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Abstract

Liquid menisciin small pores exhibit a curved surface across which there is a significant
pressure difference. The capillary properties of such surfaces are important in many areas
of science and technology. Pores of uniform section can be broadly classified according to
whether the perimeter is smooth (as in cylindrical tubes) or angular (as in triangular tubes).
A meniscus that is entirely bounded by the pore walls has a curvature that is inversely
proportional to the tubes’ hydraulic radius. A meniscus in an angular tube, however, has
liquid wedges in the corners and this reduces the effective area of the pore. In the past it has
been difficult to calculate the curvatures, of this class of menisci. Some recent studies have
shown that a relatively straightforward, but hitherto neglected, method originated by Mayer
& Stowe (1965) and Princen (1969a) can be applied to analyse wedging menisci. However,
the method has lacked a comprehensive experimental verification.

This investigation follows on from the previously limited studies. A standardised
method for the application of the analysis is described, the results from which are compared
to observations made using modified experimental procedures. The behaviour of the
capillary surfaces formed in several model pores are analysed with the method. The model
systems studied are rectangular ducts, the pores formed by a rod in an angled corner, by two
contacting rods and a plate and the space between a rod and a plate. For the latter two shapes
the analysis is extended to include systems of mixed wettability which have a particular
bearing on enhanced oil recovery operations. Experiments in which curvatures are inferred
from observations of capillary rise, are performed using two comparative techniques. An
involved procedure confirms predictions of meniscus curvature to within 0.3%. Use of a
more straightforward, though less accurate, technique enables variations of curvature with
tube shape or contact angle(s) to be conveniently studied. Results obtained are excellent and
confirm the theory within the determined experimental errors.

In addition the analysis has been extended to predict more comple\x meniscus
behaviour. The tubular space formed by three rods and a plate gives rise to a whole family
of meniscus shapes. With certain geometries a capillary surface regards the tube as a pore
doublet where the behaviour in one neighbouring pore depends on that in the other. The
capillary properties of this model system shed light on the behaviour of adjacent pores in a
porous medium undergoing drainage (or desorption). Experiments show excellent agreement
with predictions of meniscus shapes, curvatures and, most interestingly, points of
spontaneous transition from one meniscus shape to another. The system also has a potential
future application because one particular arrangement of rods produces a meniscus with a
curvature virtually independent of the geometry. This makes it suitable for producing a
standard meniscus of known curvature.
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CHAPTER 1

Introduction

The phenomenon of the capillary rise of liquids in cylindrical tubes is familiar to
school pupils everywhere. The simple school physics experiments illustrate only a small
part a broad and sometimes complex science called capillarity. The study of capillarity
originates in the earliest days of modern science and many eminent pioneering scientists
have been involved in its development. Leonardo da Vinci is known to have observed
capillary rise in the 15 ™ century and the equations for rise in cylindrical tubes were
known before the 18" century, but it was in the 19® century that the fundamental
relationships were proposed in general form by, amongst others, Laplace, Gauss, Young,
Lord Kelvin and Gibbs - all now famous names. _

Derived from the Latin for hair, the term capillarity encompasses a wide subject
area concerning fluid interfaces. Studies are performed in all the major scientific
disciplines by chemists, physicists, mathematicians, biologists and engineers.
Applications are also diverse; detergency, oil recovery, soil studies, the waterproofing
of fabrics and even the design of storage tanks for spacecraft are but a few examples.
Although there is no strict definition, capillarity can be said to concern the properties of
systems having at least two fluid phases separated by an interface. Usually one or more
solid surfaces bounds the interface.

A liquid interface in a capillary or pore normally exhibits a curved surface, or
meniscus, across which there is a pressure difference. This pressure difference, usually
called the~capillary pressure, is proportional to the curvature of the surface and the
interfacial, or surface, tension between the two phases cbmprising the interfacé. For a
given tube shape and wetting condition, or contact angle, the mean curvature varies
inversely with tube size. These relations are central to methods of interfacial tension and
contact angle measurement and are also used to determine other liquid properties such
as the solderability of metals and alloys.

Today the most important area for the application of capillanty is in the study of
porous materials, of which there are many occurring naturally in the environment. In
addition there are numerous synthetic media employed by modern technology. A large
economic stimulus for research in the area has arisen from the need to develop enhanced
oil recovery (EOR) techniques. The properties of a porous material that is partially
saturated with a liquid are dominated by the behaviour of the liquid menisci in the pore
space. The basic equations of capillarity are also used in characterising a porous material
by processes such as mercury-intrusion porosimetry or the desorption of capillary



condensed gases because they relate the capillary pressure measured across an interface
to the Size of a mode! pore; the actual pore shapes usually being irregular. Alternatively,
the pore size and interfacial tension may be known and the capillary pressure may be
the variable to be determined, as for example in two phase laminar flow or in predictions
of the behaviour of blobs of crude oil when treated with surfactant.

In situations when gravity is not significant the solution of the fundamental
equations of capillarity is fairly straightforward as a meniscus will have constant mean
curvature, but their applications have been restricted due to difficulties in obtaining
solutions for partfcular geometries and contact angles. In the applications mentioned
above a pore is frequently assumed to have a circular cross-section so that the curvature
of the menisci contained in the pores may be easily deduced. If the pore geometry is
obviously more complex, for example of converging-diverging section (akin to an egg
timer’s shape - see Figure 1.1), simple approximations are usually used for the curvature.
An example is the well known Haines incircle approximation.
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Figure 1.1 - Classification of tube shapes. (a) A cylindrical tube; uniform and axisymmetric,
(b} A triangular tube; an example of a uniform non-axisymmetnic tube.(c) An "egg timer"
like example of a converging-diverging axisymmetric tube. {d) An irregular tub of
converging-diverging non-axisymmetric shape.
In fact the shape of a meniscus in a pore of non-circular section, such as that formed
| by contacting spheres, is quite complex. Mathematically the interface is one of constant
mean curvature or, when gravity is important, one of minimum surface energy, which
meets the boundary conditions. These boundary conditions are the solid geometry and
the contact angle which the liquid makes with the solid. There have been many attempts
to solve the basic equation to yield particular interfacial configurations. Almost all the
past work has concentrated on the behaviour of axisymmetric drops and bubbles where
the axis of symmetry greatly simplifies the problem to one that solves relatively easily
with the use of numerical integration techniques.



"Only recently, with the availability of powerful computers, have solutions been
attempted for the more widespread non-axisymmetric surfaces (Fig. 1.1), but the systems
investigated must be carefully selected and the solid surface must comprise simple
geometric elements. The time involved in arriving at such solutions is still so great that
it is not a convenient method to use on a regular basis. Much of the comiplexity in these
solutions arises from considering the interfaces to be distorted by gravity, to be in
converging-diverging and/or non-axisymmetric geometry. There 1s, however, a virtually
neglected class of non-—axisymmetric interfaces for which solutions can be relatively
-easily obtained if gravity effects are small - those in uniform non-axisymmetric tubes.

Examined in this thesis is a method first put forward by Mayer & Stowe (as it turns
out, mistakenly) for pores formed by contacting spheres and subsequently, but
independently, by Princen (correctly) for tubes given by parallel cylindrical rods. s
Unfortunately this method has remained largely unused since its inception primarily
because no attempt was made by the authors to validate their theory by experiment, apart
from a single experiment reported by Princen. In addition the authors also obscured the
true usefulness of their analyses by applying them to inappropriate systems. The theories
proposed by Mayer & Stowe and Princen, here referred to as the MS-P method, give
identical results. Mayer & Stowe assumed their analysis was exact for the menisci
between contacting spheres whereas it applies exactly to uniform tubes. Whilst
subsequent studies have shown it to provide a useful approximation at zero contact angle,
it can be expected that errors in calculated curvatures will increase significantly with
increasing contact angle. Princen too hid the power and exactness of the method by
applying it approximately to gravity distorted menisci, although he did apply the analysis
to uniform geometries.

Although possible applications of the method were cited soon after Princen’s work,
its potential has remained unfulfilled. Only recently have attempts been made to test the
theory and these only for relatively simple systems. However, the method is gradually
finding more widespread applications. It was the objective of the work reported here to
calculate the meniscus behaviour in some non-axisymmetric uniform pores and to test
the validity of the theory’s predictions. In addition the limited published work that
involves the method will be brought together and further potential applications suggested.

Obtaining solutions with the MS-P method is relatively straightforward, but this
does not mean that the meniscus behaviour is simple as it transpires that multiple solutions
. are possible. Some work on utilizing the method had already been conducted by the
supervisor of this work, Mason, prior to the start of this investigation, establishing the
~ basic principles of the experimental procedures and indicating the validity of the theory
in the limited number of systems they studied. This study is a continuation of the work
of Mason and co-workers, its purpose to confirm, and hopefully improve upon, past
resuits and to extend the analyses to look at the effects on meniscus behaviour of both



partial and mixed wettability and of interactions between neighbouring pores. Figure
1.2 shows some examples of the menisci investigated during the course of the study -
the legend is given below .

The structure of the thesis broadly follows that of the above outline. After a
discussion of the relevant aspects of surface chemistry in which the fundamental
equations of capillarity will be introduced, a brief overview is given of the most important
area of application; porous materials. Attention will then turn to a review of alternative
methods of interfacial configuration determination before the limited number of past
investigations involving the MS-P method itself are discussed. The second part of the
thesis is devoted to the application of the theory and its validation in specific systems.
The investigative procedures are detailed before the particular experimental results are
given. Conclusions will be drawn from these results.

‘Figure 1.2 - Menisci in uniform non-axisymmetric model pores. The photographs show the
menisci formed when a welting liquid, isooctane, undergoes capillary rise in the various tube
shapes. {a) Rectangular ducts, high aspect ratio (d/R = 5.14 and 3.85 - c.f. section 9.2). (b)
One rod away from a plate, low normalised spacing (1/4" rod, 15 thou. shims d/R = 0.06 -
¢.f. section 9.3). {c) Rod in a 30* comer (1/8" rod - ¢ {. section 9.4). (d) Two equal rods and

a plate (2x3 mm rods - c.f. section 9.5). (e) Three unequal rods and a plate, symmetrically
arranged, high half angle (2x1/16" + 1x1/8" rods - see chapter 11). (f) Three equal rods and

a plate, intermediate half angle (3x1/8" rods - see chapter 11). (g) - (i) Three unequal rods
and a plate, non-symmetrically amranged, intermediaie, high and very high halfangles
(2x3/32" + 1x 3/64" rods - see chapter 11)
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CHAPTER 2

Chemistry of interfaces

2.1 INTRODUCTION

The behaviour of fluids in a capillary or porous material, is essentially determined
by interfaces between fluid and fluid; be it liquid/liquid or liquid/gas, and fluid and solid.
It is a prerequisite of the idea of an "interface” to have "surfaces" which can come into
contact.

Thomas Young (1805) and Josiah Gibbs (1872) introduced the fundamental
concepts of surface chemistry. Young related the mechanical properties of the "surface”
to those of a hypothetical stretched membrane, he described the tension in this
"membrane” as the surface tension. Its position allowed a simple mechanical model to
describe the complex region between two bulk phases in contact. In order to describe
this region thermodynamically Gibbs conceived a two dimensional geometrical surface;
the Gibbs dividing surface.

The developments of these two eminent scientists should not be underestimated
just because they happened comparatively early in the history of modern science, before
many of todays measuring techniques and the theori€s of molecular science were known.
Other scientists of the nineteenth century involved in surface chemistry include the well
known names of Laplace, Dupre, Rayleigh, Gauss, Poisson and Kelvin.

2.2 SURFACE TENSION

Nowadays with established theories of the molecular nature of liquids, surface
tension can be more rigourously defined. Consider a drop of liquid surrounded by its
vapour. A molecule in the interior of the liquid experiences the attraction of all the
molecules around it. Due to the symmetry of attraction, there is no resultant force on the
molecules in the bulk. In the surface the molecules are attracted more strongly by the
dense liquid than the rare vapour. This difference in attraction causes the liquid to behave
as though it were enclosed in Young’s "stretched membrane”. Work must be done to
raise molecules to the boundary when the surface is extended. The work done against
the molecular forces during this process is called the work required against surface
tension.



The units of surface tension are force per unit length or energy per unit area. These
are dimensionally identical. The energy units can be appreciated if surface tension is
expressed as a measure of the free energy of a material in contact with its own vapour,
hence the equivalent term of surface free energy. When a liquid is in contact with a
substance other than its own vapour (a gas, immiscible liquid or a solid) the now
interfacial free energy is called the interfacial tension.

The interchangeability of the two terms and their units can be illustrated by
considering a soap film stretched over a wire frame as shown in Figure 2.1. If one end
of the frame is mobile, as shown by the arrow, it will be noticed experimentally that
there is a force acting in a direction opposite to the arrow. If the value of this force per
unit length is denoted o, the work done in extending the surface a distance, dx, is

W = oldx = odA ‘ (2.1)
where dA =Idx and so denotes the change in area. Thus G appears to be an energy per
unit area. The usual units of ergs/cm?® (SI J/m?) or dynes/cm (SI N/m) can thus be seen
to be identical.
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Figure 2.1 - Wire frame supporting a soap film.

2.3 THERMODYNAMIC DESCRIPTION OF AN INTERFACE

Gibbs’ original thermodynamic treatment of interfaces has since been elucidated
by van der Waals and Bakker, as discussed by Guggenheim (1967). Below the term
"interface” is defined and some thermodynamics relevant to capillarity, to which
reference will be made later, is given. A complete description of the thermodynamics
of interfaces is not required here, but the interested reader may refer to Guggenheim’s
book.

2.3.1 The interface
The junction between two homogcneoﬁs bulk phases is often described as a two

dimensional plane without thickness. Although this is a useful approximation for many
calculations, the interface is in fact, a region between two phases where molecules of



each exist together. Across this region there is a gradual change in any thermodynamic
property. Unless the two phases are completely miscible, the region’s thickness is finite
due to the limited range of the intermolecular forces. These interactions have been
identified by Fowkes (1965) and include dispersion forces (London - van der Waals
forces), hydrogen bonds, dipole - dipole interactions, ® bonds, dipole induced dipole
interactions, donor acceptor bonds and electrostatic interactions. Dispersion forces are
usually dominant. Surface and interfacial tensions are direct measures of the
intermolecular forces, which may extend over distances of 1 - 100 molecular diameters
(Jaycock & Parfitt 1987) before behaviour reflects that of the bulk material.

An "interface” with both area and thickness should more properly be called an
interphase, and this may exist in the solid, liquid or gaseous states. The term "surface"
is usually only applied when one of the phases is a gas or a vapour. The interphase is
imagined as being submicroscopic in thickness, about 1 to 10 nm (Jaycock & Parfitt
1987). However, itis common practice throughout the literature to use the terms interface
and interphase (and sometimes surface) interchan geably and this convention is followed
in the rest of this text. : ‘

Dupre (1869) developed the relationship between the interfacial tension and the
individual surface tensions, which for a planar liquid/liquid interface is;

where WLIL, =  work of adhesion
Oy = surface tension of liquid 1
o = surface tension of liquid 2
Oy, interfacial tension

The work of adhesion may be visualised as the amount of work required to separate unit
area of interface between liquids L, and L,. A sign convention is adopted such that when
work is done on the system it is positive. Thus when new surface is created, energy is
consumed and when interface area is decreased, energy is released.

2.3.2 Interfacial tension at a plane interface
Consider two homogeneous bulk phases, o and B , separated by an interfacial layer,

s, (Fig. 2.2). The boundary between the interphase and bulk phase o is AA” and that
between the interphase and phase B is BB'.



Figure 2.2 - Definition of an interphase.

The properties of the plane interphase are assumed to be uniform in any plane
parallel to AA” or BB’, but not in any other plane in the interphase. At or near the plane
AA’ the properties of s are identical with those of & . Moving from AA” to BB  represents
a gradual change in the properties of the interphase, from those of a to those of 3.

The interphase described may be treated as a thermodynamic system, either open
or in certain cases closed. A thermodynamic system is defined as open if both energy
and matter may be transferred across the boundaries of that system. It is closed if no
matter is allowed to move across the boundary.

The thermodynamics of an interphase differ form those of a bulk phase in that work
must be done against interfacial tension. In the bulk phase the force across any unit area
is equal in all directions, as is the pressure, but in the interphase the force is not the same
in all directions. :

If a plane is chosen perpendicular to AA’ then the situation is different from that
in the bulk phase. Let this plane be represented by a rectangle of height 1, the thickness
of the interphase (AB), and of length, /, perpendicular to the plane of the diagram. The
force across this plane will be equal to

Pt - ol

The difference in sign being the difference between the work done on the system by the
pressure, P, and the work done by the system against the interfacial tension forces. The
interfacial volume, V, is defined as
V = 14

where A is the interfacial area. If the thickness is increased by dt, the area by dA and
the volume by dV with the material content remaining unaltered then the work done on
the interphase across the planes AA"and BB’is —PAdrt . The work done by forces parallel
to the planes AA” and BB’ is independent of the shape of the perimeter, which can for
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simplicity be assumed to be a rectangle. Consequently the work done on the interphase
by the latter forces is —(Pt—0)dA and the total work done, dW, is given by the sum
dW = -PAdt-(Pt-0)dA

= —-P(Adt+1tdA)+odA
= —PdV +ocdA (2.3)

Equation 2.3 is the analogous work term for an interphase which corresponds to the three
dimensional —=PdV for a bulk phase.

2.3.3 Free energy of an interface

a) Closed systems

Consideraclosed planarinterface that is of fixed composition with 6 , the interfacial
tension (or tangential stress), as an intensive variable (as are for example temperature
and pressure). Introducing the first law of thermodynamics through the equation

dU = dQ + 4w ' (2.4)
and the second law through
dQ,ersiie = TdS (2.5)
Combining equation 2.3 with the above yields
dU = TdS-PdV+ocdA (2.6)
The usual thermodynamic function definitions are:
enthalpy H = U+PV (2.7)
free energy FE = U-TS (2.8)
Gibbsfreeenergy G = H-TS = U+PV-TS (2.9)

Considering the free energy first. Differentiation of 2.8 gives

dF = dU-TdS-8dT ' (2.10)
which on substitution gives
dF = -§SdT-PdV+cdA (2.11)
and consequently
F3F ]
—_— = .1
%41, o _ (2.12)
FOF ]
== = -5 2,13
37 ), (2.13)
FaF ]
- = P _ 14
LoV iy, (2.14)

At constant temperature
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di = dU-TdS
= _Wmu
= _PdV+0dA 2.15)

if no other work other than that associated with volume and area changes is involved.
Similarly differentiation and substitution on 2.7 and 2.9 yields

dA = TdS+VdP +odA (2.16)
dG = -SdT +VdP +cdA ' (2.17)

b) Open systems
For an open system, with varying composition, where |, and n; are the chemical
potential and number of moles of component i, respectively then

dU = TdS-PdV +0dA +3, dn, (2.18)
Hence dH = TdS+VdP +odA +Y,udn, (2.19)

dF = -SdT-PdV +odA +3,pdn, (2.20)

dG = -SdT+VdP +odA +3,udn, (.21
2.4 LIQUID INTERFACES

When considering capillary rise, planar liquid surfaces are rarely present, rather
the surface or interface is curved. Non-planar surfaces can give rise to variations in
vapour pressure above the liquid and pressure differences across the curved interface.
These probléms were tackled in the 19" century by Lord Kelvin (1871) and Laplace
(1805), who derived the equations that bear their names. .

In the following three sections the two fundamental equations of capillarity are
discussed together with the application of the Laplace equation to capillary rise in
cylindrical capillaries and surface tension measurement. The more complex solutions
are reviewed in a later section.

2.4.1 The Laplace equation

The derivation of the Laplace (or Young-Laplace) equation can be approached via
a second illustration involving a soap film. Consider a soap bubble filled with air of
radius, r, in the absence of any external field (e.g. electrical or gravitational), as shown
in Figure 2.3.
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‘Gas

Capiliary

Figure 2.3 - A bubble of gas in a liquid

If the bubble is enlarged by introducing additional gas then the work done can be
expressed in terms of that done against the forces of surface tension and in increasing
the volume of the drop. In section 2.3.3 the free energy of a planar interface at constant
temperature was derived as

dF = -PdV+cdA (2.15)

This will remain true for curved interfaces so long as o is unaffected by curvature.
Applied to the soap bubble (at equilibrium i.e. d4 =0) 2.15 becomes;

cdd = APdV (2.22)
where AP is the change in pressure across the bubble surface. The volume and surface
area of the bubble are given by 4nr°/3 and 4nr’ respectively, thus dV = 4nr’dr and
dA = 8nrdr . Hence

2dV :
dA = — (2.23)
r
Substitution in equation 2.22 gives
AP = 2 (2.24)

r
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Equation 2.24 is the form of the Laplace equation for a spherical surface, and shows
that the smaller the bubble, the greater is the pressure of the air inside as compared to
that surrounding the bubble. This accounts for the behaviour of the two different sized
bubbles connected as in Figure 2.4, the small bubble is seen to inflate the larger one until
mechanical equilibrium is reached (dotted lines) such that the radii of curvature are equal.

Figure 2.4 - [llustration of the Laplace equation.

In 1805 both Laplace and Young published a general relationship for the pressure
across a curved interface of which equation 2.24 is a specific case for spherical surfaces.
Generally it is necessary to invoke two radii of curvature to describe the degree to which
a surface is curved (these are equal for a sphere).

Adamson (1976) gives a description of how radii of curvature are obtained for an
arbitrarily curved surface.

“One erects a normal to the surface at the point in question and then passes a plane
through the surface and containing the normal. The line of intersection in general will be
curved, and the radius of curvature is that for a circle tangent to the line at the point involved.
The second radius of curvature is obtained by passing a second plane through the surface,
also containing the normal, but perpendicular to the first plane. This gives a second line of
intersection and a second radius of curvature.”

“If the first plane is rotated through a full circle, the first radius of curvature will go
through a maximum, and its value at this maximum is called the principal radius of curvature.

The second principal radius of curvature is then that in the second plane kept at right angles
to the first"
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Figure 2.5 -A section of an arbitrarily curved surface.

Consider the section of surface shown in Figure 2.5. The two radii of curvature are
indicated by r; and r,. The size of the section is such that the radii remain effectively
constant. The surface is displaced a small amount, resulting in a change in area of dA4,
given by '

dA = (+do)(y+dy)-xy
= xdy+ ydx (2.25)
The work of formation of this additional area is then;
dW = o(xdy + ydx) (2.26)

As with a spherical surface there is also work performed against the pressure difference
across the surface, it acts on area, xy, through a distance, dz, giving an expresston for
the work done:.

dW = APxyd: (2.27)
Comparing similar triangles reveals

(x +de)/(r,+dz) = x/r, or dr = xdz/r, (2.28)
and (y +dx)(r,+dz) = yir, or dy = xdz/r, (2.29)

For the surface to be in mechanical equilibrium then the two work terms must be equal,
equating 2.26 and 2.27 and substituting for dx and dy gives
1 1
AP = [¢) (— + —) (2.30)

n n

Equation 2.30 is a general statement of the Laplace equation. It is the fundamental
equation of capillarity, it dictates the shape of all macroscopic menisci and from it come
all techniques for the determination of interfacial configurations.
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2.4.2 The Kelvin equation

The Kelvin equation describes the change in vapour pressure over an interface
produced by variations in curvature and is the second fundamental equation of surface
chemistry. The equation may be explicitly derived by thermodynamic reasoning.

Consider the effect of atomising a quantity of bulk liquid. The interface would be
greatly increased by such a process, and since the interfacial free energy is greater than
the bulk free energy, work will have to be done on the system in order to carry out the
process. In consequence the chemical potential of the material of the drops will be larger
than that of the bulk liquid, and there will be a corresponding increase in vapour pressure
over a convex liquid surface. Unlike the Laplace phenomena an open system must be
considered. ,

In section 2.3.3 the Gibbs free energy of an interface was expressed as

dG = -SdT+VdP +cdA +2%; ldn; (2.21)
This equation gives rise to the definition of chemical potential
oG
;i = [—] (2.31)
ani nj,T,P,A

Whilst this definition is useful in the description of the transport of a material across a
planar interface, for small spherical droplet the addition of material must necessarily
cause a change in A. The associated volume change can be written

dv. = Z,vdn, (2.32)

where v, is the partial molar volume of the ith component of the liquid. In deriving the
Laplace equation an expression for dA was deduced (equation 2.23), combination with
2.32 gives

2v, :

dd = ):'"_r_dn" (2.33)

- Substituting for dA in equation 2.21 yields

2 Al '

dG = -SdT+VdP + ):,.[l- + u,]dn,. (2.349)

r

The chemical potential b of the ith component in the drop is thus
: = [389] - PO 235
W= onil, 1. - e &3
or . 2v,c

u'. —ul. = — * (236)

r
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Now the chemical potential terms for the planar and curved interfaces may be
written as

W, = KW+RTInP, (2.37)

and W = pP+RTInP? (2.38)
where P; is the vapour pressure overa planar interface and P;” thatover acurved interface.
If these relations are substituted in equation 2.36 then
P’ 2v,0
ln'}Ti = RT

which is a statement of the Kelvin equation.

(2.39)

If instead of a drop of liquid in a vapour, a bubble of vapour in a liquid were
considered then the radius of curvature is assumed to be ne gative. Dropping the subscripts
and allowing for an arbitrarily curved surface the equation may now be written in the
familiar form

P vo(l 1
lnl—; = R_T(;-I-r_z] (2.40)

Although of a firm thermodynamic basis for macroscopic systems the validity of
the Kelvin equation when the interface dimensions approach molecular sizes is the
subject of an on-going debate. Lisgarten et al. (1971) have reviewed attempts at
validation. Claims have been made for the equations’ accuracy at radii of curvature of
only a few molecular diameters (Fisher & Israelachvili 1981) but the uncertainty remains
(Everett 1988).

2.4.3 Capillary rise and surface tension measurement

The capillary rise of liquids in cylindrical tubes is considered one of the most
accurate methods of measuring surface tension (to hundredths of a percent - Jaycock &
Parfitt 1987), partly because the theory has been worked out to a high degree of precision
and partly because the experiment can be closely controlled. On the other hand, the
capillary rise method is only applicable when the interfacial tension is constant and the
liquid or solution completely wets the capillary tube (that is the contact angle is zero).
In addition, there must be fairly large volumes of liquid are available. Consequently
there are many other methods of measuring surface tension, the most common are
summarised in Table 2.1.
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Table 2.1 Methods of measuring the surface tension of single liquids and solutions.

Method

Suitability

Pure liquids

Solutions

Capillary height
Sessile drop

Pendent drop

Wilhelmy plate

Maximum pull
on a cylinder

Very satisfactory when the
capillary wets reproducibly.

Very satisfactory.

Very satisfactory but has
experimental difficulties.

With a good experimental
set up, very accurate and
convenient,

Very satisfactory. Easy to
operate with simple
apparatus.

Difficult when the contact
angle is not 0° or variable.

Very useful for studying
surface ageing.

Usefutl for studying surface
ageing.

Provides accurate data on
surface ageing,

Satisfactory if used with care
and small displacements near

. maximum pull.

Maximum pull Similar to cylinder method, but since the cone constant is

on a cone universal, the results are easier to calculate.

Du Noiy ring Satisfactory Unsatisfactory

Drop weight or  Very satisfactory Poor when ageing effects
drop volume suspected.

Maximum bubble
pressure

Has experimental problems
but useful where other
methods are difficult to use.

Gives problems with ageing
solutions.

All the methods in Table 2.1 rely on the application of the Laplace equation for a
given interface shape. The solution of the Laplace equation can be difficult for other
than two dimensional cylindrical menisci where one of the principal radii of curvature
is infinite, or spherical menisci, where both radii are equal, as in equation 2.6. Solution
is helped considerably if the interface shape possesses axial symmetry as, for example,
do pendent and sessile drops. Except for the Wilhemy plate method (cylindrical menisci),
all methods shown in Table 2.1 are based on axially symmetric menisci. These more
complex solutions to the Laplace equation are discussed later (see section 5.2).

It is not within the scope of this study to report details of the numerous methods
of surface tension measurement, these may be found in the standard texts on surface
chemistry (such as Jaycock & Parfitt 1987, Adamson 1976 or Bikerman 1970). However,
the consideration of the capillary rise method introduces importantrelationships on which
the experiments in this study are based.

Capillary rise in tubes is a well known phenomenon, its science was developed in
the 19® century and involved some notable scientists of the day, such as Poisson and
Mathieu. Liquid rises, or is depressed, in tubes due to the pressure difference created by
a curved surface. A liquid rises in a tube if the contact angle, that is the angle with which
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the liquid interface meets the solid wall, is less than 90° and it is depressed if the angle
is greater than 90°, Figures 2.6 and 2.7 show situations where the contact angle is zero
and 180° respectively. It is worth noting that the radii of curvature will always lie on the
high pressure side of the interface, provided the meniscus is c/astic: a meniscus that has
radii of curvature that are of opposite sign is said to be anticlastic (van Brackel & Heertjes
1978).

\, —
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Figure 2.6 - Capillary rise of a liquid in Figure 2.7 - Capillary depression.

cylindrical tbe.

For the situation shown in Figure 2.6, if the tube radius is small and the liquid
completely wets the wall (a contact angle of zero) then the meniscus will be
approximately hemispherical. So from the Laplace equation 2.30:

AP = 20/R (2.41)
where R is the radius of the tube, of equal magnitude to the two principal radii of curvarure,
r. For the system to be stable, the pressure difference across the interface must be balanced
by the hydrostatic pressure drop. If the liquid above the (convenient to.measure) height,
h, is neglected then the hydrostatic head for the meniscus above the planar surface of
the liquid is given by;

AP "= hpg
where p is the relative density difference, defined as the density inside the meniscus
profile minus that outside it, and g is the acceleration due to gravity. Equating the
hydrostatic head terms gives

hR = 20/pg (2.42)
The term 20/pg is constant at a given temperature and defines the capillary constant,
a: A

a® = 2olpg (2.43)
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where a has units of length. Engineers often prefer to use a dimensionless parameter,
the Bond number, given by
B = glL'lo : (2.44)
where L is a characteristic reference length of the system under consideration. Both the
capillary constant and the Bond number give a measure of the ratio of viscous to capillary
forces.
For the general case where the liquid meets the wall with contact angle 6, the radii

of curvature no longer equate to the tube radius. Consideration of the geometry in Figure
2.6 yields;

r = Rcoso
S0 AP = hpg = 20Ir
= 20cosO/R ' (2.45)

Equation 2.45 is commonly known as the Washburn equation (after Washburn 1921).
For surface tension measurernent the equation is writen:

G = Rhpgl2cosO (2.46)
which, using the definition of the capillary constant (equation 2.43), becomes
a® = Rhlcos® (2.47)

Equation 2.43 was known before the 18" century and, although not strictly correct,
it works well for small bore capillaries. The first correction to it came from Jurin (1718).
Usually capillary rise is measured to the bottom of a meniscus as this is the most
convenient point. However, the bottom of a meniscus does not correspond to its mean
curvature, In a capillary rise experiment a meniscus cannot satisfy the constant curvature
condition assumed by the above theory as curvature varies directly with height due to
the influence of gravity. The region spanned by the meniscus will always be of a
measurably finite height unless the height of rise is incredibly large.

Jurin determined a first order correction to bring the measured level near to that
corresponding to a menisci’s mean curvature. Assuming the meniscus in a tube to be
hemispherical, Jurin drew a plane across the meniscus where the volume of liquid held
above the plane equalled the volume of space below it. Utilising simple geometry he
arrived at a correction that amounts to the addition of one third of the tube radius to the
height of the bottom of the meniscus. Thus

a> = R(h + R (2.48)

However, even in small tubes there is a deviation from the spherical caused by
gravity. Lord Rayleigh (1915) obtained a senies approximation for nearly spherical
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menisci in tubes up to a diameter of about 1 mm for water, equivalent to a R/h ratio of
0.02. He expressed the capillary constant as;

a® = R(h + R - 0I1288R%h + O0.1312R%AR* ... (249)

Hagen and Desains (see Rayleigh 1915) had previously obtained a similar result by
considering the meniscus to be elliptical:

a® = Rth + RSB — O0I1111RYR + O007T41R*R* ... (2.50)

These correction factors are actually very small, even at the limit of R/h = 0.02 the
total multiplication factor only amounts to 1.007. If the Jurin correction is used alone it
is only in error by + 0.005%, equivalent to an error of about I im in the measurement
of R and A. '

For cases where k « R, as in very wide tubes, Rayleigh obtained a different series
approximation: '

R\E a a R\/f :
—=In[—=1{ = 0.8381+0.2798 ——=+0.51n] —= 2.51
2 “(MJ R\2 a ] @31

This equation can be used to show that for a 5 cm diameter tube and water the capillary
rise is in the order of 1 um. This equation has been validated for R\2/a > 6, equivalent
to water in tubes of greater than 32mm diameter.

A more comprehensive approach was developed by Bashforth and Adams (1883)
and later extended by Sugden (1921), to cover the range of R/h values not covered by
Rayleigh’s equations. Its basis is an axially symmetric figure of revolution. At the apex
the two radii of curvature must be equal. For capillary rise the apex is at the bottom of
the meniscus. If the radii of curvature at the apex are both b, and the height from the
apex of a general point on the surface is z, where z =y - h as shown in Figure 2.8.
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Figure 2.8 - The meniscus in a capillary as a figure of revolution.

The Laplace equation (2.30) can be written in the form,
1 1
(o] (— + —J = pgz+2o/b (2.52)
n n :
Soatz =0, AP =20/b and at any other value of z the change in AP is given by a change
in pgz. At a point S, on the surface where r, and r, are the radii of curvature, r, in the
plane of the paper and 7, in a piane perpendicular to the plane of the paper, and ¢ is the
angle between the tangent at S and the vertical. The length PS corresponds to r, = x/sin ¢
and this radius rotates around the symmetrical axis AA’. Equation 2.52 can now be
written in a dimensionless form;
1 + sin¢
(r/b) (x/b)
where B = peb¥s = 2pUa? (2.54)
The parameter, B, defines the shape of the meniscus, being positive for oblate figures;

sessile drops, captive bubbles and a meniscus in capillary rise. § is negative for prolate
figures such as pendent drops, emerging bubbles and menisci in capillary depression.

2 + Pzib) (2.53)

Before the days of computers Bashforth and Adams obtained solutions for equation
2.53. Their results were given as tables of values of x/b and z/b for closely spaced values
of B and ¢ . Foragiven B value, a plot of z/b versus x/b reveals the profile of a particular
figure of revolution satisfying equation 2.53. The tables can be used in an iterative fashion
to obtain surface tension values from data collected from various measuring techniques
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including capillary rise. Sugden presents the tables of Bashforth and Adams and his own
extension in terms of tube radius. Values of R/b are given for closely spaced values of
R/a. The tables may also be employed to yield corrected heights of rise in tubes of varying
diameter and with liquids of various contact angles. Table 2.2 shows the relative accuracy
of the various approximations used to interpret capillary rise data described above.
Sugden’s tables give the most accurate results for R/A2 > 0.03.

Table 2.2 Comparison of the methods of calculating capillary rise results in the form

a*=rhxF
Jurin term Rayleigh term Hagen term Sugden’s Tables
rih :
F F F . F
0.000 0] 1.000 0 1.0000 1.000 0 ' 1.000 0
0.000 1 1.000 0 1.0000 1.00Q © 1.000 1
0.001 1.000 3 1.000 3 1.000 3 1.000 3
0.01 1.0033 1.003 3 1.00313 1.003 2
0.03 1.0100 {.00% 9 1.009 9 10100
0.06 1.0200 1.0196 10196 1.0196
0.10 1.0333 1.0322 1.03213 1.0321
0.15 1.0500 1.0475 1.0478 1.0472
0.20 1.066 7 1.0626 1.062 8 1.0622
0.50 1.166 7 1.151 0 1.148 2 1.144 4
0.70 1.2333 1.2156 1.204 3 1.194 2
1.00 1.3333 1.3367 1.296 3 1.2636

Today, with the advent of powerful microcomputers the hassle of the hand
calculations can be negated. Boucher er al. (1987) have published such a program,
covering an extensive range of meniscus configurations.

2.5 SOLID SURFACES

All curved fluid interfaces interact with the solid surfaces that surround them.
Quantifying the way in which they interact is vital if a meaningful solution is to be found,
hence an understanding of the fundamentals of solid surfaces is required.

Descriptions of solid surfaces as applied to capillarity have recently been reviewed
by Good (1979) and Morrow (1970), whilst standard texts, such as Adamson (1976) and
Jaycock and Parfitt (1987), also cover the area in more detail than can be afforded here.

2.5.1 The solid surface

Solids possess cohesion, that is they remain the same shape unless changed by
external forces, due to the much larger intermolecular attraction forces than those in
liquids or gases. Many solid objects are so familiar that they tend to be thought of as
thermodynamically stable, which generally they are not. If solid surfaces were in
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thermodynamic equilibrium (i.e. possessing minimum energy) then common processes
such as annealing and sintering would not be possible. A 10p piece is in a
thermodynamically unstable state, yet no observable change occurs in a conceivable
time-span, for entirely kinetic reasons.

Solids have a considerable range of surface free energies . Surface energy is likely
to vary from place to place across the surface and at any ;;articular point the surface
tension need not be the same in all directions as is the case with a liquid surface. These
surface energies are not usually measurable. However, values have been calculated for
pure, prefect crystals (see Jaycock & Parfitt 1987), but are of little practical value, since
it is virtvally impossible to grow a crystal free from impurity and structural defects that
the calculation assumes.

Essentially the shapes of solids are determined more by past history than surface
tension forces. There are exceptions however, these concern solids near their melting
point. An example is the fusing together of ice cubes in a bucket in a freezer, they develop
a "neck” at the points of contact.

It has been possible to characterise some solids on the basis of their specific surface
energies as either "high energy” or "low energy” (Fox & Zisman 1950). Substances
which have surface energies of the same order as most liquids (< 100 ergs/cm?), mainly
organic polymers such as teflon (PTFE), are described as low energy solids. Most hard
solids, such as rocks, with specific surface energies in the range 500 to 5000 ergs/cm’
are referred to as high energy solids. Certain properties of a solid surface can be
determined if the solid is characterised in this way (Good 1979).

The above discussion illustrates some of the difficulties involved in treating solid
surfaces theoretically. If the solid surface cannot be adequately treated then obviously
the study of solid/fluid(s) interfaces will also lack thermodynamic clarity.

2.5.2 Surface roughness

This term also has been noted as having a somewhat unclear meaning in the
literature (Bikerman 1970), but the degree of roughness of a surface is important in
capillary applications particularly where the liquid does not completely wet the solid.
However, the concept of rough and smooth is subject to the closeness of the observation.
For instance, you could be happily cycling along reflecting on the "smooth” surface of
the road until you fall off and are grazed by the "roughness” of the tarmac.

* Morrow (1970) notes that there is no accepted terminology for the surface energies of solid surfaces
and that the terms; surface tension, superficial tension, interfacial tension, adhesion tension, surface stress,
stress tension, surface free energy, superficial densities of energy, specific free energy, free surface energy,
surface energy, surface energy density, Helmholtz free energy, surface Helmholtz free energy, specific
surface free energy, pure surface energy, actual surface energy, theoretical free surface energy, free energy
of formation and relative surface free energy have all appeared in the literatuire on solid surfaces.
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There is a level of variation at which the term "roughness"” becomes inappropriate.
A surface that is flat on a molecular scale is almost unattainable. Good (1979) cites
carefully cleaved mica as the only probable exception, but all atoms and molecules
vibrate with a measurable amplitude. So in general roughness is confined to changes in
the surface representing movements of the surface larger than the interatomic distances
(Jaycock & Parfitt 1987), and one criterion for an ideal solid surface is that it is smooth
to a molecular level.

All the solid surfaces used in this study were prepared in some way; sawn, cut,
turned, polished, ground or chemically treated. These methods all leave the surface rough.
The simplest method for describing the degree to which these surfaces are rough is the
roughness factor, r,, given by Wenzel (1936) as

actual surface area

- 2.55
™ geometric surface area (2.55)

where the geometrical surface is that measured in the plane of the interface corresponding
to the surface area of a smooth interface.

Wenzel’s ratio tells us nothing about the appearance of the roughness, and there is
no consensus in the literature on formal descriptions that are more detailed. Bikerman
(1970) gives a general method based upon the relative heights of hills and valleys and
certain idealised configurations have been analysed by Johnson & Dettre (1964a, b) and
by Eick et al. (1975). The distribution of hills and valleys will affect the behaviour of
liquids in contact with that surface as will the degree to which ridges and valleys are
parallel or organised into Aranges (Jaycock & Parfitt 1987, Carroll 1984). It may be that
in the future fractal analysis will be utilized to offer a more realistic description of solid
surfaces (see Mandelbrot 1977).

2.5.3 Other surface defects

Other well known departures from the ideal solid surface are elastic distortion, the
swelling of the solid by a liquid that wets the surface and the degree and extent of surface
heterogeneity (Good 1979). There are three acknowledged causes for the heterogeneous
nature of common surfaces: h

i}Differing chemical composition of matter on the surface. Either components

essential to a material (as with steel) or surface impurities (nearly always
present).

ii) Different crystallographic faces on a chemically homogeneous solid (more

correctly described as a homotattic solid in substances containing more than

one type of atom (Jaycock & Parfitt 1987)). This may be visualised as the
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difference in the density of atom packing in a (100} plane to that ina (111)

plane or the presence of different kinds of molecular groups exposed in

different planes.

iti) The existence of grain boundaries, crystal edges or corners and steps or

ledges. Dislocations give rise to high energy sites where they intersect a

surface, disturbing the uniformity.

Thusall surfaces that are not hormogeneous, uniform or homotattic may be described
as heterogeneous.

2.6 THE SOLID/GAS INTERFACE (ADSORPTION OF GASES)

The term sorption is commonly encountered in capillary applications. It is usually
encountered with a prefix; commonly ab-, ad- or de-. The term is used to denote the
separation of achemical species between bulk and interface. Absorption generally applies
to the solution of gases in liquids. Whereas adsorption refers to the concentration of a
substance on a surface, such as the molecules or of a dissolved or a suspended substance
on the surface of a solid. Desorption is the reverse of the latter mechanism.

In the context of capillarity, absorption is of little importance.
Adsorption/desorption processes are however, directly relevant. Adsorption is often
defined in terms of degrees of freedom. A molecule or atom, an adsorbate, is drawn
towards a surface, an adsorbent, by the intermolecular attractive forces between them.
This process results in a net decrease in the internal energy of the system as a whole. If
the translational kinetic energy of the adsorbate is less than the adsorption energy the
molecule will be "caught” on the surface. A molecule or atom is adsorbed if it has lost
at least one degree of translational freedom.

If the forces causing loss of translational freedom are essentially London - van der
Waals forces and electrical field - dipole interactions then the process is called physical
adsorption. Chemisorption involves the formation of chemical bonds which results in
much larger energies or heats of adsorption, typically 80 - 400 KJ/mol of adsorbate as
compared to 0 - 40 KJ/mol for physical adsorption (Jaycock & Parfitt 1987). A molecule
adsorbed by chemisorption must, by necessity, first be physically adsorbed as chemical
forces only act over a very short range. The transition from physical to chemical
adsorption may be associated with an activation energy barrier.

Since the interface between an adsorbed phase and its gas is just like any other,
there is an associated equilibrium between them, and this must represent a balance
between adsorption and desorption rates. With physical adsorption these rates are
obviously much larger than those associated with chemisorption and thus it is physical
adsorption that is of interest when applying capillary models.
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2.6.1 Adsorption isotherms

The volume of a gas or vapour, V, that is adsorbed increases with the equilibrium
pressure, P, and the distribution is usually also temperature dependent giving a
description of the process in terms of an adsorption function:

Vv = fPT) (2.56)
where V is usually expressed as the equivalent volume of pure adsorbate at STP. An
adsorption isotherm can thus be written as |

Vi = fP) (2.57)

When a gas or vapour is adsorbed it does not necessarily remain as a gaseous layer,
but may collect together to form liquid. This phenomena gives rise to the process of
capillary condensation of gases in porous materials. Polanyi (1914) postulated three
different cases which describe the state of the adsorbed film in terms of the cnitical
temperature of the adsorbate, T,

Case I For T << T the adsorbed film will be a liquid;

Case I T < T, at temperatures just below T, the adsorbed layer will be a
mixture of liquid and compressed gas;

Case Il For T > T, the adsorbed phase is a compressed gas.

Early workers thought adsorption was limited to a single monolayer of adsorbate
molecules and formulated their models accordingly (see for example that of Langmuir
1918). However, it was soon realised that adsorption did not usually stop at a monolayer
and that multilayer adsorption is the norm when the relative pressure:

P/P° > 0.1 (2.58)
where P° is the saturation vapour pressure of the adsorbate.

Adsorption is normally reported graphically using isotherms. Brunauer (1945)
noted five distinct types of isotherm (Figure 2.9). Type I describes the adsorption of a
monolayer showing an asymptotic approach to the monolayer volume, reached at P° ,
and corresponds to Langmuir’s isotherm. Types /1 and /1] show multilayer formation on
surfaces of high and low adsorption potential respectively. Finally, types IV and V are
analogous to /7 and /1], but cover adsorption on porous materials. The adsorption is seen
to level off at a pressure Jess than P° as it is limited by the volume of the pores. Both
involve condensation phenomena and can show hysteresis.
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Figure 2.9 - Brunauer’s (19435) classification of five types of adsorption isotherm.

Brunauer, Emmett and Teller (1938) (the latter of atomic bomb fame) developed
the first successful multilayer adsorption model, commonly known as the BET theory.
It is still in use today in the determination of solid surface areas, details of which may
be found in any standard text on the subject. Adsorption/desorption methods are used
in conjunction with capillary models for the determination of pore size distributions of
some porous materials.

2.7 THE SOLID/LIQUID INTERFACE

Capillarity is the study of the macroscopic effects which arise at the point of contact
between a liquid, or liquids and a solid. The physical aspects of this interface are manifest
by the phenomena of wetting and spreading. The effects of the forces that act at the
interface are governed by surface free energies and contact angles, which in turn depend
on microscopic events at the interface with which they are associated.

Most of the following discussion and the experiments described later are concerned
with pure liquids, as the forces involved in their molecular contact with a solid are better
understood. However in maﬂy real situations involving the solid/liquid interface more
than one component of a liquid phase needs to be considered. In addition, the surface
geometry of the solid is often so complex as to preclude any exact mathematical
tr¢atment.

