No other solution method has been employed for surfaces in this class 
when the boundary conditions give rise to unbounded menisci, called wedging systems. 

Exact curvatures may be found with the hydraulic radius method (section 3.4.1) if the 
system is non-wedging. Tables 4.IJ..and 4.3 detail all the systems for which the shaP,es 

of interfaces have been calculated with the method. 

b) Gravity distorted surfaces 
To predict the shape of a non-axisymmetric, gravity distorted meniscus requires 

the non-linear, second order, partial differential form of the Laplace equation to be solved 

in fuUy three dimensions. If in cartesian coordinates the elevation of the surface is 
z = z(x,y) the mean curvature, J, is given by 

2! = (1 + z;)z= - 2z.z,z..,. + (I + z;)Zyy _ -V, N 

(I + z; + z;)3n 
(4.4) 

where the unit vector V:; id/OX + j%y 
and N = (k - iz. - jz,)/(I + z; + Z;)'12 
Thus the form of the Laplace equation that must be solved is 

Bz + 2!.L = -V'N (4.5) 

Hartland et al. (1982) avoided the problem posed by this equation by only 

considering slight deviations from asymmetry and obtained near-exact solutions for a 
cylindrical rod in a cylindrical tube. FuU solutions in this class are few in number and 

then only for carefuUy selected configurations and boundary conditions. Most of these 
are attributable to a single "school" of authors. 



Table 4.3 Closed interfacial configurations whose behaviour has been predicted by the MS-P 
melllod. All references shown contain the equations in solved form and all solutions are for 
geomeuy of uniform weuability. 

Reference(s) Solid geometry Contact Geometric variables 
angle 

PrillCen '69b Equilateral triangular Zero 
tube 

Singal & Somenon '70 Equilateral triangular Variable 
Ransohoff et al. '87 tube 

Mason & Morrow '89 Triangular tubes Zero Tube shape factor 
(area/perimeter'j 

Princen'69b Square tube Zero 

Lenormand '81 Square tube Variable 
Legait & Jacquin '82 
Legait '83 

Lenormand et al. '83 Rectangular tubes Zero Tube aspect ratio 
(depth/widlll) 

Mason & Morrow '84a Kite shaped tube Zero 

Mason & Morrow '84a Polygon tubes Variable No. of tube walls 

Mason & Morrow '84a Rod in a right-angled Variable 
corner 

Mason & Morrow '84a Two equal rods and Zero 
a plate 

Mason & Morrow '83 Two equal rods and Variable 
a plate 

Mason et al. '88 Two unequal rods and 
a plate 

Zero Rod radius ratio 

Mayer & Stowe '65 Three equal rods Variable 

Mason & Morrow '86 Four equal rods Zero Cen angle 

Mayer & Stowe '65 Four equal rods Variable Cen angle 
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The few early studies were restricted to quite symmetrical configurations. Petrov 
& Chemous'ko (1966) used a numerical method of "local variation" to yield the shape 
of a capillary surface in a "rectangular parallelepiped". Concus & Finn (1969, 1970), 

mathematicians, were interested in the basic propenies of the Laplace equation, they 

considered the shape of an open capillary surface in a wedge with varying corner and 

contact angles. They showed that at a corner or vertex the meniscus elevation is 

unbounded if the liquid surface cannot meet the contact angle boundary condition on 
the two solid surfaces that intersect there - a property utilised by the MS-P method. 

Most of the remaining solutions in this class stem from the work of Orr and 

co-workers (see Orr et al. 1975a) who have successfully applied the Galerkin finite 

element method to such problems. This method of numerical integration has proved more 

suitable than finite difference techniques. However the mathematics involved is 

complicated and long durations of computer time are required for each solution. Broadly, 

the surface is 



Table 4.4 Open interfacial configurations whose behaviour has been predicted by the MS·P 
method. All references shown contain the equations in solved fonn and all solutions are for 
geometry of unifonn wenability. 

Reference(s) Solid geometry Contact Geometric variables 
angle 

Princen '70b Wedge Variable Angle at apex 

Princen '69a One rod away from a Zero Rod·plate spacing 
Mason & Morrow '87 plale 

Princen '69a Two equal rods Variable Rod-rod spacing 

Mason & Morrow '87 Two equal rods and a Zero Unequal rod-plate 
plale spacings 

Mason & Morrow '84b Three equal rods Zero Unequal rod·rod 
spacings 

Princen '69b, '70 Three equal rods in Variable Rod-rod spacing 
an equilaleraI array 

Princen '69b Three equal rods in an Variable Rod-rod spacing 
infinite equilaleraI 
array 

Dodds'78 Three unequal rods Zero Unequal rod·rod 
spacings 

Princen '69b, '7Oa Four equal rods in Variable Rod·Rod spacing 
an square array 

Princen '69b Four equal rods in an Variable Rod-rod spacing 
infinite square array 
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approximated by a set of small polygonal elements or subdomains (triangular and 

rectangular systems have been used). Inside each of the elements the solution is obtained 

by interpolating linearly between distinct values of the solution at nodes (corners) of the 

polygon. The solution moves stepwise from element to element. Relaxation techniques 

may also be required. 

The FEM solutions do not give the mean curvature of the surface as their derivatives 

are only "piecewise continuous". The mean curvature may, however be estimated from 

the elevation and the Laplace equation itself. Difficulties arise with the FEM and 

unbounded menisci as the domains become of infmite extent. This problem has been 

overcome for rods-in-a-surface systems although no solution has been put forward for 

unbounded surfaces that can arise in the wedge like corners of angular tubes. 

The following Class 3 (b) interfacial configurations have been found using this 

FEM: cylinders in an infmite square array (Orr et al. 1975a), and square pins in an infinite 

array (Orr 1976, Orr, Scriven and Chu 1977) at given spacings and for unbounded menisci 

around a single elliptical cylinder (Orr, Brown & Scriven 1977) and around two spaced 

circular cylinders. All the above sol utions allow variation in contact angle. 
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Larkin (1967) attempted a solution for the seemingly simple case of a drop on an 

inclined plate using a finite difference method. His success was limited and he avoided 

the elliptic nature of the problem by sacrificing boundary conditions. However the 

problem aroused the interest of Orr and co-workers. Brown, Orr & Scriven (1980) 

published a full solution assuming the three phase line was of a known circular shape, 

this analysis was laterconfmned in Japan (Tuskada et al. 1982). Lawal & Brown (1982a, 

b) extended the analysis to include drops whose line of contact has'an oval shape. Even 

with this modification it has been shown that as a model of real drops the assumptions 

over the three phase line make applications very limited (Nguyen et al. 1987). 

Recently Brown et al.'s analysis has been further extended by Rotenberg et al. 
(1984), who assumes that the drop is slowly sliding down the plate. Their boundary 

conditions along the line of contact are described in the form of a functional relationship 

between the contact angle and the velocity of the three phase line. They claim close 

agreement with observed drop profiles. 

4.3.2.2 Surfaces bounded by converging-diverging geometry 0 J 
Solution is now further complicated by the free solid boundary. To the bes~my 

knowledge only one publication presents successful solutions of the Laplace equation 

for capillary surfaces in this class. Orr, Brown & Scriven (1977) propose solutions for 

gravity distoned interfaces formed between an infmite square array of cones and two 

different solutions for spheres in a three dimensional regular square array. Again the 

FEM was employed, but with an additional iterative routine required to locate the three 

phase line. The solutions for the spheres represent two distinct stable meniscus 

configurations for a given pressure at the datum level, depending upon which level of 

spheres is wetted by the interface. 

Unlike the solutions they earlier obtained for simpler configurations, Orr et al. rely 

on substantial restrictions of the natural boundary conditions such as the contact angle. 

It remains to be seen whether these difficulties can be overcome and if the FEM finds 

applications elsewhere such as in detailed investigations with the ideal soil model and 

less regular porous media. 

4.4 SUMMARY 

Capillary surfaces have been classified according to their symmetry, the solid 

geometry by which they are bound and the presence of a force field. The solution of the 

Laplace equation for the interfacial configuration varies from being trivial to extremely 

complicated even though past studies concentrate on surfaces between geometrically 

simple solid objects. 
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The difficulties of solving the Laplace equation for gravity distoned surfaces or 

menisci in converging-diverging geometry accounts for the gross approximations of 

some interfacial configurations assumed in pore space models (section 3.4) and the 

relative simplicity of their solid components (section 3.3) 

The above classification and the discussion that follows it show how the MS-P 

method fits into the study of interfacial configurations and illustrates the uniqueness of 

the method in the systems to which it may be applied. 
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CHAPTERS 

Review of past applications of the MS-P method 

5.1 INTRODUCTION 

The MS·P method was first proposed over twenty years ago, by Mayer & Stowe 

(1965) and separately by Princen (1969-.a), but for much of the intervening period it has 

been sparsely employed in the literarure_ The potential applications of the MS-P theory 

are numerous, covering many of the are-.as listed earlier in Table 4.1. This has not gone 

entirely unnoticed by all researchers, widJ the work of both Mayer & Stowe and Princen 

receiving citations. indicating its prorni.<;e in several different areas of capillarity. As yet 

the method has only actually been applied in a few areas and then not extensively. Recent 

years have however seen growing utilisation of the method. 

There have been four principal areas of application; those for which the method 

was originally developed - mercury porosimetry and capillary rise - and two other related 

areas in the study of porous materials - fluidlfluiddisplacement and in attempts to explain 

hysteresis. 

In section 3.4 the Mayer & Stowe - Princen method was introduced through its 

application as an approximate model fOlr interfacial configurations in porous materials. 

Chapter 4 has introduced the type of C3pillary surface whose exact shape the method 

can predict and illustrated how the method compliments other techniques for the 

determination of interfacial configurations. Before discussion of the theory in detail (in 

chapter 6) other previous applications are reviewed. Note that the relevant literature 

concerning capillary pressure hysteresis was reviewed in section 3.5. 

5.2 MERCURY POROSIMETRY 

5.2.1 Mayer & Stowe's study . 

Mayer & Stowe (1965) presented the first correct derivation of what is here called 

the MS-P theory', but mistakenly thougbt it gave exact interfacial configurations in the 

• Two years previously Frevel & Kressley (! 963) had proposed a similar solution, but their expressioo 
of the Laplace equation (containing a cos e factor) is incorrect and their algebra mistaken. That the authors 
arrive at an identical equation to Mayer & Sto_ must be regarded as somewhat fortuitous (see Haynes 
1975). 
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converging-diverging geometry of regular sphere packings. Their analysis begins with 

a simplified form of the free energy expression for a fluid/fluid interface (eq. 2.59). Their 

relationship for the work associated with infmitesimal displacements of the surface reads 

P 'dV dA dA c = cr LV + crSL SL + (5.1) 

where P; is the breakthrough, or threshold, pressure. ~Iayer & Stowe proceed by 

assuming that at the point of instability, beyond which a mercury interface passes 

spontaneously through the pore throat, the three phase line (SL V) lies in the plane 

containing the spheres centres that define the pore constriction (see Figure 5.1). Since 

the pore walls are approximately parallel near this plane it follows that the interface is 

of approximately constant shape. Thus dV will be proportional to A, the cross-section 

of the mercury in the plane of sphere centres, and the three dA terms will be proportional 

to the lengths of the perimeters in that plane of the liquid/vapour and liquid/solid 

interfaces, PLY and PSL respectively. 

stde Yie". 

Figure 5.1 - Mayer & SlOwe model for mercury intrusion between spherical particles. 

By introducing the Young equation and making use of the fact that dASL = -dAsv 

Mayer & Stowe arrive at the expression 

P ~ = cr(PLV - PSL cos 9) 

Defining P <If = PLV-PSLcos9 gives; 

Pc 
P,ff = cr-
A 

(5.2) 

(5.3) 
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Note the similarity of equation 5.2 to the Gauss equation. Haynes (1975) comments that 

whereas the Gauss equation, relating area to interfacial curvature, l, is in differential 

form, 

ldV = dALv - dASL cos9 

the Mayer & Stowe treatment implies an integrated form 

lA = PLV-PLScos9 

(2.69) 

(5.4) 

One further unsubstantiated assumption of the Mayer & Stowe analysis is that the 

intersections of the plane of sphere centres with the liquid/vapour interfaces are portions 

of circular arcs. The implication is that the pendular rings around the sphere contacts are 

toroidal when in fact they will be nodoidal (section 4.2.1.2). 

Bell et al. (1981) note that for situations where cos 9 '" 1 (i.e. 9", 0, 180° ) there 

will be significant deviation of the three phase line from the plane of sphere centres that 

will cause the actual curvature to differ from that calculated by Mayer & Stowe. Bell et 

al. conclude that in general this difference will be small, thereby explaining experimental 

confirmation of Mayer & Stowe's results at contact angles of 1400 
• 

Mayer & Stowe proceed to show how porosimetry data can yield a particle size 

distribution with use of their results. The term P <!lA is a function of the packing angle 

of the powder bed and the mercury contact angle. They calculated this ratio for all possible 

packing angles for pack porosities ranging from 0.25 to 0.48 and contact angles from 

180° to 100°. Thus once the correct P <!lA value is chosen from the Mayer & Stowe table 

the radius of the particles defining the pores which are penetrated can be directly derived 

from the experimental intrusion pressure. 

At each intrusion pressure the mercury penetration volume is also registered. By 

expressing this volume as a percentage of the overall penetration volume measured at 

the end of the run, it is possible to derive a complete particle size distribution on a volume 

basis. Mayer & Stowe did not however conduct any experiments to verify their analysis. 

5.2.2 Further studies 

The Mayer & Stowe analysis has found uses in mercury porosimetry as an 

alternative to the Washbum model (section 3.5.1.1). Orr (1970) used mercury intrusion 

data and the analysis to obtain a particle size distribution for a powder with particle sizes 

in the range 10 to 120 Ilm . His results showed qualitative agreement with those obtained 

form a Coulter Counter. 

Savata & Zabransky (1970) compared results from the Mayer & Stowe analysis 

with size distributions measured by microscopy for five powders in the size range 1 to 

100 Ilm . Again the techniques were qualitatively in agreement However powders with 

narrow size distributions showed markedly better agreement. 
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Stanley-Wood (1979) sized steel shot using mercury intrusion and sieve analysis 

and three other powders with mercury intrusion, sedimentation and electronmicroscopy 

techniques. For the steel shot agreement was excellent, whilst intrusion results from the 

other three powders fell between those from sedimentation and microscopy. In the course 

of his investigation Stanley-Wood extended the Mayer & Stowe tables to cover the 

porosities of his powders, which were in the range 0.64 < E < 0.75 , significantly outside 

the range of porosities given by regular sphere packings. 

More recently Carli & Motta (1984) measured particle size distributions of four 

pharmaceutical powders whose particle sizes lay between 1 and 200 ~m. They noted 

good agreement between the Mayer & Stowe results and various other sizing methods. 

Smith and cD-workers (1987a, b) have applied an approximate version of the MS-P 

theory to sphere packings. They base their analysis on two approximations in order to 

simplify the MS-P calculations. They employ Mason & Morrow's (1984b) empirical 

relationship between the curvature predicted by the MS-P theory and that estimated using 

the Haines incircle approximation (derived from data for liquids exhibiting zero contact 

angle in packings of equal spheres - section 3.4.4); 

CMS _P = C""'i'C" 1.5 (3.6) 

To account for the mercury contact angle of 140° a novel empirical expression 

relating the ratio CMS_p(a = 140°) to CMS_p(a = 180°) as a truncated series in C""'''''' is 

used. Smith et al. conclude that the Mayer & Stowe analysis gives particle size 

distributions much wider than the actual values. However, considering the odd nature 

of their approximations and the lack of any direct comparison between the actual MS-P 

theory and their approximate method, their conclusions cannot be said to apply directly 

to the theory attributable to Mayer & Stowe. 

5.3 CAPILLARY RISE 

5.3.1 Princen's studies 

Princen (1969a) arrived at the same expression for the capillary pressure across a 

curved interface as did Mayer & Stowe and correctly applied his theory to interfaces 

bound by uniform geometry where, in the absence of gravitational effects, it is exact 

. However, Princen's interest was capillary rise, specifically wetting and wicking in 

textiles, where gravitational forces are involved. This led Princen to stipulate that his 

analyses were only valid for systems in which the height of rise is well in excess of the 

capillaries' characteristic dimension (i.e.hIR » 1 ). 
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Princen's formulation of the theory is based on a force balance that equates the 

weight of a liquid column above a planar surface to the surface tension forces in the 

meniscus region. Expressing the weight of the column as; 

F J = hpgALv ;: P~ALV (5.5) 

and the surface tension forces by; 

F2 = a(PLV + PSL cos 9) (5.6) 

the analysis can be seen to be equivalent to that of Mayer & Stowe. Equating 5.5 to 5.6 

yields equation 5.3: 

P = , P'ff a
A 

(5.3) 

Princen (l969a) gave results in tabular form for the meniscus between two equal 

rods separated by a distance, 2d, in terms of normalised spacing, dlR ,versus normalised 

curvature, R Ir , for contact angles between 0 and 90°. Similar tables were presented for 

a single rod spaced from a plate (with 9 = 0) (l969a), three equally spaced cylindrical 

rods (l969b) and a graphical presentation for four equal rods in a square array (with 

9 = 0) (l969b). 

The three and four rod systems give rise to two distinct capillary profiles depending 

on the spacing. Princen calculated the curvatures for each of the three different menisci 

formed. Figure 5.2 shows the configurations Princen suggested for the four rod 

arrangement. At low spacings two types of meniscus coexist, Figure 5.2b, those 

in-between each pair of rods and that held between all four rods. Princen predicted the 

spacing at which transition occurred to a single meniscus (Fig 5.2d). 
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Figure 5.2 - Princen's su~estions for the capillary rise between four rods in a square anay. 
(a) HonzolIlal cross section through four spaced rods. 

(b) Schematic capillary rise profile in a venical section through line (i) for low rod separations. 
(c) Corresponding capillary rise profile in section through line (ii). 

(d) Schematic capillary rise profile through line (i) at larger rod separations. 
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Princen proceeded to extend his results to cover multicylinder systems, arranged 

in both hexagonal and square lattices. He suggested these systems could be used as 

models of textile yarns. The Haines incircle approximation was investigated and found 

to overestimate the curvatures of the concave, clastic, menisci between the three or four 

cylinders. Howeverthis approximation could not account at all for capillary rise between 

two spaced rods where the meniscus profile is partly convex; that is where the meniscus 

is anticlastic. 

In addition to the detailed results given for open systems, Princen showed that his 

analysis can be applied to closed systems through the derivation of the relationships 

describing capillary rise in triangular and square tubes. Furthermore Princen (l970a) 

went on to consider horizontal assemblies of cylinders, now using an energy balance to 

calculate curvatures. He noted the existence of an additional stable state where the liquid 

column is "convex outward" - akin to unduloid drops that form on a single cylinder. The 

capillary forces resulting from the presence of liquid columns between cylinders were 

briefly discussed. 

Princen's calculations for capillary rise between cylinders are extensive, but 

throughout his three papers the result of only a single experiment is presented. For a rod 

of radius 6.34 mm spaced 0.2 mm from a flat plate a height of rise of 13.3 mm was found 

with a perfectly wetting liquid (l969b). This result is about 3% less than that predicted 

and was used to show that the criterion hlR »1 may be overly severe in certain cases. 

Princen noted that his analysis could be employed to measure surface tensions and 

in a further paper (l970b) discussed applications to the grooved Wilhemy plate method. 

In the course of which he determined the curvature of a meniscus in a horizontal wedge 

shaped groove as a function of its height above the planar liquid surface. 

5.3.2 Studies of Mason & co-workers 

The fact that neither Mayer & Stowe or Princen published experimental verification 

has undoubtedly contributed to the sparse use of the MS-P method in the literature. The 

method's potential has been cited in studies ranging from sap rise in plants (Pickard 

1981) to "fingering phenomena" in porous materials (Levine et al. 1977). Shortly after 

Princen's work Mason (1971) noted the potential of the analyses of both Mayer & Stowe 

and Princen as an approximation for the breakthrough curvature of menisci in sphere 

packings. However, uncertainties over the validity of the method led to the use of the 

Haines incircle approximation. 

It was not until 1983 that the first experimental validation of the method was 

published. Mason et al. (1983) calculated the curvature of the closed meniscus formed 

between two equal rods and a flat plate using Princen's analysis. Validation of the 

predicted curvatures were conducted using capillary rise and bubble movement 



86 

experiments for both perfectly wetted systems and for systems that gave reproducible 

advancing and receding contact angles. At zero contact angle the curvatures detennined 

from observed capillary rise were within 2.5% of those predicted, whilst the bubble 

movement results were within 5%. For the partially wetted system results were not so 

good, but all were within the estimated experimental error. 

The promise shown by their first investigation led to by a more detailed study 

(Mason & Morrow 1984a) in which a refined apparatus was used. Measured curvatures 

for the two equal rod and plate configuration with a perfectly wetting liquid were within 

1.5% of those predicted by the MS-P method. Similar agreement was found for a single 

rod in a right angled corner. Theoretical discussions on the conditions of pore geometry 

and contact angle which give rise to unbounded wedge-like menisci in corners were 

presented. These were illustrated by consideration of menisci in a kite shaped pore, 

polygonal tubes and pores fonned by the rod-in-a-right-angled-corner. In this way Mason 

& Morrow were able to differentiate between unifonn geometries where the curvature 

may be calculated from the hydraulic radius method - tenned non-wedging systems -

and those where the MS-P method must be employed - called wedging systems. 

The validity of the MS-P method as applied to pore throats fonned by spheres was 

studied by Mason & Morrow (1986). Pore throats fonned from four ball bearings in a 

rhomboidal array with half angles in the range 30° (closed triangular) to 45° (square 

array) were investigated. A modified capillary rise technique was used to measure the 

maximum meniscus curvature; that at which the meniscus becomes unstable and 

spontaneously passes through the pore throat. 

Experimental values of curvature were only 2 to 5% less than values calculated 

with the MS-P method for pores formed by rods in the corresponding array (with e = 0 ). 

For the closed triangular pore, discussed in section 3.4, a nonnalised curvature of 

11.08 ± 0.2 was found, about 3% less than the accepted experimental value in sphere 

packings. Mason & Morrow also found good agreement between experiments and theory 

for mixed pores comprising rods and balls. As expected the more uniform the geometry 

(i.e. the more rods) the closer was the agreement. 

Mason & Morrow (1987) proceeded to investigate pores with open cross-sections. 

An arrangement again comprising of two equal rods and a plate, but with either one or 

both rods spaced from the plate was studied. As with Princen's assemblies of cylinders, 

this system allows more than one stable state and several meniscus shapes depending 

on the arrangement of the rods. The authors also found metastable meniscus 

configurations. Agreement between observed and calculated curvatures were largely 

within experimental error, both in terms of the curvatures of specific menisci and in 

tenns of the transitions from one meniscus profile to another with change in tube shape. 
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At some spacings when both rods are separated from the plate, three distinct stable 

meniscus configurations are possible, all having different curvatures. Mason & Morrow 

reason that whilst the configuration with the lowest curvature will be the most stable, 

the other metastable states are a possible cause of capillary pressure hysteresis in porous 

media, showing a mechanism distinct from generally accepted causes (section 3.5). 

However, they also warn that the fact that a curvature can be calculated for a specific 

meniscus type does not mean that the configuration will exist. 

Further experimental validation was published by Mason, Morrow & Walsh (1988 

- see appendix A) for the closed meniscus formed in a pore of two unequal rods and a 

plate. Excellent agreement between the MS-P theory and experiments was again found 

for rod radius ratios from 1 to 7. These results are a pan of this study and are discussed 

in detail in section 8.6. 

Want of experimental verification of the MS-P method has not prevented all 

researchers from using it. Van Brackel & Heertjes (1978) applied Princen's results for 

cylinders to the problem of capillary rise in regular sphere packings. Following Mayer 

& S towe they assumed that the three phase line lies in the plane of sphere centres upon 

breakthrough. They noted some success by considering the anticlastic menisci between 

the contacting spheres (pendular rings) together with the concave, clastic menisci in the 

pore throats. 

5.4 FLUIDIFLUID DISPLACEMENT 

Fluid/fluid flow in porous media is often described in terms of macroscopic laws 

where the actual geometry of the pore space is not considered. However, when capillary 

forces are dominant with respect to other forces involving viscosity and gravity, a 

macroscopic description is usually not sufficient. In these instances it is necessary to 

model the pore space using techniques discussed in section 3.3. As with proposed 

explanations of hysteresis (section 3.5) early work in the area concentrated on the simple 

capillary tube model, but this again proved inadequate in most cases. More recently 

interest in oil recovery has stimulated research involving angular tube models: here 

interfacial configurations are best determined with the MS-P theory. An advantage of 

such tubes is that, in common with real media, their angularity allows the wetting phase 

to by-pass blobs of non-wetting phase by flowing behind the wedge like (arc) menisci 

in the corners. 

Singal & Somerton (1970) presented an entirely theoretical model for two phase 

laminarflow in porous media based on relationships derived for flow in triangular tubes. 

They use a modified version of Poiseulle's law to incorporate a capillary pressure term 
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in an expression for the mean velocity of flow. The capillary pressure is found using 

Princen's analysis together with the Laplace equation to yield the mean curvature in an 

equilateral triangular tube, giving; 

1.780(cos 9 - I) 

R. 

where R. is the hydraulic radius of the tube. 

(5.7) 

Legait & Jacquin (1982) and Legait (1983) were interested in tertiary oil recovery. 

They studied blob mobilisation by modelling two phase laminar flow in a constricted 

square capillary. The Mayer & Stowe analysis is applied to the square sectioned tubes 

under variable wetting conditions (but with 9 < 45° for which arc menisci exist). The 

curvature of the upstream and downstream fluid/fluid interfaces (with respect to the 

constriction) of the blob were determined according to the expression 

Ji = F(9)IR(x) (5.8) 

where R(x) is half the tube width at position x. F(e) Was determined with the MS-P 

theory in terms of the fraction of tube area occupied by wetting fluid. 

Equation 5.8 ignores the converging-diverging nature of the tube with the 

assumption oflocal uniformity in cross-section. This result was validated by comparison 

with experimental data given by Arriola et al. (1980), good agreement was found. Using 

the curvature function Legait was able to derive expressions for the volumetric flow 

rates of each phase and determine the conditions necessary for blob mobilisation through 

the constriction in terms of a critical capillary constant. Theoretical results compared 

well with experiments conducted in model capillaries. 

Lenormand et al. (1983) studied the mechanism of the displacement of one fluid 

by another with reference to observations of drainage, imbibition and blob mobilisation 

in etched networks. Their model comprised a two dimensional network of rectangular 

tubes. Threshold pressures, at which non-wetting fluid enters a tube, were determined 

using the MS-P theory and the Laplace equation. A wetting phase contact angle of zero 

was used giving; 

. jl 1) 
Pc = F(E)2ul~+Y (5.9) 

where E(4 -It) 
= 

2(1 +E){(1 +E)-...J(1 +E)2- E(4-lt)} 
F(E) (5.10) 

and E = xly - the aspect ratio of the tube 

Predicted threshold pressures were in good agreement with experimental data obtained 

from small networks 
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Ransohoff et al. (1987) were also concerned with oil recovery, but were interested 

in the snap-off of moving gas bubbles in various constricted non-circular capillaries. In 

oil recovery processes by foam flooding a primary mechanism of foam generation is the 

snap-off of non-wetting gas bubbles passing through constrictions in the pore space. It 

is the "curvature driven" flow of the wetting liquid along the capillary walls that controls 

the dynamics of this process. 

The MS-P theory was employed by Ransohoff et al. to calculate meniscus 

curvatures in constrictions in equilateral triangular tubes. Use was also made of Mayer 

&; Stowe's results for the breakthrough pressures in pore throats formed by three and 

four contacting spheres and Legait' s results for the square tube. Ransohoff et al. proceed 

develop a "corner flow hydrodynamic theory" which they employ to calculate the time 

to snap-off for a moving bubble in terms of a function of the capillary constant, flow 

resistance and the shape of the constriction. Experiments in model capillaries confIrmed 
their fIndings. 

5.5 SUMMARY 

The method of Mayer & Stowe and Princen has found only limited application in 

four areas of study. The sparse use of the method is, in part, accounted for by the lack 

of experimental verifIcation in the uniform geometry systems in which the method 

applies. Only recently have the fIrst steps been taken to rectify this. 

Mayer & Stowe's original analysis was intended for use as a particle sizing model 

in mercury intrusion porosimetry. The method has since been qualitatively validated by 

several studies, although the analysis has not always been applied in the manner intended 

by Mayer & Stowe. Experiments indicate that, at least at zero contact angle, the MS-P 

theory gives good estimates of breakthrough curvatures between spheres. 

Princen gave extensive analysis of capillary rise of various open and closed menisci 

in non-axisymmetric tubes using the MS-P method. He unfortunately conducted only a 

single experiment. Recent experiments of Mason and co-workers indicate that capillary 

rise of non-axisymmetric menisci in uniform tubes can, when gravity effects are small, 

be predicted accurately by the method, for the limited number of systems they have 

investigated. 

Recent applications of the MS-P method to fluid/fluid flow and capillary pressure 

hysteresis in porous materials have shown the MS-P methods ability at elucidating real 

problems in a currently important area of research and has furnished further validation 

of the method. Many of the studies mentioned above will be discussed further in later 
chapters. 
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CHAPTER 6 

Theory and analytical procedures 

6.1 INTRODUCTION 

The background material has been covered in the preceding chapters and attention 

is now focused on the Mayer & Stowe - Princen theory and its application in the present 

. study. Table 6.1 details the tube geometries that are investigated in this study. The 

wettabilities and variables covered are also shown. 

The shapes produced by liquid menisci in the non-axisymmetric tubes of complex 

configuration detailed in the table are generally complex themselves. To apply the MS-P 

theory to such systems requires that the general shape of the meniscus in the tube be 

estimated and to describe potential shapes it is necessary to have a terminology. Details 

of such a terminology are given below. 

In the past, the theoretical relationships describing the shape of fluid interfaces in 

cylindrical capillary tubes have been approached via consideration of the energy or forces 

involved or by direct derivation from the Gauss equation of capillarity. All these methods 

Table 6.1 Arrangements investigated in this study. Interfacial configurations are predicted with 
the MS·P theory and validalOry experiments conducted using the simplified comparative method 
(chapter 7). Del3ils of each arrangement can be found in the sections indicated. 

Solid geometry Capillary Wettability Variable Section 
Rise Reference 

Profile(s) 
, 

Recl3ngular ducts Closed Perfect Tube aspect ratio 9.2 

One rod away from a plate Open Perfect Rod-plate spacing 9.3 
Partial Contact angle 10.2 

One rod in a corner Closed Perfect Corner angle 9.4 

Two unequal rods and a plate Closed Perfect Rod radius ratio 9.5 

Two equal rods and a plate Closed Perfect S· 
Partial Contact angle 10.3 
Mixed Contact angle 10.3 

Three equal rods and a plate Closed Perfect S· 
Various Perfect Subtended angle 11 

Three unequal rods and a plate 
Symmetrical Various Perfect Subtended angle 11 
Non-symmetrical Various Perfect Subtended angle 11 

• Experiments using the full comparative method. 
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can also be utilised to derive the MS-P equation. 

Except in a few simple cases, application of the MS-P theory to non-axisymmetric 

tubes results in a set of equations that do not possess a unique solution, nor may they be 

resolved analytically. Techniques for the application of the theory and for the solution 

of the resulting equations are illustrated with examples in the latter sections of the chapter. 

6.2 TERMINOLOGY 

The calculation of curvature by the MS-P method is relatively straightforward, but 

the problem is not trivial. Application of the theory requires that the basic arrangement. 

of the liquid in a pore is known or at least estimated prior to solution. To aid discussion 

of possible arrangements it is helpful to have a terminology that covers the main features 

of meniscus configurations in uniform geometry capillaries. 

Figure 6.1 shows the development of a terminology, as published by Mason & 

Morrow (1987), and Table 6.2 details the nomenclature. For menisci in the uniform 

tubes of Figure 6.1, the capillary pressure, and hence the interfacial curvature (equation 

2.30), is a linear function of the height of rise. 

Figure 6.1a shows the meniscus formed by a perfectly wetting liquid in a vertical 

cylindrical capillary. The meniscus spanning the tubular space is a simple example of a 

main terminal meniscus (MTM). In the vicinity of the MTM there is a rapid change in 

liquid content with height. The region directly above the MTM is filled with the 

non-wetting phase (gas) and is called thedryside (0) withrespectto the MTM. Similarly, 

the region filled by the wetting phase (liquid) is referred to as the wetside (W). The 

system is termed non-wedging as the MTM is completely bounded by the solid perimeter 

of the tube. Under constant curvature conditions (when there is no distortion of the 

meniscus by external forces such as gravity) the MTM will be a perfect hemisphere. 

The situation in the kite shaped capillary of Figure 6.1 b differs in that the MTM 

now merges with a wedge of liquid caught in the corner formed because of the contacting 

straight sides. In contrast to the MTM, the liquid content in the wedge only changes 

slightly with height. The liquid in the wedge is bounded in the corner by an arc meniscus 

(AM). The MTM is now only partially bounded by the solid perimeter making this a 

wedging system. 

In wedging systems the terms wetside (yV) and dryside (0) are used in the general 

sense to describe the higher and lower liquid content sides of the MTM. When the solid 

perimeter bounds the liquid wedge as in' Figure 6.1 b the AM is referred to as a closed 

arc meniscus (CAM), and, as the CAM is on the dryside of the MTM, the full description 

of the AM is dryside closed arc meniscus (DCAM) with respect to the MTM. 
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Under constant curvature conditions the liquid content in the wedge is fixed. the 

wedge having constant volume per unit length. In a mathematical sense the wedge will 

be infinitely long. and thus the radius of curvature of the AM in the vertical direction is 

infinite. The other principal radius of curvature (Fig. 6.1 b ii) is the radius of a circular 

Table 6.2 Nomenclature for the classification of menisci held in tubes of uniform cross·section. 

A 
T 
M 
D 
W 
o 
C 
AM 
TM 
MTM 

arc 
terminal 
main (in main terminal meniscus only) 
dryside 
wetside 
open 
closed 
arc meniscus 
terminal meniscus 
main terminal meniscus 

TAM 
OAM 
CAM 
DAM 
WAM 
DOAM 
DCAM 
WOAM 
WCAM 

terminal arc meniscus 
open arc meniscus 
closed arc meniscus 
dryside arc meniscus 
wetside arc meniscus 
dryside open arc meniscus 
dryside closed arc meniscus 
wetside open arc meniscus 
wetside closed arc meniscus 

arc; the cross-section of the wedge. As curvature is everywhere constant. the curvature 

of the AM (just the reciprocal of the radius of the circular arc) must equal that of the 

MTM. and its magnitude will be governed by its interaction with the MTM. 

In a capillary rise experiment the curvature of the MTM can be determined directly 

from the height of rise. As it is affected by gravity. the curvature of the AM will also 

change in direct proportion to its height above the free liquid surface. However. in the 

vicinity of the MTM the curvatures of the AM and MTM will be approximately equal. 

so that in practice the curvature determined from capillary rise corresponds very closely 

to that of a meniscus of constant curvature. The validity of this assumption has been 

experimentally confmned for systems where the distortion of the meniscus due to gravity 

is not excessive (Mason & Morrow 1984a). 

Figure 6.lc shows an axisymmetric narrow necked dumb-bell capillary. The 

configuration taken up by the liquid profile exhibits three terminal menisci. The MTM 

spans the tubular space in the large diameter side of the dumb-bell profile. The shape is 

such that the liquid rises above the level of the MTM in the small diameter side. An 

abrupt change of liquid content with height marks the terminal meniscus (TM) of the 

small side. Above the MTM the liquid is bounded by an AM associated with the re-entrant 

solid surface and is referred to as an open arc meniscus (DAM). As the DAM is on the 

dryside of the MTM it is a dryside open arc meniscus (DOAM) with respect to the MTM. 

Above the TM there is a second DAM associated with the liquid held in the 

constriction of the dumb-bell cross-section. This liquid is bounded by the two 

back-to-back DAMs which at a particular curvature form a terminal arc meniscus (T AM) 

as shown in Fig. 6.lc. Arc menisci are dryside or wetside with respect to a particular 

TM. so with respect to the TAM the back-to-back DAMs are termed wetside open arc 

menisci (WDAMs). 
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In Figure 6.1 c the MTM and other TMs are at different heights and so of different 

curvatures. In a constant curvature system only one TM can be formed as only one 

curvature is possible. The TMs in the dumb-bell capillary coexist as gravity enables the 

system to have changing curvature. In the absence of gravity the interface is one of 

constant curvature and the volume of liquid per unit length on the dryside (or wetside) 

of a given terminal meniscus is constant. In practice, a particular TM together with its 

associated arc menisci will determine the curvature of that part of the system, and hence 

the liquid content per unit length on the dryside of the TM. 

If the constriction in the dumb- bell is widened a situation arises where the curvature 

of the TAM is less than that of the TM in the small side. It is now impossible for the 

TAM and its associated back-to-back OAMs to be formed which results in the profile 

shown in Figure 6.1d. 

In Figure 6.1e the small side of the dumb-bell profile has been removed and the 

OAM on the outer side of the neck now falls to join the free liquid surface. As the neck 

is widened the curvature (and hence height) of the T AM decreases until it merges with 

the MTM to give the profile shown in FigUre 6.1 f. 

6.3 THE MA YER & STOWE - PRINCEN THEORY 

In discussing the MS-P theory it is convenient to divide capillary systems into two 

groups according to the terminology. Non-wedging systems are those in which the 

terminal meniscus is completely bounded by the solid perimeter. The theory for these 

systems has long been known. A wedging system is any system in which one or more 

arc menisci are formed and it is for these systems that the MS-P theory is specifically 

appropriate. 

In the following sections different ways of deriving the equation for curvature 

prediction in non-wedging systems are outlined. These methods are then extended to 

cover wedging systems, yielding the MS-P equation. It must be stressed here that the 

following analyses strictly only apply to menisci of constant mean curvature that are 

bounded by uniform geometry .. 

6.3.1 Curvature calculation for non-wedging system; 

In predicting the curvature of a non-wedging meniscus in a pore of uniform 

cross-section, such as that shown in Figure 6.2, there are three possible approaches: an 

energy or force balance, utilising the Laplace and Young equations, or the direct 

application of the Gauss equation of capillarity. 
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Figure 6.2 . An example of a unifonn tube in which a meniscus is non· wedging. 

6.3.1.1 Energy balance approach 

At equilibrium a meniscus always attempts to adopt the curvature that gives the 

minimum surface energy for the particular boundary condi tions. Consider the virtual 

works performed when the meniscus in Figure 6.2 is displaced by an infinitesimal 

distance, dx, from its equilibrium position. The virtual work required to lift the meniscus 

by dx is 

(6.1) 

where the capillary pressure P, = pgh , the hydrostatic head, and A is the projected area 

of the MTM, also the cross-sectional area of the tube. In the process of displacement the 

solidlliquid interface is extended by an element, dx, resulting in the wetting of an area 

of originally non-wetted solid surface, Pdx, where P is the perimeter of the tube. This 

virtual work is given by 

dW2 = P(C1SV -asL)dx (6.2) 

The solid/vapour, C1sv , and the solidlliquid, aSL , interfacial tensions cannot be directly 

measured, but their difference is related to the liquid/vapour interfacial tension, a , and 

the contact angle, 9 , via the Young equation: 

asv aSL = acos9 

Hence dW2 = aPcos9dx 

Equating the two works of displacement, 6.1 and 6.3, yields 

P,A = aPcos9 

(2.71) 

(6.3) 

(6.4) 
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The Laplace equation relates the capillary pressure to meniscus curvature by the 

relation 

(2.30) 

where J is the reciprocal of the meniscus's radius of curvature. Combining equations 

2.30 and 6.4 gives 

J = (:)c0S8 
but the ratio perimeter to area is simply the inverse of the hydraulic radius of the capillary, 

Rh,so 

J = (C~:8) (6.5) 

This result was examined by Carman (1941). He found that for near circular tubes 

and perfectly wetting liquids (8 = 0 ) the equation fitted the experimental data of Schultze 

(l925a, b). However for other shapes the fit was not satisfactory. To quote Carman's 

explanation,this was because 

" ... where capillary walls fonn a sharp angle the edge of the meniscus shows a sharp local 

rise to a considerable height above the bouom of the meniscus." 

This was a perceptive observation. Using the current terminology. Carman noted that 

equation 6.5 is adequate only when arc menisci are not present, i.e. for non-wedging 

systems. 

6.3.1.2 Force balance approach 

In section 2.4.3 the well known Washbum equation was derived via consideration 

of the forces on a meniscus in a cylindrical tube, 

2crcos8 
P, = (2.45) 

whereRTis the radius of the cylindrical tube, which in this case, is also twice the hydraulic 

radius of the tube. Incorporation of the Laplace equation and generalising the equation 

for arbitrarily shaped tubes yields equation 6.5, 

J = (C~:8) (6.5) 

6.3.1.3 Derivation/ram the Gauss equation 

The Gauss equation of capillarity relating the variation in interfacial area, dALv , 
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to the associated volume change, dV, curvature and contact angle was derived in section 

2.7.4; 

dALv = -JdV + cos9dASL (2.69) 

where dASL is the change in liquid/solid interfacial area. 

Again consider a small displacement, dx, of the MTM in Figure 6.2. In the absence 

of AMs the projected area of the TM is equal to the cross-sectional area of the tube, A, 

which is constant along the length of the tube, hence 

dALv = 0, dV = Adxand dASL = Pdx 

So equation 2.69 becomes, 

o = -JAdx + Pcos9dx 

or 
J = (: )cos 9 = C~:9 J 

6.3.2 Curvature in wedging systems: the MS-P equation 

(6.5) 

The Mayer & Stowe - Princen (MS-P) theory is exact only for calculations of 

curvature for non-gravity distorted menisci in uniform pores. In practice however, the 

theory is more versatile and has previously given accurate estimates of curvature for 

menisci slightly distoned by gravity in a variety of tube shapes, including configurations 

where the cross-section does not form a closed region. In certain circumstances the 

method has also yielded good approximations of measured curvatures of menisci in 

non-uniform tubes. The previous studies involving the MS-P method were discussed in 

detail in chapter 5. 

The MS-P theory relies on equating the curvature found from a force or energy 

balance to the curvature of any arc menisci present in the system. At equilibrium the 

curvature of the AM(s) equals that of the TM in question. In applying the MS-P theory 

it is vital to choose an appropriate position to utilise this condition. At some distance 

above a TM (in practical terms this is only a few tube radii) the profile of an AM in the 

plane of cross-section becomes a circular arc of definable radius. The other radius of 

curvature, at right angles, is infinite. The choice of this position facilitates the solution 

of the overall meniscus curvature requiring consideration of only two dimensional 

geometry. 
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The MS-P equation can be derived by the same techniques employed for 

non-wedging systems, except that now the analyses must take into account the effect of 

the arc menisci. An arbitrary example of a wedging system is shown in Figure 6.3; an 

axe-shaped pore. 

Figure 6.3 Illuslllltion of the definition of A." I:P,andLPL for main terminal meniscus bounded in part 

by arc menisci in a uniform axed shaped tube. The solid perimeter, I:P, =P, +P,+P, and the liquid 
perimeter, rPL = p. +P,+p& 

The projected area of the MTM in Figure 6.3 is no longer simply the cross-sectional 

area of the tube as the AMs occupy the corners, reducing the effective projected area, 

A.g, available to the MTM. The effective perimeter, P.g, of the MTM must now be 

considered in parts: "LPs being the solid perimeter, and "LPL , the liquid perimeter. From 

Figure 6.3: 

"LPs = PI + Pz + P3 (6.6) 

(6.7) 

6.3.2.1 Energy balance approach 

As in section 6.3.1.1 consider a small displacement, dx, of the MTM in Figure 6.3. 

The virtual work balance now yields 

P,A,gdx = (ersv-ersL)"LPsdx + er"LPLdx (6.8) 

The extra term, er "LPLdx ,accounts for the work done creating the new liquid perimeter. 

Incorporation of Young's equation gives 

P oA.g = er "LPs cos e + er "LPL (6.9) 
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The principal radius of curvature of the AMs in the vertical direction is infinite, 

whilst the radius in the plane of cross-section is a circular arc of radius r (Figure 6.3). 

The arc radius is related to the capillary pressure using the Laplace equation, 

Pc = aIr 

thus from equations 2.30 and 6.9 

A<ilr = I.Pscos9 + I.PL 

and if the effective perimeter is defined as 

P <// = I.Pscos9 + I.PL 

then equation 6. \0 may be rearranged to give 

P,g - A'D = 0 or r = A'D 
P'D 

(2.30) . 

(6.\0) 

(6.11) 

(6.12) 

It is usual to normalise r with respect to some arbitrary tube characteristic dimension, 

R, giving 

R RP'D C = - = - (6.12) 
r A'D 

where C is the normalised meniscus curvature. Equations 6.12 are statements of the 

Mayer & Stowe - Princen equation. 

6.3.2.2 Force balance approach 

The MS-P equation can also be derived via consideration of the forces acting on a 

TM. The weight of the liquid column in a tube is balanced by forces arising from 

interfacial tensions. 

The weight of the column is simply the hydrostatic head multiplied by the effective 

area, 

FI = hpgA,jJ 

The hydrostatic head is equivalent to the capillary pressure, Pc , so 

FI = PAjJ 

(6.13) 

(6.14) 

Acting in the opposite direction are forces arising from the contact of liquid with 

the solid perimeter; 

F21 = aI.Pscos9 (6.15) 

and that from the liquid surface not contacting the solid, a I.P L ,in Figure 6.3; 

F22 = aI.PL (6.16) 

Combining equations 6.13 to 6.16 yields 

P~<// = aI.Pscos9 + aI.PL (6.\0) 

Equation 6. \0 from section 6.3.2.1. Incorporation of the Laplace equation gives the MS-P 
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equation (eq. 6.12). 

6.3.2.3 Derivation/rom the Gauss equation 

To derive the MS-P equation from the Gauss equation of capillarity it is again 

necessary to include an extra tenn to account for the effect of the AMs. As before 

dALV = - JdV + cosedASL (2.69) 

but the tenn dALv must now account for the change in liquid/vapour interface when the 

meniscus undergos a small displacement, dx. As with non-wedging systems; 

dV = A.udx 
and dASL = IPsdx 

but dA Lv = -IPLdx 

and J = lIr 

Note the negative sign for the change in liquid/vapour area; interface is destroyed, not 

created. With these assumptions equation 2.69 becomes 

A,glr = IPL cos9 + IPL 

or P <iT • A'11 = 0 (6.12) 

Note that if there are no AMs, equation 6.12 is equivalent to equation 6.5; i.e. the curvature 

equates to the inverse hydraulic radius of the tube. 

By defining the effective area and perimeter in this way the interaction between 

the AMs and the MTM is accounted for. Neither the cross-sectional area of the AM, nor 

the solid perimeter wetted by the AM enter the expression for curvature. So the actual 

perimeter behind the AM could be any of a variety of alternative shapes and not affect 

the condition of the MTM. 

The tubes shown earlier in Figure 6.1 are displayed again in Figure 6.4 with the 

effective areas hatched and the effective perimeters outlined. As before the prefixes W 

and D refer to a particular TM. DAMs act to hold up a TM, as does the solid perimeter. 

W AMs have radii of opposite signs to DAMs and thus pull down on a TM as in Figure 

6.1f. As a consequence the contributions made by the liquid perimeters ofWAMs toP <If 

is negative. 

To clarify the reasoning behind a W AMs negative contribution, consider the 

situation when the liquid surface of the WOAM in Figure 6.1f is replaced by a completely 

non-wetting solid cylinder (9 = 1800 
) of equal radius. As the shape of the liquid surface 

along the perimeter is unchanged the shape and height of rise of the MTM will remain 

the same. In calculating the contribution of this new surface to P'11 the nature of the 

downward force resulting from the WOAM becomes obvious: 
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MT. 

MT. 

MT. 

Figure 6.4 • Examples of A •• and po. for the cross sections shown in FIgure.6.1. A dryside open arc 
meniscus (DOAM) acts in the same sense as the welled perimeter of !be tube. A wetside open arc 

meniscus (WOAM) acts in the opposite sense. 

= Pw - PNW 

where Pw is the wetted perimeter and PNW , the non wetted perimeter. 

Although anyone of the three approaches of'arriving at the MS·P equation is 

adequate, they are all of historical importance. Mayer & Stowe (1965) used the energy 

balance approach, whereas Princen (1969a) favoured the force balance. Derivation from 

the Gauss equation was Hwang' s (1977) method, but he mistakenly thoughtthe hydraulic 

radius method applicable to all uniform pores. Hwang did not account for the effect of 

the AMs and so omitted to include the liquid perimeter term. Consequently he found his 
results did not agree with those of Princen. 

6.4 APPLICATION OF THE MS-P EQUATION 

The MS-P method is a simple and elegant way of determining meniscus curvatures 

in the systems to which it applies. Mayer & Stowe (1965) and Princen (1969a) 

complicated the analysis by attempting to apply it to inappropriate systems. 