The literature concemed with the solid/liquid interface is extensive and no attemnpt
is made to cover the entire field here. Wettability, as applied to oil recovery, has recently
been reviewed by Anderson (1986a, b, ¢ & 1987a, b). Contact angle phenomena and
their measurement were the subject of reviews by Good (1979) and Neumann and Good
(1979) respectively. The standard texts also cover this area in some detail.
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2.7.1 Free energy of fluid interfaces bound by a solid

In section 2.3 an expression for the free (available) energy of a planar interphase
was derived

dF = -SdT-PdV+odA +2;1dn; (2.20)

In capillarity the usefulness of this relationship (and the corresponding expressions
for enthalpy and Gibbs free energy) is limited as the fluid/fluid interfaces encountered
are usually curved and bound, at least in part, by a solid surface. Equation 2.20 may be
generalised via consideration of the situation in Figure 2.10. This system is defined by
three "dividing" surfaces: that of the solid, §, the liquid, L, and the gas, G. Three different
interfaces must now be considered: those between solid and gas, solid and liquid and
liquid and gas.

heat —™
-y

Figure 2.10 - An idealized system showing a small displacement of a liquid surface bound
by solid and gas.

Equation 2.20 may be written (in the manner of Melrose 1966),
dF = -8SdT-PydV;—-P,dV, ~P;dV,
+05,dAg +OgedAgs + 0604, + 3 pdn; (2.59)

Several simplifying assumptions may be made for the model system shown in the Figure
assuming variations to correspond to reversible, isothermal changes of state, in which
no exchange of matter takes place (i.e. a closed system):

ir = 0
v, = 0
dn, = 0
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and dv, = dv,-dV,
where Voo = Ve+V, +V,

Substituting these relations in 2.59 yields

Now from the first law of thermodynamics (equation 2.4) the total change in free energy
1s given by the external work, hence

dF = dF,, = P AV, (2.61)
Therefore we may write
(Pg—P)dV, + (0 —O;o)dA; +0,,dA,;, = O (2.62)

Dropping the subscripts for the liquid and writing P, — P; = AP gives
APdV = O'dA + (GSL - USG)dASL (2.63)

Equation 2.63 describes the internal work performed and is a general equation that is
very helpful in discussions on capillarity. For detailed analysis of the thermodynamics
of interfaces as applied to capillarity the reader should refer to studies by Melrose (1966),
Everett & Haynes (1972, 1975) and Boucher (1978).

2.7.2 Wetting

Wettability has been defined as "the tendency of one fluid to spread on or adhere
to a solid surface in the presence of other immiscible fluids” (Anderson 1986b). Thus
whenever a process involves the wetting of a solid by a liquid, three different interfaces
are present. To illustrate this consider a rock/oil/water system, the interfaces are rock/oil,
rock/water and water/oil. Any point where all three components meet is said to be on
the three phase line. If the water preferentially wets the rock the solid is termed water-wet.
Similarly the rock may be oil-wet if the rock is preferentially in contact with the oil. If
the rock has no preference for either liquid it is termed as having intermediate or newtral
wettability. It is important to note that the term wettability refers to the preference of the
solid and does not necessarily refer to the fluid that is in contact with the solid at any
given time.

The spontaneous imbibition (loosely this means suction - see later) of say, water
into an water-wet pore occupied by oil indicates that the rock surface prefers to be in
contact with water rather than oil. As the water imbibes into the pore an area of rock/oil
interface is replaced by an equal area of rock/water interface. The changes in the total
extent of each interface results in a net decrease in the total surface energy. Wetting is
thus a thermodynamic process, and the magnitude of the free energy change involved
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determines whether or not wetting will proceed spontaneously, at what rate and how far
it can progress against any external forces, or alternatively, how large an external force
is needed to overcome resistance to wetting.

The basic measure of the wetting properties of a liquid on a particular solid is
provided by the contact angle, but it is not the only method of measuring wettability,
Although relatively reliable in the simple systems in which they are measured, contact
angles have, as yet, not proved superior to other methods when applied to porous materials
or other geometrically complex systems that make up the majority of capillarity’s
practical applications. In these instances other quantitative techniques that have found
widespread acceptance are the imbibition and forced displacement, or Ammoit method
and the USBM wettability index or even a combined Ammott/USBM method. These and
many qualitative methods are described in Anderson’s review.

2.7.3 Contact Angle

Contact angle is the ‘wettability measurement employed in this study, so an
understanding of its meaning, limitations and measurement is desirable. When a liquid
is brought into contact with a flat solid surface the final shape taken up by the liquid
depends on the relative magnitudes of the molecular forces that exist within the liquid
(cohesive) and between the liquid and the solid (adhesive). Or in other words, the liquid
spreads until equilibrium is obtained between the cohesive and adhesive forces.

The index of this effect is the contact angle which the liquid subtends with the
solid, as shown in Figure 2.11. By convention the contact angle is measured through the
more dense fluid. The angle varies between 0 and 180° . When the contact angle 0 , is
0 the liquid is said to perfectly wet the solid. As the angle increases the liquid only
partially wets the solid and the sessile drop of Figure 2.11 is part of a sphere, until at
180° no wetting is seen and the sessile drop is a complete sphere. Contact angles can
also be observed in liquid/liquid/solid and liquid/liquid/gas systems.
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Figure 2.11 -The shape of a drop of liquid in contact with a solid surface when 0 < 90"
(a), and (he forces that exist at the three phase line (b).

A contact angle on a solid can only be defined with physical meaning when a unique
tangent plane to the solid surface can be drawn; i.€. the plane through which the contact
angle is measured must be “"effectively flat" (Good 1979), on the scale of observation.
In section 2.5 it was shown that a surface that is truly flat to a molecular level is a virtual
impossibility. For contact angle purposes a surface may be said to be effectively flat
only if contact angles measured on it give a single, unambiguous measurement (i.e. no
hysteresis). )

2.7.4 The Gauss equation of capillarity

The Gauss equation, first derived in the 19" century by Gauss (1830), has only
comparatively recently found the widespread usage that has lead to it being proposed as
a fundamental equation of capillarity (as are the Kelvin and Laplace equations) {(see
Everett & Haynes 1972,1975, Iczkowski 1972, or Hwang 1977). The equation relates
variations of fluid/fluid and solid/fluid interfacial areas with variations of liquid volume,
the mean curvature of the liquid/gas interface and the contact angle.

The following derivation follows Hwang (1977). Consider a slight displacement
of the liquid/gas interface shown previously in Figure 2.10. This displacement will cause
a change in the liquid/gas interfacial area, dA, and an associated volume change, dV.
This volume change is actually the volume swept by the meniscus during displacement.

A unit normal vector can be defined at every point on the liquid/gas interface,
generating a continuous vector field within the volume element, dV. This enables the
Gauss divergence theorem to be applied to the interface:

J.E[J-(V-n)dv = Lfn-dA-»Jjn-dA (2.64)
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In differential geometry, it can be shown that the divergence of a unit normal vector of
- any arbitrary surface is equal to the negative sum of the principal curvatures:
1 1
Ven = —(—+—} = =f (2.65)
n n

Substituting this identity in 2.64 yields

JJJJ dVv = dA- J‘Jcos 0dA;, (2.66)
v g -
Defini

efining js‘["J‘Jdv

Uy = 7 (2.67)
J[Ja
’ v
and J.Jcos OdA,
A
{cos8) = —ri—— (2.68)
" [fen
aASL
Equation 2.65 can be written as
dA = —{J}V + (cos8)A, (2.68)
At the limit ¥V — 0 equation 2.68 is reduced to the differential form
Jdv = dA - dA; cosB : (2.69)

Whichis a statement of the Gauss equation of capillarity. Note that although the equation
may be applied to any surface the derivation assumes constant mean curvature and hence
2.69 is only valid for gravity free systems. Boucher (1980) has proposed a more general
form:

J‘JaV = dA - dAgcosB (2.70)
for changes of interfacial areas in systems where the volume changes by oV in dz.
2.7.5 Spreading and Contact Angle

It is generally found that liquids of low surface tension wet most solid surfaces
(6 = 0), whereas those with high surface energies usually give a finite contact.angle. In
the former case the molecular adhesion between solid and liquid is greater than the
cohesion between the liquid molecules and in the latter it is the cohesion forces that are
dominant.
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The situation was illustrated in Figure 2.11. The relationship between contact angle
and the individual surface energies was first considered by Young (1805). He postulated
the relationship in words in his "Essay on the Cohesion of Fluids" (1805). Dupre (1869)
later put it in mathematical terms. The expression may be deduced simply and directly
from the Gauss equation.

Multiplication of the Gauss equation (2.69) by ¢ gives

c/JdV = odA - odAgcosO (2.70)
In section 2.7.1 an expression for the free energy of a fluid/fluid interface was derived;

APdV = o©dA +(0, ~ Oy )dAg (2.63)
simply comparing the coefficients of 2.70 and 2.63 yields

AP = ol (2.30)
which is the Laplace equation and

G,—OCg; = 0OcosH (2.71)

which is a statement of the Young or Young-Dupre equation. Note however that both
these equations are more general than implied here. In particular they are valid for
reversible changes which are not closed with respect to exchange of matter and the
inclusion of gravitational effects, whilst complicating the derivations, does not affect
the final results (Everett & Haynes 1972).
When applied to the solid/liquid/gas system the Dupre equation (2.2) is written as;
Wgy = O + 0 — Og (2.72)
where W, ; is the work of adhesion. When combined with the Y oung equation the Dupre
equation yields
Wogo = ©(l1+cos8) (2.73)

This equation was that stated by Dupre in 1869. Another useful quantity is the adhesion
tension, Ag . It was first used by Wenzel (1936) in his theory of surface roughness and
is defined as

It is worth noting that o, refers to a solid surface in equilibrium with an adsorbed

film of the gas or liquid vapour, and is not equal to the surface energy of the bare solid,
Os . In terms of G5 equation 2.71 becomes

O = O,zc088 + 0 + @ (2.75)
where T = O — Og (2.76)

Tt is called the film pressure. It is still a matter of debate as to whether it is negligible
on smooth, homogeneous, low energy surfaces. On nonhomogeneous, rough surfaces
n will be appreciable (Good 1979).
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It is perhaps worth noting that the general validity of the Young equation is still
the subject of much debate. Equation 2.71 is exactly the same as that obtained by taking
horizontal components of the surface forces (Fig. 2.11). It does not take the vertical
component of the liquid surface tension, 6sin@ , into account, and there is evidence for
the distortion of solid surfaces by this component. Michaels and Dean (1962) have shown
that on soft solid surfaces a circular ridge is raised at the three phase line, further
confirmation has been provided by Lester (1967) for mercury on mica, together with a
theoretical treatment. On hard surfaces no visible effect is seen, but the surface tension
component must be balanced by strain within the solid.

Young’s equation does not hold when the contact angle is zero, and the imbalance
of surface free energies is then defined by the spreading tension, Sg

Sag = O — (O+0g) (2.77)

The spreading tension is positive if spreading is accompanied by a decrease in surface
free energy, that is if it is spontaneous.

Equations 2.73 and 2.74 are often far more useful than Young’s equation since the
latter contains two solid surface tensions which cannot be measured with any accuracy
(as explained in section 2.5). As a consequence there have been virtually no successful
atternpts to verify the Youngequation experimentally. In addition to the problems already
discussed, other specific objections have been raised about the equation, but these are
discussed elsewhere (see for example Bikerman 1970 and Morrow 1970).

To reiterate, the contact angle is only a fundamental property of the system when
the surface of the solid is smooth, non-deformable and homogeneous with respect 1o
surface energy and when the fluids are free of polar impurities. In such cases the
equilibrium contact angle can be referred to as the intrinsic contact angle, 0, , (Johnson
& Dettre 1964a).

Fox and Zisman (1950) have shown that these conditions are closely met by pure
liquids against air on the smoothed surfaces of certain low-energy organic polymers,
including polytetrafloroethylene (PTFE or teflon). Reproducible contact angles can be
obtained that exhibit strong dependence on the surface tension of the liquid. A critical
surface tension, G, , below which the contact angle will be zero, can be predicted from
a plot of surface tension against cos©, for a homologous series of liquids (Adamson
1976), although different series have been seen to give slightly different values of o, .

2.7.6 Contact Angle Hysteresis
Values of contact angles in most real systems depend on whether the three phase

line is advancing or receding over the solid surface. It is generally found that a liquid
drop on a surface can have many different stable contact angles. Those that are usually
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measured are the maximum and minimum values corresponding to the recently
advancing or recently receding conditions, as these are the most meaningful and
reproducible. Since two fluids are involved, one fluid’s advancing angle equates to the
other’s receding angle. The difference between the advancing angle, 8, , and the receding
angle, 6, , is defined as the contact angle hysteresis, Hg:

H, = 6, ~ 6, (2.78)

An every day example of this phenomena is that of the appearance of a rain drop
on a dirty window, as shown in Figure 2.12. The effect can be quite large; for water on
minerals hysteresis of 50° is common and a value of 154° has been recorded for mercury
on steel.

Figure 2,12 - Appearance of a rain drop on a dirty window.

Contact angle hysteresis was recognized before this century and three principal
causes have been well documented (see for example Adamson 1976, Johnson & Dettre
1964a or Morrow 1970), these are:

i) Surface roughness
ii) Surface heterogeneity
' iii) Surface immobility on a macromolecular scale.

Surface roughness effects can be visualised by considering a horizontal but rough
homogeneous plate. A liquid drop will generally be attached to a part of the surface that
is not flat because the rough surface contains peaks and valleys. So the apparent contact
angle, measured from the tangent to the horizontal plane of the surface, will be different
to the true contact angle at the actual point of contact. The surface roughness will allow
many metastable states of the drop to exist with differing contact angles.
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Hysteresis due to surface heterogeneity can result from either heterogeneity in the
solid surface as described in section 2.5 or from differential adsorption of wettability
altering compounds and impurities in the liquid. Finally, surface immobility can cause
hysteresis by preventing the fluid motion necessary for the contact angle to reach its
equilibrium value. This problem is encountered in oil recovery operations; slow
adsorption of a surfactant from the solid/liquid interface into the bulk liquid can cause
hysteresis, some crudes actually form a solid film at the oil/water interface (Anderson
1986b). _

Other factors affecting hysteresis have been documented, such as the dependence
of contact angles on interface velocity (dynamic effects) (Morrow & Nguyen 1982,
Larson et al. 1981). Good (1979) also reports diffusion, swelling and reorientation
effects. However, it is principally surface roughness that relevant to this study and it is
discussed in greater detail below.

2.7.6.1 Wenzel’s theory

There have been several attempts to relate the surface roughness to contact angle.
One of the earliest is that of Wenzel (1936). He introduced "effective adhesion tensions”
(equation 2.74) to obtain a modified form of the Young equation, in which roughness
changed the effective solid/vapour and solid/liquid surface tensions in proportion to his
roughness factor, r,, (equation 2.55). By combining the modified form with the actual
Y oung equation Wenzel obtained a relationship between the intrinsic contact angle, 6, ,
and the angle observed at a rough surface, 6" ;

cos® = r,cosé, (2.79)

Cassie (1948) and Shuttleworth & Bailey (1948) also arrived at this equation. However
equation 2.79 takes no account of hysteresis, and it is the presence of hysteresis at rough
- surfaces that poses a fundamental objection to any theory of surface roughness based on
equilibrium concepts (Morrow 1974).

In his experiments Wenzel notes that contact angles must be measured under water
advancing conditions so as to obtain reproducible results relevant to the study of
water-repellency, implying that equation 2.79 is applicable to advancing angles only.
Variations in 8° are put down to local changes in .

Accordingtoequation 2,79 as surface roughness increases advancing contact angles
decrease if 6 < 90°, and increase if 8 > 90°. Experimental data has been presented in an
attempt to show the validity of Wenzel’s theory, see for example Fox & Zisman (1950)
but none have found the theory to be generally applicable.
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The roughness ratio, r,,, is defined by Wenzel as an independent property of the
solid. Shepard & Bartell (1953) and Morrow (1974), on paraffin wax and PTFE surfaces
respectively, found a marked dependence of r,, on the intrinsic angle, 0, . These more
recent works also agreed that only at values of 8, less than about 45° were contact angles
seen to decrease with increasing surface roughness.

2.7.6.2 Cassie’s theory

Working with patchy, heterogeneous, or composite, surfaces Cassie (1948)
proposed that the equilibrium contact angle on such surfaces, 6. , should be taken as an
area weighted average such that,

cos8, = ficos®, + f,cosh, (2.80)

where f, and f, are the fractional areas occupied by the composite components 1 and 2.
However 6, can only be measured experimentally when hysteresis is absent, such as in
the case of a flat surface with parallel bands of components 1 and 2 running parallel to
liquid motion. -

Cassie’s theory has found application in water-repellency studies (see for example
Adam 1958). The area £, becomes the fraction of open area and 8, the contact angle on
a single fabric, hence, ‘ .

cosf, = ficosB, - f (2.81)

Note that the negative sign results from the incorporation of Young’s equation in equation
2.80. .

Roughness and composite effects may both be manifest at the same time. For
instance, if the contact angle is sufficiently large and the surface sufficiently rough, as
inFigure 2.13, such that air becomes trapped by the liquid in-between surface aspersities
causing a composite effect, equation 2.81, on application of Wenzel’s theory, becomes;

cos®,, = rficosb, — f, (2.82)

where 6, is the apparent contact angle.
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Figure 2.13 - Effects of surface roughness on apparent contact angle 8,,,. 8, is the contact
angle measured on a smooth flat surface. (a) The droplet is the preferenttally wetting fluid,
50 0 < 90°. (b) the droplet is the non-wetting fluid, so 6, > 90°.

Although the relationships discussed above are useful in modelistic terms, they are
difficult to apply to real systems as these are generally far more complex than the models.
The surface rugosity, or the geometry of the surface roughness, plays an important part
in determining the wetting behaviour and the extent of hysteresis (Anderson 1986b). For
example a surface with a high roughness ratio, but with the roughness in the form of
uniform ridges running parallel to the liquid motion, little or no hysteresis is seen. If the
same ridges are perpendicular to the liquid motion hysteresis is at its maximum value.

Most real surfaces are rough, but in a haphazard manner, equivalent to a surface
with random, intersecting systems of ridges. Shepard & Bartell (1953) successfully
modelled such a surface as a regular array of pyramids and found that contact angles
varied with the angle of inclination of the pyramids’ faces, but not with their height, a
conclusion subsequently confirmed elsewhere (Morrow 1974 and Tamai & Aratani
1972). Carroll (1984) discusses similar surface rugosity effects, but on cylinders as
opposed to horizontal surfaces and arrives at the same conclusions.

Work of more general applicability and specifically relevant to this study is the
detailed investigation of "the Effects of Surface Roughness on Contact Angles” by
Morrow (1974). He used a series of liquids to quantify the effects of roughness on low
energy PTFE surfaces. Using capillary tubes roughened with dolomite powders to
measure contact angles from capillary rise, three distinct classes of contact angle
hysteresis were found:

Class I behaviour, smoothed PTFE tubes gave essentially no hysteresis under
advancing and receding conditions yielding the intrinsic contact angles.




Class II behaviour, the tubes as supplied by the manufacturer exhibited
slight contact angle hysteresis that was empirically related to the intrinsic
contact angle, see Figure 2.14. Slight roughening of the tubes did not change

this behaviour.

Class II1 behaviour, with sufficient roughening of the internal surfaces of
the tubes, class II behaviour was markedly increased to give class III
behaviour, see Figure 2.15. This behaviour was obtained for a variety of
roughness conditions and was found to be independent of the particle size of
the abrasive dolomite powder, the extent of further roughening and possible
composite surface effects. Class IIT behaviour was also empirically related to

the intrinsic contact angles.
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Figure 2.14 - Morrow’s (1974) results from capillary tubes "as supplied” and slightly
roughened exhibiting Class IT behaviour.
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Figure 2.15 - Morrow’s (1974) 'resulls from capillary tubes well roughened with dolomite
powder that give rise to Class III behaviour.

Morrow’s results are consistent in that when the angle observed at a smooth surface
8, , is replaced by its complement, 180° -6, , and the advancing and receding angles
interchanged the results overlap the curves given by the results in their original form.
Significantly Morrow found specific classes of hysteresis exhibiting reproducible values
of 8, and 6, for wide ranges of surface roughness, and not a graduation in roughness
effects. This enables his results to be employed without regard to the exact nature of the
surface roughness. The work of Tamai & Aratani (1972) supports that of Morrow in that
they found two-tiered hysteresis for mercury on silica plates, corresponding to classes
I and III. The hysteresis was again independent of the grade of roughening abrasive,
despite roughening giving up to a tenfold variation in the average height of the surface
asperities.

2.7.7 The measurement of contact angles
Many different methods have been used to measure contact angles. Perhaps the

most common is the direct measurement of 8 by placing a drop on a horizontal plate
and observing the angle at the three phase line (the sessile drop method), as previously
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illustrated in Figure 2.11. Advancing and receding angles are obtained by adding or
removing liquid from the drop and taking the maximum or minimum value before the
three phase line moves.

Reasonably reproducible results can be obtained in this way (to within0.3°, Jaycock
& Parfitt 1987). However changes in the measured contact angle have been observed
with variation in the curvature of the three phase line (i.e. a change in drop size). For
example, water on a teflon sample gave a receding angle of about 95° for drops larger
than 5 mm in diameter, but declined to about 80° if the drops were smaller than 1.5 mm,
Similar effects have also occurred with advancing angles over the past 40 years and have
yet to be satisfactorily explained.

Other popular methods for measuring contact angles include the tilting plate
method, sessile bubbles, the vertical rod method, tensiometric methods, the cylinder
method and the capillary rise method. Descriptions of these and other techniques can be
found in reviews by Adamson (1976) and Neumann & Good (1979).

The choice of method depends greatly on the geometry of the solid system and on
the quantity of liquid available. Techniques have been developed for spcéiﬁc systems
where standard methods are inapplicable such as for fine textile fibres (Carroll 1976),
and coal granules (Clark & Mason 1968).

Absolute values of 0, and 8, are not found, values differ by up to several degrees

from laboratory to laboratory and with different measuring techniques. Values of contact
angles on low energy surfaces are more reliable and reproducible than those on high
energy surfaces. The author prefers those methods which involve indirect measurement
of contact angle, over a larger perimeter, such as the capillary rise method, to those that
employ direct measurement as they produce markedly less scatter.

The above discussion illustrates the limitations of contact angle measurement and
that while a useful tool in the determination of the charactenistics of the solid/liquid
interface, contact angles are by necessity an approximation of the interface properties
except on truly flat surfaces. Until hysteresis is properly understood, the uncertainties
over contact angles will remain.

2.8 SUMMARY

Over the previous pages the basics of surface chemistry, as applied to capillarity,
were discussed. The fundamental equations of capillarity - the Laplace, Young, Kelvin
and Gauss equations - have been derived and points of debate about their application
and validity noted. The concepts of interfacial tension, wettability and contact angle
were defined and the limitations of each discussed in relation to the interfaces to which
they apply. Attention is now directed towards the applications of capillarity.
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CHAPTER 3

Porous materials

3.1 INTRODUCTION

A porous material may simply be defined as any solid with holes in it, that is it
comprises a solid phase dispersed in such a way that a non-solid phase remains
in-between. The solid phase is termed the matrix, and the non-solid phase the pore space
(or void space), of the porous medium. _ _

Porous materials occur widely in the natural environment and there are many
synthetic media in use in the home and industry. They can be broadly classified as either
consolidared or unconsolidated. Some examples of unconsolidated media are sand, glass
beads, catalyst pellets, column packings and soils. Most naturally occurring rocks, like
sandstone and limestone, are consolidated materials as are many man made materials
like bricks, concrete, paper, membranes, adsorbents and textiles. Wood, human lungs
and even insect hair are classifiable as porous media. The list of scientific disciplines
involved in’ their study reflects the diversity of the materials: including biology,
biophysics, soil physics, hydrology, catalysis, geology and chemical, building and -
petroleum engineering.

The shape of the pore space is usually very complex, consisting of irregularly
shaped cavities or cracks connected together in an intricate and variable network. In
order to describe a porous material it is usual to visualise the pore space to be made up
of a number of interconnected "pores”, although the reality of their concept is doubted
by some authors (van Brackel 1975 and Everett 1988). A single pore is defined as a
central cavity connected by one or more constrictions to neighbouring pores. The average
number of connecting constrictions defines the interconnectivity or branchiness of the
porous material. Porous materials are important in capillarity as when a porous medium
is partially saturated with liquid the holes or pores act as capillaries and its properties
are dominated by the behaviour of the liquid menisci in the pore space.

Obtaining fundamental information on the physical characteristics of porous solids
like density; total porosity (and its sub-division into open and stacate (dead-end) pores):
surface area (both accessible and inaccessible); wettability; pore size and pore size
distribution; pore shape and connecuvity is beset by many problems and uncertainties,
in that even the simplest characteristics are difficult to measure in absolute terms due to
the complex and irregular geometry.

[P
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On the other hand, the practical performance of a porous solid is important. Here
the major concerns of technologists include adsorption-desorption processes, molecular
sieving, permeability and fluid flow, drainage and imbibition (wetting and dewetting),
catalytic properties and fluid-fluid displacement. )

In principal characterisation and performance properties are linked, although in
real systems the relationship is usually complicated. Tremendous effort within the
literature has been devoted to the establishment of these relationships. As a consequence,
many different characterisation techniques have been developed. Most are indirect, being
based on some secondary, non-geometrical property related to the pore structure, but
also relevant to the practical performance of the material.

The characterisation procedure normally involves the use of a model to represent
the complex structure of the real pore system in a more mathematically tractable form.
These models are nearly always a gross simplification of the real solid matrix, but are
of value if they can rationalise experimental data.

Many of the practical applications of capillarity, and much of the economic stimulus
forthe on-going research toelucidate its fundamental rélationships, involve porous media
of some kind. At present an increasingly significant area of research arises from the need
to apply secondary and tertiary oil recovery techniques (collectively EOR) to retrieve
valuable oil left behind in the reservoirs by conventional drilling (so called primary
recovery). Over the following pages some of the models are discussed in connection
with the process explanations and characterisation techniques of which they form an
integral part. A more complete description of porosity is beyond the scope of this study,
but it is covered in detail elsewhere, for example see Dullien & Batra (1970), Modry &
Svata (1973), Everett (1975), Gregg & Sing (1982) and Unger et al. (1988), although,
as yet, there is no comprehensive standard text for the reader to refer,

3.2 CHARACTERISATION OF POROUS MATERIALS

Direct observation of the of the structures of porous media, or stereology, was
previously of limited use in evaluating the performance of the media. However, it is
expected that direct measurement will become increasingly important with the
application of new techniques such as small angle X-ray scattering (SAXS) and small
angle neutron scattering (SANS) which can give statistical information about pore
structures in three dimensions.

Indirect characterisation techniques are normally employed to yield information
that is directly relevant to the matenials practical performance. There are three popular
methods that are also particularly relevant here, namely adsorption-desorption, mercury
porosimetry, and drainage-imbibition. All three techniques involve liquids entering or
leaving pore space.



Adsorption-desorption. (Fig 3.1). In many adsorption- desorption processes
a gas becomes capillary condensed in individual pores and is then evaporated
from the pore space.
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Figure 3.1 - A typical adsorption-desorption curve.
Mercury porosimetry. (Fig 3.2). In the analysis of pore structure by mercury

porosimetry a non-wetting liquid, mercury, is forced into the pore space under
pressure and then allowed to extrude again when pressure is relaxed.
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Figure 3.2 - An example of the capillary pressure curve obtained from mercury porosimetry
experiments.

Drainage-imbibition. (Fig. 3.3). In drainage-imbibition processes a wetting
liquid that initially fills the pore space is drained by the application of suction
pressure and then allowed to imbibe again as the pressure deficiency is
reduced.

These techniques are relatively simple experimentally and they can, when
combined with an appropriate model, give parameters that accurately describe the pore
space if the results are correctly interpreted. All three processes show similar behaviour
if the results are plotted in a comparable way. They show a distinct threshold and
hysteresis between filling and emptying (Fig. 3.4). Several explanations have been
proposed for this behaviour (see section 3.5), but there is little doubt that it is caused by
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Figure 3.3 - A graph showing a typical capillary ptessure curve obtained with a wetting liquid
undergoing drainage followed by imbibition.

a combination of the properties of the liquid menisci and the complicated network of
pores that make up a porous solid.
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Figure 3.4 - A hysteresis curve showing a distinct threshold. Adsorption-desorption, mercury
porosimetry and drainage-imbibition exhibit similar behaviour.

3.2.1 Classification by pore size

Most work on the pore sizes of finely porous materials has been based on
measurements of desorption or fluid penetration. There is little overlap between each of
these methods and stereological techniques. Pores are usually classified on the basis of
their interaction with nitrogen adsorbate molecules in a manner reported by Gregg &
Sing (1982) and recently recommended by IUPAC (the International Union of Pure and
Applied Chemistry) (see Stacey 1988). Pores are divided roughly into the following
groups based on mean pore width:

Micropores with dimensions < 2 nm
Mesopores in the range 2 - 5O nm
. Macropores with dimensions > 50 nm.



Micropores have also been subdivided into ultramicropores (< 0.6 nm) and
supermicropores (0.6 - 1.6 nm) to differentiate between adsorption mechanisms. Unlike
smaller sized pores, macropores cannot be investigated using adsorption methods as they
are too similar to plane surfaces for adsorption differences to be significant, but they can
be examined using mercury porosimetry.

3.2.2 Porosity

The porosity of a material is defined as that fraction of the bulk volume of the
material that is not occupied by the solid matrix. There are two common forms of porosity
in use, absolute porosity, € , and effective porosity, €,; . Absolute porosity is a measure
of the total void space (including both open and stacate pores) with respect to the bulk
volume. Effective porosity is the percentage of interconnected pore space (only the open
pores). In other words, effective porosity is an indication of the conductivity 1o fluid,
but not a measure of it.

3.2.3 Saturation and saturation states

The saturation of a porous material with respect to a particular fluid is defined as
that fraction of pore space filled by the fluid. If the fluid is denoted by the subscript w
the fractional saturation is given by
volume of fluid in the medium

Se = total pore volume G-

and varies from 0 to 1. Fractional saturation usually refers to the wetting phase.

As the saturation of a porous medium increases three distinct fluid saturation states
can be distinguished, namely pendular, funicular and insular. Figure 3.5 shows the
situations for an air/water system where the porous media is in the form of an
unconsolidated bed of granules. At very low saturations the wetting phase water, forms
immobile rings around the contact points of the granules; these rings are called pendular
rings and are toroidal in shape. At slightly higher saturations the wetting phase forms
into a continuous body around the granules and is said to be in the funicular state. As
the saturation is further increased a situation develops where the non-wetting fluid, air,
can no longer exist in a continuous (funicular) phase and it breaks down into individual
globules or ganglia. This dispersed condition is called the insular saturation state.

3.2.4 Capillary pressure curves

The void space in a porous solid usually contains many sharp recesses. If the wetting
phase saturation is increased from an initially dry state the liquid will first collect in
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An idealised apparatus for the measurement of capillary pressures for
drainage-imbibition processes in porous solids is shown in Figure 3.6. Normally the
medium is initially saturated with the wetting phase, in this case water, and in contact
with a finely pored membrane which remains saturated with water. The pressure on the
water, P,, is the measured gas pressure acting on a frictionless piston. The non-wetting
phase, oil, is in direct contact with the porous solid and its pressure is given by the gas
pressure, P, acting on a second piston. Usually one phase is kept at atmospheric pressure
through the experiment. The capillary pressure, P, is given by

P, =P, - P

[ o w

(3.2)

The saturation of water in the solid is found from volumetric displacement
measurements. The displacement of a volume of water, AV, , is related to a saturation
change, AS,, , by

AV, = V,eAS, (3.3)

where V, is the bulk volume of the porous sample and € its porosity. Each capillary
pressure data point is obtained by holding the external pressure constant until fluid flow
from the solid ceases. Volumetric displacement is indicated by the position of the piston
acting on the water phase. Data points are usually referred to as capillary pressure
equilibria, but this can be misleading as not all the stability requirements for equilibrium
are met (Morrow 1970).

3.2.4.1 General form of capillary pressure data

The saturation changes which result from changes in capillary pressure do not
follow a unique functional relationship. A typical example of a set of capillary pressure
curves is shown in Figure 3.7, although the exact form will depend on the individual
media. Several terms are commonly used to describe them.

Irreducible saturation, S,;: the volume of wetting phase retained at high
pressures when the saturation is independent of further increases in the
externally measured pressure.

Residual saturation, S,,,: the volume of non-wettin g phase which isentrapped
when the capillary pressure is reduced from a high value to zero.

Drainage curve, D: the relationship characteristic of displacement of wetting
phase from 100% saturation to the irreducible wetting phase saturation, §S,,..
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Figure 3.5 - Saturation states of porous media. On increasing the amount of ﬁuid the saturation stake
. changes from a pendular to funicular to insular,

these recesses to form arc menisci (pendular type rings). Further increases in saturation
causes the radii of curvature of the fluid-fluid interface to alter, which consequently
changes the pressure difference across the interface in accordance with the Laplace
equation.

Wetting phase menisci are concave towards the non-wetting phase in porous solids,
hence the pressure in the wetting phase just below the surface, is lower than the pressure
in the non-wetting phase. So as the pressure differential across the porous material is
lowered the wetting phase saturation increases. This pressure difference is known
variously as, capillary suction, capillary tension, capillary potential or capillary pressure.
Much  valuable information - . about pore structure and flow properties can be
gleaned from experimental curves relating capillary pressure to saturation - called
capillary pressure curves.
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Figure 3.6 - 1dealised capillary pressure apparalus.
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Imbibition curve, I' the increase in wetting phase saturation from the
irreducible wetting phase saturation to the residual non-wetting phase
saturation, S,

CAPILLARY PRESSURE

SATURATION

Figure 3.7 - Capillary pressure data for microbeads showing primary scanning curves in addition to the
drainage and imbibition curves. )

The drainage and imbibition curves constitute a closed and reproducible hysteresis
loop, DI, and represent the extreme range over which hysteresis occurs. Primary
scanning curves within the main hysteresis loop are obtained by reversing the direction
of the pressure change at some intermediate point along either the drainage or imbibition
curve. Similarly if the path along a primary scanning curve is reversed before the limit
of the boundary curve is reached, another path is traversed. Such paths are known as
secondary scanning curves.

3.2.4.2 The pF scale

Capillary pressures are sometimes expressed as an equivalent height of a column
of water in ergs per unit weight, instead of the more usual units of energy per unit volume
as in equation 2.52. Between the limits of saturation capillary potential expressed in this

“way can vary by a factor greater than a million. Hence the potential is often plotted on

a logarithmic scale. '

Schofield (1935) was the first to express capillary potential in terms of a log scale
which he called the pF scale (analogous to the pH scale for acidity-alkalinity). The pF
is defined as '

pF = log,h. (3.4)

where A, is the height of a liquid column of unit density which is equivalent to the
capillary potential.
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Drainage-imbibition of the sort described above is characteristic of meso- to
macroporous materials. Mercury porosimetry is the reverse of this process, with extrusion
corresponding to imbibition and intrusicon to drainage. Mercury is a non-wetting liquid.

3.2.5 Adsorption-desorption pressure curves (sorption isotherms)

The adsorption of a gas by a porous material occurs in several stages as the relative
vapour pressure, P/P° | the actual vapour pressure, P, as afraction of the saturated vapour
pressure, P° | is increased. Initially gas molecules adsorb at particular sites on the inner
surface by the same mechanisms they adsorb to non-porous surfaces (section 2.6), to
form first a monolayer and later multilayers. When these multilayers become sufficiently
thick the adsorbed material behaves like a liquid and is said to be capillary condensed.

Eventually at the saturated vabour pressure the liquid fills all the pore space. During
progressive equilibrium dcsofption (evaporation) hysteresis, analogeus to that in
drainage-imbibition, is seen as the relative vapour pressure is reduced. Results of
experiments are plotted, as amount adsorbed versus relative vapour pressure, and
typically appear like that shown on Figure 3.1. The adsorption portion of the hysteresis .
loop 1s analogous to imbibition whilst the desorption portion is similar to drainage.

33 MODELS OF PORE SPACE

To manipulate a physical process to produce the greatest efficiency requires that
one must first understand the mechanisms underlying that process. With a seemingly
incomprehensible systern the first logical step is to simplify it to one that can be more
readily understood. Newton did this in developing the theory of motion; the trajectory
of a solid object of complex shape could be easily followed if the object was reduced to
* a point mass - thereby behaving in a manner akin to a ball - whose trajectory is simply
followed. In short, Newton created a simplified mode! of a complicated system.

The brief description of porous material characterisation techniques given above
is merely qualitative. To extract characteristic information from capillary pressure
curves, such as pore size distribution, requires that the shapes of both the solid/fluid and
fluid/fluid interfaces are known. To be of use practical characterisations of porous
materials must yield parameters that describe the actual pore structure sufficiently well
too allow explanations to be given of the process(es) under investigation.

Itmight be possible to obtain detailed mathematical maps of the topology of normal
porous materials, but it would be impossible to predict the meniscus shapes inside the
pore space. The relevant equation of capillarity could not be solved owing to the complex
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and random nature of the solid geometry. Thus the problem for researchers is essentially
to find not just one, but two models; one of the matrix and a second for the shape of the
capillary surfaces in the modelled matrix.

The requirements of an effective pore space model are that it is simple enough to
be amenable to theoretical treatment, whilst quantitatively capable of explaining the
various interfacial, hydrodynamic and other properties of practical interest. A
compromise is sought between oversimplification on the one hand and elaboration of
the model to such an extent that the convenience is lost. Haynes (1975) states that the
best justification for a rigourous theoretical treatment of a particular model is found when
an experimental study of the same model is practicable - a seemingly obvious
requirement, but it is often ignored.

Many models simply represent the pore structure as number of variously sized
capillaries of some easily definable shape be they cylindrical, angular or made up of
channels formed from parallel plates, arrays of parallel cylinders or packed spheres.
These simple geometrical shapes enable the interfacial configurations to be easily
calculated from the equations of capillarity, or simply approximated with the use of
hydraulic or "insphere” radii.

Many different models have been used, but few pretend to rationalise all porous
material processes. Fewer still give reliable quantitative explanations of a single process
0vef the entire range of porous material types (van Brackel 1975). However the
development of models has facilitated a much improved understanding of the
mechanisms of many processes.

3.3.1 Classification of pofe space models

The modeling of pore structure is not a recent phenomena. In the last century a soil
physicist, C.S. Slichter (1897) published a mode! consisting of packed spheres in a
attempt to evaluate the dependence of the saturated permeability of a soil on its particle
size and porosity. Similar models are still in use today although no satisfactory
explanation of the original problem has yet been offered in terms of a packed sphere
model.

Pore space models have several other uses other than to characterise a medium. In
the study of transport phenomena in porous materials (molecular diffusion, viscous flow,
dispersion, fluid/fluid displacement, infiltration, drying and even heat conduction)
models are used to obtain values of the transport coefficient (effective diffusion
coefficient, permeability etc.) and, when applicable, the driving force (capillary pressure)
for the transport equation. Models are employed to obtain particle size distributions and



52

to simulate sphere packings. Others are purely analytical devices for the definition of
coefficients. Finally there are those that are used as overall descriptions of phenomena
in which the macro- or microscopic pore structure is not accounted for.

In addition to simplifying the pore geometry most models make several other
assumptions. Usually the solid must be homogeneous and isotropic; the pore space
continuous; the solid interface fixed (no swelling or consolidation) and inert to the other
phases; the number of phases and components restricted and only very simply initial and
boundary conditions considered (one dimensional movement).

A comprehensive review of pore space models was given by van Brackel (1975)
and Haynes (1975) discusses models used for porous material characterisation. More
recently many current developments were discussed at the JUPAC conference (Unger
et al. 1988). The models have been classified according to the number of geometrical
parameters needed to describe them (Everett 1958) and with reference to the pore space
interconnectivity by (van Brackel). The latter method is more comprehensive giving
four classes:

i) One dimensional interconnectivity. This class includes the simplest and
. most common models; tubes in parallel or series; tubes with constrictions and
adjacent slices (plates). The fluid may move in only one direction. Some
examples are shown in Figure 3.8.
ii) Two dimensional interconnectivity. Broadly these comprise networked
models of one dimensional models and consequently flow may occur in the
plane of the network. See Figure 3.9,
iii} Three dimensional interconnectivity. Here flow also occurs in a plane
perpendicular to the overall transport direction. These are the most promising
type and include sphere packings, tetrahedral networks and tubes and
junctions (bonds and sites or motorway and interchange) regularly or
randomly arranged. See Figure 3.10.
iv) Strictly zero dimensional interconnectivity. Figure 3.11 shows some
examples. These models consist of simple capillary elements used in
explanations of particular phenomena, like ink bottle hysteresis or the
independent domain theory (see section 3.5.2).

3.4 MODELS OF INTERFACIAL CONFIGURATIONS

The shapes of capillary surfaces are given by the fundamental equations of
capillarity. In only a few simple cases is a trivial exact solution afforded by the Laplace .
or Kelvin equation. One such example is the case of the meniscus in a cylindrical tube
under zero gravity conditions. Here the meniscus is part of a sphere and is described by
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Figure 3.8 - Some elements of pore space models Figure 3.9 - Elements of pore space with two
with one dimensional connectivity. dimensional connectivity.
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Figure 3.10 - Elements of pore space with two Figure 3.11 - Simple capillary models used in

dimensional connectivity, explanations of specific behaviour of porous media
having strictly zero-dimensional interconnectivity.

a single radius of curvature (see section 2.4.3). The vast majority of proposed pore space
models for capillary processes are made up of tubular cylindrical elements in order to
facilitate this one parameter solution.

Solution for the exact shapes of capillary surfaces that are not given by a single
radius of curvature involve complicated integrations of the Laplace equation even if
simplifying assumptions are made. The effects of a gravitational field on fluid behaviour
is always ignored in porous materials, the scale of the pore space ensuring that interfacial
forces dominate (i.e. low Bond number - eq. 2.44). Even in pore space models comprising
basic geometrical objects, such as spheres, determining the meniscus shape necessitates

complicated numerical integrations that often require considerable computer time (see
section 4.2).
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The difficulties in predicting interface shapes has restricted development of
non-cylinder based models (geometrically the most complicated pore models used are
sphere packings). In those that have been employed the interfacial configuration is
usually approximated, almost always as a zone of a sphere. The use of sphere
approximations has been justified on the grounds that the matrix model is itself only an
approximation of the actual pore space (van Brackel 1975). Thus the time involved in
obtaining accurate interfacial configurations outweighs the benefits provided to the
model. Van Brackel & Heertjes (1978) and Mason & Morrow (1984b) have reviewed
methods for affecting approximation and the latter compared the results of each against
experimental data from sphere packs.

3.4.1 Hydraulic radius models

In connection to porous materials the hydraulic radius, R, has been defined as both
the ratio of tube area to tube perimeter (Hwang 1977) and as that of pore volume to pore
area (Anderson 1987a). For a capillary of cylindrical cross-section the tube and hydraulic
radii are equivalent.

The hydraulic radius gives exact curvatures for menisci in uniform tubes when the
sphere portion spans the entire cross-section of the tube (Carman 1941). Hwang (1977)
attempted to extend its application to tubes containing angular corners (polygons,
contacting cylinders etc.), but found his results differed significantly from the exact
solutions of Princen (1969a). In wedge-shaped corners a wetting capillary surface must
rise in the corners, in the manner derived by Concus & Finn (1969), in order to satisfy
boundary conditions. Hence the complete tube cross-section is not spanned by the sphere
portion. In the case of sphere packings this phenomena is manifest by the formation of
pendular rings around points of contact. Commenting on Hwang’s results, Mason &
Morrow (1984b) found wide deviations for systems that form liquid wedges or rings.
This was demonstrated by both experimental data and other semi-theoretical
approximations.

Carman applied the hydraulic radius model to triangular pores given by close
packing of equal spheres (closed triangular pores) and found, for a perfectly wetting
liquid, a maximum normalised curvature of 19.5, in poor agreement with the accepted
experimental value of approximately 11.4 for pore drainage (Haynes 1975).

3.4.2 The Haines incircle approximation
Haines (1927) arrived at an empirical approximation for interfacial configurations

after observing capillary displacement in the various pore shapes that arise in regular
sphere packings. He proposed that the curvature of a meniscus that just passes through
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the central constriction of a pore (that associated with drainage) can be approximated
by that of a sphere which just touches the spheres defining the pore throat. Essentially,
Haines redefined the local geometry to that of a cylindrical tube.

Application of the Haines "incircle” or "insphere" approximation is straightforward
and it has been employed in many studies conceming processes such as mercury
porosimetry, sorption, drainage-imbibition and fluid/fluid displacement (see Haynes
1975). It has also been proposed that the curvature associated with imbibition can be
modelled using the radius of the sphere that just touches the spheres defining the pore
cavity (van Brackel 1975). However neither model is very precise. The maximum
normalised curvature obtained in the triangular packing is 12.9.

3.4.3 The Mayer & Stowe - Princen analysis

The Mayer & Stowe - Princen theory, or the MS-P theory (named as such afier
Mason & Momow 1984a), is a method for the determination of exact, one parameter,
interfacial configurations of non-axisymmetric capillary surfaces in uniform tubes when
gravitational forces are absent. It is the subject of the experiments conducted for this
study and will be discussed in detail later (see chapter 5). The analysis was developed
(separately) by Mayer & Stowe (1965) and Princen (1969a) as models for capillary
surfaces in porous media. The following discussion serves as a brief historical
background to the method and its application (further details are given in chapter 4).

a) Mayer & Stowe proposed what they believed to be an exact solution for the
maximum curvature in regular sphere packings based upon what amounts toan integrated
form of the Gauss equation (2.69). The cross-section of the meniscus in the pore throat
is defined in part by circular arcs spanning the points of contact between the spheres.
- Pore shapes varied from the closed triangular to the closed square arrangement.

The underlying theory presented by Mayer & Stowe was queried at the time of
publication by Melrose (1965a) and later by Haynes (1975) on the grounds that exact
solution of the sphere problem must take into account the converging-diverging nature
of the sphere geometry (see section 4.2). The analysis has however proved successful
as a method of determining pore size distributions by mercury porosimetry (section 4.3)

b) Princen (1969b) ammived at an identical, but exact solution for the curvature
between three contacting cylinders to that of Mayer & Stowe for closed triangular
packings of spheres, reflecting the true nature of the Mayer & Stowe analysis. A
normalised curvature of 11.3 is given by both analyses, much closer to the experimental
value in triangular sphere packings, indicating the validity of the method as an
approximation for curvatures in the regular sphere packing. Figure 3.12 shows the
hydraulic, incircle and MS-P approximations compared with experimental data of
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Hackett & Strettan (1928). Van Brackel & Heertjes (1978) have also found Princen’s
analysis to yield results closer to experimental data.
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Figure 3.12 Comparison of the experimental results of Hackett & Stuettan from sphere packs with the
Haines incircle approximation, Hwang's hydraulic radius method and the MS-P method.
Princen was interested in capillary rise in bundles of rods where gravity plays a
significant part. Here the analysis only approximates the height of rise, but is still of
much greater accuracy than other methods available; the capillary tube and hydraulic
radius models.

3.4.4 The Dodds approximation

Dodds (1978) noted the close agreement between Princen’s results for rods and-
the experimental results of Hackett & Strettan (1928) for spheres. He went on to calculate
displacement curvatures for pores formed by three cylinders with size and spacings
varied. These configurations were then taken as models for pores found in sphere
packings '

Dodds alsc noted an approximate empirical relationship between his results and
those given by the Haines incircle approximation,

rys-p = 0875r, (3.5)

incircie

suggesting a very simple approximation method. The factor 0.875 is derived from the
ratio of MS-P to incircle curvatures for the closed triangular pore. However, Mason &
Morrow (1984b) found a different relationship for equal, but variably spaced spheres.
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Cm_’ = C : - 1-5 (3.6)

incircle

where C denotes the normalised curvature, R/r , the ratio of sphere radius to the radius
of curvature, It appears that this type of correlation must only be applied selectively.

All the above modeling techniques for interfacial configurations have also been
applied in situations where the contact angle is non-zero. The hydraulic radius and incircle
approximations are simply multiplied by a cos8 factor; agreement with experiment is
poor (see below). Only the MS-P analysis uses a less trivial correction. There is some
evidence that, although not providing as accurate an approximation as at zero contact
angle, the MS-P analysis qualitatively agrees with experimental data from sphere
packings (van Brackel & Heertjes 1978, Bell er al. 1981)

3.5 HYSTERESIS IN POROUS MATERIALS

Explanation of observed hysteresis in mercury porosimetry, drainage-imbibition
and adsorption-desorption is central to the understanding of other processes involving
the movement of fluid/fluid interfaces in porous materials. The following discussion
illustrates the application of pore space and interfacial configuration models.

Physical characteristics of porous materials derived from capillary pressure curves
or sorption isotherms, such as pore size distributions, can only be said to be realistic
when the model from which they are determined is itself capable of explaining the
observed hysteresis.

Hysteresis shown by liquids entering and leaving pore space cannot be explained
as simply as that shown by liquids on non-porous materials (section 2.7.6). To date,
hysteresis has been attributed to a number of possible causes, but is generally understood
to be dependent on the interaction of wettability, pore geometry and saturation history.
Itis fair to say thatart the present time a full understanding of the mechanisms of hysteresis
is missing (Everett 1988).

3.5.1 Contact angle hysteresis and one dimensional models

Many attempts to characterise porous solids, model fluid flow or account for
hysteresis in porous media have represented the pore space as assemblages of one
dimensional tubes. most commonly by the capillary tube model. The spontaneous
invasion of pore space by a wetting fluid is a manifestation of the same capillary forces
that cause capillary rise in thin tubes, where the capillary pressure is given by the
Washbum equation:
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2c0cos0
« =~ TR
It is common practice for pore size distributions to be determined using the capillary
tube model by porosimetry, Kelvin analysis or, more recently, thermoporometry. The
hydraulic radius model finds use in a more general sense to compare similar media.

P

(2.45)

3.5.1.1 Porosimetry

In mercury intrusion porosimetry non-wetting mercury is forced into the pore space
under external pressure. This process is distinguished from suctional porosimetry where
a wetting liquid is used. In either case, if all pores are equally accessible then, at a
particular pressure, P, , only those with constriction radii given by

o 2 c;s o where J = %
will be filled. Each increment of applied pressure causes the next smaller group of pores
to be filled.

The measurement of pore size in this way was first proposed by Washburn (1921),
but did not find widespread acceptance until Ritter & Drake (1945) published the first

experimental work. Intrusion pressures of up to 60,000 psi were used.

R

The analysis of the data of volume penetrated versus pressure is as follows. If dV
is the volume of pores with radii between R,and R, + dR, and dV is related to R, by some
distribution function, D (R,) (usually normal or Gaussian), then

dVv. = D(R,)dR, 3.7
From the Laplace equation (2.30)
PdR, + R, dP, = 0O (3.8)
Combining 3.7 and 3.8 yields
' P, dv
DR) = %o (3.9)

D(R) is obtained from a plot of V versus P,. The accessible pore volume and the surface
area may also be determined from the data. Porosimetry (suctional, in addition to
mercury) is used on meso- to macroporous materials. Capillary tube model results can
compare well with BET analysis. It will not detect significant numbers of pores of less
than 5 nm in size even if extended to sufficiently high pressures.

Mason (1988a) (and others) objects to the use of the capillary tube model in
porosimetry as it gives pore size distributions in the region of the threshold (see Fig. 3.2)
that are so narrow as to be unlikely. Other debate concerns which value of the contact
angle to apply.
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3.5.1.2 Kelvin analysis

Kelvin analysis is analogous to porosimetry but makes use of Kelvin phenomena
in meso- to microporous media. The desorption branch of a nitrogen isotherm is used
in conjunction with the Kelvin equation (2.40) to determine pore size distributions.

The original analysis with the capillary tube model is due to Cohan (1938). He
assumed that the pore radius, R,, was equal to the Kelvin radius, 7,, given by

o= -2 (3.10)
RT In(P/P°)

Current procedures recognize the requirement to add an adsorbed film thickness, 1, to
the Kelvin radius (see Adamson 1976) giving

R, =1, + ¢ (3.11)

P
In order to evaluate R, values of ¢ must be obtained from a standard isotherm that is
either experimentally determined on a similar, but non-porous, surface or theoretically
derived.

The accuracy of Kelvin analysis is in doubt over what thickness of adsorbed layer
to add in addition to the on-going debate over the validity of the equation itself (section
2.4.2). Usually the contact angle is taken to be zero, but this assumption is also a matter
of debate (Everett 1988).

3.5.1.3 Thermoporometry
A porous material characterisation technique only developed over the last decade,
thermoporometry is a;

"method of textual characterisation which is based on the thermal analysis of the liquid/solid
transformation of a pure capillary condensate inside a porous body” (Quinson & Brun 1988).

Broadly, the method takes advantage of triphasic systems: liquid/solid/vapour capillary
condensates. When a porous solid is totally saturated the usually divariant triphasic
system becomes univariant; the curvature of the gas-solid interface being zero.

Like porosimetry and Kelvin analysis the method can be used for pore size
distribution, pore volume and surface area determination. It relies on equating the
curvature of a solid/liquid interface, /, to the pore radius by a relatonship between the
curvature and the equilibrium temperature, 7-

. TB
- - (2=
T = T, l a5, 4ushs) (3.12)



where T. :normal temperature of the triphasic equilibrium
o, - surface tension of the liquid solid interface
AS, : molar entropy of fusion
v, :molar volume of the liquid
and Jis = 2R,
The thermoporometric radius, R, is again different to the pore radius, R, due to
the existence of an interphase of thickness  made up of molecules which are not involved
in the thermal effect of the change of state.

3.5.1.4 The Leverett j-function

Although the shapes of capillary pressure curves vary from material to material,
they have several features in common and this has lead to attempts to devise some general
method to describe all such curves. Leverett (1941) approached the problem from the
stand-point of dimensional analysis, reasoning that capillary pressure should depend
upon porosity, £, interfacial tension, ¢ , and some kind of mean pore radius. He defined
a dimensionless function which is known as the Leverett j-function:

Jj@&,) = [@}Z(Sw) (3.13)

where k is the permeability of the porous solid, as defined by Darcy’s law, and relates
to the ease with which a fluid may be made to flow through a material by an applied
pressure gradient. The ratio of permeability to porosity is taken as being representative
of a mean pore radius. The ratio is related to the hydraulic radius R,, via the well known
Darcy and Kozeny-Carman equations and is the ratio of the volume of pore space to the
wetted area (Morrow 1970). .

For a given wettability, the Leverett j-function should be the same for each set of
geometrically and topologically similar porous media. The dimensionless "Leverett
number" is also used by some authors (for example, Melrose & Brandner 1974):

N, = IV (3.14)

where J = P /c; the curvature of a spherical meniscus.

The j-function finds application within the oil industry as a means by which the
capillary pressure curves measured on different cores from the same reservoir can be
compared (Anderson 1987a).

Most early investigators, such as Zsigmondy (1911), attempted to explain the
hysteresis phenomena on the pressure-saturation curves in terms of contact angle
hysteresis in cylindrical capillaries. Their analyses were shown to be deficient when
hysteresis in porous materials was found to be exhibited by wetting liquids, a phenomena
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not possible in capillary tubes (see for example Morrow 1976). However, the drainage
of wetting liquids from bundles of capillary tubes has been successfully used to model
drainage from real porous solids (see for example Washburn 1921, Purcell 1949).
However, the model has proved incapable of successfully accounting for imbibition
curves.

The simple capillary tube model is inadequate in at least three ways as a physical
description of porous media (Larson 1981)

i) The form "cos 8 " does not adequately describe the wettability behaviour
of real porous media.

ii) The model completely ignores the irregular geometry of real porous
matrices. ' '

iii) The model does not account for the branchiness of the actual pore space.

Despite the inadequacy of contact angles to fully describe capillary pressure
hysteresis in porous materials, there is little doubt that wettability can be a major factor
(Anderson 1987a). As described in section 2.7.6 the wettability which one fluid of a
fluid pair displays towards a flat solid surface is difficult to quantify in terms of an
unambiguous measurement of contact angle. The direct measurement of contact angle
within a porous material has not yet been achieved. The analysis of contact angle
phenomena in porous media is very complex and little experimental data exists.

Morrow, who's work on contact angle hysteresis on the rough surfaces of
non-porous media (1974) was described previously, has however conducted extensive
studies on contact angle phenomena in six sintered teflon porous media (1976). Air and
the pure organic fluids employed in the earlier study were used to vary the wettability
whilst the geometry was fixed. The use of PTFE media ensured that surfaces were
chemically inert, homogeneous and of uniform wettability.

Among Morrow’s findings were that drainage capillary pressure curves are almost
independent of contact angle for8 < 50° whilstimbibition curves showed no wettability
‘effects for @ <20° (these results are supported by experiments on oil field cores:
Anderson 1987a). He also found strong evidence that the flat surface contact angles for
receding menisci 8, , and for advancing menisci 0, , are those angles operative during
capillary invasion of porous media of homogeneous wettability, but that the situation is
complicated by roughness and pore geometry.

On a smooth surface the contact angle is fixed, but on the sharp edges found in
porous media this condition is relaxed and there are a wide range of possible contact
angles (Good 1979). Morrow (1970) postulates that most of the three phase contact line
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will be located at the sharp edges as at these edges the contact angle can vary without
moving the position of the contact line. Thus pore geometry will influence the three
phase line and can change the apparent contact angle. to

Although porous systems cannot be classified accordinthheir operative contact
angles they can be classified by their imbibition behaviour as wetted, intermediate or
non-wetted (Anderson 1987a). Porous media need not exhibit uniform wettability over
their entire internal surface. For example, surface heterogeneity within porous media is
almost the norm for oil bearing rocks and is certainly responsible for the observed
instances in which an oil field core imbibes both oil and water (Anderson 1987a).

Other, less regular, one dimensional models have been proposed for porosimetry
and drainage-imbibition and can partially account for the irregular geometry of real
porous materials. For example, Jenkins & Rao (1977) used an elliptical tube model for
mercury porosimetry in which the curvature of a meniscus was found from the hydraulic
radius of the tube. Different sized capillary tubes in series and cylindrical tubes with
constrictions (Svata 1971) have also been employed as models, but again in conjunction
with the Washburn equation.

A consequence of the normally irregular geometry of porous materials is that some
wetting liquid is retained after drainage: the irreducible wetting phase saturation. In
unconsolidated media most of this liquid is held as pendular rings around particulate
contacts and as liquid wedges in consolidated media. No non-angular one-dimensional
model can account for this phenomena as each model pore empties completely on
drainage. Mason & Morrow (1989) have noted some success in this area by using a
triangular pore model combined with an exact MS-P analysis for the interfacial
configuration. The model shows a distinct threshold, a significant hysteresis between
drainage and imbibition, and an irreducible wetting phase saturation. Angular models
of this type also have the advantage that under partially wetting conditions the
dependence of the MS-P curvature on contact angle is not given by the simplistic cos @
factor, but depends upon the particular geometry.

Despite the proven failings of both the capillary tube model and/or contact angle
hysteresis to account for capillary pressure (hydrostatic) hysteresis both still find
widespread application. Its simplicity is attractive, and few of the more complex models
provide quantitative results significantly closer to those observed in practice.

3.5.2 Independent behaviour and zero dimensional models

3.5.2.1 The ink bottle effect

Contact angle hysteresis, though important, cannot entirely account for capillary
pressure hysteresis. A fluid pair for which the intrinsic contact angle, 0, , is zero has no
rough surface contact angle hysteresis yet considerable capillary pressure hysteresis is
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still seen (Morrow 1976). At least part of this remaining hysteresis s attributable to what
has become known as the ink bottle effect (see for example, Haines 1930 and Melrose
1975). ‘ '

As a meniscus or two-fluid interface passes through the converging-diverging
geometry that comprises an ink bottle pore, it is subjected to local expansions and
contractions as the cross-section changes during motion. Consequently the meniscus is
compelled to adopt instantaneous shapes which represent considerable departures from
equilibrium. The meniscus passes through such shapes rapidly but continuously, and
performs "Haines jumps" (so called after their discoverer, Haines 1927). An alternative
designation of rheon has been suggested (Morrow 1970, Melrose & Brandner 1974).
The accompanying energy dissipation is a source of capillary hysteresis. These jumps
are manifested by pressure fluctuations during drainage or imbibition.

DRAINAGE  IMBIBITION

L "

Figure 3.13 - Hysteresis in capillary rise due to pore geometry illustrating the ink bottle effect.

Consider a variable radius capillary tube with a circular cross-section as shown in
Figure 3.13. To drain completely wetting fluid from the tube requires drawing the
meniscus through small cross-sections. Thus the drainage capillary pressure is given by -

P, = 20, (3.15)

where r, 1s the radius of the smallest cross-section. The rheons correspond to a process
in which the wetting phase saturation is decreasing and are called xerons. To imbibe, on
the other hand, requires that the meniscus be drawn back through the larger cross-sections
so that

P,, = 20 (316}
where r, 1s the radius of the largest cross-section. Here, the increasing wetting phase

saturation classifies the rheons as hAydrons. Since pores in real porous media are certainly
of variable cross-section, ink bottle hysteresis is to be expected.



The pressure fluctuations caused by Haines jumps can be seen easily with
converging-diverging capillaries and with packings of spheres (Morrow 1970). In media
having very fine pores or particles these pressure fluctuations are generally too small to
be observed, but ink bottle hysteresis will be present.

If an ink bottle pore is stacate (dead-end) then liquids may become entrapped. This
phenomenon is particularly apparent with non wetting liquids such as mercury, used in
porosimetry experiments (Adamson 1976), and oil ganglia in displacement studies
{Anderson 1986b). Consideration of entrapment was a factor in the choice of mercury
intrusion, as opposed to extrusion, for pore size distribution determination.

The ink bottle effect illustrates a mechanism of capillary pressure hysteresis, but
converging-diverging models with only a one dimensional transport direction are still
limited in accounting even qualitatively for hysteresis.

3.5.2.2 The Independent Domain Theory

Discussions of hy;stcresis indicate that information about the pore structure 1s
contained not only in both the ascending and descending branches of the hysteresis loop,
but also in the families of adsorption and desorption (or drainage and imbibition)
scanning curves within the loop.

Hysteresis can be regarded as representing the macroscopic behaviour of a porous
medium, whilst it is reasonable to assume that the mechanisms responsible for hysteresis
must, like Haines jumps, occur at amicroscopic level. Everett and co-workers (see Everett
1958) proposed such a mechanism where the net behaviour of the whole medium is
governed by the average behaviour of a set of micro-systems or domains.

The independent domain theory can be thought of as an extension of the ink bottle

“effect. It regards the difference between the pressures at which ink bottle pores fill and
empty as the prime cause of hysteresis. The interconnected void space within a medium
are regarded as being sub-divided into a sertes of voids or cavities which are connected
together via smaller openings usually called windows. If the cavities and windows vary
in size, then for a small change in pressure only a small fraction of cavities will empty
or fill.

Everett’s domains consist of those elements of the medium that fill at a particular
pressure, P,, and empty at another particular pressure, P,, independently of other
elements. The associated volume change, V, is the third characteristic variable. A plot
of the function V(P,,P,) produces a surface in three dimensions from which it is possible,
in theory, to calculate a family of adsorption scanning curves from a family of desorption
curves and vice versa.
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The independent domain model accounts qualitatively for a wide fangc of
properties of systems exhibiting hysteresis. However it does not always give a
satisfactory quantitative representation. The model has been verified in a number of
systems including the wetting-dewetting of rocks (Lai et al. 1981) and in soils
(Poulavassilis 1962), but it breaks down completely in others (see for example Topp &
Miller 1966, Topp 1969, van Brackel & Heertjes 1978).

Morrow (1970) attributes the weakness of the independent domain theory to two
fundamental causes:

i) The assignment of draining and filling pressures to a given region can be
unrealistic as displacement pressures are also determined by phase continuity
and accessibility, so called dependent behaviour.

ii) Pore space cannot be divided into volumetric zones which show one to -
one correspondence with respect to drainage and imbibition behaviour.

3.5.3 Dependent behaviour and two and three dimensional models

Problems in the independent domain theory centre on whether Everett’ s assumption
that the domains are independent is justified. Independent behaviour is relatively obvious
for the adsorption of a gas in porous media. The gas is able to penetrate into every
connected cavity independently of the behaviour in neighbouring pores. However, many
other processes exhibit dependent behaviour, such as network and pore blocking effects.
In the desaturation of capillary condensed gases and drainage processes pore blocking
effects, or neighbouring pore effects, can be important. This effect is illustrated in Figure
3.14, where a pore cannot empty until at least one of its near neighbours has emptied,
indicating dependent or co-operative behaviour.
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Figure 3.14 - Nlustration of the "pore blocking effect”. Pore A will empty when a meniscus can pass
through throat constriction B. The drainage is thus not solely determined by the immediate
characteristics of pore A, but depends on its "neighbour”.




That pore blocking may account for the inaccuracies within the independent domain
theory was recognized quite early at the Colston symposium by Barker (1958) and by
Everett himself (1958). Since this time methods have been developed that account for
pore blocking effects and liquid entrapment with the use of randomly interconnected
models of the pore space.

Neighbouring pores may also cause distortions of pore size distributions. With the
application of the MS-P theory in regular sphere packings Mason & Morrow (1984b)
have shown that drainage of one pore can effect drainage of its neighbour by altering
boundary conditions. This can result either in simultanecus drainage of both pores or,
if the neighbouring pore remains filled, its drainage curvature may be reduced. Both
these mechanisms will tend to cause pore sizes estimated from capillary pressure data
to be narrower than that given by the geometrical structure of the packing.

Diametrically opposed to the independent domain theory is the idea that the whole
of hysteresis can be explained by nerwork effects. The implication is that each cavity
within the pore structure has at least one window to it with the same radius of the cavity
so that the filling and emptying of a single pore is reversible (Everett 1988). This has
been demonstrated for a random sphere packing by Mason (1971).

Models made up of contacting spheres have several useful properties; including
network effects (co-operative behaviour) and ink bottle hysteresis. The use of packed
sphere models to account for hysteresis and other porous material phenomena has, like
the capillary tube model, a long history. In 1897 a soil scientist, C.S. Slichter, published
the first proposal for such amodel, comprised of regular lattice packings of equal spheres.

-This model is now known as the ideal soil model. Slichter was attempting to calculate
the dependence of the saturated permeability of a soil on its particle size and porosity.
His attempt was only partially successful and until recently most work in this area has
employed simpler models based on cylindrical tubes.

In the 1920’s the ideal soil model was first applied to capillary pressure hysteresis
by way of a long running controversy over points of mathematical detail between W.B.
Haines (1925, 1927, 1928, 1930) and R.A. Fisher (1926, 1928). Haines had the last word,
but boths’ points were proven lacking in the end! Some years later packed sphere models
were applied to hysteresis in capillary condensation (Higuti & Utsugi 1952, Carman
1953) and mercury porosimetry (Kruyer 1958, Mayer & Stowe 1965, 1966).
Development of the regular and random model continue to the present day in all three
areas (see Haynes’s 1975 review for details and for more recent developments Unger et
al. 1988). ,

Sphere packed models have yet to yield much in the way of quantitative
explanations of hysteresis in real media. They suffer from several drawbacks: there are
no pore blocking effects in the regular model and also very little experimental data.
whilst the theory for the irregular model remains thin, but the experiments numerous.
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In common with other geometrically non-simple models it is very difficult to determine
interfacial configurations of menisci. This has proved a major drawback to the -
development of packed sphere models (Haynes 1975).

Recent thinking on hydrostatic hysteresis in porous materials concludes that it
seems more likely that the hysteresis mechanism is most porous media will be a
combination of both network and domain behaviour. Aspects of the behaviour of a fluid
in a porous medium can be determined using a two or three dimensional network model
and statistical "percolation theory"” (see for example Chatzis & Duilien 1977, Larson &.
Morrow 1981, Larson et al. 1981).

With the application of percolation theory, together with a model of the connectivity
of the pore space in terms of a Bethe tree of sites (cavities) and bonds (windows), Mason
(1988b) has shown that hysteresis depends on the distribution of both cavity and window
sizes and on the connectivity of the network. Dependent behaviour in this model, is
present except along the adsorption boundary curve and during the refilling of pores that
have been emptied in a desorption scanning curve. A detailed analysis of experimental
data obtained for xenon sorption in porous glass supports Mason’s theory.

3.6 SUMMARY

The above discussion serves to broadly illuminate the study of porous materials -
a major area of application of capillarity. The complicated relationships between
characterisation on the one hand, and the practical performance of porous media on the
other have been considered. The importance of modeling, both of the pore space and of
the capillary surfaces it may contain, has been illustrated. The review concentrates on
only one of the many processes to which models must be applied in order to comprehend
observed phenomena. That the understanding of hysteresis is incomplete and some of
the evidence contradictory is indicative of not only the wide diversity of porous material
types, but of the complexity of fluid/fluid behaviour in the pore space.
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CHAPTER 4

Interfacial configurations

4.1 INTRODUCTION

The shape of fluid/fluid interfaces are important in instances where the capillary
properties of a liquid or liquids dominate. In chapter 3 many processes that occur in
porous materials were shown to be dependant on capillary properties of liquids contained
in the pore space. Outside the study of porous media the configurations of liquid interfaces
are significant in diverse areas such as the shape and stability of liquid .drops, the
waterproofing of fabrics, solderability of electrical wires and the design of storage tanks
for use in space.

Table 4.1 summarises some of the areas where interfacial configurations play a
substantial part together with introductory references to the literature. Note that in many
of the areas mentioned the detailed shape of the interface is not required, merely its mean
curvature. Once the curvature is known other parameters can be obtained such as the
volume of liquid, the surface area of the interface or the forces acting on the solid surfaces.

The shapes of the fluid interfaces encountered in the areas highlighted in the Table
4.1 vary from simple constant curvature surfaces - like drops in space - to highly
complicated configuratons such as those contained within many porous media. To
theoretically predict the shape of any fluid interface requires the solution of the Laplace
equation (or the Kelvin equation for adsorption phenomena).

In section 2.4.3 some solutions of the Laplace equation were given for menisci in
cylindrical tubes, for both constant curvature and gravity distorted menisci, in the context
of capillary rise. The approximate nature of some of the equations (for example the
Rayleigh equations; 2.49 and 2.51) for these moderately simple systems is indicative of
the difficulties encountered when predicting the shapes of more complicated menisci. It
is in order to avoid these difficulties that such gross approximations are employed in
some pore space models (section 3.4).

Since its inception in 1805 there have been many attempts to solve the Laplace
equation to yield the exact shapes of liquid interfaces when their configuration is not
straightforward. The majority of this work has involved the behaviour of drops and
bubbles where an axis of rotational symmetry greatly simplifies the problem. Only
recently have techniques been developed that, in principal, enable the computation of
the shapes of fluid bodies that are neither rotationally or translationally symmetric. Much
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Table 4.1 Areas where the interfacial configurations of fluid interfaces have an important role. Some
specific applications are shown logrther with references containing details.

Subject

References

MEASUREMENT OF LIQUID PROPERTIES

Interfacial tension
Contact angle

on fibres
Solderability

EQUILIBRIUM & STABILITY OF BUBBLES & DROPS

Retention of pesticide sprays on leaves
Condensation of drops in a condenser

POROUS MATERIALS

Enhanced oil recovery
Blob mobilisation
Connate water distribution
Threshold pressure
Behaviour of foams

Fluid flow
Two phase laminar flow

Characterisation
Porosimetry
Adsorption-desorption
Drainage-imbibition

Wetting and Capillary rise
Sap rise in trees
Wetting & wicking in paper & textiles

Soil studies and hydrology
Determination of soil saturation
Deformation of moist soils

Adhesion of dust & powder to surfaces
Dispersion of pigments & wetting of powders

Film t%rmation from latices

Heterogencous catalysis

Liquid phase sintering of finely divided metals and polymers
Mechanical dewatering of powders and sluge

Porous electrodes

Rising damp

Tensile strength of moist powders

Waterproofing of fabrics

MISCELLANEQUS

Coating processes on wires and filaments
Crysta]g growth from the melt

Detergency

Floation

Proposed Spacelab experiments

Storage tank design for use in space

Jaycock & Parfitt '§7

Neumann & Good *79

Carroll '76, Herb et al. 83
Schumacher et al.’45, Shipley 75

Boucher *80 Michael & Williams "81

Furmidge *62
Graham & Griffith '73

CHAPTER 3

Latii *80

Mason & Yadav '83

Morrow ’71

Thomas et al. *68

Mast *72, Ransohoff et al. *87

Greenkorn 83
Legait '83

see
chapter 3

van Brackel *75
Pickard '81
Princen *69b, Schwartz '69

Emmerson et al. '78
Haines 25, Fisher '26
Haines '25, *27 Fisher 26

Zimon '69

Carman 53

Keey '72

Sheetz *65, Mason *73
Youngquist *70
Heady & Cahn '70
Fricke et al. ' 73

Katan & Grens ’71
Mason '74

Clark & Mason '67 Mason '72
Adam '58

Carroll 84
Tatarchenko *77
Jaycock & Parfitt '87
Kitchener '77
ESA'76

Petrash & Otto 64
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of the complexity of the various analyses arises from considering the interface to be
distorted by gravity, to be in converging-diverging geometry or to be in
non-axisymmetric tubes.

For fully three dimensional interfaces the Laplace equation must be solved in the
form of a non-linear, partial differential equation for either specific or free boundary
conditions. Todate only a small number of successful studies have been published. These
depend heavily on the choice of specific boundary conditions: the solid geometry, the
location of the three phase line and the solid/fluid contact angle. The methods employed
are t0o time consuming to be employed on a regular basis and it is for this reason that
techniques giving quick, reliable approximations of interfacial configurations still find
widespread applications.

Over the following pages, common solution methods for the shapes of capillary
surfaces are discussed in terms of the geometry of the interface and the solid that bounds
it. The limitations of the methods are highlighted. There appear to be no texts that cover
this area adequately, but much of the information presented here is discussed in reviews
by Boucher (1980} and Michael & Williams (1981) (axisymmetric surfaces) where
details of the solution methods can be found. Brown (1979) gives a detailed analysis of
finite element methods (FEMs) used for some non-axisymmetric surfaces.

4.2 CLASSIFICATION OF INTERFACIAL CONFIGURATIONS

Michael & Williams (1981) classify (axisymmetric) capillary surfaces according
to the nature of the force field governing the equilibrium:

i) Menisci supporting a constant or zero pressure difference as, for example,
with soap bubbles and interfaces between neutrally buoyant fluids.

ii) Interfaces between two fluids of different density in an external
gravitational field, characteristic of drops or bubbles formed in immiscible
fluids of different densities under ordinary terrestrial conditions.

iii) Equilibrium studies describing menisci formed at the surface of rotating
bodies of fluid.

iv) Equilibrium of the meniscus under the action of electrostatic fields in

which the electrical stresses enter into the force balance at the meniscus
surface.

For the purposes of this study only the first two classes are considered, but in addition,
the shape of the solid geometry bounding the meniscus is important as this determines
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the nature of the problem - solution with free or fixed boundary conditions. Table 4.2
shows capillary surfaces classified in this way with indications of the degree of difficulty
encountered when solving the Laplace equation.

The exact equations governing an interfacial configuration are definable, but can
only be solved analytically for a few simple cases. Usually solution is effected using
non-exact numerical integration techniques. The equations may require simplification,
particularly with the more complicated shapes. The near-exact solutions referred to here
are distinguished from the approximate configurations discussed in chapter 3 by the
much reduced level of approximation,

4.3 REVIEW OF PAST SOLUTIONS
4.3.1 Axisymmetric interfaces

Classes 1 and 2 (Table 4.2) are comprehensively covered by the reviews and the
following notes merely serve toilluminate the main solution methods and shapes covered.

4.3.1.1 Surfaces bound by uniform geometry

The simplest interfacial configurations are contained in this class - the classic
example is the mentiscus in a cylindrical capillary tube. Solution is moderately simple
owing to the axis of symmetry and the uniform geometry.

a) Gravity free interfaces

Boucher (1980) gives the five basic meridians from which undistorted
axisymmetric menisci take their shape. These capillary surfaces have constant mean
curvature and are the cylinder, sphere, catenoid, nodoid and unduloid.

A meniscus bounded by & cylindrical tube is fully described by a single radius of
curvature and is a sphere section. The Laplace equation may be written

AP = 20ir (2.24)

Fluid/fluid interfaces meeting a plane wall are also described by a single radius of

curvature, that of a cylinder, the second principal radius of curvature being infinite, hence

AP = olr “.n

The Wilhemy plate method of interfacial tension and contact angle measurement makes
use of this property.

The remaining meridians are obtained by rolling an ellipse or hyperbola along the

axis of symmetry to solve a non-linear differential form of the Laplace equation where
the mean curvature J, is given by
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Table 4.2 Classification of interfacial configurations by rotational symmetry, the presence
of an external force field, and shape of the solid geometry across the three phase line: degrec
of difficulty and common method(s) of solution are shown,

j h —
Shape of Force Solid geometry bounding meniscus
meniscus field Uniform Converging-diverging
{fixed boundary problems) | (free boundary problems)
]
1(a) 2(a)
Simple. Moderately simple.
No
Analytical solution. Some
Axisymmelric analyticat solutions.
surface 1(b) 2(b)
Intermediate. Moderately complicated.
Yes
Numerical solutions. Numerical or approximate.
solution
J@ 4
Moderately simple. Very complicated.
No
MS.P theory
Non- (this study).
Axisymmetric Ib)
Complicated. Few numerical
Yes sotuttons - mostly
Numerical or approximate approximate.
solution.
I, ——
d’y/dx?  dy/dx
b4 + b4 = AP/G 4.2)

U+ x{1+@xidy)

incartesian coordinates. Equation 4.2 solves analytically foreven quite complex interface
shapes such as drops on cylindrical elements (Carroll 1976}, but involves elliptical
integrals of the first and second kind.

b) Gravity distorted interfaces

For a capillary surface in a gravitational field it is not possible to solve the Laplace
equation analytically regardless of the geometry. The mean surface curvature now
depends on the vertical position, z, but the interface has minimum surface energy.

Interfacial configurations are represented by rotated sections of distorted nodoid
profiles - sessile drops and captive bubbles, distorted unduloid profiles - pendant drops |
and emergent bubbles, catenoid shapes - holms, and liquid bridges between solids - light
and heavy bridges. To obtain the exact interface shape requires solution of eq. 4.2, but
with an added term:
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Bz+2 L = d'e/dr’ + dz/tx (4.3)
’ {1+@/dz)}”  x{l+(dwdz)}"”

where B = glL’p/o - the Bond number

L = some characteristic length of the system

J, = Jatz=0
This equation can usually be solved by employing a numerical integration method such
as that of Runge-Kutta-Merson or Adams-Bashforth-Moulton. Bakker (1928) reviewed
early attempts at solution. The Bashforth and Adams tables (section 2.4.3) were obtained
in this way. With the advent of powerful computers their tables have been updated and
considerably extended: Paddy (1971) has made available a 400 page book of them and
Boucher et al. (1987) a computer program. Huh & Scriven (1969) cover some surfaces
that do not cross the axis of symmetry, called unbounded menisci (such as the
rod-in-a-free-surface system).

In recent years many attempts have been made to compute the profiles of menisci
not covered by the existing tables, see for exampie Pitts (1974), Michael & Williams
(1976), Hartland & Hartley (1976), Boucher (1978) and Boucher & Evans (1980) (parts
iv and xii of a series of solutions for various shapes). Sometimes boundary conditions
must be restricted in order that the mathematics are tractable.

Another approach, that also appears to hold promise for systems lacking simple
symmetry (see sections 4.3.3 and 4.3.4} is that of Orr et al. (1975a). They have presented

"a solution obtained by a finite element method (FEM) for the case of a
rod-in-a-free-surface that shows good agreement with that of Huh & Scriven.

4.3.1.2 Surfaces bound by converging-diverging geometry

Solving for the shape of capillary surfaces in converging-diverging geometry (such
as the spacé between spheres) requires the solution of equation 4.2 or 4.3 with a free
boundary: the location of the three phase line not now known. This added difficulty has
restricted the systems studied to those involving simple geometric shapes like spheres
and cones.

a) Gravity free interfaces.

Each of the five constant curvature meridians have been applied to the problem of
pendular rings between contacting spheres (or the half problem of a sphere and a plate).
Clark, Haynes & Mason (1968) approximated the sphere-on-plate system by assuming
that the liquid bridge configuration to be a cylindrical toroid instead of the actual nodoid.
Mason & Clark (1965) had earlier given an exact solution for zero force fluid bridges
between two unequal spheres (that formed with two immiscible liquids of equal density).
In this case the bridge profile is an arc of a circle and the surface part of a sphere.
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Melrose (1966) and Erle er al. (1971) gave some exact analytical solutions for
nodoid and unduloid bridges between equal spheres, but the problem was not covered
comprehensively until 1975. Orret al. (1975b) gave analytic forms for constant curvature
meridians of unduloids, catenoids and nodoids for all possible types of pendular rings
between a sphere and a plate. By allowing for different con:act angles at the sphere and
plate Orr et al.’s analyses can also be applied to the two sphere system.

b) Gravity distorted interfaces

The shapes of capillary surfaces in this class can be obtained with similar methods
to those of class 1 (b), but the equations have an extra degree of freedom that often forces
simplifying assumptions to be made. Boucher and co-workers have applied
phenomenological, thermodynamic and variational approaches, together with numerical
computation to systems involving spheres (Boucher 1978, Boucher & Kent 1977a, 1978
see also Hotta et al. 1974) and cones (Boucher & Kent 1977b, Boucher & Jones 1982).
Benjamin & Cocker (1984) have presented solutions for free boundary problems arising
from liquid drops suspended by soap films.

4.3.2 Non-axisymmetric interfaces

When the geometry of a fluid/fluid interface and/or its fluid/solid boundary is not
definable in simple mathematical terms (i.e. one parameter) the exact solution of the
partial differential form of Laplace equation is, at best, difficult and, depending on the
complexity of the geometry, can be impossible. To date very few successful studies
predicting the shapes of non-axisymmetric interfaces have been published. Potential
applications of these classes are however abundant, particularly within the field of porous
materials’. The literature that is available has not been well reviewed although Brown
(1979) and Concus & Finn (1974) discuss general problems relating to gravity distorted
capillary surfaces in complex geometries.

4.3.2.1 Surfaces bound by uniform geometry

This class comprises any fluid/fluid interface that does not possess a rotational axis
of symmetry, but that is bound by uniform non-axisymmetric geometry. Simple examples
are a meniscus in a square tube or a surface between two spaced cylinders.

* The likelihood of a method being developed for the prediction of interface shapes in 2 porous material
of non-trivial internal geometry is remote. The location of the three phase line is unknown a priori and
the contact angle boundary condition is also free as the interface is likely to form at solid edges where the
contact angle on a flat surface has no meaning (section 3.5.1). However the shapes of menisci in these
classes couldfof considerable aid in simple and model media.

be
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a) Gravity free interfaces

For any fluid interface where gravitational effects are negligible and the solid
geometry non-converging-diverging a moderately simple, but non-trivial, method
atiributable to Mayer and Stowe (1965) and Princen (1969a) can be used. It is known
as the MS-P method (after Mason & Morrow 1984a). 1t is exact for interfaces in this
class, solves analytically for some simpler cases and by straightforward numerical
iteration (not integration) in any system where the geometry can be defined. The
experiments performed as part of this study examine the method, the basis of which will
be discussed in detail later (Chapter 6)

" The MS-P method can be applied to a wide variety of tube shapes, including
configurations in which the cross-section does not define a closed region. It yields the
exact shapes of the unbounded cylindrical menisci that form in wedge like corners or
between spaced uniform elements and the mean curvature of other undistorted surface
configurations. No other solution method has been employed for surfaces in this class
when the boundary conditions give rise to unbounded menisci, called wedging systems.
Exact curvatures may be found with the hydraulic radius method (section 3.4.1) if the
system is non-wedging. Tables 4.Jp-and 4.3 detail all the systems for which the shapes
of interfaces have been calculated with the method.

b) Gravity distorted surfaces

To predict the shape of a non-axisymmetric, gravity distorted meniscus requires
the non-linear, second order, partial differential form of the Laplace equation to be solved
in fully three dimensions. If in cartesian coordinates the elevation of the surface is
z =z(x,y) the mean curvature, J, is given by

2
(1+z)z,—2z,z,z, +(1+ zf)zn

¥o= (+2+2)" = N o
where the unit vector V = id/lox +joidy
and N = (k-iz,—jz,)(1 +z,2+zy2)m
Thus the form of the Laplace equation that must be solved is

B: + 2JL = -V-+N (4.5)

Hartland er al. (1982) avoided the problem posed by this equation by only
considering slight deviations from asymmetry and obtained near-exact solutions for a
cylindrical rod in a cylindrical tube. Full solutions in this class are few in number and
then only for carefully selected configurations and boundary conditions. Most of these
are attributable to a single "school” of authors.



Table 4.3 Closed interfacial configurations whose behaviour has been predicied by the MS-P
method. All references shown contain the equations in solved form and ali solutions are for
geometry of uniform wettability.
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Reference(s) Solid geometry Contact Geometric variables
angle
Princen "69b Equilateral triangular Zero -
tube
Singal & Somerton "70 Equilateral triangular Variable -
Ransohoff et al. '87 tube
Mason & Morrow 89 Triangular tubes Zero Tube shape factor
' (area/penimeter?)
Princen '69b Square tube Zero -
Lenormand 81 Square tube Variable -
Legait & Jacquin 82
Legait '83
Lenormand et al. *83 Rectangular tubes Zero Tube aspect ratio
(depth/width)
Mason & Morrow 84a Kite shaped tube Zero -
Mason & Morrow *84a Polygon tubes Variable  No. of tube walls
Mason & Mormrow *84a Rod in a right-angled Variable -
comer
Mason & Morrow "84a Two equal rods and Zero -
a plate
Mason & Morrow 83 Two equal rods and Variable -
a plate
Mason et al. '88 Two unequal rods and Zero Rod radius ratio
a plate
Mayer & Stowe '65 Three equal rods Variable -
Mason & Morrow ‘86 Four equal rods Zero Cell angle
Mayer & Stowe '65 Four equal rods Variable  Cell angle

The few early studies were restricted to quite symmetrical configurations. Petrov
& Chemous’ko (1966) used a numerical method of "local vaniation” to yield the shape
of a capillary surface in a "rectangular parallelepiped”. Concus & Finn (1969, 1970),
mathematicians, were interested in the basic properties of the Laplace equation, they
considered the shape of an open capillary surface in a wedge with varying corner and
contact angles. They showed that at a comer or vertex the meniscus elevation is
unbounded if the liquid surface cannot meet the contact angle boundary conditicn on
the two solid surfaces that intersect there - a property utilised by the MS-P method.

Most of the remaining solutions in this class stem from the work of Orr and
co-workers (see Orr et al. 1975a) who have successfully applied the Galerkin finite
element method to such problems. This method of numerical integration has proved more
suitable than finite difference techniques. However the mathematics involved is
complicated and long durations of computer time are required for each solution. Broadly,
the surface is



Table 4.4 Open interfacial configurations whose behaviour has been predicted by the MS-P
method. All references shown contain the equations in solved form and all solutions are for
geometry of uniform wettability.
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Reference(s) Solid geometry Contact  Geometric variables
angle

Princen "70b Wedge Variable  Angle at apex

Princen '69a One rod away from a Zero Rod-plate spacing

Mason & Morrow "87 plate

Princen '69a Two equal rods Vanable Red-rod spacing

Mason & Mormow '87 Two equal rods and a Zero Unequal rod-plate
plate spacings

Mason & Morrow "84b Three equal rods Zero Unequal rod-rod

spacings

Princen "69b, 70 Three equal rods in Variable Rod-rod spacing
an equilateral array

Princen '69b Three equal rods in an Variable Rod-rod spacing
infinite equilateral
array

Dodds 78 Three unequal rods Zero Unegual rod-rod

spacings

Princen '69b, *70a Four equal rods in Variable Rod-Rod spacing
an square array

Princen '69b Four equal rods in an Variable Rod-rod spacing

infinite square array

approximated by a set of small polygonal elements or subdomains (triangular and
rectangular systems have been used). Inside each of the elements the solution is obtained
by interpolating linearly between distinct values of the solution at nodes (comers) of the
polygon. The solution moves stepwise from element to element. Relaxation techniques
may also be required. |

The FEM solutions do not give the mean curvature of the surface as their derivatives
are only "piecewise continuous”. The mean curvature may, however be estimated from
the elevation and the Laplace equation itself. Difficulties arise with the FEM and
unbounded menisci as the domains become of infinite extent. This problem has been
overcome for rods-in-a-surface systems although no solution has been put forward for
unbounded surfaces that can arise in the wedge like corners of angular tubes.

The following Class 3 (b) interfacial configurations have been found using this
FEM: cylinders in an infinite square array (Orr ez al. 1975a), and square pins in an infinite
array (Orr 1976, Orr, Scriven and Chu 1977) at given spacings and for unbounded menisci
around a single elliptical cylinder (Orr, Brown & Scriven 1977) and around two spaced
circular cylinders. All the above solutions allow variation in contact angle.
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Larkin (1967) attempted a solution for the seemingly simple case of a drop on an
inclined plate using a finite difference method. His success was limited and he avoided
the elliptic nature of the problem by sacrificing boundary conditions. However the
problem aroused the interest of Orr and co-workers. Brown, Orr & Scriven (1980)
published a full solution assurﬁing the three phase line was of a known circular shape,
this analysis was later confirmed in Japan (Tuskada et al. 1982). Lawal & Brown (1982a,
b) extended the analysis to include drops whose line of contact has'an oval shape. Even
with this modification it has been shown that as a model of real drops the assumptions
over the three phase line make applications very limited (Nguyen et al. 1987).

Recently Brown et al.’s analysis has been further extended by Rofcnberg et al,
(1984), who assumes that the drop is slowly sliding down the plate. Their boundary
conditions along the line of contact are described in the form of a functional relationship
between the contact angle and the velocity of the three phase line. They claim close
agreement with observed drop profiles.

4.3.2.2 Surfaces bounded by converging-diverging geometry o

Solution is now further complicated by the free solid boundary. To the besg,{my
knowledge only one publication presents successful solutions of the Laplace equation
for capillary surfaces in this class. Orr, Brown & Scriven (1977) propose solutions for
gravity distorted interfaces formed between an infinite square array of cones and two
different solutions for spheres in a three dimensional regular square array. Again the
FEM was employed, but with an additional iterative routine required to locate the three
phase line. The solutions for the spheres represent two distinct stable meniscus
configurations for a given pressure at the datum level, depending upon which level of
spheres is wetted by the interface.

Unlike the solutions they earlier obtained for simpler configurations, Orr et al. rely
on substantial restrictions of the natural boundary conditions such as the contact angle.
It remains to be seen whether these difficulties can be overcome and if the FEM finds
applications elsewhere such as in detailed investigations with the ideal soil model and
less regular porous media.

44 SUMMARY

Capillary surfaces have been classified according to their symmeiry, the solid
geometry by which they are bound and the presence of a force field. The solution of the
Laplace equation for the interfacial configuration varies from being trivial to extremely
complicated even though past studies concentrate on surfaces between geometrically
simple solid objects. '
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The difficulties of solving the Laplace equation for gravity distorted surfaces or
menisci in converging-diverging geometry accounts for the gross approximations of
some interfacial configurations assumed in pore space models (section 3.4) and the
relative simplicity of their solid components (section 3.3)

The above classification and the discussion that follows it show how the MS-P
method fits into the study of interfacial configurations and illustrates the uniqueness of
the method in the systems to which it may be applied.
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CHAPTER S

Review of past applications of the MS-P method

5.1 INTRODUCTION

The MS-P method was first propased over twenty years ago, by Mayer & Stowe
(1965) and separately by Princen (1969z), but for much of the intervening period it has
been sparsely employed in the literature. The potential applications of the MS-P theory
are numerous, covering many of the areas listed earlier in Table 4.1. This has not gone
entirely unnoticed by all researchers, wizh the work of both Mayer & Stowe and Princen
receiving citations, indicating its promise in several different areas of capillarity. As yet
the method has only actually been applied in a few areas and then not extensively. Recent
years have however seen growing udlisation of the method.

There have been four principal areas of application; those for which the method
was originally developed - mercury porosimetry and capillary rise - and two other related
areas in the study of porous materials - fluid/fluid displacement and in attempts to explain
hysteresis.

In section 3.4 the Mayer & Stowe - Princen method was introduced through its
application as an approximate model for interfacial configurations in porous materials.
Chapter 4 has introduced the type of capillary surface whose exact shape the method
can predict and illustrated how the method cbmpliments other techniques for the
determination of interfacial configurations. Before discussion of the theory in detail (in
chapter 6) other previous applications are reviewed. Note that the relevant literature
conceming capillary pressure hysteresis was reviewed in section 3.5.