Mayer & Stowe were interested in applying the analysis to converging-diverging 

pore geometries involving spheres when, in fact, their analysis was for tubes made up 

of uniform rods. Princen, though studying uniform tubes made up from rods, was 

interested in capillary rise which inevitably implies the distortion of menisci by gravity 



102 

and AMs of variable curvature. This led Princen to observe that his analysis was subject 

to the condition that the meniscus dimensions must be negligible when compared to the 

height of rise. Regardless, the MS-P theory is exact when applied to pores of uniform 

cross-section and menisci of constant mean curvature. 

In principle, the application of the MS-P method is straightforward. Geometrical 

expressions for the effective area and perimeter, in terms of the pore dimensions and the 

radius of the arc menisci, need only be substituted into equation 3.10. However, the 

analysis depends critically on the prediction of whether or not, and where AMs exist in 

the particular geometry. For example, AMs never occur in circular cross-section tubes, 

but wiIl always occur in tubes made up of cylinders in contact, unless the contact angle 

is exactly rrJ2 rad. (90°). 

In pores of angular geometry, such as the kite-shaped tube of Figure 6.1 b, the 

presence of an AM depends on the wetting properties of the liquid. In Figures 6.1c and 

d the width of the neck of the dumb-bell determines the existence of the OAMs, as the 

geometry is changed arc menisci may appear and disappear. To determine the existence 

or non-existence of AMs it is necessary to calculate the curvatures for each pOssible 

meniscus configuration and then assume that the meniscus wiIl adopt the one with the 

lowest curvature; that having the minimum surface energy. 

This method was used by both Mayer & Stowe and Princen, although neither stated 

it as a principle. It is not foolproof, as cases are possible where physically significant 

metastable menisci can exist (Mason & Morrow 1987). These menisci may be required 

to overcome an energy barrier before adopting a configuration of lower curvature. 

To illustrate the techniques employed to solve the MS-P equation some 

geometrically simple pore shapes are discussed below. Similar solutions had been 

published prior to the studies of Mason and co-workers: Princen (l969b) has given 

solutions for menisci in equilateral triangular and square cross-sectioned tubes for 

perfectly wetting liquids. Concus (1974) published solutions for menisci in polygonal 

tubes for large contact angles. Both analyses are simplified as in the former AMs always 

exist and in the latter they never appear. Mason & Morrow (I 984a) gave general solutions 

for menisci in polygonal tubes. These are discussed first as they produce analytical 

solutions for curvature which conveniently iIlustrate how menisci in wedging and 

non-wedging systems are analysed. 

The technique for obtaining expressions for effective areas and perimeters is 

standardised throughout this study. With the relatively simple shapes discussed below 

the method may appear somewhat long-winded, but with the more complex geometries 

discussed later its versatility becomes apparent. Basically the cross-section of a pore, or 

a relevant part of it, is divided into a number of regions. Each region has an associated 

perimeter adjoining the meniscus and usually, an area and angle, all denoted by the region 

number. From these regions the required effective perimeter and area are easily derived. 
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6.4.1 Analytical solutions 

6.4.1.1 Equilateral triangle with a perfectly wetting liquid 

Figure 6.5 shows a meniscus in a uniform tube where the cross-section is an 

equilateral triangle - a three sided polygon. The characteristic dimension of the tube is 

chosen to be the radius of the inscribed circle, R. Although the problem can be solved 

for any contact angle, only the case of a perfectly wetting liquid is considered below. 

Figures 6.5a - c show the form of the meniscus. Th'e MTM spans the centre of the tube, 

reaching its lowest point in the centre of the triangle, 0, while the liquid rises in the 

corners to an infmite height, bound by AMs ofradius r. 

(b) . (c) 

2 

, , , 

Figure 6.S - Configuration of arc menisci in a unifonn triangular tube (a). The MTM spans Ihe centre 
of Ihe tube reaching its lowest point in Ihe centre of !he tube (b). The liquid rises into the corners to an 
infinite height bound by AMs (c). The tenninology required for Ihe application of Ihe MS-P Iheory is 

also shown (d). 

The cross-section is polygonal and it is the ratio of area to perimeter that is required 

so only one corner sector need be analysed. Figure 6.5d shows a right-angled triangle; 

one sixth the area of the whole channel. Here, only two regions within the sector need 

be defined; numbered 1 and 2. The parameters of these regions may now be written 

down. 

a) Angles 

Only region 1 has an associated angle and, since this is part of a equilateral triangle; 

~ = 7tl6 (6.17) 
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b) Perimeters 

The perimeters of each section are obtained from simple trigonometry: 

PI = 2Ct.l r Equations 

P2 = (R -r)cotCt.1 6.18 

c) Areas 

Only region 1 has an associated area, but the area of the whole sector; AT ' is also 

required: 

d) Effective perimeter and area 

It is now a simple matter to write the effective area and perimeter: 

P'ff = 'iPs + 'iPL 

and 

e) Solution of equations 

Equations 

6.19 

(6.20) 

(6.21) 

The simultaneous equations 6.17 through 6.21 together with the MS-P equation 

itself (eq. 6.12) yield a quadratic equation in r, this may be normalised with respect to 

R giving 

(~-~)(;J - ~;) + 
-{3 
2 = 0 (6.22) 

Hence r -{3~ 
= 

-{3-7tl3 R 

which yields solutions for rlR of 4.4955, which is physically impossible as it implies r 

> R, and 0.5625. So the normalised curvature of the meniscus in triangular channel under 

perfectly wetting conditions is 

C" = 1.778 
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6.4.1.2 n-agon tubes with variable wetting 

The solution for an equilateral triangular tube can be generalised for an-sided 

polygon channel under variable wetting conditions. The anal ysis follows the same pattern 

as before. but the trigonometry is more complex. 

MENISCUS 

\ 

R 

Figure 6.6 - Diagram of a corner of a polygonal sectioned tube. Depending on the contact angle. an 
arc meniscus'CAM) may exist in the corner. 

Consider the, sector of an n-agon tube shown in Figure 6.6. The incircle radius. R. 
is again selected as the nonnalising dimension. Let the AM meet the wall with a given 

contact angle 9 . 

a) Angle 

Let the half angle in the corner of the n-agon be ~ • hence 

<XI = ~ (6.23) 

b) Perimeters 

PI = (1tI2 - <XI - 9)r Equations 

P2 = Rcot<X1 - r(cot <XI cos 9 + sin 9) 6.24 

c) Areas 

AT 
1 2 

= 2R COlal Equations 

Al = ~ r2(cos2 9 COlal - cos 9 sin 9 - (7tl2 - <XI - 9» 6.25 
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d) Solution of equations 

Combining equations 6.23 to 6.25 with the MS-P equation, 

P <iF - A,u = 0 (6.12) 

yields a quadratic of the form 

I 2 . (r)2 A(r) I A 2(COS ecot~-coses!Oe- (7tl2 - ~- e» R -cosecot.., R +2cot.., = 0 (6.26) 

Again there are two roots, only one of which is physically realistic. The other probably 

corresponds to menisci on the outside of the polygon. 

When the coefficient of (rIR)2 becomes zero then there are no real roots and 

e+~ = 7tl2 

which represents the point where the AMs in the corners disappear. So the system will 

be wedging only if 

e ~ 7tl2-~ 

Hence for 7tl2 > e > (7tl2 -~) the AMs do not exist and equation 6.26 reduces to one 

where the curvature is given in terms of the inverse hydraulic radius, 

A Rh I 
P = cose = J (6.27) 

Under these conditions the MTM simply runs into the corners. Concus (1974) 

investigated menisci of this configuration and noted that equation 6.27 corresponds to 

the spherical meniscus in the polygon tube with incircle radius RI cos e . 

AMs will always exist ife = 0 unless ~ = 7tl2 , which is the half angle in a polygon 

with an infmite number of sides or, in other words, a cylindrical tube. In Figure 6.7 the 

curvatures in three, four and infmite sided tubes of equal hydraulic radius are shown as 

a function of the contact angle, e . As would be expected, no difference in curvature is 

seen between non-wedging menisci in polygons and those in a cylindrical TUbe of 

equivalent section. However, when the AMs form, the curvature in the polygons drops 

below that for a cylindrical tube. A triangular pore yields a lower curvature than a square 

pore at a given contact angle, implying that the height reached by the meniscus drops 

as the corners become more acute. 

6.4.2 Non-analytical solutions 

The MS-P equation usually cannot be solved analytically. Even for seemingly 

simple shapes, like that of a rod in a corner, the simultaneous equations in A<lf ' P <If and 

the MS-P equation prove to be unresolvable. To arrive at a value for curvature numerical 

or graphical techniques must be employed. 
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Figure 6.7 • Curvature of the meniscus in the n-agon tube normalised relative to the ratios of the 
insphere is given as a function of the contact angle. The infinite side number tube is simply a cylinder 
and the values ~ with those for meniscus curvature in cylindrical tubes. Wben corners exist, the 

tenninal menIsci merge with arc menisci at low contact angles, and this reduces the curvature. 

Figure 6.8 shows the graphical solution for the kite-shaped pore with the dimensions 

shown. The effective area to perimeter ratio is calculated for various prescribed values 

of rlR and, in this case, e = O. A graph of y = A.glRP'ff versus y = rlR can then be 

ploned. The intersection of the line y = rlR with y = A.glRP'ff gives the value of rlR 

which is the solution to the equations. 

At the point of intersection the value of A,gIRP </I is its maximum possible value, 

and hence also r' s. This confIrms the equilibrium situation i.e. the meniscus has minimum 

curvature, corresponding to the minimum surface energy confIguration for the particular 

boundary conditions. 

Of the uniform tubes employed in the current study only the rectangular duct's 

equations solve analytically. For the remaining tubes numerical techniques provided the 

best solution mechanism as they are amenable to use on computers, enabling a large 

number of solutions to be found quickly. Below the numerical methods used here are 

described. 
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Figure 6.8 - Example of the graphical solution of the meniscus curvatur~ for the kile-shaped 'pore 
shown. The intersection of the two lines gives the soluuon. The soluuon IS always at the maxunum 

value of AIR? 

6.4.2.1 Microcomputer solution technique 

For the purposes of numerical solution the MS-P equation may be written; 
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F(r) = A", - r = 0 (6.28) P", 
or 

fer) = A'ff 
P", (6.29) 

The ratio A • .ulP'ff will comprise a number of simultaneous non-linear equations in terms 

of the arc radius, r, the geometry of the particular tube and, where relevant, the solidlliquid 
contact angle, 9 . These equations do solve to give a unique value of r_ 

The form of equation 6.28 lends itself to solution by numerical methods. The 

requirements of which are not one, but multiple solutions in terms of a second variable, 

RR: either the contact angle or a characteristic dimension of the tube such as rod-plate 

spacing, rod radius ratio or tube aspect ratio. The resulting group of stepwise solutions 

for r in RR may be used to plot a graph of the function r = f(RR) or, more often, 
C = Vf(RR) which may then be compared with experimental results. 

Over the course of the study standard solution routines were developed, written in 

BASIC on a BBC microcomputer. Throughout emphasis was placed on obtaining the 
required solutions rather than computational elegance. The standard program was 



109 

structured so that on investigation of a new tube configuration all that is required is 

substitution of the relevant expressions for A,IP <If and some minor adjustment of input 

and output routines. 

Figure 6.9 shows a simplified flow chan. At given RR the radius of curvature, r, 
is iterated using successive bisection (internal halving) from initial "guesses" above and 

below the solution. The user is only required to make the initial guesses for the first 

solution in a set. Subsequent initial guesses are determined automatically by a process 

of intuitive reasoning and interpolation. Much of the complexity of the program arises 

in obtaining initial guesses for one solution from the solution that preceded it. Figure 

6.9 shows a number of separate procedures (sub routines) each of which carries out a 

specific task. 

( start ) 
+ 

FOR RR=RI TO RX STEP SS 
J=J+! 

y 
PROCJ2 J = 2? )------1 

'------------,J 

+ 
1 

I 
I 

I 

I 

I 
I 

Figure 6.9 - A simplified flow chart illustrating the successive bisection and interpolation routines 
adopted for the numerical solution of the MS-P equation. This standard program was utilized for all 

tube shapes and weuabilities investigated with only minor adjustments required. 
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a)PROCCURV 

The procedure, PROCCURV, contains the detailed equations that make up F(r): 

those for the angles, areas and perimeters of the relevant regions required to calculate 

A.IIP.IJ . PROCCURV is sent a value of r and returns values of F(r) and the iteration 

criteria, R5 and R6 (these criteria stop the iteration when sufficient accuracy has been 

achieved). 

b)PROCINIT 

PROCINIT initialises the program. The user is prompted tCl input the required 

information: the geometric constants, the minimum (RI) and maximum (RX) values of 

the characteristic dimension or contact angle (RR) and the interval or step size between 

solutions (SS). The program then asks for two guesses at the fust solution, rR/ , to initialise 

the successive bisection iteration method: one above, (ro)R/ ' and one below, (r')R/ . 

PROCINIT liaises with PROCCURV and displays the values of F(r)R/ calculated 

with (rO)RJ and (r')R/ . Calculations will not proceed until one positive and one negative 
value of F(r)R/ have been returned. In general, provided that the two initial guesses are 

close to the solution, r, the function F(r) will be continuous between them, thereby 

enabling the solution to be found. In mathematical notation the conditions for 

convergence are; 

and for 

F(ro) < 0 

F(r,) > 0 

ro;5; r ;5; r, F(r) is continuous. 

Equations 

6.30 

PROCINIT also prints a record of the inputed information and the headings for a 

table of results before returning to the main program. 

c) PROCSPLIT 

PROCSPLIT carries out the iteration for r at the current value of the characteristic 

dimension or contact angle, RR, from given values of ro and r l • Iteration by successive 

bisection proceeds as follows: 

(r, +ro) 

2 
(6.31) 

PROCSPLIT liaises with PROCCURV which returns the value of F(r,). r) is then 

determined according to the sign of F(r,): 

If F(r,) < 0 then r) = (ro + r2)/2 

If F(r,) > 0 then r) = (r, + r,)/2 

The value of F(r) is now calculated and bisection repeated as above. Iteration continues 

until 

ABSIF(r.)1 ;5; 1 xlO-sr._, == ABSIR5J,IR61 (6.32) 
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The above iteration criteria ensure that values of curvature obtained are exact to three 

decimal places. Having determined the solution at rRR PROCSPLIT prints out results 

in tabular form of, among other parameters, the curvature of the meniscus in the tube 

shape defined by RR; eRR, 

d) PROCJ2 

Procedure 12 is enacted only once to find the initial guesses for the second solution 

for r: that when RR = RI + SS. (ro)RI +ss and (r')RI +SS are found by addition or subtraction 

of factors of rRl from rRl • The magnitude of the factor is gradually increased until; 

F«ro)RI+s) > 0 and F«r')RI+s) < 0 (6.33) 

e) PROCJ3 

PROCJ3 finds initial guesses of the radius of curvature for the third and subsequent 

solutions. With two solutions already calculated on the function r = F(RR) a first 

approximation of subsequent solutions can be interpolated; 

(6.34) 

F(rRR ) is then calculated from PROCCURV. If F(rRR) > 0 then (rO)RR = rRR and (r')RR 
11 .. 11 11 11 

is determined by adding factors of rRR• to rRR• until F(r')RR.) < O. Similarly if F(rRR) > 0 

then (rO)RR = rRR and (r')RR is determined by subtracting factors of rRR from rRR until 
It 11 " .. 11 

F(r')RR.) < O. Use of this routine ensures that the two initial guesses are close to the 

solution. Once the guesses have been found the near-exact value of rRR is determined 
• 

by PROCSPLIT. 

The solution program described above works satisfactorily for solution of the MS-P 

equation, at least for the systems investigated here. An advantage of the successive 

bisection method, beyond its simplicity, is that the maximum error in the solution can 

always be quantified, being a maximum of half the difference of the last bisected interval. 

Thus 

(6.35) 

The techniques could certainly'be improved with the application of more advanced 

numerical methods, having faster convergence, and faster computer languages. 

Application of alternative numerical methods should be approached with caution. In 

early work the secant method (a modification of the well known Newton-Raphson 

method, see Hosking 1978) was used to iterate r, but the one-sided approach to solution 

the method uses proved inadequate for instances where discontinuities in F(r) were 

encountered. 
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Exactly where and why discontinuities occur in F(r) was not pursued, but that this 

occurs was apparent with some pore configurations, particularly those requiring more 

complicated geometric descriptions. On occasions the successive bisection and 

interpolation method also "crashed", but this was overcome by reducing the step size 

for RR. The method has the advantage, over one-sided methods, that once the staning 

values have been correctly chosen convergence is assured. 

The computer time required for each solution of rRR was not excessive, varying 

between a few seconds and, at worst 3 to 4 minutes. An entire set of results describing 

the relation C = lIf(RR) can thus be determined in a maller of a few hours. The necessity 

for the user to make initial guesses for the first solution is a consequence of both the 

possibility of discontinuity and of the non-unique solution of r afforded by the equations. 

Otherwise fractions of the geometric size of the tube could have been employed as first 

guesses. 

With each new meniscus or pore configuration the relevant equations were written 

into PROCCURV. When possible, the solutions given by the program were validated 

by comparison with previously published or calculated results. Often comparison could 

be made to results given in publications by Mason & co-workers, but usually only for a 

limiting value of rRR • 

To conclude, the successive bisection and interpolation method described above 

proved versatile enough to yield solutions of the MS-P equation for all the systems 

investigated here. Little alteration of the program was required for each new 

configuration and the convergence of the method was such that solutions were found in 

a satisfactory period of time. Details specific to particular configurations are discussed 

in the relevant results sections (chapters 8 to 11) and listings of the programs are given 

in the app.endices; notation follows that employed here. 
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CHAPTER 7 

Experimental apparatus and procedures 

7.1 INTRODUCTION 

The successful development of any new scientific theory, from its mathematical 

conception to its widespread acceptance and application, depends upon the validation 

of the theory over the range of conditions to which it applies. In validating the MS-P 

theory it is important to note that the theory is exact only for capillary surfaces of constant 

mean curvature - those surfaces undistorted by a gravitational field. It follows that the 

techniques used for the experiments must minimise the effects of gravity on the surfaces 

under investigation. 

The most obvious approach is to conduct the experiments under zero gravity 

conditions. Indeed, some experiments on capillarity have been performed in space. 

Unfortunately, beside being prohibitively expensive, zero gravity experiments in space, 

drop towers or in aircraft on parabolic flight·paths are often unsuccessful. The capillary 

forces are usually so small that other phenomena, notably electrostatic forces, can 

seriously distort results (Haynes 1989). 

If the experiments were conducted with a pair immiscible liquids of equal density 

then the effects of gravity will ag~n be entirely eliminated, but there are serious 

drawbacks with this approach as well. The difference in interfacial tension between such 

a liquid pair is usually small and, to maintain constant curvature conditions, it is vital to 

match the densities precisely. As a consequence, successful experiments require fine 

temperature control of the few suitable liquid pairs available (Mason 1970). 

A third approach centres not on eliminating gravity, but on reducing its effects . 

relative to the capillary forces by making the pore geometry small. (Similar reasoning 

accounts for the small bore capillary tubes selected for school physics experiments). 

Recently this method has been successful in testing of the MS-P theory (Mason et al. 

1983, 1984a, 1986, 1987 and 1988), but there are disadvantages. The smaller the pore 

geometry becomes the larger are the errors in fabricating the geometry. Conversely the 

effects of gravity become more appreciable as the pore is enlarged. 

Past experiments discovered a scale of apparatus whereby the model pores could 

be made large enough to be mechanically accurate, whilst the height of rise in the pores 

was such that the meniscus surfaces were not overly effected by gravity. Although this 

amounts to a compromise, it fortunately allows enough variation of pore size to facilitate 

validation of the theory. 
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The experiments conducted here principally involved measuring the heights of rise 

of terminal menisci in unifonn capillaries. The pores were made up in part by a number 

of cylindrical rods, or flat plates, and in part by a transparent plate (usually glass) through 

which the meniscus was observed with a cathetometer. Meniscus curvature was 

calculated from a simple equation. So long as the change in height over the region of 

the TM is small in comparison to the overall height of rise, the condition of constant 

curvature is satisfied. Furthennore, curvatures are measured by a comparative method, 

negating the need for temperature control. 

In the following pages the general points stated above are elaborated and justified, 

details of apparatus are given and procedures discussed. 

7.2 APPARATUS 

7.2.1 General description 

Figure 7.1 shows photographically the equipment used in the experiments to 

validate the MS-P theory. Broadly speaking, the apparatus comprises a pair of rectangular 

steel cell-blocks that contain the model pore and reservoir indicator cells (1). The 

cell-blocks connect, via Swagelock fittings and PIFE tube to each other and the main 

liquid reservoir (2), a PIFE beaker capable of providing a small positive head The test 

cells and main reservoir are supponed by separate laboratory jacks (3) enabling the height 

of the cells to be fixed at a comfonable viewing position and the menisci in the cells to 

be adjusted to a suitable level. The heights of the menisci in each cell are measured by 

a cathetometer (4) equipped with a tele/microscope capable of traversing both laterally 

and longitudinally, and a vernier scale accurate to 0.01 mm. The menisci are illuminated 

by a pair oflamps (5), each with two flexible optical fibre antennae. The apparatus stands 

on levelled, vibration free, slate-toppeq concrete benches. On the lower bench sits the 

cathetometer, fixed in position by two restraining clamps. 

7.2:2 Cell design 

The optimum design of a capillary rise experiment, for a given density difference 

and interfacial tension, involves a compromise between fabrication errors and distonion 

by gravity of the meniscus shape. As pore size is increased fabrication errors decrease, 

but gravitational distonion of the meniscus increases. Mason et al. (1984a) discovered 

a "window of opportunity" in the scale of the apparatus through which it is possible to 

measure curvatures in accurately fabricated pores, capable of holding menisci not unduly 

distoned by gravity. 
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Before they could specify the optimum cell dimensions, Mason et al. needed to 

know the limits of this "window". An experiment carried out by Mason apd Morrow 

(1984a) showed that distortion of menisci in cylindrical capillaries becomes appreciable 

when the height of rise drops below about 7 mm (0.3 ") with isooctane; the liquid used 

for the majority of the experiments. A 7 mm rise roughly corresponds to a capillary of 

1.5 mm (1116") diameter. A similar experiment has been performed for the present study; 

further details can be found in chapter 8. 

To accurately fabricate model pores of similar or smaller hydraulic radius as the 

1.5 mm capillary tube is difficult. However fabrication errors can be largely eliminated 

if, instead of direct fabrication, the model pores are made up from precision elements 

that are considerably larger that the pore itself. All the pore configurations investigated 

here are made up of cylindrical rods and/or flat plates. When put together they create 

pores considerably smaller than themselves in which there is a much greater level of 

confidence in the geometric dimensions. Also, the meniscus is visible through the front 

flat plate! 

Based on the experience of past studies, pores made up of rods between 1/32" and 

3/8" (0.8 and 9.5 mm) usually give satisfactory results: exact limits will depend on the 

particular pore configuration. Having determined the limiting sizes of the model pores 

in variously fashioned cells, it became possible for Mason and Morrow (1986) to design 

a versatile cell arrangement: Figure 7.2. 

Cell blanks are fashioned from an easily machinable aluminium alloy. The blanks, 

with a face measuring 2 1/4" by I 1/2" (57 by 38 mm), are 3/4" (19 mm) thick and include 

a 5/8" (16 mm) connecting plug machined at the base. Each cell has a 1/4" (6 mm) glass 

window, 3/4" (19 mm) wide, which is held by clamps to the machined front face of the 

cell. A channel capable of accommodating rods in the required configuration is then 

machined from the front face. 

A given cell, together with (usually) a reservoir level indicator cell (with a single 

1/2" (12.7 mm) square channel), fits into a cell block. The block is simply a rectangular 

piece of alloy containing two holes to receive the connecting plugs of the cells and so 
hold them vertically in position; the clearance being sealed by P1FE '0' rings. The cell 

block connects the cells via 1/8" (3 mm) fluid viaducts and is itself connected to the 

remainder of the system by flexible PTFE tubing of 1/16" (1.59 mm) I.D. This gives the 

apparatus a useful characteristic as the model pore and indicator cells are always in 

equilibrium with each other before the indicator cell equilibrises with the main liquid 

reservoir. The two cell-blocks are connected in parallel via a Swagelock "T" piece, to 

facilitate quicker stabilization after level changes. 
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Figure 7.2· Sketch of the standard "cell blanks" used to realise the rod and plate geometries of the 
theory (top). A channel with the specifications suiting the particular rod arrangement can be machined 
from the front face and clamps added as required. The cells fit into a cell block connected to the main 

liquid reservoir (below). 
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The early channel designs, by Mason and co-workers, required that the channels 

were of the exact depth and width to accommodate the rods in the desired positions. 

Results were not always satisfactory as even a machining error of a fraction of a 

thousandth of an inch (thou.), a typical engineering tolerance, could cause significant 

deviations from the prescribed geometry, usually because rods were not properly in 

contact 

The current design ensures rods contact by making the channels deeper andlor 

wider than required. Tightening screws can then be fitted to the back andlor side of the 

cells to clamp the rods in position. This approach has the added advantage that different 

rods may be used in the same cell to vary a particular pore shape or to give entirely 

different configurations. However, it sometimes becomes difficult to assemble the pores 

in the prescribed shape and it is necessary to use a process of trial and error until the 

correct position is achieved. If assembly of the pore becomes excessively complicated 

it is always possible to design a new cell specifically for that purpose. The clamping 

screws are fitted with plastic nuts, tightened against the outside of the cells, to prevent 

leakage along the threads. 

It was occasionally necessary to fabricate cells of a different overall size to the 

standard blanks and sometimes parts of the channel needed to be made to more precise 

dimensions. Errors in the fabrication of the cells were small due to the use, by an 

experienced machinist. of a milling machine equipped with a digital read-out. Details 

of individual cell designs are given in the sections relating to each particular pore shape, 

but the principles of design and fabrication remain the same. 

7.2.3 The cathetometer 

In addition to accurately fabricated model pores, the success of the capillary rise 

experiments depends on precise measurements of heights of rise. Meniscus curvature is 

directly proportional to the observed heights, so any error in the readings is passed directly 

on to the measured curvature. Accurate readings require a versatile optical instrument; 

one capable of magnifying the menisci and traversing both laterally and longitudinally 

whilst maintaining the ability to record heights precisely ,even when the focusing position 

is altered. Cathetorneters are designed for this purpose, but they vary in quality and 

capability. 

For some early experiments a cathetometer of antiquated design and uncertain 

quality was used. This was soon replaced by a modern precision instrument. The Gaertner 

M-912 horizontal-vertical cathetometer as shown in Figure 7.1. A substantial frame 

supports a precision I 1/4" diameter meter rod between thrust bearings that enable 

rotation about the rod axis. A scale engraved on the rod reads to 0.5 mm. An alignment 

tele/microscope (the Gaertner M533HG) and carriage assembly mounted on the rod is 
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equipped with a vernier scale capable of reading to 0.01 mm (0.004"). A finely threaded 

screw situated on the carriage assembly provides fine, hysteresis free, vertical 

adjustment This cathetometer is a special non-standard device obtained specially for 

this project. 

The manufacturers claim that refocusing with the tele/microscope over the range 

75 mm to 1.25 m (3" to 4 ft) will not alter a reading by more than .0025 mm (.001 "); 

this is considerably better than an ordinary slide-focus scope which can give errors of 

2.5 mm over the same range. The tele/microscope also has the advantages of a completely 

enclosed mechanism, so there is no danger of stray "fingers" coming into contact with 

it. Magnification is quoted at 17.5X at 75 mm dropping to 4X at 1.25 m; between 150 

and 300 mm (6" to 1 ft), the extremes of the working distance used in the experiments, 

the scope provides adequate magnification. 

7.2.4 Slate-topped concrete bench and pillar 

The large slate-topped bench shown in Figure 7.1, provides an inert level surface 

to conduct the experiments on. The bench is sturdy enough to maintain its position if 

accidentally jolted and sits on lead shrouded rubber sheet which damps out vibration 

emanating from elsewhere in the building. 

The bench was built to specifications supplied by Mason for his earlier work. I 

later designed the pillar to hold the Gaertner cathetometer, as unlike the old device, it 

was too large to site on the bench. The principles of the design of the pillar are basically 

the same as those for the bench: a slate slab is supported by adjustable discs (that enable 

the slate top to be levelled) on studs protruding from a rubber backed, ferroconcrete 

block (Fig. 7.3). The pillar requires, in addition to the supporting studs, a long stud which 

passes through the centre of the slab. To this a two-jawed clamp is attached to fix the 

cathetometer in position, once it's been levelled. 

7.2.5 Pore construction components 

Of the pore shapes investigated almost all are made up in part from cylindrical 

elements and all include a flat transparent window. The selection of the cylindrical rods 

was governed by three factors: 

i) The rods had to be manufactured with a high degree of precision on diameter 

to give confidence in pore geometry. 

ii) They were required to have a uniform surface finish so that wetting 

properties are reproducible. 
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rtgure 7.3 - Design of the slate-topped pillar required to suppon the cathetometer. 

iii) The rods needed to be available in suitable lengths over a range of 

diameters covering 1/32" to 3/8". 

Two systems were chosen. one consisting of steel rods and glass windows to be used 

for perfectly wetting experiments (9 = 0). the other being a teflon system used with 

liquids that produced known contact angles. Three different rod types were used in 

construction of the pores; their properties are discussed below. 

7.2.5.1 HSS drill blJlnks 

Hardened steel drill blanks. whose more usual applications are as arbors. punches. 

spindles or gauges. proved to be good construction elements; satisfying the requirements 

well. Steel. in common with other metals and hard solids. has a high energy surface; that 

is it has high surface energy. High energy surfaces are wet by most liquids against air. 

particularly by those with low surface tensions. In addition. steel can be made with 

smooth. homogeneous surfaces. 

The steel used for the blanks is ftrst hardened. then precision ground using a 

centreless grinder; the surface ftnish is bright. The blanks are available in extensive size 

ranges. Between the size limits imposed by the cell design 0/32" to 5/16")the rods were 

obtained in a I 0" mm metric range and a 1164"" imperial range. In addition a numbered 

range provides sizes that fall in-between those of the other ranges. Tolerances for the 

rod diameters of +0 to -0.02 mm (8 thou.) are claimed by the manufacturer (SKF & 

Dormer Tools Ltd.). The mean diameters of rods used were found by averaging 
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measurements taken with a digital micrometer along the rod length and around the axis. 

These drill blanks are useful because they come in a whole range of sizes; imperial, 

metric and number sizes. Their fmish is not really good enough and they are always 

fractionally undersize. 

7.2.5.2 Needle rollers 

Needle rollers, as used in roller bearings, have to be made to high precision for 

their usual function. Also manufactured from hardened steel and precision ground and 

polished, but with a matt finish, the needle rollers made excellent construction 

components. However, they are not available in as an extensive range as the drill blanks 

(1 to 5 mm in increments of 0.5 mm), but their tolerance is better at +0 to -0.003 mm on 

diameter and measurements showed much less variation in diameter along a given rod. 

They are also not as long as drill blanks. 

7.2.5.3 Teflon rods 

Teflon (PTFE) has a low energy sUrface and has been shown to give reproducible 

wetting properties with a homologous series of liquids (Morrow 1974 or section 2.7.6). 

This is a rare quality among unprepared surfaces and led to the selection of teflon for 

experiments with non-zero contact angles. 

In comparison to steel rods there are noticeable disadvantages in making pores 

from PTFE rods: 

i) Teflon rods are flexible and compressible which makes assembling a 

uniform pore a much more difficult operation. 

ii) The range of available sizes is restricted and ground PTFE rods couldn't 

be obtained with diameters less than 1/16". However, in this study only rod 

sizes greater than 1/8" proved successful. 

iii) Usually the rod is extruded and consequently has a very variable diameter. 

The rod is available ground, but grinding to high precision is not possible as 

PTFE is a soft material. Grinding also roughens the surface and can modify 

contact angle behaviour. The claimed diameter tolerance of the manufacturer, 

Dalau Ltd., of +0.2 to -0 mm along a 1 m length is also very poor, but for the 

short lengths employed in the experiments the variation was not so great. In 

fact diameter variation around the rod section was more of a problem than 

longitudinal variations. 

In addition to the rods described above, all pores required a transparent window 

through which heights of rise are measured. For the wetting system a flat glass plate was 

used. However the teflon system usually required all pore surfaces to have identical 
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wetting properties. A thin, transparent film of a fully fluorinated polymer was stretched 

over the inner surface of a glass plate in these instances (transparent P1FE film is 

unavailable). The film, manufactured by Curtis Noll Corp. and supplied via the New 

Mexico Petroleum Recovery Research Centre (Socorro), was 0.05 mm thick with a 

tolerance of +0.005 - 0.000 mm and was available as loose roll and as self-adhesive tape. 

7.2.5.4 Spacers 

For some arrangements spacers were required to hold rods away from the plate or 

to alter cell width or depth. Usually brass precision engineering shimstock was used. 

The small pieces required were cut, or sawn, from 1 foot sq. sheets. To ensure these were 

flat and contained no burrs the edges were first filed down before the shim was clamped 

tight in a vice and left for several hours. Their thicknesses was then be measured with 

a micrometer. 

7.3 THE TEST LIQUIDS 

7.3.1 Perfectly wetting experiments 

The wetting experiments required a liquid that wets steel and glass, exhibiting no 

deviation from the perfectly wet under advancing or receding conditions. Steel and glass 

are high energy solids and as such will be wet by most liquids spreading against a gas 

provided that the surfaces are clean. Isooctane was chosen because it satisfied the wetting 

conditions, but it also possesses some other useful properties: 

i) Isooctane has low viscosity making the time taken for equilibrium to be 

obtained in the small pores short. 

ii) It has low toxicity; no extra precautions were required for the experiments. 

iii) It made a useful cleaning fluid for the apparatus as it is a mild solvent. 

iv) In common with qther organic solvents, isooctane is manufactured at high 

purity, but available at low cost. 

v) It evaporates when it leaks from between the metal-metal or metal-glass 

junctions and this obviates the need for special seals. 

7.3.2 Non-zero contact angle experiments 

For the partially wetting experiments the fluids were chosen to produce known 

contact angles. Following Morrow's (1974) work on the effects of surface roughness on 

contact angle, discussed in section 2.7.6, and experiments conducted by Mason et al. 
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(1983), the contact angles of several liquids, likely to pertain for the surface condition 

of the rods and film, were known. Of the three distinct classes found by Morrow the "as 

supplied" rod and film surfaces give class II behaviour. 

Table 7.1 Contact angles and physical properties of the organic test liquids. 

Test Liquid 

lsooctane 
n-Dodecane 
n-Tetradecane 
Dioctyl Ether 
Hexachlorobutadiene 
a-Bromonaphtalene 

Receding 
Angle 

e, 
(deg.) 

4.6 , 

22.8 ' 
25.1 ~ 
30.8 
43.3 
58.1 , . 

Advancing 
. Angle 

e. 
(deg.) 

29.6 
47.9 
50.2 
55.9 
68.4 
83.2 

Surface Density 
Tension 

(J p 
(dyn/cm) gJcm' 

18.7 0.6918 
24.9 0.7430 
26.2 0.7599 
24.8 0.8020 
36.0 1.6820 
43.0 1.4739 

The fluids and their relevant physical properties are listed in Table 7.1. The 

documented surface tension's were confmned by du Nouy tensiometer measurements. 

The receding and advancing contact angles, e, and e. , are related to the intrinsic angle, 

e, , according to Morrow's empirical equations: 

Class IT receding contact angles 

0 < e, < 220 e, = 0 Equations 

220 < e, < 1800 e, = 1.14(e, - 220
) 7.1 

Class IT advancing contact angles 

0 < e, < 1580 e. = 1.14e, Equations 

1580 < e, < 1800 e, = 180 7.2 

Figure 2.14 showed Morrow's experimental results plotted together with the lines 

resulting from the equations above. It is noticeable that some of Morrow's experiments 

gave results more than 5" in error of those given by the equations, although the spread 

of results usually transposes the lines. Considering the well known difficulty of 

reproducing contact angles (section 2.7) the agreement is the best that can be expected. 

7.4 EXPERIMENTAL PROCEDURE 

The experiments principally involved measuring the height of capillary rise in pores 

of constant cross-section made up from rods and/or plates. The experimental procedure 
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remains essentially the same throughout, although some specific details differ from one 

pore shape to another; these points are discussed in the sections devoted to individual 

configurations (see later). 

Some of the pore shapes listed in Table 6.1 had been selected for the experiments 

prior to the start of the investigation, while others arose as the study progressed, either 

from a previously investigated shape or from a simple desire to improve the versatility 

of the MS-P method. In this section the general experimental procedure and the 

determination of meniscus curvatures from measured heights of rise are discussed. 

7.4.1 General considerations 

Once a specific pore shape had been chosen a suitable test cell was sought to 

accommodate the rods in the desired configuration. If none of the available cells suited 

the shape then a new cell, designed specifically for the purpose, would be commissioned. 

Prior to preceding with a set of experiments the height of the laboratory jack 

supponing the cells was adjusted to a suitable level and the spirit level on the cathetometer 

was checked over the lateral traverse. If not within .the limits specified by the 

manufacturer the cathetometer would be re-levelled in the manner prescribed in its 
manual. 

7.4.2 Selection of rods 

Meniscus curvature is sensitive to small deviations in pore geometry so the selection 

of the rods that make up the geometry requires care. Each rod was measured at several 

points along its length and around its axis as there is often significant variation in a drill 

blanks' diameter. Measurements were taken with a digital micrometer accurate to 0.001 

mm (0.000 I "). Rods with noticeable tapering were rejected. The construction of a cell 

usually required two or more rods to be of equal diameter or in a specific ratio. So it was 

often necessary to measure many drill blanks, nominally of equal size or ratio, until 

suitable rods were found. 

This problem was not encountered to the same degree with either the needle rollers 

or teflon rods, the former have a closer tolerance than drill blanks whilst the latter were 

cut from 2 m lengths of rod so the likelihood of significant differences between adjacent 

pieces was small. Rods selected for pore construction were thoroughly cleaned before 

assembly. Once clean the rods were handled with tweezers. 
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7.4.3 Cell assembly 

As with the rods each cell was fIrst cleaned with isooctane. Particular care was 

taken to ensure all swan was removed from newly machined apparatus. Assembly of 

the test cells usually involved fIrst arranging the rods in position against the transparent 

plate with the cell horiwntal. The rods were then fIxed in position by clamping screws 

or by wedging other rods behind those forming the pore or by a combination of both 

methods. Care was taken to ensure rods remained in contact with each other and/or the 

plate. Even steel rods will bend if to much pressure is applied by a clamping screw; these 

only needed to be hand tight (less so with teflon rods). 

7.4.4 Arrangement of apparatus 

For each experiment the apparatus comprised of four cells, usually two reservoir 

level indicator cells, the test cell and a "standard cell" (see later), arranged in the 

(connected in parallel) cell blocks with the indicator cells at either end, as shown in 

Figure 7.4. The cell blocks were positioned as close to the cathetometer as was practical 

and arranged so that both focus adjustrnentfrom one cell to another and the lateral traverse 

of the tele/microscope were at a minimum. This operation maximises the magnifIcation 

of menisci whilst minimising any height measuring errors that may arise during 

refocusing. 

7.4.5 Measurement of capillary rise 

The assembled cells were filled by raising the main reservoir beaker, containing 

about 50 cm3 of test liquid, above the level of the cells.and holding it there until menisci 

appeared in all the cells. The beaker was then replaced on its laboratory jack and the 

menisci allowed to stabilise. 

The optical fIbre antennae were adjusted to give maximum illumination of the 

menisci in each cell. Satisfactory illumination of the menisci with ordinary lamps would 

have been diffIcult due to the multiple reflections from the rods. Even using the optical 

antennae, careful positioning was required. If the point of measurement is deep within 

a pore or the channel large, as with the indicator cell, obtaining adequate illumination 

can be very difficult. This sometimes led to signifIcant experimental error. However it 

was usually possible to obtain reflections off the bottom of a meniscus by manipulating 

the antennae. These could then be sharply focused with the telescope. 



Figure 7 . 4 - Photograph showing the arrangement of the cells in a typical capillary rise experiment . Reservoir 
cells occupy the outermost positions whilst the test and standard cells can be seen in the middle . 
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By raising or lowering the jack supporting the main reservoir the levels of liquid 

in the cells could be increased or decreased to give either advancing or receding menisci 

as necessary. The apparatus has quite a slow response to level changes; typically taking 

10 minutes or so to reach equilibrium. Figure 7.5 shows a graph of nonnalised capillary 

height versus time for a typical response with isooctane. Some of the more viscous liquids 

used could take considerably longer to equilibriate, sometimes in excess of half an hour. 

With a highly volatile liquid, like isooctane, evaporation is rapid. So, to prevent excessi ve 

losses and to maintain static heights of rise, the main liquid reservoir was always kept 

covered during experiments. 
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Figure 7.S • Graph of !he nonnalised height of rise versus response time for a typical experiment with . 
isooctane. This shows that about \0 minutes is required for the system to stabilize after a change in 

reservoir level. 



· 128 

Before measuring heights of rise a check for leakage from the system was made, 

at fIrst visually and then by placing pieces of dry tissue paper in the cell joins and around 

connecting points. If a paper became wet then that piece of apparatus was dismantled, , 
checked and reassembled. 

Once the liquid levels in the cells reached equilibrium all the meniscus heights; 

those in the test pores and the reservoir indicator cells; were measured with the 

cathetometer. The heights were read by fIrst focusing on the cross-hairs and then 

focusing, without parallax, on the botlommost point of a meniscus. 

Having two indicator cells, at either end of the cell assembly, provided a check on 

the equilibrium and on the accuracy of the cathetometer travel. Sometimes this system 

was abandoned in favour of one with two test cells, one indicator and a standard. The 

equilibrium was then checked by re-measuring the fIrst level at the end of the reading 

sequence. In either case a signifIcant difference in these readings required 

re-measurement at a later time. Non-attainment of equilibrium after several tries usually 

indicated a small leakage from the system not detected by the tissue paper. 

Experimental errors were expected to be produced mainly through dimensional 

tolerances of the constructed pores. By taking readings at different levels within a given 

pore an estimate of the scatter due to dimensional deviations could be determined. 

For experiments involving teflon components and partially wetting liquids a 

different procedure is required so that the heights of rise corresponding to both advancing 

and receding conditions are obtained. This modifIed method, which also contains a means 

of verifying the uncertain teflon pore geometry, is discussed later in section 10.2. 

7 .5 DETERMINATION OF CURVATURES 

The experiments were designed so that no fIner control of temperature was needed 

than that provided by the normal temperature control in the laboratory. This was achieved 

by using a standard cell, comprising of two equal rods and a plate, for which the 

normalised meniscus curvature was known. Employing this method meant that the 

relevant temperature dependant properties of the test liquid, in the form of the term pg la , 

could be determined from the readings for each run. 

Referring back to chapter 2, section 2.4.3, the relationship between meniscus 

curvature and height of rise for a cylindrical capillary of radius RT is, 

Mpg = 2alRT (2.42) 

where M is the height of rise. The expression can be generalised for any capillary of 

uniform cross-section giving 

Mpg = CalR (7.3) 
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where R is a characteristic pore dimension and C the normalised meniscus curvature 

(Rlr). 

reserver test standard 

-]~~ 
, iI --F 

--- -_ ... 
, , 
R, R. 

0 0 - -
Figure 7.6 - Sketch of the various heights which must be measured in the capiUary rise experiments. 

Aside from minor corrections, the meniscus curvature of a given pore can now be 
determined. Taking the terminology from Figure 7.6 the curvature of the meniscus in .. 

the test cell (subscript 1) is given by 

tlh,pg = ColR, (7.4) 

and that of the standard (subscript s) by 

tlh,pg = C,oIR, (7.5) 

combining 7.4 and 7.5 yields 

tlh, C R, 
= 

tlh, R, C, 

or tlh,R, 
C,tlh R , , C = (7.6) 

Note that the physical properties of the liquid (0 and p ) have cancelled. this makes the 

meth~ relatively insensitive to temperature changes. The normalised meniscus , 
curvature in the standard, C" was found to be 6.94 ± 0.02 (see section 8.2). A correction 

needed to be added to account for the capillary rise in the indicator cell; determined to 

be 0.5 mm. So upon incorporation of these results 7.6 becomes 

(
tlh' + 0.5) R, tlh'cR, 

C = 6.94 tlh. + 0.5 R. = 6.94 tlh R 
.... Se I 

(7.7) 

with all measurements now in mm. 
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For the special case of near hemispherical menisci the curvature may be adjusted 

for gravity distortion by employment of the Jurin correction (see section 2.4.3). This 

gives rise to a further equation for curvature determination 

. (M,+O.2+hft )R, M'JR , 
C = 6.95 - = 6.94 ----'--

M,+O.2+hp R, M'jR, 
(7.8) 

where hj' and hp are the Jurin corrections for the heights of rise in the test and standard 

cells respectively. These and the constants in equation 7.8 are explained in section 8.2. 

The curvature of the meniscus in the test cell can now be determined from either 

equation 7.7 or 7.8 and compared with the value predicted by the theory. 

7.6 MENISCUS CONFIGURATIONS INVESTIGATED 

During the course of this study the MS-P method has been tested in uniform, 

non-axisymmetric tubes of varying shapes with perfectly and partially wetting liquids; 

the ratter in tubes of both fixed and mixed wettability. Several different tube shapes, 

made up from the rods and plates described in section 7.2.5, have been employed. Tube 

shapes were selected both in order to confirm results of past studies and to extend 

investigations into the behaviour of menisci with both open and closed profiles. Table 

6.1 listed the tube configurations investigated together with the geometric variables 

andlor wetting conditions for which menisci behaviour has been studied. 

For the presentation and discussion of results the different configurations are 

discussed in order of ascending complexity, although this was not the order in which the 

experiments were performed. Experiments involving the perfectly wetting liquid, 

isooctane, and tubes constructed from steel and glass components are reported in chapter 

9. Selected tubes shapes from chapter 9 are treated again in chapter 10, but under partially 

wetting conditions for fixed wettability, with pores fabricated from teflon components, 

andlor for mixed wettability, with a combination of teflon and steel components. Finally, 

in chapter 11 investigations involving complex capillary surfaces where meniscus 

behaviour can be dependant on the behaviour of a neighbour are discussed; these are the 

so called "neighbouring pore" effects described in sections 3.5 and 5.3.2. 

The next chapter begins the reportage of results with the discussion of experiments 

performed to determine the ~urvature of menisci in a limited number of pore shapes 

selected to act as "standards". It is against these standards that curvatures in the other 

pore shapes are measured, so their values are of crucial importance. 
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CHAPTERS 

Curvatures in the standard configurations 

8.1 INTRODUCTION 

In chapter 7 an experimental technique was set down for the determination of 

meniscus curvatures from measured heights of rise. By making use of a comparative 

method the required apparatus was greatly simplified as it no longer needed fine 

temperature control. However, the observed curvatures depend heavily on the 

predetermined curvature of a meniscus in a pore of "standard" configuration. The 

relationship is one of direct proportion (equation 7.7), so any errors in the standard's 

curvature will be carried-over as a systematic error to all the other experimentally 

measured curvatures. Confidence in the experimental results is therefore highly 

dependent on the level of confidence held in the standard's curvature. 

If the technique described in chapter 7 is termed the "simplified" comparative 

method then to determine the standard's curvature a "full" comparative method is 

required. The full method employed here differs from the simplified method in the 

number of pores used to obtain a single curvature. Heights of rise in several differently 

sized pores of the same standard configuration are compared to those in a number of 

cylindrical capillary tubes for which the meniscus curvature is known. This approach 

lends to the results a high degree of confidence. Furthermore,' these experiments are a 

thorough test of the comparative method and its reliance on the "window of opportunity" 

in the scale of apparatus. The experiments are able to quantify the scale of the pores 

where dimensional variations in pore section and gravitational distortion of menisci are 

both small. Some quantitative estimate can be made of the effect of these and other likely 

errors in the technique. The small, but significant correction that must be added to 

observed heights of rise for the capillary rise in the indicator cell is also a result of these 

experiments. 