5.2 MERCURY POROSIMETRY
5.2.1 Mayer & Stowe’s study -

Mayer & Stowe (1965) presented the first correct derivation of what is here called
the MS-P theory®, but mistakenly thought it gave exact interfacial configurations in the

* Two years previously Frevel & Kressley (1963) had proposed a similar solution, but their expression
of the Laplace equation (containing a cos 8 factor) is incorrect and their algebra mistaken. That the authors
arrive at an identical equation to Mayer & Stowe must be regarded as somewhzai fortuitous (see Haynes
1975).
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converging-diverging geometry of regular sphere packings. Their analysis begins with
a simplified form of the free energy expression for a fluid/fluid interface (eq. 2.59). Their
relationship for the work associated with infinitesimal displacements of the surface reads

P:dv = O'dALV + GSLdASL + GSVd'AS (5.1)
where P, is the breakthrough, or threshold, pressure. Mayer & Stowe proceed by

assuming that at the point of instability, beyond which a mercury interface passes
spontaneously through the pore throat, the three phase line (SLV) lies in the plane
containing the spheres centres that define the pore constriction (see Figure 5.1). Since
the pore walls are approximately parallel near this plane it follows that the interface is
of approximately constant shape. Thus dV will be proporional to A, the cross-section
of the mercury in the plane of sphere centres, and the three dA terms will be proportional
to the lengths of the perimeters in that plane of the liguid/vapour and liquid/solid
interfaces, P,y and Ps; respectively.

side views

Figure 5.1 - Mayer & Stowe model for mercury intrusion between spherical particles.

By introducing the Young equation and making use of the fact that dAg, =—dA,,

Mayer & Stowe arrive at the expression

PCA = G(PLV_PSL COs 9) (5.2)
Defining P, = P —Pgcos0 gives;
P,
P, = o2& (5.3)

€ A
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Note the similarity of equation 5.2 to the Gauss equation. Haynes (1975) comments that
whereas the Gauss equation, relating area to interfacial curvature, J, is in differential
form,

JdV - dALV - dASL COSB (2.69)

the Mayer & Stowe treatment implies an integrated form

One further unsubstantiated assumption of the Mayer & Stowe analysis is that the
intersections of the plane of sphere centres with the liquid/vapour interfaces are portions
of circular arcs. The implication is that the pendular rings around the sphere contacts are
toroidal when in fact they will be nodoidal (section 4.2.1.2).

Bell er af. (1981) note that for situations where cos@#1 (i.e. 020, 180°) there
will be significant deviation of the three phase line from the plane of sphere centres that
will cause the actual curvature to differ from that calculated by Mayer & Stowe. Bell ez
al. conclude that in general this difference will be small, thereby explaining experimental
confirmation of Mayer & Stowe’s results at contact angles of 140° .

Mayer & Stowe proceed to show how porosimetry data can yield a particle size
distribution with use of their results. The term P,4/A is a function of the packing angle
of the powder bed and the mercury contact angle. They calculated this ratio for all possible
packing angles for pack porosities ranging from 0.25 to 0.48 and contact angles from
180° to 100°. Thus once the correct P /A value is chosen from the Mayer & Stowe table
the radius of the particles defining the pores which are penetrated can be directly derived
from the experimental intrusion pressure.

At each intrusion pressure the mercury penetration volume is also registered. By
expressing this volume as a percentage of the overall penetration volume measured at
the end of the run, it is possible to derive a complete particle size distribution on a volume
basis. Mayer & Stowe did not however conduct any experiments to verify their anal ysis.

5.2.2 Further studies

The Mayer & Stowe analysis has found uses in mercury porosimetry as an
alternative to the Washbum model (section 3.5.1.1). Orr (1970) used mercury intrusion
data and the analysis to obtain a particle size distribution for a powder with particle sizes
in the range 10to 120 um . His results showed qualitative agreement with those obtained
form a Coulter Counter.

Savata & Zabransky (1970) compared results from the Mayer & Stowe analysis
with size distributions measured by microscopy for five powders in the size range 1 to
100 pm . Again the techniques were qualitatively in agreement. However powders with
narrow size distributions showed markedly better agreement.
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Stanley-Wood (1979) sized steel shot using mercury intrusion and sieve analysis
and three other powders with mercury intrusion, sedimentation and electronmicroscopy
techniques. For the steel shot agreement was excellent, whilst intrusion results from the
other three powders fell between those from sedimentation and microscopy. In the course
of his investigation Stanley-Wood extended the Mayer & Stowe tables to cover the
porosities of his powders, which were in the range 0.64 < € < 0.75 , significantly outside
the range of porosities given by regular sphere packings.

More recently Carli & Motta (1984) measured particle size distributions of four
pharmaceutical powders whose particle sizes lay between 1 and 200 um . They noted
good agreement between the Mayer & Stowe results and various other sizing methods.

Smith and co-workers (1987a, b) have applied an approximate version of the MS-P
theory to sphere packings. They base their analysis on two approximations in order to
simplify the MS-P calculations. They employ Mason & Morrow’s {1984b) empirical
relationship between the curvature predicted by the MS-P theory and thatestimated using
the Haines incircle approximation (derived from data for liquids exhibiting zero contact
-angle in packings of equal spheres - section 3.4.4);

Cm-r = Cincirde - 15 (3.9)

To account for the mercury contact angle of 140° a novel empirical expression
relating the ratio Cyg_p(0 = 140°) 10 Cp5_ (0 = 180°) as a truncated series in C,,;,.,, 1S
used. Smith et al. conclude that the Mayer & Stowe analysis gives particle size
distributions much wider than the actual values. However, considering the odd nature
of their approximations and the lack of any direct comparison between the actual MS-P
theory and their approximate method, their conclusions cannot be said to apply directly
to the theory attributable to Mayer & Stowe.

5.3 CAPILLARY RISE
5.3.1 Princen’s studies

Princen (1969a) arrived at the same expression for the capillary pressure across a
curved interface as did Mayer & Stowe and correctly applied his theory to interfaces
bound by uniform geometry where, in the absence of gravitational effects, it is exact.
- However, Princen’s interest was capillary rise, specifically wetting and wicking in
textiles, where gravitational forces are involved. This led Princen to stipulate that his
analyses were only valid for systems in which the height of rise is well in excess of the
capillaries’ characteristic dimension (i.e. /R » 1 ).
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Princen’s formulation of the theory is based on a force balance that equates the
weight of a liquid column above a planar surface to the surface tension forces in the
meniscus region, Expressing the weight of the column as;

F, = hpgA, = PA, (5.5)
and the surface tension forces by;
F, = o(P,,+P;cos0) (5.6)

the analysis can be seen to be equivalent to that of Mayer & Stowe. Equating 5.510 5.6
yields equation 5.3:

Py

P, = o=t (5.3)

Princen (1969a) gave results in tabular form for the meniscus between two equal
rods separated by a distance, 24, in terms of normalised spacing, d/R , versus normalised
curvature, R/r , for contact angles between 0 and 90°. Similar tables were presented for
a single rod spaced from a plate (with 8 =0) (1969a), three equally spaced cylindrical
rods (1969b) and a graphical presentation for four equal rods in a square array (with
0 =0) (19690b). ‘

The three and four rod systems give rise to twodistinct capillary profiles depending
on the spacing. Princen calculated the curvatures for each of the three different menisci
formed. Figure 5.2 shows the configurations Princen suggested for the four rod
arrangement. At low spacings two types of meniscus coexist, Figure 5.2b, those
in-between each pair of rods and that held between all four rods. Princen predicted the
spacing at which transition occurred to a single meniscus (Fig 5.2d).

-U -(it) - - +1-{4)

’
L oy
s

(a) {c) (¢}

Figure 5.2 - Princen’s suggestions for the capillary rise between four rods in a square array.
(a) Honzontal cross section through four spaced rods.
(b) Schematic capillary rise profile in a vertical section through line (i) for low rod separations.
(c) Corresponding capillary rise profile in section through line (ii).
(d) Schematic capillary rise profile through line (i) at larger rod separations.
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Princen proceeded to extendhis results to cover multicylinder systems, arranged
in both hexagonal and square lattices. He suggested these systems could be used as
models of textile yarns. The Haines incircle approximation was investigated and found
to overestimate the curvatures of the concave, clastic, menisci between the three or four
cylinders. However this approximation could not account at all for capillary rise between
two spaced rods where the meniscus profile is partly convex; that is where the meniscus
is anticlastic. _

In addition to the detailed results given for open systems, Princen showed that his
analysis can be applied to closed systems through the derivation of the relationships
describing capillary rise in triangular and square tubes. Furthermore Princen (1970a)
went on to consider horizontal assemblies of cylinders, now using an energy balance to
‘calculate curvatures. He noted the existence of an additional stable state where the liquid
column is "convex outward" - akin to unduloid drops that form on a single cylinder. The
capillary forces resulting from the presence of liquid columns between cylinders were
briefly discussed.

Princen’s calculations for capillary rise between cylinders are extensive, but
throughout his three papers the result of only a single experiment is presented. For a rod
of radius 6.34 mm spaced 0.2 mmm from a flat plate a height of nise of 13.3 mm was found
with a perfectly wetting liquid (1969b). This result is about 3% less than that predicted
and was used to show that the criterion 2/R » 1 may be overly severe in certain cases.

Princen noted that his analysis could be employed to measure surface tensions and
in a further paper (1970b) discussed applications to the grooved Wilhemy plate method.
In the course of which he determined the curvature of a meniscus in a horizontal wedge
shaped groove as a function of its height above the planar liquid surface. |

5.3.2 Studies of Mason & co-workers

The fact that neither Mayer & Stowe or Princen published experimental verification
has undoubtedly contributed to the sparse use of the MS-P method in the literature. The
method’s potential has been cited in studies ranging from sap rise in plants (Pickard
1981) to "fingering phenomena” in porous materials (Levine et al. 1977). Shortly after
Princen’s work Mason (1971) noted the potential of the analyses of both Mayer & Stowe
and Princen as an approximation for the breakthrough curvature of menisci in sphere
packings. However, uncertainties over the validity of the method led to the use of the
Haines incircle approximation.

It was not until 1983 that the first experimental validation of the method was
published. Mason et al. (1983) calculated the curvature of the closed meniscus formed
between two equal rods and a flat plate vusing Princen’s analysis. Validation of the
predicted curvatures were conducted using capillary tise and bubble movement
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experiments for both perfectly wetted systems and for systems that gave reproducible
advancing and receding contact angles. At zero contact angle the curvatures determined
from observed capillary rise were within 2.5% of those predicted, whilst the bubble
movement results were within 5%. For the partially wetted system results were not so
good, but all were within the estimated experimental error.

The promise shown by their first investigation led to by a more detailed study
(Mason & Morrow 1984a) in which a refined apparatus was used. Measured curvatures
for the two equal rod and plate configuration with a perfectly wetting liquid were within
1.5% of those predicted by the MS-P method. Similar agreement was found for a single

-rod in a right angled corner. Theoretical discussions on the conditions of pore geometry

and contact angle which give rise to unbounded wedge-like menisci in corners were
presented. These were illustrated by consideration of menisci in a kite shaped pore,
polygonal tubes and pores formed by the rod-in-a-right-angled-corner. In this way Mason
& Morrow were able to differentiate between uniform geometries where the curvature
may be calculated from the hydraulic radius method - termed non-wedging systems -
and those where the MS-P method must be employed - called wedging systems.

The validity of the MS-P method as applied to pore throats formed by spheres was
studied by Mason & Morrow (1986). Pore throats formed from four ball bearings in a
rhomboidal array with half angles in the range 30° (closed triangular) to 45° (square
array) were investigated. A modified capillary rise technique was used to measure the
maximum meniscus curvature; that at which the meniscus becomes unstable and
spontaneously passes through the pore throat.

Experimental values of curvature were only 2 to 5% less than values calculated
with the MS-P method for pores formed by rods in the corresponding array (with8=0).
For the closed triangular pore, discussed in section 3.4, a normalised curvature of
11.08 £0.2 was found, about 3% less than the accepted experimental value in sphere
packings. Mason & Morrow also found good agreement between experiments and theory
for mixed pores comprising rods and balls. As expected the more uniform the geometry
(i.e. the more rods) the closer was the agreement.

Mason & Morrow (1987) proceeded to investigate pores with open cross-sections.
An arrangement again comprising of two equal rods and a plate, but with either one or
both rods spaced from the plate was studied. As with Princen’s assemblies of cylinders,
this system allows more than one stable state and several meniscus shapes depending
on the arrangement of the rods. The authors also found metastable meniscus
configurations. Agreement between observed and calculated curvatures were largely
within experimental error, both in terms of the curvatures of specific menisci and in
terms of the transitions from one meniscus profile to another with change in tube shape.



At some spacings when both rods are separated from the plate, three distinct stable
meniscus configurations are possible, all having different curvatures. Mason & Morrow
reason that whilst the configuration with the lowest curvature will be the most stable,
the other metastable states are a possible cause of capillary pressure hysteresis in porous
media, showing a mechanism distinct from generally accepted causes (section 3.5).
However, they also warn that the fact that a curvature can be calculated for a specific
meniscus type does not mean that the configuration will exist.

Further experimental validation was published by Mason, Morrow & Walsh (1988
- see appendix A) for the closed meniscus formed in a pore of two unequal rods and a
plate. Excellent agreement between the MS-P theory and experiments was again found
for rod radius ratios from 1 to 7. These results are a part of this study and are discussed
in detail in section 8.6.

Want of experimental verification of the MS-P method has not prevented all
researchers from using it. Van Brackel & Heertjes (1978) applied Princen’s results for
cylinders to the problem of capillary rise in regular sphere packings. Following Mayer
& Stowe they assumed that the three phase line lies in the plane of sphere centres upon
breakthrough. They noted some success by considering the anticlastic menisci between
the contacting spheres (pendular rings) together with the concave, clastic menisci in the
pore throats.

5.4 FLUID/FLUID DISPLACEMENT

Fluid/fluid flow in porous media is often described in terms of macroscopic laws
where the actual geometry of the pore space is not considered. However, when capillary
forces are dominant with respect to other forces involving viscosity and gravity, a
macroscopic description is usually not sufficient. In these instances it is necessary to
model the pore space using techniques discussed in section 3.3. As with proposed
éxplanations of hysteresis (section 3.5) early work in the area concentrated on the simple
capillary tube model, but this again proved inadequate in most cases. More recently
interest in oil recovery has stimulated research involving angular tube models: here
interfacial configurations are best determined with the MS-P theory. An advantage of
such tubes is that, in common with real media, their angularity allows the wetting phase
to by-pass blobs of non-wetting phase by flowing behind the wedge like (arc) menisci
in the corners.

Singal & Somerton (1970) presented an entirely theoretical model for two phase
laminar flow in porous media based on relationships derived for flow in triangular tubes.
They use a modified version of Poiseulle’s law to incorporate a capillary pressure term
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in an expression for the mean velocity of flow. The capillary pressure is found using
Princen’s analysis together with the Laplace equation to yield the mean curvature in an
equilateral triangular tube, giving;

1.786(cos8-1)

P = R, 5.7)

where R, is the hydraulic radius of the tube.

Legait & Jacquin (1982) and Legait (1983) were interested in tertiary oil recovery.
They studied blob mobilisation by modelling two phase laminar flow in a constricted
square capillary. The Mayer & Stowe analysis is applied to the square sectioned tubes
under variable wetting conditions (but with 8 < 45° for which arc menisci exist). The
curvature of the upstream and downstream fluid/fluid interfaces (with respect to the
constriction) of the blob were determined according to the expression

J; = F(@®YR() (5.8)

where R(x) is half the tube width at position x. F(8) Was determined with the MS-P
theory in terms of the fraction of tube area occupied by wetting fluid.

Equation 5.8 ignores the converging-diverging nature of the tube with the
assumption of local uniformity in cross-section. This result was validated by comparison
with experimental data given by Arriola ez al. (1980), good agreement was found. Using
the curvature function Legait was able to derive expressions for the volumetric flow
rates of each phase and determine the conditions necessary for blob mobilisation through
the constriction in terms of a critical capillary constant. Theoretical results compared
well with experiments conducted in model capillaries.

Lenormand er al. (1983) studied the mechanism of the displacement of one fluid
by another with reference to observations of drainage, imbibition and blob mobilisation
in etched networks. Their model comprised a two dimensional network of rectangular
tubes. Threshold pressures, at which non-wetting fluid enters a tube, were determined
using the MS-P theory and the Laplace equation. A wetting phase contact angle of zero
was used giving;

P, = F(8)2o(1+—1-] (5.9)
X Yy .
h -
R T et _m) | (5.10)
21 +8}{(1 +€)- V(1 +e2 —e(d—7)}
and € = x/y -the aspectratio of the tube

Predicted threshold pressures were in good agreement with experimental data obtained
from small networks
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Ransohoff et al. (1987) were also concerned with oil recovery, but were interested
in the snap-off of moving gas bubbles in various constricted non-circular capillaries. In
oil recovery processes by foam flooding a primary mechanism of foam generation is the
snap-off of non-wetting gas bubbles passing through constrictions in the pore space. It
is the “curvature driven" flow of the wetting liquid along the capillary walls that controls
the dynamics of this process.

The MS-P theory was employed by Ransohoff er al. to calculate meniscus
curvatures in constrictions in equilateral triangular tubes. Use was also made of Mayer
& Stowe’s results for the breakthrough pressures in pore throats formed by three and
four contacting spheres and Legait’s results for the square tube. Ransohoff et al. proceed

~develop a "comner flow hydrodynamic theory” which they employ to calculate the time
to snap-off for a moving bubble in terms of a function of the capillary constant, flow
resistance and the shape of the constriction. Experiments in model capillaries confirmed
their findings.

5.5 SUMMARY

The method of Mayer & Stowe and Princen has found only limited application in
four areas of study. The sparse use of the method is, in part, accounted for by the lack
of experimental verification in the uniform geometry systems in which the method
applies. Only recently have the first steps been taken to rectify this.

Mayer & Stowe’s original analysis was intended for use as a particle sizing model
in mercury intrusion porosimetry. The method has since been qualitatively validated by
several studies, although the analysis has not always been applied in the manner intended
by Mayer & Stowe. Experiments indicate that, at least at zero contact angle, the MS-P
theory gives good estimates of breakthrough curvatures between spheres.

Princen gave extensive analysis of capillary rise of various open and closed menisci
in non-axisymmetric tubes using the MS-P method. He unfortunately conducted only a
single experiment. Recent experiments of Mason and co-workers indicate that capillary
rise of non-axisymmetric menisci in uniform tubes can, when gravity effects are small,
be predicted accurately by the method, for the limited number of systems they have
investigated.

Recent applications of the MS-P method to fluid/fluid flow and capillary pressure
hysteresis in porous materials have shown the MS-P methods ability at elucidating real
problems in a currently important area of research and has furnished further validation
of the method. Many of the studies mentioned above will be discussed further in later
chapters.



CHAPTER 6

Theory and analytical procedures

.

6.1 INTRODUCTION

The background material has been covered in the preceding chapters and attention

is now focused on the Mayer & Stowe - Princen theory and its application in the present

“study. Table 6.1 details the tube geometries that are investigated in this study. The
wettabilities and variables covered are also shown.

The shapes produced by liquid menisci in the non-axisymmetric tubes of complex
configuration detailed in the table are generally complex themselves. To apply the MS-P
theory to such systems requires that the general shape of the meniscus in the tube be
estimated and to describe potential shapes it is necessary to have a terminology. Details
of such a terminology are given below.

In the past, the theoretical relationships describing the shape of fluid interfaces in
cylindrical capillary tubes have been approached viaconsideration of the energy or forces
involved or by direct derivation from the Gauss equation of capillarity. All these methods

Table 6.1 Amangements investigated in this study. Interfacial configurations are predicted with
the MS-P theory and validatory experiments conducted using the simplified comparative method
(chapter 7). Details of each arrangement can be found in the sections indicated.

.

Solid geometry Capillary Wettability Variable Section
Rise Reference
Profile(s) '
Rectangular ducts Closed Perfect Tube aspect ratio 9.2
One rod away from a plate Open Perfect Rod-plate spacing 9.3
Partial Contact angle 102
Onerodin acomer Closed Perfect Comer angle 9.4
Two unequal rods and a plate Closed Perfect Rod radius ratio 9.5
Two equal rods and a plate Closed Perfect - 8
Partial Contact angle 10.3
Mixed Contact angle 10.3
Three equal rods and a plate Closed Perfect - 8
Various Perfect Subtended angle 11
Three unequal rods and a plate
Symmetrical VYarious Perfect Subtended angle 11
Non-symmetrical Various Perfect Subtended angle 11

" Experiments using the full comparative method.
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can also be utilised to derive the MS-P equation.

Except in a few simple cases, application of the MS-P theory to non-axisymmetric
tubes results in a set of equations that do not possess a unique solution, nor may they be
resolved analytically. Techniques for the application of the theory and for the solution
of the resulting equations are illustrated with examples in the latter sections of the chapter.

6.2 TERMINOLOGY

The calculation of curvature by the MS-P method is relatively straightforward, but
the problem is not trivial. Application of the theory requires that the basic arrangement
of the liquid in a pore is known or at least estimated prior to solution. To aid discussion
of possible arrangements it is helpful to have a terminology that covers the main features
of meniscus configurations in uniform geometry capillaries.

Figure 6.1 shows the development of a terminology, as published by Mason &
Morrow (1987), and Table 6.2 details the nomenclature. For menisci in the uniform
tubes of Figure 6.1, the capillary pressure, and hence the interfacial curvature (equation
2.30), is a linear function of the height of rise.

Figure 6.1a shows the meniscus formed by a perfectly wetting liquid in a vertical
- cylindrical capillary. The meniscus spanning the tubular space is a simple example of a
main terminal meniscus (MTM). In the vicinity of the MTM there is a rapid change in
liquid content with height. The region directly above the MTM is filled with the
non-wetting phase (gas) and is called the dryside (D) with respect to the MTM. Similarly,
the region filled by the wetting phase (liquid) is referred to as the wetside (W). The
systemis termed non-wedging as the MTM is completely bounded by the solid perimeter
_ of the tube. Under constant curvature conditions (when there is no distortion of the
meniscus by external forces such as gravity) the MTM will be a perfect hemisphere.

The situation in the kite shaped capillary of Figure 6.1b differs in that the MTM
now merges with a wedge of liquid caught in the corner formed because of the contacting
~ straight sides. In contrast to the MTM, the liquid content in the wedge only changes

slightly with height. The liquid in the wedge is bounded in the corner by an arc meniscus
(AM). The MTM is now only partially bounded by the solid perimeter making this a -
wedging system. '

In wedging systems the terms wetside (W) and dryside (D) are used in the general
sense to describe the higher and lower liquid content sides of the MTM. When the solid
perimeter bounds the liquid wedge as in'Figure 6.1b the AM is referred to as a closed
arc meniscus (CAM), and, as the CAM is on the dryside of the MTM, the full description
of the AM i1s dryside closed arc meniscus (DCAM) with respect to the MTM.
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Under constant curvature conditions the liquid content in the wedge is fixed, the
wedge having constant volume per unit length. In a mathematical sense the wedge will
be infinitely long, and thus the radius of curvature of the AM in the vertical direction is
infinite. The other principal radius of curvature (Fig. 6.1b ii) is the radius of a circular |

Table 6.2 Nomenclature for the classification of menisci held in wbes of uniform cross-section.

A arc TAM terminal arc meniscus

T terminal 0AM open arc meniscus

M main {in main terminal meniscus only) CAM closed arc meniscus

D dryside DAM dryside arc meniscus

W wetside WAM wetside arc meniscus

0 open DOAM  dryside open arc meniscus
C closed DCAM  dryside closed arc meniscus
AM arc meniscus WOAM  weiside open arc meniscus
™ terminal meniscus WCAM wetside closed arc meniscus
MTM main terminal meniscus

arc; the cross-section of the wedge. As curvature is everywhere constant, the curvature
of the AM (just the reciprocal of the radius of the circular arc) must equal that of the
MTM, and its magnitude will be governed by its interaction with the MTM.

In a capillary rise experiment the curvature of the MTM can be deterrmined directly
from the height of rise. As it is affected by gravity, the curvature of the AM will also
change in direct proportion to its height above the free liquid surface. However, in the
vicinity of the MTM the curvatures of the AM and MTM will be approximately equal,
so that in practice the curvature determined from capillary rise corresponds very closely
to that of 2 meniscus of constant curvature. The validity of this assumption has been
experimentally confirmed for systems where the distortion of the meniscus due to gravity
is not excessive (Mason & Morrow 1984a). -

Figure 6.1c shows an axisymmetric narrow necked dumb-bell capillary. The
configuration taken up by the liquid profile exhibits three terminal menisci. The MTM
spans the tubular space in the large diameter side of the dumb-bell profile. The shape is
such that the liquid rises above the level of the MTM in the small diameter side. An
abrupt change of liquid content with height marks the terminal meniscus (TM) of the
small side. Above the MTM the liquid is bounded by an AM associated with the re-entrant
solid surface and is referred to as an open arc meniscus (OAM). As the OAM is on the
dryside of the MTM it is a dryside open arc meniscus (DOAM) with respect to the MTM.

Above the TM there is a second OAM associated with the liquid held in the
constriction of the dumb-bell cross-section. This liquid is bounded by the two
back-to-back OAMs which at a particular curvature form a rerminal arc meniscus (TAM)
as shown in Fig. 6.1c. Arc menisci are dryside or wetside with respect to a particular
TM, so with respect to the TAM the back-to-back OAMs are termed wetside open arc
menisci (WOAM:s). '
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In Figure 6.1c the MTM and other TMs are at different heights and so of different
curvatures. In a constant curvature system only one TM can be formed as only one
curvature is possible. The TMs in the dumb-bell capillary coexist as gravity enables the
system to have changing curvature. In the absence of gravity the interface is one of
constant curvature and the volume of liquid per unit length on the dryside (or wetside)
of a given terminal meniscus is constant. In practice, a particular TM together with its
associated arc menisci will determine the curvature of that part of the system, and hence
the liquid content per unit length on the dryside of the TM.

If the constriction in the dumb-bell is widened a situation arises where the curvature
of the TAM is less than that of the TM in the small side. It is now impossible for the
TAM and its associated back-to-back OAM:s to be formed which results in the profile
shown in Figure 6.1d. ’

In Figure 6.1e the small side of the dumb-bell profile has been removed and the
OAM on the outer side of the neck now falls to join the free liquid surface. As the neck
is widened the curvature (and hence height) of the TAM decreases until it merges with
the MTM to give the profile shown in Figure 6.1f.

6.3 THE MAYER & STOWE - PRINCEN THEORY

In discussing the MS-P theory it is convenient to divide capillary systems into two

groups according to the terminology. Non-wedging systems are those in which the
terminal meniscus is completely bounded by the solid perimeter. The theory for these
systerns has long been known. A wedging system is any system in which one or more
arc menisci are formed and it is for these systems that the MS-P theory is speciﬁéally
_ appropriate.
_ In the following sections different ways of deriving the equation for curvature
prediction in non-wedging systems are outlined. These methods are then extended to
cover wedging systems, yielding the MS-P equation. It must be stressed here that the
following analyses strictly only apply to menisci of constant mean curvature that are
bounded by uniform geometry. '

6.3.1 Curvature calculation for non-wedging systems

In predicting the curvature of a non-wedging meniscus in a pore of uniform
cross-section, such as that shown in Figure 6.2, there are three possible approaches: an
energy or force balance, utilising the Laplace and Young equations, or the direct
application of the Gauss equation of capillarity.
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Figure 6.2 - An example of a uniform tube in which a meniscus is non-wedging,

6.3.1.1 Energy balance approach
At equilibrium a meniscus always attempts to adopt the curvature that gives the
minimum surface energy for the particular boundary conditions. Consider the virtual
works performed when the meniscus in Figure 6.2 is displaced by an infinitesimal
distance, dx, from its equilibrium position. The virtual work required to lift the meniscus
by dx is
dW, = P.Adx ' (6.1)

where the capillary pressure P, = pgh , the hydrostatic head, and A is the projected area

of the MTM, also the cross-sectional area of the tube. In the process of displacement the
solid/liquid interface is extended by an element, dx, resulting in the wetting of an area
of originally non-wetted solid surface, Pdx, where P is the perimeter of the tube. This
virtual work is given by '

dW, = P(0g—0g)dx ' (6.2)
The solid/vapour, G5y , and the solid/liquid, Oy, , interfacial tensions cannot be directly
measured, but their difference is related to the liquid/vapour interfacial tension, 6, and
the contact angle, 9 , via the Young equation:

Oy — Oy = Ocos6 (2.71)

Hence dW, = GP cosfdx (6.3)

Equating the two works of displacement, 6.1 and 6.3, yields
PA = oPcosB ) (6.4)
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The Laplace equation relates the capillary pressure to meniscus curvature by the
relation

P. = oJ (2.30)

[+

where J is the reciprocal of the meniscus’s radius of curvature. Combining equations
2.30 and 6.4 gives

J = (chose

but the ratio perimeter to area is simply the inverse of the hydraulic radius of the capillary,

R,, so
cosO
J = [R;. ] (6.5)

This result was examined by Carman (1941). He found that for near circular tubes
and perfectly wetting liguids (6 = O ) the equation fitted the experimental data of Schultze
(1925a, b). However for other shapes the fit was not satisfactory. To quote Carman’s
explanation, this was because

“... where capillary walls form a sharp angle the edge of the meniscus shows a sharp local
rise to a considerable height above the bottom of the meniscus.”

This was a perceptive observation. Using the current terminology, Carman noted that
equation 6.3 is adequate only when arc menisci are not present, i.e. for non-wedging
systems.

6.3.1.2 Force balance approach
In section 2.4.3 the well known Washburn equation was derived via consideration
of the forces on a meniscus in a cylindrical tube,
2ccos0

P, = R, | (2.45)

where Ry is the radius of the cylindrical tube, which in this case, is also twice the hydraulic
radius of the tube. Incorporation of the Laplace equation and generalising the equation
for arbitrarily shaped tubes yields equation 6.5,

cos9
J = [R;. ] (6.5)

6.3.1.3 Derivation from the Gauss equation

The Gauss equation of capillarity relating the variation in interfacial area, dA,, ,
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to the associated volume change, dV, curvature and contact angle was derived in section
2.7.4;

dd;,, = -JdV + cosBdAg (2.69)

where dAg; is the change in liquid/solid interfacial area.

Again consider a small displacement, dx, of the MTM in Figure 6.2. In the absence
of AMs the projected area of the TM is equal to the cross-sectional area of the tube, A,
which is constant along the length of the tube, hence

d4,, = 0, dVn = Adxand dA; = Pdx
So equation 2.69 becomes,
0 = —-JAdx + PcosOdx
or 0
J = G)cose = [C‘;’; ] | (6.5)

6.3.2 Curvature in wedging systems: the MS-P equation

The Mayer & Stowe - Princen (MS-P) theory is exact only for calculations of
curvature for non-gravity distorted menisci in uniform pores. In practice however, the
theory is more versatile and has previously given accurate estimates of curvature for
menisci slightly distorted by gravity in a variety of tube shapes, including configurations
where the cross-section does not form a closed region. In certain circumstances the
method has also yielded good approximations of measured curvatures of menisci in
non-uniform tubes. The previous studies involving the MS-P method were discussed in
detail in chapter 5.

The MS-P theory relies on equating the curvature found from a force or energy
balance to the curvature of any arc menisci present in the system. At equilibrium the
curvature of the AM(s) equals that of the TM in question. In applying the MS-P theory
it is vital to choose an appropriate position to utilise this condition. At some distance
above a TM (in practical terms this is only a few tube radii) the profile of an AM in the
plane of cross-section becomes a circular arc of definable radius. The other radius of
curvature, at right angles, is infinite. The choice of this position facilitates the solution
of the overall meniscus curvature requiring consideration of only two dimensional

geometry.
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The MS-P equation can be derived by the same techniques employed for
non-wedging systems, except that now the analyses must take into account the effect of
the arc menisci. An arbitrary example of a2 wedging system is shown in Figure 6.3; an
axe-shaped pore.

Figure 6.3 lllustration of the definition of A, ZP;andZP, for main terminal meniscus bounded in part
by arc menisci in a uniform axed shaped tube. The solid perimeter, 2P = P, + P, + P, and the liquid
perimeler, LP, = P, + Ps+ P,

The projected area of the MTM in Figure 6.3 is nolonger simply the cross-sectional
area of the tube as the AMs occupy the corners, reducing the effective projected area,
A,z , available to the MTM. The effective perimeter, P,z , of the MTM must now be
considered in parts: X, Ps being the solid perimeter, and ¥, P, , the liquid perimeter. From
Figure 6.3:

Y P
2P, = P +P,+P, (6.7)

P +P,+P, (6.6)

6.3.2.1 Energy balance approach
As in section 6.3.1.1 consider a small displacement, dx, of the MTM in Figure 6.3.
The virtual work balance now yields
PAdx = (Op~0Oy)XPdx + oXZPdx (6.8)

The extra term, ¢ X P, dx , accounts for the work done creating the new liquid perimeter.
Incorporation of Young’s equation gives

PA,; = ©XPscos® + oXP, (6.9



99

The principal radius of curvature of the AMs in the vertical direction is infinite,
whilst the radius in the plane of cross-section is a circular arc of radius r (Figure 6.3).
The arc radius is related to the capillary pressure using the Laplace equation,

P, = oir (2.30)
thus from equations 2.30 and 6.9 .

Ay r = XYPscos® + 2P, (6.10)
and if the effective pernimeter is defined as

Py, = XPgcos® + XP, (6.11)
then equation 6.10 may be rearranged to give

Ay
Py - Ay, = 0 or r Py (6.12)

It is usual to normalise r with respect to some arbitrary tube characteristic dimension,
R, giving

C =

RP,
R 24 (6.12)
r Ay _

where C is the normalised meniscus curvature. Equations 6.12 are statements of the
Mayer & Stowe - Princen equation.

6.3.2.2 Force balance approach

The MS-P equation can also be derived via consideration of the forces acting on a
TM. The weight of the liquid column in a tube is balanced by forces arising from
interfacial tensions.

The weight of the column is simply the hydrostatic head multiplied by the effective
area,

Fi = hpgAy (6.13)
The hydrostatic head s equivalent to the capillary pressure, P, , 50
F, = PA, (6.14)

Acting in the opposite direction are forces arising from the contact of liquid with
the solid perimeter;

F,, = G6XPscosB | (6.15)
and that from the liquid surface not contacting the solid, 6 X P, , in Figure 6.3;

Fp = OXLP, . (6.16)
Combining equations 6.13 to 6.16 yields -

PAy; = ©XPscos® + oXP, (6.10)

Equation 6.10 from section 6.3.2.1. Incorporation of the Laplace equation gives the MS-P
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equation (eq. 6.12).

6.3.2.3 Derivation from the Gauss equation
To derive the MS-P equation from the Gauss equation of capillarity it is again
necessary to include an extra term to account for the effect of the AMs. As before
d4;, = - JdV + cosBdAg (2.69)

but the term dA4;, must now account for the change in liquid/vapour interface when the
meniscus undergos a small displacement, dx. As with non-wedging systems;

dv o= A dx
and dAy = ZPydx
but da,, = -XPdx
and J = Ur

Note the negative sign for the change in liquid/vapour area; interface is destroyed, not
created. With these assumptions equation 2.69 becomes

Agr = ZPcos® + XP,
or Py - Ay = 0 (6.12)

Note that if there are no AMs, equation 6.12 is equivalent toequation 6.5; i.e. the curvature
equates to the inverse hydraulic radius of the tube.

By defining the effective area and perimeter in this way the interaction between
the AMs and the MTM is accounted for. Neither the cross-sectional area of the AM, nor
the solid perimeter wetted by the AM enter the expression for curvature. So the actual
perimeter behind the AM could be any of a variety of alternative shapes and not affect
the condition of the MTM.

The tubes shown earlier in Figure 6.1 are displayed again in Figure 6.4 with the
effective areas hatched and the effective perimeters outlined. As before the prefixes W
and D refer to a particular TM. DAMs act to hold up a TM, as does the solid perimeter.
WAMs have radii of opposite signs to DAMSs and thus pull down on a TM as in Figure
6.1f. As a consequence the contributions made by the liquid perimeters of WAMSs to P '
is negative.

To clarify the reasoning behind a WAMSs negative. contribution, consider the
situation when the liquid surface of the WOAM in Figure 6.1f is replaced by a completely
non-wetting solid cylinder (8 = 180° ) of equal radius. As the shape of the liquid surface
along the perimeter is unchanged the shape and height of rise of the MTM will remain
the same. In calculating the contribution of this new surface to P, the nature of the
downward force resulting from the WOAM becomes obvious:
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MTM
MTM

FOAM

MTM

Figure 6.4 - Examples of 4,4 and P,, for the cross sections shown in Figure 6.1. A dryside open arc
meniscus (DOAM) acts in the same sense as the wetled perimeter of the wbe. A wetside open arc
meniscus (WOAM) acts in the opposite sense.

Pycos(0) + Py cos(180°)

= Py - P NW
where Py, is the wetted perimeter and Py , the non wetted perimeter.

Although any one of the three approaches of ‘arriving at the MS-P equation is
adequate, they are all of historical importance. Mayer & Stowe (1965) used the energy
balance approach, whereas Princen (1969a) favoured the force balance. Derivation from
the Gauss equation was Hwang’s (1977) method, but he mistakenly thought the hydraulic
radius method applicable to all uniform pores. Hwang did not account for the effect of
the AMs and so omitted to include the liquid perimeter term. Consequently he found his
results did not agree with those of Princen.

6.4 APPLICATION OF THE MS-P EQUATION
The MS-P method is a simple and elegant way of determining meniscus curvatures

in the systems to which it applies. Mayer & Stowe (1965) and Princen (1969a)
complicated the analysis by attempting to apply it to inappropriate systems.

Mayer & Stowe were interested in applying the analysis to converging-diverging
pore geometries involving spheres when , in fact, their analysis was for twbes made up
of uniform rods. Princen, though studying uniform tubes made up from rods, was
interested in capillary rise which inevitably implies the distortion of menisci by gravity
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and AMs of variable curvature. This led Princen to observe that his analysis was subject
to the condition that the meniscus dimensions must be negligible when compared to the
height of rise. Regardless, the MS-P theory is exact when applied to pores of uniform
cross-section and menisci of constant mean curvature.

In principle, the application of the MS-P method is straightforward. Geometrical
expressions for the effective area and perimeter, in terms of the pore dimensions and the
radius of the arc menisci, need only be substituted into equation 3.10. However, the
analysis depends critically on the prediction of whether or not, and where AMs exist in
the particular geometry. For example, AMs never occur in circular cross-section tubes,
but will always occur in tubes made up of cylinders in contact, unless the contact angle
is exactly w2 rad. (90°).

In pores of angular geometry, such as the kite-shaped tube of Figure 6.1b, the
presence of an AM depends on the wetting properties of the liquid. In Figures 6.1c and
d the width of the neck of the dumb-bell determines the existence of the OAMs, as the
geomeltry is changed arc menisci may appear and disappear. To determine the existence
or non-existence of AMs it is necessary to calculate the curvatures for each possible
meniscus configuration and then assume that the meniscus will adopt the one with the
lowest curvature; that having the minimum surface energy.

This method was used by both Mayer & Stowe and Princen, although neither stated
it as a principle. It is not foolproof, as cases are possible where physically significant
metastable menisci can exist (Mason & Morrow 1987). These menisci may be required
to overcome an energy barrier before adopting a configuration of lower curvature.

To illustrate the techniques employed to solve the MS-P equation some
geometrically simple pore shapes are discussed below. Similar solutions had been
published prior to the studies of Mason and co-workers: Princen (1969b) has given
solutions for menisci in equilateral triangular and square cross-sectioned tubes for
perfectly wetting liquids. Concus (1974) published solutions for menisci in polygonal
tubes for large contact angles. Both analyses are simplified as in the former AMs always
existand in the latter they never appear. Mason & Morrow (1984a) gave general solutions
for menisci in polygonal tubes. These are discussed first as they produce analytical
solutions for curvature which conveniently illustrate how menisci in wedging and
non-wedging systems are analysed. |

The technique for obtaining expressions for effective areas and perimeters is
standardised throughout this study. With the relatively simple shapes discussed below
the method may appear somewhat long-winded, but with the more complex geometries
discussed later its versatility becomes apparent. Basically the cross-section of a pore, or
a relevant part of it, is divided into a number of regions. Each region has an associated
perimeter adjoining the meniscus and usually, an area and angle, all denoted by the region
number. From these regions the required effective perimeter and area are easily derived.
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6.4.1 Analytical solutions

6.4.1.1 Equilateral triangle with a perfectly wetting liquid

Figure 6.5 shows a meniscus in a uniform tube where the cross-section is an
equilateral triangle - a three sided polygon. The characteristic dimension of the tube is
chosen to be the radius of the inscribed circle, R. Although the problem can be solved
for any contact angle, only the case of a perfectly wetting liquid is considered below.
Figures 6.5a - ¢ show the form of the meniscus. The MTM spans the centre of the tube,
reaching its lowest point in the centre of the triangle, O, while the liquid rises in the
corners to an infinite height, bound by AMs of radius .

(b)

I

8
E

2

.

(=1

Figure 6.5 - Configuration of arc menisci in a uniform triangular wbe (a). The MTM spans the centre

of the tube reaching its lowest point in the centre of the tube (b). The liquid rises into the comers to an

infinite height bound by AMs (c). The terminology required for the application of the MS-P theory is
) also shown {d).

The cross-section is polygonal and it is the ratio of area to perimeter that is required
so only one corner sector need be analysed. Figure 6.5d shows a right-angled triangle;
one sixth the area of the whole channel. Here, only two regions within the sector need
be defined; numbered 1 and 2. The parameters of these regions may now be written
down.

a) Angles
Only region 1 has an associated angle and, since this is part of a equilateral triangle;
o = Wb (6.17)
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b) Perimeters
The perimeters of each section are obtained from simple trigonometry:
P, = 204 Equations

P, = (R-r)cotq, 618

¢) Areas
Only region 1 has an associated area, but the area of the whole sector, A;, is also
required:

1 .
A, = Echota, Equations
1,
A = 57 cotq, 6.19

d) Effective perimeter and area
It is now a simple matter to write the effective area and perimeter:

P, = XP; + 3P,
=P, + P, (6.20)
and Ay = A - A (6.21)

e) Solution of equations
The simultaneous equations 6.17 through 6.21 together with the MS-P equation
itself (eq. 6.12) yield a quadratic equation in r, this may be normalised with respect to

R giving

3 n)(rY r 3o

(3.__6 ry 3E + -5_—.—_ 0 (6.22)
Hence ro NEER k)

R~ \3-w3

which yields solutions for r/R of 4.4955, which is physically impossible as it implies »
>R, and 0.56235. So the normalised curvature of the meniscus in triangular channel under
perfectly wetting conditions is

c, =~ 1778
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6.4.1.2 n-agon tubes with variable wetting

The solution for an equilateral triangular tube can be generalised for a n-sided
polygonchannel under variable wetting conditions. The analysis follows the same pattern
as before, but the trigonometry is more complex. .

HALF ARGLE
[ S
LY

-
MENISCUS

Figure 6.6 - Diagram of a corner of a polygonal sectioned tube. Depending on the contact angle, an
arc meniscus (AM) may exist in the comer.
Consider the sector of an n-agon tube shown in Figure 6.6. The incircle radius, R,
is again selected as the normalising dimension. Let the AM meet the wall with a given
contact angle 9 .

a) Angle
Let the half angle in the corner of the n-agon be B, hence
a, = B “ (6.23)
b) Perimeters
P, = (W2-o,-8) Equations
P, = Rcota, — r(cota,cos® + sinB) 6.24
c) Areas
Ay = %chot a, _ Equations

A = %rz(cosz B cot o, — cos O sin 6 — (W2 — a, — 0)) 6.25
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d) Solution of equations
Combining equations 6.23 to 6.25 with the MS-P equation,
Por — Ay; = 0 (6.12)
yields a quadratic of the form

2
% (cos’ O cot P ~cos Bsin 0 — (/2 — B - 0)) (‘%) —cosfcot B(é—) + :zl-cotB =0 (6.26)

Again there are two roots, only one of which is physically realistic. The other probably
corresponds to menisci on the outside of the polygon.
When the coefficient of (r/R)* becomes zero then there are no real roots and

0+ = mn2
which represents the point where the AMs in the corners disappear. So the system will
be wedging only if

0 < nw2-B
Hence for w2 > 0 > (/2 —f3) the AMs do not exist and equation 6.26 reduces 1o one
where the curvature is given in terms of the inverse hydraulic radius,

R
% - cos’:I o } (6:27)

Under these conditions the MTM simply runs into the corners. Concus (1974)
investigated menisci of this configuration and noted that equation 6.27 corresponds to
the spherical meniscus in the polygon tube with incircle radius R/cos 8 .

AMs will always exist if ® =0 unless f =7/2 , which is the half angle in a polygon
with an infinite number of sides or, in other words, a cylindrical tube. In Figure 6.7 the
curvatures in three, four and infinite sided tubes of equal hydraulic radius are shown as
a function of the contact angle, 8 . As would be expected, no difference in curvature is
seen between non-wedging menisci in polygons and those in a cylindrical tube of
equivalent section. However, when the AMs form, the curvature in the polygons drops
below that fora cylindrical tube. A triangular pore yields a lower curvature than a square
pore at a given contact angle, implying that the height reached by the meniscus drops
as the corners become more acute. : '

6.4.2 Non-analytical solutions

The MS-P equation usually cannot be solved analytically. Even for seemingly
simple shapes, like that of arod in a corner, the simultaneous equations inA4 4, P, and
the MS-P equation prove to be unresolvable. To arrive at a value for curvature numerical
or graphical techniques must be employed.
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Figure 6.7 - Curvature of the meniscus in the n-agon tube normalised relative 1o the ratios of the
insphere is given as a function of the contact angle. The infinite side number tube is simply a cylinder
and the values agree with those for meniscus curvature in cylindrical tubes. When corners exist, the
terminal menisci merge with arc menisci at low contact angles, and this reduces the curvature.,
Figure 6.8 shows the graphical solution for the kite-shaped pore with the dimensions
shown. The effective area to perimeter ratio is calculated for various prescribed values
of r/R and, in this case, 9=0. A graph of y =A_#/RP,; versus y =r/R can then be
plotted. The intersection of the line y =r/R with y =A/RP , gives the value of r/R

which is the solution to the equations.
At the point of intersection the value of A_#/RP , is its maximum possible value,

and hence alsor’s. This confirms the equilibrium situation i.e. the meniscus has minimum
curvature, corresponding to the minimum surface energy configuration for the particular
boundary conditions.

Of the uniform tubes employed in the current study only the rectangular duct’s
equations solve analytically. For the remaining tubes numerical techniques provided the
best solution mechanism as they are amenable to use on computers, enabling a large
number of solutions to be found quickly. Below the numerical methods used here are
described.
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Figure 6.8 - Example of the graphical solution of the meniscus curvature for the kite-shaped_pore
shown. The intersection of the two lines gives the solution. The solution is always at the maximum
value of A/RP, .