Results of two similar experiments have been published previously. For a standard 

pore comprising two equal rods and a plate, by Mason et al. (1983), Mason & Morrow 

(1984a) and for a rod in a right-angled corner by the same authors (l984a). The value 

of the meniscus curvature in the two rod configuration given in the latter paper has been 

used in some experiments for this study. Some results obtained ustng this value with the 

simplified method had shown significant improvement over those published in previous 

studies. It was thought that similar improvements might be found in the measured 

curvature of the meniscus in the standard pore. 
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The full comparative method compares heights of rise in cylindrical tubes to those 

in assembled pores. The question will naturally arise as to why a cylindrical tube, for 

which the meniscus curvature has long been known, is not itself used as a standard. The 

tubes used in these experiments are of the highest precision available, but the 

manufacturer's claimed bore tolerance of ± 0.25 mm over a 1.5 m length is hardly 

inspiring. My own measurements in the 10 cm lengths employed here showed a bore 

tolerance in the region of ± 0.01 mm (see Appendix B). The rods used to make up the 

assembled pores have a tolerance improved by a factor of 10. Hence, when correctly 

assembled a standard made up from rods is likely to be significantly more reliable than 

that provided by a single cylindrical tube. Two configurations were selected as standards: 

a) Two equal rods and a plate 
This configuration was selected as it had already been established as the usual 

standard for this study and so as to provide a comparison to Mason and co-workers' 

results. In 1983 Mason et al. found a value for the normalised curvature of the 

configuration of 7.00 ± 0.14 and later, with a modified apparatus, a value of 6.88 ± 0.02 

was found (Mason & Morrow 1984a). Both these experiments used a large machined 

block containing milled channels designed to hold the rods (from 3 to 6 mm diameter) 

in position. This form of apparatus was seen as having significant disadvantages over 

the clamped method employed here. Details of meniscus shape and the derivation of the 

MS-P theoretical curvature for the configuration are detailed later in chapter 9. 

b) Three equal rods and a plate 
The possibility of using a three rod standard had not been considered before and 

only arose as a consequence of early experiments conducted with the configuration (see 

chapter 11 where the theory is also detailed). The predicted curve for curvature against 

subtended half-angle, '1>, for three equal rods (Figure 11.16) shows an almost flatponion 

between 'I> = 52° and 'I> = 60°; curvature varies by only 0.05 (about 0.15%). It is a simple 

matter to assemble rods such that the angle lies between these limits. It was hoped that 

the increased confidence in the mechanical accuracy of the pore would lead to a new 

common standard. 

8.2 EXPERIMENTAL 

The components of the apparatus and the procedures followed here remain largely 

unchanged from those discussed in chapter 7, but there are differences in scale. In place 

of two connected cell blocks a total of five blocks, connected in parallel, were needed 

for each run. They were arranged in a circular arc around the cathetometer. Two 1/2" 

cells held the five differently sized capillary tubes, seven cells held rods in the standard 

configuration and one was a reservoir indicator cell. 
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Where possible needle rollers were used as rods to make the pores; advantage being 

taken of their greater precision. Some "juggling" of rods from one cell to another was 

required in order that all seven sizes could be accommodated in the available cells. The 

capillary tubes were held in a vertical position by clamping them into cells in the same 

manner as the rods. 

The diameters of the capillary tubes were determined by partially filling them with 

mercury and measuring both the length (with a travelling microscope) and weight of the 

mercury thread in several positions (see Appendix B). 

Isooctane, was chosen as the wetting liquid for the experiments. The apparatus had 

a particularly slow response to level changes due to its physical size and menisci typically 

took 15 minutes or so to settle. The system never obtained a static equilibrium. Such a 

large surface area of the volatile isooctane was in contact with the atmosphere that 

evaporation was considerable even when cell top openings behind the pores were blocked 

with tissue. 

Rectifying small leaks was now also more imponant than with the simplified 

experiments. Here several small leaks amount to a measurable height loss over the 

reading-taking period, whereas a single small leak is unnoticeable over the shon reading 

period in the other experiments. Considerable effon was required to track down and 

rectify these leaks. Complete prevention of leaks/evaporation proved impossible. 

However, over each reading period all levels were observed to drop by the same amount, 
typically 0.1 mm in 10 minutes, indicating that levels in the cells were in equilibrium 

with each other. 

The apparatus had two finer points. For the two-rod system two pores made up of 

rods of the same diameter were included, one at either end of the cell arrangement. This 

was not possible with the three rod system due to requirements of space, but two capillary 

tubes of the same size were included with both systems. This enabled a check on the 

equilibrium before taking readings and gave a check on the fabrication errors of the pores 

and on the accuracy of the horizontal travel of the cathetometer. 

Errors in the measured heights of rise arising from the cathetometer were likely to 

be increased over those in the simplified experiments. The horizontal travel was, by 

necessity, greater and the telescope required more re-focusing from meniscus to meniscus 

as the cells could no longer be arranged such that all menisci were simultaneously in 

focus. 

An experimental run consisted of measuring the levels of all the menisci, both in 

the test capillaries and the glass capillary tubes. This required focusing on and reading 

the levels of 14 or 15 menisci, a process that typically taking over 10 minutes (this 

compares with about 3 minutes for the two block system). Levels of menisci were 

corrected for the drop in height by re-measuring the first level in the sequence at the end 

and the reading period was timed. By assuming that an equal time was required for each 
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reading and that equilibrium between the cells is maintained the heights can be corrected 

to their levels at the start of the cycle. As a further safeguani the positions of the cells 

were interchanged between each run, thereby randomising any error. 

Runs were repeated for several levels in the apparaTUs both as a check on the method 

and for an estimate of the scatter produced by dimensional variations. Rod sizes for the 

seven constructed capillaries were chosen to give heights of rise covering the range for 

which the experimental technique was thought to be valid, judged from earlier 

experiments to be roughly 5 to 25 mm. 

For the two rod system this resulted in rods of nominal diameters 1116" and 2, 2.5, 

3,3.5,4 and 5 mm; the 1/16" rods were drill blanks whilst the others were needle rollers. 

The three rod configuration requires rods of smaller diameter for a given height of rise 

resulting in pores made up from rods with nominal diameters of 0.038, 0.0465 and 1/16" 

and 2, 2.5, 3 and 3.5 mm; again the imperially sized rods are drill blanks whilst the 

remainder are needle rollers. When assembled these rods gave subtended angles of 58.7", 

56.7",58.3',55.8',55.9',56.0' and 59.5' respectively. 

Note that the rods selected for the three rod system are significantly smaller. When 

the three rods are assembled the pores are large compared to the two rod pores. The 

capillary tubes had mean diameters of 0.544,0.622,0.782,0.860 and 1.186 mm and 

gave, as planned, heights of rise in the same range as the constructed tubes. 

8.2.1 Determination of curvatures 

Having obtained the heights of rise of each menisci above the measured level in 

the reservoir indicator cell, graphs of heights of rise versus reciprocal rodItube radius 

could be drawn. From the gradients the curvatures can be detennined. Also the two 

straight lines obtained should extrapolate to the same point on the heig~t of rise axis, 

giving a measure of the height of rise in the reservoir indicator cell, ho• 

by; 

For the glass capillary tubes the height of rise, hT, in a tube of radius, RT, is given 

a2 

h+
o RT 

(8.1) 

where 2 is the numerical value of the normalised curvature of a hemispherical meniscus 

in a cylindrical tube (see section 2.4.3) and other symbols carry their usual meanings. 

A plot of hT versus lIRT is thus a straight line through ho, with a gradient, GT , of 

2cr/pg (= a 2 the capillary constant). 
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The height of rise in the constructed pores, hR' with rods of radius, Ri (i = 2 for the , 

two-rod system etc.), is given by; 

CRa 
hR = h +-'-, • pgRi 

CR a2 

- h +-'-
o 2Ri 

(8.2) 

where CR is the normalised curvature of the given rod configuration. The gradient of , 
the rod line, GR, will thus be CRa/pgRi. The curvature of the menisci in the assembled , , 
pores is related to the ratio of gradients by; 

GR 
CR, = 2-' , GT 

(8.3) 

As with the simplified comparative method a/pg is a constant that cancels, making 

the method insensitive to temperatUTe changes. In addition the change in curvature with 

height in the region of the TM caused by gravity will be largely compensated for by this 

method (see later). 

8.3 RESULTS 

Over the following pages the principal findings from these experiments are first 

given and then discussed in ,relation to this and previous studies. The effectiveness of 

the comparative method of curvature determination is revealed and a quantitative account 

is made of the errors inherent to the experimental technique. A detailed breakdown of 

results is included in Appendix B. / 

8.3.1 The basic findings 

Figures 8.1 and 8.2 show respectively, the results obtained using the two rods and 

plate and three rods and plate configmations. The data is plotted as graphs of heights of 

rise versus the reciprocal' of rod or tube radius. Rather than reproduce all the data from 

each of the runs separately, the results from experimental runs conducted at five different 

levels in the apparatus have been condensed onto single graphs for each of the two 

configurations. The heights of rise shown refer to the height of the bottom of a TM above 

that measured in the reservoir indicator cell. 

The straight lines drawn on the graphs were obtained by linear regression of the 

mean heights of rise in each of the tubes or constructed pores (excluding the zero height 

of rise in the indicator cell). All the data points from the five runs are shown. Detailed 

breakdowns of the results, including the linear regression findings for each run, can be 

found in Appendix B. 
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Figure 8.1 . Graph of the heights of rise against IfRT for the capillary rubes and against I1Rt for the 
two-equal-rods-and-plate menisci. The scatter of points is mainly caused by dimensional vanations in 
the pore sections over the five different levels at which measurements were taken. No correction has 

been made for the effects of gravity distortion on the menisci. Point X shows an approximate 
reciprocal equivalent tube radius for the square indicator cell. Its distance below the rod line indicates 

the severe distortion of the meniscus the cell contains. 
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Figure 8.2 - Graph of the heights of rise against I/RT for the capillary tubes and against I/R, for the 
three-equal-rods-and-a-plate menisci. No conection has been made for the effects of gravity distortion 

on the menisci. 
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For all three pore shapes, the cylindrical tubes and both assembled arrangements, 

the data fits the imposed straight lines excellently with only a small scatter of points. 

This implies that, as expected, gravitational distortion of the menisci is small. The two 

lines on the graph extrapolate as expected to intercept at roughly the same point on the 

height axis, giving an estimate of the capillary rise in the indicator cell. 

Using each of the gradients of th~ separate run lines of Figures 8.1 and 8.2 the 

nonnalised curvatures of the two and three rod systems were detennined from equation 

8.3. The values obtained were in the ranges CR = 6.94 ± 0.02 and CR = 3.00 ± 0.02. The 
1 , 

theoretical values at zero contact angle obtained from the MS-P theory are CR,. = 6.970 

and CR, = 2.96' (refer to sections 9.5 and 11.2). The agreement, though not perfect, is 

very good at - 0.4 % and + 1.3 % respectively. 

The numerical values obtained for the height of rise in the indicator cell ranged 

from an average of 0.5 mm for both the tubes and two rod system to 0.6 mm for the three 

rod configuration. 

8.3.2. Analysis of results 

Experiments in this section represent the most thorough test of the MS-P theory 

conducted in this study or published elsewhere. The experiments that follow this 

discussion use only one test cell to obtain an estimate of the meniscus curvature, whereas 

seven cells of varying size are used here. The single curvature obtained is the "standard" 

against which curvatures in the other configurations are measured. Hence, it is important 

to give these results a complete analysis and try to account for the discrepancy between 

the experimental and theoretical values. 

Aside from the random errors generated by the measuring techniques two principal 

sources of error have been identified which are inherent to the experimental technique. 

Firstly there are errors arising from the distortion of the menisci by gravity, for which 

the MS-P theory takes no account Secondly, due to the small physical size of the pores, 

there are likely to be fabrication errors arising from dimensional variations in the pore 

construction components. The scale of the apparatus was chosen to make these errors 

as small as possible. Three questions present themselves: 

What are the quantitative effects of these errors? 

, Can they be made smaller? 

And are there any other significant systematic errors? 

• This value is the mean for the range of curvatures found for subtended angles between 52' and 60'. 
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8.3.2.1 Gravitational distortion of menisci 

In conducting these experiments capillary rise measurements have been used to 

estimate a curvature which is then compared to a theoretical value derived for surfaces 

of constant curvature. It has been assumed that errors arising from the distortion of the 

menisci are largely eliminated by the use of the comparative method. The reasoning 

being that with a similar height of rise the distortion of a meniscus in a tube will be 

roughly equivalent to that in an assembled pore. The selection of capillary tubes giving 

heights of rise in the same range as that exhibited by the constructed pores should have 

led to most of the effects of distortion cancelling when curvature is calculated from 

equation 8.3. This argument is constrained by two criteria: 

i) The menisci formed in the assembled pores need to be roughly the same 

shape as those in the tubes - concave and near hemispherical. 

ii) Distortion must nowhere be severe i.e. the data must closely fit a straight 

line on a graph of height versus reciprocal radius. 

Distortion of menisci increases as pore size increases, so any severe distortion will be 

manifest by increasing deviations from the straight lines drawn on Figures 8.1 and 8.2 

as reciprocal radius decreases. This is not apparent. 

In order for the reader to clearly identify that menisci do become heavily distorted 

as the size of pore increases an approximate reciprocal tube radius has been plotted for 

the square indicator cell on the zero height of rise line, marked X on Fig. 8.1. This point 

falls well below the line, indicating the severe depression in capillary rise due to the 

decreased curvature resulting from distortion. 

The effect of gravity distortion on the data shown in the Figures will be increasing 

depression of the heights of rise as pore size increases. The gradients, Gr and GR , will , 
all be slightly greater than would be given by undistorted menisci. 

Two assumptions of the MS-P theory are not precisely met by capillary rise 

experiments due to the effects of gravity: 

i) The theory assumes that the MTM is of constant mean curvature whereas 

in practice the measured height of rise correspond to the minimum curvatures 

of a distorted menisci. 

ii) The theory requires that the AMs bound vertical liquid wedges in the 

corners, but in practice the wedges will be sloped in the region of the MTM 

due to the variation of curvature with height. 
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Below the above two factors are discussed and rough quantitative accounts made of their 

effect on observed curvatures. 

a) Correction for minimum curvature 

In capillary rise experiments terminal menisci cannot satisfy the constant curvature 

condition of the MS-P theory because the curvature varies directly with the height above 

a free liquid surface. The measurement of height of rise to the bottom of a terminal 

meniscus is an experimental convenience (it being a definable point of measurement), 

but it also corresponds to the minimum curvature of a distorted meniscus. 

Closest to the theoretical value will be the average curvature of the meniscus. Only 

if the height change across the terminal meniscus is so small as to be unmeasurable will 

the height of rise read by the cathetometer yield the average curvature. This would require 

a height change through a TM of less than 0.01 mm. If apparatus were designed with 

this in mind then heights of rise in excess of I m would be needed and pores would have 

to be smaller than it is currently possible to make them. So, in practice, the capillary rise 

method will always yield TMs of measurably finite height. 

A more accurate estimate of a TM's curvature can be found if the level in the 

meniscus that corresponds to its average curvature is used. This was the basis of a 

correction to capillary rise discussed in section 2.4.3 for cylindrical tubes. The average 

curvature is given by the level of a plane acro~s the TM in such a position that the volume 

of liquid above the plane equals the volume of space below it. To apply this principal 

to wedging systems it must first be assumed that the arc menisci hold solid wedges and 

that the cross-section so obtained applies to the whole length of the tube. 

Exact corrections can be made for the heights of rise in the cylindrical capillary 

tubes by application of Sugden's tables, but not to those in the assembled pores as their 

cross-sections are not circular. However, it is possible to apply a first-order correction 

for the effects of gravity on the TMs in the assembled pores by assuming the TMs to be 

hemispherical. This is the basis of the Jurin correction, hj. In cylindrical tubes this 

correction is simply one third of the tube radius, Rr; 

hj = R~3 (8.4) 

The correction is almost exact for the sizes of tubes used in the experiments where the 

menisci will be near hemispherical. The maximum difference between the Sugden and 

Jurin corrected heights of rise being only 0.05% with the largest tube, as illustrated by 

Table 8.1. 

Applying the Jurin correction to the experimental data from the capillary tubes the 

height, hoc, of the hypothetical planar liquid surface was re-determined by linear 

regression of these values against IIRr. The TMs in the two and three rod assembled 

pores are not hemispherical, but bear a close enough resemblance to allow the correction 
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to be applied approximately. Firstly an equivalent tube radius, RT., was calculated from 

each average height of rise, 

(8.5) 

where GTj is the lurin corrected gradient of the tube line. 

Table 8.1 Jurin and Sugden corrections as applied to the heights of rise in the capillary tubes 
and the largest tubes employed for the two and three rod standards. 

Nominal Jurin % of Height Radius to Sugden Over-
Diameter! Correction of Rise Height Ratio Correction correction 
Equivalent byJurin 

Radius hj Rlh h, 
(mm) (mm) (mm) (%) 

Tubes: 
0.5 0.09 0.4 0.014 0.09 0.00 
0.6 0.10 0.6 0.018 0.10 0.00 
0.78 0.13 0.9 0.028 0.13 0.00 
0.8 0.14 1.1 0.034 0.14 0.01 
1.2 0.20 2.2 0.064 0.19 0.02 

Two Rods: 
0.72 024 3.3 0.094 0.23 0.14 

Three Rods: 
1.20 0.40 9.1 0.261 0.37 0.76 

This equivalent tube radius is the radius of a cylindrical capillary tube that would 

give the same height of rise as the assembled pore. One third of this radius was then 

added to observed heights of rise. For the two rod system the correction amounted to a 

maximum of3.3% in the height of rise for the pore made from 5 mm rods. The maximum 

correction was greater in the three rod system owning to the smaller capillary rise, 

amounting to an increase of9.1 % in the height of rise in the 3.5 mm rod pore. Table 8.1 

shows the effect of the correction on the largest pores together with a comparison with 

the exact correction (for tubes) provided by Sugden's tables. The simplicity of the lurin 

correction is favoured over the accUTacy of Sugden's tables. The application of the 

correction to non-axisymmetric pores is anyway an approximation. 

Plots of the adjusted heights of rise versus reciprocal rod and tube radii (shown in 

Figures 8.3 and 8.4) again show excellent straight lines for all points. Both rod and tube 

gradients were shifted downwards, but the ratio of the gradients changed only slightly. 

Values of the normalised curvatures obtained in this way were, CR,. = 6.95 ± 0.02 and 

CR, = 2.95 ±0.02 (changes of + 0.1 and - 1.3% from the uncorrected data respectively). 

Both of the adjusted curvatures are closer to their theoretical values of 6.970 and 2.96 

respectively. 
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Figure 8.3 . Graph of the heights of rise plotted against !he reciprocal of the tube and rod radii for the 
two-rods·and·plate experiments. A correction for !he gravity distortion of the menisci has been applied 

to the results. The effect on the final ratio of line gradients is quite small as the changes are mostly 
self-correcting. 
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That the two determinations of the curvature in the two-rod system, one involving 

a correction for gravity distortion and the other not, give such similar results can be 

attributed to the comparative method of measurement. The fact that the heights of rise 

in the tubes and the rod pores were roughly in the same range meant that meniscus 

distortion was also approximately equivalent. This hypothesis is supponed by the 

intercepts of the rod and tube lines with the height of rise axis. 'The lines from the 

uncorrected data intercept the axis at the same place (to within 0.01 mm). If distonion 

of rod and tube menisci had been significantly different then the intercepts would not 

equate so closely. 

After application of the Jurin correction the difference between the rod and tube 

intercepts is still small (0.02 mm) indicating the validity of the correction when applied 

to menisci between two rods and a plate (of this size range). The numerical value of the 

intercept, at approximately -<J.2 mm is close to the height of rise predicted by Sugden's 

tables for a tube with the equivalent radius of the square indicator cell (0.15 mm - this 

is itself only an approximation as it applies to a cylindrical tube of equivalent area). 

Heights of rise in the larger three rod pores fall well below the range encompassed 

by the rises in the tubes. It should therefore be expected that the distortion in these pores, 

and hence the gradient of the line, will be increased. The heavier distonion of menisci 

at these heights of rise (c.f. 4.5 mm) thus accounts for the rather high curvature given 

by the uncorrected data. This is borne out by the difference in intercepts; the rod line 

cutting the height axis 0.1 mm lower than the tube line. Put in other words the comparative 

method no longer accounts for gravity distortion when the ranges of heights of rise are 

not the same. 

Once corrected, the rod and tube intercepts show better agreement, but with the 

rod line now crossing the height axis at a higher point than the tube line (0.07 mm 

difference). This indicates a slight over correction of the rod data and hence it is quite 

fonuitous that the corrected value compares so favourably with the theory. 

In section 2.3.4 it was stated that the Jurin correction was valid only for the tube 

radius to height of rise ratio, Rlh ~ 0.02 and that it amounts to a slight over-correction. 

Here we have employed the Jurin correction well over this limit to Rlh = 0.26 with a 

4.5 mm height of rise. Figure 8.5 shows plots of height of rise versus reciprocal tube 

radius for three cases: 

i) The ideal case where there is no gravity distonion and the height of rise 

is given by hT = a 2IRT.The capillary constant, a2
, of isooctane is used. 

ii) The" real" case, determined by using Sugden's tables in reverse, shows 

the heights of rise that would be observed in practice. 

iii) The third line shows the effect of Jurin's correction on Sugden's "real" 

data. 
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Figure 8.5 • Graph of theoretical heights of rise versus reciprocal wbe radius. Three cases are shown 
(a) The 'ideal' line shows the heights of rise fex undistorted menisci. 

(b) The 'real' case, derermined from Sugden's rabIes, shows the gravity affected heights of rise that are 
observed in practice. 

(c) This curve shows the effect of Junn's correction on Sugden's 'real' dala, ooIy at very low heights 
of rise does this curve significantly depart from the 'ideal' line. 
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The "real" line shows, as expected, increasing deviation from the ideal as the tube radius 

increases. It can be seen that J urin' s correction only deviates substantially from the ideal 

when the height of rise drops below about 3 mm, a tube greater than 1.5 mm radius. The 

over-correction is always less than 0.1 % for Rlh < 0.05 and less than 1 % for Rlh < 0.5. 

That the Jurin correction increasingly over-estimates the height of rise as the size 

of the tube increases can be appreciated if the changing shape of the meniscus is 

considered. With larger tube diameters the meniscus becomes more distorted; its shape 

changing from the initial hemisphere to an increasingly cube like from. The volume of 

liquid above a plane drawn R 13 from the bottom of the meniscus will be increasingly 

less than the volume of space below it. 

If it is assumed that the curves of Figure 8.5 also apply to the menisci formed in 

the rod assemblies (and this would make a very useful experimental study) then it can 

be concluded that the "window" for which the current experimental technique is valid 

is considerably larger than was thought at the outset to the study. With heights of rise 

in excess of 3 mm the comparative technique would provide results close to those of the 

theory. 

The three rod experiments have shown that the heights of rise do not even need to 

be in the same ranges for the method to estimate curvatures accurately provided a simple 

correction for meniscus distortion by gravity is added. However, it must be noted that 

the Jurin correction will only have any relevance where the menisci in the test pores are 
near-hemispherical. If this is so menisci will be similar in shape to those formed in 

cylindrical capillary tubes. 

In summary, when the heights of rise in the tubes and rod pores are in the same 

range, as with the two rod system, then the comparative method will account for any 

over-correction. This was not the case with the three rod experiments and resulted in the 

heights being slightly depressed from the "ideal". It is not worth applying the more 

accurate corrections afforded by Sugden's tables to data from wedging systems as any 

corrections of this kind will not provide exact answers. 

b) Correction for the slope of the liquid wedges 

As a consequence of the relationship between meniscus curvature and height in 

capillary rise experiments, the liquid wedges held in the corners of the assembled pores 

will not, as the MS-P method assumes, be vertical. In practice the liquid wedges will 

slope outwards from the corners, the inclination to the vertical increasing with decreasing 

height above the free liquid surface (Figure 8.5). If, in the region of the MTM, the wedges 

slope with an angle, ~, then as pore size is enlarged the magnitude of ~ increases in the 

region of the MTM. The effect will be a growing systematic deviation from the theory 

as the upward force from the wetted perimeter, 'iPs, will become progressively le~s 

vertical, depressing observed heights of rise. 
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The curvatures in the two and three rod pores have been estimated by comparison 

with capillary tubes which do not hold wedging menisci. So the effect of the sloping 

wedges on observed curvatures found from the comparative method will be to slightly 

increase their values. The gradient of the rod line, GR , is in fact greater than would be 
• 

found had the wedges been vertical. The apparatus was scaled to keep gravitational 

effects small, but we need to know whether the sloping of the wedges has altered the 

results significantly. 

A rough estimate of the effect can be made by making use of the MS-P analysis. 

By considering a small section across a meniscus the radius of curvature of the AMs at 

the top and bottom of a MTM can be estimated from, 

a 2 

r = -
2h 

(8.7) 

With the radius of curvature known at, say, positions 0.5 mm apart an estimate of the 

angle, ~ (Fig. 8.5), can be made for each wedge. The effect of the slope on meniscus 

curvature can be computed by inserting the cosine of the angle(s) into the relevant 

expression for the liquid perimeter, 'iPL , in the MS-P analysis. The reduced curvature 

so obtained, C;, can be used to calculate the suppression in the height of rise, M, caused 
• 

by the wedge slope from; 

(8.8) 

The effect on the observed curvature can then be found from equation 8.3 by adding 

relevant M to each of the observed heights of rise. Table 8.2 shows the estimates obtained 

for the largest and smallest rods in the two-rod system. 

Table 8.2 Effects of sloping wedges in the two-rods-and-plate standard. 

Slope of Wedge 

Rod Rod-Plate Rod-Rod Reduced Reductim Change 
Diameter Curvature In Height In Height 

(mm) (deg) (deg) (mm) (%) 

0.79 0.5 0.3 6.9698 0.001 0.00 
5.0 5.0 3.0 6.9598 om 0.14 

If the heights of rise are adjusted in this way the net effect on the curvatures obtained 

by the full comparative method is a reduction of 0.01 (0.15%) in that for the two-rod 

system. This is a roughly similar but reversed effect to the Jurin correction. 



148 

8.3.2.2 Dimensional errors 
Deviations in the pore cross-sections from that given by the average dimensions 

of the pore consnuction components will pertain in both the consnucted pores and the 

precision bore capillary tubes. 

Variations in the diameter of the tubes are unlikely to have caused significant 

systematic deviations in the observed curvatures. This is because at the level of 

measurement the diameter of the tube may be greater or less than the average detennined 

by the mercury thread method. Over the five runs any variations should largely cancel, 

producing a mean line whose gradient is close to that of totally uniform tubes having 

the average diameters. 

However, for a pore formed by contacting rods the effect of dimensional variation 

is different. A rod will contact with its neighbour or the plate at points where its diameter 

is largest, leading to pores of greater cross-section than specified. Here we are assuming . 

that measurement of the rod diameters have shown no significant tapering from top to 

bottom. Since the dimensional tolerances of the rods were found to be independent of 

diameter (see section 7.2.5), these variations will be more marked with smaller pores; 

i.e. dimensional errors will increase with decreasing pore size. 

The dimensional errors can be quantified if the "equivalent tube" diameters are 

considered. For example, the equivalent tube radius of the pore formed by two 1/16" 

rods is 0.24 mm. The maximum variation in rod diameter was 0.002 mm. If all this error 
is passed on to the equivalent radius the corresponding drop in the observed height of 

rise amounts to 0.8%. With the largest rods, 5 mm diameter and 0.72 mm equivalent 

tube radius, the change in the observed height of rise is only 0.3% with rods of identical 

tolerance. The result of these dimensional variations will be to depress of the gradient 

of the rod line and hence the observed curvature by as much as 1%. 

The overall effect of tolerance variation is always to make the consnucted 

capillaries larger than their nominal sizes. This is consistent with observed curvatures 

being slightly lower than their theoretical values. 

8.3.2.3 Other systematic errors 
The two sources of error discussed above, namely those arising from gravity 

distortion and dimensional variations, can together account for the difference between 

observed and theoretical curvatures. However it is necessary to make some note of other 

potential sources of systematic error. Errors arising from the measurement of heights 

and diameters etc. will be random, leaving only errors that may arise fn.>m the surface 

condition of the pores. 
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One possible source of error is that of non-zero contact angle. The pore construction 

materials, steel and glass, are both high energy solids and as such will be perfectly wetted 

by isooctane. However, if the surfaces of the pore are contaminated with din and/or 

grease then non-zero contact angles may result. Even if the materials had remained 

contaminated after cleaning the resulting contact angles will be small, of the order of a 

few degrees. Isooctane on teflon, a low energy solid, produces a receding contact angle 

of less than 5'. 

The effect of low contact angles on meniscus curvatures is small (see for example, 

Figure 10.5) resulting in only very slight reductions in value. Contact angles less than 

5' produce reductions in curvatureofless than 0.25%. The use of the comparative method 

of curvature determination will further reduced any error. 

Another assumption of the theory that will not be exactly satisfied is that of the 

perfectly smooth solid surface (see section 2.7). On a macroscopic scale the surfaces of 

both the steel and glass are rough and hence the liquid will not always meet the plane 

of the solid surfaces tangentially. The angle of interception with the vertical plane of the 

solid surface will vary according to the surface condition at the three phase line. As a 

consequence the upward force resulting from the contact of the liquid with the solid 

perimeter will not be everywhere vertical, so lowering individual curvatures slightly. 

The effect will again be largely eliminated by the comparative method. 

8.3.3 Comparison of results with Mason et ai's studies 

Mason et al. (1983, 1984a) have published results from experiments similar, in 

most respects, to these. Their raw experimental data (1984a), uncorrected for distortion, 

yielded a value of 6.88 ± 0.02 for the normalised meniscus curvature in the two rod 

system. The value of 6.94 ± 0.02 obtained here compares favourably with Mason's value. 

The improved proximity of the experimental value found here to that predicted can be 
attributed to two improvements in the apparatus. 

j) Mason used "precisely" machined channels, not clamps, to hold the rods 

in position. As explained in section 7.2 this arrangement is likely to lead to 

significantly greater dimensional errors as the rods may not touch the plate. 

jj) The needle rollers that were, for the most part, used to assemble the pores 

are of significantly higher tolerance than the silver steel rods employed in 

Mason's experiments. 
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8.3.4 Bearing on the general experimental method 

The experiments conducted here have been to determine the curvatures in certain 

"standard" pore shapes. In each case a total of twelve pores were used. This method 

yields accurate results in which there is a high degree of confidence. However, it would 

be impractical to conduct all experiments with the full comparative method, as it is both 

cumbersome and too time consuming. 

In determining the curvatures of menisci in test pores of non-standard 

configurations only three measurements are required; the level in the test pore, that in a 

standard cell and the reference level in the reservoir indicator cell. The meniscus 

curvature is then determined as described in section 7.5, from a simple equation; 

C = 6.94 -(
M,+0.5)R, 
M I+0.5 RI 

Cl.7) 

This method is termed the simplified comparative method and carries the same 

advantages as its full brother, but is also bound by some limitations as the accuracy of 

the method depends on the applicability of the standard's predetermined curvature. The 

multiplier, 6.94, is the mean value of the meniscus curvature in a pore formed by two 

equal rods and a plate for heights of rise in the range 7 to 24 mm. So the heights of rise 

in test and standard pores should be in this range. 

The correction applied for the height of rise in the indicator cell, 0.5 mm, has no 

physical significance, It is simply an extrapolated value from the heights of rise given 

by the gravity distorted menisci in the pores (see Fig. 8.1). The correction accounts for 

the distortion only so long as the heights of rise in the test and standard pore are close 

to each other and their shapes broadly similar. 

If the heights of rise differ by more than a few millimetres use of the simplified 

comparative method is not strictly valid. The degree of distortion of each meniscus will 

differ. 

The validity of the correction is also doubtful when the test meniscus is of a 

markedly different shape to the near-hemisphereical menisci produced in the standard 

arrangements. The value of the intercept will, in fact, vary slightly from configuration 

to configuration and with one liquid to another. However, the increased accuracy 

obtained from the full method could not be justified in terms of the time required obtaining 

it. 

In those instances where the menisci in the test and standard are of similar shape 

there is no need to keep the heights of rise close. These experiments have shown that 

the Jurin correction provides an excellent compensation for distortion of near 

hemisphereical menisci. In these cases the curvature is obtained by first adding the "true" 

correction for the height of rise in the indicator cell, determined at 0.2 mm from Figure 
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8.4. The Jurin correction, h·, found from the equivalent tube radius, is then added giving . } 

the relationship for curvature in the test cell as; 

C = 6.95 -(
1'J.h, + hit + 0.2 )R, 
1'J.h, + hj, + 0.2 R, 

(7.8) 

Note that the gravity corrected value for the standard curvature is now used. 

The above equation proved useful in some of the experiments (see later), but was 

inappropriate when the test TMs' were not concave. With some pore shapes other 

corrections seemed considerably more appropriate, these are discussed in the relevant 

sections. In these experiments the two principal effects of gravity, namely those arising 

from the measurement of minimum curvature and from the sloping of the wedges, broadly 

cancelled. Note that this will not necessarily be the case with the simplified method as 

both standard and test pore will contain wedges. Thus both the gravitational effects will 

act to reduce observed heights of rise to increasing effect as the pore section is enlarged. 
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CHAPTER 9 

Investigations under perfectly wetting conditions 

9.1 INTRODUCTION 

When the contact angle is zero the MS-P theory is generally easier to apply than 

is the case if partially wetting conditions are incorporated. In addition, the experiments 

are both comparatively simpler to perform and much less time consuming. It is for these 

reasons that most of the past investigations and many of the experiments reponed in this 

study are conducted under perfectly wetting conditions. 

In this chapter the theory and experiments for four different pore shapes are 

discussed in order of ascending geometric complexity. This was unfortunately not the 

same order in which experiments were conducted. For each pore shape the theory will 

be derived in terms of the chosen variable and experiments performed to conflrm the 

predictions in variously shaped and sized pores. The results will then be discussed in the 

light of likely errors arising from the experiments. 
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9.2 RECTANGULAR DUCTS 

One of the simplest imaginable geometries for a capillary that exhibits arc menisci 

is that of a square or rectangular tube. This is the logical place to stan an examination 

of the MS-P theory. The simple geometry results in a very straightforward solution of 

the MS-P equation that, as with other n-agon tubes (section 6.4.1), affords an analytical 

solution. 

Experimental verification of the theory is far however from simple. Fabrication of 

small rectangular tubes to precise dimensions proved difficult. Pores made up from rods 

have the advantage of being made up from elements considerably larger than the pore 

itself. Rectangular ducts must either be directly machined or, as here, be made up from 

contacting plates of the same dimensions as the pore itself. These methods of fabrication 

result in dimensional errors significantly larger than those in rod pores. However, some 

meaningful results can still be obtained. 

The MS-P theory for rectangular tubes was recently used by Lenormand et al. 

(1983), whilst Legait (1983) utilised the theory with square tubes (section 5.4) 

Rectangular ducts were also the subject of a undergraduate project at Loughborough 

University by Clough & Daniels (1986). The latter study sadly provided little assistance 

as both theory and experiments were wildly in error. 

9.2.1 Theory 

Figure 9.1 shows the shape adopted by a MTM of a perfectly wetting liquid in a 

rectangular duct. Four DCAMs, one in each corner, merge to form the MTM. Assuming 

this meniscus shape the expressions for effective perimeter and area of the meniscus can 

be found. The nomenclature follows that of chapter 6 except for those parameters defined 

on Figure 9.2. 

Two characteristic dimensions are required to define the pore size, selected to be 

half the tube depth, R, and half its width, d. The pore shape can be defined by the aspect 

ratio, d/R. The curvature may be normalised against either dimension, R/r was chosen 

here. Since the MS-P equation requires only the ratio of meniscus area to perimeter, only 

one of the four quadrants of the tube needs to be considered. 
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Figure 9.1 - Arrangement of arc menisci (AMs) for a main terminal meniscus (MTM) in a reaangular 
duct. The effective area of Ihe MTM is shown hatched and Ihe effective perimeter outlined. A 
schematic representation of Ihe capillary rise profile seen Ihrough !he glass plate is also shown. 
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Figure 9.2 - Diagram showing !he choice of regions and terminology used in Ihe calculation of 
effective area and perimeter for Ihe meniscus in a rectangular duct. Note Ihat only a quarter of the duct 

need be considered owing to Ihe symmelry of !he duct. 

a) Perimeters 

From Figure 9.2: 

PI = R-r 

P2 = rcrl2 

P3 = d-r 

b) Areas 

AT = dR 

A2 = (1-rc/4)e 

c) Effective area and perimeter 

The effective perimeter, shown bold on Figure 9.2, is given by: 

P <!f = 'LPs + 'LPL 

but'LPS =PI +P3 and 'LPL =P2,hence 

P <!f = (d + R). + (rc/2 - 2)r 

The effective area, shown hatched on Figure 92, is simply given by; 

A<!f = AT - A2 = dR - (l-rc/4)r2 

Equations 

9.1 

Equations 

92 

(6.11) 

(9.3) 

(9.4) 
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d) Solution of equations 
The MS-P equation relates area and perimeter to the radius of the arc menisci, r, 

P,ff - A<// = 0 (6.12) 

substituting for P,u and A,u and normalising with respect to R yields, 

(9.5) 

a simple quadratic in rlR which can be solved to give 

r _ (i+I)±vfHi-2+1t)+1 
R 2-rrl2 

(9.6) 

Both roots are positive, but only one is physically realistic. This can be simply illustrated 

by setting d = R, a square tube. Equation 9.5 reduces to; 

R 
= r 

yielding results of Rlr =0.1138 or Rlr = 1.8862. A normalised curvature of 0.1 138 implies 

r > R which is a physical impossibility. Thus the normalised curvature in rectangular 

tubes is given by: 

(2 - rrl2) • (9.6) 

In section 5.4 Lenormand et aI's (1983) force balance gave an expression for the 

capillary pressure in rectangular tubes; 

. 0(1 I) P = F(e)2 -+-, x y (5.9) 

where e(4 -n) 
= 

2(1 +e){(1 +e) -·'/(I +d-e(4-n)} 
F(e) (5.10) 

and . e = xly - the aspect ratio of the tube 

InCOrpOration of the Laplace equation in the above and adapting the notation yields an 

expression for C,,,,; 

~ = 2F(e)(~+~}, e=~ (9.7) 

At first glance the above expression bears scant resemblance to equation 9.6. However 

Lenormand has merely solved the quadratic in terms of r( lid + l/R) instead of Rlr. 

Multiplication of 9.5 by the factor; 

2d(].+.!..)2R2 
R d R 

yields 
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which solves to give Lenormand's result. 

Equation 9.6 was inserted into a very simple computer program and values of R/r 

calculated in terms of the aspect ratio, d/R. Figure 9.3 shows the results as a continuous 

relationship on a graph of normalised curvature versus aspect ratio, the numerical results 

are detailed in Appendix C. 

.. 

~~ ~ . ....... -

LO -----------------------------. 

o 2341ie7, 
ASPI'.CT .RAm {d/R} 

Figure 9.3 • Theoretical results of curvature for menisci in reclallgular ducts. The curvarure is 
normalised with respect to R, balf the tube depth, and plotted as a continuous relationship against the 

tube aspect ratio. 

9.2.2 Experimental 

Three adjustable depth (i.e. variable in R) rectangular ducts were investigated with 

nominal widths of 3/64", 1I16"and 3/32". The aspect ratios covered ranged from 0.5 to 

7.5 and were expected to give heights of rise in the range 5 to 25 mm, the entire range 

for which the comparative method has been validated. Isooctane, the wetting liquid, was 

used as the test liquid. In general, the experimental procedures folIowed those laid out 

in section 7.4. However there are some particulars specific to this configuration; these 

are discussed below. 



157 

9.2.2.1 CeU design 

A specially designed cell was used for these experiments, the usual cell blank size 

being of inadequate size to accommodate the construction components. Figure 9.4 shows 

the design. All three ducts are accommodated in the cell. The cell is taller and thicker 

than the standard cell blanks, measuring 3" by I" by I 1/2". A 1/2" square channi:! was 

machined from the front face of the aluminium alloy cell. The ducts are made up from 

steel plates in contact. Three precision width plates form the back walls of the tubes. 

They are separated by four notched steel spacers that also form the side walls of the 

ducts. The glass plate forms the front wall of the tubes. 

The spacers are of equal depth to the machined channel and remain static when 

aspect ratios are adjusted. Near either end of the spacers are 1/S" deep notches that hold 

the precision shimstock. Brass or steel shims separate the tubes' back wall from the glass 

plate and enable the aspect ratios to be adjusted. 

The rectangular plates are pushed from behind against the shims by two sets of 

clamping screws (semi threaded pins), positioned level with the shims as shown in Figure 

9.4. All seven plates are also pushed horizontally together against the left-hand wall of 

the machined channel by three additional clamping screws entering through the 

right-hand wall as shown in Figure 9.4. 

The cell design also has some finer points. The pins at the back were sealed in one 

of two plastic housings fitted with rubber "0" rings to prevent excessive evaporation 

/leakage along their threads. The three clamping screws were fitted with plastic nuts for 

the same reason. Once fabricated, the plates were assembled in the cell in the absence 

of shims; the rectangular plates clamped level with the front face. The glass plate was 

then removed so that a few thou could be skimmed from the entire front face, thereby 

ensuring all the plates married up with each other and the front face. The design of the 

spacers meant that it was difficult to reassemble them wrongly, whilst the plates were 

marked to ensure their skimmed faces always faced forward and were the right way up. 

It is likely that, despite the above precautions, there will be small gaps between the 

spacers and glass plate and perhaps between the rectangular plates at some points. These 

will be in the order of thousandths of an inch. The presence of the gaps will not matter 

provided the overall dimensions of the tube remain those specified by its aspect ratio. 

The reason is that the AMs bound the corners and it does not matter what the geometry 

is behind them as this effects neither the shape of the AMs nor the MTM. 

The design described above is cumbersome and, in practice, difficult to set up 

correctly. A total of nine screws enter the channel and another twelve are needed to 

clamp on the glass plate and to seal the threaded pins. During assembly great care is 

required to ensure that no dust or din gets in-between the plates as this will distort the 

geometry greatly. Also the clamping pins must be tightened gradually and evenly so that 
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the plates are set square to the glass plate. However short of making a new cell for each 

aspect ratio I can think of no better design. Aspect ratio is adjustable and reasonable 

confidence is held in pore dimensions. 

9.2.2.2 Determination of aspect ratio. 

The aspect ratio of a given rectangular tube is the ratio of its depth, 2R, to its width, 

2d. The width of the ducts were obtained from micrometer measurements on the 

rectangular plates. Several measurements were taken along the plate length with the 

micrometer jaws close to the leading edge of each plate. Table 9.1 shows the average 

measurement and the tolerances. Table 9.2 shows the mean thicknesses of the five sizes 

of shimstock used. The 100 thou shims were made from machined steel block, whilst 

. the remainder were made of standard brass engineering shimstock. The shims show a 

somewhat better tolerance than the steel plates. 

Table 9.1 Micrometer measured widths and 
tolerances for the rectangular duct plates. 

Nominal 
Plate 

Width 
(in.) 

3{32 

1/16 

3/64 

9.2.3 Results 

Mean 
Plate 

Width 
(mm) 

2.372 

1.630 

1.220 

Tolerance 
Range 

0.010 

0.170 

0.023 

Table 9.2 Micrometer measured thicknesses 
and tolerance ranges of the shimstock spacers. 

Nominal 
Shim 
Size 

(thou.) 

12 
15 
20 
40 
100 

Mean 
Shim 
Size 

(mm) 

0.317 
0.401 
0.541 
0.942 
2.540 

Tolerance 
Range 

0.003 
0.002 
0.003 
0.002 
0.001 

Figure 9.5 shows the results compared to the MS-P predictions on a graph of 

normalised curvature, Rlr, versus aspect ratio, dJR. Compared to results from pores made 

up from rods the agreement is not very good. However the trend of the theory is followed 

closely by all the experimental data. 

Curvatures were calculated from averaged observed heights of rise using .the 

simplified comparative method; equation 7.7. Five different shim sizes (R's) were used 

yielding a total of fifteen aspect ratios. Notice some of the data are plotted twice as the 

same aspect ratio may be regarded as greater or less than unity (Rlr vs dJR is equivalent 

to dJr vs RId). Appendix C contains the detailed breakdown of results. 

Almost all the observed curvatures fall below the MS-P curve. Errors from the 

predicted values are within 4% except in one case where the error is 5.9%. This latter 

curvature was obtained from heights of rise in the vicinity of 4 mm - outside the validated 

range of the simplified comparati ve method. 
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Figure 9.S Experimental results ror nonnalised curvatures obtained from the heights or rise or menisci 
in the rectangular ducts. 1bere is a systematic error in the results arising from difficulties encountered 

in assembling the ducts with the specified aspect ratios. 
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It is probable that most of these elTOl'S arise from dimensional inaccuracies in the 

tube cross-sections. Unlike pores made up from contacting rods, the pore construction 

components are of similar size to the pores themselves. The same small dimensional 

variations found in rods will cause significantly greater errors in the aspect ratios of the 

rectangular tubes than they would to the sections of rod pores. 

For each of the three tubes the magnirude of error from predicted curvatures rises 

as aspect ratio falls. The rate of change of curvature also increases dramatically with 

decreasing d/R so identical errors in pore section will result in larger errors in curvature. 

As with rod pores, dimensional variation in pore construction elements leads to pores 

of greater size than specified by the mean component size, as components will contact 

at their largest widths. That observed curvatures fall below theoretical predictions is 

consistent with rubes of greater section than specified. From the toleranc~s of the pore 

components (Table 9.1) it is likely that most of the error is in the tube width, d, but any 

flecks of dust-or dirt caught in-between the plates and/or shims will have similar effects. 

That the magnirude of dimensional error is so much larger than in other experiments can 

be attributed to the difficulties with the cell. 

Also reducing the observed curvatures from the ideal, but by much less significant 

amounts, is the distortion of the menisci. The comparative method partially corrects for 

gravitational effects. In fact many curvatures here have inadvertently been slightly 

over-corrected. These experiments were conducted prior to those on the standard 

configuration and the lessons of the latter had yet to be appreciated. In many cases the 

height of rise in the standard pore (2 x 1/16" diameterrods) was significantly higher than 

that in the test pore. Thus, when using equation 7.7, with the 0.5 mm correction applied 

to heights of rise, the rise in the standard pore will be over-couected in comparison to 

that in the test pore. The result is curvarures slightly higher than would have been the 

case had the heights been roughly equivalent (as explained in chapter 8). This has only 

resulted in errors of a few tenths of a percent however. 

With near hemispherical menisci the above discrepancy could have been avoided 

by applying the lurin correction. However it is inappropriate here as most of the menisci 

are far from hemisphereical in shape and become less so as aspect ratio increases. A 

more realistic correction would be to consider the TM as a semicircle and to add the 

height of a plane positioned such that the sectional area of liquid above it equalled the 

area of space below it. The AMs considered as a solid boundary. This correction to the 

minimum curvature that is measured in practice is significantly less than the, Rd3, used 

by lurin's correction. However considering the much larger dimensional errors it was 

not considered appropriate to correct for distortion. 

Overall the results are as good as could be expected bearing in mind the difficulties 

of fabricating rectangular tubes. 
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9.3 ONE ROD A WAY FROM A PLATE 

The meniscus curvature in a pore formed by a single cylindrical rod spaced from 

a plate was first calculated with the MS-P method by Princen himself (1969a), but he 

made only one measurement to confirm the theory, finding an error of 3% (see section 

5.3.1). Later Mason & Morrow (1987) made a few measurements for the arrangement, 

but the agreement with the theory was poor, being as much as 15% in error. 

The aim of these experiments was to re-examine the arrangement and to take 

measurements over a wide range of rod spacings. The open profile of a meniscus between 

a rod and plate is unlike those already discussed in that a T A.\i is formed. This is 

saddle-shaped and the profile of the MTM when viewed through the plate is thus convex. 

The majority of previously published results for menisci in asymmetrical uniform pores 

deal with wholly concave clastic menisci It was hoped that the MS-P method could be 

shown to also work well with antic1astic menisci. 

9.3.1 Theory 

Figure 9.6 shows the shape of meniscus between a rod and a plate in profile and 

section. Two WOAMs, one at each side of the rod, merge to form a rAM. Note that 

while the TAM appears convex when viewed through the plate, it appears concave 

when viewed at right angles to the plate (Figs 9.6 (i) and (ii), i.e. the TAM is antic1astic. 

(i) (ii) 
TAM TAM 

(ii) 

(i)--

I . 

Figure 9.6 - Anangement of the AMs for the Terminal arc meniscus er AM) formed in the gap 
between a rod and a plate. The effective area is shown hatched and the effective perimeter outlined. 

Schematic representationS of capillary rise profiles seen through the plate (i) aod aI right angles to it (ii) 
are also shown. Note the anticlastic form of the saddle-shaped T AM. 
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The arrangement again requires two characteristic dimensions to define the pore; 

the rod radius, R, and as a measure of the gap between the rod and plate half the total 

gap, d, was chosen. The curvature may be nonnalised with respect to either dimension. 

The rate of change of curvature with rod spacing is expected to be large so nonnalising 

with respect to d will yield a more useful, flatter curve when curvature is plotted against 
the nonnalised spacing, dlR. 

r 

I 
I 
\ 
\ 
\ 

Q, 

R 

\ 
I 
I 

I 
/ 

area T 

Figure 9.7 - Sketch showing the definition of the angle, the choice of regions and the associated 
terminology used in the calculation of effective area and perimeter for the one-rod-away-from-a-plate 

. arrangement 

The meniscus cross-section has a plane of symmetry so, as with the analysis of 

rectangular ducts, only part of the section needs to be considered. Figure 9.7 defines the 

particular notation for this arrangement which otherwise follows that of chapter 6. 