6.4.2.1 Microcomputer solution technique
For the purposes of numerical solution the MS-P equation may be written;

F(r) = A _ ro= 0 (6.28)

Py

or Ay
[y = P (6.29)

f

The ratio A,;/P,, will comprise a number of simultaneous non-linear equations in terms
ofthe arcradius, 7, the geometry of the particular tube and, where relevant, the solid/liquid
contact angle, 8 . These equations do solve to give a unique value of r. .

The form of equation 6.28 lends itself to solution by numerical methods. The
requirements of which are not one, but multiple solutions in terms of a second variable,
RR: either the contact angle or a‘characteristic dimension of the tube such as rod-plate
spacing, rod radius ratio or tube aspect ratio. The resulting group of stepwise solutions
for r in RR may be used 10 plot a graph of the function r = J(RR) o1, more often,
C =1/f(RR) which may then be compared with experimental results. |

Over the course of the study standard solution routines were developed, written in
BASIC on a BBC microcomputer. Throughout emphasis was placed on obtaining the
required solutions rather than computational elegance. The standard program was
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structured so that on investigation of a new tube configuration all that is required is
substitution of the relevant expressions for A,,/P ; and some minor adjustment of input
and output routines.

Figure 6.9 shows a simplified flow chart. At given RR the radius of curvature, r,
is iterated using successive bisection (internal halving) from initial "guesses” above and
‘below the solution. The user is only required to make the initial guesses for the first
solution in a set. Subsequent initial guesses are determined automatically by a process
of intuitive reasoning and interpolation. Much of the complexity of the program arises
in obtaining initial guesses for one solution from the solution that preceded it. Figure
6.9 shows a number of separate procedures (sub routines) each of which carries out a
specific task.

FOR RR=RI TO RX STEP SS
J=J+1

PROCJ2 ———

PROCJ3 >

 J
L1 procspur

}r

PROCCURY

NEXT

L

end

Figure 6.9 - A simplified flow chart illustrating the successive bisection and interpolation routines
adopted for the numerical solution of the MS-P equation. This standard program was utilized for all
tube shapes and wetlabilities investigated with only minor adjustments required.
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a) PROCCURY

The procedure, PROCCURY, contains the detailed equations that make up F(r):
those for the angles, areas and perimeters of the relevant regions required to calculate
AP . PROCCURY is sent a value of r and returns values of F(r) and the iteration
criteria, RS and R6 (these criteria stop the iteration when sufficient accuracy has been
achieved).
b) PROCINIT

PROCINIT initialises the program. The user is prompted to input the required
information: the geometric constants, the minimum (R/) and maximum (RX) values of
the characteristic dimension or contact angle (RR) and the interval or step size between
solutions (S8). The program then asks for two guesses at the first solution, r, , to initialise
the successive bisection iteration method: one above, (ry),, , and one below, (r,),, .

PROCINIT Haises with PROCCURY and displays the values of F(r),, calculated

with (ry),, and (ry),, . Calculations will not proceed until one positive and one negative
value of F(r), have been returned. In general, provided that the two initial guesses are
close to the solution, r, the function F(r) will be continuous between them, thereby
enabling the solution to be found. In mathematical notation the conditions for
convergence are,

Firy) < O Equations

F(r) > 0 6.30

and for ro<r <r, F(r) iscontinuous.

PROCINIT also prints a record of the inputed information and the headings for a
table of results before returning to the main program.
¢) PROCSPLIT |

PROCSPLIT carries out the iteration for r at the current value of the characteristic
dimension or contact angle, RR, from given values of r; and r,. Iteration by successive
bisection proceeds as follows:

(ry+1o)

n o=~ : (6.31)

PROCSPLIT liaises with PROCCURYV which returns the value of F(r,). ry is then
determined according to the sign of F(r,):

It F(r) < Othenry = (ro+r)2

If Fr) > Othenry, = (r;+r)R2
The value of F(r,) is now calculated and bisection repeated as above. Iteration continues
until

ABS|F(r)l < 1x107r,_, = ABS|R5|,|R6| (6.32)
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The above iteration criteria ensure that values of curvature obtained are exact to three
decimal places. Having determined the solution at rg; PROCSPLIT prints out results
in tabular form of, among other parameters, the curvature of the meniscus in the tube
shape defined by RR; Cgp . '
d) PROCJ2

Procedure J2 is enacted only once to find the initial guesses for the second solution
forr: that when RR = RI+ §5. (ry)y , ¢ @nd (r,)p, , < are found by addition or subtraction
of factors of ry; from rg, . The magnitude of the factor is gradually increased until;

Frdg,s) > 0 and F((r)y,,s) < 0O (6.33)

¢) PROCJ3

PROCIJ3 finds initial guesses of the radius of curvature for the third and subsequent
solutions. With two solutions already calculated on the function r = F(RR) a first
approximation of subsequent solutions can be interpolated;

ree, = Tea_ t(rep_ —Tre _,) (6.34)
F (rge ) is then calculated from PROCCURV. If F (rge ) > 0 then (ro)m, =rpg, and (r,) %,
is determined by adding factors of 7gs, 10 ree, until F(("1)ge ) <0 . Similarly if F (rgq ) > 0
then (ro)mn =rge, and (r‘)RR,. is determined by subtracting factors of rra, from rge until

F ((" ‘)RR.) < 0. Use of this routine ensures that the two initial guesses are close to the

solution. Once the guesses have been found the near-exact value of rg;_is determined

by PROCSPLIT.

The solution program described above works satisfactorily for solution of the MS-P
equation, at least for the systems investigated here. An advantage of the successive
bisection method, beyond its simplicity, is that the maximum error in the solution can
always be quantified, being a maximum of half the difference of the last bisected interval.
Thus

0. = (’—_2’—‘) (6.35)

The techniques could certainly be improved with the application of more advanced
numerical methods, having faster convergence, and faster computer languages.
Application of alternative numerical methods should be approached with caution. In
early work the secant method (a modification of the well known Newton-Raphson
method, see Hosking 1978) was used to iterate r, but the one-sided approach to solution
the method uses proved inadequate for instances where discontinuities in F(r) were
encountered. '
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Exactly where and why discontinuities occur in F(r) was not pursued, but that this
occurs was apparent with some pore configurations, particularly those requiring more
complicated geometric descriptions. On occasions the successive bisection and
interpolation method also "crashed", but this was overcome by reducing the step size
for RR. The method has the advantage, over one-sided methods, that once the starting
values have been correctly chosen convergence is assured.

The computer time required for each solution of rp; was not excessive, varying

between a few seconds and, at worst 3 to 4 minutes. An entire set of results describing
the relation C = 1/f(RR) can thus be determined in a matter of a few hours. The necessity
for the user to make initial guesses for the first solution is a consequence of both the
possibility of discontinuity and of the non-unique solution of r afforded by the equations.
Otherwise fractions of the geometric size of the tube could have been employed as first
guesses. 7

With each new meniscus or pore configuration the relevant equations were written
into PROCCURYV. When possible, the solutions given by the program were validated
‘by comparison with previously published or calculated results. Often comparison could
be made to results given in publications by Mason & co-workers, but usually only for a
limiting value of rg .

To conclude, the successive bisection and interpolation method described above
proved versatile enough to yield solutions of the MS-P equation for all the systems
investigated here. Little alteration of the program was required for each new
configuration and the convergence of the method was such that solutions were found in
a satisfactory period of time. Details specific to particular configurations are discussed
in the relevant results sections (chapters 8 to 11) and listings of the programs are given
in the appendices; notation follows that employed here.
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CHAPTER 7

Experimental apparatus and procedures

7.1 INTRODUCTION

The successful development of any new scientific theory, from its mathematical
conception to its widespread acceptance and application, depends upon the validation
of the theory over the range of conditions to which it applies. In validating the MS-P
theory it is important to note that the theory is exact only for capillary surfaces of constant
mean curvature - those surfaces undistorted by a gravitational field. It follows that the
techniques used for the experiments must minimise the effects of gravity on the surfaces
under investigation. ]

The most obvious approach is to conduct the experiments under zero gravity
conditions. Indeed, some experiments on capillarity have been performed in space.
Unfortunately, beside being prohibitively expensive, zero gravity experiments in space,
drop towers or in aircraft on parabolic flight-paths are often unsuccessful. The capillary
forces are usually so small that other phenomena, notably electrostatic forces, can
seriously distort results (Haynes 1989).

If the experiments were conducted with a pair immiscible liquids of equal density
then the effects of gravity will again be entirely eliminated, but there are serious
drawbacks with this approach as well. The difference in interfacial tension between such
a liquid pair is usually small and, to maintain constant curvature conditions, it is vital to
match the densities precisely. As a consequence, successful experiments require fine
temperature control of the few suitable liquid pairs available (Mason 1970).

A third approach centres not on eliminating gravity, but on reducing its effects .
relative to the capillary forces by making the pore geometry small. (Similar reasoning
accounts for the small bore capillary tubes selected for school physics experiments).
Recently this method has been successful in testing of the MS-P theory (Mason et al.
1983, 1984a, 1986, 1987 and 1988), but there are disadvantages. The smaller the pore
geometry becomes the larger are the errors in fabricating the geometry. Conversely the
effects of gravity become more appreciable as the pore is enlarged.

Past experiments discovered a scale of apparatus whereby the model pores could
be made large enough to be mechanically accurate, whilst the height of rise in the pores
was such that the meniscus surfaces were not overly effected by gravity. Although this
amounts to a compromise, it fortunately allows enough variation of pore size to facilitate
validation of the theory.
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The experiments conducted here principally involved measuring the heights of rise
of terminal menisci in uniform capillaries. The pores were made up in part by a number
of cylindrical rods, or flat plates, and in part by a transparent plate (usually glass) through
which the meniscus was observed with a cathetometer. Meniscus curvature was
calculated from a simple equation. So long as the change in height over the region of
the TM is small in comparison to the overall height of rise, the condition of constant
curvature is satisfied. Furthermore, curvatures are measured by a comparative method,
negating the need for temperature control.

In the following pages the general points stated above are elaborated and justified,
details of apparatus are given and procedures discussed.

7.2 APPARATUS
7.2.1 General description

Figure 7.1 shows photographically the equipment used in the experiments to
validate the MS-P theory. Broadly speaking, the apparatus comprises a pair of rectangular
steel cell-blocks that contain the model pore and reservoir indicator cells (1). The
cell-blocks connect, via Swagelock fittings and PTFE tube to each other and the main
liquid reservoir (2), a PTFE beaker capable of providing a small positive head. The test
cells and main reservoir are supported by separate laboratory jacks (3)enabling the height
of the cells to be fixed at a comfortable viewing position and the menisci in the cells to
be adjusted to a suitable level. The heights of the menisci in each cell are measured by
a cathetometer (4) equipped with a tele/microscope capable of traversing both laterally
and longitudinally, and a vernier scale accurate to 0.01 mm. The menisci are illuminated
by a pair of lamps (5), each with two flexible optical fibre antennae. The apparatus stands
on levelled, vibration free, slate-topped concrete benches. On the lower bench sits the
cathetometer, fixed in position by two restraining clamps.

7.2.2 Cell design

The optimum design of a capillary rise experiment, for a given density difference
and interfacial tension, involves a compromise between fabrication errors and distortion
by gravity of the meniscus shape. As pore size is increased fabrication errors decrease,
but gravitational distortion of the meniscus increases. Mason et al. (1984a) discovered
a "window of opportunity" in the scale of the apparatus through which it is possible to
measure curvatures in accurately fabricated pores, capable of holding menisci not unduly
distorted by gravity.
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Figure 7.1 - Photographic depiction of the apparatus

employed for the capillary rise experiments (see text),
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Before they could specify the optimum cell dimensions, Mason et al. needed to
* know the limits of this "window". An experiment carried out by Mason and Morrow
(1984a) showed that distortion of menisci in cylindrical capillaries becomes appreciable
when the height of rise drops below about 7 mm (0.3") with isooctane; the liquid used
for the majority of the experiments. A 7 mm rise roughly corresponds to a capillary of
1.5 mm (1/16") diameter. A similar experiment has been performed for the present study;
further details can be found in chapter 8.

To accurately fabricate model pores of similar or smaller hydraulic radius as the
1.5 mm capillary tube is difficult. However fabrication errors can be largely eliminated
if, instead of direct fabrication, the model pores are made up from precision elements
that are considerably larger that the pore itself. All the pore configurations investigated
here are made up of cylindrical rods and/or flat plates. When put together they create
pores considerably smaller than themselves in which there is a much greater level of
confidence in the geometric dimensions. Also, the meniscus is visible through the front
flat plate!

Based on the experience of past studies, pores made up of rods between 1/32” and
3/8" (0.8 and 9.5 mm) usually give satisfactory results: exact limits will depend on the
particular pore configuration. Having determined the limitng sizes of the model pores
in variously fashioned cells, it became possible for Mason and Morrow (1986) to design
a versatile cell arrangement: Figure 7.2

~ Cell blanks are fashioned from an easily machinable aluminium alloy. The blanks,

with a face measuring 2 1/4" by 1 1/2" (57 by 38 mrn), are 3/4" (19 mm) thick and include
a 5/8" (16 mm) connecting plug machined at the base. Each cell has a 1/4" (6 mm) glass
window, 3/4" (19 mm) wide, which is held by clamps to the machined front face of the
cell. A channel capable of accommodating rods in the required configuration is then
machined from the front face.

A given cell, together with (usually) a reservoir level indicator cell (with a single
1/2" (12.7 mm) square channel), fits into a cell block. The block is simply a rectangular
piece of alloy containing two holes to receive the connecting plugs of the cells and so
hold them vertically in position; the clearance being sealed by PTFE 'O’ rings. The cell
block connects the cells via 1/8” (3 mm) fluid viaducts and is itself connected to the
remainder of the system by flexible PTFE tubing of 1/16" (1.59 mm) L.D. This gives the
apparatus a useful characteristic as the model pore and indicator cells are always in
equilibrium with each other before the indicator cell equilibrises with the main liquid
reservoir. The two cell-blocks are connected in parallel via a Swagelock "T" piece, t0
facilitate quicker stabilization after level changes.
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Figure 7.2 - Sketch of the standard "cell blanks” used to realise the rod and plate geometries of the
theory (top). A channel with the specifications suiting the particular rod arrangement can be machined
from the front face and clamps added as required. The cells fit into a cell block connected 1o the main

liquid reservoir (below).
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The early channel designs, by Mason and co-workers, required that the channels
were of the exact depth and width to accommodate the rods in the desired positions.
Results were not always satisfactory as even a machining error of a fraction of a
thousandth of an inch (thou.), a typical engineering tolerance, could cause significant
deviations from the prescribed geometry, usually because rods were not properly in
contact.

The current design ensures rods contact by making the channels deeper and/or
wider than required. Tightening screws can then be fitted to the back and/or side of the
cells to clamp the rods in position. This approach has the added advantage that different
rods may be used in the same cell to vary a particular pore shape or to give entirely
different configurations. However, it sometimes becomes difficult to assemble the pores
in the prescribed shape and it is necessary to use a process of trial and error until the
correct position is achieved. If assembly of the pore becomes excessively complicated
it is always possible to design a new cell specifically for that purpose. The clamping
screws are fitted with plastic nuts, tightened against the outside of the cells, to prevent
leakage along the threads. ,

It was occasionally necessary to fabricate cells of a different overall size to the
standard blanks and sometimes parts of the channel needed to be made to more precise
dimensions. Errors in the fabrication of the cells were small due to the use, by an
experienced machinist, of a milling machine equipped with a digital read-out. Details
of individual cell designs are given in the sections relating to each particular pore shape,
but the principles of design and fabrication remain the same.

7.2.3 The cathetometer

In addition to accurately fabricated model pores, the success of the capillary rise
experiments depends on precise measurements of heights of rise. Meniscus curvature is
directly proportional to the observed heights, so any error in the readings is passed directly
on to the measured curvature. Accurate readings require a versatile optical instrument;
one capable of magnifying the menisci and traversing both laterally and longitudinally
whilst maintaining the ability torecord heights precisely, even when the focusing position
is altered. Cathetometers are designed for this purpose, but they vary in quality and
capability.

For some early experiments a cathetometer of antiquated design and uncertain
quality was used. This was soon replaced by a modern precision instrument. The Gaertner
M-912 horizontal-vertical cathetometer as shown in Figure 7.1. A substantial frame
supports a precision 1 1/4" diameter meter rod between thrust bearings that enable
rotation about the rod axis. A scale engraved on the rod reads to 0.5 mm. An alignment
tele/microscope (the Gaertner M533HG) and carriage assembly mounted on the rod is
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equipped with a vernier scale capable of reading to 0.01 mm (0.004"). A finely threaded
screw situated on the carriage assembly provides fine, hysteresis free, vertical
adjustment. This cathetometer is a special non-standard device obtained specially for
this project.

The manufacturers claim that refocusing with the tele/microscope over the range
75 mm to 1.25 m (3" to 4 ft) will not alter a reading by more than .0025 mm (.001");
this is considerably better than an ordinary slide-focus scope which can give errors of
2.5 mm over the same range. The tele/microscope also has the advantages of acompletely
enclosed mechanism, so there is no danger of stray "fingers"” coming into contact with
it. Magnification is quoted at 17.5X at 75 mm dropping to 4X at 1.25 m; between 150
and 300 mm (6" to 1 ft), the extremes of the working distance used in the experiments,
the scope provides adequate magnification.

7.2.4 Slate-topped concrete bench and pillar

The large slate-topped bench shown in Figure 7.1, provides an inert level ‘surface
to conduct the experiments on. The bench is sturdy enough to maintain its position if
accidentally jolted and sits on lead shrouded rubber sheet which damps out vibration
emanating from elsewhere in the building.

The bench was built to specifications supplied by Mason for his earlier work. I
later designed the pillar to hold the Gaertner cathetometer, as unlike the old device, it
was too large to site on the bench. The principles of the design of the pillar are basically
the same as those for the bench: a slate slab is supported by adjustable discs (that enable
the slate top to be levelled) on studs protruding from a rubber backed, ferroconcrete
block (Fig. 7.3). The pillar requires, in addition to the supporting studs, a long stud which
passes through the centre of the slab. To this a two-jawed clamp is attached to fix the
cathetometer in position, once it’s been levelled.

7.2.5 Pore construction components

Of the pore shapes investigated almost all are made up in part from cylindrical
elements and all include a flat transparent window. The selection of the cylindrical rods
was governed by three factors:

i) The rods had to be manufactured withahigh degree of precision ondiameter
to give confidence in pore geometry.

ii) They were required to have a uniform surface finish so that wetting
properties are reproducible.
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Figure 7.3 - Design of the slate-topped pillar required to support the cathetometer.

iif) The rods needed to be available in suitable lengths over a range of
diameters covering 1/32" to 3/8".

Two systems were chosen, one consisting of steel rods and glass windows to be used
for perfectly wetting experiments (6 =0), the other being a teflon system used with
liquids that produced known contact angles. Three different rod types were used in
construction of the pores; their properties are discussed below.

7.2.5.1 HSS drill blanks

Hardened steel dnll blanks, whose more usual applications are as arbors, punches,
spindles or gauges, proved to be good construction elements; satisfying the requirements
well. Steel, in common with other metals and hard solids, has a kigh energy surface; that
is it has high surface energy. High energy surfaces are wet by most liquids against air,
particularly by those with low surface tensions. In addition, steel can be made with
smooth, homogeneous surfaces.

The steel used for the blanks is first hardened, then precision ground using a
centreless grinder; the surface finish is bright. The blanks are available in extensive size
ranges. Between the size limits imposed by the cell design (1/32" to 5/16™)the rods were
obtained in a 10* mm metric range and a 1/64*" imperial range. In addition a numbered
range provides sizes that fall in-between those of the other ranges. Tolerances for the
rod diameters of +0 to -0.02 mm (8 thou.) are claimed by the manufacturer (SKF &
Dormer Tools Ltd.). The mean diameters of rods used were found by averaging
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measurements taken with a digital micrometer along the rod length and around the axis.
These drill blanks are useful because they come in a whole range of sizes; imperial,
metric and number sizes. Their  finish is not really good enough and they are always
fractionally undersize.

7.2.5.2 Needle rollers

Needle rollers, as used in roller bearings, have to be made to high precision for
their usual function. Also manufactured from hardened steel and precision ground and
polished, but with a matt finish, the needle rollers made excellent construction
components. However, they are not available in as an extensive range as the drill blanks
(1 to 5 mm in increments of (.5 mm), but their tolerance is better at +0 to -0.003 mm on
diameter and measurements showed much less variation in diameter along a given rod.
They are also not as long as drill blanks.

7.2.5.3 Teflon rods

Teflon (PTFE) has a low energy surface and has been shown to give reproducible
wetting properties with a homologous series of liquids (Morrow 1974 or section 2.7.6).
This is a rare quality among unprepared surfaces and led to the selection of teflon for
experiments with non-zero contact angles.

In comparison to steel rods there are noticeable disadvantages in making pores
from PTFE rods:

i) Teflon rods are flexible and compressible which makes assembling a
uniform pore a much more difficult operation.

ii) The range of available sizes is restricted and ground PTFE rods couldn’t
be obtained with didmeters less than 1/16". However, in this study only rod
sizes greater than 1/8" proved successful.

iii) Usually the rod is extruded and consequently has a very variable diameter.
The rod is available ground, but grinding to high precision is not possible as
PTFE is a soft material. Grinding also roughens the surface and can modify
contact angle behaviour. The claimed diameter tolerance of the manufacturer,
Dalau Ltd., of +0.2 to -0 mm along a 1 m length is also very poor, but for the
short lengths employed in the experiments the variation was not so great. In
fact diameter variation around the rod section was more of a problem than
longitudinal variations.

In addition to the rods described above, all pores required a transparent window
through which heights of rise are measured. For the wetting system a flat glass plate was
used. However the teflon system usually required all pore surfaces to have identical
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wetting properties. A thin, transparent film of a fully fluorinated polymer was stretched
over the inner surface of a glass plate in these instances (transparent PTFE film is
unavailable). The film, manufactured by Curtis Noll Corp. and supplied via the New
Mexico Petroleum Recovery Research Centre (Socorro), was 0.05 mm thick with a
tolerance of +0.005 - 0.000 mm and was available as loose roll and as self-adhesive tape.

7.2.54 Spacers
For some arrangements spacers were required to hold rods away from the plate or
to alter cell width or depth. Usually brass precision engineering shimstock was used.
The small pieces required were cut, or sawn, from 1 foot sq. sheets. To ensure these were
flat and contained no burrs the edges were first filed down before the shim was clamped
tight in a vice and left for several hours. Their thicknesses was then be measured with
‘a micrometer. '

7.3 THE TEST LIQUIDS
7.3.1 Perfectly wetting experiments

The wetting experiments required a liquid that wets steel and glass, exhibiting no
deviation from the perfectly wet under advancing or receding conditions. Steel and glass
are high energy solids and as such will be wet by most liquids spreading against a gas
provided that the surfaces are clean. Isooctane was chosen because it satisfied the wetting
conditions, but it also possesses some other useful properties:

i) Isooctane has low viscosity making the time taken for equilibrium to be
obtained in the small pores short.

ii) It has low toxicity; no extra precautions were required for the expcrirhents.
iii} It made a useful cleaning fluid for the apparatus as it is a mild solvent.
iv) In common with other organic solvents, isooctane is manufactured at high
purity, but available at low cost. .

v) It evaporates when it leaks from between the metal-metal or metal-glass
junctions and this obviates the need for special seals.

7.3.2 Non-zero contact angle experiments
For the partially wetting experiments the fluids were chosen to produce known

contact angles. Following Morrow’s (1974) work on the effects of surface roughness on
contact angle, discussed in section 2.7.6, and experiments conducted by Mason et al.
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(1983), the contact angles of several liquids, likely to pertain for the surface condition
of the rods and film, were known. Of the three distinct classes found by Morrow the "as
supplied" rod and film surfaces give class II behaviour.

Table 7.1 Contact angles and physical properties of the organic test liquids.

Test Liquid Receding  Advancing Surface Density

Angle . Angle Tension

0, 6, o 1

(deg.) (deg.) (dyn/cm) g/em’
Isooctane 46 - 296 18.7 0.6918
n-Dodecane 228 - 479 249 0.7430
n-Tetradecane 25.1 - 50.2 26.2 0.7599
Dioctyl Ether 30.8 559 248 0.8020
Hexachlorobutadiene 433 684 360 1.6820
o-Bromonaphtalene 58.1,° 83.2 430 14739

The fluids and their relevant physical properties are listed in Table 7.1. The
documented surface tensions were confirmed by du Nouy tensiometer measurements.
The receding and advancing contact angles,0, and 8, , are related to the intrinsic angle,
8, , according to Morrow’s empirical equations: '

Class II receding contact angles

0 < 8, < 22° e, =0 Equations
22° < @, < 180° : 8, = 1.14(6,-22° 7.1

Class II advancing contact angles _

0 < 6, < 158° 0, = 1.148, Equations
158° < 06, < 180° 6, = 180 7.2

Figure 2.14 showed Morrow’s experimental results plotted together with the lines
resulting from the equations above. It is noticeable that some of Morrow’s experiments
gave results more than 5° in error of those given by the equations, although the spread
of results usually transposes the lines. Considering the well known difficulty of
reproducing contact angles (section 2.7) the agreement is the best that can be expected.

7.4 EXPERIMENTAL PROCEDURE

The experiments principally involved measuring the height of capillary rise in pores
of constant cross-section made up from rods and/or plates. The experimental procedure
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remains essentially the same throughout, although some specific details differ from one
pore shape to another; these points are discussed in the sections devoted to individual
configurations (see later).

Some of the pore shapes listed in Table 6.1 had been selected for the experiments
* prior to the start of the investigation, while others arose as the study progressed, either
from a previously investigated shape or from a simple desire to improve the versatility
of the MS-P method. In this section the general experimental procedure and the
determination of meniscus curvatures from measured heights of rise are discussed.

7.4.1 General considerations

Once a specific pore shape had been chosen a suitable test cell was sought to
accommodate the rods in the desired configuration. If none of the available cells suited
the shape then a new cell, designed specifically for the purpose, would be commissioned.

Prior to preceding with a set of experiments the height of the laboratory jack
supporting the cells was adjusted to a suitable level and the spirit level on the cathetometer
was checked over the lateral traverse. If not within the limits specified by the
manufacturer the cathetometer would be re-levelled in the manner prescribed in its
manual.

7.4.2 Selection of rods

Meniscus curvature is sensitive to small deviations in pore geometry so the selection
of the rods that make up the geometry requires care. Each rod was measured at several
points along its length and around its axis as there is often significant variation in a drill
blanks’ diameter. Measurements were taken with a digital micrometer accurate to 0.001
mm ((.0001"). Rods with noticeable tapering were rejected. The construction of a cell
usually required two or more rods to be of equal diameter or in a specific ratio. So it was
often necessary to measure many drill blanks, nominally of equal size or ratio, until
suitable rods were found.

This problem was not encountered to the same degree with either the needle rollers
or teflon rods, the former have a closer tolerance than drill blanks whilst the latter were
cut from 2 m lengths of rod so the likelihood of significant differences between adjacent
pieces was small. Rods selected for pore construction were thoroughly cleaned before
assembly. Once clean the rods were handled with tweezers.
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7.4.3 Cell assembly

As with the rods each cell was first cleaned with isooctane. Particular care was
taken to ensure all swarf was removed from newly machined apparatus. Assembly of
the test cells usually involved first arranging the rods in position against the transparent
plate with the cell horizontal. The rods were then fixed in position by clamping screws
or by wedging other rods behind those forming the pore or by a combination of both
methods. Care was taken to ensure rods remained in contact with each other and/or the
plate. Even steel rods will bend if to much pressure is applied by a clamping screw; these
only needed to be hand tight (less so with teflon rods).

7.4.4 Arrangement of apparatus

For each experiment the apparatus comprised of four cells, usually two reservoir
level indicator cells, the test ceil and a "standard cell” (see later), arranged in the
(connected in parallel) cell blocks with the indicator cells at either end, as shown in
Figure 7.4. The cell blocks were positioned as close to the cathetometer as was practical
and arranged so that both focus adjustment from one cell to another and the lateral traverse
of the tele/microscope were at a minimum, This operation maximises the magnification
of menisci whilst minimising any height measuring errors that may arise during
refocusing.

7.4.5 Measurement of capillary rise

The assembled cells were filled by raising the main reservoir beaker, containing
about 50 em® of test liquid, above the level of the cells,and holding it there until menisci
appeared in all the cells. The beaker was then replaced on its laboratory jack and the
menisci allowed to stabilise.

The optical fibre antennae were adjusted to give maximum illumination of the
menisci in each cell. Satisfactory illumination of the menisci with ordinary lamps would
have been difficult due to the multiple reflections from the rods. Even using the optical
antennae, careful positioning was required. If the point of measurement is deep within
a pore ‘or the channel large, as with the indicator cell, obtaining adequate illumination
can be very difficult. This sometimes led to significant experimental error. However it
was usually possible to obtain reflections off the bottom of a meniscus by manipulating
the antennae. These could then be sharply focused with the telescope.
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By raising or lowering the jack supporting the main reservoir the levels of liquid
in the cells could be increased or decreased to give either advancing or receding menisci
as necessary. The apparatus has quite a slow response to level changes; typically taking
10 minutes or so to reach equilibrium. Figure 7.5 shows a graph of normalised capillary
height versus time for a typical response with isooctane. Some of the more viscous liquids
used could take considerably longer to equilibriate, sometimes in excess of half an hour.
With a highly volatile liquid, like isooctane, evaporation is rapid. So, to preventexcessive
losses and to maintain static heights of rise, the main liquid reservoir was always kept
covered during experiments.
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Figure 7.5 - Graph of the normalised height of rise versus response time for a typical experiment with .
isooctane. This shows that about 10 minutes is required for the system to stabilize after a change in
reservoir level.
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Before measuring heights of rise a check for leakage from the system was made,
at first visually and then by placing pieces of dry tissue paper in the cell joins and around
connecting points. If a paper became wet then that piece of apparatus was dismantled,
checked and reassembled. r

Once the liquid levels in the cells reached equilibrium all the meniscus heights;
those in the test pores and the reservoir indicator cells; were measured with the
cathetometer. The heights were read by first focusing on the cross-hairs and then
focusing, without parallax, on the bottommost point of a meniscus.

Having two indicator cells, at either end of the cell assembly, provided a check on
the equilibrium and on the accuracy of the cathetometer travel. Sometimes this system
was abandoned in favour of one with two test cells, one indicator and a standard. The
equilibrium was then checked by re-measuring the first level at the end of the reading
sequence. In either case a significant difference in these readings required
re-measurement at a later time. Non-attainment of equilibrium after several tries usually
indicated a small leakage from the system not detected by the tissue paper.

Experimental errors were expected to be produced mainly through dimensional
tolerances of the constructed pores. By taking readings at different levels within a given
pore an estimate of the scatter due to dimensional deviations could be determined.

For experiments involving teflon components and partially wetting liquids a
different procedure is required so that the heights of rise corresponding to both advancing
andreceding conditions are obtained. This modified method, which also contains ameans
of verifying the uncertain teflon pore geometry, is discussed later in section 10.2.

7.5 DETERMINATION OF CURVATURES

The experiments were designed so that no finer control of temperature was needed
than that provided by the normal temperature control in the laboratory. This was achieved
by using a standard cell, comprising of two equal rods and a plate, for which the
normalised meniscus curvature was known. Employing this method meant that the
relevant temperature dependant properties of the testliquid, in the form of the term pg/o,
could be determined from the readings for each run.

Referring back to chapter 2, section 2.4.3, the relationship between meniscus
curvature and height of rise for a cylindrical capillary of radius R; is,

Ahpg = 20R; (2.42)

where Ah is the height of rise. The expression can be generalised for any capillary of
uniform cross-section giving
Ahpg = ColR (7.3)
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where R is a characteristic pore dimension and C the normalised meniscus curvature
(R/r). o

reservoir test standard
Wl ..
..... \r’ hy
hy .
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Figure 7.6 - Skeich of the various heights which must be measured in the capillary rise experiments.

Aside from minor corrections, the meniscus curvature of a given pore can now be

determined. Taking the terminology from Figure 7.6 the curvature of the meniscus in -

the test cell (subscript 7) is given by

Ahpg = COlR, ) (7.4)
and that of the standard (subscript 5) by

Ahpg = C,O/R, : (7.5)
combining 7.4 and 7.5 yields

Ah, C R,

Ak, RC,
or Ah, R, -

c = C‘E, 3 (7.6)

Note that the physical properties of the liquid (¢ and p ) have cancelled, this makes the
method relatively insensitive to temperature changes. The normalised meniscus
curvature in the standard, C,, was found to be 6.94 +:0.02 (see section 8.2). A correction
needed to be added to account for the capillary rise in the indicator cell; determined to
be 0.5 mm. So upon incorporation of these results 7.6 becomes

Ah, +0.5 ] R, Ah, R,

7.7

Mm+05 R - Mar

[

Cc = 6.94(

with all measurements now in mm.
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For the special case of near hemispherical menisci the curvature may be adjusted
for gravity distortion by employment of the Jurin correction (see section 2.4.3). This
gives rise to a further equation for curvature determination
Ah+0.2+h, R, Ah, R,

Ah,+0.2+h,.,]" -

R, = "7 AnR,
where h;, and h, are the Jurin corrections for the heights of rise in the test and standard
cells respectively. These and the constants in equation 7.8 are explained in section 8.2,

C = 6.95( (7.8)

The curvature of the meniscus in the test cell can now be determined from either
equation 7.7 or 7.8 and compared with the value predicted by the theory.

7.6 MENISCUS CONFIGURATIONS INVESTIGATED

During the course of this study the MS-P method has been tested in uniform,
non-axisymmetric tubes of varying shapes with perfectly and partially wetting liquids;
the latter in tubes of both fixed and mixed wettability. Several different tube shapes,
made up from the rods and plates described in section 7.2.5, have been employed. Tube
shapes were selected both in order to confirm results of past studies and to extend
investigations into the behaviour of menisci with both open and closed profiles. Table
6.1 listed the tube configurations investigated together with the geometric variables
and/or wetting conditions for which menisci behaviour has been studied.

For the presentation and discussion of results the different configurations are
discussed in order of ascending complexity, although this was not the order in which the
experiments were performed. Experiments involving the perfectly wetting liquid,
isooctane, and tubes constructed from steel and glass components are reported in chapter
9. Selected tubes shapes from chapter 9 are treated again in chapter 10, butunder partially
wetting conditions for fixed wettability, with pores fabricated from teflon components,
and/or for mixed wettability, with a combination of teflon and steel components. Finally,
in chapter 11 investigations involving complex capillary surfaces where meniscus
behaviour can be dependant on the behaviour of a neighbour are discussed; these are the
so called "neighbouring pore" effects described in sections 3.5 and 5.3.2,

The next chapter begins the reportage of results with the discussion of experiments
performed to determine the curvature of menisci in a limited number of pore shapes
selected to act as "standards”. It is against these standards that curvatures in the other
pore shapes are measured, so their values are of crucial importance.
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CHAPTER 8

Curvatures in the standard configurations

8.1 INTRODUCTION

In chapter 7 an experimental technique was set down for the determination of
meniscus curvatures from measured heights of rise. By making use of a comparative
method the required apparatus was greatly simplified as it no longer needed fine
temperature control. However, the observed curvatures depend heavily on the
predetermined curvature of a meniscus in a pore of “standard” configuration. The
relationship is one of direct proportion {(equation 7.7), so any errors in the standard’s
curvature will be carried-over as a systematic error to all the other experimentally
measured curvatures. Confidence in the experimental results is therefore highly
dependent on the level of confidence held in the standard’s curvature.

If the technique described in chapter 7 is termed the "simplified" comparative
method then to determine the standard’s curvature a "full" comparative method is
required. The full method employed here differs from the simplified method in the
number of pores used to obtain a single curvature. Heights of rise in several differently
sized pores of the same standard configuration are compared to those in a number of
cylindrical capillary tubes for which the meniscus curvature is known. This approach
lends to the results a high degree of confidence. Furthermore, these experiments are a
thorough test of the comparative method and its reliance on the "window of opportunity”
in the scale of apparatus. The experiments are able to quantify the scale of the pores
where dimensional variations in pore section and gravitational distortion of menisci are
both small. Some quantitative estimate can be made of the effect of these and other likely
errors in the technique. The small, but significant correction that must be added to
observed heights of rise for the capillary rise in the indicator cell is also a result of these
experiments,

Results of two similar experiments have been published previously. For a standard
pore comprising two equal rods and a plate, by Mason et al. (1983), Mason & Morrow
(1984a) and for a rod in a right-angled corner by the same authors (1984a). The value
of the meniscus curvature in the two rod configuration given in the latter paper has been
used in some experiments for this study. Some results obtained using this value with the
simplified method had shown significant improvement over those published in previous
studies. It was thought that similar improvements might be found in the measured
curvature of the meniscus in the standard pore.
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The full comparative method compares heights of rise in cylindrical tubes to those
in assembled pores. The question will naturally arise as to why a cylindrical tube, for
which the meniscus curvature has long been known, is not itself used as a standard. The
tubes used in these experiments are of the highest precision available, but the
manufacturer’s claimed bore tolerance of +0.25 mm over a 1.5 m length is hardly
inspiring. My own measurements in the 10 cm lengths employed here showed a bore
tolerance in the region of £0.01 mm (see Appendix B). The rods used to make up the
assembled pores have a tolerance improved by a factor of 10. Hence, when correctly
assembled a standard made up from rods is likely to be significantly more reliable than
that provided by a single cylindrical tube. Two configurations were selected as standards:
a) Two equal rods and a plate

This configuraton was selected as it had already been established as the usual
standard for this study and so as to provide a comparison to Mason and co-workers’
results, In 1983 Mason et al. found a value for the normalised curvature of the
configuration of 7.00 = 0.14 and later, with a modified apparatus, a value of 6.88 £+ 0.02
was found (Mason & Morrow 1984a). Both these experiments used a large machined
block containing milled channels designed to hold the rods (from 3 to 6 mm diameter)
in position. This form of apparatus was seen as having significant disadvantages over
the clamped method employed here. Details of meniscus shape and the derivation of the
MS-P theoretical curvature for the configuration are detailed later in chapter 9.

b) Three equal rods and a plate

The possibility of using a three rod standard had not been considered before and
only arose as a consequence of early experiments conducted with the configuration (see
chapter 11 where the theory is also detailed). The predicted curve for curvature against
subtended half-angle, ¢, for three equal rods (Figure 11.16) shows an almost flat portion
between ¢ = 52° and ¢ = 60°; curvature varies by only 0.05 (about 0.15%). It is a simple
matter to assemble rods such that the angle lies between these limits. It was hoped that
the increased confidence in the mechanical accuracy of the pore would lead to a new
common standard. -

8.2 EXPERIMENTAL

The components of the appa}ams and the procedures followed here remain largely
unchanged from those discussed in chapter 7, but there are differences in scale. In place
of two connected cell blocks a total of five blocks, connected in parallel, were needed
for each run. They were arranged in a circular arc around the cathetometer. Two 1/2"
cells held the five differently sized capillary tubes, seven cells held rods in the standard
configuration and one was a reservoir indicator cell.
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Where possible needle rollers were used as rods to make the pores; advantage being
taken of their greater precision. Some “juggling” of rods from one cell to another was
required in order that all seven sizes could be accommodated in the available cells. The
capillary tubes were held in a vertical position by clamping them into cells in the same
manner as the rods.

The diameters of the capillary tubes were determined by partially filling them with
mercury and measuring both the length (with a travelling microscope) and weight of the
mercury thread in several positions (see Appendix B).

Isooctane, was chosen as the wetting liquid for the experiments. The apparatus had
a particularly slow response to level changes due to its physical size and menisci typically
took 15 minutes or so to settle. The system never obtained a static equilibrium. Such a
large surface area of the volatile isooctane was in contact with the atmosphere that
evaporation was considerable even when cell top openings behind the pores were blocked
with tissue. '

Rectifying small leaks was now also more important than with the simplified
experiments. Here several small leaks amount to a measurable height loss over the
reading-taking period, whereas a single small leak is unnoticeable over the short reading
period in the other experiments. Considerable effort was required to track down and
rectify these leaks. Complete prevention of leaks/evaporation proved impossible.
However, over each reading period all levels were observed to drop by the same amount,
typically 0.1 mm in 10 minutes, indicating that levels in the cells were in equilibrium
with each other. '

The apparatus had two finer points. For the two-rod system two pores made up of
rods of the same diameter were included, one at either end of the cell arrangement. This
was not possible with the three rod system due to requirements of space, but two capillary
tubes of the same size were included with both systems. This enabled a check on the
equilibrium before taking readings and gave a check on the fabrication errors of the pores
and on the accuracy of the horizontal travel of the cathetometer.

Errors in the measured heights of rise arising from the cathetometer were likely to
be increased over those in the simplified experiments. The horizontal travel was, by
necessity, greater and the telescope required more re-focusing from meniscus to meniscus
as the cells could no longer be arranged such that all menisci were simultaneously in
focus.

An experimental run consisted of measuring the levels of all the menisci, both in
the test capillaries and the glass capillary tubes. This required focusing on and reading
the levels of 14 or 15 menisci, a process that typically taking over 10 minutes (this
compares with about 3 minutes for the two block system). Levels of menisci were
corrected for the drop in height by re-measuring the first level in the sequence at the end
and the reading period was timed. By assuming that an equal time was required for each
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reading and that equilibrium between the cells is maintained the heights can be corrected
to their levels at the start of the cycle. As a further safeguard the positions of the cells
were interchanged between each run, thereby randomising any error.

Runs were repeated for several levels in the apparatus both as a check on the method
and for an estimate of the scatter produced by dimensional vanations. Rod sizes for the
seven constructed capillaries were chosen to give heights of rise covering the range for
which the experimental technique was thought to be valid, judged from earlier
experiments to be roughly 5 to 25 mm.

For the two rod system this resulted in rods of nominal diameters 1/16" and 2, 2.5,
3,3.5,4 and 5 mm; the 1/16" rods were drill blanks whilst the others were needle rollers.
The three rod configuration requires rods of smaller diameter for a given height of rise
resulting in pores made up from rods with nominal diameters of 0.038, 0.0465 and 1/16"
and 2, 2.5, 3 and 3.5 mm,; again the imperially sized rods are drill blanks whilst the
remainder are needle rollers. When assembled these rods gave subtended angles of 58.7°,
56.7%, 58.3°, 55.8%, 55.9%, 56.0° and 59.5° respectively. ‘

Note that the rods selected for the three rod system are significantly smaller. When
the three rods are assembled the pores are large compared to the two rod pores. The
capillary tubes had mean diameters of (.544, 0.622, 0.782, 0.860 and 1.186 mm and
gave, as planned, heights of rise in the same range as the constructed tubes,

8.2.1 Determination of curvatures

Having obtained the heights of rise of each menisci above the measured level in
the reservoir indicator cell, graphs of heights of rise versus reciprocal rod/tube radius
could be drawn. From the gradients the curvatures can be determined. Also the two
straight lines obtained should extrapolate to the same point on the height of rise axis,
giving a measure of the height of rise in the reservoir indicator cell, A,.

For the glass capillary tubes the height of rise, Ay, in a wbe of radius, Ry, is given

by;
20 a*

= h+— 8.1)
pgRy Ry (
where 2 is the numerical value of the normalised curvature of a hemispherical meniscus
in a cylindrical tube (sec section 2.4.3) and other symbols carry their usual meanings.
A plot of h; versus 1/R; is thus a straight line through A,, with a gradient, G, of
20/pg (= a® the capillary constant).

b= b+
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The height of rise in the constructed pores, A, , with rods of radius, R; (i =2 for the

two-rod system etc.), is given by;

CrO C,?,a2
h, = — = h +—
i hot PER, 2R

(8.2)

where Cp is the normalised curvature of the given rod configuration. The gradient of
the rod line, Gg,, will thus be Cnic/pgR,-. The curvature of the menisci in the assembled
pores is related to the ratio of gradients by;

Co = 2= 8.3)

As with the simplified comparative method 6/pg is a constant that cancels, making
the method insensitive to temperature changes. In addition the change in curvature with
height in the region of the TM caused by gravity will be largely compensated for by this
method (see later).

8.3 RESULTS

Over the following pages the principal findings from these experiments are first
given and then discussed in relation to this and previous studies. The effectiveness of
the comparative method of curvature determination isrevealed and a quantitative account
is made of the errors inherent to the experimental technique. A detailed breakdown of
results is included in Appendix B. ’

8.3.1 The basic findings

Figures 8.1 and 8.2 show respectively, the results obtained using the two rods and
plate and three rods and plate configurations. The data is plotted as graphs of heights of
rise versus the reciprocal of rod or tube radius. Rather than reproduce all the data from
each of the runs separately, the results from experimental runs conducted at five different
levels in the apparatus have been condensed onto single graphs for each of the two
configurations. The heights of rise shown refer to the height of the bottom of a TM above
that measured in the reservoir indicator cell.

The straight lines drawn on the graphs were obtained by linear regression of the
mean heights of rise in each of the tubes or constructed pores (excluding the zero height
of rise in the indicator cell). All the data points from the five runs are shown. Detailed
breakdowns of the results, including the linear regression findings for each run, can be
found in Appendix B. '
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Figure 8.1 - Graph of the heights of rise against 1/R; for the capillary mbes and against 1/R;, for the
two-equal-rods-and-plate menisci. The scatter of points is mainly caused by dimensional variations in
the pore sections over the five different levels at which measurements were taken. No correction has
been made for the effects of gravity distortion on the menisci. Point X shows an approximate
reciprocal equivalent tube radius for the square indicator cell. Its distance below the rod line indicates
the severe distortion of the meniscus the cell contains.
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Figure 8.2 - Graph of the heights of rise against 1/R; for the capillary tubes and against 1/R; for the
three-equal-rods-and-a-plate menisci. No correction has been made for the effects of gravity distortion
on the menisci.
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For all three pore shapes, the cylindrical tubes and both assembled arrangements,
the data fits the imposed straight lines excellently with only a small scatter of points.
This implies that, as expected, gravitational distortion of the menisci is small. The two
lines on the graph extrapolate as expected to intercept at roughly the same point on the
height axis, giving an estimate of the capillary rise in the indicator cell.

Using each of the gradients of the separate run lines of Figures 8.1 and 8.2 the
normalised curvatures of the two and three rod systems were determined from equation
8.3. The values obtained were in the ranges Cp = 6.94 £ 0.02 and Cp, =3.00+0.02. The
theoretical values at zero contact angle obtained from the MS-P theory are Cp, = 6.970
and Gy, = 2.96" (refer to sections 9.5 and 11.2). The agreement, though not perfect, is
very good at - 0.4 % and + 1.3 % respectively.

The numerical values obtained for the height of rise in the indicator cell ranged
from an average of 0.5 mm for both the tubes and two rod system to 0.6 mm for the three
rod configuration.

8.3.2. Analysis of results

Experiments in this section represent the most thorough test of the MS-P theory
conducted in this study or published elsewhere. The experiments that follow this
discussion use only one test cell to obtain an estimate of the meniscus curvature, whereas
seven cells of varying size are used here. The single curvature obtained is the "standard"
against which curvatures in the other configurations are measured. Hence, it is important
to give these results a complete analysis and try to account for the discrepancy between
the experimental and theoretical values.

Aside from the random errors generated by the measuring techniques two principal
sources of error have been identified which are inherent to the experimental technique.
Firstly there are errors arising from the distortion of the menisci by gravity, for which
the MS-P theory takes no account. Secondly, due to the small physical size of the pores,
there are likely to be fabrication errors arising from dimensional variations in the pore
construction components. The scale of the apparatus was chosen to make these errors
as small as possible. Three questions present themselves:

= What are the quantitative effects of these errors?
+ Can they be made smaller?
+ And are there any other significant systematic errors?

* This value is the mean for the range of curvatres found for subtended angles between 52° and 60°.
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8.3.2.1 Gravitational distortion of menisci .

In conducting these experiments capillary rise measurements have been used to
estimate a curvature which is then compared to a theoretical value derived for surfaces
of constant curvature. It has been assumed that errors arising from the distortion of the
menisci are largely eliminated by the use of the comparative method. The reasoning
being that with a similar height of rise the distortion of a meniscus in a tube will be
roughly equivalent to that in an assembled pore. The selection of capillary tubes giving
heights of rise in the same range as that exhibited by the constructed pores should have
led to most of the effects of distortion cancelling when curvature is calculated from
equation 8.3. This argument is constrained by two criteria:

i) The menisci formed in the assembled pores need to be roughly the same
shape as those in the tubes - concave and near hemispherical.

ii) Distortion must nowhere be severe i.e. the data must closely fit a straight
line on a graph of height versus reciprocal radius.

Distortion of menisci increases as pore size increases, so any severe distortion will be
manifest by increasing deviations from the straight lines drawn on Figures 8.1 and 8.2
as reciprocal radius decreases. This is not apparent.

In order for the reader to clearly identify that menisci do become heavily distorted
as the size of pore increases an approximate reciprocal tube radius has been plotted for
the square indicator cell on the zero height of rise line, marked X on Fig. 8.1. This point
falls well below the line, indicating the severe depression in capillary rise due to the
decreased curvature resulting from distortion.

The effect of gravity distortion on the data shown in the Figures will be increasing
depression of the heights of rise as pore size increases. The gradients, Gr and Gy, will
all be slightly greater than would be given by undistorted menisci.

Two assumptions of the MS-P theory are not precisely met by capillary rise
experiments due to the effects of gravity:

i) The theory assumes that the MTM is of constant mean curvature whereas
in practice the measured height of rise correspond to the minimum curvatures
of a distorted menisci.

ii) The theory requires that the AMs bound vertical liquid wedges in the
corners, but in practice the wedges will be sloped in the region of the MTM
due to the variation of curvature with height.
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Below the above two factors are discussed and rough quantitative accounts made of their
effect on observed curvatures.

a) Correction for minimum curvature

In capillary rise experiments terminal menisci cannot satisfy the constant curvature
condition of the MS-P theory because the curvature varies directly with the height above
a free liquid surface. The measurement of height of rise to the bottom of a terminal
meniscus is an experimental convenience (it being a definable point of measurement),
but it also corresponds to the minimum curvature of a distorted meniscus.

Closest to the theoretical value will be the average curvature of the meniscus. Only
if the height change across the terminal meniscus is so small as to be unmeasurable will

_the height of rise read by the cathetometer yield the average curvature. This would require
a height change through a TM of less than 0.01 mm. If apparatus were designed with
this in mind then heights of rise in excess of 1 m would be needed and pores would have
to be smaller than it is currently possible to make them. So, in practice, the capillary rise
method will always yield TMs of measurably finite height.

A more accurate estimate of a TM’s curvature can be found if the level in the
meniscus that corresponds to its average curvature is used. This was the basis of a
correction to capillary rise discussed in section 2.4.3 for cylindrical tubes. The average
curvature is given by the level of a plane across the TM in such a position that the volume
of liquid above the plane equals the volume of space below it. To apply this principal
to wedging systems it must first be assumed that the arc menisci hold solid wedges and
that the cross-section so obtained applies to the whole length of the tube.

Exact corrections can be made for the heights of rise in the cylindrical capillary
tubes by application of Sugden’s tables, but not to those in the assembled pores as their
CToss-sections are not circular. However, it is possible to apply a first-order correction
for the effects of gravity on the TMs in the assembled pores by assuming the TMs to be
hemispherical. This is the basis of the Jurin correction, h;. In cylindrical tubes this
correction is simply one third of the tube radius, Ry;

h, = RJ3 (8.4)

J
The correction is almost exact for the sizes of tubes used in the experiments where the
menisci will be near hemispherical. The maximum difference between the Sugden and
Jurin corrected heights of rise being only 0.05% with the largest tube, as illustrated by
Table 8.1.

Applying the Jurin correction to the experimental data from the capillary tubes the
height, h,, of the hypothetical planar liquid surface was re-determined by linear
regression of these values against 1/Ry. The TMs in the two and three rod assembled
pores are not hemispherical, but bear a close enough resemblance to allow the correction
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to be applied approximately. Firstly an equivalent tube radius, R,,, was calculated from

each average height of rise,
Gy

hR.‘ + h“.

Ry, (8.5)

where Gy is the Jurin corrected gradient of the tube line.

Table 8.1 Jurin and Sugden corrections as applied to the heights of rise in the capillary tubes
and the largest tubes employed for the two and three rod standards.

Nominal Jurin % of Height ~ Radius to Sugden Over-
Diameter/ Correction of Rise Height Ratio  Comrection correction
Equivalent by Jurin

Radius h; R/h h,
(mm) {mm) (mm) {%)
Tubes:
0.5 0.09 0.4 0.014 0.09 0.00
0.6 0.10 0.6 0.018 0.10 0.00
0.78 0.13 09 0.028 0.13 0.00
08 0.14 1.1 0.034 0.14 0.01
12 0.20 22 - 0.064 0.19 0.02
Two Rods:
0.72 0.24 33 0.094 023 0.14
Three Rods:
1.20 0.40 9.1 0.261 037 0.76

This equivalent tube radius is the radius of a cylindrical capillary tube that would
give the same height of rise as the assembled pore. One third of this radius was then
added to observed heights of rise. For the two rod system the correction amounted to a
maximum of 3.3% in the height of rise for the pore made from 5 mm rods. The maximum
correction was greater in the three rod system owning to the smaller capillary rise,
amounting to an increase of 9.1% in the height of rise in the 3.5 mm rod pore. Table 8.1
shows the effect of the correction on the largest pores together with a comparison with
the exact correction (for tubes) provided by Sugden’s tables. The simplicity of the Jurin
correction is favoured over the accuracy of Sugden’s tables. The application of the
correction to non-axisymmetric pores is anyway an approximation.

Plots of the adjusted heights of rise versus reciprocal rod and tube radii (shown in
Figures 8.3 and 8.4) again show excellent straight lines for all points. Both rod and tube
gradients were shifted downwards, but the ratio of the gradients changed only slightly.
Values of the normalised curvatures obtained in this way were, Cp =6.95+0.02 and
Cr,=2.95%0.02 (changes of + 0.1 and - 1.3% from the uncorrected data respectively).
Both of the adjusted curvatures are closer to their theoretical values of 6.970 and 2.96
respectively.
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Figure 8.3 - Graph of the heights of rise plotted against the reciprocal of the tube and rod radii for the
two-rods-and-plate experiments. A correction for the gravity distortion of the menisci has been applied
to the results. The effect on the final ratio of line gradients is quite small as the changes are mostly
self-comrecting,
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Figure 8.4 - Graph of the Jurin corrected heights of rise plotted against the reciprocal of the tube and
rod radii for the three-rods-and-plate experiments.
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That the two determinations of the curvature in the two-rod system, one involving
a correction for gravity distortion and the other not, give such similar results can be
attributed to the comparative method of measurement. The fact that the heights of rise
in the tubes and the rod pores were roughly in the same range meant that meniscus '
distortion was also approximately equivalent. This hypothesis is supported by the
intercepts of the rod and tube lines with the height of rise axis. The lines from the
uncorrected data intercept the axis at the same place (to within 0.01 mm). If distortion
of rod and tube menisci had been significantly different then the intercepts would not
equate so closely.

After application of the Jurin correction the difference between the rod and tube
intercepts is still small (0.02 mm) indicating the validity of the correction when applied
to menisci between two rods and a plate (of this size range). The numerical value of the
intercept, at approximately —0.2 mm is close to the height of rise predicted by Sugden’s
tables for a tube with the equivalent radius of the square indicator cell (0.15 mm - this
is itself only an approximation as it applies to a cylindrical tube of equivalent area).

- Heights of rise in the larger three rod pores fall well below the range encompassed
by the rises in the tubes. It should therefore be expected that the distortion in these pores,
and hence the gradient of the line, will be increased. The heavier distortion of menisci
at these heights of rise (c.f. 4.5 mm) thus accounts for the rather high curvature given
by the uncorrected data. This is borne out by the difference in intercepts; the rod line
cutting the height axis 0.1 mm lower than the tube line. Put in other words the comparative
method no longer accounts for gravity distortion when the ranges of heights of rise are
not the same.

Once corrected, the rod and tube intercepts show better agreement, but with the
rod line now crossing the height axis at a higher point than the tube line (0.07 mm
difference). This indicates a slight over correction of the rod data and hence it is quite
fortuitous that the corrected value compares so favourably with the theory.

In section 2.3.4 it was stated that the Jurin correction was valid only for the tube
radius to height of rise ratio, R/h <0.02 and that it amounts to a slight over-correction.
Here we have employed the Jurin correction well over this limit to R/h =0.26 with a
4.5 mm height of rise. Figure 8.5 shows plots of height of rise versus reciprocal tube
radius for three cases:

i) The ideal case where there is no gravity distortion and the height of rise .
is given by h; = a’R;.The capillary constant, a?, of isooctane is used.

ii) The "real" case, determined by using Sugden’s tables in reverse, shows
the heights of rise that would be observed in practice.

iii) The third line shows the effect of Jurin’s correction on Sugden’s "real”
data.
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Figure 8.5 - Graph of theoretical heights of rise versus reciprocal tube radius. Three cases are shown
(a) The ideal’ line shows the heights of rise for undistorted menisci.
(b) The "real’ case, determined from Sugden’s tables, shows the gravity affected heights of rise that are
observed in practice.
(c) This curve shows the effect of Junn's correction on Sugden’s 'real’ data, only at very low heights
of rise does this curve significantly depart from the 'ideal’ line.
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The "real” line shows, as expected, increasing deviation from the ideal as the tube radius
increases. It can be seen that Jurin’s correction only deviates substantially from the ideal
when the height of rise drops below about 3 mm, a tube greater than 1.5 mm radius, The
over-correction is always less than 0.1% for R/h < 0.05 and less than 1% for R/h <0.5.

That the Jurin correction increasingly over-estimates the height of rise as the size
of the tube increases can be appreciated if the changing shape of the meniscus is
considered. With larger tube diameters the meniscus becomes more distorted; its shape
changing from the initial hemisphere to an increasingly cube like from. The volume of
liquid above a plane drawn R/3 from the bottom of the meniscus will be increasingly
less than the volume of space below it.

If it is assumed that the curves of Figure 8.5 also apply to the menisci formed in
the rod assemblies (and this would make a very useful experimental study) then it can
be concluded that the "window" for which the current experimental technique is valid
is considerably larger than was thought at the outset to the study. With heights of rise
in excess of 3 mm the comparative technique would provide results close to those of the
theory.

The three rod experiments have shown that the heights of rise do not even need to
be in the same ranges for the method to estimate curvatures accurately provided a simple
correction for meniscus distortion by gravity is added. However, it must be noted that
the Jurin correction will only have any relevance where the menisci in the test pores are
near-hemispherical. If this is so menisci will be similar in shape to those formed in
cylindrical capillary tubes.

In summary, when the heights of rise in the tubes and rod pores are in the same
range, as with the two rod system, then the comparative method will account for any
over-correction. This was not the case with the three rod experiments and resulted in the
heights being slightly depressed from the "ideal". It is not worth applying the more
accurate corrections afforded by Sugden’s tables to data from wedging systems as any
corrections of this kind will not provide exact answers.

b) Correction for the slope of the liquid wedges

" As a consequence of the relationship between meniscus curvature and height in
capillary rise experiments, the liquid wedges held in the corners of the assembled pores
will not, as the MS-P method assumes, be vertical. In practice the liquid wedges will
slope outwards from the corners, the inclination to the vertical increasing with decreasing
height above the free liquid surface (Figure 8.5). If, in the region of the MTM, the wedges
slope with an angle, B, then as pore size is enlarged the magnitude of B increases in the
region of the MTM. The effect will be a growing systematic deviation from the theory
as the upward force from the wetted perimeter, ¥ P, will become progressively less
vertical, depressing observed heights of rise.
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The curvatures in the two and three rod pores have been estimated by comparison
with capillary tubes which do not hold wedging menisci. So the effect of the sloping
wedges on observed curvatures found from the comparative method will be to slightly
increase their values. The gradient of the rod line, G, is in fact greater than would be
found had the wedges been vertical. The apparatus was scaled to keep gravitational
effects small, but we need to know whether the sloping of the wedges has altered the
results significantly.

A rough estimate of the effect can be made by making use of the MS-P analysis.
By considering a small section across a meniscus the radius of curvature of the AMs at

the top and bottom of a MTM can be estimated from,

a2

2h
With the radius of curvature known at, say, positions 0.5 mm apart an estimate of the
angle, B (Fig. 8.5), can be made for each wedge. The effect of the slope on meniscus
curvature can be computed by inserting the cosine of the angle(s) into the relevant
expression for the liquid perimeter, ¥ P,, in the MS-P analysis. The reduced curvature
so obtained, C ;.-’ can be used to calculate the suppression in the height of rise, Ah, caused

by the wedge slope from;

az

An = —ZE_(CR., = (8.8)

r =

8.7)

The effect on the observed curvature can then be found from equation 8.3 by adding
relevant Ak toeach of the observed heights of rise. Table 8.2 shows the estimates obtained
for the largest and smallest rods in the two-rod system.

Table 8.2 Effects of sloping wedges in the two-rods-and-plate standard.

Slope of Wedge
Rod Rod-Plaie Rod-Rod Reduced  Reduction Change
Diameter Curvature  In Height  In Height
(mm) {deg) (deg) (mm) . (%)
0.79 0.5 03 6.9698 0.001 0.00
50 50 30 6.9598 0.01 0.14

If the heights of rise are adjusted in this way the net effect on the curvatures obtained
by the full comparative method is a reduction of 0.01 (0.15%) in that for the two-rod
system. This is a roughly similar but reversed effect to the Jurin correction.
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8.3.2.2 Dimensional errors

Deviations in the pore cross-sections from that given by the average dimensions
of the pore construction components will pertain in both the constructed pores and the
precision bore capillary tubes.

Variations in the diameter of the tubes are unlikely to have caused significant
systematic deviations in the observed curvatures. This is because at the level of
measurement the diameter of the tube may be greater or less than the average determined
by the mercury thread method. Over the five runs any variations should largely cancel,
producing a mean line whose gradient is close to that of totally uniform tubes having
the average diameters.

However, for a pore formed by contacting rods the effect of dimensional variation
is different. A rod will contact with its neighbour or the plate at points where its diameter
is largest, leading to pores of greater cross-section than specified. Here we are assuming
that measurement of the rod diameters have shown no significant tapering from top to
bottom. Since the dimensional tolerances of the rods were found to be independent of
diameter (see section 7.2.5), these variations will be more marked with smaller pores;
i.e. dimensional errors will increase with decreasing pore size.

The dimensional errors can be quantified if the "equivalent tube” diameters are
considered. For example, the equivalent tube radius of the pore formed by two 1/16”
rods is 0.24 mm. The maximum variation in rod diameter was 0.002 mm. If all this error
is passed on to the equivalent radius the corresponding drop in the observed height of
rise amounts to 0.8%. With the largest rods, 5 mm diameter and 0.72 mm equivalent
tube radius, the change in the observed height of rise is only 0.3% with rods of identical
tolerance. The result of these dimensional variations will be to depress of the gradient
of the rod line and hence the observed curvature by as much as 1%. ‘

The overall effect of tolerance variation is always to make the constructed
capillaries larger than their nominal sizes. This is consistent with observed curvatures
being slightly lower than their theoretical values.

8.3.2.3 Other systematic errors

The two sources of error discussed above, namely those arising from gravity
distortion and dimensional variations, can together account for the difference between
observed and theoretical curvatures. However it is necessary to make some note of other
potential sources of systematic error. Errors arising from the measurement of heights
and diameters etc. will be random, leaving only errors that may arise from the surface
condition of the pores.
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One possible source of error is that of non-zero contact angle. The pore construction
materials, steel and glass, are both high energy solids and as such will be perfectly wetted
by isooctane. However, if the surfaces of the pore are contaminated with dirt and/or
grease then non-zero contact angles may result. Even if the materials had remained
contaminated after cleaning the resulting contact angles will be small, of the order of a
few degrees. Isooctane on teflon, a low energy solid, produces a receding contact angle
of less than 5°.

The effect of low contact angles on meniscus curvatures is small (see for example,
Figure 10.5) resulting in only very slight reductions in value. Contact angles less than
5° produce reductions in curvature of less than 0.25%. The use of the comparative method
of curvature determination will further reduced any error.

Another assumption of the theory that will not be exactly satisfied is that of the
perfectly smooth solid surface (see section 2.7). On a macroscopic scale the surfaces of
both the steel and glass are rough and hence the liquid will not always meet the plane
of the solid surfaces tangentially. The angle of interception with the vertical plane of the
solid surface will vary according to the surface condition at the three phase line. As a
consequence the upward force resulting from the contact of the liquid with the solid
perimeter will not be everywhere vertical, so lowering individual curvatures slightly.
The effect will again be largely eliminated by the comparative method.

8.3.3 Comparison of results with Mason et al’s studies

Mason er al. (1983, 1984a) have published results from experiments similar, in
most respects, to these. Their raw experimental data (1984a), uncorrected for distortion,
yielded a value of 6.88 + 0.02 for the normalised meniscus curvature in the two rod
systemn. The value of 6.94 £ 0.02 obtained here compares favourably with Mason’s value.
The improved proximity of the experimental value found here to that predicted can be
attributed to two improvements in the apparatus.

i) Mason used "precisely” machined channels, not clamps, to hold the rods
in position. As explained in section 7.2 this arrangement is likely to lead to
significantly greater dimensional errors as the rods may not touch the plate.
ii) The needle rollers that were, for the most part, used to assemble the pores
are of significantly higher tolerance than the silver steel rods employed in
Mason’s experiments.
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8.3.4 Bearing on the general experimental method

The experiments conducted here have been to determine the curvatures in certain
“standard" pore shapes. In each case a total of twelve pores were used. This method
yields accurate results in which there is a high degree of confidence. However, it would
be impractical to conduct all experiments with the full comparative method, as it is both
cumbersome and too time consuming.

In determining the curvatures of menisci in test pores of non-standard
configurations only three measurements are required; the level in the test pore, thatin a
standard cell and the reference level in the reservoir indicator cell. The meniscus
curvature is then determined as described in section 7.5, from a simple equation;

AR, +0.5 )R,

Ak, +05 |R, G0

This method is termed the simplified comparative method and carries the same
advantages as its full brother, but is also bound by some limitations as the accuracy of
the method depends on the applicability of the standard’s predetemﬁncd curvature. The
multiplier, 6.94, is the mean value of the meniscus curvature in a pore formed by two
equal rods and a plate for heights of rise in the range 7 to 24 mm. So the heights of rise
in test and standard pores should be in this range.

c = o1

The correction applied for the height of rise in the indicator cell, 0.5 mm, has no
physical significance. It is simply an extrapolated value from the heights of rise given
by the gravity distorted menisci in the pores (see Fig. 8.1). The correction accounts for
the distortion only so long as the heights of rise in the test and standard pore are close
to each other and their shapes broadly similar.

If the heights of rise differ by more than a few millimetres use of the simplified
comparative method is not strictly valid. The degree of distortion of each meniscus will
differ. |

The validity of the correction is also doubtful when the test meniscus is of a
markedly different shape to the near-hemisphereical menisci produced in the standard
arrangements. The value of the intercept will, in fact, vary slightly from configuration
to configuration and with one liquid to another. However, the increased accuracy
obtained from the full method could not be justified in terms of the time required obtaining
it.

In those instances where the menisci in the test and standard are of similar shape
there is no need to keep the heights of rise close. These experiments have shown that
the Jurin correction provides an excellent compensation for distortion of near
hemisphereical menisci. In these cases the curvature is obtained by first adding the "true”
correction for the height of rise in the indicator cell, determined at 0.2 mm from Figure
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8.4. The Jurin correction, a;, found from the equivalent tube radius, is then added giving
the relanonshlp for curvature in the test cell as;
Ah +h;, +0.2) ,

- 7.8
Ah,+h;,+02 |R 7.8)

c = 6.95(

Note that the gravity corrected value for the standard curvature is now used.

The above equation proved useful in some of the experiments (see later), but was
inappropriate when the test TMs’ were not concave. With some pore shapes other
corrections seemed considerably more appropriate, these are discussed in the relevant
sections. In these experiments the two principal effects of gravity, namely those arising
from the measurement of minimum curvature and from the sioping of the wedges, broadly
cancelled. Note that this will not necessarily be the case with the simplified method as
both standard and test pore will contain wedges. Thus both the gravitational effects wiil
act to reduce observed heights of rise to increasing effect as the pore section is enlarged.
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CHAPTER 9

Investigations under perfectly wetting conditions

9.1 INTRODUCTION

When the contact angle is zero the MS-P theory is generally easier to apply than
is the case if partially wetting conditions are incorporated. In addition, the experiments
are both comparatively simpler to perform and much less time consuming. It is for these
reasons that most of the past investigations and many of the experiments reported in this
study are conducted under perfectly wetting conditions.

In this chapter the theory and experiments for four different pore shapes are
discussed in order of ascending geometric complexity. This was unfortunately not the
same order in which experiments were conducted. For each pore shape the theory will
be derived in terms of the chosen variable and experiments performed to confirm the
predictions in variously shaped and sized pores. The results will then be discussed in the
light of likely errors arising from the experiments.



153

9.2 RECTANGULAR DUCTS

One of the simplest imaginable geometries for a capillary that exhibits arc menisci
is that of a square or rectangular tube. This is the logical place to start an examination
of the MS-P theory. The simple geometry results in a very straightforward solution of
the MS-P equation that, as with other n-agon tubes (section 6.4.1), affords an analytical
solution.

Experimental verification of the theory is far however from simple. Fabrication of
small rectangular tubes to precise dimensions proved difficult. Pores made up from rods
have the advantage of being made up from elements considerably larger than the pore
itself. Rectangular ducts must either be directly machined or, as here, be made up from
contacting plates of the same dimensions as the pore itself. These methods of fabrication
result in dimensional errors significantly larger than those in rod pores. However, some
meaningful results can still be obtained.

The MS-P theory for rectangular tubes was recently used by Lenormand er al.
(1983), whilst Legait (1983) utilised the theory with square tubes (section 5.4)
Rectangular ducts were also the subject of a undergraduate project at Loughborough
University by Clough & Daniels (1986). The latter study sadly provided little assistance
as both theory and experiments were wildly in error.

9.2.1 Theory

Figure 9.1 shows the shape adopted by a MTM of a perfectly wetting liquid in a
rectangular duct. Four DCAMs, one in each corner, merge to form the MTM. Assuming
this meniscus shape the expressions for effective perimeter and area of the meniscus can
be found. The nomenclature follows that of chapter 6 except for those parameters defined
on Figure 9.2. _

Two characteristic dimensions are required to define the pore size, selected to be
half the tube depth, R, and half its width, 4. The pore shape can be defined by the aspect
ratio, d/R. The curvature may be normalised against either dimension, R/r was chosen
here. Since the MS-P equation requires only the ratio of meniscus area to perimeter, only
one of the four quadrants of the tube needs to be considered.
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MTM

Figure 9.1 - Arrangement of arc menisci (AMs) for a main terminal meniscus (MTM) in a rectangular
duct. The effective area of the MTM is shown hatched and the effective perimeter outlined. A
schematic representation of the capillary rise profile seen through the glass plate is also shown.
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Figure 9.2 - Diagram showing the choice of regions and terminology used in the calculation of
effective area and perimeter for the meniscus in a rectangular duct. Note that only a quarter of the duct
need be considered owing o the symmetry of the duct.

a) Perimeters

From Figure 9.2:
P, = R-r Equations
P, = mwri2
P, = d-r 9.1
b) Areas
Ay = dR Equations
A, = (1-wa)i’ 9.2

c) Effective area and perimeter
The effective perimeter, shown bold on Figure 9.2, is given by:

but L Pg=P,+P, and 1P, =P,, hence
Py, = @+R) + (W2-2)r 9.3)

The effective area, shown hatched on Figure 9.2, is simply given by;
Ay = Ay - A= dR - (1-ma)y’ 9.4)
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d) Solution of equations
The MS-P equation relates area and perimeter to the radius of the arc menisci, 7,
Pog — Ay, = 0 (6.12)

substituting for P, and A, and normalising with respect to R yields,

) g e

a simple quadratic in r/R which can be solved to give

% _ (%+1)i\i%(i;2+n +1 06

Both roots are positive, but only one is physically realistic. This can be simply illustrated
by setting d = R, a square tube. Equation 9.5 reduces to;

?:11@

yielding results of R/r=0.1138 or R/r = 1.8862. A normalised curvature of 0.1138 implies
r > R which is a physical impossibility. Thus the normalised curvature in rectangular
tubes is given by:

‘
C. =% = @-n2) ©.6)

d (%+1) - %(%—2+1t)+1

In section 5.4 Lenormand et al’s (1983) force balance gave an expression for the
capillary pressure in rectangular tubes;

P = F(£)26('1-+-1—J (5.9)
x 'y
where Fe) = e -m) (5.10)
21 +€){(1+£) =Nl + & —e(d - m)}
and ‘€ = x/y - the aspect ratio of the tube

Incorporation of the Laplace equation in the above and adapting the notation yields an
expression for C,,;

R 1 1 d
? = 2F(€)[E+E)R, E_E 9.7

At first glance the above expression bears scant resemblance to cquation 9.6. However
Lenormand has merely solved the quadratic in terms of r(1/d + 1/R) instead of R/r.
Multiplication of 9.5 by the factor;

d{1 1V,
2—-|=+—-|R
)
yields
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d 1 1) d Y([1 1 d .Y
"2;(4—10[!'[3-{-}—?-)) - Z(E+l] (r(3+§)] + 2(E+1) = 0 9.8)

which solves to give Lenormand’s result.

Equation 9.6 was inserted into a very simple computer program and values of R/r
calculated in terms of the aspect ratio, d/R. Figure 9.3 shows the results as a continuous
relationship on a graph of normalised curvature versus aspect ratio, the numerical results
are detailed in Appendix C.

18 4

RECTANGULLAR TUBES

19 4
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NORWALISED CURVATURKE (R/r}
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10 1

3 4 -] ]
ASPECT RATIO (d/R}

Figure 9.3 - Theoretical results of curvature for menisci in rectangular ducts. The curvature is
normalised with respect to R, half the tube depth, and plotted as a continuous relationship against the
tube aspect ratio.

9.2.2 Experimental

Three adjustable depth (i.e. variable in R) rectangular ducts were investigated with
nominal widths of 3/64", 1/16"and 3/32". The aspect ratios covered ranged from 0.5 to
7.5 and were expected to give heights of rise in the range 5 to 25 mm, the entire range
for which the comparative method has been validated. Isooctane, the wetting liquid, was
used as the test liquid. In general, the experimental procedures followed those laid out
in section 7.4. However there are some particulars specific to this configuration; these
are discussed below.
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9.2.2.1 Cell design

A specially designed cell was used for these experiments, the usual cell blank size
being of inadequate size to accommodate the construction components. Figure 9.4 shows
the design. All three ducts are accommodated in the cell. The cell is taller and thicker
than the standard cell blanks, measuring 3" by 1" by 1 1/2". A 1/2" square channel was
machined from the front face of the aluminium alloy cell. The ducts are made up from
steel plates in contact. Three precision width plates form the back walls of the tubes.
They are separated by four notched steel spacers that also form the side walls of the
ducts. The glass plate forms the front wall of the tubes.

The spacers are of equal depth to the machined channel and remain static when
aspect ratios are adjusted. Near either end of the spacers are 1/8" deep notches that hold
the precision shimstock. Brass or steel shims separate the tubes’ back wall from the glass
plate and enable the aspect ratios to be adjusted.

The rectangular plates are pushed from behind against the shims by two sets of
clamping screws (semi threaded pins), positioned level with the shims as shown in Figure
9.4. All seven plates are also pushed horizontally together against the left-hand wall of
the machined channel by three additional clamping screws entering through the
right-hand wall as shown in Figure 9.4.

The cell design also has some finer points. The pins at the back were sealed in one
of two plastic housings fitted with rubber "O" rings to prevent excessive evaporation
/leakage along their threads. The three clamping screws were fitted with plastic nuts for
the same reason. Once fabricated, the plates were assembled in the cell in the absence
of shims; the rectangular plates clamped level with the front face. The glass plate was
then removed so that a few thou could be skimmed from the entire front face, thereby
ensuring all the plates married up with each other and the front face. The design of the
spacers meant that it was difficult to reassemble them wrongly, whilst the plates were
marked to ensure their skimmed faces always faced forward and were the right way up.

It is likely that, despite the above precautions, there will be small gaps between the
spacers and glass plate and perhaps between the rectangular plates at some points. These
will be in the order of thousandths of an inch. The presence of the gaps will not matter
provided the overall dimensions of the tube remain those specified by its aspect ratio.
The reason is that the AMs bound the corners and it does not matter what the geometry
is behind them as this effects neither the shape of the AMs nor the MTM.

The design described above is cumbersome and, in practice, difficult to set up
correctly. A total of nine screws enter the channel and another twelve are needed to
clamp on the glass plate and to seal the threaded pins. During assembly great care is
required to ensure that no dust or dirt gets in-between the plates as this will distort the
geometry greatly. Also the clamping pins must be tightened gradually and evenly so that



|

i
TP

-
il

—
] g
T i spacer
1 ]
r-J L—.’ » »
S8 V4 .
- TY ¥ - . [ I l l I 11 B.

| ”’ ’ ”_, iy —-7/16% v +7/18"« /
La —L—j 148- f
o . Hi I 1‘/ 2"

] LT -—————— 24 - -~

Figure 9.4 - Diagram of the cell used for the experiments with rectangular ducts. Three ducts are held
in a single channel. Clamping screws entering through the rear of the cell push three plales against
shims held in position against a glass plate by *spacers’. The entire plate/spacer assembly is pushed

against a channel wall by further clamping screws that pass through the opposite wall.
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the plates are set square to the glass plate. However short of making a new cell for each
aspect ratio I can think of no better design. Aspect ratio is adjustable and reasonable
confidence is held in pore dimensions.

- 9.2.2.2 Determination of aspect rafio.

The aspect ratio of a given rectangular tube is the ratio of its depth, 2R, to its width,
2d. The width of the ducts were obtained from micrometer measurements on the
rectangular plates. Several measurements were taken along the plate length with the
micrometer jaws close to the leading edge of each plate. Table 9.1 shows the average
measurement and the tolerances. Table 9.2 shows the mean thicknesses of the five sizes
of shimstock used. The 100 thou shims were made from machined steel block, whilst

- the remainder were made of standard brass engineering shimstock. The shims show a
somewhat better tolerance than the steel plates.

Table 9.1 Micrometer measured widths and . Table 9.2 Micromeler measured thicknesses
tolerances for the rectangular duct plates. and tolerance ranges of the shimstock spacers.
Nominal Mean Tolerance Nominal Mean Tolerance
Plate Plate Range Shim Shim Range
Width Width Size Size
(in.) {mm) (thou.) {mm)

332 2372 0.010 12 0.317 0.003

15 0.401 0.002

1/16 1.630 0.170 20 0.541 0.003

40 0.942 0.002

364 1.220 0.023 100 2.540 0.001

9.2.3 Results

Figure 9.5 shows the results compared to the MS-P predictions on a graph of
normalised curvature, R/r, versus aspect ratio, d/R. Compared to results from pores made
up from rods the agreement is not very good. However the trend of the theory is followed
closely by all the experimental data.

Curvatures were calculated from averaged observed heights of rise using the
simplified comparative method; equation 7.7. Five different shim sizes (R’s) were used
yielding a total of fifteen aspect ratios. Notice some of the data are plotted twice as the
same aspect ratio may be regarded as greater or less than unity (R/r vs d/R is equivalent
to d/r vs R/d). Appendix C contains the detailed breakdown of results.

Almost all the observed curvatures fall below the MS-P curve. Errors from the
predicted values are within 4% except in one case where the error is 5.9%. This latter
curvature was obtained from heights of rise in the vicinity of 4 mm - outside the validated
range of the simplified comparative method.
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Figure 9.5 Experimental results for normalised curvatures obtained from the heights of rise of menisci
in the rectangular ducts. There is a systematic error in the results arising from difficulties encountered
in assembling the ducts with the specified aspect ratios.
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It is probable that most of these errors arise from dimensional inaccuracies in the
tube cross-sections. Unlike pores made up from contacting rods, the pore construction
components are of similar size to the pores themselves. The same small dimensional
variations found in rods will cause significantly greater errors in the aspect ratios of the
rectangular tubes than they would to the sections of rod pores.

For each of the three tubes the magnitude of error from predicted curvatures rises
as aspect ratio falls. The rate of change of curvature also increases dramatically with
decreasing d/R so identical errors in pore section will result in larger errors in curvature.
As with rod pores, dimensional variation in pore construction elements leads to pores
of greater size than specified by the mean component size, as components will contact
at their largest widths. That observed curvatures fall below theoretical predictions is
consistent with tubes of greater section than specified. From the tolerances of the pore
components (Table 9.1) it is likely that most of the error is in the tube width, d, but any
flecks of dust-or dirt caught in-between the plates and/or shims will have similar effects.
That the magnitude of dimeasional error is so much larger than in other experiments can

. be attributed to the difficulties with the cell.

Also reducing the observed curvatures from the ideal, but by much less significant
amounts, is the distortion of the menisci. The comparative method partially corrects for
gravitational effects. In fact many curvatures here have inadvertently been slightly
over-corrected. These experiments were conducted prior to those on the standard
configuration and the lessons of the latter had yet to be appreciated. In many cases the
height of rise in the standard pore (2 x 1/16" diameter rods) was significantly higher than
that in the test pore. Thus, when using equation 7.7, with the 0.5 mm correction applied
to heights of rise, the rise in the standard pore will be over-corrected in comparison to
that in the test pore. The result is curvatures slightly higher than would have been the
case had the heights been roughly equivalent (as explained in chapter 8). This has only
resulted in errors of a few tenths of a percent however.

With near hemispherical menisci the above discrepancy could have been avoided
by applying the Jurin correction. However it is inappropriate here as most of the menisci
are far from hemisphereical in shape and become less so as aspect ratio increases. A
more realistic correction would be to consider the TM as a semicircle and to add the
height of a plane positioned such that the sectional area of liquid above it equalled the
area of space below it. The AMs considered as a solid boundary. This correction to the
minimum curvature that is measured in practice is significantly less than the, R, /3, used
by Jurin’s correction. However considering the much larger dimensional errors it was
not considered appropriate to correct for distortion. |

Overall the results are as good as could be expected bearing in mind the difficulties
of fabricating rectangular tubes.
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9.3 ONE ROD AWAY FROM A PLATE

The meniscus curvature in a pore formed by a single cylindrical rod spaced from
a plate was first calculated with the MS-P method by Princen himself (1969a), but he
made only one measurement to confirm the theory, finding an error of 3% (see section
5.3.1). Later Mason & Morrow (1987) made a few measurements for the arrangement,
but the agreement with the theory was poor, being as much as 15% in error.

The aim of these experiments was to re-examine the arrangement and to take
measurements over a wide range of rod spacings. The open profile of a meniscus between
a rod and plate is unlike those already discussed in that a TAM is formed. This is
saddle-shaped and the profile of the MTM when viewed through the plate is thus convex.
The majority of previously published results for menisci in asymmetrical uniform pores
deal with wholly concave clastic menisci It was hoped that the MS-P method could be
shown to also work well with anticlastic menisci.

9.3.1 Theory

Figure 9.6 shows the shape of meniscus between a rod and a plate in profile and
section. Two WOAMs, one at each side of the rod, merge to form a TAM. Note that
while the TAM  appears convex when viewed through the plate, it appears concave
when viewed at right angles to the plate (Figs 9.6 (i) and (ii)), i.e. the TAM is anticlastic.

two WOAMs (i) (ii)

TAM

1
¥
L4

Ty

Figure 9.6 - Arrangement of the AMs for the Terminal arc meniscus (TAM) formed in the gap
between a rod and a plate. The effective area is shown hatched and the effective perimeter outlined.
Schematic representations of capillary rise profiles seen through the plate (i) and at right angles to it (ii)
are also shown. Note the anticlastic form of the saddle-shaped TAM.
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The arrangement again requires two characteristic dimensions to define the pore;
the rod radius, R, and as a measure of the gap between the rod and plate half the total
gap, d, was chosen. The curvature may be normalised with respect to either dimension.
The rate of change of curvature with rod spacing is expected to be large so normalising
with respect to d will yield a more useful, flatter curve when curvature is plotted against
the normalised spacing, d/R.

V ! i
| |
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Figure 9.7 - Sketch showing the definition of the angle, the choice of regions and the associated
terminology used in the calculation of effective area and perimeter for the one-rod-away-from-a-plate
' arrangement.

The meniscus cross-section has a plane of symmetry so, as with the analysis of
rectangular ducts, only part of the section needs to be considered. Figure 9.7 defines the
barticular notation for this arrangement which otherwise follows that of chapter 6.
Application of simple geometry on Figure 9.7 yields the following expressions.

a) Subtended angle

R+2d-r

a, = arc COS(TH_—) (9.9)
b} Perimeters

P, = oR

P, = (R+r)sing, Equations 9.10

P, = (m-ar
¢) Areas

A, = oR”2

A, = (m—-a)r’2 Equations 9.11

A, = %(R +2d+r)}(R +r)sina,
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d) Effective area and perimeter
The effective perimeter, shown bold in Figure 9.7, is given by:
Py = ZPs + LP, (6.11)
and from Figure 9.7; ’
P = P, + P, and P, = -P,

Note the negative sign for the liquid penmeter, present becaise the AM is open, and
hence, .
P, = P, + P, - P, - (9.12)
The effective area, shown hatched in Figure 9.7, is simply given by,

Ay = A — A - A (9.13)

¢) Solution of equations

In addition to equations 9.9 to0 9.13 the MS-P equation,

Py — Ay = 0 (6.12)
also applies. With this arrangement it is not possible to solve the equations explicitly for
ras both A, and P 4 are functions of o, which is, in turn, a fuaction of r. Consequently
the standard computer program (section 6.4.2.1) was used to solve the equations. The
program was modified to calculate values of normalised curvature, d/r, in terms of the
normalised rod spacing, R/r.

The results are shown on Figure 9.8 as a continuous relatonship between curvature
and spacing. The normalised spacing ranges from O to 035, this being the range
encompassed by the experiments. The curvature of the TAM falls continuously as the
gap is increased, rapidly at first and then more slowly. Overall the function is roughly
hyperbolic, approaching each axis asymptotically. The results agree with the tabulated
values given by Princen (1969a) when they are adjusted to his method of normalisation.

9.3.2 Experimental

Three rod spacings, nominally of 8, 12 and 15 thou, were investigated with drill
blanks of vanious sizes in the range 1/32" to 1/4". Recorded heights of rise were in the
range 5 to 22 mm, within the validated scope of the comparative method. The wetting
liquid isooctane was used for the experiments. Particulars specific to this arrangement
are given below. With these exceptions the general procedure detailed in section 7.4 was
followed. N

9.3.2.1 Cell design
Any cell employed for experiments with a single rod away from a plate has to
satisfy four requirements:
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Figure 9.8 - Theoretical results of curvature for menisci between a rod and plate. The curvature is
normalised with respect to the gap and plotted as a continuous relationship against the normalised

spacing.

i} The channel in which the rod is held must be of sufficient width to ensure

that the rod, when in position, is isolated from the channel walls. Failure in

this respect will result in distortion of the WOAMs caused by the influence

of the walls.

if) The rod must be held vertically in the cell thereby yielding a symmetrical

Meniscus.

iif) The two shims that act as the rod-plate spacers, must be accommodated

far cnough— apart to allow capillary rise in-between and in such a way as to

facilitate easy cell assembly.

iv) The rod must be pushed firmly against the shims, but in a manner that

does not cause any bending of the-rod.

Figure 9.9 shows the cell design chosen after consideration of the above points.
The cell was fabricated from a standard cell blank and had a 3/8" square channel
machined in the front face. Pairs of "shim-holders", measuring 1/4" by 1/8" and 1/16"
deep, were cut either side of the channel, one each at the top and bottom of the channel
The rod is pushed against the shims by two clamping screws entering through the back
wall of the channel, directly behind the shims. The threads were ground off the last 1/8”
of the screws to leave a 1/16" diameter pin. The pins fit into holes in two steel blocks
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that act as both vertical aligners and supports. The blocks are identical and have a small
"V" shaped groove, 1/32" deep, machined in their front face to hold the rod vertically
in position in the centre of the channel.

Y
%,

l‘_f cnvs
b
Ch.arln.&lﬂ 3/& 3/18 5;/1‘ |

i

Figure 9.9 - Diagram of the cell used for the capillary rise experiment on the
one-rod-away-from-a-plate arrangement. The rod s pushed against the shims by two clamping screws
headed with grooved blocks. The blocks ensure that the rod is held in a vertical position in the middle

of the channel,

9.3.2.2 Cell assembly

The above design proved easy to assemble, but care was required when pushing
the rod against the brass shims. Too tight and the brass deforms, becoming indented,
particularly when smaller rod sizes are used. Too loose and rod-shim-plate contact is
not achieved. Either way the spacing will not be that specified. Unfortunately there is
no way of directly checking the rod spacing once the cell is aésemblcd, so it is all the
more important that the screws are properly tightened. This problem was aggravated by
difficulties in making shims of the required size that were not somewhat bent after
preparation by the method described in section 7.2.5.4. Hence some pressure had to be
applied to flatten the flexible shim against the plate.
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Through practice a technique was found to check the rod-shim-plate contact. The
cell would first be loosely assembled and then immersed briefly in isooctane. With the
shims now wet the required tightness of the screws could be judged. When the small
menisci between the shim and plate disappeared they were in contact and, by implication,
the rod must also be contacting the shim.

The usual practice of attaching plastic nuts to clamping screws to prevent leakage
was not followed in order that changes in resistance to screw tightening could be felt.
However to prevent excessive leakage along the threads PTFE tape was wrapped around
the screws. They were then "exercised" by screwing them in and out of the cell a few
tirnes so that in operation they could be moved freely until the point of mutual contact.

9.3.2.3 Point of measurement of height of rise

As viewed through the plate the meniscus profiles appear convex, so the usual
criterion of measuring the height of rise to the apex of a meniscus no longer applies. To
measure to the apex of the TAM is to measure the maximum curvature. Meaningful
experiments require a definable point to measure the heights of menisci. The definable
point closest to the minimum curvature of a TAM is that to the bottom of the concave
part (see Figure 9.6 (ii)). This point can be made out immediately beneath the profile
appearing against the glass. '

9.3.3. Results

The mean curvatures obtained from fourteen different rod-gap arrangements are
shown compared with the MS-P theory as a graph of normalised curvature, d/fr, versus
normalised spacing, d/R, on Figure 9.10. The results are generally in excellent agreement
with the theory; most to within 1% and all within 2.5%. Further details are given in
Appendix D.

Observed heights of rise were used to calculate curvatures with equation 7.7,
without correcting for gravity distortion. The Jurin correction is clearly inapproprate as
the menisci are partly convex. Indeed, the average curvature of a TAM (which is closest
to the constant curvature assumed by the MS-P theory) will correspond to a height less
than that measured. This is consistent with most of the experimental curvatures being
slightly higher than the theoretical values. The actual correction required to be subtracted
for gravity distortion is difficult to quantify, but it will not correspond to the Jurin
correction. The menisci are nowhere near the hemispherical shape assumed by this
correction, in fact, the two principal radii of curvature are of opposite sign.



CURVATURE

NORMALISED

168

0.7 +

0.6 -

0.5-

0.4 -

0.3-

0.2+

0.1 4

0 L I ¥ T 1 1 1
0 O.l 02 03 04 05 06

NORMALISED SPACING d/R

Figure 9.10 - Experimental results of curvatures obtained from heights of rise for the TAM formed in
the gap between a rod and plate.
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There is little doubt that gravity will act to suppress the curvature, the physics
demand it. However, the effect will be largely offset by the measurement of the higher
than average curvature. Also it may be that the sloping of the wedges compensate for
the effect somewhat. OAMSs, unlike CAMs, act to pull down a TM. The fact that they
were sloping (observed in practice as well as predicted from the variation of curvature
with height) means that they no longer pull the TAM vertically downwards. Only the
vertical component will suppress the height obtained by the TAM, leading to higher than
~ expected heights of rise.

Dimensional variations will again account for most of the scatter in the data. Here
dimensional errors may make the pore either larger or smaller than that specified. Rods
will contact the shims and the shims the plate at their thickest points when the cell is
correctly assembled so lowering the curvature. However, if the rod were over-clamped
and the rod indented the shim then the spacing will be less than expected, thereby
increasing the curvature. This is consistent with results using the smallest rod, 1/32"
diameter, giving larger positive errors. Any bending of the rod towards the plate, an
effect difficult to avoid with the small diameter rods, will have a similar effect.
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9.4 ONE ROD IN A CORNER

The case of a single rod in a corner of known angle is one of the simplest imaginable
pore geometries to which the MS-P method can be applied. This arrangement has been
considered before. Firstly by Mason & Morrow (1984a), who limited their analysis and
experiments to right-angled corners. The theory was derived to show the effect of
changing contact angle on meniscus curvature. Their experiments used the full
comparative method described in the preceding chapter and were limited to zero contact
angle. .
Later the arrangement was studied as part of an undergraduate project at
Loughborough University by Nibbs & Baynes (1986) with supervision by Mason. Their
study extended the theory and experiments to cover acute corner angles of 30°, 50°, and
70" under perfectly wetting conditions.