Application of simple geometry on Figure 9.7 yields the following expressions. 

a) Subtended angle 

etl = arc cos (R+2d-r) 
R+r 

(9.9) 

b) Perimeters 

PI = etlR 

P2 = (R + r) sin etl Equations 9.10 

P3 = (1t-~)r 

c) Areas 

Al = etlR
2/2 

A3 = (1t - etl )r
2/2 Equations 9.11 

AT = ~ (R + 2d + r)(R + r) sin etl 
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d) Effective area and perimeter 

The effective perimeter, shown bold in Figure 9.7, is given by: 

P.g = "'iPs + "'iPL (6.11) 

and from Figure 9.7; 

"'iPs = PI + P2 and 

Note the negative sign for the liquid perimeter, present beca:Jse the AM is open, and 

hence, 

P.g = PI + P2 - P3 

The effective area, shown hatched in Figure 9.7, is simply given by, 

A.g = AT - AI - A3 

e) Solution of equations 

In addition to equations 9.9 to 9.13 the MS-P equation, 

P <tI" - A'1f = 0 

(9.12) 

(9.13) 

(6.12) 

also applies. With this arrangement it is not possible to solve the equations explicitly for 

r as both A'1f and P'1f are functions of ClI which is, in turn, a function of r. Consequently 

the standard computer program (section 6.4.2.1) was used to solve the equations. The 

program was modified to calculate values of normalised C\lfyature, d/r, in terms of the 

normalised rod spacing, R/r. 

The results are shown on Figure 9.8 as a continuous relationship between curvature 

and spacing. The normalised spacing ranges from 0 to 0.5, this being the range 

encompassed by the experiments. The curvature of the TAM falls continuously as the 

gap is increased, rapidly at first and then more slowly. Overall the function is roughly 

hyperbolic, approaching each axis asymptotically. The results agree with the tabulated 

values given by Princen (1969a) when they are adjusted to his method of normalisation. 

9.3.2 Experimental 

Three rod spacings, nominally of 8, 12 and 15 thou, were investigated with drill 

blanks of various sizes in the range 1/32" to 1/4". Recorded heights of rise were in the 

range 5 to 22 mm, within the validated scope of the comparative method. The wetting 

liquid isooctane was used for the experiments. Particulars specific to this arrangement 

are given below. With these exceptions the general procedure detailed in section 7.4 was 

followed. 

9.3.2.1 Cell iksign 

Any cell employed for experiments with a single rod away from a plate has to 

satisfy four requirements: 
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Figure 9.8 - Theoretical results of curvature for menisci between a rod and plate. The curvature is 
normalised with respect to the gap and plotted as a continuous relationship against the normalised 

spacing. 

iJ The channel in which the rod is held must be of sufficient width to ensure 

that the rod, when in p05ition, is isolated from the channel walls. Failure in 

this respect will result in distortion of the WOAMs caused by the influence 

of the walls. 

ii) The rod must be held vertically in the cell thereby yielding a symmenical 

meniscus. 

iii) The two shims that act as the rod-plate spacers, must be accommodated 

far enough apart to allow capillary rise in-between and in such a way as to 

facilitate easy cell assembly. 

iv) The rod must be pushed fuml y against the shims, but in a manner that 

does not cause any bending of the· rod. 

Figure 9.9 shows the cell design chosen after consideration of the above points_ 

The cell was fabricated from a standard cell blank and had a 3/S" square channel 

machined in the front face. Pairs of "shim-holders", measuring 1/4" by l/S" and 1/16" 

deep, were cut either side of the channel, one each at the top and bottom of the channel 

The rod is pushed against the shims by two clamping screws entering through the back 

wall of the channel, directly behind the shims. The threads were ground off the last 1/S" 

of the screws to leave a 1/16" diameter pin. The pins fit into holes in two steel blocks 
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that act as both vertical aligners and supports. The blocks are identical and have a small 

"V" shaped groove, 1/32" deep, machined in their front face to hold the rod vertically 
in position in the centre of the channeL 

o 

Figure 9.9 - Diagram of the ceo used for the capillary rise experiment on the 
one-rod-away-from-a-plate arrangement The rod is pushed against the shIms by two clamping screws 
headed with grooved blocks. The blocks ensure that the rod is held in a vertical position in the middle 

of the channel. 

9.3_2.2 Cell assembly 

The above design proved easy to assemble, but care was required when pushing 

the rod against the brass shims. Too tight and the brass deforms, becoming indented, 

particularly when smaller rod sizes are used. Too loose and rod-shim-plate contact is 

not achieved. Either way the spacing will not be that specified: Unfortunately there is 

no way of directly checking the rod spacing once the cell is assembled, so it is all the 

more important that the screws are properly tightened. This problem was aggravated by 

difficulties in making shims of the required size that were not somewhat bent after 

preparation by the method described in section 7.2.5.4. Hence some pressure had to be 
applied to flatten the flexible shim against the plate. 
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Through practice a technique was found to check the rod-shim-plate contacL The 

cell would fIrst be loosely assembled and then immersed briefly in isooctane. With the 

shims now wet the required tightness of the screws could be judged. When the small 

menisci between the shim and plate disappeared they were in contact and, by implication, 

the rod must also be contacting the shim. 

The usual practice of attaching plastic nuts to clamping screws to prevent leakage 

was not followed in order that changes in resistance to screw tightening could be felt. 

However to prevent excessive leakage along the threads P1FE tape was wrapped around 

the screws. They were then "exercised" by screwing them in and out of the cell a few 

times so that in operation they could be moved freely until the point of mutual contact. 

9.3.2.3 Point of measurement of height of rise 

As viewed through the plate the meniscus profiles appear convex, so the usual 

criterion of measuring the height of rise tothe apex of a meniscus no longer applies. To 

measure to the apex of the T AM is to measure the maximum curvature. Meaningful 

experiments require a defInable point to measure the heights of menisci. The definable 

point closest to the minimum curvature of a TAM is that to the bottom of the concave 

part (see Figure 9.6 (ii)). This point can be made out immediately beneath the profile 

appearing against the glass. 

9.3.3. Results 

The mean curvatures obtained from fourteen different rod-gap arrangements are 

shown compared with the MS-P theory as a graph of normalised curvature, d/r, versus 

normalised spacing, dlR, on Figure 9. 10. The results are generally in excellent agreement 

with the theory; most to within I % and all within 2.5%. Further details are given in 

AppendixD. 

Observed heights of rise were used to calculate curvatures with equation 7.7, 

without correcting for gravity distortion. The lurin correction is clearly inappropriate as 

the menisci are partly convex. Indeed, the average curvature of a T AM (which is closest 

to the constant curvature assumed by the MS-P theory) will correspond to a height less 

than that measured. This is consistent with most of the experimental curvatures being 

slightly higher than the theoretical values. The actual correction required to be subtracted 

for gravity distortion is difficult to quantify, but it will not correspond to the lurin 

correction. The menisci are nowhere near the hemispherical shape assumed by this 

correction, in fact, the two principal radii of curvature are of opposite sign. 
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Figure 9.10 • Experimental results of curvarures obtained from heights of rise for the T AM formed in 
the gap between a rod and plate. 
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There is little doubt that gravity will act ·to suppress the curvature. the physics 

demand it. However. the effect will be largely offset by the measurement of the higher 

than average curvature. Also it may be that the sloping of the wedges compensate for 

the effect somewhat. OAMs. unlike CAMs. act to pull down a TM. The fact that they 

were sloping (observed in practice as well as predicted from the variation of curvature 

with height) means that they no longer pull the TAM vertically downwards. Only the 

vertical component will suppress the height obtained by the TAM.leading to higher than 

expected heights of rise. 

Dimensional variations will again account for most of the scatter in the data. Here 

dimensional errors may make the pore either larger or smaller than that specified. Rods 

will contact the shims and the shims the plate at their thickest points when the cell is 

correctiy assembled so lowering the curvature. However. if the rod were over-clamped 

and the rod indented the shim then the spacing will be less than expected. thereby 

increasing the curvature. This is consistent with results using the smallest rod. 1/32" 

diameter, giving larger positive errors. Any bending of the rod towards the plate. an 

effect difficult to avoid with the small diameter rods, will have a similar effect. 
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9.4 ONE ROD IN A CORNER 

The case of a single rod in a corner of known angle is one of the simplest imaginable 

pore geometries to which the MS-P method can be applied. This arrangement has been 

considered before. Firstly by Mason & Morrow (1984a), who limited their analysis and 

experiments to right-angled corners. The theory was derived to show the effect of 

changing contact angle on meniscus curvature. Their experiments used the full 

comparative method described in the preceding chapter and were limited to zero contact 

angle. 

Later the arrangement was studied as pan of an undergraduate project at 

Loughborough University by Nibbs & Baynes (1986) with supervision by Mason. Their 

study extended the theory and experiments to cover acute corner angles of 30·,50·, and 

70· under perfectly wetting conditions. 

The object of the study presented below was to confirm, and hopefully improve 

on, the·previous results and extend the analysis and experiments to obtuse corner angles. 

9.4.1 Theory 

Under perfectly wetting conditions a meniscus in a corner bounded by a rod and 

plate adopts the shape shown in Figure 9.11. Three DCAMs, two where the rod contacts 

the plates and one in the angled corner, merge to form the MTM. Knowing this 

arrangement enables the relationships between the radius of curvature of the AMs and 

the effective area and perimeter to be defined. The terminology used below follows that 

proscribed in chapter 6 and Figure 9.12. 

three DCAMs 

Figure 9.11 - Arrangement of arc menisci for the main terminal meniscus in the pore formed by a rod 
in a corner. The effective area is shown hatched and the perimeter outlined. A schematic 

representative of the capillary rise profile seen through the plate is also shown. 
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Figure 9.12· SkelCh showing lhe ~efinition of angles, lhe choke of regions and a.ssociarM 

tenninology required for !he calcuJauon of effecuve area and penmeter for lhe rod·m-a<omer 
arrangement 

a) Angles 

The corner angle, $, is assumed to be known, and since the geometry is symmetrical 

about the plane AO we need only consider half the cross-section. Only one further angle 

needs to be defined; ai' 

a l = arc cosG~ : ~ D 
b) Perimeters 

From Figure 9.12: 

PI = (7t- ~)r 

Pz = (7t-2~ -$)RI2 

P3 = (7t-$)rl2 

P4 = (R - r) cos( $12) - (R +r)sinal 

c) Areas 

AT = R Z(cot($/2»12 

Al = «R + r l sin a l + (7t - a l )r
z)12 

Az = (7tl2-~ -$/2)RzI2 

A3 = r Z(cot($I2) - (7t - $»/2 

d) Effective area and perimeter 

The total effective perimeter, shown bold on Figure 9.12, is given by; 

Peff = 'i,Ps + 'i,PL 

and from Figure 9.12 'i,Ps = Pz +P4 and 'i,PL = PI +P3 hence 

~ = ~ + ~ + ~ + ~ 

The effective area, shown hatched in Figure 9.12, is given by; 

Aeff = AT - Al - Az - A3 

(9.14) 

Equations 

9.15 

Equations 

9.16 

(6.11) 

(9.17) 

(9.18) 
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e) Solution of equations 
The equations derived above were entered into the standard solution program 

together with the MS-P equation, 

P,gr - A<JJ = 0 (6.12) 

The program was modified to give values of normalised meniscus curvatures, R/r, in 

terms of the corner angle, (jl, for corners between O· and 180' (see Appendix E). The 

results are shown in graphical form as a continuous relationship between R/r and (jl on 

Figure 9.13. As expected the curvature increases with increasing corner angle (decreasing 

pore section). Note however the odd behaviour of the curve near (jl = O. 

20 

'Y r 

15 

o 
III 
(I) 

..J 
<5 
:::E 
a:: 
o 
z 

ROD IN A CORNER 

45 90 135 
ANGLE e 

Figure 9. 13 - Theoretical results of curvature for the MTM in the rod-in-a-comer arrangement The 
. nonnalised curvature is ploued as a continuous relationship against the corner angle. 

9.4.3 Experimental 

Three corner angles were investigated with nominal angles of 30', 90' and 110'; 

the 50' and 70' cells from the previous study being unavailable. The theory indicates 

that, for corner angles much greater than 110', the curvature is so large as to make heights 

of rise too large to be accommodated in the cells. 
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Experiments to measure capillary rise, and hence detennine the normalised 

meniscus curvatures for the rod-in-a-corner system were conducted using the simplified 

comparative method (see section 7.4). 

Several different rod sizes were used in each corner so as to confirm the observed 

curvatures of a range of different heights of rise. For the 30" corner a total of ten sizes 

were utilized, ranging from 1.8 to 3.2 mm diameter. With rod sizes smaller than this 

range difficulties were experienced in properly clamping the rod in the comer. The points 

of pressure from the clamping screws were too far from the test rod. Rods in the ranges 

2.1 to 6.3 mm and 3.2 to 6.3 mm were used in the 90" and 110" corners respectively. 

The higher size ranges reflecting the greater heights of rise expected. All the rod sizes 

yielded heights of rise within the range 5 - 25 mm for which the experimental method 

has been validated. 

9.4.3.1 Cell design 

The cell design for the corner arrangement is straightforward. Standard aluminium 

alloy cell blanks simply had channels with a specified corner angle machined in the front 

face. Figure 9.14 shows diagrams of the 30" and 110" cells used for the experiments, the 

latter designed and commissioned as part of this study. The test rod was clamped in the 

corner by a combination of other rods and threaded pins ensuring contact of the rod with 

the cell wall and the glass plate. Plastic nuts were added to the pins against the outer 

wall of the cells to prevent leakage of isooctane along the screw threads. 

9.4.3.2 Measurement of corner angle 

The cells used in these experiments were fabricated by a professional machinist, 

but the accuracy of the machinery does not guarantee the corner angles exactly. The 

experiments require a direct measurement of these angles. 

Each cells corner angle was measured with a rotating microscope, equipped with 

a vernier scale accurate to 0.05'. Measurement with the microscope could only be done 

at the top of a cell due to the design. Any variation in the cross-section of the cells remains 

undetected. It proved difficult to measure the angles reproducibly in practice, resulting 

in quite large deviations. 
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Figure 9.14 - Sketch illustrating the design of cells to hold rods in 30'and lW' corners. Both employ 
clamping screws to push the lest rod into the corner. Other rods may be used to direct the pressure 

from the screws. 

Figure 9.15 - Sketches illustrating the methods used to confinn corner angles. 
(a) For acilte corner angles the distance between two rods resting in the corner is measured. 

(b) With obruse angles an alternative method based on a single rod is used. 

A funher physical measurement of the corner angles was obtained using a rod or 

rods in the corner. For acute angles two rods of known diameter were placed in the corner 

as shown in Figure 9.15. The distance between the rods, X, was measured with a 
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travelling microscope accurate to 0.01 mm. The corner angle was then calculated using 

trigonometry , 

-I( (RI - R2) ) - 2tan $ - (RI +R2+X) 
(9.18) 

For obtuse angles the above method is inappropriate and another technique was 

required. A single rod of known diameter, the largest possible, was clamped in the corner 

as shown in Figure 9.15. The distance of the outennost point on the circumference to 

the apex of the corner, Y, was measured with the travelling microscope. This method, 

although not as accurate as that for the acute angles, provides a check on the directly 

measured angle. The corner angle is obtained by calculation from; 

$ .= 2tan-I(_R ) 
Y-R 

(9.19) 

With righ t angled corners neither of the above methods are appropriate and only 

rotating microscope measurements were taken. However, the accuracy of the machining 

appeared better with right angled corners. 

Averaging the angles obtained from direct measurements with the rotating 

microscope and from the other methods (where appropriate) gave a mean corner angle. 

For the three corners investigated here mean corner angles of 30.17',90.06' and 109.83' 

were found. Table E.2, Appendix E gives the details. 

9.4.4 Results 

The experimental results are shown on Figure 9.16 compared to the theoretical 

curve of nonnalised curvature versus corner angle. As can be seen, the results are in 

excellent agreement with the theory. The points plotted represent the mean corner 

curvatures. (A~.\J,ow'"\ 

In addition to the results found here the findings of Nibbs and Baynes (l986)J(or 

50' and 70' corners. The students used neither the full or simplified comparative methods. 

They compared gradients of straight lines of graphs of height of rise versus reciprocal 

rod radius with that of a similar line they obtained, at a different time, for two rods and 

a plate. The curvatures were found from, 

CcO"", = 6.970 x ~:: 
The value of curvature in the two rod pore, 6.970, is that obtained from the MS-P theory. 

In other words they have used a result of the theory to test the said theory. Also the 

heights of rise used for their graphs were obtairied at different times, making the gradients 

of the lines sensitive to temperature changes. Funhennore no attempt was made to 

confinn corner angles by measurement. 
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Figure 9.16 - Experimental results for curvatures obtained from capillary rise experiments on the 
rod-in-a-corner system. The 50' and 70' results only are taken from an earlier study by Nibbs & 

Baynes (1986). 
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The above factors explain the relative inaccuracy of the results for the 50' and 70' 

corners. The improved experiment techniques used here in !be same 30' cell resulted 

in the error from theory improving from + 2.3% (Nibbsand Baynes 1986) toonly-0.56%. 

I would expect similar improvements for their other results bad the experiments been 

conducted. 

Since the menisci are concave and near-hemisphereical the Jurin correction was 

applied to observed heights of rise. The gravity corrected equation, 7.8, was used to 

calculate curvarures. Detailed experimental results are given in Appendix E. Table 9.3 

summaries the data and gives estimates of the error. Two entries are accorded for the 

30' corner, once for the results of Nibbs and Baynes and once for this study. 

Table 9.3 Summary of experimenlal results for the rod-in-a-comer amngement A comparison 
between the results of Nibbs & Baynes (N&B) and those found here (W) is shown where 
applicable. 

Nominal 
Angle 

Mean 
Angle 

(deg.) (deg.) 

30 

30 

50 

70 

90 

110 

30.17' 

90.06' 

109.83' 

Expt. 
Curvature 

CEXPT 

2.875 

2.947 

4.243 

6.423 

9.973 

16.346 

MS·P 
Curvature 

CMS_, 

2.891 

2.881 

4.329 

6.469 

9.996 

16.479 

% Standard Study 
Deviation Deviation 

-0.56 

+2.30 

-2.03 

-0.72 

-0.23 

-0.81 

0.008 

0.020 

0.084 

W 

N&B 

N&B 

N&B 

W 

W 

All the results of this study fall within 1 % of the theoretical values. This agreement 

is very good in the light of possible dimensional errors, which have the effect of reducing 

the observed curvatures. As the corner angle increases the effect of fabrication errors 

are likely to increase due to the much greater rate of change of curvature with corner 

angle. 
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9.5 TWO UNEQUAL RODS AND A PLATE 

The curvature of the meniscus fonned between two rods of equal diameter and a 

plate, all in mutual contact, has been studied with the MS-P method on several occasions. 

Mason & Morrow (1983, 1984a) have studied the arrangement twice, undergraduate 

students Ashton & Cable (1985) and Nibbs & 8aynes (1986) have also looked at the 

configuration and finally experiments on the system conducted as part of this study were 

discussed in chapter 8. However, nowhere in these studies are there meaningful results 

for the case of unequal rods. 

None of the previous studies enjoyed the benefits of the simplified comparative 

method in their experiments. Mason & Morrow used the full comparative method, as 

described and employed in chapter 8, but with outdated apparatus. Ashton & Cable were 

more concerned with contact angle variations. Their few results were obtained by 

assuming the physical properties of test liquids (density and surface tension) and also 

ignoring any effects of temperature variation. Nibbs & 8aynes did extend the study 

beyond equal rods, but their experimental method was in error (as described in section 

9.4.4). 

The configuration of two unequal rods and a plate, although bearing no particular 

special features, was expected to yield very accurate results as it takes maximum 

advantage of the experimental technique. The menisci fonned are of almost identical 

shape to those of the standard arrangement and so experimental errors due to dimensional 

variation and gravity distortion will almost entirely cancel when curvatures are 

calculated. In addition, the shape of a two-rod pore is entirely defined by the ratio of the 
rod radii. No secondary measurement, such as shim thickness or corner angle, is required. 

The likely experimental errors are therefore minimi~. 

The analysis and results presented in this section fonned the basis of a paper I wrote 

that was presented at the International Union of Pure and Applied Chemistry (lUPAC) 

conference on the Characterisation of Porous Solids (COPS n (see Unger et al. 1988). 

The two unequal rod arrangement was selected as an example of the geometric analysis 

required when using the MS-P method. The configuration does this well without being 

over complex, whilst it is was also capable of illustrating the power of the MS-P method 

to workers in the field of porous materials. A copy of the paper (Mason, Morrow & 

Walsh 1988) is given in Appendix A. The experimental results have been updated here 

in the light of the new standard configuration curvature determination. 
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9.S.1. Theory 

The arrangement of arc menisci between two unequal rods and a plate and the 

capillary rise profile as viewed through the glass plate are shown in Figure 9.17. Three 

dryside CAMs merge to form the MTM. The geometrical expressions for the effective 

area and perimeter of the meniscus are now more complex than discussed previously. 

The basic principal remains unchanged; application of simple geometric relations. The 

analysis presented below differs from that presented to IUPAC, but only in method, not 

result. The standard technique for analysing wedging systems had not been developed 

at the time of pUblication. 

three DCAWs 

Figure 9.17· Arrangement of the AMs for the MTM between two unequal rods and a plate. The 
effective area is shown hatched and the effective perimeter outlined. A schematic representation of the 

capillary rise profile. as viewed through the plate. ~ also shown. 

Figure 9.18 shows the definition of terms and regions used to calculate the effective 

area and perimeter. Other nomenclature used follows that of chapter 6. 

, 

area T 

Figure 9.18· Diagram showing ~e definition of.angles. choice of~s and associated terminology 
used in the calculation of effecuve area and penmeter of a MTM m the two-unequal-rods·and-plate 

arrangemenL 
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a) Angles 

From Figure 9.18: 

(R -r) a l = arccos _1-
RI+r 

a, = YI-al-a, 

(RI +r)2+ (RI +R2)2- (R2 + r)2) 
a, = arc cos 

2(RI +R2)(RI +r) 

a, 
(R2 + r)2 + (RI + R2)2 - (RI + r)2) 

Equations = arc cos 
2(RI +R2)(R2+r) 

a. = Y2-a,-a, 

(R -r) a, = arccos _2_ 9.21 
R2+r 

YI = (R2-RI) 
arc sin RI + R2 

Y2 = (R2-RI) 
arccos RI+R2 

b) Perimeters 

PI = (1t - al)r 

P2 = a,R1 

P3 = (1t-a,-~)r Equations 

p. = a.R2 9.23 

Ps = (1t- a,)r 

P6 = (RI + RJ sin Y2 - (RI + r) sinal - (R2 + r) sin a, 

c) Area 

AT = ~(RI +RisinY2 



A, = ~«R, + r)'sin a. + (1t - a,)r') 

A, = ~~, 
2 ' 

A) 
1 . 2 

= Z«R, +R,)(R, + r)sin~ - (1t- ~ - ~)r ) 

A. 
1 , 

= 2a.·R, 

As = ~ «R, + r)' sin as + (1t - as)r') 

d) Effective Area and Perimeter 

The effective perimeter, shown bold in Figure 9.18, is given by: 

P'ff' = 'iPs + 'iPL 

and from Figure 9.18 'iPs = P,+p. +P6 and 'iPL = P, +p) +Ps' Hence, 

P'ff = P, + P, + p) + p. + Ps + P6 

The effective area, shown hatched in Figure 9.18, is simply given by, 

A'ff =. AT - A, - A, - A) - A. - As 
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Equations 

9.23 

(6.11) 

(9.24) 

(9.25) 

Equations 9.20 to 9.25 were written into the usual solution program together with 

the MS-P equation, 

P,u' - A'ff = 0 (6.12) 

Results were obtained as values of the normalised curvature, R.tr, in terms of the rod 

radius ratio, R.tR,. These are shown in graphical form as a continuous relationship on 

Figure 9.19 for rod radius ratios up to 11; the range for which experimental results were 

obtained. 

9.5.2 Experimental 

The experiments used the full range of rod sizes then available to give rod radius 

ratios up to eleven. Rods of nominal diameters, 1/32", 1/16",5/64",3/32", 1/8",5/32", 

. 1/4" and 5/16" were employed in pairs chosen to give heights of rise in the range 10 to 

20 mm, the optimum range for the comparative method when isooctane is the test liquid. 

The experimental procedure closely followed that described in section 7.4, this 

arrangement presenting few specific problems in its own right 
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9.5.2.1 Cell assembly 

No new cells needed to be designed for this configuration, the existing cells (those 

made for the rod-in-a-corner) proved capable of accommodating the rods in position. 

The 30' and 110' cells proved panicularly adaptable. Figure 9.14 showed a typical set 

up, with the rods in the 30' cell. The two test rods are pushed into the corner and against 

the plate by the largerrod positioned between the test rods and tightened clamping screws. 

9.5.3 Results 

As expected the results show exceptionally good agreement with the tbeory. The 

mean curvatures from twel ve different rod radius ratios are shown compared to the theory 

on Figure 9.19. The results shown on the graph were obtained with gravity corrected 

heights of rise with equation 7.8, but they only show slight improvement over the 

uncorrected curvatures (a detailed breakdown is given in Appendix F). There is only a 

small improvement as heights of rise in the standard cells were always kept close to 

those in the test cells. All the experimental curvatures are slightly less than their 

theoretical counterpans, but most are within 1 % and all within 1.5%. Note that some 

points have been plotted twice on Figure 9.19 as the radius ratio can be read as greater 

or less than unity. 

That the experimental curvatures are lower than those obtained from tbe theory is 

consistent with dimensional enurs in the pores, which always act to increase the size of 

the pores and so decrease the observed curvatures. 
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Figure 9.19 . Comparison of theoretical and experimental curvatures for the menisci formed in the 
pore space between two contacting unequal rods and a plate. The theoretical normalised curvature is 

shown as a continuous relationship in the rod radius ratio. The experimental resulls have been 
corrected for effects of gravity distortion. 
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CHAPTER 10 

Investigations with non-zero contact angle 

10.1 INTRODUCTION 

The MS·P method has shown an impressive ability to predict meniscus curvatures 

in unifonn pores containing a perfectly wetting liquid. In many real situations where the 

method may fmd application the liquid will not wet the solid surface. The future of the 

MS-P analysis therefore depends on it being shown to also predict curvatures when the 

liquid(s) only partially wets the solid. 

Over the following pages a limited number of cases in which the effect of contact 

angle was investigated are presented. Allowing for the variation of contact angle 

increases the complexity of the theory as the AMs do not now meet the construction 

components tangentially. However, itis the complications in the experiments that present 

most difficulties for the MS-P method in these cases. The well known irreproducibility 

of contact angle makes the experiments considerably less precise, but there is no superior 

measure of wettability. The advantages of the metal construction components must be 
abandoned in favour of PTFE components which cannot be made as accurately and 

defonn easily. Many of the benefits of the wetting liquid isooctane are also lost. 

Previously published work involving the MS-P method and non-zero contact angle 

is limited to a study of the two equal rods and a plate arrangement (Nguyen 1980, see 

also Mason, Nguyen & Morrow 1983). 
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10.2 ONE ROD A WA Y FROM A PLATE 

The arrangement of a single rod spaced from a plate was studied under perfectly 

wetting conditions, the results of which were presented in section 9.3. It is difficult to 

think of a simpler geometry, but the wetting behaviour is far from simple. The capillary 

action of this arrangement when the contact angle of the liquid with the solid is ,:,aried 

shows a fascinating insight into the complex behaviour that can be expected in such 

systems, whilst the theory is kept simple. 

10.2.1 Theory 

The configuration of the AMs and .. most of the capillary profiles seen through 

the plate remain largely similar to that shown in Figure 9.6. Two back·to·back OAMs 

merge to form aT AM. The meniscus curvature between the rod and plate is still primarily 

decided by the size of the gap. At very small spacings the geometry resembles that of 

two parallel plates and the meniscus curvature is large. As the gap is enlarged the 

curvature falls off. 

When the contact angle is increased from zero it would be expected that the 

curvature will decrease until, at 90· the curvature will be zero. The effects of spacing 

and contact angle should interact in a intriguing fashion. There is also the likelihood that 

the two back·to-back OAMs will contact, and so rupture, at some spacings and 

wettabilities. 

The T AM possesses a plane of symmetry so only half the section needs to be 

considered. Figure 10.1 shows the definition of terms and regions used to obtain 

expressions for effective area and perimeter for the case where rod and plate are wetted 

with the same contact angle, 9. Other terminology follows that of chapter 6. Due to the 

complex trigonometry some of the analysis is afforded rather more detail than usual, 

a) Subtended angle 

Unfortunately the half angle subtended at the centre of the rod by the AMs can no 

longer be found from a simple trigonometric function. It can however be obtained from 

difference formula. Equating length A to length B (Fig. 10.1) yields; 
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Figure 10.1- Diagram showing Ihe definition of angles, cho~ce of regions and associated terminology 
used in calculating Ihe effccuve area and penmeter of a menISCUS In Ihe gap between a rod and a plate 

when Ihe contaCt angle is non·zero. 

r 1-cosul + 2dIR 
= R cos 9 + cas(9 + U I ) 

which can be rearranged to give; 

(1 + rlR cos 9)cos U I - (rIR) sin 9) sin u I = 1 + 2dIR - rlR cos 9 

an equation of the fonn A cosx - B sinx = C, which may be written; 

sin(y -x) = C where siny = A 
"A2+B2 ...JA2+B2 

Inserting the relevant tenns from 10.1 in the above yields; 

. ( (1 +rlR cos 9) ) 
U = arcsm 

I "(1+rIRcos9f+(rIRsinW 

. ( Cl+2dIR-rIRcos9) ) 
- arcsm "(1 + rlR cos 9)2 + (rlR sin 9f 

b) Perimeters 

10.1 

(10.2) 

The perimeters of the regions bordering on the meniscus section are as follows: 

PI = ulR 

Equations 10.3 



c) Areas 

The areas of the regions required to define the effective area given below. 
2 

AT = : sin2Cl, +(rsin(Cl, +9)+R sinCl,)(R(I-cOSCl,)+2d) 

A, = Cl,R 2/2 

A3 = (sin 29)r2/4 Equations 

A4 = (It - Cl, - 29)r2/2 

As = (sin(2(Cl, + 9)))r2/4 

d) Effective area and perimeter 
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10.4 

Using equations 10.2 to 10.4 the area and perimeter of the TAM may be defined. 

The effective perimeter, shown bold in Figure 10.1, is given by; 

P'1f = LPs cos 9 + 'LPL 

Note the modified solid perimeter term. Hence from Figure 10.1; 

'LPs = (P, +Pvcos9 and 'LPL = -P4 

Note the negative sign due to the open AMs, hence; 

P'1f = (P,+P2)cos9 - P4 

The effective area, shown hatched in Figure 10.1, is simply given by; 

A'1f = AT - A, - A3 - A4 - As 

e) Solution of equations 

In addition to equations 10.1 through 10.5 the MS-P equation, 

P,ur - A'ff = 0 

(6.11) 

(10.5) 

(10.6) 

(6.12) 

also applies. These equations were entered into the solution program. Curvature and 

spacing were normalised, as under wetting conditions, by the half the rod-plate gap, d. 

The program was modified to give results as normalised curvature, R/r, in terms of either 

the normalised spacing, d/R, or the contact angle, 9. It is capable of generating curvatures 

for the full range of d/R at a specified 9 or the full range of 9 at a specified d/R. The 

point at which the OAMs meet back-to-back is also given by the program. 

The extra variable leads to the need for a three dimensional graph to show all the 

results. For a fixed rod spacing the curvature varies approximately as the cosine of the 

contact angle leading to the surface shown on Figure 10.2. At large spacings and/or 

contact angles the AMs interfere back-to-back and the surface cuts off abruptly (dotted 

lines). Note that for contact angles greater than 90· exactly the same shape of surface 
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will be seen. However, it will be the mirror image of that on Figure 10.2 with the 

curvatures negative, reflecting the capillary depressions that would be seen in practice. 

Canlacl 
Angle 

ROD AND 
PLATE 

e 

90 

Normalised 
Curvature 

~ , 

% R 

1.0 

0.:1 

Figure 10.2 A three·dimensional graph showing the effect <;In the TAM's theoretical curvarure of 
changes in rod·plale spacing and contact angle. The doued lines mart: the pomts beyond which the 

TAM cannot exist as the WOAMs meet back-to-back. 

10.2.2 Experimental 
I 

Capillary rise experiments at non;;.zerocontact angle are much more time consuming 

than the we.tting experiments. For this reason verification of the theory over the entire 

surface shown on Figure 10.2 could not be justified. In the end the time allowed just one 
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rod spacing to be investigated at dlR = 0.1. An 1/8" diameter teflon rod was used with 

12.5 thou shims as spacers. Various liquids were used to vary the contact angle. Heights 

of rise were in the range 5 to 15 mm depending on the test liquid. The physical properties 

of the test liquids were given in Table 7.1, section 7.3.2. The apparatus employed for 

the wetting experiments was re-used for this examination (see section 9.3;. The 

experimental procedures had to be altered considerably for the non-wetting tests and are 

detailed below. 

10.2.2.1 Cell assembly 

The cell designed specifically for the single-rod-and-plate arrangement proved a 

satisfactory design for these experiments (see Fig. 9.8). The components differed only 

in respect of the steel rod, which was exchanged for a teflon rod. A piece.of fully 

fluorinated transparent plastic sheeting was inserted between the glass plate and the front 

face of the cell to make the pore one of uniform wettability. 

The sheet needed to be stretched flat over the front face. With the cell dismantled 

double-sided sticky tape was stuck to the front face around the machined channel. The 

transparent sheet was then stuck over the tape. Ensuring that sheet stuck on properly, 

with no sagging or wrinkling, was a delicate operation. The New Mexico Institute of 

Technology, who supplied the sheet, had also sent the sheet in self-adhesive form. 

However problems were encountered owing to the thickness of the adhesive. Under the 
pressure of the clamping screws the "flat" surface slowly became indented at points of 

contact between shims and plate, leading to spacings less than specified. 

The above points aside, the cell was assembled according to the procedure detailed 

in section 9.3, but now extra care was required when clamping the rod in position. Teflon 

rods are flexible and easily deformed which made the task of assembling a pore of 

uniform geometry very difficult. Inevitable wrinkling of the sheet and bending of the 

rod contributing most heavily to the non-uniformity. 

10.2.2.2 Measurement of capillary rise 

Initial experiments with the pore showed considerable variation in height of rise 

along the pore length. There being no way of directly checking the pore geometry once 

the cell had been assembled an indirect method of ensuring correct geometry was 

required. A satisfactory method was arrived at by a process of intuitive ·trial-and-error. 

It amounts to a "fixing" of the pore geometry. 

For the purposes of the experiments it was assumed that isooctane wets the teflon 

surfaces perfectly under receding conditions. The MS-P theory predicts virtually 

identical curvatures (equal to four decimal places) for contact angles of O· and at 

isooctane's receding angle of 4.6·. Now, with the rod held only loosely against the plate 

with hardly any pressure on the rod, measurements of the height of rise of the TAM were 
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taken at 2 mm intervals between the shims. If calculated curvatures were mostly falling 

below the theoretical value the implication was that the spacing was to large and the 

screws would be tightened accordingly. Any gradual shift from top to bottom implied 

one clamping screw required more tightening than the other. 

Heights of rise were re-measured and the process repeated until at least a 1.5 cm 

section of the pore gave curvatures within I % of the theoretical value. This prediction 

has been validated by the wetting experiment. If no satisfactory section was found the 

cell was dismantled and the rod and sheet replaced. In practice this technique worked 

well, although it could be tiresome. 

Having at least a section of pore authenticated was not the end of the problems. 

Before a testJ.8ie of the liquids could be conducted the residual isooctane in the cells, 

left behind in wedges in the corners etc. after the pore validation, had to be removed. 

The cell obviously could not be dismantled or roughly handled. A suitable method was 

to pass compressed air (with the dust and dirt removed by a compact inline filter) through 

the fluid system. The main reservoir was removed and the air line connected to the system 

tubing. After a few minutes all the isooctane evaporates. 

The procedure developed for the measurement of "recently advancing" and 

"recently receding" heights of rise for each test liquid is as follows. 

(i) The main reservoir laboratory jack is lowered well below the cells. The 

test liquid is poured into the reservoir which is then raised by hand until the 

T AM rises to a level just below that of the authenticated section. The height 

of the jack is adjusted to maintain the meniscus in roughly this position and 

the system left to stabilise. The time taken increased with the liquids' 

viscosities. The more viscous liquids taking up to 1/2 an hour to equilibriate. 

(ii) The main reservoir is removed from the jack and held below the level of 

the cells until the T AM has receded by about 1 cm when it is replaced on the 

jack. Which is raised a couple of millimetres so that the T AM settles at the 

bottom of the test section. 

(Hi) Once the system has come to equilibrium the heights of rise of the 

advanced T AM and of the meniscus in the standard are measured. These 

levels are checked several times over a five minute period to confmn the 

equilibrium. 

(iv) The lab jack is raised by about 2 mm and the level of the TAM lowered 

well below the test section by hand. 



(v) Steps (iii) and (iv) are repeated until the top of the authenticated section 

is reached. 

(vi) The reservoir is now held aloft forcing the TAM to rise well above the 

authenticated section and the main reservoir lab jack is lowered a few mm 

so that the TAM will still settle around the top of the test section despite its 

greater height of rise when receding. 

(vii) Once the system has settled the heights of rise of the receded menisci 

are measured. 

(viii) The jack is lowered by about 2 mm and the level of the TAM raised 

well above the test section by hand. 

(ix) Steps (vii) and (viii) are repeated until the bottom of the authenticated 

section is reached. 
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It is important to measure advancing height fIrst while the rod and plate above the 

TAM are dry. When wet they encourage the liquid to spread resulting in lower contact 

angles. 

Unlike isooctane the other test liquids are not highly volatile and thus cannot easily 

be evaporated form the system. So the cells had to be dismantled, cleaned, reassembled 

and re-authenticated before the next liquid could be investigated. The sheeting and rod 

were replaced for each liquid. 

These experiments also required additional safety precautions as most of the liquids 

arc< classifIed as either "harmful" or "toxic". Leakage was more of a problem as the liquids 

no longer evaporated from cell joins, but collected in puddles around the cell blocks. 

The Sellotape and transparent sheet acted as a seal on the front face of the test cell. The 

other cells were equipped with strips of PTFE tape in-between their front faces and glass 

plates. 
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10.2.3 Results 

The experimental results are shown compared to the MS-P theory predictions on 

a graph of normalised curvature, d/r, against the contact angle, 9 (Figure 10.3). When 

compared to the corresponding results for the arrangement under perfectly wetting 

conditions, Figure 9.10, the agreement with the theory is poor. However if the problems 

with pore geometry and the well known irreproducibility of contact angle are taken into 

account the results are not as bad as they at ftrst appear. The general trend predicted by 

the theory is followed. A detailed breakdown of the results can be found in Appendix 

G. The curvatures were calculated using both the simplified comparative method 

(equation 7.7) and from the physical properties of the test liquids (units in mm); 

C = 2(h +O.S)d (10.7) 
P a2 

The results from both equations were generally in close agreement (with;11 2%), 

indicating the validity of the comparative method. : 

. Generally the value of the capillary constant, d, obtained from 

the height of rise in the standard cell was slightly greater than that obtained from physical 

constants. Exceptions were the two liquids with the highest contact angles, 

hexachlorobutadiene and a-bromonaphthalene, which gave lower values of a2 than those 

from the liquid propenies. The implication is that wetting conditions do not prevail in 

the standard cell. The results from equation 10.7 are plotted on Figure 10.3 for these 

liquids, others were obtained from the comparative method. 

The points displayed on Figure 10.3 represent the mean curvatures, obtained from 

measurements taken at, at least, four levels in the pore. The range of curvatures obtained 

is shown by the venicallimits. Most of these come close to or intercept the theoretical 

curve. The variation found, up to ± 0.2 around the mean curvature, can be explained by 

contact angle variations. Dimensional errors were predetermined by the method of testing 

with isooctane and set within ± 0.05 (± I %) of the theory. 

The magnitude of the advancing and receding angles used for the analysis were 

determined from Morrow's (1974) empirical equations. For three of the test liquids 

Morrow published the raw data used to calculate the arithmetic average contact angles 

that were in turn, employed to determine the empirical equations. The standard deviations 

of his results are also shown by the horizontal limits on Figure 10.3 (if maximum and 

minimum angles were shown the limits would be almosttwice the width apan). Morrow's 

data (obtained from capillary rise in cylindrical tubes) shows mostly similar variations 

to those encountered here. Generally, it is the advancing angles that are the more 

reproducible. 
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Bearing the above limits in mind, it appears that much of the data confirms the 

MS-P theory rather well for the single-rod-and-plate arrangement at non-zero contact 

angle. Notable exceptions are for n-dodecane receding (9 = 22.8°) and 

a-bromonaphthalene advancing (9 = 83.2°) which both give large errors from their 

theoretical curvatures. The non-attainment of the specified contact angles that these 

results imply may have arisen from contamination of the test liquids or pore surfaces. 
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Figure 10.3 - Experimental results for curvature oblained from capiUary rise experiments with a 
partially wetting rod and plate. The results. at a normalised space of 0.1. are not as good as those 

obtained under perfectly wetting conditions due to the irreproducibility of contact angles (shown by the 
horizontal limits). Variations in curvature found by the experiments are shown by the vertical limits. 
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10.3 TWO EQUAL RODS AND A PLATE 

The arrangement of two rods and a plate containing a perfectly wetting liquid has 

been extensively investigated, and is discussed elsewhere (see chapter 8, section 9.5 and 

Appendix A). A MS-P study of the case of two equal rods and a plate v.ith only partially 

wetting liquids has been studied by Nguyen (1980) (see also Mason, Nyugen & Morrow 

1983) This formed the staning point for this present work. The arrangement was 

re-investigated with the dual aims of developing a procedure for the analysis of partially 

wetted systems and to hopefully improve upon Nyugen's results. The experiments 

presented below were conducted before those on the geometrically simpler, single rod 

and plate arrangement discussed in the preceding section. 

The arrangement can also be assembled with mixed wettability by making either 

(or both) of the rods or plate wetted. The mixed wettability system was subject to a 

tentative investigation by Ashton and Cable (1985), but only a pottion of the theory was 

derived and very little experimental data collected. The study of mixed wettability 

systems extends the bounds of the MS-P method funher and enlarges the range of 

applications to which the method can be applied. 

The theory for all cases of mixed wettability is presented below and later 

experiments are discussed for the cases of two panially wetted rods and one and two 

perfectly wetted rods against a partially wetted plate. 

10.3.1 Theory 

The arrangement of AMs and the general shape of the capillary profiles seen through 

the transparent plate remain largely unchanged from those shown earlier; Figure 9.17. 

The AMs will not now meet panially wetted solid surfaces tangentially, but at a angle, 

S; the contact angle. As wettability of the pore decreases the profile becomes noticeably 

flatter (curvature will fall), until at S = 900 the AMs can no longer form in panially wetted 

corners. 

Since mixed wettability systems were to be studied the expressions for effective 

area and perimeter were derived to allow for different contact angles on each pore 

construction component surface. Figure 10.4 shows the definition of terms and regions 

used in the analysis. The theory is now considerably more complex than that of the wetted 

system. Solution of the equations requires two iterations, one as before, for the radius 

of curvature and a second for the angle subtended by the AM between the two rods. 
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Figure 10.4 - Diagram showing the definition of lengths and angles, choice of regions and associated 
terminology used in calculating the effective area and perimeter of MTM in the pore space formed 

between two equal rods and a plate. The rods and plate all exhibit different contact angles allowing the 
study of mixed wettability arrangements. 

a) Lengths 

r ( (1- COscx,) ) 
= 

R cos 63 + cos( et, + 6,) 
(l0.8) A = B 

C = D 
r ( (l-cosas) ) = 
R cos 63 + cos( as + 62) 

(10.9) 

r ( (sin a; - sin et,) J 
= 

R sin( <X:J + 6,) + sin( a; + 6,) 
E = F (10.10) 

r ( (2-coset, -cosa;) J 
= 

R cos(<X:J + 6,) + cos(a; + 62) 
G = H (l0.11) 

b) Angles 

From equations 10.8 to 10.11 combined with difference formula: 

a., = arctan (
1 + (rIR)COS6,)) 

(rIR) sin 6, 

.( (1-(rIR)cos63) ) 
- arcsm 

. ,,(l + (rIR)cos6,?+ «rIR) sin 6,? 
(10.12) 



== arctan((I + (rIR).coS9')) 
a,; (rIR)sm92 . 

[ 

(I-(rIR)cos9,)· J 
- arc sin r======='=~:==~~== 

..J(I + (rIR) cos 92)2 + ((rIR) sin 8J2 

( 
(rIR)sin9, ) 

et, = - arc tan 
(1 + (rIR) cos 9,) 

. ( (sin~+(rIR)sin(~+9J) ) 
+ arc sm r======';='=======C: 

..J(I + (rIR)cos9,)2 + ((rIR) sin 9,), 

et, and ~ must be found by iteration from equations 10.11 and 10.14. 

et, = 7tl2 a, - et, 

a 4 = 7tl2 - a,; - et, 

c) Perimeters 

P, == 1t-(a, +9,)-9, 

P2 = a,R 

P, = 1t - (et, + 9,) - (a; + 82) 

P4 = a4R 

Ps = 1t - (a,; + 9,) - 9, 

P6 = (2 - sin ~ - sin a,;)R + {sin(a, + 9,) + sin(a,; + 9,) - 2 sin 8J r 

d) Areas 

AT = 2R2 

R2 
= "4 sin 2a, + r{ cos(a,) + 9, + cos 9J {R sin a, + r sin(a, + 9,)} 
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(10.13) 

(10.14) 

(10.15) 

(10.16) 

Equations 

10.17 

2 

- ~ {sin2(a,+9,)+sin29,+2(1t-(a,+9,)-9,)} 

R2 
A2 = let, Equations 

r2 . . 
- "4{sin 2(et, + 9,) + sin 2(et, + 9,) + 2(1t - (et, + 9,) - (et, + 9,)} 



R2 
A. = Ta. 

R2 
= 4"sin2as + r{cos(a,+ 9,) +cos9J {R sina,+r sin (a, + 9,)} 
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10.18 

2 

- ~ {sin 2(a, + 9,) + sin 293 + 2(n - (a, + 92) - 93)} 

e) Effective area and perimeter 
The effective perimeter, shown outlined on Figure 10.4, of the mixed wettability 

system is given by; 
i = 1 

P,u = I PScos9i+IPL 
i=3 

(6.11 ) 

and from Figure 10.4; 

P,u = P2 cos 91 + p. cos 92 + p.cos 93 + PI + P3 + P, (10.19) 

The effective area, shown hatched, is simply the area of the whole rectangle formed 

by the rod centres and the plate less the area of the regions it contains: 

A,u = AT -A I -A2 -A3-A.-A, (10.20) 

f) Solution of equations 
The above expressions for the effective area and perimeter were written into the 

standard solution program together with the MS-P equation, 

P,ff - A,u = 0 (6.12) 

Alterations were made to enable normalised meniscus curvature, R/r, to be iterated in 

terms of the pore components' contact angles, 9's (see Appendix H). The second iteration, 

for ~ and a; , was also achieved by successive bisection; the equations showing rapid 

convergence. 

The effect of contact angle on the two equal rods and plate arrangement when all, 

some or none of the perimeter is perfectly wetted is illustrated by the curves shown on 

Figure 10.5. A total of six curves are shown. As the number of partially wetted 

components increases the curvature at a given contact angle decreases. The curves show 

that a partially wetted plate contributes more to the reduction in curvature than does a 

partially wetted rod, reflecting the larger meniscus perimeter against the plate. 

10.3.2 Experimental 

Experiments were conducted on three of the systems shown on Figure 10.5, all 

with a partially wetted plate. The instances where both, one or neither of the rods are 

partially wetted were investigated. Steel drill blanks of 1/8" diameter were employed as 

wetted elements, whilst 1/8" diameter teflon rods were used for the partiall y wetted rods. 
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Figure 10.5 - Graph ilIusuating the effect of contact angle on the<Rtical curvature in the 
two-equal·rods·and-plate arrangement when all, some or none of the perimeter is wetted by the liquid. 

Each of the six curves refers to a different combination of wetted and partially wetted components. 
Note that the effect of a partially wetted plate is greater than that of a panially wetted rod owing to its 

larger wetted perimeter 
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The rods partially supported one another which made assembling this apparatus easier 

than that of the rod separated from a plate. The test liquids used for the 

single-rod-and-plate arrangement (see Table 7.1) were used. 

The apparatus was identical to that used for the wetted system; described in section 

9.5. The rods were clamped against the plate in rectangular channels. A fluorinated 

transparent sheet was inserted between the rods and glass plate as described in section 

10.2. Greater care had to be taken when clamping the screws to avoid deformation of 

the geometry. The procedures described in section 10.2 were followed when validating 

the geometry of the pore and for measuring the heights of rise of advancing and receding 

menisci. 

Readings for the two mixed wettability arrangements were taken together. The dual 

cell blocks then contained the two test cells, a standard cell and only one reservoir 

indicator cell. The confidence in the experimental technique was sufficient by this time. 