The object of the study presented below was to confirm, and hopefully improve
on, the previous results and extend the analysis and ex periménts to obtuse corner angles.

94.1 Theory

Under perfectly wetting conditions a meniscus in a corner bounded by a rod and
plate adopts the shape shown in Figure 9.11. Three DCAMs, two where the rod contacts
the plates and one in the angled corner, merge to form the MTM. Knowing this
arrangement enables the relationships between the radius of curvature of the AMs and
the effective area and perimeter to be defined. The terminology used below follows that
proscribed in chapter 6 and Figure 9.12.

three DCAMs

2
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Figure 9.11 - Arrangement of arc menisci for the main terminal meniscus in the pore formed by a rod
in a corner. The effective area is shown hatched and the perimeter outlined. A schematic
representative of the capillary rise profile seen through the plate is also shown.
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Figure 9.12 - Sketch showing the definition of angles, the choice of regions and associated
terminology required for the calculation of effective area and perimeter for the rod-in-a-comer

arrangement.

a) Angles

The corner angle, ¢, is assumed to be known, and since the geometry is symmetrical
about the plane AO we need only consider half the cross-section. Only one further angle

needs to be defined; a,,

(R—r)
(R+r)

Qo = arccos[

b) Perimeters
From Figure 9.12:

P, = (m—o)r

P, = (n-2a,-¢)R/2

P, = (n-0)12

P, = (R-r)cos(¢/2) — (R+r)sin o,
¢) Areas

Ar = R*(cot(¢/2))2

Ay = (R+r)sina, +@—o)r)2

A, = (W2—o,—¢/2)RY2

2
[

r(cot(§/2) — (r - §))2
d) Effective area and perimeter
The total effective perimeter, shown bold on Figure 9.12, is given by;
Py, = XP; + 3P,
and from Figure 9.12 Y P¢=P,+P,and TP, =P, + P, hence
Py = P + P, + P, + P,
The effective area, shown hatched in Figure 9.12, is given by;
Ay = Ay — A - A, - A

9.14)

Equations

9.15

Equations

9.16

(6.11)

9.17)

(9.18)
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e) Solution of equations

The equations derived above were entered into the standard solution program
together with the MS-P equation,

Pgr - Ay = 0 (6.12)

The program was modified to give values of normalised meniscus curvatures, R/r, in
terms of the corner angle, ¢, for corners between 0 and 180° (see Appendix E). The
results are shown in graphical form as a continuous relationship between R/r and ¢ on
Figure 9.13. Asexpected the curvature increases with increasing cornerangle {decreasing
pore section). Note however the odd behaviour of the curve near ¢ =0.
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Figure 9. 13 - Theoretical results of curvature for the MTM in the rod-in-a-comer arrangement. The
‘normalised curvature is plotted as a continuous relationship against the corner angle.

9.4.3 Experimental

Three comer angles were investigated with nominal angles of 30°, 90° and 110°;
the 50° and 70° cells from the previous study being unavailable. The theory indicates
that, for corner angles much greater than 110°, the curvature is so large as to make heights
of rise too large to be accommodated in the cells.
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Experiments to measure capillary rise, and hence determine the normalised
meniscus curvatures for the rod-in-a-corner system were conducted using the simplified
comparative method (see section 7.4).

Several different rod sizes were used in each corner so as to confirm the observed
curvatures of a range of different heights of rise. For the 30° corner a total of ten sizes
were utilized, ranging from 1.8 to 3.2 mm diameter. With rod sizes smaller than this
rangedifficulties were experienced in properly clamping the rod in the corner, The points
of pressure from the clamping screws were too far from the test rod. Rods in the ranges
2.1 t0 6.3 mm and 3.2 to 6.3 mm were used in the 90° and 110" comners respectively.
The higher size ranges reflecting the greater heights of rise expected. All the rod sizes
yielded heights of rise within the range 5 - 25 mm for which the experimental method
has been validated.

9.4.3.1 Cell design

The cell design for the corner arrangement is straightforward. Standard aluminium
alloy cell blanks simply had channels with a specified corner angle machined in the front
face. Figure 9.14 shows diagrams of the 30" and 110 cells used for the experiments, the
latter designed and commissioned as part of this study. The test rod was clamped in the
corner by a combination of other rods and threaded pins ensuring contact of the rod with
the cell wall and the glass plate. Plastic nuts were added to the pins against the outer
wall of the cells to prevent leakage of isooctane along the screw threads.

9.4.3.2 Measurement of corner angle

The cells used in these experiments were fabricated by a professional machinist,
but the accuracy of the machinery does not guarantee the corner angles exactly. The
experiments require a direct measurement of these angles.

Each cells corner angle was measured with a rotating microscope, equipped with
a vernier scale accurate to 0.05°. Measurement with the microscope could only be done
at the top of a cell due to the design. Any variation in the cross-section of the cells remains
undetected. It proved difficult to measure the angles reproducibly in practice, resulting
in quite large deviations.
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Figure 9.14 - Skeich illustrating the design of cells to hold rods in 30°and 110° comers. Both employ
clamping screws to push the test rod into the corner. Other rods may be used to direct the pressure
from the screws.

Figure 9.15 - Sketches illustrating the methods used to confinm comer angles.
(a) For acute comner angles the distance between two rods resting in the comer is measured.
(b) With obtuse angles an alternative method based on a single rod is used.

A further physical measurement of the corner angles was obtained using a rod or
rods in the corner. For acute angles two rods of known diameter were placed in the corner
as shown in Figure 9.15. The distance between the rods, X, was measured with a
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travelling microscope accurate to 0.01 mm. The corner angle was then calculated using
trigonometry,

- -1 (RI_RZ)
¢ = 2tan (__“(R.+R2+X)J 9.18)

For obtuse angles the above method is inappropriate and another technique was
required. A single rod of known diameter, the largest possible, was clamped in the corner
as shown in Figure 9.15. The distance of the outermost point on the circumference to
the apex of the corner, Y, was measured with the travelling microscope. This method,
although not as accurate as that for the acute angles, provides a check on the directly
measured angle. The corner angle is obtained by calculation from;

4 R
¢ .= 2tan (Y_:F?—] (9.19)

With right angled comers neither of the above methods are appropriate and only
rotating microscope measurements were taken. However, the accuracy of the machining
appeared better with nght angled corners.

Averaging the angles obtained from direct measurements with the rotating
microscope and from the other methods (where appropriate) gave a mean corner angle.
For the three corners investigated here mean corner angles of 30.17°, 90.06° and 109.83"
were found. Table E.2, Appendix E gives the details.

9.4.4 Results

The experimental results are shown on Figure 9.16 compared to the theoretical
curve of normalised curvature versus corner angle. As can be seen, the results are in
excellent agreement with the theory. The points plotted represent the mean corner
curvatures. are showi

In addition to the results found here the findings of Nibbs and Baynes (1986;7(or
50" and 70" corners. The students used neitherthe full or simplified comparative methods.

They compared gradients of straight lines of graphs of height of rise versus reciprocal
rod radius with that of a similar line they obtained, at a different time, for two rods and
a plate. The curvatures were found from,

Gco’u’
Coormer = 6'97OXG_2,;

The value of curvature in the two rod pore, 6.970, is that obtained from the MS-P theory.
In other words they have used a result of the theory to test the said theory. Also the
heights of rise used for their graphs were obtained at different times, making the gradients
of the lines sensitive to temperature changes. Furthermore no anempt was made to
confirm corner angles by measurement.
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Figure 9.16 - Experimental results for curvatures obtained from capillary rise experiments on the
red-in-a-corner system. The 50° and TO‘BresnﬂLs ?1%%6 a)re taken from an earlier study by Nibbs &
aynes .
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The above factors explain the relative inaccuracy of the results for the 50° and 70°
corners. The improved experiment techniques used here in the same 30° cell resulted
in the error from theory improving from + 2.3% (Nibbs and Baynes 1986) toonly -0.56%.
I would expect similar improvements for their other results had the experiments been
conducted.

Since the menisci are concave and near-hemisphereical the Jurin correction was
applied to observed heights of rise. The gravity corrected equation, 7.8, was used to
calculate curvatures. Detailed experimental results are given in Appendix E. Table 9.3
summaries the data and gives estimates of the error. Two eniries are accorded for the
30" corner, once for the results of Nibbs and Baynes and once for this study.

Table 9.3 Summary of experimental resulis for the rod-in-a-comer arrangement. A comparison
belweegll.he results of Nibbs & Baynes (N&B) and those found hare (W) is shown where
applicable.

Nominal Mean Expt. MS-P % Standard  Study
Angle Angle Curvature Curvature Deviation  Deviation
CEXPT CM‘S—P

(deg.) (deg.)

30 3017 2.875 2.891 -0.56 0.008 w
30 2,947 2.881 +2.30 N&B
50 4.243 4329 -2.03 N&B
70 . 6.423 6.469 0.72 N&B
90 90.06" 9.973 9.996 0.23 0.020 w
i10 109.83° 16.346 16479 081 0.084 w

All the results of this study fall within 1% of the theoretical values. This agreement
is very good in the light of possible dimensional errors, which have the effect of reducing
the observed curvatures. As the corner angle increases the effect of fabrication errors

are likely to increase due to the much greater rate of change of curvature with corner
angle.
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9.5 TWO UNEQUAL RODS AND A PLATE

The curvature of the meniscus formed between two rods of equal diameter and a
plate, all in mutual contact, has been studied with the MS-P method on several occasions.
Mason & Morrow (1983, 1984a) have studied the arrangement twice, undergraduate
students Ashton & Cable (1985) and Nibbs & Baynes (1986) have also looked at the
configuration and finally experiments on the system conducted as part of this study were
discussed in chapter 8. However, nowhere in these studies are there meaningful results
for the case of unequal rods.

None of the previous studies enjoyed the benefits of the simplified comparative
method in their experiments. Mason & Morrow used the full comparative method, as
described and employed in chapter 8, but with outdated apparatus. Ashton & Cable were
more concerned with contact angle variations. Their few results were obtained by
assumning the physical properties of test liquids (density and surface tension) and also
ignoring any effects of temperature variation. Nibbs & Baynes did extend the study
beyond equal rods, but their experimental method was in error (as described in section
94.4).

The configuration of two unequal rods and a plate, although bearing no particular
special features, was expected to yield very accurate results as it takes maximum
advantage of the experimental technique. The menisci formed are of almost identical
shape to those of the standard arrangement and so experimental errors due to dimensional
variation and gravity distortion will almost entirely cancel when curvatures are
calculated. In addition, the shape of a two-rod pore is entirely defined by the ratio of the
rod radit. No secondary measurement, such as shim thickness or corner angle, is required.
The likely experimental errors are therefore minimised.

The analysis and results presented in this section formed the basis of a paper I wrote
that was presented at the International Union of Pure and Applied Chemistry (IUPAC)
conference on the Characterisation of Porous Solids (COPS I) (see Unger et al. 1988).
The two unequal rod arrangement was selected as an example of the geometric analysis
required when using the MS-P method. The configuration does this well without being
over complex, whilst it is was also capable of illustrating the power of the MS-P method
to workers in the field of porous materials. A copy of the paper (Mason, Morrow &
Walsh 1988) is given in Appendix A. The experimental results have been updated here
in the light of the new standard configuration curvature determination.
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9.5.1. Theory

The arrangement of arc menisci between two unequal rods and a plate and the
capillary rise profile as viewed through the glass plate are shown in Figure 9.17. Three
dryside CAMs merge to form the MTM. The geometrical expressions for the effective
area and perimeter of the meniscus are now more complex than discussed previously.
The basic principal remains unchanged; application of simple geometric relations. The
analysis presented below differs from that presented to IUPAC, but only in method, not
resuit. The standard technique for analysing wedging systems had not been developed
at the time of publication.

three DCAMs

\

Figure 9.17 - Arrangement of the AMs for the MTM between two unequal rods and a plate. The
effective area is shown hatched and the effective perimeter outlined. A schematic representation of the
capillary rise profile, as viewed through the plate, is also shown.

Figure 9.18 shows the definition of terms and regions used to calculate the effective
area and perimeter, Other nomenclature used follows that of chapter 6.

B\.\- BI

ko

R, area T

t

Figure 9.18 - Dia showing the definition of angles, choice of regions and associated terminology
ugs:d in the calcugl;f;gn of effective area and perimeter of a MTM im the two-unequal-rods-and-plate
arrangement.
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A = %((R1+r)25ina1+(7"‘al)r2)
1, .
A, = E%R' Equations
Ay = %((Rl**Rz)(R.+r)siﬂaa—(“—°a-“é)’2) 9.23
1
A, = 5(14R22
1 2 . 2
A, = 5((R2+r) sin O+ (T — oL5)r”)

d) Effective Area and Perimeter
The effective perimeter, shown bold in Figure 9.18, is given by:

P, = ZP; + LP (6.11)
and from Figure 9.18 ¥ P; =P, + P, +P,and L P, = P, + Py +P. Hence,
P, Pb+ P, + P, + P, + P, + P, (9.24)
The effective area, shown hatched in Figure 9.18, is simply given by,
Ay = A — A - A — A - A - A (9.25)

'Equations 9.20 to 9.25 were written into the usual solution program together with
the MS-P equation,

Results were obtained as values of the normalised curvature, R /r, in terms of the rod
radius ratio, R,/R,. These are shown in graphical form as a continuous relationship on
Figure 9.19 for rod radius ratios up to 11; the range for which experimental results were
obtained.

9.5.2 Experimental

The experiments used the full range of rod sizes then available to give rod radius

ratios up to eleven. Rods of nominal diameters, 1/32", 1/16", 5/64", 3/32", 1/8", 5/32",

1/4" and 5/16" were employed in pairs chosen to give heights of rise in the range 10 to

20 mm, the optimum range for the comparative method when isooctane is the test liquid.

The experimental procedure closely followed that described in section 7.4, this
arrangement presenting few specific problems in its own right.
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9.5.2.1 Cell assembly

No new cells needed to be designed for this configuration, the existing cells (those
made for the rod-in-a-corner) proved capable of accommodating the rods in position.
The 30" and 110" cells proved particularly adaptable. Figure 9.14 showed a typical set
up, with the rods in the 30" cell. The two test rods are pushed into the corner and against
the plate by the larger rod positioned between the testrods and tightened clamping screws.

9.5.3 Results

As expected the results show exceptionally good agreement with the theory, The
mean curvatures from twelve different rod radius ratios are shown compared to the theory
on Figure 9.19. The results shown on the graph were obtained with gravity corrected
heights of rise with equation 7.8, but they only show slight improvement over the
uncorrected curvatures (a detailed breakdown is given in Appendix F). There is only a
small improvement as heights of rise in the standard cells were. always kept close to
those in the test cells. All the experimental curvatures are slightly less than their
theoretical counterparts, but most are within 1% and all within 1.5%. Note that some
points have been plotted twice on Figure 9.19 as the radius ratio can be read as greater
or less than unity.

That the experimental curvatures are lower than those obtained from the theory is
consistent with dimensional errors in the pores, which always act to increase the size of
the pores and so decrease the observed curvatures. '
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Figure 9.19 - Comparison of theoretical and experimental curvatures for the menisci formed in the
pore space between two contacting unequal rods and a plate. The theoretical normalised curvature is
shown as a continuons relationship in the rod radius ratio. The experimental resulis have been
corrected for effects of gravity distortion.
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CHAPTER 10

Investigations with non-zero contact angle

10.1 INTRODUCTION

The MS-P method has shown an impressive ability to predict meniscus curvatures
in uniform pores containing a perfectly wetting liquid. In many real situations where the
method may find application the liquid will not wet the solid surface. The future of the
MS-P analysis therefore depends on it being shown to also predict curvatures when the
liquid(s) only partially wets the solid.

Over the following pages a limited number of cases in which the effect of contact
angle was investigated are presented. Allowing for the variation of contact angle
increases the complexity of the theory as the AMs do not now meet the construction
components tangentially. However, itis the complications in the experiments that present
most difficulties for the MS-P method in these cases. The well known irreproducibility
of contact angle makes the experiments considerably less precise, but there is no superior
measure of wettability. The advantages of the metal construction components must be
abandoned in favour of PTFE components which cannot be made as accurately and
deform easily. Many of the benefits of the wetting liquid isooctane are also lost.

Previously published work involving the MS-P method and non-zero contact angle
is limited to a study of the two equal rods and a plate arrangement (Nguyen 1980, see
also Mason, Nguyen & Morrow 1983).
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10.2 ONE ROD AWAY FROM A PLATE

The arrangement of a single rod spaced from a plate was studied under perfectly
wetting conditions, the results of which were presented in section 9.3. It is difficult to
think of a simpler geometry, but the wetting behaviour is far from simple. The capillary
action of this arrangement when the contact angle of the liquid with the solid is varied
shows a fascinating insight into the complex behaviour that can be expected in such
systems, whilst the theory is kept simple.

10.2.1 Theory

The configuration of the AMs and .- most of the capillary profiles seen through
the plate remain largely similar to that shown in Figure 9.6. Two back-to-back OAMs
merge to form a TAM. The meniscus corvature between the rod and plate is still primarily
decided by the size of the gap. At very small spacings the geometry resembles that of
two parallel plates and the meniscus curvature is large. As the gap is enlarged the
curvature falls off. )

When the contact angle is increased from zero it would be expected that the
curvature will decrease until, at 30° the curvature will be zero. The effects of spacing
and contact angle should interact in a intriguing fashion. There is also the likelihood that
the two back-to-back OAMs will contact, and so rupture, at some spacings and
wettabilities.

The TAM possesses a plane of symmetry so only half the section needs to be
considered. Figure 10.1 shows the definition of terms and regions used to obtain
expressions for effective area and perimeter for the case where rod and plate are wetted
with the same contact angle, 6. Other terminology follows that of chapter 6. Due to the
complex trigonometry some of the analysis is afforded rather more detail than usual.
a) Subtended angle

Unfortunately the half angle subtended at the centre of the rod by the AMs can no
longer be found from a simple trigonometric function. It can however be obtained from
difference formula. Equating length A to length B (Fig. 10.1) yields;
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pommn 2 -

Figure 10.1 - Diagram showing the definition of angles, choice of regions and associated terminology
used in calculating the effective area and perimeter of a meniscus in the gap between a rod and a plate
when the contact angle is non-zero.

r 1—-cosa, + 2d/R

R cos 0 +cos(0 + a,) 10.1
which can be rearranged to give; _
(1+r/Rcos@)cosa, —(r/R)sin®)sina;, = 1+2d4/R —r/R cos0
an equation of the form A cosx — B sinx = C, which may be written;
sin(y —-x) = < where siny = A
VA% +B? VA?+ 8?2
Inserting the relevant terms from 10.1 in the above yields;
_ (1 +r/R cosB)
o, = arcsin = —
V(1 + /R cos8)? + (r/R sin )
. (14+2d/R —r/R cos9)
— arcsin - — (10.2)
N(1 +7/R cos8)+ (+/R sin 6)

b) Perimeters
The perimeters of the regions bordering on the meniscus section are as follows:

P, = oR

R sina, + (sin(a, + 6) —sin0)r Equations 10.3

v
5]
|

N
I

(t—o, —20)r
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¢) Areas

The areas of the regions required to define the effective area given below.
2

A = %sin2a1+(rsin(a,+9)+R sina,) (R(1 —cos ot,) + 2d)
A = R
A, = (sin20)r’/4 Equations 104

A, = (m—o,-20)y2
A, = (sinQ2(ct, +O))r/d

d) Effective area and perimeter
Using equations 10.2 to 10.4 the area and perimeter of the TAM may be defined.
The effective perimeter, shown bold in Figure 10.1, is given by;

P, = XPscos® + P, (6.11)
Note the modified solid perimeter term. Hence from Figure 10.1;

LPs = (P,+P)cos® and LP, = -P,
Note the negative sign due to the open AMs, hence;

Py, = (P,+P)cos® - P, . (10.5)

The effective area, shown hatched in Figure 10.1, is simply given by;

Ay = Ar — A — Ay - A, - A : (10.6)
¢) Solution of equations

In addition to equations 10.1 through 10.5 the MS-P equation,

Pgag— Ay = 0 (6.12)
also applies. These equations were entered into the solution program. Curvature and
spacing were normalised, as under wetting conditions, by the half the rod-plate gap, d.
The program was modified to give resuits as normalised curvature, R/r, in terms of either
the normalised spacing, d/R, or the contact angle, 8. It is capable of generating curvatures
for the full range of d/R at a specified © or the full range of © at a specified d/R. The
point at which the OAMs meet back-to-back is also given by the program.

The extra variable leads to the need for a three dimenstonal graph to show all the
results. For a fixed rod spacing the curvature varies approximately as the cosine of the
contact angle leading to the surface shown on Figure 10.2. At large spacings and/or
contact angles the AMs interfere back-to-back and the surface cuts off abruptly (dotted
lines). Note that for contact angles greater than 90° exactly the same shape of surface
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will be seen. However, it will be the mirror image of that on Figure 10.2 with the
curvatures negative, reflecting the capillary depressions that would be seen in practice.
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i 10.2 A three-dimensional graph showing the effect on the TAM's theoretical curvature o
cl;‘l;lr:]gl;i n? rod-plate spacing and contact angle. The dotted lines mark the points beyond which the
TAM cannot exist as the WOAMs meet back-to-back.

10.2.2 Experimental

Capillary rise experiments at non;zero contact angle are much more time consuming
than the wetting experiments. For this reason verification of the theory over the entire
surface shown on Figure 10.2 could not be justified. In the end the time allowed just one
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rod spacing to be investigated at d/R = 0.1. An 1/8" diameter teflon rod was used with
12.5 thou shims as spacers. Various liquids were used to vary the contact angle. Heights
of rise were in the range 5 to 15 mm depending on the test liquid. The physical properties
of the test liquids were given in Table 7.1, section 7.3.2. The apparatus emploved for
the wetting experiments was re-used for this examination (see section 9.3;. The
experimental procedures had to be altered considerably for the non-wetting tests and are
detailed below.

10.2.2.1 Cell assembly

The cell designed specifically for the single-rod-and-plate arrangement proved a
satisfactory design for these experiments (see Fig. 9.8). The components differed only
in respect of the steel rod, which was exchanged for a teflon rod. A piece .of fully
fluorinated transparent plastic sheeting was inserted between the glass plate and the front
face of the cell to make the pore one of uniform wettability.

The sheet needed to be stretched flat over the front face. With the cell dismanted
double-sided sticky tape was stuck to the front face around the machined channel. The
transparent sheet was then stuck over the tape. Ensuring that sheet stuck on properly,
with no sagging or wrinkling, was a delicate operation. The New Mexico Instirute of
Technology, who supplied the sheet, had also sent the sheet in self-adhesive form.
However problems were encountered owing to the thickness of the adhesive. Under the
pressure of the clamping screws the "flat" surface slowly became indented at points of
contact between shims and plate, leading to spacings less than specified.

The above points aside, the cell was assembled according to the procedure detailed
in section 9.3, but now extra care was required when clamping the rod in position. Teflon
rods are flexible and easily deformed which made the task of assembling a pore of
uniform geometry very difficult. Inevitable wrinkling of the sheet and bending of the
rod contributing most heavily to the non-uniformity.

10.2.2.2 Measurement of capillary rise

Initial experiments with the pore showed considerable variation in height of rise
along the pore length. There being no way of directly checking the pore geometry once
the cell had been assembled an indirect method of ensuring correct geometry was
required. A satisfactory method was arrived at by a process of intuitive trial-and-error,
It amounts to a "fixing" of the pore geometry.

For the purposes of the experiments it was assumed that 1sooctane wets the ieflon
surfaces perfectly under receding conditions. The MS-P theory predicts virally
identical curvatures (equal to four decimal places) for contact angles of 0° and at
isooctane’s receding angle of 4.6°. Now, with the rod held only loosely against the plate
with hardly any pressure on the rod, measurements of the height of rise of the TAM were
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taken at 2 mm intervals between the shims. If calculated curvatures were mostly falling
below the theoretical value the implication was that the spacing was to large and the
screws would be tightened accordingly. Any gradual shift from top to bottom implied
one clamping screw required more tightening than the other.

Heights of rise were re-measured and the process repeated until at least a 1.5 cm
section of the pore gave curvatures within 1% of the theoretical value. This prediction
has been validated by the wetting experiment. If no satisfactory section was found the
cell was dismantled and the rod and sheet replaced. In practice this technique worked
well, although it could be tiresome.

Having at least a section of pore authenticated was not the end of the problems.
Before a testxgﬁ!e’: of the liquids could be conducted the residual isooctane in the cells,
left behind in wedges in the corners eic. after the pore validation, had to be removed.
The cell obviously could not be dismantled or roughly handled. A suitable method was
to pass compressed air (with the dust and dirt removed by a compact inline filter) through
the fluid system. The main reservoir was removed and the air line connected to the system
tubing. After a few minutes all the isooctane evaporates.

The procedure developed for the measurement of "recently advancing” and
"recently receding” heights of rise for each test liquid is as follows.

(i) The main reservoir laboratory jack is lowered well below the cells. The
test liquid is poured into the reservoir which is then raised by hand until the
TAM rises to a level just below that of the authenticated section. The height
of the jack is adjusted to maintain the meniscus in roughly this position and
the system left to stabilise. The time taken increased with the liquids’
viscosities. The more viscous liquids taking up to 1/2 an hour to equilibriate.

{ii) The main reservoir is removed from the jack and held below the level of
the cells until the TAM has receded by about 1 cm when it is replaced on the
jack. Which is raised a couple of millimetres so that the TAM settles at the
bottom of the test section.

(iii) Once the system has come to equilibrium the heights of rise of the
advanced TAM and of the meniscus in the standard are measured. These
levels are checked several times over a five minute period to confirm the
equilibrium.

(iv) The lab jack is raised by about 2 mm and the level of the TAM lowered
well below the test section by hand.
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(v} Steps (iii) and (iv) are repeated until the top of the authenticated section
is reached.

(vi) The reservoir is now held aloft forcing the TAM to rise well above the
authenticated section and the main reservoir lab jack is lowered a few mm
so that the TAM will still settle around the top of the test section despite its
greater height of rise when receding.

(vii) Once the systern has settled the heights of rise of the receded menisci
are reasured.

(viii) The jack is lowered by about 2 mm and the level of the TAM raised
well above the test section by hand.

(ix) Steps (vii) and (viii) are repeated until the bottom of the authenticated
section is reached.

It is important to measure advancing height first while the rod and plate above the
TAM are dry. When wet they encourage the liquid to spread resulting in lower contact
angles. ‘

Unlike isooctane the other test liquids are not highly volatile and thus cannot easily
be evaporated form the system. So the cells had to be dismantied, cleaned, reassembled
and re-authenticated before the next liquid could be investigated. The sheeting and rod
were replaced for each liquid. '

These experiments also required additional safety precautions as most of the liquids
are classified as either "harmful” or "toxic". Leakage was more of a problem as the liquids
no longer evaporated from cell joins, but collected in puddles around the cell blocks.
The Sellotape and transparent sheet acted as a seal on the front face of the test cell. The
other cells were equipped with strips of PTFE tape in-between their front faces and glass
plates.
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10.2.3 Results

The experimental results are shown compared to the MS-P theory predictions on
a graph of normalised curvature, dfr, against the contact angle, 8 (Figure 10.3). When
compared to the corresponding results for the arrangement under perfectly wetting
conditions, Figure 9.10, the agreement with the theory is poor. However if the problems
with pore geometry and the well known irreproducibility of contact angle are taken into
account the results are not as bad as they at first appear. The general trend predicted by
the theory is followed. A detailed breakdown of the results can be found in Appendix
G. The curvatures were calculated using both the simplified comparative method
(equation 7.7) and from the physical properties of the test liquids (units in mm);

c = 2Ah+05d (10.7)

P a2

The results from both equations were generally in close agreement (within 2%),
indicating the validity of the comparative method. -~ . . . .

.Generally the value of the capillary constant, @, obtained from
the height of rise in the standard cell was slightly greater than that obtained from physical
constants. Exceptions were the two liquids with the highest contact angles,
hexachlorobutadiene and a-bromonaphthalene, which gave lower values of @’ than those
from the liquid properties. The implication is that wetting conditions do not prevail in
the standard cell. The results from equation 10.7 are plotted on Figure 10.3 for these
liquids, others were obtained from the comparative method.

The points displayed on Figure 10.3 represent the mean curvatures, obtained from
measurements taken at, at least, four levels in the pore. The range of curvatures obtained
is shown by the vertical limits. Most of these come close to or intercept the theoretical
curve. The variation found, up to 0.2 around the mean curvature, can be explained by
contact angle variations. Dimensional errors were predetermined by the method of testing
with isooctane and set within + 0.05 (+ 1%) of the theory.

The magnitude of the advancing and receding angles used for the ahalysis were
determined from Morrow’s (1974) empirical equations. For three of the test liquids
Morrow published the raw data used to calculate the arithmetic average contact angles
that were in turn, employed to determine the empirical equations. The standard deviations
of his results are also shown by the horizontal limits on Figure 10.3 (if maximum and
minimum angles were shown the limits would be almost twice the width apart). Morrow’s
data (obtained from capillary rise in cylindrical tubes) shows mostly similar variations
to those encountered here. Generally, it is the advancing angles that are the more
reproducible.
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Bearing the above limits in mind, it appears that much of the data confirms the
MS-P theory rather well for the single-rod-and-plate arrangement at non-zero contact
angle. Notable exceptions are for n-dodecane receding (0=22.8°) and
o-bromonaphthalene advancing (8 = 83.2°) which both give large errors from their
theoretical curvatures. The non-attainment of the specified contact angles that these
results imply may have arisen from contamination of the test liquids or pore surfaces.
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Figure 10.3 - Experimental results for curvature obtained from capillary rise experiments with a
partially wetting rod and plate. The results, at a normalised space of 0.1, are not as good as those
obtained under perfectly wetting conditions due to the ireproducibility of contact angles (shown by the
horizontal limits). Variations in curvature found by the experiments are shown by the vertical limits.
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10.3 TWO EQUAL RODS AND A PLATE

The arrangement of two rods and a plate containing a perfectly wetting liquid has
been extensively investigated, and is discussed elsewhere (see chapter 8, section 9.5 and
Appendix A). A MS-P study of the case of two equal rods and a plate with only partially
wetting liquids has been studied by Nguyen (1980) (see also Mason, Nyugen & Morrow
1983) This formed the starting point for this present work. The arrangement was
re-investigated with the dual aims of developing a procedure for the analysis of partially
wetted systems and to hopefully improve upon Nyugen’s results. The experiments
presented below were conducted before those on the geometrically simpler, single rod
and plate arrangement discussed in the preceding section.

The arrangement can also be assembled with mixed wettability by making either
(or both) of the rods or plate wetted. The mixed wettability system was subject to a
tentative investigation by Ashton and Cable (1985), but only a portion of the theory was
derived and very litile experimental data collected. The study of mixed wettability
systems extends the bounds of the MS-P method further and enlarges the range of
applications to which the method can be applied.

The theory for all cases of mixed wettability is presented below and later
experiments are discussed for the cases of two partially wetted rods and one and two
perfectly wetted rods against a partially wetted plate.

10.3.1 Theory

The arrangement of AMs and the general shape of the captllary profiles seen through
the transparent plate remain largely unchanged from those shown earlier; Figure 9.17.
The AMs will not now meet partially wetted solid surfaces tangentially, but at a angle,
8; the contact angle. As wettability of the pore decreases the profile becomes noticeably
flatter (curvature will fall), until at 8 = 90° the AMs can no longer form in partially wetted
corners.

Since mixed wettability systems were to be studied the expressions for effective
areca and perimeter were derived to allow for different contact angles on each pore
construction component surface. Figure 10.4 shows the definition of terms and regions
used in the analysis. The theory is now considerably more complex than that of the wetted
system. Solution of the equations requires two iterations, one as before, for the radius
of curvature and a second for the angle subtended by the AM between the two rods.
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Figure 10.4 - Diagram showing the definition of lengths and angles, choice of regions and associated
terminology used in calculating the effective area and perimeter of MTM in the pore space formed
between two equal rods and a plate. The rods and plate all exhibit different contact angles allowing the

study of mixed weuability arrangements.

a) Lengths
r (1-cosa,)
A = B - =
= R (cos 0, + cos(o, + B,)J
r (1 -cosoy)
C =D - =
= R (cos 0, + cos(os + BZ)J
£ - F A (sin(‘x;—s'%nag.)
R sin(ot; + 6,) + sin(o, + 0,)
G = H - ro_ (2—cosag—cosf!;)
R cos(0, + 6,) + cos(o, +6,)
b) Angles
From equations 10.8 to 10.11 combined with difference formula:
_ , (1+(r/R)cos8,)
¢ = arcian (r/R)sin6,

arc

(1-(r/R)cos9;)

Sln[\/(l +(r/R)cos8,)*+ ((r/R)sin 8,)°

|

(10.8)

(10.9)

(10.10)

(10.11)

(10.12)
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_ (1+(r/R)cos9y)
O = RN TGR)sinG, -
(1-(r/R)cos®,) ' '
— arcsin (10.13)
V(1 + (r/R) cos 8,)* + (/R ) sin 8,)?
_ (r/R)sin®, |
O = Al IR ) cose))
sin o, + (7/R) sin(a, + 8
+ arcsin (5in 0 + (r/R) Sin(e + 6,)) (10.14)
(1 + (r/R)cos8,)* + ((r/R)sin 8,)
o, and o; must be found by iteration from equations 10.11 and 10.14.
o, = W2 - a - o4 : (10.15)
@ = W2 - o, ~ (10.16)
¢) Perimeters
P, = m~(,+6,)-6,
P, = oR
P, = m~(0,+6,)— (0, +8,) Equations
P, = oR 10.17
Ps = m-(05+8)~6,
P, = (2-sina,-sing)R + {sin(a, +86,)+sin(os+8,)—2sin6,}r
d) Areas
A, = 2R?
2
A = Tsin2al + r{cos(a,)+6, +cos8,} {R sina, +r sin{c, +6,)}
r2
- Z{Sin 2(0; +6,) +5in 208, 4+ 2(n - (a, +6,) - 6,)}
R'Z
A, = 5 % Equations
R? : : .
A, = -&—(sin2a,,+sin2aj) + R{2-cosa,—cosa,} {R sina, +rsin(c, +6,)}

2
- %{sin2(a.3+91)+sin2(a;+97)+2(n—(03+9,)—(or.;+9,)}
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2

A, = R?a‘, 10.18
R2

A, = Tsinzots + r{cos(os+0,)+cos0,} {R sinag+r sin(a + 6,)}

2

- %{sin 2(ctg +8,) + 5in 28, + 2(m ~ (05 + 6,) — 0,)}

¢) Effective area and perimeter
The effective perimeter, shown outlined on Figure 10.4, of the mixed wettability
system is given by;

i=1
Py = i§3P5c056;+):PL 6.11)

and from Figure 10.4;
P, = Pyc0s6,+P,cos0,+Pscos8, + P +P,+P (10.19)

The effective area, shown hatched, is simply the area of the whole rectangle formed
by the rod centres and the plate less the area of the regions it contains:

Ay = Ar—A—A~A—A,— A (10.20)

f) Solution of equations

The above expressions for the effective area and perimeter were written into the
standard solution program together with the MS-P equation,

Pgr — A, = 0 (6.12)
Alterations were made to enable normalised meniscus curvature, R/r, to be iterated in
terms of the pore components’ contactangles, 0’s (see Appendix H). The second iteration,
for o1, and o, , was also achieved by successive bisection; the equations showing rapid
convergence.

The effect of contact angle on the two equal rods and plate arrangement when all,
some or none of the perimeter is perfectly wetted is illustrated by the curves shown on
Figure 10.5. A total of six curves are shown. As the number of partially wetted
components increases the curvature at a given contact angle decreases. The curves show
that a partially wetted plate contributes more to the reduction in curvature than does a
partially wetted rod, reflecting the larger meniscus perimeter against the plate.

10.3.2 Experimental

Experiments were conducted on three of the systems shown on Figure 10.5, all
with a partially wetted plate. The instances where both, one or neither of the rods are
partially wetted were investigated. Steel drill blanks of 1/8" diameter were employed as
wetted elements, whilst 1/8" diameter teflon rods were used for the partially wetted rods.
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The rods partially supported one another which made assembling this apparatus easier
than that of the rod separated from a plate. The test liquids used for the
single-rod-and-plate arrangement (see Table 7.1) were used.

The apparatus was identical to that used for the wetted system; described in section
9.5. The rods were clamped against the plate in rectangular channels. A fluorinated
ransparent sheet was inserted between the rods and glass plate as described in section
10.2. Greater care had to be taken when clamping the screws to avoid deformation of
the geometry. The procedures described in section 10.2 were followed when validating
. the geometry of the pore and for measuring the heights of rise of advancing and receding
Mmenisci.

Readings for the two mixed wettability arrangements were taken together. The dual
cell blocks then contained the two test cells, a standard cell and only one reservoir
indicator cell. The confidence in the experimental technique was sufficient by this time.

10.3.3 Results

The data obtained from the experiments on the three arrangements are displayed
on Figures 10.6 through 10.8. The scatter of points is markedly worse than that for the
perfectly wetted system, but the general trend predicted by the theory is followed.
Together the sets of results are encouraging as they show remarkably similar errors from
the theory, indicating that the contact angles were reproduced quite well from
arrangement to arrangement. The single-rod-away-from-a-plate results also largely
confirm this finding.

A detailed breakdown of the results can be found in Appendix H. Curvatures shown
on the figures are arithmetic averages of results for the most part determined from the
simplified comparative method. Exceptions were those readings pertaining to the viscous
liquids hexachlorobutadiene and a-bromonaphthalene where the steel rods were not
thought to be perfectly wetted. These curvatures were obtained fromequation 10.7, using
the physical constants of the liquids.

All the heights of rise were corrected for the height of rise in the indicator cell. The
value used was that obtained for isooctane in pores made up from two wetted rods and
a plate. The 0.5 mm correction is unlikely to be numerically correct for the other liquids,
particularly the more viscous ones. Strictly speaking the experiments of chapter 8 should
have been repeated for each of the liquids in each of the partially wetted systems under
both advancing and receding conditions. However, bearing in mind the large variation
in contact angles this would not have dramatically improved results. Indeed experiments
conducted with hexachlorobutadiene receding in differently sized pores made up from
two steel rods and a plate produced a value for the rise in the indicator cell of 0.3 mm
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Figure 10.6 - Experimental results for curvatures in terms of the solid/liquid contact angle in a mixed
wetltability arrangement of two perfectly wetted rods and a partially wetted plated.
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Figure 10.7 - Experimental results for curvatures in terms of the contact angle in a2 mixed wetability

arrangement of one perfectly wetted rod and a partially wetted rod and plate.
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10.8 - Experimental results for curvatres in terms of the contact angle in a fixed weuability
arrangement of two partially wetted equat rods and a plate.
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(Ashton and Cable 1985; the only partially wetting liquid they studied). Under advancing

conditions this is likely to be even lower. Application of this result changes the curvature
by less than the experimental error.

The deviations of the observed curvatures from the theory are consistent with the
majority of the experimental error ansing from contact angles, the geometrical error
having been preset by testing with wetting isooctane. The two wetted rod arrangement,
with the smallest partially wetted perimeter, shows better agreement than does the two
partially wetted rod system. The spread of curvatures observed at each contact angle is
also noticeably less with the wetted rod arrangement.



CHAPTER 11

Investigations with neighbours: three rods and a plate

11.1 INTRODUCTION

Two separate tubular pores, each bound by two rods and a plate, are formed when
three rods are aligned touching a plate. If the outer rods are pushed together so that only
the middle rod loses contact with the plate, the two pores become interconnected, giving
apore doublet. Upon further pushing together of the rods a capillary surface in the system
will eventuaily come to regard the geometry as a single pore. As the rods are moved still
closertogether the system again becomes a pore doublet, until when the outer rods touch,
two entirely independent pores are formed, one bounded by three rods and the other by
two rods and a plate. When the geometry gives rise to pore doublets the properties of
each pore are interrelated and the meniscus behaviour in one neighbouring pore may be
dependent on the behaviour in the other. This system yields not one, but a whole family
of different terminal menisci. In addition to the described variation in the outer rod
separation the rods can be of equal or unequal sizes. All the above possibilities are
examined with the MS-P method. It is this analysis of the different menisci and their
interaction together, combined with extensive experimental confirmation, that has been
the greatest test, to date, of the MS-P method.

Some of the terminal menisci that may exist between three rods and a plate have
been partially studied in the past (and some already in this study) by authors such as
Mayer & Stowe (MS-), Princen (P), Dodds (1978) and Mason & Morrow (1987). Over
the following pages the MS-P analyses and experimental results from four different rod
size arrangements are presented and discussed.

11.2 THEORY

The three rod and plate arrangement can exhibit eight different terminal menisci
depending on the rod positioning. Some coexist together, while others are only formed
with particular rod sizes and centre rod spacings from the plate. The basic assumption
throughout the analysis is that the liquid vapour interface will always adopt the
configuration that has the minimum surface energy, or maximum meniscus curvature,
for the given geometry. Figures 11.1 to 11.3 show all the possible positions that the AMs
can adopt, the appearance of some of the resulting capillary rise profiles together with
the approximate arrangement of the rods.
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Figure 11.1 - Arrangements of arc menisci for the terminal menisci formed between three rods and a
plate at low side rod separation. The effective area of each terminal meniscus is shown hatched and its
effective perimeter outlined. In each case the capillary rise profile is shown as envisaged through the
indicated section. Three different situations are shown, separation gradually increasing from the
minimum
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Figure 11.1 (a) shows the two side rods touching each other (the minimum rod
separation) and the arrangement shows two pores each containing an isolated terminal
meniscus. Both comprise three DCAMs that merge to form separate MTMs, one between
two rods and a plate, termed fype A, and the other between three contacting rods,
henceforth called a type B TM.

If the side rods are moved even very slightly apart the back-to-back AMs in the
comers formed by the contacting rods are no longer closed, but open. At some height,
dependant on the rod separation, the now back-to-back OAMs will merge to form a
TAM, a rype C TM, as shown in Figure 11.1 (b).

Figure 11.1 (c) shows the situation when the rod separation has been increased, so
decreasing the curvature of the type C TAM, to a point where the curvature of the TAM
is less than that of the rype B TM. The TAM and the its rearmost associated OAM (Fig.
11.1 (b)) cannot now form. The minimum surface energy criterion results in the formation
of a type D TM, comprising two CAMs at the back and one OAM towards the front of
the arrangement as shown in the figure.

If the rod separation is increased still further the curvature of the type D TM
eventually becomes equal to that of the type A TM. The TMs can no longer coexist and
they merge to form a fifth TM, type E, shown in Figure 11.2. The OAM disappears
leaving four CAMs in the corners. The type E MTM exists by itself for a large range of
intermediate rod spacings, its profile becoming progressively flatter as separation is
increased. '

Type E  four DCAMS (i}

O

> <

aa
;‘_V‘

Figure 11.2 - Arrangement of AMs for the MTM formed between three rods and a plate at_
intermediate side rod spacings. The effective area of the MTM is shown hatched and its effective
perimeter outlined. An example of the capillary rise profile seen through the plate is also shown.

MTM

) - —-p% -

Figure 11.3 (a) shows the situation at maximum rod separation with all three rods
in a row touching the plate. Here there are two isolated pores of two rods against a plate.
When the rod separation is decreased slightly the centre rod becomes separated from the
plate resulting in the formation of two back-to-back OAMs. The two side pores now
contain TMs comprising two CAMs and one OAM, termed rype F; Figure 11.3 (b). Type
F menisci are similar to type A TMs, but the OAM is now between the middle rod and
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high side rod separations. The effective area of each TM is shown hatched and its perimeter outlined.
In each case the capillary rise profile is shown as viewed through the glass plaie. The situation is
shown at three different rod separations ranging from the maximum intermediate side rod spacings.
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the plate not between the two side rods. Associated with the back-to-back OAMs will
be a TAM, type G, with identical properties to that discussed in the single rod away from
a plate arrangement (see section 9.3).

As the rod separation is decreased further the curvature of the type G TAM in the
gap in-between the centre 1:0d and plate falls undl a point is reached where it is less than
one of the type F TMs in tly: side pores. This gives rise to a rype H TM, Figure 11.3 (c).
Type H is similar to the rype D TM in that it is in part bound by two DCAMs and a
WOAM, but it is also bounded by the flat glass plate. Further reductions in the rod
separation eventually leads to destablisation of the OAM and a reversion to the fype E
MTM of Figure 11.2.

11.2.1 Analysis for effective areas and perimeters

On Figures 11.1 to 11.3 each terminal meniscus’ effective area is shown hatched
and its effective perimeter outlined. Due to the greater complexity of the geometry and
the larger number of AMs the analysis required to find expressions for the area and -
perimeter is much more elaborate than so far encountered with perfectly wetting
conditions. However, it is still simply the application of geometrical relationships.

As usual there is a need for easily measurable characteristic dimensions to define
the exact tube shape. A rod radius, R, is used to normalise curvatures. To define the rod
separation the half angle, ¢, subtended at the centre of the middle rod by the side rods
is employed. The analysis that follows allows for the rods to be of any sizes, but assumes
that TMs are formed as shown in the Figures.