10.3.3 Results 

The data obtained from the experiments on the three arrangements are displayed 

on Figures 10.6 through 10.8. The scatter of points is markedly worse than that for the 

perfectly wetted system, but the general trend predicted by the theory is followed. 

Together the sets of results are encouraging as they show remarkably similar errors from 

the theory, indicating that the contact angles were reproduced quite well from 

arrangement to arrangement. The single-rod-away-from'-a-plate results also largely 

confirm this finding. 

A detailed breakdown of the results can be found in Appendix H. Curvatures shown 

on the figures are arithmetic averages of results for the most part deterinined from the 

simplified comparative method. Exceptions were those readings pertaining to the viscous 

liquids hexachlorobutadiene and a-bromonaphthalene where the steel rods were not 

thought to be perfectly wetted. These curvatures were obtained from equation 10.7, using 

the physical constants of the liquids. 

All the heights of rise were corrected for the height of rise in the indicator cell. The 

value used was that obtained for isooctane in pores made up from two wetted rods and 

a plate. The 0.5 mm correction is unlikely to be numerically correct for the other liquids, 

particularly the more viscous ones. Strictly speaking the experiments of chapter 8 should 

have been repeated for each of the liquids in each of the partially wetted systems under 

both advancing and receding conditions. However, bearing in mind the large variation 

in contact angles this would not have dramatically improved results. Indeed experiments 

conducted with hexachlorobutadiene receding in differently sized pores made up from 

two steel rods and a plate produced a value for the rise in the indicator cell of 0.3 mm 
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Figure 10.6 . Experimental results for curvatures in terms of the soIidIliquid contact angle in a mixed 
wettability arran~ement of two perfectly wetted rods and a partially weued plated. 
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Figure 10.7 . ExperimenraI results for curvalllres in tenns of the conlact angle in a mixed weuability 
arrangement of one perfectly weued rod and a paniaUy wetted rod and plate. 
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Figure 10.8 - Experimenlal results for curvawres in terms of the contact angle in a fixed wettability 
arrangement of two partially wetted equal rods and a plate_ 
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(Ashton and Cable 1985; the only partially wetting liquid they studied). Under advancing 

conditions this is likely to be even lower. Application of this result changes the curvature 

by less than the experimental error. 

The deviations of the observed curvatures from the theory are consistent ... ;th the 

majority of the experimental error arising from contact angles, the geometrical error 

having been preset by testing with wetting isooctane. The two wetted rod arrangement, 

with the smallest partially wetted perimeter, shows better agreement than does the two 

partially wetted rod system. The spread of curvatures observed at each contact angle is 

also noticeably less with the wetted rod arrangement. 

! 

! 
I 
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CHAPTER 11 

Investigations with neighbours: three rods and a plate 

11.1 INTRODUCTION 

Two separate tubular pores, each bound by two rods and a plate, are formed when 

three rods are aligned touching a plate. If the outer rods are pushed together so that only 

the middle rod loses contact with the plate, the two pores become interconnected, giving 

a pore doublet. Upon funher pushing together of the rods a capillary surface in the system 

will eventually come to regard the geometry as a single pore. As the rods are moved still 

closer together the system again becomes a pore doublet, until when the outer rods touch, 

two entirely independent pores are formed, one bounded by three rods and the other by 

two rods and a plate. When the geometry gives rise to pore doublets the propenies of 

each pore are interrelated and the meniscus behaviour in one neighbouring pore may be 

dependent on the behaviour in the other. This system yields not one, but a whole family 

of different terminal menisci. In addition to the described variation in the outer rod 

separation the rods can be of equal or unequal sizes. All the above possibilities are 
examined with the MS-P method. It is this analysis of the different menisci and their 

interaction together, combined with extensive experimental confmnation, that has been 

the greatest test, to date, of the MS-P method. 

Some of the terminal menisci that may exist between three rods and a plate have 

been panially studied in the past (and some already in this study) by authors such as 

Mayer & Stowe (MS-), Princen (P), Dodds (1978) and Mason & Morrow (1987). Over 

the following pages the MS-P analyses and experimental results from four different rod 

size arrangements are presented and discussed. 

11.2 THEORY 

The three rod and plate arrangement can exhibit eight different terminal menisci 

depending on the rod positioning. Some coexist together, while others are only formed 

with panicular rod sizes and centre rod spacings from the plate. The basic assumption 

throughout the analysis is that the liquid vapour interface will always adopt the 

configuration that has the minimum surface energy, or maximum meniscus curvature, 

for the given geometry. Figures 1 1.1 to 11.3 show all the possible positions that the AMs 

can adopt, the appearance of some of the resulting capillary rise profiles together with 

the approximate arrangement of the rods. 



a) 

b) 

Type A 
2 I( DC"" 
1 If DO ..... 

c) 

Type A 
2 If DCA ... 
1 x 00 ...... 

206 

Type B th, .. OCA"S (ii) 

(ii) -

(i) _ 

(i) Type B (ii) 
TAM 

(iii) --

Type c (iii) •. r.t. 

2 x WOAM 

(i) -

(i) Type D ( ii) 

(ii) -

Figure 11.1 - Arrangements of arc menisci for the tenninal menisci formed between three rods and a 
plate at low side rod separation. The effective area of each terminal meniscus is shown hatched and its 
effective perimeter outlined. In each case the capiUary rise profile is shown as envisaged thrwgh the 

indicated section. Three different situations are shown, separation gradually increasing from the 
minimum 
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Figure 11.1 (a) shows the two side rods touching each other (the minimum rod 

separation) and the arrangement shows two pores each containing an isolated terminal 

meniscus. Both comprise three DCAMs that merge to form separate MTMs, one between 

two rods and a plate, termed type A, and the other between three contacting rods, 

henceforth called a type B TM. 

If the side rods are moved even very slightly apart the back-to-back AMs in the 

corners formed by the contacting rods are no longer closed, but open. At some height, 

dependant on the rod separation, the now back-to-back DAMs will merge to form a 

T AM, a type C TM, as shown in Figure 11.1 (b). 

Figure 11.1 (c) shows the situation when the rod separation has been increased, so 

decreasing the curvature of the type C T AM, to a point where the curvature of the T AM 

is less than that of the type B TM. The TAM and the its rearmost associated DAM (Fig. 

11.1 (b)) cannot now form. The minimum surface energy criterion results in the formation 

of a type D TM, comprising two CAMs at the back and one DAM towards the front of 

the arrangement as shown in the figure. 

If the rod separation is increased still further the curvature of the type D TM 

eventually becomes equal to that of the type A TM. The TMs can no longer coexist and 

they merge to form a fifth TM, type E, shown in Figure 11.2. The DAM disappears 

leaving four CAMs in the corners. The type E MTM exists by itself for a large range of 

intermediate rod spacings, its profile becoming progressively flatter as separation is 

increased. 

Type E four DCAMs (i) 

MTM 

TIl -
Figure 11.2 - Arrangement of AMs for the MTM formed between three rods and a plate at 

intermediate side rod spacings. The effective area of the MIM is shown hatched and its effective 
perimeter outlined. Aa example of the capiUary rise profile seen through the plate is also shown. 

Figure 11.3 (a) shows the situation at maximum rod separation with all three rods 

in a row touching the plate. Here there are two isolated pores of two rods again~t a plate. 

When the rod separation is decreased slightly the centre rod becomes separated from the 

plate resulting in the formation of two back-to-back DAMs. The two side pores now 

contain TMs comprising two CAMs and one DAM, termed type F; Figure 11.3 (b). Type 

F menisci are similar to type A TMs, but the DAM is now between the middle rod and 
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shown at three different rod separations ranging from the maximum inrennediate side rod spacings, 

'1vk-wc 
i1, 

r 



209 

the plate not between the two side rods. Associated with the back-to-back OAMs will 

be a TAM, type G, with identical properties to that discussed in the single rod away from 

a plate arrangement (see section 9.3). 

As the rod separation is decreased further the curvature of the type G T AM in the 

gap in-between the centre rod and plate falls until a point is' reached where it is less than 
\ 

one of the type F TMs in the side pores. This gives rise to a type H TM, Figure 11.3 (c). 
/ 

Type H is similar to the type D TM in that it is in pan bound by two DCAMs and a 

WOAM, but it is also bounded by the flat glass plate. Further reductions in the rod 

separation eventually leads to destablisation of the OAM and a reversion to the type E 

MTM of Figure 11.2. 

11.2.1 Analysis for effective areas and perimeters 

On Figures ILl to 11.3 each terminal meniscus' effective area is shown hatched 

and its effective perimeter outlined. Due to the greater complexity of the geometry and 

the larger number of AMs the analysis required to find expressions for the area and 

perimeter is much more elaborate than so far encountered with perfectly wetting 

conditions. However, it is still simply the application of geometrical relationships. 

As usual there is a need for easily measurable characteristic dimensions to define 

the exact tube shape. A rod radius, RI> is used to normalise curvatures. To define the rod 

separation the half angle, $, subtended at the centre of the middle rod by the side rods 

is employed. The analysis that follows allows for the rods to be of any sizes, but assumes 

P1at TMs are formed as shown in the Figures. 

The analysis follows the usual method, the five sided figure formed by joining the 

centres of the rods to each other or the plate is divided into different regions. Each region 

has a perimeter adjoining the pore. The effective area and perimeter of a particular TM 

can be obtained from the areas and perimeters of the relevant regions. The analysis is 

given without explanation other than that provided by diagrams that define the 

nomenclature. Extensive use is made of simple geometrical relationships such as the 

Cosine, Sine and Trapezium rules. 

a) TypeETM 

From Figure 11.4 the required lengths, angles, perimeters and areas for the type E 

TM can be defined: 
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L. 

Figure 11.4 - Diagram showing the definition of angles, choice or regions and associated lenninology 
required in the calculation of effective area and perimeter for the rypt E TM. 

i) Lengths 

L, = ."j«R, + R,)' + (R, +R,? - 2«R, +R,) (R, + R,) sin2Q» Equations 

L, = ."j (Li - (R, - R,?) 11.1 

ii) Angles 

a, = (R -r) arccos R: +r 

Uz = p, + y, - a, - a, 

a, = arc cos 
(R, +ri+ (R, +R,)'- (R,+ri ) 

2(R, +R,)(R, +r) 

a, = arc cos 
(R, +r?+ (R, +R,)'- (R, +r?) 

2(R,+R,)(R,+r) 

a4 = 2<»- a; -~ 
(R, +r)'+ (R, +R,)'- (R,+r?) 

as = arc cos 
2(R, +R,) (R, + r) 

Us = arc cos 
(R,+ r)'+ (R, + R,)' - (R, + r)2) 

2(R,+R,)(R,+r) 
Equations 11.2 

a. = Pz +Y, -Us- a, 

a, = (R,-r) 
arccos R,+r 

p, (R, -R,») = arc cos L , 
p, = t- p, 
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(R. +R2)2+L:- (R, +R~2) 
Y. = arc cos 

2(R. +R2)L.. 

Y2 = 1t -Y. - 24> 

Hi) Perimeters 

P, = (1t-a,)r 

P2 = u,.R. 

P, = (1t ~ ex., - ~)r 

P4 = a,R2 Equations 

Ps = (1t- as -~)r 11.3 

p. = noR, 

P, = (1t - a,)r 

P, = L, - (R. + r) sin a. - (R2 + r) sin a, 

iv) Areas 

AT = ~(R. +R~(R2+R,)sin24> 
I 

AT 
1 = -(R. +R,)L, , 2 . 

A. = ~ «R. + r)2 sin a. + (1t - a,)r2) 

A2 = ~u,.R2 
2 • 

A, 
1 . 2 

Equations 11.4 = 2 «R. +R~(R. +r)sinex.,-(1t-ex.,-ex.,)r) 

A, = 1 2 
2a.R2 

As 
1 . 2 

= 2 «R, + R~ (R, + r) sin as - (1t - as- a,)r ) 

A. = ~noR2 
2 ' 

A, = ~ «R, + r)2 sin a, + (1t - a,)r2) 
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Figure 11.5 . Diagram showing Ihe definition of angles, choice or regions and associaled lenninology 
required in !he calculation of effective area and perimeler for Ihe types A and D TMs. 

b) Types A and D TMs 

The analysis given above for the type E TM applies, but with the exception that 

regions 2 and 6 which no longer apply. In addition, the regions 9 to 15 must be defined. 

From Figure 11.5: 

i) Angles 

~ = ~, - <X'O - <X, 

<XIO = arc cos (R, +r?+L;-(R,+r?) 
2(R, +r)L, 

<XII = Y,- 0., Equations 

<X'2 = Y2 -<Xs 11.5 

<X13 = arc cos (R, +r)2+L;_ (R, + r?) 
. 2(R,+r)L, 

<x,. = ~2 -<X13 - a, 
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ii) Perimeters 

p. = a.R, 

PlO = u,rfi, 

P" = u"R, 
P12 = U'!?3 Equations 11.6 

P13 = U'~3 

P'4 = u,.R3 

PIS = (1t - u lO - (l13)r 

iii) Areas 

A. = I 2 
Za.R, 

AIO 
. I 2 = ZU,rfi, 

A" = I 2 
Zu"R, 

A'2 
I 2 

Equations 11.7 = ZCl'!?3 

A13 = I 2 
ZU13R3 

A'4 = I 2 
ZU,.R3 

A,s = ~(L,(R, + r) sin u lO - (1t - u lO - Cl13)r2) 

c) Types A, Band C TMs 

The analysis for these menisci follows that for types A and D except that regions 
11 and 12 no loner apply (see Figure 11.6) and: 
i) Angles 
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Figure 11.6 • Diagram showing the definition of angles, choice or regions and associated tenninology 
required in the calculation of effective area and perimeter for !be ~$ A, B and C TMs. 

a,. = arc cos (R, +r)2+L~_ (R, +r)2J 
2(R, +r)L, = Cl,o 

a 17 = y, - Cl, - a,. Equations 

u's = Y2 - as - a'9 11.8 

a'9 (R, +ri+L~- (R, +r)2J = arc cos = ~, 2(R3+r)L, 

ii) Perimeters 

p,. = PlO 

P17 = a,.,!?, 

P,s = al8R, Equations 11.9 

P'9 = P13 

P20 = P,s 
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iii) Areas 

Al. = AIO 

AJ7 
1 2 

= 20'1.,R1 

AI" 
1 2 

= 20'lsR3 Equations 11.1 0 

Al. = A13 

Azo = Al5 

1\--., R,+ Ra 

11, 

R, area Ta 

Figure 11.7 • Diagram showing the definition of angles. choice or regions and associated terminology 
required in the calculation of effective area and perimeter for the types F and H TMs. 

d) Types F and H TMs 

The analysis now reverts to that of the type E TM except that sections 4 and 8 no 

longer apply as shown in Figure 11.7 and: 

i) Lengths 

(1 LlI) 
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ii) Angles 

~, = Y3 - U:J-a" 

a" = (~-r ) arccos --
R2+r 

~ = Y4- a 5 Equations 11.12 

Y) = 1t - y, - 13, 

Y4 = 2$ -y, 

iii) Perimeters 

P2, = ~,R2 

Pn = ~,R2 

Pn = ~3R2 

P24 = (1t- ~2)r Equations 11.13 

P2S = (R, + R2) sin Y) - (R, + r) sinal - (R2 + r) sin a" 

Pu, = (R2+r)sina" 

PrJ = (R) + R,) sin Y4 - (R) + r) sin CJ-, 

iv) Areas 

AT. = ~(R, +~)(R, + R,) sin Y3 , 

AT = ~ (R) + L,) (R) + R2) sin Y. • 

A2, I 2 

Equations = 2~,R2 

A . 
n = 1 2 

11.14 2a"R2 

An = 1 2 

2~3R2 

A24 = ~((L, + r)(R2 ~ r) sin a22 - a"R; - (1t - Unlr2) 

e) Types F and G TMs 

The analysis of the final rod arrangement follows that given for types F and HTMs, 
but regions 23 and 27 do no apply, Figure 11.8, and: 
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Figure 11.8 • Diagram showing the defmition of angles, choice or regions and associated terminology 
required in the calculation of effective area and perimeter for the types F and G 1'Ms. 

i) Angles 

a,. = Un Equations 

~9 = y.-us-a,. 11.l5 

ii) Perimeters 

P28 = P22 

P28 = ~/?2 

P30 = P24 Equations 11.16 

P31 = P26 

P32 = (R3 + R2) sin Y. - (R3 + r) sin CL, - (R2 + r) sin ~8 

iii) Areas 

A28 = A22 

A29 = 1 2 
2~/?2 Equations 11.17 

Having now determined the areas and perimeters of all the regions, the effective 

area and perimeter of each TM may be defined in terms of the pore characteristic 
dimensions of cp, RJ ,R2 ,RJ , and the radius of curvature, r. 

a) Type A - two DCAMs and one DOAM 

Figures II.l (a), (b) and (c) show the effective area, hatched, and the effective 

perimeter, outlined, of the type A TM at various rod separations. Using the relationships 
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defined from Figure 11.5, equations 11.1·to 11.4 and 11.5 to 11.7, these may be defined 
as follows: 

and 
A'ff 

b) Type B - two DCAMs and one DOAM 

(6.11) 

(11.18) 

(11.19) 

Figures 11.1 (a) and (b) show the required effective area and perimeter (hatched 

and outlined respectively) of the type B TM and using the analysis derived from Figure 

11.6 they may be defined as follows: 

P'ff = (P17+ P'+ P,s) + (P3+PS +P1JJ) 

and A'ff = AT,-A'6-A17-A3-A.-As-AI8-A'9-A20 

c) Type C - two WOAMs 

(11.20) 

(11.21) 

Figure 1 L1 (c) shows the effective area and perimeter of this TAM. From the 
relationships derived from Figure 11.6: 

P'ff = (PIQ+P'6+ P'9+ PI3) + (-P,s-P1JJ) (11.22) 

Note the negative contribution to the liquid perimeter from the two back-to-back 
WOAMs. 

Also 

d) Type D - two DCAMs and one WOAM 

Refer to Figures 11.1 (c) and 11.5 

P'ff = (P1Q+P II +P,+P'2+ P I3) + (P,+Ps-P,s) 

Note the negative contribution to the perimeter from the WOAM. 

Also A'ff = AT, - All - A, - A. - As - AI2 + A,s 

e) Type E - four DCAMs 

(11.23) 

(11.24) 

(11.25) 

The effective area and perimeter of the type E TM are shown on Figure 11.2 and 
defmed by relationships derived from Figure 11.4. 

P~ = ~+~+~+~ + ~+~+~+~) 
and 

A'ff 

(11.26) 

(11.27) 
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f) Type F - two DCAMs and one DOAM 

Refer to Figures 11.3 (a), (b) and (c) for examples of the effective areas and 

perimeters of this type of TM at various rod separations. Figure 11.7 shows the regions 
used to derive the relations that yield: 

P'1f = (P2 +P21 +PZS ) + (PI +P3 -P2A) (11.28) 

and 
(11.29) 

g) TypeG - two WOAMs 

Figure 11.3 (b) shows the effective area and perimeter of the type G TAM From 
the relationships derived from Figure 11.8: 

and 

P'1f = (P,,+P,.+Pu,+P30) + (-Pu,- P3l) 

A'1f = A2A + A30 

h) Type H - two DCAMs and one WO AM 

Refer to Figures 11.3 (c) and 11.7. 

P'ff = (P22 +P23 +P6 +PTI +Pu,) + (P,+P7 -P
24

) 

Note the negative contribution to the perimeter from the WOAM. 

Also A,If·= AT, -A23 -A,-A
6
-A

7
+A

24 

11.2.2 Solution of equations 

(11.30) 

(11.31) 

(11.32) 

(11.33) 

The equations for effective areas and perimeters derived above were written into 

the standard computer program. Some modifications to the workings of the program 

were required to enable selection of the type of TM and to incorporate the half angle, cp 
(see Appendix I for a program listing). 

The resulting program is capable of solving the equations for rods of unequal sizes 

with varying rod separation. Results are given as normalised meniscus curvature, R/r, 
in terms of the half angle, cp. With the likely staple positions of the AMs already 

determined in the analysis and with the computer generated results for each of the TMs 

it is now possible to determine which type of TM or TMs exist at which rod separations. 

The minimum surface energy criteria must be employed. The TM with the highest 

normalised curvature for each particular portion of geometry is always formed. Figures 

11.9 and 11.10 show such graphs obtained forthe arrangements where RI =Rz =R3 at 

low cp and where RI = Rz = 2R3 at intermediate and high cp. These graphs illustrate the 

behaviour of the eight TMs. Each is represented by a different potion of the graph, as 
shown. 
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Figure 11,9 - Graph showing the theoretical results for curvamres of the various terminal menisci 
formed in the three equal rods and plate system at low and intermediate half angles. Curvatures of 

types A, B, C,D and E TMs are shown in terms of the half angle by the curves indicated. 

ValidatiOn;!e program against previously published results was possible at specific 

separations for the case of equal rods. TM types A and F, between two rods and a plate, 

have been discussed elsewhere for the case when all components are in mutual contact, 

see section 9.5, and the type G TM was cove~ in section 9.3. Mayer & Stowe (1965), 

Princen (1969b) and Dodds (1978) have published results that were used to validate the 

equations for type B when all three rods are in contact. Princen (1969a) covered type C 

and Dodds also recorded some results for the type D TM. Finally Mason & Morrow's 

(1987) study provided comparison for results obtained for the type H TM. The program 

cannot determine which of the TMs is formed and will calculate theoretical curvatures 

for menisci that do not exist in the real system (the dotted lines on Figures 11.9 and 

11.10). It is left up to the user to determine which TMs are formed where. 
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Figure 11.10 - Graph showing the theoretical ~ullS for curvatures of the various tenn~ meni~i 
formed in the three unequal rods, non-symmetncally arranged (RI = R, = 2R,) system al mtermediate 
and high half angles. Curvanm:s of types E, F, G, and H TMs are shown in terms of the haIf angle by 

the curves indicated. 

11.3 EXPERIMENTAL 

The experiments for the three rod system sought to confirm the transition points 

between the different menisci in addition to the usual objective of confirming theoretical 
curvatures. Also some "neighbouring pore" effects were expected . 

. ' 
Four rod size arrangements were investigated beginning with the comparatively 

simple case of three equal rods (RI =R2 =Rj ) • The study of this arrangement is relatively 

straightforward and set the pattern for the more complicated cases. As a step to increasing 

the complexity of the system the centre rod was replaced by a rod twice the size (RI = 
1/2R2 = Rj ), and then by a rod half the size of those at the side (RI = 2R2 = R

j 
). Finally 
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non-symmetrically arranged unequal rods were investigated, with a side rod and the 

centre rod of equal size and the remaining rod half the size of the other two (RI = R2 = 
2RJ ). This last arrangement demonstrates the entire range of menisci. 

The experimental procedures again closely followed those described in chapter 7, 

but new cells had to be designed and fabricated and a suitable method for measuring the 

half angle determined. Also uncertainties over exactly where to measure some menisci's 

heights of rise needed to be addressed. 

11.3.1 Cell design 

In order to realise all of the possible rod separations for the various rod sizes several 

different cell designs were needed. At many rod separations, notably at low and 

intermediate half angles, in was possible to utilise the existing cells with clamping screws 

at the rear. The centre rod was simply pushed forward against the side rods which were 

supported by the channel walls and glass plate. By varying the rod sizes many different 

separations could be obtained. 

At large values of $ the above method fails as small changes in the rod sizes result 

in very large changes in $. The available range of cells and rod sizes was not fine enough 

to provide adequate variation. Two new cell designs were devised and four cells 

commissioned during the course of the experiments. 

11.3.1.1 Intermediate and low $ design 

Whilst conducting some early experiments for the three equal rod arrangement it 

became apparent that a more versatile cell was required if the full range of intermediate 

and low $ values were to be covered. The resulting cell design is shown in Figure 11.11. 

A stepped channel designed to hold 3 x 3/32" rods was machined to the front face of a 

standard cell blank. Three 1/8" diameter screws, with the end 1/4" ground down to 1/16" 

diameter pins, enter through the rear face of the channel. As it stands the cell' can 

accommodate three 3/32" rods in a row against the plate. 

The half angle, $, is altered by inserting equal thicknesses of shimstock between 

the side rods and the walls of the channel. The centre rod is then forced against the side 

rods by the clamping action of the screws as shown in Figure 11.11. The rod size of 

3(32" diameter was selected as initial experiments had shown this sized rod gave heights 

of rise within the limits of the comparative method over the whole range of $ values. 

Brass shims were used and were prepared in 2" long strips about 1/16" wide. 
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Figure 11.11 . Diagram showing the design of the ceD employed in the capiUary rise experiments for 
the three-rods·and·a·plate arrangement at low and intem\ediate 1)). 

The cell proved to be easily assembled and very useful for low and intermediate 

values of $ with the equal rods and also with the symmetrically arranged unequal rods. 

At high $ the cell did not work so well as even changing the shim size by as little as one 
thou resulted in excessive changes in $. 

11.3.1.2 High $ design 

As a result of the failure at high ell of the cell de'scribed above a new cell was 

commissioned, designed specifically for the three equal rods alliigh rod separations. The 

cell is shown in Figure 11.12, as is its operation (schematic ally). The principals of the 
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design remain the same, but now the rod separation is altered by changing the depth, not 

width, of the cell enabling much finer control of $ at high separations. 

, , 

-

T I 
L...J 

I 

I 
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p [ 

1/8~·-,3/8-·
t 

plate ! 
1/2-

I 

Figure 11.12 . Diagram showing the design of the ceD employed in the capillary rise experiments for 
the lhree-rods-and·a-pla!e arrangement at high cp. 

The heights of rise encountered at high $ are significantly greater than those at 

intermediate $ enabling 1/8" rods to be used. Larger rods lead to pores of greater 

dimensional accuracy. The three rods are clamped in position by a 3/32" thick steel plate 

that is pushed onto a side rod by three clamping screws entering through the channel 

wall. The plate's section was that of a parallelogram enabling it to swing without catching 
the glass plate, yet still contact the rod properly. 

In practice this cell was not so easy to assemble and often required a lot of patience, 

but worked well in the end and an improved simpler design could not be conceived. Two 

further cells of similar design, but with different specifications were later commissioned 
for the investigations with unequal rods. 
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11.3.2 Measurement of half angle 

Direct measurement of the half angle, q" was never really a realistic possibility. 

The only place that the angle can be measured with a rotating microscope is looking 

down onto the top of a cell and positioning the cross-hairs on the outer edges of the rods. 

Any variation in tube section caused by mistakes in assembling the cell would go 

undetected. Furthennore the cells were difficult enough to assemble without having to 

ensure that all the tops of the rods would be in focus at the same time. 

Indirect measurements of q, involve the measurement of the rod-rod, tenned L, or 

rod-plate, D, separations (see Figure 11.13). Measurement of L is more desirable as it 

may be checked along the length of the pore. This method worked well at low and 

intermediate q" but at high q, small errors in L lead to large variation in the observed 

value for q,. A sine function must be used to obtain q, from L. The same small errors in 

ameasurement ofD lead to much less variation as q, is obtained from a cosine relationship. 

Similarly a low rod separation use of D was less accurate than L. 

i 
D 
I 

I I 
I I 

I.-·~L--.l 
I I 

Figure 11.13 - II1OS1l3tion of the paralneters measured for lhe determinatioo of the half angle. cp. 

Table 11.1 shows the simple trigonometric functions employed to calculate q, from 

Land D for each of the rod arrangements investigated. Variation in gap measurements 

over several readings could be as much as 10 thou (0.25 mm). This arose from difficulties 

in illuminating the shiny steel rods so that their edges were clearly defined. Table 11.2 

. shows the effect of a 10 thou variation on q, for three equall/8" rods at different nominal 

q, values. 
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Table tU Determination of half angle. <>. from measured gap sizes: L. the rod-rod spacing and D. the 
rod-plate spacing. 

Rod 
Arrangement 

Equal Rods 

Unequal Rods -
SY"lmetrical , 

(unequal Rods -
~n-Symmetrical 

<>(L) 
Gap 

<>(D) 

_,( d) 
cos 2ii 

=_,(D +R,-R,) 
R.+R1 

At intennediate separations these errors in $ are not a major problem as curvature 

changes only slightly with $, but at high and low separations, where the rate of change 

of curvature with $ is greatest, these variations in $ can cause significant errors_ In 

practice L measurements were used at low and intennediate separations, and D 

measurements only at high $, where having only the top of the cell to make measurements 

is preferable to the large errors incurred with L. 

Table 11.2 Range of possible <> values given a 10 thou (O.25mm) uncertainty in 
L or D with 3 x 1j8" diameter rods. 

Nominal L/2 Maximum D Maximum 

<> range of <> range of <> 
(mm) (mm) 

40" 0.4515 40±0.15° 2.3975 40±0.35° 

60" 1.1575 6O±0.25° 1.5562 60 ± 0.25° 

80" 1.5331 80±0.70° 0.5241 80 ± 0.20° 

11.3.3 Point of measurement of height of rise 

The three rod system gives rise to eight different TMs and thus several different 

capillary profiles which must undergo transitions from one shape t9 the next. With some 

profiles a definable point or points for the measurement of heights is not obvious_ At 

rod separations near to transition points between menisci it is sometimes difficult to 

know which menisci you are looking at. Figures 11.14 and 11.15 show examples of these 
. I 

profiles, and the points selected for measurement of heights, as viewed through the glass J 
/ 

plate when $ is increased_ 
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Figure 11.14 - Schematic illustration of some of the capillary profiles seeu through the glass plate with 
the three-rods-and plate. symmelrically arranged system. The points at which heights of rise were 

measured are indicated by the dotted lines. 

Figure 11.14 shows profiles seen with symmetrically arranged rods. At low «P the 

type A TM. akin to that shown by the two rods and a plate arrangement. gives a well 

defined point for measurement. At some small separations it was possible to see a 

meniscus behind the type A TM (Fig. 11.14 (ii». but tthe time of measurement it was 

impossible to tell which from observation alone. These turned OUl to be type D menisci 

and measurements were taken a the lowest visible point. TMs of type C and B were not 

seen. 
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Figure 11.15 - Schematic illustration of some of the capillary profiles seeu through the glass plate with 
the three-rods-and plate. non-symmetrically arranged system. The points at which heiglits of rise were 

measured are indicated by the dotted lines. 

Taking readings from type E TMs is simple for most of the separations for which 

it exists (Figs 11.14 (iii) and (iv». As «P increases the profile becomes progressively 

"flilller", the TM more cubic, until at higher «p values there arises a slight "hump" in the 

centre of the profile (Fig 11.14 (v». This was seen at values of «p significantly less than 

would be associated with the formation of a type H T AM and so the height of the lowest 

part of the TM was used to determine curvature. At high «p all menisci give discernible 
points for measurement. . 

With~-Symm~nged rods there are additional problems arising from 

the formation of the~-TM-Figure 11.15 shows the changes in profile from 

intermediate to very hign separations. The type E TM initially becomes more asyl11llltitric 
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(Fig 11.15 (i)), before a slight kink, like a point of inflection, is seen near the smaller 

rod (Fig 11.15 (ii)). The position of the "kink" is difficult to ascertain exactly, but a 

measurement could usually be taken. The "kink" appears at ell values less than those 

associated with the development of the type G TM. Further increases in ell flatten out the 
region near the "kink" (Fig. 11.15 (iii)) until a slight "hump" appears (Fig. IUS (iv)) 

before the type H TAM is properly formed (Fig. 11.15 (v)). 

11.4 RESULTS 

Over the following pages the theoretical and experimental results for each rod 

arrangement are given and examined. All experimental curvatures were obtained from 

observed heights of rise using the simplified comparative method equation 7.7. No 

corrections were added for gravity distortion. Appendix I shows the detailed 

experimental results. 

-11.4.1 Three equal rods 

Figure 11.16 shows the MS-P generated curves of normalised meniscus curvature, 

Rjr, in terms of the half angle, ell. The half angle varies between a minimum of 30', the 

rods mutually touching, to a maximum of 90', all three rods in a row. The arrangement 

behaves as either one or two pores depending on the rod separation. For the majority of 

ell values (from about 36.5" to 84') the arrangement behaves as a single pore bound by 

three rods and a plate and exhibits a type E TM with a curvature between 3 and 5. 'The 

experimentally determined curvatures for intermediate ell are also shown on Figure 11.16 

and are generally in excellent agreement with the theory. 

At high ell, Figure 11.17, the arrangement behaves as two identical mirror image 

pores of two rods and a plate. Only the types F and G TMs are seen. It is not possible' 

for a type H TM (two DCA Ms and one WOAM) to form with equal rods. When the 

curvature of the TAM, type G, equals that of one type F TM it will also equal that of 

the other resulting in a transition directly to the type E TM. The experimental results for 

this region are shown on the expanded scale of Figure 11.17 so that they may be better 

compared with the theory. The agreement is again excellent 

At low ell the arrangement also behaves as two separate pores, but now all four 

possible TM types are exhibited depending on the exact value of ell. However in practice, 

it was only possible to measure the curvature of the type A TM and a few points for the 

type D TM. At these small values of ell the gap between the side rods is too small to allow 

the other TMs to be seen properly. Figure 11.18 shows the experimental results on an 

expanded scale. 
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The Figures show that the experimental results agree very well with the theory. 

The points show errors either side of their theoretical values. These errors are mostly 

within I %, notable exceptions being the results for the type H TM, two WOAMs., where 

the,rate of change of curvature with cp is greatest 

It was whilst these experiments were being performed that the idea of using the 

three rod arrangement as a standard arose. For a relatively large range of cp the curvature 

of the type E TM hardly changes. (For 52° :!> cp :!> 60°, 2.95 S; Rlr :!> 3.(0). Errors in the 

manufacture of the pore construction components and the measurement of cP will have 

a very small effect on the resulting curvature making the arrangement a suitable standard 

(see chapter 8) 

11.4.2 Unequal rods symmetrically arranged 

With the centre rod replaced by a rod of different size the complexity of the system 

is increased and different relationships between curvature and cP result. Two arrangements 

were investigated, one with the centre rod twice the size and the other with the centre 

rod half the size of the side rods. 

a) RI = I/2Rl = R3 
Figure 11.19 shows both the theoretical and experimental results for this 

arrangement. The half angle, cp, varies between a minimum of about 19.5' to a maximum 

of 70.5'. The overall appearance of the theoretical curves change little from those for 

equal rods but the relative proportion of cp values for which types A, B, C and D TMs 

exist, is smaller and that where types F and G are seen, significantly greater. It was in 

this latter area in which the investigation centred. It was thought that the larger middle 

. rod would particularly benefit readings on the type G TAM and this was bourne out in 

practice. Experimental results are mostly within 1 % of their theoretical values, all within 

2%. 

b)RI=2Rl=RJ 

With the centre rod now half the size of the side rods the curves shown by Figure 

11.20 are found. The minimum value of cp is 41.8' and its maximum 109.5'. It is now 

the region for which types A, B, C and D TMs exist that is the most fully developed area 

of the graph. It was hoped that the larger gaps obtainable between the side rods (rod-rod 

separation) when these menisci are present would facilitate better observation of the 

rearmost menisci. The experiments did not prove successful in this respect. Tbe greater 

rod-plate separations resulted in increased difficulties in illuminating the back menisci 

and poorer, not better visibility. 
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The assembly of cells at high $ was not possible with the existing cell designs. For 

$ > 90· the centre rod is no longer held by the larger side rods and falls against the plate. 

The region for which types F and G are formed is, in any case, not well developed and 

would further increase the complexity of experiments at high $. The comparatively few 

measurements that were obtained showed good agreement with theory, almost all within 

± 1%. 

11.4.3 Unequal rods non·symmetrically arranged 

In this arrangement it is one of the side rods that is of a different size to the other 

two equal rods. The arrangement is by far the most interesting example of the three rod 

systems studied as it shows the full range of behaviour and all eight TMs are exhibited. 

Only the arrangement for which RJ = R2 = 2Rj was investigated. Now, with the 

three rods all in a row; the two separate pores hold menisci with different curvatures. As 

the separation is decreased there are two stages to the behaviour before the two pores 

become one. First the two backCto-back WOAMs give rjse to a type H TAM between 

the two type F TMs. The second stage occurs when the curvature of the TAM falls below 

that of the type F TM in the smaller of the two pores. A type G TM, comprising two 
/ . 

DCAMs and one WOAM, is now formed before reversion to a type E TM. 

Experimentally the arrangement is of most interest at high rod separations where 

five TMs can be observed through the glass plate (a distinct advantage). To have 

assembled the rods at low separations would require complex cell designs and not reveal 

anything new. 

Figure 11.21 shows the experimental results compared to the theoretical 

predictions. Referring to the figure, at low $ the arrangement behaves as a single pore 

exhibiting a type E TM. At high $ the system behaves as two separate pores each holding 

type F TMs and at intermediate values of $ the effect of one neighbouring pore on the 

other becomes important 

The curves of Figure 11.21 show a wonderful illustration of the effect of one 

two-rod-pore on another. At intermediate separations the curvature is not set by the 

two-rods-and-a-plate arrangement, but depends on how the third rod is positioned. 

The experimental results show excellent agreement with the theory (mostly within 

± 1 %), both in terms of the curvature and in the change in meniscus types. These results 

show the power possessed by the MS-P method to predict the effects of one pore on 

another in addition to its now well proven abilities at predicting curvatures in uniform 

pores. 
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11.4.4 General observations 

Theresultsjust presented for the various three rod arrangements all exhibit excellent 

agreement with the theory. If the error inherent to the measurement of the half angle. $. 
is taken into consideration then almost all the data could be made to fit the theoretical 

curves. Even the points showing the worst error. those for the type H TM where curvature 

changes rapidly with $. would come into close agreement with theory. When the type 

H TM was studied in its own right, section 9.3. the agreement with theory was excellent. 

The conclusion that the best way to measure an arrangement's half angle is to measure 

the curvature of the meniscus it holds and then compare it with the theory is inescapable! 

The general trend of the" experimental data is for curvatures to be slightly less than 

those predicted by the theory which is consistent with previously discussed dimensional 

variations in the pore construction components and distortion of menisci by gravity. 

Beyond the use of the comparative method no attempt has been made to correct 

the data for gravitational distortion. Application of the Jurin correction would be wholly 

inappropriate to many of the menisci formed as they bear no resemblance to the 

hemispherical shape assumed in equation 7.8. Estimation of the actual corrections. 

required to be applied to each menisci to adjust heights of rise to those corresponding 

to average curvatures. would present difficulties unjustified by the magnitude of the 
errors. Incidently. for menisci with flatter profiles the heights actually measured will 

correspond quite closely to the average curvature when compared with the more spherical 

menisci. Hence. errors in these curvatures arising from gravity will be significantly less. 

In section 11.2 it was noted that at higher values of $ associated with the type E 

TM a small "hump" arose in the middle gap with symmetrically arranged rods. This 

occurs before the theory predicts a transition to types F and G TMs. Shown on Figure 

11.22 are the maximum and minimum observed curvatures for a meniscus in this region. 

The minimum heights of rise yield curvatures that agree well with predictions for a type 

E TM. implying that it is this TM and not types F and G that is seen. However the shape 

of the profile suggests that back-to back OAMs exist, if only partially developed. A 

possible explanation for this seeming paradoxical situation may be attributed to the 

capillary rise method. The method depends on. and suffers from. the changing curvature 

of the liquid vapour interface with height above the free liquid surface. 

Figure 11.22 also shows a plot of normalised centre rod spacing form the plate. 

RiD. versus the half angle. $. The point at which this crosses the curve for the type F 

TM (marked X) represents the point at which the two back-te-back OAMs would meet 

and so rupture had one of the side rods been removed. The point were this curve crosses 

the type ETM curve (marked'Y) represents the separation at which a pair of back-to-back 

OAMs would rupture had both side rods been removed. 
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As the liquid/vapour interface in a capillary is able to alter its curvature depending 

on its height, it may be possible for the OAMs to exist at q, values greater than X. The 

small "hump" probably arises from capillary rise from the flatish surface of the type E 

TM. Results show the effect occurs without causing excessive distortion of the remainder 
of the surface. 
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CHAPTER 12 

Principal findings, further work, and conclusions 

Over the previous chapters the investigative procedures and experimental results 

have been presented and discussed. From the results a general conclusion may be drawn: 

The e.xperimems performed show that the curvatures of non-axisymmetric 

menisci in uniform tubes can, when gravity effects are small, be predicted by 

the MS-P metlwd. 

Here, by way of a summary of the preceding chapters, the main findings of the study 

are chronicled before suggestions for further work are made and the conclusions of the 

work detailed. 

12.1 APPLICATION OF THE MS-P THEORY 

The study has brought together existing ideas and methods of calculating the 

curvature of menisci in tubes of arbitrary, but unifonn, cross-section. When arc menisci 

do not fonn the hydraulic radius method may be used, but when AMs exist the MS-P 

method must be used if significant errors are not to be introduced. The main problem in 

applying the MS-P theory is the determination of exactly where the AMs fonn. 

The MS-P equation (eq. 6.12) may be derived via consideration of the energies or 

forces involved or directly from the Gauss equation of capillarity. The theory is exact 

only for menisci of constant mean curvature, as the respective derivations assume. It 

may be necessary, as with the three rod pores or if the AM arrangement is uncertain, to 

calculate the meniscus curvature for several possible configurations and assume that the 

actual curvature adopted will be the one with the lowest curvature. 

The effect of changing wettability in a system of fixed geometry has been discussed. 

In these cases there can be a contact angle at which the AMs cease to exist, and this must 

be ·reflected in the analysis. The effect was illustrated by the analysis of the n-sided 

polygonal tubes which have particular contact angles at which the arc menisci disappear 

(section 6.4.1.2). In principle, the MS-P theory may be applied to estimate the meniscus 

curvature of any particular pore geometry and at any particular contact angle, the 

limitation being the tractability of the resulting equations. It may be applied to menisci 

having either open or closed r;apillary rise profiles. 
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In this study a standardised method was developed for the application of the theory 

to arbitrary-sectioned uniform tubes. The method's basis is the division of the pore 

cross-section into a number of simple geometric regions, each having a perimeter 

bordering the section of the particular terminal meniscus, and usually an area and angle. 

The division into such regions enables simpler calculation of the effective area to 

perimeter ratio. It also ha~ the advantage that in pore shapes where more that one stable 

TM can exist the expressions for the angle, area and perimeter of particular regions may 

be re-used as required. 

A standard computational routine was developed in conjunction with the above 

application method that enables re-use en-block of major procedures. The relevant 

equations forregion areas and perimeters of any TM need only be inserted into an iteration 

program based on a successive bisection and interpolation technique. With only minor 

adjustments of input and output procedures sets of solutions for curvature in terms of 

either a geometric or wetting variable are given. 

The tubes investigated are all made up of simple geometric components. Solving 

the equations for the radius of curvature when the contact angle is zero was relatively 

straightforward, only one numerical iteration is required. However, even with the simple 

geometrical units the analysis can become quite involved, particularly when the contact 

angle is also a variable. With the two-equal-rods-and-plate arrangement under mixed 

wetting conditions two iterations were required. It must be expected that when the method 

is applied to more irregular shapes more powerful computing techniques than those 

employed here will be needed in order that the resulting multiple iterations can be 

perfonned speedily. 

12.2 EXPERIMENTAL APPARATUS AND PROCEDURES 

The apparatus utilised for the experiments had evolved during investigations 

conducted before this study by Mason and co-workers. However during the course of 

the experiments some funher development and several modifications to the apparatus 

and procedures were required. These have significantly contributed to the increased 

accuracy of the results presented here. 

a) The new Gaertner cathetometer (section 7.2.3) undoubtedly improved the 

ease and the accuracy of the capillary rise measurements compared to those 

taken with the older instrument. 

b) The better tolerance of the needle rollers provides an advantage over the 

HSS drill blanks, significantly reducing the dimensional errors in the 

constructed pores. However, drill blanks are still required for their extensive 

size range and greater length, particularly with the smaller rod sizes. 



c) Developments needed to be made in the area of cell design to enable the 
observation of curvatures of menisci in awkward arrangements. Of particular 

advantage was the practice of clamping together the pore consU1Jction 

components. The use of the clamping technique contributed to the reduction 

in dimensional errors and represents a significant ir::provement on the 

"precisely" machined channels previously employed. 

d) A new procedure was developed for experiments using partially and mixed 
wetting conditions in order that due account could be JIDde of contact angle 

hysteresis between advancing and receding menisci. 
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12.3 STANDARD CONFIGURATIONS AND THE Fll..L COMPARATIVE 
METHOD 

In chapter 8 the experiments performed to determine ne curvatures in selected 
standard configurations were reported. A repeat of Mason & Morrow's (1984a) 

experiments using the full comparative method with the !v .. o-equal·rods-and-plate 

arrangement provided an improved value for the normalised ~urvature, the error from 

the predicted curvature rising from - 1.3% to only - 0.4%. A funher set of experiments 
investigated the potential use of the three·rods-and-a-plate ~'stein as a standard; with 

advantage being taken of particular rod arrangements where the MS-P theory predicts 
a curvature that is virtually independent of the geometry. Uncorrected results from the 
full comparative method were not so encouraging, giving a error of + 1.3% from the 
predicted value. However the results were distorted by the use of capillary tubes giving 

heights of rise in a different range to the assembled pores. 

Using the results obtained from these standard configurations a detailed account 

was made of the likely experimental errors - principally the opposing effects arising 

from gravitational distortion of menisci and dimensional variations in pore geometry. 

The near-hemispherical shape of the menisci in both standard configurations enabled an 

approximate application of the Jurin correction for gravity distortion. This led to 

improved estimates of the meniscus curvatures; errors form the predicted values were 

only - 0.3% for both systems. The Jurin correction seemi:!g1y giving an excellent 

correction for the different levels of distortion in the rod pores and cylindrical tubes 

when heights of rise are dissimilar. Its validity was conftrmed by its agreement with a 

calculated value for the height of rise in the reservoir indicator cell. 

Furthermore, it has been shown that the Jurin correction can provide a satisfactory 

correction for gravity distortion in cylindrical tubes for heighrs of rise down to as little 

as 3 mm. This result, if also applicable to the assembled pores, implies that both 

comparative methods may be used for heights of rise greater than 3mm and significantly 

enlarges the "window of opportunity" in the scale of the apparatus that enables the 
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effective use of capillary rise methods. Some funher experimental work is required to 

show that these results for the tubes are approximately correct for the menisci in the rod 

assemblies. The work with the Jurin correction also produced an alternative relationship 

for the calculation of observed curvarures' measured with the simplified comparative 

method. This expression is only applicable incases where menisci are near-hemispherical 

and when heights of rise are within the validated range of 7 to 2S mm. 

A rough quantitative account was also made of the effect on the observed height 

of rise, of the slope of the liquid wedges which are held behind arc menisci. The wedges 

slope owing to the direct relationship between curvature and height that is the basis of 

capillary rise methods. The effects were found to be small across the height ranges 

investigated. Without application of corrections the validity of the comparative method 

was confirmed for heights of rise in the range 7 to 2S mm with the optimum range, where 

the opposing effects of gravity and dimensional variation give minimum errors. is 

between 10 and ISmm. 

When combined with a quantitative investigation into dimensional errors the above 

analyses allow the conclusion that differences between observed and predicted 

curvatures can be accounted for by the experimental error. Either standard should afford 

adequate comparison for the simplified method provided the rods are correctly 

assembled. Small dimensional errors incurred by incorrect assembly and/or rod 

tolerances will have a significantly larger effect on the curvature in the two rod system, 

thereby favouring the use of the three rod standard. However, the latter system requires 

much smaller rods to produce a pore giving the same height of rise as a two-rod pore, 
inevitably leading to relatively larger dimensional variations as these increase .... ith 

decreasing. pore size. 

Overall the full comparative method experiments provided the information 

necessary to optimise the experimental procedures and it is difficult to imagine a more 

exact method utilizing capillary rise. 

12.4 INVESTIGATIONS WITH THE SIMPLIFIED COMPARATIVE METHOD 

12.4.1 Perfectly wetting conditions 

In chapter 9 the results of experiments conducted in four different pore shapes .... ith 

a perfectly wetting liquid were compared with the theoretical predictions of meniscus 

behaviour. Results, obtained with the simplified comparative method were generally in 
excellent agreement with the theory and all within the determined experimental error. 
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a) Rectangular tubes 

The theory for this geometry can be obtained analytically. Experiments proved 

much more difficult. The other pore shapes are made up from rods where the pore size 

is much smaller than the rod size. When a rectangular pore is made it is difficult to 

fabricate small square corners to the same degree of accuracy as the rod pores. Eventually 

a cell design based upon a stack of precisely machined plates was adopted. Reasonably 

successful results were found over a range of tube sizes and aspect ratios. Almost all the 

observed curvatures fell within 4% of the predicted values. 

b) One rod away from a plate 

The meniscus formed in the space in-between a rod and plate is anticlastic and has 

an open capillary profile. The meniscus behaviour is however relatively straightforward 

and no particular problems were encountered with the theory or experiments. Measured 

curvatures are in good agreement with the theory, most within 1 % and all within 2.5%. 

These results represent a significant improvement over the limited (and secondary) 

observations made by Mason & Morrow (1987) who found errors as great as 15%. 

c) One rod in a corner 

Previous studies had involved rods in right-angled and acute corners. That work 

was confmned and extended to cover the general angle. Experiments showed less than 

1 % deviation from the theory once a correction for gravitational distortion was added 

to the measured heights of rise (a significant improvement in accuracy). 

d) Two unequal rods and a plate 

The meniscus behaviour in this arrangement is again relatively straightforward, 

although application of the theory is more involved. Results agree excellently with the 

theory - generally within 1 % of predicted curvatures. This arrangement was selected as 

the basis for a short paper to demonstrate the use of the MS-P method which was presented 

at the IUPAC conference on the characterisation of porous solids (Mason, Morrow & 

Walsh 1988 - see Appendix A). 

12.4.2 Non-zero contact angle 

For a limited number of cases the effect of contact angle variation was studied to 

determine whether the MS-P method is still accurate (see chapter 10). The theory 

becomes much harder to apply for non-zero contact angle; in some cases a second 

iteration being required for solution. More problematic however was the irreproducibility 

of contact angle which made the experiments much less precise than those with zero 

contact angle. In addition the use of less accurate PTFE components meant that pore 

geometry was not as precisely known. 
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a) One rod away from a plate 

The capillary behaviour of the meniscus in the varying space between a rod and a 

plate when the contact angle of the liquid with the solid is also varied provides an insight 

into the complex behaviour that can be expected with mixed wettability systems. The 

geometry is straightforward, but the behaviour produced is far from simple. 

The investigation of the system under perfectly wetting conditions had sho ..... n that 

the meniscus curvature between the rod and the plate is primaril y determined by the size 

of the gap, gradually increasing to approach that between two parallel plates as the gap 

is decreased. As the contact angle is increased from zero at a given spacing the curvature 

decreases until at 90· the curvature is zero. There is also a region where the two WOAMs 

meet back-to-back and no stable tenninal meniscus is possible. The interactions bet\\·een 

the above effects were displayed on a three dimensional diagram (Fig. 10.2) 

Experiments were performed using a homologus series of liquids for both 

advancing and receding contact angles in pores of uniform wettability. In so far as the 

experiments were precise enough the theory was confirmed by the experiments. 

b) Two equal rods and a plate 

This arrangement has the advantage that it can be assembled with mixed wenability 

by making either or both the rods or plate partially wetted. The totally partially wetted 

system was the subject of an early investigation by Mason, Nguyen & Morrow (1983) 

which originally gave rise to this present work. Application of the theory when the contact 
angles on the three surfaces are all different is very involved. It predicts that making the 

rods partially wetted does not make as much difference as making the plate partially 

wetted. A consequence of the wetted perimeter of the plate being larger than that of the 

rods. 

Experiments were performed on three arrangements, all with a partially wetted 

plate. The instances where both, one or neither of the rods are partially wetted were 

investigated. The data obtruned was again much less precise than that for the perfectly 

wetted system. Results for the totally partially wetted system showed a slight 

improvement over those of Mason et al. 's study. 

Perhaps more important was the conf1Tffiation of the theory in the mixed wenability 

systems. As explained in section 3.5.1 surface heterogeneity, and hence mixed 

wettability, is almost the norm for oil bearing rocks. The presence of individual rock 

grains in a pore structure that mayor may not be wetted by the oil makes the capillary 

behaviour very curious. There is currently a large interest in these mixed wenability 

rocks (see Anderson 1987a) and the results presented here may shed some light OD the 

oil behaviour and could contribute significant advances to enhanced oil recovery 

techniques. 
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12.4.3 Investigations with neighbours 

As des~ribed in chapter II the space enclosed by three parallel rods and a plate 

gives rise to a complex family of interacting terminal menisci as the cell half angle is 

varied. Depending on the rod geometry the arrangement may yield two separated pores, 

two interconnected pores or a single pore. When the two pores are interconnected the 

effect of the meniscus behaviour in one neighbouring pore on the behaviour in the other 

becomes imponant 

The theory applied to this arrangement is involved, but yields the curvatures of the 

eight possible terminal menisci. Determination of which type of TM exists in the 

panicular geometry was effected with the minimum energy criterion. The panicular half 

angles where one menisci gives way to another can be determined with the theory. 

Experiments, covering the entire range of behaviour, were performed on four 

systems; three equal rods, two systems of unequal rods symmetrically arranged and a 

system of non-symmetrically arranged unequal rods. All observed curvatures were for 

zero contact angle. That the predictions of the MS-P theory have been so closely 

confIrmed by experiment (mostly to within 1%), both in terms of the meniscus curvatures 

and for the transitions from one type of TM to another, is indicative of the true power 

and exactness of the theory and represents the fInest achievement, to date, of the MS-P 

method. 

It is expected that the propenies of these model pores will be able to illuminate the 

behaviour of adjacent pores in a porous medium undergoing drainage or desorption. For 

example, at cenain half angles the unequal rods, non-symmetrical arrangement gives 

rise to the type H TM. The curvature of this TM in the interconnected pores is not. set 

by the geometry of a panicular two-rods-and-plate arrangement, but depends on how 

the third rod is positioned. Extended to a porous material this means that a panicular 

geometry cannot be unambiguously deduced from a capillary pressure or meniscus 

curvature measurement. This resuIthas obvious bearing on pore sizing methods such as 

mercury porosimetry, thermoporometry and Kelvin analysis. 

12.5 FURTHER WORK 

The work reponed in this thesis does not complete the validation of the MS-P 

method, but rather serves as a comprehensive introduction to it. There are an almost 

limitless number of pore shapes to which the method might be applied, but for future 

investigations it would be prudent to keep potential applications in mind. 

-
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A further step is the application of the method to model unifonn pores that are 

more like real systems. Some work is now proceeding in this area. During the course of 

this study Mason & Morrow (1989) have applied the theory to triangular pores resembling 

real. pores observed in some rocks. Some success was noted as regards the modelling of 

some aspects of capillary pressure hysteresis (see section 3.5.2): At the time of writing 

an undergraduate project supervised by Mason is investigating a two rod arrangement 

where the rods have had precise flats ground on (such that the rod sections are circle 

segments). These model pores resemble some consolidated oil reservoir rocks where 

grains are dissolved away at points of contact. Initial results are promising. If the work 

is extended to mixed wettability, situations will arise where the arc menisci in the corners 

will not necessarily exist. 

It would also be desirable to apply the flats and/or mixed wettability to the three 

rod arrangement. These systems could be used as models for hysteresis in drainage and 

imbibition capillary pressure. They would possess some realistic properties; 

neighbouring pore effects, an irreducible wetting phase saturation, and with certain 

geometries the configurations of a receding (draining) meniscus will differ (having a 

higher curvature) from that of the advancing (imbibing) meniscus. Furthermore, if the 

above hysteresis models were combined with percolation theory (section 3.5.3) network 

effects could be incorporated; pore connectivity and pore blocking effects. Validatory 

experiments could be performed on small scale networked models in the manner of 

Lenormand (1983). A truly realistic and versatile model could result. 

Unfortunately there is probably a limit to the complexity of uniform pore shapes 

that can be conveniently analysed with the method. Even with some relatively 

straightforward configurations studied here under variable wetting conditions (such as 

the two rod system) the theory becomes quite complex. It would be advantageous to 

investigate more complicated shapes and ascertain these limits. 

12.6 CONCLUSIONS 

1) A general routine has been developed for the application of the MS-P theory 

based on the division of pore sections into simple geometric regions. This technique 

has proved successful in the analysis of the behaviour of even quite complex 

capillary surfaces in non-axisymmetric uniform tubes. 

2) Previously developed experimental procedures for the validation of the 

MS-P theory have been modified and extended. Investigations with either the full 

or simplified comparative method have yielded results of improved accuracy in 

excellent agreement with predictions. 
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3) A particular three rod and plate arrangement has been investigated and is 

proposed as a new general standard, advantage being taken of a meniscus with a 

curvature that is virtually independent of the particular geometry. 

4) The experiments reported in this study lead to the conclusion that the 

behaviour of non-axisymmetric menisci in unifonn tubes can, when gravitational 

effects are small, be predicted by the MS-P method. This statement applies to both 

open and closed capillary profiles in tubes of perfect, partial or mixed wettability. 

5) The results presented indicate that the MS-P method can enjoy a wider usage 

in research and development concerning the measurement of liquid propenies; 

interfacial tension, contact angle and solderability; the behaviour of fluids in 

partially saturated porous media; characterisation methods and in the modeling of 

capillary pressure hysteresis, two phase fluid flow and enhanced oil recovery 

operations. These are in addition to a now proven ability to predict interfacial 

configurations of the particular class of capillary surfaces that are bounded by 

unifonn non-axisymmetric tubes. 
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NOMENCLATURE 

English 

A 

o 

B 

b 

c 

D 

d 

F 

F(E) 

F(r) 

f(r) 

F(RR) 

H 

interfacial area 

capillary constant 0' = 2tJ/pg (mm') 

effective area (cross-sectional) of a meniscus 

area of region i in the MS-P analysis 

area of solid/liquid interface 

adhesion tension 

area of a sector in the MS-P analysis 

dimension less Bond number = g L 'plo 
radius of curvature at apex of drop (cf eq. 2.52) 

normalised meniscus curvature 

normalised curvature of menisci in ilh-rod standard arrangement (cf chap 8) 

reduced normalised curvature of menisci in ilh-rod standard arrangement (cf chap 8) 

normalised curvature in a standard cell 

normalised curvature of a meniscus in a cylindrical capillary tube (= 2) 

rod-plate spacing (cf chap. 11) 

half depth of rectangular duct (cf sect. 9.2), half rod-plate spacing (cf sect. 9.3) 

Free (available) energy 

function of aspect ratio (cf sect. 9.2) 

functional relationship for radius of curvature 

function of radius of curvature 

function describing variation of r with parameter RR 

Gibbs free energy 

acceleration due to gravi ty 

gradient of rod line (cf chap. 8) 

gradient of tube line (cf chap. 8) 

gradient of tube line with heights of rise corrected for gravity distortion (cf chap. 8) 

enthaJpy 

contact angle hysteresis = 9. - 9, 

beigbt of rise from a planar liquid surface to the bottom of a meniscus 

Jurin correction to height of rise 
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J 

j(S.) 

k 

P 

P 

p. 

P, 
p. , 
P", 
PuPs 

PNW'P" 
p_.p .. 

R 

R 

R. 
Ri 

R. 
Rp 

R,.R, 

RT 

RT. 
RR 

r 
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extrapolated height of rise in reservoir indicator cell (cl chap. 8) 

extrapolated height of rise in reservoir indicalor cell corrected for gravity dislortion (cl chap. 

8) 
height of rise in ilh·rod standard (cl chap. 8) 

height of rise in standard cell 

height of rise in test cell 

meniscus curvature = (lfr, + Ifr,) 

Leverenj-function (cl eq. 3.13) 

permeability 

lengths in MS-P analysis 

length 

dimension less Leveren number (cl eq. 3.14) 

unit normal vector 

number of moles of the ilh component 

pressure (cl chap. 2) 

perimeter (not chap. 2) 

saturated vapour pressure 

capillary pressure 

breakthrough pressure 

effective perimeter of a meniscus 

liquid and solid perimeters 

non-wetted and wened perimeters 

non-wetting and wetting phase pressures 

recoverable heat = T dS 

radius 

width of reclangular tube (cl sect. 9.2) 

hydraulic radius of tube =AIP 

rod radius in ilh-rod standard (cl chap. 8) 

thermoporometric radius 

pore radius 

standard and test rod radii 

tube radius 

equivalent tube radius (cl chap. 8) 

variable parameter for computational interpolation in MS-P calculations 

mean radius of curvature 

principle radii of curvature 

Kelvin radius 
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, w roughness factor 

S entropy 

Sw fractional saturation of wetting fluid 

T temperature 

T, critical temperature of adsorbate 

I adsorbed film thickness 

U internal energy 

V volume 

V, bulk volume of a porous sample 

Vw volume of wetting phase 

Vi panial molar volume of the ilh component 

W work 

W sw work of adhesion 

x,y,z distances along axes 

Greek 

Cl; angles in MS-P analysis 

~ corner angle of polygon (cl chap. 6) 

~ angle of slope of liquid wedges (cl chap. 8) 

y, angles in MS-P analysis 

E aspect ratio of rectangular tube = dlR (cl sect 9.2) 

o contact angle 

0.,0, advancing and receding contact angles 

0"" apparent contact angle 

0, composite surface contact angle 

0, contact angle on a single fibre 

O. intrinsic contact angle 

0° contact angle observed at a rough surface 

l1i chemical potential of the ilh component 

. It mm pressure 

p density 

CJ interfacial tension 

t height (cl chap. 2) 

$ corner angle (cl sect. 9.4), half angle of three rod arrangements (cl chap. 11) 
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APPENDIX A 

Two unequal rods contacting a plate 

The following paper was presented at a poster session at the International Union 

of Pure and Applied Chemistry conference on the characterisation of porous solids. The 

particular geometry has no particularly special features and the motive for presenting 

the paper was to make workers in the field of porous materials more aware of the power 

of the MS-P method. 

The paper gives an idea of the geometric analysis required to use the MS-P method 

and the experimental results confmn the analysis. 
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It iB Bometimes necessary to calculate the curvature of 
liquid menisci in non-axisymmetric pores. The method attributable 
to Mayer and Stowe - Princen can often be used sucessfully. The 
meniscus curvature of a wetting liquid in the space between two 
unequal contacting rods aod a plate is calculated by tbis method. 
Experiments with accurately assembled model ""stems verify the 
theoretical predictions for rod radius ratios of up to 7:1. 

IMTRODUCTION 

Liquid interfaces in porous materials produce a 

significant pressure difference. This pressure CaD be measured and 

used to deter.ine pore sizes. If the interfacial tension is known, 

the key step in the process is obtaining the curvature of the 

meniscus iD an average pore sbape as the meniscus curvature 

depends UpoD the sbape of the pore as well as OD its size. 

Frequently it is assumed that the pore bas a circular 

cross-sectioo which .has a normalised curvature of two. In the pore 

space of a sphere packing however, the pores are nearer triangular 

in shape and this affects their normalised curvature. Pores in a 

porous material are also cODverging-diverging and it is the 

pressure required to ~orce the meni~cus through the ~eck of the 

pore that is usuall)' measured in some way. 

1'bere is DO exact anal)'sis of meniscus curvature in 

non-axisymmetric cODverging-divergiog geometries. 1bere is however 

an analysis of menisci 

which appraxi_tes to the 

iD uniform DOD-axisymmetric g'eometries 

CODStrictions aod widenings in om actual 

pore space. The technique is known as the Mayer and Stowe-Princen 

( MS-P) method. It was put ~orward by Mayer and Stowe { 1 } and 
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later developed by Princen { 2 }. The th;"'ry wi 11 be demonstrated 

and then experimentally validated using the case of a pore formed 

by two unequal parallel rods and 8 flat plate. 

Ji1JIIDMlENTALS 

In a simple cylindrical capillary tube the liquid 

surface will, in the absence of gravitational effects, .form part 

of 8 sphere. This surface has constant mean curvature and gives 

the mimimum surface energy. The liquid usually meets a solid 

boundary with a particular contact angle but, in order to keep the 

analysis simple, only perfectly wetting systems are considered 

here. 

generally 

Liquid menisci in pores of 

complex themselves. In 

complex configurations are 

describing the basic form of 

these menisci the terms erc menisci and terminal menisci are used. 

Arc menisci occur in the wedge like spaces or corners formed by 

two rods in contact ( Fig. la } . by two flat plates contacting at 

BD angle Fig. Ib } or by two cootac:tiag rods against a plate 

( Fig. lc ) . Arc menisci are, in mathematical terms, infinitel" 

long and of constant volume per unit length. The terminal meniscus 

-+:n-
o 0, • , , , , , 

-t--_'! 

(a) 

, , 

• • ,'---- -~ 

(b) 

c 
'-_. -

'::0 , 

c ___ J 

(c) 

Fig. 1. ( a) Arc meniscus formation between two contacting 

rods. ( b ) Arc meniscus formation in the angle between two 

flat plates. ( c ) Arc menisci and the terminal meniscus in 

the space between two contacting rods aDd a plate. 
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spans the tubular pore space unoccupied by the liquid wedges. With 

8 cylindrical capillary tube there are DO arc menisci, so a 

terminal meniscus will occupy the entire tube cross-section. With 

a pore formed by two rods .against a plate ( rig. lc ) the terminal 

meniscus merges into three arc menisci. As meotioned earlier, the 

arc and terminal menisci are surfaces of constant mean curvature 

iD the absence of gravitational effects (so they must have 

identical curvatures ). Thus the curvature of the arc menisci, and 

hence the total curvature, is set by the terminal meniscus . 

The basis of the MS-P method is tbe equating of the 

curvature of the arc menisci to the curvature of the terminal 

meniscus. Put together with 8 virtual work (or force balance) 

equatioo the curvature of the terminal meniscus can be tound. 

THEORY 

The objective of the tbeory is to fiod the curvature of 

the terminal meniscus. Consider the meniscus tormed between two 

unequal rods and a flat plate ( rig 2 ) . 

Fig. 2. Cross-section of a uniform tube formed by two rods 

and a plate with a perfectly wetting liquid, it contains 

three arc menisci of radius r, in the corners Z, Z' and Z·'. 

The shaded area represents the terminal lDeDicu.s. 

Let area ABCDKF be A, and perimeter ABCDKF be P. A virtual work 

balance for a displacement dx along the tube axis gives 

I!: Ad •• crPdx ( 1 ) 

where Pc is the capi llary pressure, ·fT is tbe interfacial 
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r
-------2.jR,R, -------1 

z z' 

R, 
R, 

AREA 4 AREA 9 

ll-R,sina:r-
REA 5 AREA 10' . \'-R:rs,na .. -Il 

RI{\ - cos all AREA 3 

T 
R, 

AREA 2 

a, 

---

AREA 8 

AREA 1 

R,(I-cosa.l 

T 

R. 

a. 

Fig. 3. Cross-sectioo o~ the pore tormed b)r two rods against 

a plate showing how expressions for area and perimeter are 

generated in the curvature calculatioo. The sections through 

the wedge menisci are arcs of ciroles of the same radius r. 



tensioo. The curvature C. is given by 

so ( 1 ) reduces to 

AC ~ P 

Normalising the curvature with respect to BI we obtain 

A r 
R,P = R, 
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( 2 ) 

( 3 ) 

( 4 ) 

Which is the normalised MAYER AND STOWE - PRINCEN equation. 

Both P and A independently depend on r in a simple 

geometrical manner. The lengths and areas in equation ( 4 ) are 

given by arcs of circles or straight lines, and straight forward 

but tedious geometry gives the following equations for the 

perimeter and area in terms- of the angles GI , G2 , a:3 and a 4 (see 
Fig. 3 ). 

ANGLES 

G, a arc COl {«R,-rl'+ (R,+ R.>'- (R.+d')j2(R, +R.)(R,+ d} 

- arClin{(R.-R,>/(R,+ R.l} 

G2= arccoa{(R,-rl/(R,+d} 

G •• arccoa{«R.-rl'+(R, +Rl-(R,+rl">/2(R,+R.)(Rt+r>} 

- arclin{(R2- R,>/( R, +R2l} 

G.= arcco.{(R.-rl/(R.+rl} 

PERIMETER 

P = FA .. BC .. DE .. FE ... DC .. AB 

( 5 ) 

( 6 

( 7 ) 

( B ) 

( 9 ) 
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A = areaZZ'O'O + A4 + A5 + A9 + A10 + A12 - Al - A2 - A3 - AS - A7 

- AS -All 

• (R, + R.)J'R,R.+ r'/2 {(11' - a.) + C08 a.lln a. +(".- aJ 

+ COl a. Iln a. + (1I'-a ,-a,)} + R~/2 {(11'- a ,-a.) +C~I O. Iln a.} 

- R, (1- COl a.)( R, +r) lin a. - R~/2 {('IT -a,- a.) +COI a.llno.} 

( 10 ) 

These simultaneous equations can be solved either 

numerically or by graphical solution as in Fig. '4. A graph of 

y = AIR,P against y = rlR, can be plotted. The intersectioo of 

the line y = rlR, with y = AIR,P gives the value of rlR, which is 

O,2.r-------...-------, 

0·1 

ROD 8 Pl.,A TE SYSTEM 

R,IR. = 2 

o 0·1 0·2 0·3 
normalised radius, r/R, 

Fig. 4. Example of the graphical solution for R,/r for a 

perfectly wetting liquid. The solution is where the y = R, /r 

line cuts the y = AIR,P line. This occours at maximum AIR,P. 
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the solution to the equations. The intersection value of AIR P is 

also its maximum possible ( and thuB the maximum value of r ). 

So as might be expected at equilibrium the meniscus bas minimum 

curvature maximum radius of curvature) for the particular 

boundary conditions. This is always true. irrespective of the tube 

section. 

KXPKBlMENT 

The experiments to validate the theory principally 

involved measuring the heights of capillary rise in capillaries of 

CODstant cross-section made up of two rods and 8 plate. The 

apparatus was a compromise between using small rods which maximise 

capillary rise but leave the geometry affected by dimensional 

errors. and large rods which minimise the "dimensioDsI errors but 

introduce errors because menisci become distorted by gravity. 

Previous work { 3 } had shown that capillary rise greater than 

about 10 mm (equivalent to a rod diameter less than 10 mm or 

3/8- ) made gravitational effects negligible and that dimensional 

errors only became apparent with rod sizes less than about 1 mm 

( 1/32·· ). 

The apparatus CODsisted of precisely machined cells or 

channels into which ground steel rods were placed sucb that they 

just touched a glass plate. Four cells were used. the test 

staodBrd cell with two equal contacting rods aod a plate 

cell, 8 

( whose 

characteristics were known ) and two 

All the cells were connected 

reservoir ·cells, 1/2" square. 

via PTFE tubing to a main 

reservoir containing isooctane, the test liquid for the zero 

reservoir test standard 

, 

o R. o 

Fig. 5. Diagram of the various heights which were used in 

the analysis of the results. 
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contact angle experiments. The reservoir W8S raised or lowered to 

give appropriate heights in the cells. After the liquid levels bad 

settled heights of rise were measured with 8 cathetometer accurate 

to 0.01 cm. 

For any shaped capillaries 

hTP 9 c C er/R, 

hsp 9 c Cser/Rs 
Combining ( 11 ) and ( 12 ) gives 

( 11 ) 

( 12 ) 

( 13 ) 

So with the characteristics- of the standard cell known C /R, can 

be found. R, is measured to give C . The standard cell used two 

1/16" rods against a plate. A previous study by Mason, Nguyen, and 

Morrow {3} bad determined tbe normalised curvature of this 

system as 6.88±0.02. By conducting the experiments in this way 

the effects of atmospheric conditions OD interfacial tension and 

density were avoided. 

Rod radius ratios from 1 to about 7 were used; The 

rods bad diameters of ca. 3/64, 1/16, 5/64, 3/32, 1/8,-5/32, 5/16, 

1/4, and 5/16 inches while their actual diameters were 1.184, 

1.585, 1.971, 2.377, 3.167, 3.950, 4.755, 6.342 and 7.932 mm 

respectively. 

RESULTS 

The ~rimental results are givBD as a graph of 

meniscus curvature YS rod radius ratio ( Fig. 6 ). All tbe results 

show excellent agreement with. the theoretical curve, most to 

within 1S, and all within 2%. These errors arise from fabrication 

and measurement. The results provide excellent evideDCe of the 

accuracy of the MS-P method. Other studies bave shown that tbe 

MS-P method works well for pores formed by two equal rods and " 

plate witb liquids of finite contact angle { 3 }, so long as due 

attention is given to contact angle hysteresis. It is relatively 

simple to extend tbe theory to include variation of contact angle. 

The method has also been sucessfully applied to rectangular ducts 

hy Lenormand { 4 }, and rod in a corner Systems { 5 }, capi llary 
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pore throats formed by spheres {6} and various other rod

plate systems by Mason et al. 

The MS-P method of calculating meniscus properties was 

used to calculate meniscus curvatures iD capillaries tormed by two 
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unequal parallel rods and a flat plate. For completely wetting 

systems theoretical results were in excellent agreement with 

measured values of capillary rise. 
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APPENDIXB 

Standard configurations 

Table B.1 Mercury thread sizes of capillary tubes 

Nominal Weight Weight Weight FIrst Second Length Tube 
diameter empty with of point point of radius 

mercury mercury thread mean 
W L RT 

(mm) (g) (g) (g) (mm) (mm) (mm) (mm) 

0.50 3.683 3.901 0.218 13.069 6.232 6.837 0.274 
3.893 0.210 13.293 6.539 6.754 0.270 
3.909 0.226 13.289 6.062 7.227 0.271 

0.272 

0.60 5.900 6.287 0.387 14.802 5A66 9.336 0.312 
6.373 OA73 14.958 3.382 11.576 0.310 
6.369 OA69 14.211 2.806 11.405 0.311 

0.311 

0.78 6.734 7.240 0.506 14.451 6.676 7.775 0.391 
7.198 OA64 13.763 6.704 7.059 0.393 
6.987 0.253 10.533 6.600 3.933 0.389 

0.391 

0.80 5.209 5.623 OAI4 10.704 5A35 5.269 OA30 
5.622 OAI3 10.857 5.613 5.244 OA30 
5.655 0.446 10.850 5.207 5.643 OA31 

0.430 

1.20 8.615 10.193 1.578 13.373 2.791 10.582 0.592 
10.194 1.579 13.379 2.791 10.588 0.592 
9.643 1.028 9.522 2.678 6.844 0.594 

0.593 

RT = W/2pltL where p = 0.13546 g /nun' 



Table B.2 Experimental results for the two rod standard. Heights of rise and curvatures are shown both with and without application of the Jurin correction. 

Run no. Rod rise !;h. (bold), !;h •. (mm) 
J 

Tube rise Mr (bold), Mrj(mm) Linear Regressions Curv. 

Tube size 1/16 2 2.5" 3 3.5 4 5 0.5 0.6 0.78 0.80 1.20 Rod line Tube line C 

R;(mm) 0.791 0.999 1.249 1.498 1.749 1.999 2.498 0.272 0.311 0.391 0.430 0.593 Gmd. 1nl. Gratl. Int. Cj 

hj(mm) 0.08 om 0.12 0.14 0.17 0.19 0.24 0.09 0.10 0.13 0.14 0.20 G., h. G,. h. 

I 23.75 18.68 14.96 12.37 10.52 9.10 7.13 19.88 17.28 13.68 12.37 8.82 19.18 ·0.48 5.54 .0.51 6.93 
23.83 18.78 15.08 12.51 10.69 9.29 7.37 19.97 17.38 13.81 12.51 9.02 19.01 -0.21 5.48 ·0.23 6.93 

2. 23.78 18.70 14.96 12.38 10.55 9.12 7.14 19.87 17.29 13.75 12.35 8.80 19.20 ·0.47 5.54 ·0.52 6.93 
23.86 18.80 15.08 12.52 10.72 9.31' 7.38 19.96 17.39 13.88 12.49 9.02 19.03 -0.20 5.48 -0.21 6.94 

3 23.66 18.61 14.84 12.30 10.48 9.02 7.09 19.80 17.24 13.67 12.36 8.78 19.14 ·0.52 551 ·0.48 6.94 
23.74 18.71 14.96 12.44 10.65 9.21 7.33 19.89 17.34 13.80 12.50 8.98 18.97 ·0.24 5.46 -0.21 6.95 

4 23.72 18.72 14.91 12.35 10.54 9.04 7.10 19.82 17.25 13.68 12.37 8.79 19.21 ·0.52 5.52 ·0.48 6.96 
23.80 18.82 15.03 12.49 10.71 9.23 7.34 19.91 17.35 13.81 12.51 8.99 19.04 -0.24 5.47 -0.21 6.97 

5 23.69 18.70 14.95 12.33 10.54 9.09 7.10 19.80 17.27 13.66 12.32 8.83 19.16 ·0.48 5.51 ·0.46 6.96 
23.77 18.80 15.07 12.47 10.71 9.28 7.34 19.89 17.37 13.79 12.46 9.03 18.99 -0.20 5.45 ·0.19 6.96 

Mean 23.72 18.68 14.92 12.35 10.52 9.07 7.11 19.83 17.27 13.69 12.35 8.80 19.18 ·0.49 5.53 ·0.49 6.94 
23.80 18.78 15.04 12.51 10.70 9.26 7.35 19.92 17.37 13.82 12.49 9.00 19.02 -0.24 5.47 -0.22 6.95 

All IQ.IN ·0.4'1 ~.~2 .0.4'1 6.'14 
Ix,lnl. 1'1.01 ·0.22 ~ . .rI .0.21 tJ.'I~ 



Table 8.3 Experimental results for the three rod standard. 

Run no. Rod rise M. (bold), M Rj (mm) Tube rise !lh.r (bold), M,.(mm) Linear Regressions Curv. 
J 

Tube size 62 56 1/16 2 2.5 3 3.5 0.5 0.6 0.78 0.80 1.20 Rod line Tube line C 

R; (mm) 0.480 0.588 0.791 0.999 1.249 1.498 1.749 0.272 0.311 0.391 0.430 0.593 Grad. Int Grad. Int Cj 

hj (mm) 0.11 0.13 0.18 0.23 .0.29 0.35 0.40 0.09 0.10 0.13 0.14 0.20 GR, ho GT ha 

I 16.70 13.60 9.94 7.68 6.10 4.86 4.19 19.90 17.27 13.80 12.35 8.80 8.330 -0.62 5.548 -0.52 3.003 
16.81 13.73 10.12 7.91 6.39 5.21 4.59 19.99 17.38 13.93 15.50 9.00 8.146 ·0.16 5.496 ·0.24 2.964 

2 16.59 13.57 9.92 7.64 6.04 4.84 4.14 19.80 17.24 13.76 12.29 8.78 8.302 -0.63 5.521 -0.49 3.007 
16.70 13.70 10.10 7.87 6.33 5.19 4.54 19.89 17.35 13.89 12.44 8.98 8.117 ·0.18 5.468 ·0.21 2.969 

3 16.74 13.51 10.01 7.68 6.10 4.85 4.21 19.92 17.32 13.711 12.33 8.85 8.324 -0.60 S.SSI -0.51 2.999 
IM5 13.64 10.19 7.91 6.39 5.20 4.61 20.01 17.43 13.91 12.48 9.05 8.140 ·0.15 5.498 -0.23 2.961 

4 16.64 13.47 9.93 7.66 6.07 4.90 4.19 19.90 17.32 13.68 12.38 8.83 8.260 -0.56 5.549 ·0.52 2.977 
16.75 13.60 10.11 7.89 . 6.36 5.25 4.59 19.99 17.43 13.81 12.53 9.03 8.075 ·0.11 5.496 -0.24 2.939 

5 16.64 13.60 9.95 7.76 6.08 4.83 4.18 19.86 17.28 13.72 12.36 8.84 8.309 -0.60 5.520 -0.45 3.010 
16.75 13.73 10.13 7.99 6.37 5.18 4.58 19.95 17.39 13.85 12.51 9.04 8.125 ·0.14 5.468 -0.18 2.972 

Mean '16.66 13.55 9.95 7.68 6.08 4.86 4.18 19.88 17.29 13.65 12.34 8.82 8.304 -0.60 5.541 -0.50 2.997 
16.77 13.68 10.13 7.91 6.37 5.21 4.58 19.97 17.40 13.88 12.49 9.02 8.119 -0.15 5.488 -0.23 2.959 

All 8.305 -0.60 5.538 -0.50 2.999 
points 8.121 ·0.15 5.485 -0.22 2.961 



APPENDIXC 

Rectangular ducts 

Table C.I details the MS-P predictions, the solutions 'of the quadratic equation 

9.6) shown were used to draw the graph shown in section 9.2. Table C.2 shows the 

experimental results. 

Table C.l MS·P predictions for the rectangular tubes covering the range of aspect ratios investigated. 

Aspect Ratio Curvature Aspect Ratio Curvature Aspect Ratio Curvature 
dlR CMS", dlR CIIS", dJR CMS.#' 

8.00 1.148 4.50 1.260 1.50 1.748 
7.50 1.158 4.00 1.292 1.25 1.891 
7.00 1.169 3.50 1.332 1.00 2.102 
6.50 1.182 3.00 1.385 0.75 2.450 
6.00 1.196 2.50 1.459 0.50 3.137 
5.50 1.124 2.00 1.568 0.25 5.166 
5.00 1.235 1.75 1.646 0.00 ~ 

Table C.2 Experimental results for rectangular ducts. Observed curvature! are shown in tenus of the tube 
aspect ratio and compared to the MS·P predictions. 

Half Half Aspect Standard Test ExpL MS·P % 
width depth ratio rise rise curvatDre curvature dev. 

d R dlR Ilh" Ilh" C_ C"s.P 
(mm) (mm) (Rlt!) (mm) (mm) (%) 

1.186 0.158 7.483 24.55 20.59 1.15} 1.159 -0.50 
0.815 5.142 21.78 1.220 1.229 -0.75 
0.610 3.849 22.85 1.280 1.303 ·1.82 

1.186 0.200 5.915 24.57 16.97 1.201 1.199 +0.17 
0.815 4.065 18.14 1.28-1 1.287 -0.25 
0.610 3.042 19.08 1.350 1.380 -2.20 

1.186 0.270 4.385 24.57 13.01 1.241 1.267 -1.99 
0.815 3.013 14.39 1.374 1.383 -0.66 
0.610 2.255 15.30 1.461 1.507 -3.16 

1.186 0.471 2.518 24.48 8.52 1.4n 1.456 -2.39 
0.815 1.730 9.61 1.604 1.653 ·3.06 

(0.578) 2.775 2.859 
0.610 1.295 10.77 1.798 1.861 -3.53 

(0.772) 2.329 2.409 

1.186 1.270 0.934 24.50 4.57 2.055 2.176 ·5.91 
....... (1.071) 1.917 2.032 

0.815 0.642 5.75 2.58S 2.683 -3.79 
(1.558) 1.659 1.722 

0.610 0.480 6.91 3.106 3.221 -3.69 
(2.083) 1.492 1.547 

Experimemal curvatures calculated from Cup< = 6.94 (1lh"RIIlh"R,)whereR, = 0.800 mm Ah" = Ilh, + 0.5 

and Ilh" = Ilh, + 0.5 



APPENDIX D 

One rod away from a plate 

Table D.l MS·P predictions for the single-rod-and-plate arrangement in terms of the 
normalised spacing. 

Normalised Subtended Effective Effective Curvature 
Spacing Angle Area Perimeter 

d/R ex, A<6 P<6 CMS~ 
(deg.) (rod Wlits') (rod units) 

0.01 4.89 0.003 0.270 0.8401 
0.02 8.04 0.010 0.416 0.7956 
0.03 10.76 0.021 0.532 0.7637 
0.04 13.25 0.034 0.630 0.7380 
0.05 15.47 0.050 0.717 0.7160 
0.07 19.86 0.089 0.866 0.6792 
0.10 25.68 0.165 1.051 0.6349 
0.15 34.27 0.336 1.293 0.5773 
0.20 41.85 0.558 1.483 0.5316 
0.25 48.68 0.831 1.639 0.4934 
0.30 54.95 1.159 1.778 0.4604 
0.35 60.60 1.533 1.891 0.4316 
0.40 65.70 1.952 1.981 0.4059 
0.45 70.46 2.428 2.066 0.3828 
0.50 74.94 2.969 2.149 0.3620 
0.55 79.01 3.554 2.216 0.3430 
0.60 82.77 4.194 2.276 0.3256 

Table D.2 Experimental results for the single-rod-and-plate arrangemenl 

Half Rod Norm. Standard Test Expt. MS-P % 
Spacing Radius Spacing Rise Rise Curvature Curvature Dev. 

d R dlR M" M" C"" CIIS•P 
(mm) (mm) (RId) (%) 

(mm) (mm) 

0.102 3.175 0.032 16.59 21.35 0.764 0.758 +0.79 
0.102 1.992 0.051 16.49 19.93 0.717 0.714 +0.42 
0.102 1.468 0.069 16.50 19.1 0.687 0.681 +0.87 
0.102 1.243 0.082 16.54 18.65 0.669 0.660 +1.35 
0.152 1.581 0.096 16.56 12.01 0.646 0.640 +0.93 
0.102 0.983 0.103 16.41 17.57 0.635 0.631 +0.63 
0.102 0.790 0.129 16.43 16.67 0.602 0.600 +0.33 
0.102 0.591 0.172 16.47 15.47 0.557 0.556 +0.18 
0.152 0.790 0.193 16.46 9.96 0.539 0.538 +0.19 
0.190 0.790 0.241 16.39 7.37 0.500 0.500 +0.00 
0.102 0.391 0.260 16.45 13.73 0.495 0.486 +1.82 
0.190 0.592 0.322 16.39 6.57 0.446 0.447 -0.22 
0.152 0.390 0.391 16.41 7.54 0.409 0.410 -0.24 
0.190 0.395 0.485 16.43 5.57 0.377 0.368 +2.39 

Experimental curvatures calculated from C_ = 6.94 (M"RIM"R,)whereR, = 1.188mmM" = M, +0.5 

and M" = llh, + 0.5 



APPENDIXE 

One rod in a corner 

Table E.l MS·P curvature predictions in terms of the corner angle for the rod-in-a-comer 
arrangement 

Corner Angle Curvature Corner Angle Curvature Corner Angle Curvature 
Q eMU' <I> CMS4' <I> eMS./' 

(deg.) (deg.) (deg.) 

5 1.478 65 5.841 125 26.435 
10 1.762 70 6.469 130 31.703 
15 2.030 75 7.179 135 38.711 
20 2.301 80 7.987 140 48.430 
25 2.583 85 8.914 145 62.144 
30 2.881 90 9.986 150 83.002 
35 3.200 95 11.235 155 116.883 
40 3.544 100 12.705 160 177.750 
45 3.919 105 14.459 165 305.749 
so 4.329 110 16.572 170 659.365 
55 4.781 115 19.156 180 ~ 

60 5.282 120 22.367 

Table E.2 Corner angle measurements by rotating microscope and rod methods, as described 
in section 9.4. 

Nominal Rotating Standard Rod(s) Standard Mean 
Corner Microscope Deviation Method Deviation Corner 
Angle Average Average Angle 
(deg.) (deg.) (deg.) (deg.) 

30' 30.23 0.172 30.11 0.084 30.17 
90' 90.06 0.153 90.06 

110' 109.72 0.221 109.95 0.313 109.83 



Table E.3 Experimenral results for the rod·in·a-comer arrangement 

Corner Srand. Srand. Srand. Test Test Test Expt. MS·P % 
Angle Rod Jurin Rise Rod Jurin Rise Curv. Curv. Dev. 

Radius Corr. Radius Corr. Mean Stand. 
R, h. t!Jt" R, h. t!Jt" c_ eMS." Dev. 

(deg) (mm) J, (mm) " , (mm) (mm) (mm) (mm) 

30.17 1.188 0.11 16.30 0.864 0.21 8.95 2.872 -0.66 
16.35 0.947 0.22 8.49 2.877 -0,49 
16.40 0.995 0.23 8.06 2.864 -0.94 
16.20 1.049 0.24 7.93 2.890 -0.00 
16.35 1.098 0.25 7.32 2.876 -0.52 
16.20 1.185 0.27 6.71 2.873 -0.62 
16.18 1.298 0.30 6.10 2.863 -0.98 
16.20 1.398 0.32 5.69 2.873 -0.62 
16.14 1.582 0.37 5.02 2.878 -0.45 
16.17 1.594 0.37 5.00 2.884 -024 

2.875 2.891 0.008 

90.06 1.188 0.11 16.20 1.046 0.07 26.34 9.954 -0.42 
16.34 1.578 0.10 17.69 9.994 -0.00 
16.23 3.169 0.21 8.73 9.972 -024 

9.973 9.996 0.020 

109.83 0.792 0.08 24.13 1.586 0.06 28.79 16.408 -0.43 
24.10 2.370 0.09 19.21 16.380 -0.60 
24.13 3.169 0.12 14.27 16.250 -1.40 

16.346 16.479 O.os4 

C"", = 6.95tJ.h, RjM, R, where M, = M, + hi + 0.21 and M, = M, + hi +0.21 , , , , , , 



APPENDIXF 

Two unequal rods and a plate 

Table F.1. MS-P predictions in tenns of the rod radius ratios for the 
unequal-rods-and-plate arrangement 

Rod Radius Effective Effective Curvature 
Ratio Area Perimeter 
RI!R, A~ p~ eMS./' 

(rod units') (rod units) 

11.00 2.059 5.778 2.806 
10.50 2.001 5.688 2.842 
10.00 1.942 5.595 2.881 
9.50 1.881 5.498 2.923 
9.00 1.818 5.397 2.968 
8.50 1.753 5.291 3.018 
8.00 1.686 5.180 3.073 
7.50 1.616 5.063 3.132 
7.00 1.544 4.940 3.199 
6.50 1.469 4.810 3.274 
6.00 1.391 4.672 3.358 
5.50 1.309 4.524 3.455 
5.00 1.223 4.365 3.566 
4.50 1.134 4.193 3.697 
4.00 1.039 4.006 3.854 
3.50 0.939 3.799 4.046 
3.00 0.831 3.568 4.289 
2.75 0.775 3.442 4.437 
2.50 0.717 3.306 4.609 
2.25 0.656 3.159 4.812 
2.00 0.593 3.000 5.056 
1.75 0.527 2.826 5.357 
1.50 0.458 2.632 5.740 
1.25 0.386 2.415 6.250 
1.00 0.310 2.164 6.970 
0.80 0.247 1.932 7.813 
0.60 0.181 1.658 9.124 
0.40 0.114 1.322 11.523 
0.20 0.048 0.873 17.832 
0.00 -



Table F.2. Experimental results: curvatures are calculated both with and withoul the 
application of the Jurin correction (bold figures are the coordunateS of points Sh(J;l.ll 
on the graph in section 9.5). 

Radius Stand. Tesl Tesl Test Expt. MS·P % 
Ratio Rise Rod Jurin Rise Curv. Curv. Dev. 

Radius Corr. 
R/R, 

(R,IR.) llh" R, h 
}, llh" C •• " CMS.P 

(mm) (mm) (mm) (mm) (mm) (%) 

10.139 16.59 3.966 20.74 2.857 2.870 .().51 
16.41 0.09 20.54 2.863 .().24 

8.107 16.58 3.171 21.98 3.029 3.060 ·1.01 
16.40 0.08 21.77 3.037 ·0.75 

6.699 16.54 3.966 15.48 3.237 3.243 -0.19 
16.36 0.12 15.31 3.241 -0.06 

6.061 16.58 2.377 23.99 3.306 3.348 ·1.27 
16.40 0.08 23.78 3.318 -0.88 

5.004 16.58 3.966 12.60 3.518 3.566 -1.33 
16.40 0.15 12.46 3.522 -1.21 

4.009 16.61 3.167 13.77 3.826 3.851 -0.65 
(0.249) 15.388 15.439 

16.43 0.14 13.62 3.830 3.851 -0.54 
15.354 15.439 

3.001 
(0.333)· 16.57 2.370 15.25 4.247 4.289 -0.99 

12.745 12.87\ 
16.39 0.12 15.08 4.252 4.289 .().86 

2.500 12.760 12.871 
(0.400) 

16.55 1.975 16.43 4.582 4.609 -0.59 
11.453 11.522 

1.998 16.37 0.11 16.25 4.588 4.609 -0.46 
(0.500) 11.470 11.522 

16.51 1.583 17.95 5.033 5.058 .().50 
1.607 10.057 10.106 

(0.622) 16.33 0.10 17.76 5.043 5.058 '().29 
10.076 10.106 

1.332 16.51 1.583 15.87 5.534 5.565 -0.56 
(0.751) 8.892 8.943 

16.33 0.12 15.70 5.542 5.565 '().41 
8.905 8.943 

1.000 
(1.000) 16.51 1.583 14.35 6.035 6.066 -0.51 

8.040 8.080 
16.33 0.13 14.19 6.040 6.066 -0.44 

8.045 8.080 

16.51 1.583 - 12.36 6.925 6.970 -0.64 
16.33 0.15 12.22 6.931 6.970 -0.55 

Standard rod radius, R, = 1.188 mm and a Jurin correction, hj,' of 0.11 mm applies 
10 heights of rise in the standard. Also: 
C .... = 6.94llh, R/llh, R, where llh, = llh, + 0.50 and llh" = 6h, + 0.50 , , , 
C.." = 6.956h,,R/6h,,R, where 6h, = 6h, +hj +0.21 and M,c = Ma, +h" +0.11 , , 
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One rod away from a plate - non-zero contact angle 

Generation of the data for the 3-D graph of section 10.2 required extensive use of 

the above program, producing over twenty pages of print-out. Hence, the only MS-P 

predictions given below are those that have a direct bearing on the experiments, i.e. for 

d/R = 0.1. Table G.2 details the experimental results. 

Table G.! MS-Ppredictions ofnonnaIised meniscuscurvarure in tenns of the liquid/solid 
contact angle for the case of one rod away from a plate. 

Contact Angle Angle Effective Effective Curvature 
Area Perimeter 

e u, A,JJ' P", CAlS~ 

(deg.) (deg.) (rod units') (rod urtits) 

0 25.68 0.1655 1.0510 0.6349 
5 24.96 0.1650 1.0475 0.6349 
10 23.93 0.1607 1.0195 0.6345 
15 22.72 0.1540 0.9748 0.6330 
20 21.32 0.1453 0.9148 0.6298 
25 19.80 0.1351 0.8424 0.6236 
30 18.20 0.1240 0.7601 0.6130 
35 16.55 0.1125 0.6713 0.5968 
40 14.93 0.1011 0.5799 0.5735 
45 13.38 0.0904 0.4900 0.5421 
50 11.96 0.0807 0.4050 0.5020 
55 10.67 0.0721 0.3270 0.4535 
60 9.54 0.0647 0.2571 0.3972 
65 8.56 0.0585 0.1955 0.3342 
70 7.72 0.0533 0.1414 0.2654 
75 6.99 0.0490 0.0940 0.1920 
80 6.36 0.0454 0.0522 0.1151 
85 5.81 0.0425 0.0151 0.0356 
86 5.71 0.0419 0.0082 0.0195 
87 5.61 0.0414 0.0017 0.0033 

87.13 5.60 0.0414 0.0005 0.0012 
WOAMsmeet 
back· to-back 



Table G.2 Experimenlal results for the partially welled arrangement of one rod 3'<"Y from a 
plate. 

Contact Standard Test Comparative Physical MS-P % 
Angle Rise Rise Method Properties Curvature Dev. 

Curvature Curvature 
(mean) (mean) 

e 6h,. 6h" CEXn Cp 

(deg.) (mm) (mm) 

Iso. 
4.6 12.97 11.27 0.636 
r 12.91 11.12 0.631 

13.08 11.30 0.633 
0.633±.003 0.635 -0.31 

29.6 13.08 10.91 0.611 
a 13.10 11.05 0.617 

13.12 11.09 0.619 
13.10 11.02 0.615 

0.615±.004 0.614 +0.11 
n-Do. 

22.8 15.98 11.71 0.536 0.541 
r 15.95 12.03 0.552 0.556 

15;97 11.91 0.545 0.550 
15.97 11.93 0.547 0.551 

0.545±.009 0.550±.009 0.626 -12.14 

47.9 11.30 0.522 
a 10.96 0.506 

10.53 0.486 
10.55 0.487 

0.500±.022 0.519 -3_66 
n-Tet 

25.1 16.38 12.95 0.579 0.583 
r 16.33 13.29 0.597 0.598 

16.35 13.39 0.599 0.603 
16.36 12.65 0.566 0.569 

0.585±.019 0.588±.019 0.623 -5.62 

50.2 10.57 0.476 
a 10.53 0.474 

10.47 0.471 
10.43 0.469 

0.472±.004 0.500 -5.60 
Dioc. 

30.8 15.99 13.16 0.602 0.658 
r 15.95 13.26 0.608 0.663 

16.03 13.38 0.611 0.669 
15.98 12.82 0.587 0.641 

0.602±.015 0.658±.017 0.610 -1.30 

continued ... 



Table G.2 concluded. 

Contact Standard Test Comparative Physical MS·P % 
Angle Rise Rise Method Properties Curvature Dev. 

Curvature Curvature 
(mean) (mean) 

a M" M" CEXn Cp 

(deg.) (mm) (mm) 

Dioc. 
55.9 Mean of 10.37 0.475 0.518 

a above used 10.09 0.462 0.504 
10.20 0.467 0.510 
10.13 0.464 0.507 

0.467±.OO8 0.51O±.021 0.443 +5.41 
Hexa. 

43.3 10.03 7.85 0.572 0.569 
r 10.01 7.61 0.557 0.552 

10.05 7.71 0.568 0.559 
10.12 7.67 0.555 0.556 

0.563±.009 0.SS9±.017 0.553 +1.08 

68.4 4.13 0.299 
a 4.28 0.310 

4.30 0.312 
4.22 0.306 

O.307±.008 0.288 +6.63 
a·Br. 

58.1 13.61 8.06 0.450 0.429 
r \3.08 7.91 0.443 0.421 

13.21 8.26 0.458 0.439 
13.11 7.98 0.446 0.425 

0.449±.009 O.428±.01l 0.419 +2.15 

83.2 3.21 0.171 
a 3.04 0.162 

3.31 0.176 
2.93 0.156 

O.166±.O10 0.064 +2.58 

Can = 6.94/lh"R,IM"R, and Cp = 2M"R/a' where R, = 1.580 mm and R, = 1.498 mm. 



APPENDIXH 

Two equal rods and a plate - non-zero contact angle 

H.l COMPUTER PROGRAM 

Listed overleaf is the program used to generate the results for these arrangements 

and for the two unequal rods and plate arrangement (section 9.5). Essentially the routines 

are those of the standard solution program discused in section 6.4.2.1, \\ith the relevent 

expressions for angles, areas and perimeters added. However the mixed wettability 

systems creates added complexities and requires a second iteration for an angle in 

addition to that for the curvature. The program is written in BBC basic. 



100 REM************.****.*.******* ••••••• * •• **** •• ** 
110 REM***CURV CALC FOR TWO RODS AGAINST A PLATE*._. 
120 REM*.VARIABLE IN RADIUS RATIO OR CONTACT ANGLE*. 
13,) REM •••• ~~*.~ ••• * •• • ••••••••••• +··.+ ••• *· •• + ••••• 

J (1\:'(. CLS: A4 1 =-(, 
t(, 1 0 PROC 1 NIT 
1(21) .J=1 
1030 FOR RR =- RI TO RX+SS/2 STEP SS 
1040 IF A·j:="A" THEN T=RADRR: IF RR>90 THEN T=RAD< ISO-RR) 
1050 IF A$="R" THEN R2=1:Rl=RR 
1060 IF J=l THEN RB=O:GOTOI090 
1070 IF J=2 THEN PROCJ2&GOTOI090 
1080 f'ROCJ3 
109(1 PROCSF'L IT 
1100 NEXT 
1110 END 
1120 DEF PROCSPLIT 
1130 R=(Wl+I.oJ2)/2:PROCCURV 
1140 IF F)-RS THEN Wl=R:R=(Wl+W2}/2:PROCCURV:GOTO 1140 
1150 IF F(R6 THEN W2=R:R=(Wl+W2) 12: PROCCURV: GOTO 1140 
1 160 RA=RB: RB=R: C=R2 IR: C= INT (C* 1(H)(h)+ .5) 110000: S= I NT (S* 1 000(1+.5) I 10(01): V= I NI (t:. 

1(,(100+.5) 110000: A5=INT <OEG<A4) *100+. 5):' 100: RR=lNT (RR*100(J+. 5) I lOOt) 
1170 VDU2:F'RINT TAB(10):RR TAB(20);C TA8(30)~S TAB(40);V TAB(50}~A5:VDU3 
1180 J=J+l:ENDPROC 
119(> DEF PROCCURV 
1200 REM*******2 rods + plate contact angle T********* 
1210 REM*******angles*********-
1220 t<1""R*COSCT): 1<2=R~SIN (T): t<3= CR1+t<I) 1 (R1-Kl): K4=1-<21 (~~I-Rl): K5=.<31 (K3*K3+~ -l ... !~ 

4)".5, IF KS>.999999 THEN K5=1 
123() Al -=A5N (K5) -ASN (1/ (K3*K3+K4*K4)·h • 5) 
1240 K3= (R2+K 1) / (R2-K I) 1 K4=K21 eK l-R2) : IF K5 >. 999999 THEN K5= 1 
1250 A3=ASN (KS) -ASN (1 I (K3*1<3· ... <4*K4) -- .• 5) 

1260 IF A41<>0 THEN 1280 
1270 I NPUT"A41 <DEG)"; A41, INPUT "A42"; A42. A41-RAD (A41 ) 'A42=RAD (A42) 
1280 A43=A41.A4=A41.PROCANGLE.El=R-RP 
129(1 A44=A42:A4=A42,PROCANGLE.E2=R-RP 
1300 IFE1<0 OR E2)O THEN PRINT"El";El:PRINT"E2";E2:GOTOI270 
1310 A4={A43+A44)/2:PROCANGLE 
1:;,2(1 IF E>R7 THEN A43=A41A4=(A43+A44)/2:PF:OCANGLE:GOT01.32(1 
1330 IF E<R8 THEN A44=A4.A4=(A4::,+A44)/2,PROCANGLE,GOTOI320 
1340 G=ASNCCR1-R2)/CRl+R2» 
1350 REM*******area.**~*****. 
1360 ST=(Rl+R2>*COS(G)*Rl -.5*(RI-R2).CRl+R2>.COS(G) 
1370 51= -.5*Rl*Rl*SIN(Al)*COS(Al)-Rl~Rl*SIN(Al)*(1-C05(Al»-R*Rl*Cl-COSCAll).S 

INCAl+T)+.5*R*R*SINCT)*COS(T)+.5*R*R*SINCA1+T)*COSCA1+T)+.S*R*R*(PI-A1-2*T) 
138(1 52= -.5*R2 .... R2*SINCA3)*COS(A3)-R2 .. R2*SIN(A3>*(1-COSCA3»-R*R2*CI-COSCA3)1*5 

INCA3+T)+.S*R*R*SINCT>.COS(T)+.5*R*R*SINCA3+T>.COS(A3+T)+.5*R*R*ePI-A3-2*T) 
1390 53= - (RI +R2-Rl-.:·COS ~A2) -R2*COS CA4) ) * CR I*SIN (A2) +R*SI N CA2+T) ) +R*R* (COS (A:::+T) 

*SIN(A2+T)+C05CA4+T)*SINCA4+T)+(PI-2*T-A2-A4»/2-.5*Rl*Rl*SIN(A2)*COS(AZ)-.S*R2· 
R~·SIN(A4)*COS(A4) 

14(10 54= -.5*Rl*Rl*CPI/2-G-AI-A2)-.5*f;;2.R2-to:(PI/2+G-A3-A4) 
141(1 5=ST+51+52+83+54 
1420 REM*******Perimeter*****~*.** 
1430 Vl=(Rl+R2)*COS(G) - Rl*SIN(Al) - R2*SINeA3) - R¥(SIN(T+A1)+SIN(T+A3» ~ 2* 

R*SIN(T> 
144(1 V2=R*(6*(PI/2-T):-AI-A2-A3-A4) 
1450 V3=Rl*(PI/Z-G-Al-A2} + R2*(PI/2+G-A3-A4) 
146(1 V=(Vl+V3)*COS<T> + V2 
147(1 F=S/V-R: R5=. (uX) 1 *R, Rb=-. 000 1 *R 
149(> ENDPROC 
149(> DEF PROCANGLE 
1500 IF T=O THEN B=(I:GOTOI520 
1510 B~ATN(R*SIN(T)/(Rl+R*COS(T») 
1 !,)?CI A?=ASNI (R?*RTN (A4) +R*SlN (A4+T) l I ( (RHHN eT) ) ...... 2+ (Rl+R*COS eT) ) · .... 2) A. 5) -9: A2=AB 



:3 (A2) 

15.7·(, RF'= (R1 to (1-C·:=- (..'4:?» +R2. (1-COS iri4») / (COS (A:2'+ 1) +COS :.:.~ ... " ) 
154(1 E=R-RP:R7=.-:":.1.R:R8=-.O(11*R 
1550 ENDPRQC 
156(1 DEF PROCJ2 
1570 RA=R: Q=.(l5 
1580 REPEAT: Q';'Q+. (:5: W1=RA+Q*RA: W2=RA-Q"RA 
1590 IF F1<F2 THEN W1=W2:W2=RA+O*RA:Q=O-.05 
1600 R=W 1 : PROCCUR~.·: F 1 =F . 
1610 R=W2: PROCCUP'\I: F2=F 
1620 UNTIL F1>(l AND F2<0 
16::',0 ENDPROC 
164(1 DEF PROCJ::' 
1650 W=R+ (RB-RAj : F.=W: PROCCURV 
1660 0=.02 
1670 IFF<O THEN 17j() 
1680 REPEAT: Q=Q ..... (")1: t.Jl=W: I.I-J2::.W+Q*R: R=W2: PRQCCUF(I) 
1690 UNTIL F(O 
1700 GOT017~0 
1710 REPEAT: O=Q",". (,.(,1 : W2=W: W 1 =W-Q*R: R=W 1: PROCCURV 
1720 UNTIL F>O 
1730 ENDPROC 
1740 DEF PROCINIT 
1750 PRINT:PRINT:PRINT:INPUT"Do you want RADIUS RATIO or CONTACT ANGLE var-iatio 

n (R/A) ": A$: IF A.s= "R" THEN 1810 
1760 PRINT.INPUT"Radius Ratio R1/R2 ";R1:R2=1 
1770 PRINTIINPUT"r1in contact angle (deg)"~RI 
1760 PRINT; I NPUT"l"'\ax contact angle (deg)";RX 
1790 RR=RI:T=RADRR:IF RR>90 THEN T=RAD(180-RR) 
1800 'GOT01850 
1810 PRINT:PRINT: I NPUT"CONTACT ANGLE <DEG), ",T.T=RAD(T) 
1820 PRINT: INPUT"M!N Rl/R2 ";RI 
1830 PRINT: INPUT"MAX RI/R2 ",RX 
1840 RR=RI:R1=R~:R:=1 
1850 PRINT:INPUT"S't.ep size ";65 
1860 CLS;PRINT".*.*************.**** .. ***********I' 
187(1 PRINT"***** .... CURVATURE CALCULATION*-."" 
188(1 PRINT"_**_ •••• _____ *_* .......... * ... *_*._.*" 
189(> PRINT:PRINT:PRINT"GUESS TWO WEDGE RADII (ROD UNITS'" 
191)0 PRINT:PRINT:INPUT"ONE ABOVE GUESS - ( +ive error) ";W1 
19.10 PRINTIINPUT"O' .... E BELOW GUESS - ( -ive error) ";W2 
1920 R=Wl:PROCCURV 
1930 Fl=F:R=W2:PROCCURV 
194(1 F2=F:PRINT:PRINT:PRINT:PRINT"GUESS (I) - ERROR ",FI 
1950 PRINT:PRINT"GUESS (2) - ERROR = ";F2 
196(> PRINT:PRINT:F'F:INT"CONTINUE - (Y/N)" 
1970 geU:=GETS 
1980 IF getl:="N"THEN 1860 
1 q9(1 IF get".s< >"Y";:"'JDget'.< :>"N"THEN1970 
2000 CLS:PRINT:Pf..INT: INPUT"HEADINGS (Y/N) ";B$: IF B.t<>"Y"THEN2050 
2010 IJDU2: PRINT:PRINT:PRINT:PRINT"CURIJATURE CALCULATIONS FOR TWO RODS AGAINST 

A PLATE": IF A$="R" THEN PRINT:PRINT:PRINT"CONTACT ANGLE = ",DEG(T):PRINT:PRINT:G 
OTO 2040 

2020 PRINT: PRINT: F-;:~INT"RADIUS RATIO = "; R1: PRINT: PRINT 
2030 PRINT" CONT-'<CT ANGLE CURIJATURE AREA PERIMETER A4":PRINT:PRINT:IJD 

U3:GOT02050 
2040 PRINT" RADIUS RATiO CURIJATURE AREA PERIMETER 

U3 
A4":PRINT:PRIN"'IJD 

2050 ENDPROC 



H.2 THEORETICAL RESULTS 

Tables H.I to H.3 show the MS-P predicted curvatures for the three partially wetted 

systems investigated. The results given by the above program were used to plot the curves 

shown in section 10.3. 

Table H.l MS-P predictions for the two equal rod arrangement with all components partially 
welled (81 = 8, = 8,). 

Contact Angle Angle Effective Effective Curvature 
Area Perimeter 

8 .. 8,. 8, a, A.,. p." eMS-/' 

(deg.) (deg.) (rod units') (rod units) 

0 29.02 0.3105 2.1641 6.970 
5 28.36 0.3113 2.1649 6.956 
10 27.69 0.3132 2.1637 6.908 
15 26.99 0.3162 2.1586 6.827 
20 26.24 0.3202 2.1479 6.708 
25 25.46 0.3250 2.1287 6.551 
30 25.64 0.3306 2.0993 6.351 
35 23.78 0.3368 2.0573 6.108 
40 22.84 0.3438 2.0017 5.822 
45 21.82 0.3515 1.9303 5.491 
50 20.70 0.3598 1.8405 5.116 
55 19.46 0.3688 1.7306 4.693 
60 18.03 0.3785 1.5980 4.222 
65 16.37 0.3888 1.4390 3.701 
70 14.38 0.3997 1.2492 3.125 
75 11.92 0.4107 1.0217 2.488 
80 8.80 0.4207 0.7466 1.775 
85 4.81 0.4276 0.4103 0.959 
90 0.00 0.0000 0.0000 0.000 



Table ".2 Mixed wettability MS-P predictions for the two equal rod arrangement with the 
plate and one rod panially weued with the other rod perfectly welled (6, = 0). 

Contact Angle Angles Effective Effecti\'e Curvature 
Area Perimeter 

ell 9) a, a, A06 P06 c""s~ 
(deg.J (deg.) (rod units') (rod units) 

0 29.02 29.02 0.3105 2. I I>! I 6.970 
5 28.39 29.00 0.3111 2.1&:0 6.960 
10 27.77 28.98 0.3124 2.1638 6.927 
15 27.17 28.94 0.3145 2.1603 6.869 
20 26.59 28.91 0.3172 2.1524 6.785 
25 26.01 28.86 0.3205 2.1389 6.674 
30 25.45 28.82 0.3242 2.IISI 6.533 
35 24.91 2S.78 0.3283 2.0890 6.363 
40 24.38 28.75 0.3327 2.0500 6.161 
45 23.87 28.74 0.3374 2.0004 5.929 
50 23.37 28.75 0.3423 1.9389 5.665 
SS 22.89 28.78 0.3472 1.81>! I 5.368 
60 22.44 28.86 0.3522 1.7752 5.040 
65 22.01 28.98 0.3571 1.6708 4.679 
70 21.61 29.19 0.3617 1.5490 4.283 
75 21.25 29.51 0.3655 1.40iS 3.851 
80 20.95 30.00 0.3682 1.24-: 1 3.379 
85 20.74 30.78 0.3687 1.0538 2.858 
90 20.69 30.08 0.3656 0.8312 2.274 

Table ".3 Mixed wettability MS-P predictions for the two equal rod arrangement with only 
the plate pania1Iy weued and both rods perfectly wetted (61 = 6, = 0). 

Contact Angle Angle Effective Effective Curvature 
Area Perimeter 

e, a, A06 P06 CMS., 

(deg.) (deg.) (rod units') (rod units) 

0 29.02 0.3105 2.1641 6.970 
5 29.03 0.3108 2.1641 6.964 
10 29.06 0.3116 2.1639 6.944 
15 29.12 0.3128 2.1617 6.911 
20 29.21 0.3143 2.1573 6.863 
25 29.34 0.3162 2.1494 6.798 
30 29.49 0.3182 2.1376 6.717 
35 29.68 0.3204 2.1213 6.620 
40 29.92 0.3228 2.0996 6.505 
45 30.19 0.3252 2.0724 6.373 
50 30.51 0.3276 2.0390 6.223 
55 30.87 0.3301 1.9995 6.058 
60 31.29 0.3325 1.9534 5.876 
65 31.76 0.3348 1.9008 5.679 
70 32.29 0.3369 1.8415 5.465 
75 32.89 0.3389 1.7758 5.240 
80 33.55 0.3407 1.7039 5.001 
85 34.29 0.3422 1.6260 4.752 
90 35.12 0.3433 1.5424 4.492 



· H.3 EXPERIMENTAL RESULTS 

Tables H.4 and H.5 contain the detailed experimental results forthe wholly partially 

wetted system and each of the mixed wettability systems investigated with the two rods 

and a plate arrangement. 

Table HA Experimental results for the mixed wettability arrangements. The readings relating 
to the one and two wetted rod systems were obtained together using a joint standard. 

Contact Standard Test Comparative Physical MS·P % 
Angle Rise Rise Method Properties Curvature Dev. 

Curvature Curvature 
(mean) (mean) 

a tJ.., I!Jt,. Ca" Cp 

(deg.) (mm) (mm) 

Iso. 
4.6 13.09 12.67 6.950 
r 12.87 12.57 6.950 

12.98 U.60 6.961 
12.92 12.55 6.959 6.958 ·0.4 

6.955±.006 

29.6 11.44 6.412 
a 11.55 6.474 

11.43 6.407 
11.59 6.496 6.368 +1.25 

6.447±'049 
n·Do. 

22.8 15.96 13.99 6.287 6.328 
r 15.98 13.74 6.166 6.215 

15.90 13.65 6.157 6.174 
15.93 14.06 6.330 6.360 6.625 ·5.37 

6.235±.095 6.269±.095 

47.9 11.90 5.383 
a 12.12 5.482 

11.65 5.270 
11.87 5369 5.279 +1.80 

5.376±.l06 
n-Tet 

25.1 16.41 14.41 6.298 6351 
r 1639 14.49 6340 6386 

1637 14.25 6.243 6.281 
16.34 14.59 6.404 6.430 6.546 ·2.81 

6.32l±.083 6.362±.081 

50.2 12.13 5.346 
a 12.18 5.368 

12.20 5.377 
12.09 5.329 5.010 +6.40 

5.355±.026 
Dioc. 

30.8 15.99 1436 6.441 7.030 
r 16.03 14.31 6.402 7.006 

15.98 14.40 6.463 7.050 
16.01 14.46 6.477 7.079 6315 +2.07 

6.446±.044 7.041±.038 

continued ... 



Table H.4 concluded. 

Contact SlaOdard Test Comparative Physical MS-P % 
Angle Rise Rise Method Propenies Curvature Dev. 

Curvature Curvature 
(mean) (mean) 

e M" 6h.,. CaI'T C, 
(deg.) (mm) (mm) 

55.9 mean of 10.80 4.843 5.287 
a above used 10.83 4.856 5.302 

10.77 4.829 5.273 
10.86 4.870 5.317 4.611 +5.22 

4.852±.023 
Hexa. 

43.3 9.98 7.83 5.627 5.556 
r 10.01 7.59 5.438 5.386 

9.97 7.75 5.575 5.500 
10.05 7.83 5.587 5.556 5.605 ·1.88 

5.557±.149 5.496±.117 

68.4 4.94 3.506 
a 4.90 3.477 . 

4.77 3.385 
4.88 3.463 3.315 +4.31 

3.458±.073 
a-Bro. 

58.1 13.06 8.51 4.673 4.433 
r 13.09 8.44 4.624 4.396 

13.11 8.49 4.644 4.422 
13.08 8.60 4.715 4.480 4.406 +0.60 

4.664±.051 4.433±.047 

83.2 4.32 2.250 
a 4.41 2.297 

4.26 2.219 
4.37 2.276 1.267 +78.50 

2.261±.042 

CaI'T; 6.94M"R/M"R, and Cp = 2/lh"R/a2 where R,; 1.547 mm and R,; 1.497 mm. 



Table H.S Experimenlal results for the mixed weuability arrangements. The readings relating le- the one 
and two wetted rod systems were oblained together using a joint standard. 

Two Rods Wetted One Rod Wetted 

Contact Standard Test Comp. Physical MS-P Test Comp. Physical ~IS-P 
Angle Rise Rise Method Properties Curv. Rise Method Propertie, Curv. 

Curvature Curvature Curvature Curvature 
(mean) (mean) (mean) (mean) 

e llh" M,. Can Cp % M,. Can Cp % 
(deg.) (mm) (mm) Dev. (mm) Dev. 

Iso. r 
4.6 12.96 12.33 6.968 6.964 12.33 6.968 6.960 

12.89 12.20 6.932 12.21 6.938 
12.83 12.16 6.942 12.15 6.936 
12.87 12.25 6.972 12.23 6.960 

6.954±.022 -0.14 6.951±O.017 -0.13 
a 

29.6 12.93 12.05 6.826 6.725 11.70 6.628 6.546 
12.90 12.00 6.814 11.69 6.637 
12.83 11.89 6.788 11.60 6.622 
12.93 11.97 6.781 11.61 6.577 

6.802±.OU +1.14 6.616±.039 +1.07 
n-do. r 

22.S 15.94 14.43 6.631 6.671 6.828 14.13 6.493 6.532 6.726 
15.93 14.42 6.630 6.666 14.22 6.538 6.574 
15.95 14.47 6.645 6.689 14.23 6.535 6.578 
15.90 14.39 6.629 6.652 14.10 6.495 6.518 

6.634±.016 6.669±.037 -2.84 6.S1S±.040 6.551±.(}6(i -3.14 
a 

47.9 15.95 13.84 6.356 6.398 6.288 12.97 5.956 5.996 5.780 
15.89 13.77 6.347 6.366 12.90 5.946 5.963 
15.90 13.86 6.385 6.407 12.98 5.979 6.000 
15.92 13.80 6.349 6.379 12.94 5.953 5.982 

6.359±.022 6.387±.022 +1.13 5.9SS±'022 5.985±,022 +3.0S 
n-tet r 

25.1 16.14 14.83 6.730 6.680 6.797 14.39 6.530 6.482 6.672 
16.27 14.93 6.721 6.725 14.50 6.528 6.531 
16.25 14.85 6.693 6.689 14.49 6.531 6.527 
16.33 14.85 6.661 6.689 14.56 6.531 6.558 

6.701±.040 6.696±.029 ·1.41 6.530±.002 6.524±.042 ·2.13 
a 

50.2 16.35 14.01 6.276 6.310 6.217 13.04 5.842 5.874 5.654 
16.23 13.87 6.260 6.247 12.93 5.835 5.824 
16.16 13.82 6.264 6.225 12.88 5.838 5.802 
16.25 13.92 6.274 6.270 12.97 5.846 5.842 

6.26S±'008 6.263±.04 7 +0.82 S.84O±.006 5.836±.040 +3.29 
Dioc. r 

30.8 16.02 14.52 6.639 6.703 14.15 6.469 6.508 
16.03 14.60 6.671 14.40 6.580 
16.03 14.40 6.580 14.11 6.447 
16.04 14.61 6.672 14.20 6.484 

6.64O±.060 ·0.94 6.49S±'OS5 -0.20 

continued ... 



Table ".5 Concluded. 

Two Rods Wetted One Rod Wetted 

Contact Standard Test Comp. Physical MS-P Test Comp. Physical MS-P 
Angle Rise Rise Method Propenies Curv. Rise Method Propenies Curv. 

Curvature Curvature Curvature Curvature 
(mean) (mean) (mean) (mean) 

a tJJ" M,. CEXn Cp % M, CEXn Cp % 
~ 

(deg.) (mm) (mm) Dev. (mm) Dev. 

a 
55.9 16,(16 13.02 5.938 6.026 11.88 5.418 5.312 

16.03 12.94 5.912 11.79 5.387 
16.06 13.12 5.984 12.18 5.555 
16.06 13.02 5.938 11.93 5.441 

5.943±.041 -1.38 5.4501:.063 +2.60 
Hexa. r 

43.3 10.10 8.85 6.418 6.418 6.419 8.19 5.939 5.940 6.012 
10.04 8.80 6.420 6.382 8.15 5.946 5.911 
10.06 8.79 6.400 6.375 8.11 5.905 5.882 
10.01 8.72 6.381 6.324 8.18 5.985 5.932 

6.405±.024 6.375±.051 -2.18 5.944±-041 5.916±.034 -1.13 
a 

68.4 9.77 7.78 5.642 5.535 628 4.554 4.414 
9.67 7.87 5.708 6,47 4.692 
9.64 7.83 5.679 . 6.35 4.605 
9.63 7.90 5.729 6,42 4.656 

5.689±-048 + 2. 78 4.627±-065 +4.82 

Can = 6.94tJJ"R,It1h"R, and Cp = 2tJJ"R,Ja 2 where R, = 1.581 mm and R, = 1.498 mm. 



APPENDIX I 

Three rods and a plate 

1.1 COMPUTER PROGRAM 

The solution program for this system differs somewhat from those for the other 

arrangements. The system was in~'estigated early in the study period and a Commodore 

PET was used for the programming; the procedures of section 6.4.2.1 being replaced by 

broadly similar subroutines. The program, which is listed overleaf, is also more involved 

as there are eight possible TM cOlllfigurations, each with its own set of equations. The 

initialisation routine enables the user to select a configuration for given rod sizes. 

Maximum and minimum possible values of the half angle, cp, and outer rod spacing, L
2

, 

are given to guide the user when selecting limits for the interpolation. Single predictions 

may also be obtained. All inpuned information in addition to the curvatures of menisci 

at selected cp values are given on a hard printout. 



READY. 

1000 RENtt'Httttttttt****U'****t****** 
1010 REr'l*t CAP I LLARY R I SE/CURVATURE ** 
1020 RH1** THF:EE UI1ECiUAL RODS+PLATE ** 
1 e3~3 REt'l** T It'l l·JAL::;H - RUG 1986 ** 
1040 RH1********ttt***t*****t**t**tt++ 
1050 (;OT02760 
1060 IFX>~ 99999THEti 'T'=~3 :(;OTO 1090 
1070 IF ~«-. 9999~::;' THEt...J ',J=tT :GOT01090 
1080 'T'=-ATt~ (~</SOR (-::<:*~.;+ 1:0::' +11"/2 
1090 RETURt-1 
1095 REr'l*t*tSUCCESS I '.lE 8 I SECT I 01-1**** 
1100 OEF Ft'~AC(Y )=-ATH(;:-:: ..... SOR(-Kt.>-:+1 ) )+rr,,'2 : (;OT02760 
11 H3 l·B =R :R=O'J1 H·J2)/2 :Ot·4HHGOSU81220,.148~3 .177~3 ,r 1950,.26713 :.2310 .. 262(1 :RETURt·~ 
1120 H2=R: ~:= 0:: l·ll +l·J2 )/2: Ot·U·~t·~GOSU81220 or 14:=:~3 • 177(1 ,r 1950 ,r 20'('(1" 2:310.2620 : F~ETURt·~ 
1130 R=O:.l'Jl+l·J2)/2:0N HN GOSUB 1220_.1480 .• 177~~ .• 195CI .• 207~3,2310 .• 2620 
1140 IFF>R5THEN GOSUB1110:G0101140 
1150 I FF<R6THEH GO:::UE: 112(1 :GOTO 1140 
1160 RA=R8 :RE:=R :RHl PRIHT FIRSTt*tttttt 
1170 
1180 
1190 
120~3 

1216 

RR=R 1 /R: TH= I t·n (TH .. 1 (H3+. 5)/100 :RR= I t'~T( RR* 1 (H30~3+. 5)'/ 1000~3 :L= I t·H < Ut.! tu30+. 5:' 
L=L'/1000:PRINT#2~TH;L;RR;S;V 

J=J+l,:130T041:30 / 
REI'1'H.,tFOUF: ,·JEDIJES - T'iPE E**tt 
F:Er'lttttAHOLES;**** 

1220 A=I? 1 +P2 : B=R2+R : C=R 1 +R : ;":= (A*A+8:t8-C:+'C:; /2/H/8 : O0'3U81 ~36L1 :A4='r' 
12313 B=f-;;: 1 +~~: (:=F:2+R : ;:<;= (A+'A+8:+B-C+'C::O /2/A/8: (;O::;UB 1 ~3t:;0 : A:3='T' 
1240 A=R2+R3: 8=R2+R : C=R::'::+R : ;'<:= '. A*A+8*E:-C:*C ::. /2 .. ···A/8 : 1]():3U8 i ~]60: A6='T' 
1256 H=R2+R3 :8=R:3-1:;R :C=R2+R ::,.;=( A+,H+S*S-C+.C)/2/A/8 :(i(l::::U81060 :A·;:"='r' 
1260 A=RI-R :8=;::R 1 +R :;:';=H/8 :GOSU81060 :A1='r 
12?~3 A=R3-F:: 8=P3+R : ;'';=A/8 :GO::;UBI060 :A9='r' :K= 0:: R 1-P:3 )/L: T=ATH( 1<::0 
128~3 A=P 1 +R2 : B=R2+R3 :C=L/CO::: (T::O : ;:,;=,~ A+'A+8*8-C+.C )/2/A/8 :G(JSlI8106(1: P='T' : ('=rr .. ···2-1 
129(1 B=R 1 +R2: C=R2+R3: A=L.···CO:::: 0:: T) : ;:<:= 0:: A:tA+8*8-C+'C::O .... 2/H/8 :GOSll8106~] :G1 ='T' : G2=rr-F'-I'::' 1 
1313(1 A2=(i+G 1-A3-A 1 :ti::::=1T/2+ r +(;2-A9-A7 :A5=P-A4-A6 
1310 IF H-T>=rr THEt:H:I2=rr.,···2-T-GI-A3-A1 :A5=2*rr-P-A4-A6:A8=rr .... ·Z-(02-T)-A7-A9 
1 :32(1 F~Et·1!t.**AF.:EA OF POL'T'CiOH 
1336 1"1=. 5*<R1 +R3::O:+'L :8=. 5*<Rl +R2)*(R2+R3):+SIt·~<P) ::=;9=A+B: IF HT>=rrTHEH!:::9=A-8 
1346 A=.5*O::Rl+R)*(R1-R)+'SIH<A1):8=R*(R1+R)*Slt~~Al):C=(fT-Al>*.5*R*R:S1=A+8-C 
13513 S2=F~ 1 *R 1 *AZ .. ··'2 
1::'::60 A=. 5*<F~1+R2):+:'~R1+R)*SIt-~(A3;' :8=. 5:+'R:+:R*(rr-t=t3-H4> :~;:3=A-B 
1371..3 S4=. 5+.r;~2*R2:+'A5 
138(1 A=. Sit. 0: R2+R:3) +'(R:3+R ):+:::; I t·~( A?) : 8=. 5:+:P:+.R* 0:: rr-A6-A7) :S5=A-B 
139~3 :=;6=. 5:+.R:3*R3*A8 
14~21C1 A=. 5:+'(R3+R::O+'<R3-P)*SIt-.l(A9) :C=. 5.+.R*R:+'(rr-A9) :8=R.:+:(R:3+R)*::::IH(A9) :~:?=A+8-(' 
1410 .A=S 1 +S2+~;3+S4+S5+S6+'=;7 :S=89-A 
1420 REI'1**tPER JrolETERttt 
143e:1 V 1 =R 1 :+.A2 : V2=R2:+'A!::.~: t,):3=R3*A:3 :A= (P3+R::O:+:8 I t·~<A9) :8= 0: R 1 +R) *8 J t·1 0:: A 1 ) 
1440 '· ... 4=L -A-8 :V5=R*( rr-A 1) : V6=F~"": rr-A3-A4::O : V?=R* 0:: ll-A"':'-A?) :V8=R* '.:'rr-t=i9::' 
145(1 V=V 1 +V2+'·/3+V4+V5+V6+V7+'·/8 
146~] F=(S/V)-R :R5=. 0(n) 1 *R :R6=-. 0001*R 
147(1 RETURH 
148<, REr'ltt*8ACK 2 UP 1 Dm·JH-Lm·J THI - TYPE Cltttt 
1490 RENt*t AI-1GLES t+* 
1500 L1=SQRO::(R1-R3::O~2+L+'L) 
151(1 A=R1 +R2 :8=R1 +R :C=R2+R :>:='~A*A+8*8-C*C )/2/A/8 :GOSU81~}60 :A3='r' 
15213 A=R 1 +R2: 8=R2+R : C=R 1 +R ::'<=( A:+:A+8:+:8-C*C ), .... 2/ti .... 8 : GOSU8106~3 : A4='T' 
1530 A=R3+F.:2 :8=R2+R :C=R:3+R ::"';=(t=i*A+B*B-C*C)/2/A ..... S : GO:::;UB 106(1 :A6='1' 
1540 A=R3+R2 :8=R3+R :C=R2+R :~"':=(A*A+8*B-C*C)/2/A/8 :GOSU8112t60 :A7='r' 
15513 A5=HT-A6-A4 
15613 A=R1 +R :B=L1 :C=R3+R :X=(A*A+S*B-C*C> ...... 2 .... ·A .... 8 :GOSlIB1060 :A1=Y 
15713 A=R3+R: 8=:L 1 :C=R1 +R :i";= (A:+:A+S*S-C:+:C)/2/A/B: GO:3UB1060 :f19='T' 
158~3 A=R 1 +R2 :B=L1 :C=R2+R3 :X= (A*A+8*S-C*C )/2/A/8 :130::';U81 ~~60:G 1 ='T' :G2=rr-HT-G 1 



15913 A2=GI-A3:A8=G2-A? 
161313 REr'I***AREA OF POL'TOOll*** 
1610 S9=Ll*SIN(Gl).(Rl+R2)/2+Ll*Slti(Al):+'(R1+R)/2 
1620 S1=(A1:+'Rl+R1+A9*R3*R3+(rr-A1-A9):t.R*R)/2 
1630 S2=A2*R1*Rl/2 
1640 83=( (RI +R2)+'(R1 +R)*SHHA3)-(fT-A3-A4)*R:tR)/2 
1650 S4=A5*R2:+R2/2 
1660 S5=( (F~2+R3>+(R3+R;'*SIN<A7)-< rr-A?-A6):+R+:R)/2 
1670 36=AS*R:..:::+R:3/2 
1680 3=59-31-32-53-54-S5-36 
16913 REr'I***PER H1ETER*.** , 
1700 V1=(A1+A2)*R1+(A9+A8>*R3+A5*R2 
1710 V2=R*«rr-A3-A4)+(~-A7-A6)-<rr-A1-A9» 
1720 V=Vl+V2 
1730 F=(3/V)-R:R5=.eOel*R:R6=-.0l301*R 
17403 RETURN 
17503 REr1***UP ltl FRONT -LCI~'I TH I - T'TPE A*** 
17603 REr'I*** At'lOLES *** 
17713 )<:= -: R 1-R ) .... ·(R 1 +R) :GOSUB 1060:A 1 ='T' 
1780 }<:=(R3-R)/(R3+R) :GOSUB1060 :A6=Y 
1790 A=:::;OR (L*L+ (R l-R3)'l2;' : }<:=·~A·t2+< R 1 +R )'l2- (R3+R )·t-2 )/2/A/'.P.l +F:;' : GOSU81 060: A3='T' 
1800 B= (R3+R) : ;"":= (A*A+B*B-": R 1 +R )'1'2) .. ··2/A/8 : GOSUe: 1 ~36(1 :A4='T' 
18113 T=ATt'l( (F~1-R3)/L) :Ll=L/COS(T) :A=Rl +R2 :8=R2+R3 ::'<='.A.+'A-i3·;'S-L 1·1-2)/2/8.··S 
1820 H2=1T/2-A3-A1-T:A5=rr/2+T-A4-A6 
1830 PEr'l1+:+:+HREA OF POL YGON:+.:+.:+: 
1840 Sl=R*(R1+R):+:SIN(Al)+.5*(Rl+R)*(R1-R)*SIti":A1)-(rr-Al)~R+R/2 
1850 S2=.5*H2+:R1*Rl 
186~3 53=. 5:+.L 1:t.'( F: 1 +R):+:S I NO: A3) -. 5*R*F~*( rr-R3-A4.:o 
1870 54=. 5*H5.+t:~:3*R3 
1880 :::5=R*'~R3+R)*51N( A6)+. 5*(R3+R)*(R3-R) *Slt·~( A6)-(1T-A6>~R.R/2 
IB9~3 :::;=L*R1-.5:+:<R1-R3):+:L-51-S2-S3-S4-S5 
19'30 REt'I***PER H1ETER*** 
1916 Vl='.:3+.rr-AI-A3-A4-A6):+'R 
1920 V2=A2*Rl+A5:t.R3+L-(R3+R)+SIH(A6)-(R1 +R>+SIt'i<A1) :V=V1 ... \l2 
1930 F=(3/V)-R :F~5=. e~301*R :R6=-. 00[11*R 
19403 RETURN 
1350 REr'I***BACK 1 UP 1 UP-Lm,j TH I - T'IPE C*** 
1960 REt-1*** At'4GLES *** 
1970 A=:30R <L*L+ (R 1-R3 )'1"2) :}<:= I~A·t·2+( R 1 +F:::O 'l2- '~R~:+R::O 'r'2 ;o/2/A ..... ··:R 1 +R::O : GOSU81060 : H1 ='T' 
198~3 A2=A 1 :8= 0.: R:3+R.-, :;,.:= (A*A+8*S-(R1 +F~)'1'2 )/2/fV8 : GOSUB 1 ~360:F: ~'='T :A4=A3 
1990 REI'1***AREA OF POL'T'GOH*** 
2000 S=A:+'(R1+R)*SIN(A1)-R*R+(rr-A1-A4)-A4*R3-A1*R1 
203103 REf'1***PER H1ETER*** 
26213 V1=(A1+A2)*Rl+(A3+A4)*R3 
2036 V2=-R*«(~-A2-A3)+(1T-A1-A4) 
2040 V=Vl+V2 
2050 F=(5/V)-R :R5=. eeel*R :R6=-. 00~31*R 
203603 RETURH 
203703 REr'I***BACK 3 UP-Lml THl - T'TPE B*** 
268~3 REr't***At-.JGLE8**** 
2090 Ll=::::I]R( (R1-R3:.o+L*L) 
210~3 A=L 1 :8=Rl +R :C=R3+R :}<;=(A*A+8*B-C*C)/2 ... ·A ... ·B :GOSU81060 :itl ='" 
2116 A=L 1 :8=R3+R :C=Rl +R :X=(A*A+B*8-C*(:;o./2/A/B :GOSUBI060 :A9='T' 
212121 A=R 1 +R2 : 8=R 1 +R : C=R2+R : }<:=.: A*A+B*B-C+'C;o ..... 2/A/B : GOSUB 1 et:~3 : A:3='r 
2130 A=R 1 +R2 :B=R2+R :C=R 1 +R :~':=(A*A+S*B-C*C ) .... 2 .... A/B: GOSUB 1060 :A4=Y 
2140 A=R3+R2: 8=R2+R : C=R3+R : ~.;= (A*A+B*B-C:t.C) /2/A/8 : GOSUB 1 (1£0 :Ft6='r 
2150 A=R3+R2: 8=R3+R : C=R2+R : :":= (A*A+B;to;B-C*C) /2/A/S : GOSU81 060 : A 7=',.. 
2160 A=R 1 +R2 : 8=L 1 :C=R3+R2 :X=(A*A+S*8-C*C) ... 2/A .... ·S : GOSUB1060 :01 ='T' :G2=rr-HT -G 1 
2170 A5=HT-A4-A6:A2=G1-AI-A3:A8=G2-A7-A9 
21803 REf'1***AF,EA:,:*** 
2190 S9=Ll*':R1+R2)+SU'HG1 )/2 
220~3 SI=L1*(R1 +R)*SIU(Al ) .... 2-(rr-AI-A9)*R:t.R/2 
2210 S3=(R1+R2)*(Rl+R)*SIN<A3)/2-(rr-A3-A4):tR*R/2 
2220 S5= (R3+R2) *(R3+R) *51 N':A7 )/2-( rr-A6-A7) :tR+R/2 
22313 S2=A2*Rl*Rl/2:S4=A5*R2*R2/2:S6=A8*R3*R3/2 
224~3 8=59-81-S2-S3-S4-S5-S6 



2250 RE~l~'UPER I r'lETER~~~ 
22613 VI =A2+'R 1 +A5+.R2+A8.+.R3 
2270 V2=R+': (rr-AI-A9)+( n-A3-A4) + (rr-A6-A7) 
2280 "1=\11+"12 
2290 F=(S/V)-R :R5=. 000U'R :R6=-. 000HR 
2300 RETURH 
2310 REr·l.~~'-'P IN SIDE PORES-HIGH THI - T'tPE F •• ~ 
2320 REf'l+**ALSO S I DE 2 UP NIDI DOl'H'~ - TYPE H:t.:+* 

2330 RE!'1-.. ** ANGLES *** 
2340 ;":=(R8-R)/(R8+R) :GOSUB1060 :Al='T' 
2350 A=R8+R2: B=R8+R : C=R2+R : :,.:= (A*A+8*S-C*C > .. "2./A ..... S : GOSUB 106(1 : A3='r' 
2360 A=R8+R2 :B=R2+R :C=R8+R :}c:=(A*A+8*B-C*C)/2 .... ·A ..... 8 :GOSUB1060 :A4='r' 
2370 Ll =SQR( (R8-R9)-t-2+L:+;L) :Bl=ATt-~< <R8-R9)/L) 
2380 B=Ll :C=R2+R9 :::.;= (A*A+B*8-Ct.C >/2 .... A/B :GOSU8106B :01='t' 
2390 82=01-81 :B3=rr/2-82: IF HT>=fTTHEt·~ 82=G1 +81 :B3=rr ..... 2+B2 
2400 DG=SItHB2)~(R8+R2) :DF=R8+DG :D=DF-R2: IF HD'=fTTHENDF=R8-DO :D=DF-R2 
2410 X=(OF-R) ..... O:R2+R):GOSUB1060:A6=Y 
2420 A2=B2+rr .... ·2-A l-A3: I FHT>=1TTHENA2=1T.'·2-82-A l-A3 
2430 A5=83-A4-A6: I FtH = 1 THEt~A5=8:3-A4 
244'3 RH1~~~AREA OF PDLYODH~~~ 
245~3 89= (R8+R2;' *COS (82;';+' (DG/2+RS::' : I FHT>=fT THEt'~S9= < R8+R2::O :+:COS (B2;';+' (R8-DG/2) 
246~3 A=RS+R :Sl=R:+:ft+Slt-.l(Al )+A;+.<R8-R).+:SIN(Al ) .... ·2-( fT-AI ):+P;+.R/2 
2470 S2=fl2;+.R8+:R8/2 
248~3 S:3=A* (R8+R2;':+:3 I t·~ (A3) /2-R*R+ 0:: fT-R4-Ft3;' /2 
24SH3 S4=t=15:+.R2*R2/2 
25130 A=F~2+R :~;5=A*S I t'~(A6 );+.( R+(R2+D-R) /2) - (u-A6) :+:R+:R/2 
251~3 IF t'~I=1 THEt·~ S9=!::;9+(R2+F:)*SIt'j(A6)*(R+(DF-R)/2) :S5=A6.+:F2*R2 .. /2+(fT-A6)+.R+E ..... ·Z 
2520 S=S9-S1-:'::;2-S3-~A-S5 

2530 REr'l***PER I r'lETEF~*** 
254~3 IF t-.lI=1 THEN257(1 
25513 VI =A2*F:8+A5*R2+( R8+R2) *(:03 < 82) -(R8+R::O *31 t·1 (A 1::' - (F:2+R) :t.:::; I t·~< A6,:. 
256~3 V2=R* ( (fT-A 1 ) +o:'1T-A3-A4) + (fT-At::);. : GO r025912t 
2570 VI =A2:+:R8+A5:+:R2+A6:+:R2+ 0: R2+R;':+:8 I t-.l(Fl6) +( R8+R2) *COS (82) - (R8+R;o:+:S I t'~(A 1 > 
25813 V2=R+«fT-Al)+(fT-A3-A4)-(fT-A6» 
2590 V=V1+V2 
2600 F=<S/V)-R :F~5=. ~001.R :R6=-. 0001:+.R 
2610 RETURN 
2628 REt'l**+UP IN t'IlDOLE-HIGH THI - T'T'PE G*+:+.f/) 
263~3 F~Er'l"*+AHGLES*+* 
264~3 Ll=SQR((F~1-R3)'r"2+L+L) :81=An~((RI-R3>/L) 

2650 A=R 1 +R2 :8=Ll :C=R2+R3 ::":=(A+.f1+8"+B-C*C)/2/A .... ·8 :G03U81060 :G1 ='1' 
2660 82=G 1-81 : B:3=1'T /2-82 : I FHT>=1TTHENB2=G 1 +81 : 83=fT /2+B2 
2670 DG=SIt'~(82)*(Rl +R2) :DF=R1 +DG :O=DF-R2: IFHT>=fl'THEt·~DF=R1-DG :O=DF-R2 
268~3 ~':=<DF-R.:'/(R2+R) :GOSU8106~21 :Al='1' 
2690 REr'l~~~+AREA~~~~ 
2700 S=2*(R2+R)*SIN(F11)*(R+(R2+0-R)/2)-(fT-F11)+R*R-Al*R2*R2 

2710 REr'1***:tPER 1 t'lETER**** 
2720 Vl=2*Al*R2+2*(R2+R)*SIt'~(Al) :V2=-2*':fT-Al )*R 
2730 V=V1+V2 
2740 F=(S/V)-R :R5=. ~3~301:+:P :R6=-. 0001*R 
2756 RETURN 
2755 REI'l:+:*** 1 t'4 I T I AL I SAT I ot·4:+.*** 
2760 OPEtH.4 :OPEt~2 .• 4.1 :DPEH3 .• 4 .• 2 :OPEt~4 .• 4,4 :PRItH#4 
27/'0 F$="iiI99S1.9:3 ;;19:3.:5'9:5' -'1199:3.9:39 ~I 51.9'3-:; ~I 9-:.9:39 ~I" ;PRIt·H#3 .• F$ 
278~3 PO~~E59468· .• 14 . 
2790 PRINT"~ - ... ~"~o!'l ... _- -'L---~-I·~r/ - o!'/ 111_- -r--." 
28lj~} PR 1 NT" 
281 e PR I N T" W4"mN1"ill"~~~Yflj~~9t.!~ZM;i$2.<t%~!mw:«":~J~W~~iw.¥~J@~mffif.immff@" 
2820 
2830 
2840 
2850 
2860 
2870 
2880 
2890 

PRItH" 
PRIHT":!j 
PRINT:' 
PRIHT" 
PRIHT" 
PR HlT " 
PRIHT" 
PRINT" 

.. ELECT r-1Et~ISCUS SHAPE" 
1 ) ,JJUR 1·IEDOES (T'tPE E;' 

--, '; 
~. lACK 2 UP 1 DOI·n·l (TYPE 
3) ,F' It~ FF,DHT (TYPE A) 
4) ,F' It~ r'1I DOLE OAP (TYPE 
5) lACK 3 UP (T'tPE B) 
6) ,F' It~ SIDE PORES (TYPE 
.(' ) .. IDE 2 UP r'lI DDl.E 1 DOI·It·l 

ItHERr'lEDI ATE 
0) LOI-l 

LOt·1 
C> LOl.oJ 

Lml 
F) HIGH 

,~ T'T'PE H) HIGH 

IHI" 
I HI" 
IHI" 
1 HI" 
THI" 
1 HI" 
I HI" 



29110 PR HIT" 8) ,.I" It; 1'1l DDLE GAP '- T'~PE 0) HI OH I HI" , 
2910 PRlt'~T" ____________ ":PRIHT"ii -./1-_ .L--I·~r/" 
2920 GET G$ 
2930 IF VAL'; G$) <:1 OR VAL< G$) >8 THEN 2920 
2940 Hl=VAL(G$) :PRINT"l!l :<f!LUE CHOSEN".: IN :tHI=IN: IF 
2950 I F I N=8THEtlHH=:7 - -

Itl=7THEtlHI= I:Wl=6 

-r- _+-..... ," 
2980 PR It·n " 
2990 PRItH" -DDS ARRANGED HITH _1 At·m ...3 AGAINSTPLATE, .2 AT 8ACK ": 
3131313 PRltH"(_1 >= _3)," 
3010 PR I t'~T" ~}~~~;msf.mmfllliTh"Um!@mz~mm:MJilimw.:mmW~t~ffiW" 
313213 PF: ItH" l!l 1>LL THREE ROD RAD II .; EtHER 1)., OR THERAT 10S _1'/ -3 AHO 
313313 PRItH" (Et-ITER 2), ARE REQUIRED" 
313413 PRItH" ":PRItH" il -/1 - _ -"L --I -.'/ " 
313513 GET A$ 
3£1613 IF VAL(A$)<l OR VAL(A:t»2 THEt·~ 3~35(1 

3070 IF VAL(A:t)=2lHEt·t3110 
31380 U;PUT".!l -.HPLlT _1" ,RI 
3090 H~PUT"!l -~t'~PUT -.2" .:R2 
3h30 It..JPUT"!l -,tfPUT --3" :R3 :OOT03140 
3116 INPUT"m ·.,t·~PLlT _1/2" :RZ 
312'3 HlF'UT".!l -.HPUT _1/-3" ,RF 
313'3 F: 1 = 1 : F:2= 1 /F:2 : R3= 1/RF 

1 " ''''''. -'''''''::'' ." 

:3146 ><:= 0:: '~R 1 +R2::O "l2+,R2+R:3 )"l2- 0:, Rt +R3) l2)/2/ (P 1 +R2;' ..... '( R2+R:3) :GI)~3U81 (16l1 : T 1 ='1": r 1 =T 1 /~ 
31513 Ll=SQP( O::F~1+R3.>·t·2-·;RI-R3)·t·2) 
31613 :,.,:= 0:: R2-R 1 )/ (R 1 +F~2;o :OO::;UBl 6613 : T='T' :;:<= 0:. R2-R3)/( R3+R2) :GOSUB 1 060: TT='r' 
3170 T"2=('T+TT)/2 :L2=SQR( (RI +R2;"r'2-( RI-R2)'l2)+S(~R( <R3+R2 )·t2-(R3-R2)·l2) 
3180 re= I NT (T 1 /2/rr.+.36(Et.1 00+.5)/1 (hj : T9= INT < 1'2 ..... 2/11.+:360:+1 C1~~+. 5 :.. ..... 1 00 
3190 L8=INT(Ll*1006+.5)/1000:L9=IN·r(L2*1000+.5)/1000:T1=T1*360/2/n 
3206 T2=T2*36e/2/Tf 
3210 I F t'H'V':>6THEt'f33~3l1 

3250 F'RIt·n"N:tHICH SIDE PORE REOUIRES AHAL'T'SlS?" 
326'3 PR ItH " .!l 1 -" -HPILLAR'~ RI~;E 8ElI,jEEtl RI-R2 
3270 PR I NT".!l 2;' -HP I LLAF:Y R I SE 8ETIoJEEtl R3-F:2 
32:3l1 INPUT"~ELECT IOt·~" .~sp 
329~3 R8=R1 :RS'=R3: IF :3F'=2 THEt·t R8=R3 :R9=Rl 
3300 PR I HT " ::l~1f;:mm%_~~mffi~"ffi"W~M~~m"imfmmm~mfmmmmmmmiMmm~1i~~@mmtmf" 
3310 PRIt-4T" 

33313 PRItH"l!l I HE LHlITS H1POSED 8'~ THE PH'~SICALSIZE OF THE RODS ARE 131'.,1".: 
3340 PRIt·tT"Et·~ 8ELO' .... ":PRH~T":m.J 1 1>([lEO) ..... ~IN =".:T8~" ...... .ti;..: ="19 
3350 PRIt-4T"~ L (lINITS) ~ .... It ... ="f;L8;" 4,.,A;<; ="L9 
33613 PRItH",~ _ELECT EITHER :-" 
33713 PRI!H".!l 1;' I HE A80',/E LlloJITS" 
33813 PRItH" 2) """ERSCRI8E LII1ITS IN I 1-." 
339(t (;ET G$ 
34~3ft IF '.JAL (0$;' < 1 OR VAL (0$::0:>2 THEN 3:39~) 

34113 Ot·t VAL(G$) GO"fO 3430?3420 
3420 It'~PUT"m ····~IN 1 1-·,".:Tl:It--lPUT"!} '....A)< I h".~T2 

343'3 HT=Tl:+A*1T ..... 366 
3440 LC= (R 1 +R2 )-t-2+(R2+R3)1-2-2:t.COS( HT >*(R 1 +R2) *(R2+R:.3) 
3450 LC=SQR(LC) :L=S(~R<LC+LC-<RI-R3)·t·2) 
346(1 PR I NT " :Jilimtf.~h~i..<mti..%1m~::m~mmr~iimmmmmWmfimtrMt~t1~m~r~~ffiiliff:" 
34 7~;t PR I HT" 
3480 PR I '--IT" NUt1.$:;:~lli"i§OOnm~iliffi~1mi1ffi!ffifili:dillll@iliilir~~ilifi.mi~W'Nr::%;" 
34913 PRItH".!l -.t·lPUT HUJ'I8ER OF DEGREES REGIUIRED 8EHlEEH EACH POHH" 
35~30 n~PUTtI:mJ 1III'1EP IIII'IZE (OEG)";83 
3511) PRItHtll., "CURVATURE PREDICTlot·lS FOR AtW THREE RODS AGAIt;ST A PLATE" 
35213 PR It-Htll , " 
35313 ot·l It-l CiOT0354a, 35513, 35613, 35713.,35813,35913.,361313_,36113 
354'3 C$=" 1) FOUR ~'lEDGES ItHERJ'lEDIATE THI" :GOT0362'" 
355~3 (;$=" 2) BACK 2 UP 1 DOl-Jt·~ LOI·J rH]" :OOT036213 



3560 UP I t-l FROtH C$=" 8) 
3570 UP HI ~1I DDLE GRP (:$=" 4) 
3580 BACK 3 UP C$=" 5) 
3590 UP I tl S I DE PORE', C$=" 6) 
3600 C$=" 7) SIDE 2 UP MIDDLE 1 DOWN 
3610 C$=" 8) UP It~ rH DDLE OAP 
3620 PRlt-lTlH. "CAPILLRR't SHAPE -"; 
363(1 PR I HT# 1 • C$ 

LOl·J rHl" :GOT03'='26 
LOl·J TH I" : GOT03620 
LOI,' 

HIOH 
HIOH 

TH I " : OCI r0:3620 
TH I" :OCIT036213 
THI":GOT03620 

HIGH THI" 

364', IF VAL(A$:'=lTHEt-lPRItHl!l."ROD R"'DII R1=",RI," R2=" ,R2," f'~=" ,F::3 
3650 IF VAL(A$,:o=2THEHPRItHI!I. "RAUIUS RAnos" RL"R2 =" "R2," R1/R:3 =" ,RF 
3660 PRItHI!I,."PH'tSICAL Lli'lITS: 1"lIt-! THl =",18;" 1'1A), THl =",T9 
3670 PRIHT#l ~" "UN L =" .:L8;" t·lA;:.; L =" .:L9 
3680 PRlt-lTlIl:PR!t-lTl!l:PRIt-lTl!l ( 
36~'0 PRItH#I,." lH! L CURVATURE AREA PERlfolETER 
:-=1 7"~'''4 PR I t"T " ""'~~~',;~'~""",-~. <~.~w·''','·~~~<<<:r,~.;~,';'':"f<<~w~~~~<<';;:<<<<>:;ii""~,='::;:<'w<~~ffi~f«~«<~~:'" _......... ,1 w»>,,~ __ .... »»»>>> ,,"":H,»>. » .• ~>>>~.,.,.,.,.>>,:;'-;;~~~>_.>>.$; , . »»>.~,»»"".>;>: \ 

3710 PRINT" 0--1 - _~--... ~" 
3720 PR I t·~ T " !Jt~mmJ;:1~mrn~[~::mmmmn~m~rmmm-m~W~~",~W4mlmm~iffi~~~t)1~M~~~~m1jjll\ 
3730 PRItH"&j IUESS 101- I.EDGE Rf:DII (ROD UtHTS>,. AT I'1It-lH1UI'1 1 h ':OP NIt-I L}" 
374~3 IHPUT",mJ rt~E ABOVE GUE:::;S (+lVE EF~ROR)".;l·Jl 

3750 r t-lPUT"!J n~E BELO~'J (;UE~=;S < - I '.lE EEF~OF:::O" ;H2 
3760 R=~·J1 

3770 R=l·J 1 : Ot~ t·n·~ GOSlIB 1220., 14:?'~3 ,_ 1 ?7~21 . 1 ~~5~3., 2010 • 231 ~3 " 262(1 
37:313 F 1 =F : F:=H2 : ON Ht·~ CiO:;,::;UB 122(1" 14;~(1 . 1 ? 7~3 " 19~5~'::1.r 2~.3l(I .. 2:31 (1 " 2r=.20 
::"~?::H3 F2=F 
38tu) PR H·n" tJ.3UE:3::::; ',1:0 ~ROR =".: F 1 
3810 PRINT"lJ:;UES::::; (2) ~F~OR =" .:F2 
3820 F'F:IHT"lj -r,·'·I-,.· ... ·.'- -, ('r/H:.·II 
383~3 GET G$ 
38413 IF G$<>"'T'''AND G:t<>"t'4"THEt·n:=:3(1 
385~j iF G$="t·~" THEt'f370€1 
3866 IF F 1 <0 OR F2>O THEt'~37~3(1 

388~.3 PR 1 NT 11 

~ 39',1 Id REr·l+.*-*:t I t'~TERPOLAT IOt·~ LOOP ...... . 
3920 FOR TH=Tl TO T2 STEPSS 
3930 HT=2:+:TH: HT=HT:+'2:+:1T /36~'::1 : l3CITt.:r3?4~.J 
3941:3 LC=SC"1R ( .~ R 1 +R2)"'2+ (R2+R3 )'l2-2:+CO:::.',HT ):+( P 1 +F~2;' .+( P2+R:3:.o.:o 
3950 L=:3GU:::': LC.'+,l.(:-· .. R l-R:3.:o 'l2::O 
3966 IF .J>2rHEN 4£180 
397t1 IF J=21HEt·,f 399[1 
398~3 GO TO 1130 
399~3 ,RA=R : 0=. 1 
400[1 l'~ 1 =RA+Q:+:RA: I.oJ2=PA-O*RA 
4010 IF F1<:F2THEt-J lH=l'J2 :H2=Rt3+0:+Rfl 
4020 F~= l·Jl :ON Nt·" GOSUB 1220 .• 1480_. 177~:-',.1950,.2070 .• 2310 .• 2620:F 1=F 
4~330 F~= l·J2: Ot-J t-JN GOSUB 1220. 14:3~1., 1770 .. 1 :.~50 • 20 {~3., 2310 ,,2620 : F2=F 
4040 IF F 1 <F2THEt·i Hl=l·J2 :l·J2=F~A+O:+:RA 
4050 IF F L>0 AND F2>0 THEt'l G!=(!+. 05 :1.30T040~'U} 
406~j IF F 1 <0 AND F20} 1 HEt·" C!=(H. ~215 :GOT0400.3 
4(17(~1 130TO 113~} 

4080 l'J=R+ (R8-RA::O : R=l·J :Ot-i t-JH GOSU8122e .. 14:=:(1 .• 1 77121 .• 1950 • 2(1{~3 " 231 (1 .• 2620 
409~} IF F 03"HEN414~3 
41136 0=.01 
.4110 l'J1 =l·j :l,J2=W+Q*R :R=l·j2 :ON t-H'" GOSU81220 .• 148~}_.1·770 ... 1950 .20113 .2310 .2620 
4120 F1=F:IF F:>O· THEN Q=Q+ •• ::n31 :C.OT04110 
4131.3 GOTO 1130 
4140 0=.01 
4156 l·J2=l·J: l·J 1 =l·J-Q:+.R :R=l·j 1 :ot·" HH GOSU81220. 148~3.r 1 77f1 .• 19~;~)., 2070 .. 2310 .. 2620 
4160 F2=F:IF F<0 THEt·~ 1)=0+.001 :GOT04150 
41 ~::O0 GOfO 113~::t 

4180 t'IE:~T TH 
4190 FORI=1T05 :PRINT#l :tIEXTI 

READY.' 



1.2 THEORETICAL RESULTS 

Tables 1.1 through 1.23 detail the MS-P predicted curvatures for each of the four 

systems studied. The results, obtained from the computer program above, were used to 
plot the graphs of chapter 11. 

1.2.1 Three equal rods and a plate - RI = Rl = RJ 

Table I.l MS·P predictions for the three equal rod arrangement containing a type E 
TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

9 L,. A.of P<;ff eMS./' 
(deg) (rod units) (rod units) (rod writs) 

min 
30.00 2.000 0.499 5.049 10.106 

.31.00 2.060 0.592 4914 8.583 
32.00 2.120 0.642 4.805 7.476 
33.00 2.179 0.710 4.717 6.641 
34.00 2.237 0.775 4.646 5.993 
35.00 2.294 0.837 4589 5.477 
36.00 2.351 0.898 4.544 5.059 
38.00 2.463 1.011 4.484 4.432 
40.00 2.571 1.116 4.456 3.989 
42.00 2.667 1.213 4.453 3.670 
44.00 2.779 1.301 4.469 3.435 
46.00 2.877 1.379 4.501 3.262 
48.00 2.925 1.449 4545 3.136 
50.00 3.064 1.509 4.600 3.047 
52.00 3.152 1.559 4.662 2.989 
54.00 3.236 1.600 4.732 2.956 
56.00 3.316 1.631 4.808 2.947 
58.00 3.392 1.652 4.889 2.959 
60.00 3.464 1.663 4975 2.990 
62.00 3.532 1.664 5.065 3.043 
64.00 3.595 1.656 5.159 3.115 
66.00 3.654 1.637 5257 3.210 
68.00 3.709 1.609 5359 3.329 
70.00 3.759 1.572 5.465 3.475 
72.00 3.804 1.525 5575 3.653 
74.00 3.845 1.470 S.690 3.868 
76.00 3.881 1.407 S.811 4.129 
78.00 3.913 1.335 5938 4.446 
80.00 3.939 1.256 6.073 4.835 
82.00 3.961 1.169 6.217 5.317 
84.00 3.978 1.075 6372 5.925 
85.00 3.985 1.026 6.455 6.291 
86.00 3.990 0.975 6541 6.708 
87.00 3.995 0.922 6.632 7.189 
88.00 3.998 0.868 6.727 7.747 
89.00 3.999 0.812 6.827 8.400 
90.00 4.000 0.755 6.935 9.178 

max 



Table 1.2 MS-P predictions for the three equal rod arrangement containing a ty~ A 
TM. 

Hair Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

$ 1-, Aoff Poff eMS"" 
(deg) (rod units) (rod units) (rod units) 

30.00 2.000 0.310 2.164 6.970 
31.00 2.060 0.348 2.292 6.577 
32.00 2.120 0.390 2.426 6.218 
33.00 2.179 0.436 2.569 5.886 
34.00 2.237 0.488 2.724 5.579 
35.00 2.294 0.547 2.896 5.294 
36.00 2351 0.616 3.097 5.026 
37.00 2.407 0.707 3.375 4.771 

Table 1.3 MS-P predictions for the three equal rod arrangement containing a ty~ B 
TM. 

Hair Angle Outer Rod Effective Effective Curvature 
spacing Area 

. 
Perimeter 

$ 1-, A'6 P'6 eMS., 
(deg) (rod units) (rod units) (rod units) 

30.00 2.000 0.117 1.325 11.319 
30.50 2.030 0.126 1.379 10.896 
31.00 2.060 0.137 1.438 10.487 
31.50 2.090 0.148 1.501 10.093 
32.00 2.120 0.161 1.571 9.712 
32.50 2.149 0.176 1.649 9.314 
33.00 2.179 0.193 1.740 8.979 
33.50 2.208 0.214 1.852 8.622 
34.00 2.237 0.245 2.025 8.263 
34.50 2.266 0.276 2.177 7.888 
35.00 2.294 0.288 2.177 7.554 



Table 1.4 MS·P predictions for the three equal rod arrangement containing a type D 
TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

c!I L, A'6 P", eMU 

(deg) (rod units) (rod units) (rod unilS) 

30.00 2.000 0.152 2.619 17.169 
30.50 2.030 0.172 2.495 14.497 
31.00 2.060 0.190 2.379 12.519 
31.50 2.090 0.206 2.268 11.001 
32.00 2.120 0.220 2.162 9.798 
32.50 2.149 0.233 2.059 8.823 
33.00 2.179 0.244 1.960 8.019 
33.50 2.208 0.253 1.864 7.344 
34.00 2.237 0.261 1.770 6.769 
34.50 2.266 0.267 1.679 6.275 
35.00 2.294 0.271 1.589 5.845 
35.50 2.323 0.274 1.501 5.468 
36.00 2.351 0275 1.414 5.136 
36.50 2.379 0.274 1.329 4.839 
37.00 2.407 0.272 1.245 4.574 

Table 1.5 MS·P predictions for the three equal rod arrangement containing a type F 
TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

c!I L, A", P", CMS./' 

(deg) (rod unilS) (rod unilS) (rod unilS) 

80.00 3.939 0.595 3.126 5.255 
81.00 3.951 0.547 2.967 5.416 
82.00 3.961 0.508 2.837 5.578 
83.00 3.970 0.474 2.725 5.741 
84.00 3.978 0.444 2.625 5.906 
85.00 3.985 0.417 2.534 6.074 
86.00 3.990 0.392 2.450 6.245 
87.00 3.995 0.369 2.372 . 6.420 
88.00 3.998 0.348 2.299 6.599 
89.00 3.999 0.328 2.230 6.782 
90.00 4.000 0.310 2.164 6.970 



Table 1.6 MS·P predictions for the three equal rod arrangement containing a ~ G 
TM. 

HaIr Angle Outer Rod Effective Effective Curv8l:u"r 
spacing Area Perimeter 

~ L, A<J1 P<J1 c,,~ 
(deg) (rod units) (rod units) (rod units) 

83.00 3.970 0.234 1.171 4.917 
83.50 3.974 0.206 1.127 5.460 
84.00 3.978 0.179 1.082 6.017 
84.50 3.982 0.154 1.033 6.6&2 
85.00 3.985 0.131 0.982 7.488 
85.50 3.988 0.109 0.928 8.#4 
86.00 3.990 0.089 0.870 9.742 
86.50 3.993 0.071 0.808 11.379 
87.00 3.995 0.054 0.742 13.589 
87.50 3.996 0.039 0.668 16.728 
88.00 3.998 0.027 0.587 21.507 
88.50 3.999 0.016 0.495 29.606 
89.00 3.999 0.008 0.388 46.145 
89.50 4.000 0.002 0.253 97.126 



1.2.2 Three Unequal rods and a plate, symmetrical. RI = O.5R1 = RJ 

Table 1.7 MS·P predictions for the three unequal rods symmetrically arranged 
(RIIR,; 0.5) containing a type E TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

$ L, A" P" CII,", 

(deg) (rod units) (rod units) (rod units) 

min 
19.47 2.000 0.561 5.401 9.622 
19.50 2.003 0.565 5.394 9.543 
21.00 2.150 0.755 5.135 6.793 
22.50 2.296 0.936 4.990 5.326 
24.00 2.440 1.110 4.922 4.433 
25.50 2.583 1.277 4.909 3.844 
27.00 2.724 1.437 4.938 3.435 
28.50 2.863 1.591 4.998 3.141 
30.00 3.000 1.738 5.083 2.924 
31.50 3.135 1.878 5.187 2.762 
33.00 3.268 2.009 5.307 2.640 
34.50 3.398 2.132 5.440 2.551 
36.00 3.527 2.246 5.583 2.485 
37.50 3.653 2.349 5.735 2.441 
39.00 3.776 2.442 5.894 2.413 
40.50 3.897 2.524 6.060 2.400 
42.00 4.015 2.595 6.230 2.401 
43.50 4.\30 2.653 6.406 2.414 
45.00 4.243 2.700 6.586 2.439 
46.50 4.352 2.733 6.770 2.476 
48.00 4.459 2.754 6.957 2.525 
49.50 4.562 2.762 7.148 2.587 
51.00 4.663 2.757 7.343 2.662 
52.50 4.760 2.739 7.541 2.753 
54.00 4.854 2.707 7.743 2.860 
55.50 4.945 2.662 7.949 2.985 
57.00 5.032 2.604 8.159 3.132 
58.50 5.116 2.532 8.374 3.306 
60.00 5.196 2.447 8.594 3.511 
61.50 5.273 2.349 8.821 3.754 
63.00 5.346 2.238 9.056 4.045 
64.50 5.416 2.115 9.299 4.396 
66.00 5.841 1.978 9.552 4.827 
67.50 5.543 1.829 9.818 5.365 
69.00 5.601 1.668 10.100 6.052 
70.50 5.656 1.495 10.401 • 6.955 
70.53 5.657 1.491 10.407 6.977 

max 



Table 1.8 MS·P predictions for the three unequal rods symmetrically arranged 
(R,IR, = 0.5) containing a type A TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter , L,. A'6 P'6 CIfS.#' 

(deg) (rod units) (rod units) (rod units) 

19.47 2.000 0.310 2.164 6.970 
19.50 2.003 0.312 2.170 6.950 
20.00 2.052 0.343 2.274 6.628 
20.50 2.101 0.376 2.383 6.326 
21.00 2.150 0.413 2.499 6j)42 
21.50 2.199 0.453 2.622 5.T76 
22.00 2.248 0.498 2.755 5.524 
22.50 2.296 0.549 2.901 5.285 
23.00 2.344 0.607 3.070 5.057 
23.50 2.392 0.679 3.286 4.838 
24.00 2.440 0.788 3.642 4.616 
24.50 2.488 0.834 3.681 4.411 
25.00 2.536 0.880 3.722 4.227 

Table 1.9 MS·P predictions for the three unequal rods symmetrically arranged 
(R,I R 1 = 0.5) containing a type B TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

~ L, A<6 P<6 CI#3.I 
(deg) (rod units) (rod units) (rod units) 

19.47 2.000 0.172 1.610 9.324 
1950. 2.003 0.173 1.615 9.293 
20.00 2.052 0.194 1.710 8.794 
20.50 2.101 0.217 1.814 8.325 
21.00 2.150 0.244 1.929 7.881 
2150 2.199 0.276 2.063 7.456 
22.00 2.248 0.316 2.229 7j)49 
22.50 2.296 0.375 2.499 6.648 
23.00 2.344 0.426 2.659 6.242 
23.50 2.392 0.453 2.674 5Jf97 
24.00 2.440 0.480 2.690 5.603 
2450 2.488 0.506 2.708 5.3S1 
25.00 2.536 0.531 2.726 5.134 



Table 1.10 MS-P predictions for the three unequal rods symmetrically arranged 
(R.tR2 = 0.5) containing a type D TM. 

Hair Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

$ L,. A ... P CMS", 

(deg) (rod units) (rod units) (rod ~ts) 

19.47 2.000 0220 ·3.025 13.693 
19.50_ 2.003 0.223 3.014 13.498 
20.00 2.052 0.259 2.831 10.894 
20.50 2.101 0.292 2.662 9.098 
21.00 2.150 0.321 2.503 7.789 
21.50 2.199 0.346 2.353 6.794 
22-00 2.248 0.367 2.209 6.012 
22-50 2.296 0.384 2.070 5.384 
23.00 2.344 0.397 1.936 4.869 
23.50 2.392 0.407 1.806 4.438 
24.00 2.440 0.412 1.679 4.074 
24.50 2.488 0.413 1.555 3.762 
25.00 2.536 0.410 1.434 3.492 
25.50 2.583 0.403 1.314 3.256 
26.00 2.630 0.392 1.196 3.048 
26.50 2.677 0.377 1.080 2.864 
27.00 2.724 0.357 0.965 2.699 
27.50 2.770 0.333 0.852 2.552 
28.00 2.817 0.305 0.739 2.419 
28.50 2.863 0.273 0.627 2.298 
29.00 2.909 0.236 0.517 2.188 
29.50 2.955 0.194 0.406 2.088 
30.00 3.000 0.149 0.297 1.996 



Table 1.11 MS·P predictions for the Ihree unequal rods symm.mc:aJly arranged 
(R/R, = 0.5) rontaining a type F TM. 

Hair Angle Outer Rod Effective Effective Cnrvature 
spacing Area Perimeter 

<) L, A<6" p." ells.,. 
(deg) (rod unilS) (rod unilS) (rod unilS) 

60.00 5.196 1.187 4.547 3.829 
60.50 5.222 1.127 4.382 3.887 
61.00 5.248 1.077 4.250 3.944 
61.50 5.273 1.033 4.136 4.001 
62.00 5.298 0.994 4.034 4.057 
62.50 5.322 0.958 3.942 4.114 
63.00 5.346 0.925 3.858 4.171 
63.50 5.370 0.894 3.780 4.227 
64.00 5.393 0.865 3.706 4.284 
64.50 5.416 0.837 3.637 4.340 
65.00 5.438 0.812 3.751 4.397 
65.50 5.460 . 0.787 3.509 4.455 
66.00 5.841 0.764 3.450 4.513 
66.50 5.502 0.742 3.392 4.571 
67.00 5.523 0.720 3.338 4.630 
67.50 5.543 0.700 3.285 4.688 
68.00 5.563 0.681 3.234 4.748 
68.50 5.583 0.662 3.185 4.808 
69.00 5.601 0.644 3.137 4.868 
69.50 5.620 0.627 3.091 4.929 
70.00 5.638 0.610 3.046 4.990 
70.50 5.656 0.594 3.003 5.os2 

Table 1.12 MS-P predictions for the Ihree unequal rods symmetrically arranged 
(R,!R, = 0.5) rontaining a type G TM. 

Hair Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

0 L, A<6" P<6" CIIU' 
(deg) (rod unilS) (rod unilS) (rod unilS) 

64.00 5.393 0.440 1.861 4.221 
64.50 5.416 0.385 1.784 4.627 
65.00 5.438 0.333 1.703 5.109 
65.50 5.460 0.284 1.617 5.693 
66.00 5.841 0.238 1.526 6.411 
66.50 5.502 0.195 1.430 7.316 
67.00 5.523 0.156 1.327 8.489 
67.50 5.543· 0.120 1.216 10.067 
68.00 5.563 0.089 1.095 12.293 
68.50 5.583 0.061 0.962 15.659 
69.00 5.601 0.038 0.812 21.310 
69.50 5.620 0.019 0.638 32.645 
70.00 5.638 0.006 0.422 66.185 
70.50 5.656 0.000 0.003 =-



1.2.3 Three Unequal rods and a plate, symmetrical- RI = 2Rl = R3 

Table 1.13 MS-P predictions for the Ihree unequal rods symmetrically arranged 
(RlR, = 2) containing a type E TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter , L, A.r p CII ... 

(deg) (rod units) (rod units) (rod :Uts) 

min 
41.81 2.000 0.445 4.658 10.453 
42.00 2.001 0.454 4.638 10.215 
43.50 2.065 0.511 4.499 8.688 
45.00 2.121 0.511 4.383 1.593 
46.50 2.116 0.632 4.281 6.775 
48.00 2.229 0.684 4.206 6.146 
49.50 2.281 0.132 4.138 5.651 
51.00 2.331 0.116 4.080 5.256 
52.50 2.380 0.816 4.031 4.935 
54.00 2.421 0.853 3.990 4.674 
55.50 2.412 0.881 3.955 4.458 
57.00 2.516 0.911 3.926 4.280 
58.50 2.558 0.944 3.902 4.133 
60.00 2.598 0.961 3.882 4.013 
61.50 2.636 0.981 3.866 3.915 
63.00 2.613 1.004 3.853 3.836 
64.50 2.108 1.018 3.844 3.775 
66.00 2.141 1.028 3.836 3.730 
67.50 2.112 1.036 3.831 3.698 
69.00 2.801 1.040 3.829 3.679 
70.50 2.828 1.042 3.828 3.673 
72.00 2.853 1.040 3.828 3.678 
73.50 2.816 1.036 3.831 3.696 
75.00 2.898 1.029 3.835 3.724 
76.50 2.911 1.020 3.840 3.764 
78.00 2.934 1.008 3.841 3.817 
79.50 2.950 0.993 3.855 3.880 
81.00 2.963 0.916 3.865 3.957 
8i.50 2.914 0.951 3.816 4.047 
84.00 2.984 0.936 3.888 4.152 
85.50 2.991 0_913 3.902 4.274 
87.00 2.996 0.881 3.911 4.412 
88.50 2.999 0.860 3.934 4.571 
90.00 3.000 0.832 3.953 4.752 
91.50 2.999 0.801 3.914 4.958 
93.00 2.996 0.169 3.998 5.193 
94.50 2.991 0.136 4.023 . 5.462 
96.00 2.984 0.102 4.052 5.771 
97.50 2.914 0.666 I 4.083 6.126 
99.00 2.963 0.629 4.118 6.537 

100.50 2.950 0.592 4.151 7.019 
102.00 2.934 0.553 4.200 7.584 
103.50 2.911 0.514 4.249 8.256 
105.00 2.898 0.414 4.303 9.066 
106.50 2.816 0.434 4.365 10.053 
108.00 2.853 0.393 4.434 11.278 
109.47 2.828 0.352 4.511 12.796 
max 



Table 1.14 MS·P predictions for the three unequal rods symmetrically arranged 
(R,IR,; 2) containing a type A TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

(I 1-., AoD' P'Jf CMS4' 

(deg) (rod units) (rod units) (rod units; 

41.81 2.000 0310 2.164 6.970 
42.00 2.007 0.315 2.179 6.919 
43.00 2.046 0.339 2.261 6.667 
44.00 2.084 0.364 2.344 6.431 
45.00 2.121 0.391 2.430 6.208 
46.00 2.158 0.419 2.518 5.999 
47.00 2.194 0.449 2.609 5.802 
48.00 2.229 0.481 2.703 5.616 
49.00 2.264 0.515 2.803 5.441 
so.oo 2.298 0.551 2.908 5.275 
51.00 2.331 0.590 3.022 5.117 
52.00 2.364 0.634 3.150 4.967 
53.00 2.396 0.685 3.305 4.822 
54.00 2.427 0.798 3.598 4.680 
55.00 2.457 0.804 3.655 4.541 

Table I.l5 MS·P predictions for the three unequal rods symmetrically arranged 
(R.tR,; 2) containing a type B TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

(I 1-., AoD' PoD' eMU 
. (deg) (rod units) (rod units) (rod units) 

41.81 2.000 0.068 1.014 14.812 
42.00 2.007 0.070 1.027 14.647 
43.00 2.046 0.079 1.098 13.800 
44.00 2.084 0.090 1.182 12.993 
45.00 2.121 0.105 1.283 12.213 
46.00 2.158 0.124 1.424 11.447 
47.00 2.194 0.157 1.677 10.644 
48.00 2.229 0.167 1.661 9.924 
49.00 2.264 0.175 1.646 9.355 
50.00 2.298 0.183 1.631 8.905 
51.00 2.331 0.189 1.617 8.549 
52.00 2.364 0.193 1.602 8.271 
53.00 2.396 0.197 1.587 8.059 
54.00 2.427 0.198 1.572 7.906 
55.00 2.457 0.199 1.556 7.807 



Table 1.16 MS·P predictions for the three unequal rods symmetrically arranged 
(RlR, = 2) containing a type D TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

4> 1-, A<6 P<6 eMS"' 
(deg) (rod units) (rod units) (rod units) 

41.81 2.000 0.091 2.155 23.529 
42.00 2.007 0.095 2.121 22.162 
43.00 2.046 0.115 1.950 16.936 
44.00 2.084 0.131 1.793 13.672 
45.00 2.121 0.143 1.645 11.446 
46.00 2.158 0.153 1.505 9.836 
47.00 2.194 0.158 1.369 8.618 
48.00 2.229 0.161 1.238 7.667 
49.00 2.264 0.160 1.111 6.904 
50.00 2.298 0.157 0.987 6.281 
51.00 2.331 0.150 0.865 5.761 
52.00 2.364 0.140 0.746 5.322 
53.00 2.396 0.127 0.629 4.946 
54.00 2.427 0.111 0.514 4.622 
55.00 2.457 0.092 0.400 4.339 

Table 1.17 MS·P predictions for the three unequal rods symmetrically arranged 
(RlR, = 2) containing a type F TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

4> 1-, A<6 P<6 CMU 
(deg) (rod units) (rod units) (rod units) 

90.00 3.000 0.484 2.630 5.434 
91.00 3.000 0.470 2.621 5.568 
92.00 2.998 0.457 2.612 5.715 
93.00 2.996 0.443 2.603 5.875 
94.00 2.993 0.428 2.593 6.050 
95.00 2.989 0.413 2.584 6.242 
96.00 2.984 0.399 2.575 6.453 
97.00 2.978 0.383 2.566 6.684 
98.00 2.971 0.368 2.557 6.939 
99.00 2.963 0.319 2.296 7.198 

100.00 2.954 0.289 2.158 7.450 
101.00 2.945 0.266 2.053 7.703 
102.00 2.934 0.246 1.963 7.959 
103.00 2.923 0.229 1.885 8.223 
104.00 2.911 0.213 1.814 8.491 
105.00 2.898 0.199 1.748 8.767 
106.00 2.884 0.186 1.687 9.051 
107.00 2.869 0.174 1.629 9.J45 
108.00 2.853 0.163 1.575 9.647 
109.00 2.837 0.152 1.523 9.961 
109.47 2.828 0.148 1.500 10.112 



Table 1.18 MS·P predictions for the three unequal rods symmetrically arranged 
(R.JR, ; 2) containing a type G TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

~ L, A." P", CMS., 
(deg) (rod units) (rod units) (rod units) 

102.00 2.934 0.125 0.724 5.758 
102.05 2.929 0.111 0.700 6.307 
103.00 2.923 0.097 0.675 6.949 
103.05 2.917 0.084 0.649 7.768 
104.00 2.911 0.072 0.621 8.617 
104.05 2.904 0.060 0.591 9.721 
105.00 2.898 0.050 0.560 11.091 
105.05 2.891 0.041 0.526 12.929 
106.00 2.884 0.032 0.489 15.103 
106.05 2.876 0.024 0.449 18.186 
107.00 2.869 0.017 0.405 22.589 
107.05 2.861 0.012 0.357 29.351 
108.00 2.853 0.007 0.301 40.937 
108.05 2.845 0.003 0.235 65.035 
109.00 2.837 0.001 0.151 142.743 
109.47 2.828 0.000 0.076 =~ 



1.2.4 Three Unequal rods and a plate, non-symmetrical - RI = RI = 2R3 

Table 1.19 MS·P predictions for the three unequal rods non-symmelrically arranged 

---(R,IR, = 2) containing a type E TM. t, 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

<I> 1-, A.,. P.,. ells../' 
(deg) (rod units) (rod units) (rod units) 

min 
24.09 1.414 0.252 3.599 14.271 
24.50 1.437 0.271 3.554 13.108 
26.00 1.519 0.338 3.428 10.125 
27.50 1.600 0.403 3.348 8.301 
29.00 1.679 0.465 3.301 7.0S9 
30.50 1.758 0.525 3.279 6.238 
32.00 1.836 0.583 3.277 5.617 
33.50 1.912 0.638 3.291 5.151 
35.00 1.987 0.691 3.317 4.795 
36.50 2.061 0.742 3.353 4.519 
3S.00 2.133 0.789 3.398 4.303 
39.50 2.203 0.834 3.450 4.136 
41.00 2.273 0.875 3.508 4.006 
42.50 2.340 0.913 3.571 3.90S 
44.00 2.406 0.948 3.639 3.835 
45.50 2.471 0.979 3.709 3.786 
47.00 2.533 1.006 3.783 3.757 
48.50 2.594 1.030 3.860 3.746 
50.00 2.654 1.049 3.939 3.752 
51.50 2.711 1.065 4.021 3.775 
53.00 2.767 1.076 4.104 3.813 
54.50 2.820 1.083 4:l89 3.866 
56.00 2.872 1.086 4.276 3.936 
57.50 2.922 1.084 4.365 4.024 
59.00 2.969 1.079 4.456 4.128 
60.50 3.015 1.069 4.548 4.253 
62.00 3.059 1.055 4.642 4.399 
63.50 3.100 1.036 4.739 4.570 
65.00 3.140 1.014 4.837 4.768 
66.50 3.177 0.987 4.938 4.999 
6S.00 3.212 0.957 5.042 5.266 
69.50 3.245 0.922 5.149 5.579 
71.00 3.275 0.884 5.259 5.947 
72.50 3.304 0.842 5.374 6.381 
74.00 3.330 0.796 5.493 6.900 
75.50 3.354 0.746 5.618 7.525 
77.00 3.375 0.693 5.750 8.293 
7S.50 3.395 0.636 5.890 9.250 
SO.OO 3.411 0.576 5.040 10.472 
80.26 3.414 0.566 5.067 10.718 

max 



Table 1.20 MS-P predictions for the three unequal rods non-symmetrically arranged £, (R,IR, = 2) containing a type F TM between RI and R,. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

<) L, A.JT P06 CIIS~ 
(deg) (rod units) (rod units) (rod units) 

65.00 3.140 0.750 3.672 4.895 
66.00 3.165 0.697 3.507 5.028 
67.00 3.189 0.631 3253 5.155 
68.00 3.212 0.587 3.099 5.280 
69.00 3.234 0.550 2.977 5.404 
70.00 3.255 0.519 2.873 5.530 
71.00 3.275 0.491 2.780 5.658 
72.00 3.295 0.465 2.695 5.788 
73.00 3.313 0.442 2.617 5.920 
74.00 3.330 0.420 2544 6.055 
75.00 3.346 0.399 2.475 6.191 
76.00 3.361 0.380 2.411 6.333 
77.00 3.375 0.362 2349 6.477 
78.00 3.388 0.345 2289 6.623 
79.00 3.400 0.329 2233 6.774 
80.00 3.411 0.314 2.178 6.927 
80.26 3.414 0.310 2.164 6.970 

Table 1.21 MS-P predictions for the three unequal rods non-symmetrica\ly arranged 
4='2 (R,IR, = 2) containing a type F TM between R, and R,. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

q, L, A06 P., CMS", 

(deg) (rod units) (rod units) (rod units) 

65.00 3.140 0.391 2.426 6.191 
66.00 3.165 0.386 2.453 6.347 
67.00 3.189 0.380 2.480 6.526 
6S.o0 3.212 0.372 2.505 6.732 
69.00 3.234 0.363 2.531 6.969 
70.00 3.255 0.353 2.555 7.239 
71.00 3.275 0.316 2.389 7.541 
72.00 3.295 0.276 2.162 7.824 
73.00 3.313 0.250 2.025 8.096 
74.00 3.330 0.229 1.920 8.367 
75.00 3.346 0.212 1.831 8.638 
76.00 3.361 0.196 1.754 8.910 
77.00 3.375 0.183 1.686 9.1S6 
7S.00 3.38S 0.171 1.623 9.465 
79.00 3.400 0.160 1.566 9.748 
SO.OO 3.411 0.150 1.513 10.036 
SO.26 3.414 0.140 1.500 10.112 



Table 1.22 MS-P predictions for the three unequal rods non-symmetricaUy arranged 
(RlR, = 2) containing a ~ G TM. 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

<I> 1-, A<JI' P<Jl' CMU 
(deg) (rod uniLS) (rod units) (rod units) 

70.00 3.255 0.315 1.274 4.044 
71.00 3.275 0.264 1.212 4.578 
72-00 3.295 0.218 1.146 5.250 
73.00 3.313 0.175 1.073 6.120 
74.00 3.330 0.136 0.994 7.287 
75.00 3.346 0.101 0.906 8.929 
76.00 3.361 0.071 0.808 11.384 
77.00 3.375 0.045 0.6% 15.428 
78.00 3.388 0.024 0.564 23.230 
79_00 3.400 0.009 0.399 44.006 

Table 1.23 MS-P predictions for the three unequal rods non-symmetricaUy arranged 
(R,iR, = 2) containing a ty~ H TM between R, and R,. ~11 

Half Angle Outer Rod Effective Effective Curvature 
spacing Area Perimeter 

<I> 1-, A<JI' P<Jl' eMS., 
(deg) (rod uniLS) (rod units) (rod units) 

65.00 3.140 0.358 1.605 4.475 
66.00 3.165 0.366 1.723 4.706 
67.00 3.189 0.371 1.840 4.961 
68.00 3.212 0.373 1.958 5.247 
69.00 3.234 0.372 2.075 5.566 
70.00 3.255 0.370 2.193 5.927 
71.00 3.275 0.364 2.311 6.337 
72.00 3.295 0.357 2.430 6.806 
73.00 3.313 0.346 2.549 7.349 
74.00 3.330 0.334 2.669 7.983 
75.00 3.346 0.319 2.791 8.733 
76.00 3.361 0.302 2.914 9.634 
77.00 3.375 0.283 3.040 10.732 
78.00 3.388 0.261 3.168 12.105 
79.00 3.400 0.238 3.300 13.862 
80.00 3.411 0.212 3.436 16.186 
80.26 3.414 0.205 3.472 16.920 



I.3 EXPERIMENTAL RESULTS 

Table 1.24. Experimental results for the three equal rods and plate system. 

Hair Standard Test Standard Test Expt. MS-P % 
Angle radius radii rise rise curvature curvarure dev. 

<p R, R, tlh" t1n,~ C.6" 
CIIS-I' 

(deg) (mm) (mm) (mm) (mm) (%) 

31.01 0.800 1.582 23.11 11.03 6.548 6.577 -0.4 
31.62 0.800 1.189 24.11 14.87 6.363 6.352 +0.2 
33.40 0.800 1.148 24.30 14.17 5.804 5.761 +0.7 

18.51 7.581 7.479 +1.4 
34.54 0.800 1.496 24.08 10.20 5.494 5.434 +1.1 

11.56 6.226 6.270 -0.7 
35.66 0.800 1.470 24.12 9.70 5.125 5.114 +0.2 
37.93 0.800 1.190 23.18 9.94 4.424 4.440 -0.4 
40.16 0.800 1.396 24.24 7.97 3.974 3.961 +0.5 
40.91 0.800 1.386 24.21 7.82 3.880 3.830 +1.2 
43.10 0.800 1.347 23.99 7.26 3.534 3.533 +0.0 
51.88 0.800 1.243 24.10 6.60 2.951 2.990 -1.3 
56.96 0.800 1.197 24.03 6.91 2.984 2.950 +1.1 
62.82 0.800 1.148 23.83 7.27 3.033 3.070 -1.2 
70.76 0.800 1.100 23.87 8.86 3.540 3.540 -0.0 
72.58 1.583 1.586 12.29 6.59 3.728 3.713 +0.4 
74.63 0.800 1.190 24.13 9.28 3.967 3.950 +0.5 
77.79 1.583 1.586 12.32 7.83 4.419 4.411 +0.2 
78.36 0.800 1.190 24.71 10.73 4.480 4.510 -0.7 
79.71 1.583 1.586 12.27 8.54 4.839 4.780 +1.2 
83.28 1.583 1.587 12.29 9.93 5.618 5.690 -1.2 
83.52 1.583 1.586 12.16 10.01 5.724 5.770 -0.8 
83.84 1.583 1.587 12.22 10.30 5.861 5.873 -0.2 
84.07 1.583 1.587 12.24 10.42 5.919 5.918 +0.0 
85.22 1.583 1.587 12.21 10.74 6.116 6.112 +0.0 

15.15 8.581 7.926 +8.3 
85.87 1.583 1.587 12.29 11.06 6.257 6.223 +0.5 

17.22 9.742 9.415 +3.3 
86.79 1.583 1.587 12.19 11.16 6.369 6.383 -0.2 

22.68 12.937 12.661 +2.1 
86.83 1.583 1.587 12.25 11.25 6.386 6.390 -0.1 
87.02 1.583 1.587 12.28 11.27 6.385 6.420 -0.5 
87.80 1.583 1.587 12.18 11.43 6.529 6.563 -0.5 
90.00 1.583 1.587 12.17 12.18 6.598 6.970 -0.2 

C ... = 6.94tlh, R/tlh, R, where tlh, = tlh, +0.5 " , 



Table 1.25 Experimental results for three unequal rods symmetrically arranged againSl a plate with R,IR, 
=0.5. , 

Half Standard Test Radius Standard Test Expt. MS-P % 
Angle radius radii ratio rise rise curvature curvamre dev. 

<p R. R, R,IR, M., M" Cu
" 

C~ 
(deg) (mm) (mm) (mm) (mm) (%) 

22.51 0.800 1.129 0.502 24.17 13.16 5.330 5.285 +0.8 
25.90 0.800 1.046 0.499 24.02 9.97 3.766 3.735 +0.8 
28.07 0.800 0.997 0.500 24.03 8.87 3.192 3.225 -1.0 
31.28 0.800 1.251 0.497 23.98 6.13 2.772 2.786 -0.5 
34.14 0.800 1.186 0.498 24.06 5.95 2.546 2.572 ·1.0 
37.04. 0.800 1.128 0.501 24.05 5.98 2.435 2.454 -0.8 
42.62 0.800 1.044 0.498 24.22 6.44 2.399 2.406 -03 
45.14 0.800 0.996 0.500 24.22 6.96 2.481 2.442 +1.6 
47.31 0.800 0.983 0.498 23.92 6.96 2.480 2.502 ·0.9 
57.56 0.800 0.889 0.500 24.20 10.00 3.184 3.197 -0.4 
60.65 1.583 0.789 0.500 12.22 12.89 3.651 3.616 +0.1 

13.24 3.750 
61.57 1.583 0.789 0.500 12.27 13.25 3.768 3.767 +0.0 

13.62 3.868 
62.19 1.583 0.789 0.500 12.21 13.72 3.889 3.888 +0.0 

14.19 4.022 
62.53 1.583 0.789 0.500 12.20 13.99 3.969 3915 +1.4 

14.42 4.091 
63.20 0.800 0.657 0.499 23.98 17.22 4.090 4.()')2 -0.0 
63.64 1.583 0.789 0.500 12.27 14.84 4.186 4.195 ·0.2 

15.67 4.420 
64.19 1.583 0.789 0.500 12.26 15.47 4.367 4323 +1.0 

16.79 4.740 
64.60 1.583 0.789 0.500 12.24 15.44 4.366 4351 +0.3 

17.08 4.823 4.m +2.2 
65.28 1.583 0.789 0.500 12.27 15.69 4.426 4.429 -0.1 

19.67 5.549 5.436 +2.0 
66.82 1.583 0.789 0.500 12.24 16.48 .4.660 4.609 +1.1 

28.72 8.116 8.D66 +0.6 
69.14 1.583 0.789 0.500 12.28 17.27 4.868 4.885 -0.3 
70.14 1.583 0.789 0.500 12.23 17.98 5.060 5.014 +0.9 

C_ =6.94M.,R,IM"R. where M., =M. +0.5 



Table 1.26 Experimental results for three unequal rods symmeoically arranged against a plate with R,IR, 
= 2.0 and R,IR, = 1.0. 

Half Standard Test Radius Standard Test Expt. MS-P % 
Angle radius radii ratio rise rise curvature curvature dev. 

cp R, R, R,IR, !:.h" MI 
" 

CUI' CMS•P 

(deg) (mm) (mm) (mm) (mm) (%) 

49.80 0.800 1.183 1.998 24.39 12.47 5.244 5.308 -1.2 
51.60 0.800 1.183 1.998 24.33 12.16 5.126 5.027 +1.9 
52.51 0.800 1.183 1.998 24.37 11.59 4.878 4.893 -0.3 
56.87 0.800 1.183 1.998 24.33 10.08 4.249 4.295 -1.0 
60.09 0.800 1.183 1.998 24.27 9.57 4.044 4.007 -Hl.9 
60.84 0.800 1.183 1.998 24.40 9.47 3.981 3.958 -Hl.5 
62.22 0.800 1.183 1.998 24.26 9.23 3.902 3.877 -Hl.6 
64.76 0.800 1.183 1.998 24.37 8.98 3.779 3.767 -Hl.3 
70.38 0.800 1.183 1.998 24.28 8.65 3.654 3.675 -0.6 
70.63 0.800 1.183 1.998 24.29 8.74 3.690 3.675 -Hl.4 
73.85 0.800 1.183 1.998 24.27 8.73 3.689 3.702 -0.4 
78.90 0.800 1.183 1.998 24.33 9.09 3.832 3.855 -0.6 

C_=6.94!:.h, R/!:.h, R, where6h, =!:.h,+O.5 " , 

Table 1.27 Experimental results for three unequal rods non-symmetrically arranged against a plate with 
R,IR, = 1.0 and R,IR, = 2.0. 

Half Standard Test Radius Standard Test Expt. MS-P % 
Angle radius radii ratio rise rise curvature curvature dev. 

cp R, R, R,IR, !:.h" MI 
" 

CUI' CIIS•P 

(deg) (mm), (mm) (mm) (mm) (%) 

46.44 1.188 1.588 1.994 16.42 6.64 3.748 3.768 -0.5 
47.07 1.188 1.580 2.000 16.40 6.62 3.725 3.756 -0.8 
51.90 1.188 2.247 1.996 16.35 4.64 3.725 3.785 -1.6 
57.21 1.188 1.795 2.002 16.57 627 3.967 3.978 -0.3 
60.83 1.188 2.094 2.000 16.50 5.67 4.203 4.285 -1.9 
63.75 1.188 1.587 1.994 16.37 8.14 4.609 4.603 -Hl.l 
66.54 1.188 1.587 1.994 16.54 8.87 4.971 5.006 -0.7 
69.19 1.188 1.587 1.994 16.47 9.63 5.420.t 5.428 -0.2 
70.25 1.188 1.587 1.994 16.45 9.86 5.556 , 5.562 -0.1 

10.81 6.08Ofjz 6.029 -Hl.8 
71.24 1.188 1.587 1.994 16.40 10.05 5.6801", 5.689 -0.2 

11.52 6.511-,," 6.450 -Hl.9 
72.38 1.188 1.587 1.994 16.55 10.36 5.8021', 5.838 -0.6 

12.76 7.147·rt~ 7.012 +1.9 
74.14 1.188 1.587 1.994 16.48 10.74 6.041 f, 6.074 -0.6 

14.48 8.144'",~ 8.088 -Hl.7 
75.56 1.188 1.587 1.994 16.53 11.12 6.236· " 6.271 -0.6 

15,72 8.815 ,,~ 8.790 -Hl.3 
19.49 10.929 c- 10.304 +5.7 

77.08 1.188 1.587 1.994 16.57 11.61 6.489-(, 6.489 -0.0 
16.52 9.234-'1'2 9.208 -Hl.3 

78.21 1.188 1.587 1.994 16.49 11.80 6.628-;t 6.655 -0.4 
17.02 9.559- '7. 9.524 -Hl.4 

80.32 1.188 1.587 1.994 16.45 12.41 6.969 - 1'", 6.969 -0.0 
(max) 18.04 10.13()'" r 10.112 -Hl.2 

1-

C .... = 6.94!:.h, R/!:.h, R, where!:.h, =!:.h, +0.5 " , 
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