The analysis follows the usual method, the five sided figure formed by joining the
centres of the rods to each other or the plate is divided into different regions. Each region
has a perimeter adjoining the pore. The effective area and perimeter of a particular TM
can be obtained from the areas and perimeters of the relevant regions. The analysis is
given without explanation other than that provided by diagrams that define the
nomenclature. Extensive use is made of simple geometrical relationships such as the
Cosine, Sine and Trapezium rules.

a) Type ETM

From Figure 11.4 the required lengths, angles, perimeters and areas for the type E

TM can be defined:
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Figure 11.4 - Diagram showing the definition of angles, choice or regions and associated ierminology
required in the calculation of effective area and perimeter for the fype E TM.

i) Lengths

_ii) Angles

By
B,

VIR, + R + (R, + R, = 2((R, +R,) (R, +R,) sin26))  Equations

V@& - R, = RY) | 1.1

Rl_r
arc cos R1+r

B+ -

(R,+r)’+(R,+R2) Ry +r)
2R, +R) (R, +7)

( ,+ T+ R+ R = (R, + 1)
2(R,+R) (Ry+7)

arc cos

20— oty — ot
) (R3+r)=’-+(R3+R,)2-(R2+r)2]

2R;+R) Ry +7)
R+ + R+ R = (Ry+71)

arc cos Equations 11.2

2Ry + R Ry + 1)
B+ —os—0y

|
w2

Ry+r

arc cos (R, ~ Ry
L,

|

= \X{“Bl
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_ (R1+R2)2+L|2"(R3+R2)2
Y = arccos 2(R1 +R2)L1
Y, = "-Y,—-2¢

iii} Perimeters

P = (-
P, = o,R,
P, = (r-oy-ay)r
P, = oR, Equations
Py = (R-os—ayr 13
Py = agR,
P, = (m-oy)r
P, = L,—(R,+r)sina,—(R,+r)sinq,
iv) Areas
Ap = %(Rl +R,}(R,+R;)sin2¢
A, = LR +R )
TZ - 2 1 3 L"Z
_ 1 2 2
A = 5((Rl+r) sing, +(m— o )r’)
1 2
A, = ia'le

A, = %((Rl+R2)(R1+r)sin(13-(7l—03-ﬂ;)f2) Equations 114
A, = laﬁz
4 = 2 2
1 . :
A, = 5((Jre3+.'e:,)(R3+r)smozs—(rr—ozs—ozs)r’)
Ay = ~oR?
6 - 2a6R3

A, = %((R,+r)2sina7+(n—a,,)r2)
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Figure 11.5 - Diagram showing the definition of angles, choice or regions and associated terminology
required in the calculation of effective area and perimeter for the fypes A and D TMs.

b) Types A and D TMs
The analysis given above for the rype E TM applies, but with the exception that
regions 2 and 6 which no longer apply. In addition, the regions 9 to 15 must be defined.
From Figure 11.5:
i) Angles
o = B-oy-oy

e CO{(R, +r)?+ L~ (Ry+ r)zJ

R
=3
]

2(R, +r)L,
o, = Y0 - Equations
0, = Y0 _ 11.5
. = mco{(}?,w)%Lf-(R,+r)2J
. _ 2(Ry+ 1)L,

a, = B,-a,-o,



ii) Perimeters

Py = ogR,
Py, = ook,
Pll = CY.HR‘
P, = o,R,
P, = ouR,
P14 - a14R3
P15 = (n_aro_ al‘S)r
iif) Areas
1
Ag = E(IQRI2
1
Alo = Eale2
1
All = EallRlz
1 2
A]: = EanRa
1
A, = —2~a13R32
1 2
Ay = 5a14R3
. 1 R
Ais = SR +r)sina,— (R- 05— 0yr?)
¢) Types A, B and C TMs
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Equations 11.6

Equations 11.7

The analysis for these menisci follows that for rypes A and D except that regions

11 and 12 no loner apply (see Figure 11.6) and:
i) Angles




214

Figure 11.6 - Diagram showing the definition of angles, choice or
required in the calculation of effective area

s =
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it) Perimeters
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Py =
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o
|
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B

R, +rP+LI-(R, +r)2J
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Dl Pl s 9"

Yo—Os—0y

e COS[ (Ry+rP+L2— (R, + r)z]
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and perimeter for the rypes A, B and C TMs.
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11.8
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Equations 11.9
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iit) Areas

Ay = Ay
1
A, = EalTRlz
1
Ag = EaIBR: Equations 11.10
Ay, = A,
Ay = Ag

"‘-ﬁ R1 + Rl

~ % 7, Ra-i-
A R, "
R‘ area Ta L; p
area T, R,
L,

25 20 27

Figure 11.7 - Diagram showing the definition of angles, choice or regions and associated terminology
required in the calculation of effective area and perimeter for the fypes F and H TMs.

d) Types F and H TMs

The analysis now reverts to that of the rype E TM except that sections 4 and 8 no
longer apply as shown in Figure 11.7 and:
i) Lengths

L = R+QR, +R)sin(y, + B, — w/2) (11.11)




ii) Angles

§

0,
Ys
Ya

iii) Perimeters
P21

2

T W vwow v v
5 0B OB ¥ M

iv) Areas

H
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Yy Oy — Oy
Ly-r
arc cos R2+r

Ya— 0!'-; Equations 11.12

- -B
2¢_-Yl

R,

R,

R,

(t—o)r Equations 11.13
(R, +Ry)siny,— (R, +r)sina, — (R,+r)sina,,

(R, +r)sina,,

(Ry+R))siny, ~(R,+r)sinq,

1
3R +L) (R, +Ry)siny,

1 :

2 (Ry;+ L)) (R, +R,)siny,

1 2 :

3 oy, R, Equations
1 2 :
5 022y 11.14

1

5 0R;

LU+ D) Ryt 1)5in 022 - B2~ (m - agyr?)

e) Types F and G TMs
The analysis of the final rod arrangement follows that given for types F and H TMs,
but regions 23 and 27 do no apply, Figure 11.8, and:
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Figure 11.8 - Diagram showing the definition of angles, choice or regions and associated terminology
required in the calculation of effective area and perimeter for the types F and G TMs.

i) Angles
Oy = Oy Equations
Ogy = Yy=Ols— Oy 11.15
ii) Perimeters
Py = P,
Py = 0R,
Py = P, Equations 11.16
Py = Py
Py = (Ry+Rysiny, —(Ry+r)sina, — (R, +r)sin oy,
iif) Areas
Ay = Ay
1, .
Ay = 5“29R2 Equations 11.17
Ay = Ay

Having now determined the areas and perimeters of all the regions, the effective
area and perimeter of each TM may be defined in tefms of the pore characteristic
dimensions of 0, R, , R, , R; , and the radius of curvature, r.

a) Type A - two DCAMs and one DOAM

Figures 11.1 (a), (b) and (c) show the effective area, hatched, and the effective

perimeter, outlined, of the type A TM at various rod separations. Using the relationships
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defined from Figure 11.5, equations 11.1:to 11.4 and 11.5 to 11.7, these may be defined
as follows:

Py = XP; + XP, (6.11)
= (Py+Py+PL) + (P +P;+P) - (11.18)
and Ay = Ap—A-A—Aj—A,-A,-A,-A, (11.19)

b) Type B - two DCAMs and one DOAM

Figures 11.1 (a) and (b) show the required effective area and perimeter (hatched
and outlined respectively) of the type B TM and using the analysis derived from Figure
11.6 they may be defined as follows:

Py = (P,+P+Py) + (Py+Ps+Py) . (11.20)
and Ay = Ap—Ag—Ay—A—A—A—A,—A,-A, (11.21)

c) Type C - two WOAMs
Figure 11.1 (c) shows the effective area and perimeter of this TAM. From the
relationships derived from Figure 11.6:

Py = Pu+Ps+Pyp+Py) + (—P—Py) (11.22)
Note the negative contribution to the liquid perimeter from the two back-to-back
WOAMs.
Also Ay = As+Ay (11.23)

d) Type D - two DCAMs and one WOAM
Refer to Figures 11.1 (¢} and 11.5

Py = (Pu+Py+P,+P,+P;) + (P,+P,—P,) (11.24)
Note the negative contribution to the perimeter from the WOAM.
Also Ay = Ap~Ap—A,—A-A-A,+A (11.25)

e) Type E - four DCAMs _
The effective area and perimeter of the type £ TM are shown on Figure 11.2 and
defined by relationships derived from Figure 11.4.

Py Py+P,+P,+P) + (P,+_Pa+P5+P,) (11.26)

it

and A

o Ap+Ar ~A —A,—A,—A,—A— A - A, (11.27)
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f) Type F - two DCAMs and one DOAM
Refer to Figures 11.3 (a), (b) and (c) for examples of the effective areas and
perimeters of this type of TM at various rod separations. Figure 11.7 shows the regions
used to derive the relations that yield:
Py = (Py+Pu+Py) + (P,+P,-P,) (11.28)

and Ay = Ap-A~A-A-A,—-A,+A, (11.29) .

g) Type G - two WOAMs
Figure 11.3 (b) shows the effective area and perimeter of the type G TAM. From
the relationships derived from Figure 11.8:
Py = (Pu+Pu+Py+Py) + (=P, -P,) (11.30)

and Ay = Ay+A, (11.31)

h) Type H - two DCAMs and one WOAM
Refer to Figures 11.3 (c)and 11.7.

Py = (Pu+Pp+P+P,+P,) + (Ps+P,-P,) (11.32) -
Note the negative contribution to the perimeter from the WOAM.
Also Ay = Ar—Ap—As-A,—A,+A, (11.33)

11.2.2 Solution of equations

The equations for effective areas and perimeters derived above were written into
the standard computer program. Some modifications to the workings of the program
were required to enable selection of the type of TM and to incorporate the half angle, ¢
(see Appendix I for a program listing).

The resulting program is capable of solving the equations for rods of unequal sizes
with varying rod separation. Results are given as normalised meniscus curvature, R/r,
in terms of the half angle, ¢. With the likely stable positions of the AMs already
determined in the analysis and with the computer generated results for each of the TMs
it is now possible to determine which type of TM or TMs exist at which rod separations.
The minimum surface energy criteria must be employed. The TM with the highest
normalised curvature for each particular portion of geometry is always formed. Figures
11.9 and 11.10 show such graphs obtained for the arrangements where R, =R, =R, at
low ¢ and where R, =R, = 2R, at intermediate and high ¢. These graphs illustrate the
behaviour of the eight TMs. Each is represented by a different potion of the graph, as
shown.
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Figure 11.9 - Graph showing the theoretical results for curvatures of the various terminal menisci
formed in the three equal rods and plate system at low and intermediate half angles. Curvatures of
rypes A, B, C, D and E TMs are shown ir terms of the half angle by the curves indicated.

Va]idation}{ljxi program against previously published results was possible at specific
separations for the case of equal rods. TM types A and F, between two rods and a plate,
have been discussed elsewhere for the case when all components are in mutual contact,
see section 9.5, and the fype G TM was covered in section 9.3. Mayer & Stowe (1965),
Princen (1969b) and Dodds (1978) have published results that were used to validate the
equations for fype B when all three rods are in contact. Princen (1969a) covered type C
and Dodds also recorded some results for the rype D TM. Finally Mason & Morrow’s
(1987) study provided comparison for results obtained for the type H TM. The program
cannot determine which of the TMs is formed and will calculate theoretical curvatures -
for menisci that do not exist in the real system (the dotted lines on Figures 11.9 and
11.10). It is left up to the user to determine which TMs are formed where.
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Figure 11.10 - Graph showing the theoretical results for curvatures of the various terminal menisci
formed in the three unequal rods, non-symmetrically arranged (R, =R, = 2R,) system at intermediate
and high half angles. Curvatures of rypes E, F, G, and H TMs are shown in terms of the half angle by

the curves indicated.

11.3 EXPERIMENTAL

The experiments for the three rod system sought to confirm the transition points
between the different menisci in addition to the usual objective of confirmin g theoretical
curvatures. Also some "neighbouring pore” effects were expected.'

Four rod size arrangements were investigated beginning with the comparatively
simple case of three equal rods (R, =R, = R;) . The study of this arrangement is relatively
straightforward and set the pattern for the more complicated cases. As a step to increasing
the complexity of the system the centre rod was replaced by a rod twice the size (R, =
1/2R; = R; ), and then by a rod half the size of those at the side (R, = 2R, = R; ). Finally
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non-symmetrically arranged unequal rods were investigated, with a side rod and the
centre rod of equal size and the remaining rod half the size of the other two (R, = R, =
2R, ). This last arrangement demonstrates the entire range of menisci.

The experimental procedures again closely followed those described in chapter 7,
but new cells had to be designed and fabricated and a suitable method for measuring the
half angle determined. Also uncertainties over exactly where to measure some menisci’s
heights of rise needed to be addressed.

11.3.1 Cell design

In order to realise all of the possible rod separations for the various rod sizes several
different cell designs were needed. At many rod separations, notably at low and
intermediate half angles, in was possible to utilise the existing cells with clamping screws
at the rear. The centre rod was simply pushed forward against the side rods which were
supported by the channel walls and glass plate. By varying the rod sizes many different
separations could be obtained. '

At large values of ¢ the above method fails as small changes in the rod sizes result
in very large changes in ¢. The available range of cells and rod sizes was not fine enough
to provide adequate variation. Two new cell designs were devised and four cells
commissioned during the course of the experiments.

11.3.1.1 Intermediate and low ¢ design

Whilst conducting some early experiments for the three equal rod arrangement it
became apparent that a more versatile cell was required if the full range of intermediate
and low ¢ values were to be covered. The resulting cell design is shown in Figure 11.11.
A stepped channel designed to hold 3 x 3/32" rods was machined to the front face of a
standard cell blank. Three 1/8" diameter screws, with the end 1/4" ground down to 1/16"
diameter pins, enter through the rear face of the channel. As it stands the cell can
‘accommodate three 3/32" rods in a row against the plate.

The half angle, ¢, is altered by inserting equal thicknesses of shimstock between
the side rods and the walls of the channel. The centre rod is then forced against the side
rods by the clamping action of the screws as shown in Figure 11.11. The rod size of
3/32" diameter was selected as initial experiments had shown this sized rod gave heights
of rise within the limits of the comparative method over the whole range of ¢ values.
Brass shims were used and were prepared in 2" long strips about 1/16" wide.
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Figure 11.11 - Diagram showing the design of the cell employed in the capillary rise experiments for
the three-rods-and-a-plate arrangement al low and intermediate P.

The cell proved to be easily assembled and very useful for low and intermediate
values of ¢ with the equal rods and also with the symmetrically arrahged unequal rods.
At high ¢ the cell did not work so well as even changing the shim size by as little as one
thou resulted in excessive changes in ¢.

11.3.1.2 High ¢ design

As a result of the failure at high ¢ of the cell described above a new cell was
commissioned, designed specifically for the three equal rods ahigh rod separations. The
cell is shown in Figure 11.12, as is its operation (schematically). The principals of the
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design remain the same, but now the rod separation is altered by changing the depth, not
width, of the cell enabling much finer control of ¢ at high separations.
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Figure 11.12 - Diagram showing the design of the cell employed in the capillary rise experiments for
the three-rods-and-a-plate arrangement at high ¢.

The heights of rise encountered at high‘ ¢ are significantly greater than those at
intermediate ¢ enabling 1/8" rods to be used. Larger rods lead to pores of greater
dimensional accuracy. The three rods are clamped in position by a 3/32" thick steel plate
that is pushed onto a side rod by three clamping screws entering through the channel
wall. The plate’s section was that of a parallelogramenabling it to swing without catching
the glass plate, yet still contact the rod properly.

In practice this cell was not so easy to assemble and often required a lot of patience,
but worked well in the end and an improved simpler design could not be conceived. Two
further cells of similar design, but with different specifications were later commissioned
for the investigations with unequal rods.
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11.3.2 Measurement of half angle

Direct measurement of the half angle, ¢, was never really a realistic possibility.
The only place that the angle can be measured with a rotating microscope is looking
down onto the top of a cell and positioning the cross-hairs on the outer edges of the rods.
Any vanation in tube section caused by mistakes in assembling the cell would go
undetected. Furthermore the cells were difficult enough to assemble without having to
ensure that all the tops of the rods would be in focus at the same time.

Indirect measurements of ¢ involve the measurement of the rod-rod, termed L, or
rod-plate, D, separations (see Figure 11.13). Measurement of L is more desirable as it
may be checked along the length of the pore. This method worked well at low and
intermediate ¢, but at high ¢ small errors in L lead to large variation in the observed
value for ¢. A sine function must be used to obtain ¢ from L. The same small errors in
ameasurement of D lead to much less variation as ¢ is obtained from a cosine relationship.
Similarly a low rod separation use of D was less accurate than L.

Figure 11.13 - Tllustration of the parameters measured for the determination of the half angle, .

Table 11.1 shows the simple trigonometric functions employed 1o calculate ¢'fr0m
L and D for each of the rod arrangements investigated. Variation in gap measurements
over several readings could be as much as 10 thou (0.25 mm). This arose from difficulties
in illuminating the shiny steel rods so that their edges were clearly defined. Table 11.2

" shows the effect of a 10 thou variation on ¢ for three equat 1/8" rods at different nominal
¢ values.




Table 11.1 Determination of half angle, ¢, from measured gap sizes: L, the rod-rod spacing and D, the
rod-plate spacing.

Rod Gap
Arrangement (L) oD)
Equal Rods sin | R¥L2 o4
. 2R 2R

Unequal Rods - [ R+L2 D +R—R,

eq . sm cos | ————r
Symmetrical R +R, R +R,
ﬁjnequal Rods - 1 [ R ARFP+(R+RP— (R, +Ry+LY 1 fD+R-R D +R—Ry
(I:IEn-Symmeuical 7008 { : 2(,9.:. R)R,+ Rl,) A\ TR R, ST | TRk,

At intermediate separations these errors in ¢ are not a major problem as curvature
changes only slightly with ¢, but at high and low separations, where the rate of change
of curvature with ¢ is greatest, these variations in ¢ can cause significant errors. In
practice L measurements were used at low and intermediate separations, and D
measurements only at high ¢, where having only the top of the cell to make measurements
is preferable to the large errors incurred with L. |

Table 11.2 Range of possible ¢ values given a 10 thou {0.25mm) uncertainty in
L or D with 3 x 1/8" diameter rods.

Nominal L2 Maximum D Maximum

L} range of ¢ range of &
{mm) {mm)

40° 04515 40+0.15° 2.3975 40 +0.35°

o60° 1.1575 60 +£0.25° 1.5562 60 +0.25°

80° 1.5331 80 +0.70° 0.5241 80 +0.20°

11.3.3 Point of measurement of height of rise

The three rod system gives rise to eight different TMs and thus several different
capillary profiles which must undergo transitions from one shape to the next. With some
profiles a definable point or points for the measurement of heights is not obvious. At
rod separations near to transition points between menisci it is sometimes difficult to
know which menisci you are looking at. Figures 11.14 and 11.15 show examples of these ‘
profiles, and the points selected for measurement of heights, as viewed through the glass /
plate when ¢ is increased.
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Figure 11.14 - Schematic illustration of some of the capillary profiles seen through the glass plate with
the three-rods-and plate, symmetrically arranged system. The points at which heights of rise were
measured are indicated by the dotted lines.
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Figure 11.14 shows profiles seen with symmetrically arranged rods. At low ¢ the
type A TM, akin to that shown by the two rods and a plate ammangement, gives a well
defined point for measurement. At some small separations it was possible to see a
meniscus behind the rype A TM (Fig. 11.14 (ii)), but £the time of measurement it was
impossible to tell which from observation alone. These turned out to be fype D menisci
and measurements were taken a the lowest visible point. TMs of rype C and B were not

seen. & - 7
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Figure 11.15 - Schematic illustration of some of the capillary profiles seen through the plate with

the three-rods-and plate, non-symmetrically arranged system. The points at which heights of rise were
. measured are indicated by the dotted lines.

Taking readings from type E TMs is simple for most of the separations for which
it exists (Figs 11.14 (iii) and (iv)). As ¢ increases the profile becomes progressively
"flatter", the TM more cubic, until at higher ¢ values there arises a slight "hump" in the
centre of the profile (Fig 11.14 (v}). This was seen at values of ¢ significantly less than
would be associated with the formation of a type H TAM and so the height of the lowest
part of the TM was used to determine curvature. At high ¢ all menisci give discernible
points for measurement. '

Wim@mngw rods there are additional problems arising from
the formation of the #ype G_TM=Figure 11.15 shows the changes in profile from
intermediate to very high separations. The type E TM initially becomes more asymmetric
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(Fig 11.15 (1)), before a slight kink, like a point of inflection, is seen near the smaller
rod (Fig 11.15 (ii)). The position of the "kink” is difficult to ascertain exactly, but a
measurement could usually be taken. The "kink" appears at ¢ values less than those
associated with the development of the rype G TM. Further increases in ¢ flatten out the
region near the "kink" (Fig. 11.15 (iii)) until a slight "hump" appears (Fig. 11.15 (iv))
before the type H TAM is properly formed (Fig. 11.15 (v)).

11.4 RESULTS

Over the following pages the theoretical and experimental results for each rod
arrangement are given and examined. All experimental curvatures were obtained from
observed heights of rise using the simplified comparative method equation 7.7. No
corrections were added for gravity distortion. Appendix I shows the detailed
experimental results.

11.4.1 Three equal rods

Figure 11.16 shows the MS-P generated curves of normalised meniscus curvature,
R/r, in terms of the half angle, ¢. The half angie varies between a minimum of 30°, the
rods mutually touching, to a maximum of 90°, all three rods in a row. The arrangement
behaves as either one or two pores depending on the rod separation. For the majority of
¢ values (from about 36.5° to 84°) the arrangement behaves as a single pore bound by
three rods and a plate and exhibits a rype £ TM with a curvature between 3 and 5. The
experimentally determined curvatures for intermediate ¢ are also shownon Figure 11.16
and are generally in excellent agreement with the theory.

At high ¢, Figure 11.17, the arrangement behaves as two identical mirror image
pores of two rods and a plate, Only the types F and G TMs are seen. It is not possible -
for a rype H TM (two DCAMs and one WOAM) to form with equal rods. When the
curvature of the TAM, sype G, equals that of one type F TM it will also equal that of
the other resulting in a transition directly to the fype E TM. The experimental results for
this region are shown on the expanded scale of Figure 11.17 so that they may be better
compared with the theory. The agreement is again excellent.

At low ¢ the arrangement also behaves as two separate pores, but now all four
possible TM types are exhibited depending on the exact value of ¢. However in practice,
it was only possible to measure the curvature of the type A TM and a few points for the
type D TM. At these small values of ¢ the gap between the side rods is too small to allow
the other TMs to be seen properly. Figure 11.18 shows the experimental results on an
expanded scale.
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Figure 11.16 - Graph showing the experimentally determined curvatures at intermediate ¢ compared
with the MS-P prcdicggnns for the case of three equal rods and a plate. -
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Figure 11.17 - Graph showing the comparison of experimental and theoretical curvatures for the
mree-equa]-rods-and-a-pﬁagsystem on an expanded scale at high ¢.




ﬂ[m

CURVATURE

12

231

\‘ ’vvv
\\
\
‘\
. \
Ay \
\
N ~
\\ \\
\\ \\\\
\\\ ‘\‘-
\\ * \\\
\\ “a
\\\
A
THREE EQUAL RODS AND {771
r
A PLATE
1 1 ] | ] | 1 ] ]
30 31 32 33 34 38 36 37 38
ANGLE ¢

Figure 11.18 - Graph showing the comparison of experimental and theoretical curvatures for the

three-equal-rods-and-a-plate system on an expanded scale at low Q.
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The Figures show that the experimental results agree very well with the theory.
The points show errors either side of their theoretical values. These errors are mostly
within 1%, notable exceptions being the results for the type H TM, two WOAMs, where
the rate of change of curvature with ¢ is greatest.

It was whilst these experiments were being performed that the idea of using the
three rod arrangement as a standard arose. For a relatively large range of ¢ the curvature
of the type E TM hardly changes. (For 52° < ¢ < 60°, 2.95 <R/r £3.00). Errors in the
manufacture of the pore construction components and the measurement of ¢ will have
a very small effect on the resulting curvature making the arrangement a suitable standard
(see chapter 8)

11.4.2 Unequal rods symmetrically arranged

With the centre rod replaced by a rod of different size the complexity of the system
isincreased and different relationships between curvature and ¢ result. Two arrangements
were investigated, one with the centre rod twice the size and the other with the centre
rod half the size of the side rods.

a)R, =1/2R, =R,

Figure 11.19 shows both the theoretical and experiméntal results for this
arrangement. The half angle, ¢, varies between a minimum of about 19.5° to a maximum
of 70.5°. The overall appearance of the theoretical curves change little from those for
equal rods but the relative proportion of ¢ values for which types A, B, C and D TMs
exist, is smaller and that where #ypes F and G are seen, significantly greater. It was in
this latter area in which the investigation centred. It was thought that the larger middle
- rod would particularly benefit readings on the type G TAM and this was boumne out in
practice. Experimental results are mostly within 1% of their theoretical values, all within
2%.
b)R,=2R,=R,

With the centre rod now half the size of the side rods the curves shown by Figure
11.20 are found. The minimum value of ¢ is 41.8° and its maximum 109.5°. It is now
the region for which types A, B, C and D TMs exist that is the most fully developed area
of the graph. It was hoped that the larger gaps obtainable between the side rods (rod-rod
separation) when these menisci are present would facilitate better observation of the
rearmost menisci. The experiments did not prove successful in this respect. The greater
rod-plate separations resulted in increased difficulties in illuminating the back menisci
and poorer, not better visibility.
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Figure 11.19 - Graph showing the comparison of experimental and theoretical curvatures for the case
of three unequal rods, symmetrically arranged (R, =172 R;=R,)
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The assembly of cells at high ¢ was not possible with the existing cell designs. For

¢ > 90" the centre rod is no longer held by the larger side rods and falls against the plate.
The region for which types F and G are formed is, in any case, not well developed and
would further increase the complexity of experiments at high ¢. The comparatively few
measurements that were obtained showed good agreement with theory, almost all within
+1%.

11.4.3 Unequal rods non-symmetrically arranged

In this arrangement it is one of the side rods that is of a different size to the other
two equal rods. The arrangement is by far the most interesting example of the three rod
systems studied as it shows the full range of behaviour and all eight TMs are exhibited.

Only the arrangement for which R, = R, = 2R, was investigated. Now, with the
three rods all in a row, the two separate pores hold menisci with different curvatures. As
the separation is decreased there are two stages to the behaviour before the two pores
become one. First the two back-to-back WOAM:s give rise to a rype H TAM between
the two type F TMs. The second stage occurs when the curvature of the TAM falls below
that of the rype. F TM in the smaller of the two pores. A type G TM, comprising two
DCAMs and one WOAM, is now/formcd béfprc reversion to a fype E TM.,

Experimentally the arrangement is of most interest at high rod separations where
five TMs can be observed through the glass plate (a distinct advantage). To have
assembled the rods at low separations would require complex cell designs and not reveal
anything new.

Figure 11.21 shows the experimental results compared to the theoretical
predictions. Referring to the figure, at low ¢ the arrangement behaves as a single pore
exhibiting a type E TM. Athigh ¢ the system behaves as two separate pores each holding
type F TMs and at intermediate values of ¢ the effect of one neighbouring pore on the
other becomes important. :

The curves of Figure 11.21 show a wonderful illustration of the effect of one
two-rod-pore on another. At intermediate separations the curvature is not set by the
two-rods-and-a-plate arrangement, but depends on how the third rod is positioned.

The experimental results show excellent agreement with the theory (mostly within
+ 1%), both in terms of the curvature and in the change in meniscus types. These results
show the power possessed by the MS-P method 1o predict the effects of one pore on
another in addition to its now well proven abilities at predicting curvatures in uniform

pores.
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Figure 11.21 - Graph showing the comparison of experimental and theoretical curvatures for the case
of three unequal rods, non-symmetrically arranged (R, = R, = 2R,). Note tha now a type C TMis -~
formed before the reversion 10 a rype E TM.
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11.4.4 General observations

The results just presented for the various three rod arrangements allexhibitexcellent
agreement with the theory. If the error inherent to the measurement of the half angle, ¢,
is taken into consideration then almost all the data could be made to fit the theoretical
curves. Eventhe points showing the worst error, those for the rype H TM where curvature
changes rapidly with ¢, would come into close agreement with theory. When the fype
H TM was studied in its own right, section 9.3, the agreement with theory was excellent.
The conclusion that the best way to measure an arrangement’s half angle is to measure
the curvature of the meniscus it holds and then compare it with the theory is inescapable!

The general trend of the experimental data is for curvatures to be slightly less than
those predicted by the theory which is consistent with previously discussed dimensional
variations in the pore construction components and distortion of menisci by gravity.

Beyond the use of the comparative method no attempt has been made to correct
the data for gravitational distortion. Application of the Jurin correction would be wholly
inappropriate to many of the menisci formed as they bear no resemblance to the
hemispherical shape assumed in equation 7.8. Estimation of the actual corrections,
required to be applied to each menisci to adjust heights of rise to those corresponcfin g
to average curvatures, would present difficulties unjustified by the magnitude of the
errors. Incidently, for menisci with flatter profiles the heights actually measured will
correspond quite closely to the average curvature when compared with the more spherical
menisci. Hence, errors in these curvatures ansing from gravity will be significantly less.

In section 11.2 it was noted that at higher values of ¢ associated with the type E
TM a small "hump" arose in the middle gap with syrnmetncally arranged rods. This
occurs before the theory predicts a transition to fypes F and G TMs. Shown on Figure
11.22 are the maximum and minimum observed curvatures for a meniscus in this region.
The minimum heights of rise yield curvatures that agree well with predictions for a type
ETM, implying that it is this TM and not types F and G that is seen. However the shape
of the profile suggests that back-to back OAMs exist, if only partially developed. A
possible explanation for this seeming paradoxical situation may be attributed to the
capillary rise method. The method depends on, and suffers from, the changing curvature
of the liquid vapour interface with height above the free liquid surface.

Figure 11.22 also shows a plot of normalised centre rod spacing form the plate,
R,/D, versus the half angle, ¢. The point at which this crosses the curve for the type F
TM (marked X) represents the point at which the two back-to-back OAMs would meet
and so rupture had one of the side rods been removed. The point were this curve crosses
the type E TM curve (marked Y) represents the separation at which a pair of back-to-back
OAMs would rupture had both side rods been removed.
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Figure 11.22 - Graph showing the maximum and minimum observed curvatures in the “hump” region
between TMs of types E and F. Also shown is a plot of normalised centre rod spacing from the plate
versus the half angle.
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Asthe liquid/vépour interface in a capillary is able to alter its curvature depending
on its height, it may be possible for the OAMs to exist at ¢ values greater than X. The
small "hump" probably arises from capillary rise from the flatish surface of the type E

TM. Results show the effect occurs without causing excessive distortion of the remainder
of the surface.
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CHAPTER 12

Principal findings, further work, and conclusions

Over the previous chapters the investigative procedures and experimental results
have been presented and discussed. From the results a general conclusion may be drawn:

The experiments performed show that the curvatures of non-axisymmetric
menisci in uniform tubes can, when gravity effects are small, be predicted by
the MS-P method. ‘

Here, by way of a summary of the preceding chapters, the main findings of the study
are chronicled before suggestions for further work are made and the conclusions of the
work detailed.

12.1 APPLICATION OF THE MS-P THEORY

The study has brought together existing ideas and methods of calculating the
curvature of menisci in tubes of arbitrary, but uniform, cross-section. When arc menisci
do not form the hydraulic radius method may be used, but when AMs exist the MS-P
method must be used if significant errors are not to be introduced. The main problem in
applying the MS-P theory is the determination of exactly where the AMs form.

The MS-P equation (eq. 6.12) may be derived via consideration of the energies or
forces involved or directly from the Gauss equation of capillarity. The theory is exact
only for menisci of constant mean curvature, as the respective derivations assume. It
may be necessary, as with the three rod pores or if the AM arrangement is uncertain, to
calculate the meniscus curvature for several possible configurations and assume that the
actual curvature adopted will be the one with the lowest curvature.

Theeffect of changing wettability ina system of fixed geometry has been discussed.
In these cases there can be a contact angle at which the AMs cease to exist, and this must
be reflected in the analysis. The effect was illustrated by the analysis of the n-sided
polygonal tubes which have particular contact angles at which the arc menisci disappear
(section 6.4.1.2). In principle, the MS-P theory may be applied to estimate the meniscus
curvature of any particular pore geometry and at any particular contact angle, the
limitation being the tractability of the resulting equations. It may be applied to menisci
having either open or closed gapillary rise profiles.
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In this study a standardised method was developed for the application of the theory
to arbitrary-sectioned uniform tubes. The method’s basis is the division of the pore
cross-section into a number of simple geometric regions, each having a perimeter
bordering the section of the particular terminal meniscus, and usually an area and angle.
The division into such regions enables simpler calculation of the effective area to
perimeter ratio. It also has the advantage that in pore shapes where more that one stable
TM can exist the expressions for the angle, area and perimeter of particular regions may
be re-used as required.

A standard computational routine was developed in conjunction with the above
application method that enables re-use en-block of major procedures. The relevant
equations forregion areas and perimeters of any TM need only be inserted into an iteration
program based on a successive bisection and interpolation technique. With only minor
adjustments of input and output procedures sets of solutions for curvature in terms of
either a geometric or wetting variable are given.

The tubes investigated are all made up of simple geometric components. Solving
the equations for the radius of curvature when the contact angle is zeéro was relatively
straightforward, only one numerical iteration is required. However, even with the simple
geometrical units the analysis can become quite involved, particularly when the contact
angle is also a variable. With the two-equal-rods-and-plate arrangement under mixed
wetting conditions twoiterations were required. It must be expected that when the method
is applied to more irregular shapes more powerful computing techniques than those
employed here will be needed in order that the resulting multiple iterations can be
performed speedily.

12.2 EXPERIMENTAL APPARATUS AND PROCEDURES

The apparatus utilised for the experiments had evolved during investigations
conducted before this study by Mason and co-workers. However during the course of
the experiments some further development and several modifications to the apparatus
and procedures were required. These have significantly contributed to the increased
accuracy of the results presented here.

a) The new Gaertner cathetometer (section 7.2.3) undoubtedly improved the
ease and the accuracy of the capillary rise measurements compared to those
taken with the older instument.

b) The better tolerance of the needle rollers provides an advantage over the
HSS drill blanks, significantly reducing the dimensional errors in the
constructed pores. However, drill blanks are still required for their extensive
size range and greater length, particularly with the smaller rod sizes.
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¢) Developments needed to be made in the area of cell design to enable the
observation of curvatures of menisci in awkward arrangements. Of particular
advantage was the practice of clamping together the pore construction
components. The use of the clamping technique contributed to the reduction
in dimensional errors and represents a significant i—provement on the
"precisely” machined channels previously employed.

d) A new procedure was developed for experiments using partially and mixed
wetting conditions in order that due account could be mzde of contact angle
hysteresis between advancing and receding menisci.

12.3 STANDARD CONFIGURATIONS AND THE FULL COMPARATIVE
METHOD

In chapter 8 the experiments performed to determine the curvamres in selected
standard configurations were reported. A repeat of Mason & Morrow’s (1984a)
experiments using the full comparative method with the wo-equal-rods-and-plate
arrangement provided an improved value for the normalised curvature, the error from
the predicted curvature rising from - 1.3% to only - 0.4%. A further set of experiments
investigated the potential use of the three-rods-and-a-plate system as a standard; with
advantage being taken of particular rod arrangements where the MS-P theory predicts
* acurvature that is virtually independent of the geometry. Uncorrected results from the
full comparative method were not so encouraging, giving a error of + 1.3% from the
predicted value. However the results were distorted by the use of capillary tubes giving
heights of rise in a different range to the assembled pores.

Using the results obtained from these standard configuratons a detailed account
was made of the likely experimental errors - principally the opposing effects arising
from gravitational distortion of menisci and dimensional variadons in pore geometry.
The near-hemispherical shape of the menisci in both standard configurations enabled an
approximate application of the Jurin correction for gravity distortion. This led to
improved estimates of the meniscus curvatures; errors form the predicted values were
only - 0.3% for both systems. The Jurin correction seemiagly giving an excellent
correction for the different levels of distortion in the rod pores and cylindrical tubes
when heights of nise are dissimilar. Its validity was confirmed by its agreement with a
calculated value for the height of rise in the reservoir indicator cell.

Furthermore, it has been shown that the Jurin correction can provide a satisfactory
correction for gravity distortion in cylindrical tubes for heighzs of rise down to as little
as 3 mm. This result, if also applicable to the assembled pores, implies that both
comparative methods may be used for heights of rise greater than 3mm and significantly
enlarges the "window of opportunity" in the scale of the apparatus that enables the
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effective use of capillary rise methods. Some further experimental work is required to
show that these results for the tubes are approximately correct for the menisci in the rod
assemblies. The work with the Jurin correction also produced an alternative relationship
for the calculation of observed curvatures measured with the simplified comparative
method. This expression is only applicable in cases where menisci are near-hemispherical
and when heights of rise are within the validated range of 7 to 25 mm.

A rough quantitative account was also made of the effect on the observed height
of rise, of the slope of the liquid wedges which are held behind arc menisci. The wedges
slope owing to the direct relationship between curvature and height that is the basis of
capillary rise methods. The effects were found to be small across the height ranges
investigated. Without application of corrections the validity of the comparative method
was confirmed for heights of rise in the range 7 to 25 mm with the optimum range, where
the opposing effects of gravity and dimensional variation give minimum errors, is
between 10 and 15mm.

When combined with a quantitative investigation into dimensional errors the above
analyses allow the conclusion that differences between observed and predicted
curvatures can be accounted for by the experimental error. Either standard should afford
adequate comparison for the simplified method provided the rods are correctly
assembled. Small dimensional errors incurred by incorrect assembly and/or rod
tolerances will have a significantly larger effect on the curvature in the two rod system,
thereby favouring the use of the three rod standard. However, the latter system requires
much smaller rods to produce a pore giving the same height of rise as a two-rod pore,
inevitably leading to relatively larger dimensional variations as thesc increase with
decreasing. pore size.

Overall the full comparative method experiments provided the information
necessary to optimise the experimental procedures and it is difficult to 1mag1ne a more
‘exact method utilizing capillary rise.

12.4 INVESTIGATIONS WITH THE SIMPLIFIED COMPARATIVE METHOD
12.4.1 Perfectly wetting conditions

In chapter 9 the results of experiments conducted in four different pore shapes with
a perfectly wetting liquid were compared with the theoretical predictions of meniscus
behaviour. Results, obtained with the simplified comparative method were generally in
excellent agreement with the theory and all within the determined experimental error.
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a) Rectangular tubes

The theory for this geometry can be obtained analytically. Experiments proved
much more difficult. The other pore shapes are made up from rods where the pore size
is much smaller than the rod size. When a rectangular pore is made it is difficult to
fabricate small square corners to the same degree of accuracy as the rod pores. Eventually
a cell design based upon a stack of precisely machined plates was adopted. Reasonably
successful results were found over a range of tube sizes and aspect ratios. Almost all the
observed curvatures fell within 4% of the predicted values.

b) One rod away from a plate

The meniscus formed in the space in-between a rod and plate is anticlastic and has
an open capillary profile. The meniscus behaviour is however relatively straightforward
and no particular problems were encountered with the theory or experiments. Measured
curvatures are in good agreement with the theory, most within 1% and all within 2.5%.
These results represent a significant improvement over the limited (and secondary)
observations made by Mason & Morrow (1987) who found errors as great as 15%.
¢) One rod in a corner -

Previous studies had involved rods in right-angled and acute corners. That work
was confirmed and extended to cover the general angle. Experiments showed less than
1% deviation from the theory once a correction for gravitational distortion was added
to the measured heights of rise (a significant improvement in accuracy).

d) Two unequal rods and a plate

The meniscus behaviour in this arrangement is again relatively straightforward,
although application of the theory is more involved. Results agree excellently with the
theory - generally within 1% of predicted curvatures. This arrangement was selected as
the basis for a short paper to demonstrate the use of the MS-P method which was presented
at the [UPAC conference on the characterisation of porous solids (Mason, Morrow &
Walsh 1988 - see Appendix A). '

12.4.2 Non-zero contact angle

For a limited number of cases the effect of contact angle variation was studied to
determine whether the MS-P method is still accurate (see chapter 10). The theory
becomes much harder to apply for non-zero contact angle; in some cases a second
iteration being required for solution. More problematic however was the irreproducibility
of contact angle which made the experiments much less precise than those with zero
contact angle. In addition the use of less accurate PTFE components meant that pore
geometry was not as precisely known.
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a) One rod away from a plate

The capillary behaviour of the meniscus in the varying space between a rod and a
plate when the contact angle of the liquid with the solid is also varied provides an insight
into the complex behaviour that can be expected with mixed wettability systems. The
geometry is straightforward, but the behaviour produced is far from simple.

The investigation of the system under perfectly wetting conditions had shown that
the meniscus curvature between the rod and the plate is primarily determined by the size
of the gap, gradually increasing to approach that between two parallel plates as the gap
is decreased. As the contact angle is increased from zero at a given spacing the curvature
decreases until at 90° the curvature is zero. There is also a region where the two WOAMs
meet back-to-back and no stable terminal meniscus is possible. The interactions between
the above effects were displayed on a three dimensional diagram (Fig. 10.2)

Experiments were performed using a homologus series of liquids for both
advancing and receding contact angles in pores of uniform wettability. In so far as the
experiments were precise enough the theory was confirmed by the experiments.

b) Two equal rods and a plate

This arrangement has the advantage that it can be assembled with mixed wenability
by making either or both the rods or plate partially wetted. The totally partially wetted
system was the subject of an early investigation by Mason, Nguyen & Morrow (1983)
which originally gave rise to this present work. Application of the theory when the contact
angles on the three surfaces are all different is very involved. It predicts that making the
rods partially wetted does not make as much difference as making the plate partdally
wetted. A consequence of the wetted perimeter of the plate being larger than that of the
rods. )

Experiments were performed on three arrangements, all with a partially wetted
plate. The instances where both, one or neither of the rods are partially wetted were
investigated. The data obtained was again much less precise than that for the perfectly
wetted system. Results for the totally partially wetted system showed a slight
improvement over those of Mason et al.’s study.

Perhaps more important was the confirmation of the theory in the mixed wetability
systems. As explained in section 3.5.1 surface heterogeneity, and hence mixed
wettability, is almost the norm for oil bearing rocks. The presence of individual rock
grains in a pore structure that may or may not be wetted by the oil makes the capillary
behaviour very curious. There is currently a large interest in these mixed wetnability
rocks (see Anderson 1987a) and the results presented here may shed some light on the
oil behaviour and could contribute significant advances to enhanced oil recovery
techniques.
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12.4.3 Investigations with neighbours

As described in chapter 11 the space enclosed by three parallel rods and a plate
gives rise to 2 complex family of interacting terminal menisci as the cell half angle is
varied. Depending on the rod geometry the arrangement may yield two separated pores,
two interconnected pores or a single pore. When the two pores are interconnected the
effect of the meniscus behaviour in one neighbouring pore on the behaviour in the other
becomes important.

The theory applied to this arrangement is involved, but yields the curvatures of the
eight possible terminal menisci. Determination of which type of TM exists in the
particular geometry was effected with the minimum energy criterion. The particular half
angles where one menisci gives way to another can be determined with the theory.

Experiments, covering the entire range of behaviour, were performed on four
systems; three equal rods, two systems of unequal rods symmetrically arranged and a
system of non-symmetrically arranged unequal rods. All observed curvatures were for
zero contact angle. That the predictions of the MS-P theory have been so closely
confimmed by experiment (mostly to within 1%}, both in terms of the meniscus curvatures
and for the transitions from one type of TM to another, is indicative of the true power
and exactness of the theory and represents the finest achievement, to date, of the MS-P
method.

Itis expected that the properties of these model pores will be able to illuminate the
behaviour of adjacent pores in a porous medium undergoing drainage or desorption. For
example, at certain half angles the unequal rods, non-symmetrical arrangement gives
rise to the type H TM. The curvature of this TM in the interconnected pores is not set
by the geometry of a particular two-rods-and-plate arrangement, but depends on how
the third rod is positioned. Extended to a porous material this means that a particular
geometry cannot be unambiguously deduced from a capillary pressure or meniscus
curvature measurement. This result has obvious bearing on pore sizing methods such as
mercury porosimetry, thermoporometry and Kelvin analysis.

12.5 FURTHER WORK

The work reported in this thesis does not complete the validation of the MS-P
method, but rather serves as a comprehensive introduction to it. There are an almost
limitless number of pore shapes to which the method might be applied, but for future
investigatons it would be prudent to keep potential applications in mind.
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A further step is the application of the method to model uniform pores that are
more like real systems. Some work is now proceeding in this area. During the course of
this study Mason & Morrow (1989) have applied the theory to tnangular poresresembling
real pores observed in some rocks. Some success was noted as regards the modelling of
sorne aspects of capillary pressure hysteresis (see section 3.5.2). At the time of writing
an undergraduate project supervised by Mason is investigating a two rod arrangement
where the rods have had precise flats ground on (such that the rod sections are circle
segments). These model pores resemble some consolidated oil reservoir rocks where
grains are dissolved away at points of contact. Initial results are promising. If the work
isextended to mixed wettability, situations will arise where the arc menisci in the corners
will not necessarily exist.

- It would also be desirable to apply the flats and/or mixed wettability to the three
rod arrangement. These systems could be used as models for hysteresis in drainage and
imbibition capillary pressure. They would possess some realistic properties;
neighbouring pore effects, an irreducible wetting phase saturation, and with certain
geometries the configurations of a receding (draining) meniscus will differ (having a
higher curvature) from that of the advancing (imbibing) meniscus. Furthermore, if the
above hysteresis models were combined with percolation theory (section 3.5.3) network
effects could be incorporated; pore connectivity and pore blocking effects. Validatory
experiments could be performed on small scale networked models in the manner of
Lenormand (1983). A truly realistic and versatile model could result.

Unfortunately there is probably a limit to the complexity of uniform pore shapes
that can be conveniently analysed with the method. Even with some relatively
straightforward configurations studied here under variable wetting conditions (such as
the two rod system) the theory becomes quite complex. It would be advantageous to
investigate more complicated shapes and ascertain these limits.

12.6 CONCLUSIONS

1) A general routine has been developed for the application of the MS-P theory
based on the division of pore sections into simple geometric regions. This technique
has proved successful in the analysis of the behaviour of even quite comialex
capillary surfaces in non-axisymmetric uniform tubes. '

2) Previously developed experimental procedures for the validation of the
MS-P theory have been modified and extended. Investigations with either the full
or simplified comparative method have yielded results of improved accuracy in
excellent agreement with predictions.
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5)
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A particular three rod and plate arrangement has been investigated and is
proposed as a new general standard, advantage being taken of a meniscus with a
curvature that is virtually independent of the particular geometry.

The experiments reported in this study lead to the conclusion that the
behaviour of non-axisymmetric menisci in uniform tubes can, when gravitational
effects are small, be predicted by the MS-P method. This statement applies to both
open and closed capillary profiles in tubes of perfect, partial or mixed wettability.

The results presented indicate that the MS-P method can enjoy a wider usage
in research and development conceming the measurement of liquid properties;
interfacial tension, contact angle and solderability; the behaviour of fluids in
partially saturated porous media; characterisation methods and in the modeling of
capillary pressure hysteresis, two phase fluid flow and enhanced oil recovery
operations. These are in addition to a now proven ability to predict interfacial
configurations of the particular class of capillary surfaces that are bounded by
uniform non-axisymmetric tubes.
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NOMENCLATURE

English

A interfacial area

a capillary constant a® = 20/pg (mm?)

A, effective area (cross-sectional) of a meniscus

A area of region i in the MS-P analysis

Ay area of solid/liquid interface

Age adhesion tension

A; area of a sector in the MS-P analysis

B dimensionless Bond number = o7 %y/5

b radius of curvature at apex of drop (c.f. eq. 2.52)

C normalised meniscus curvature

Ce, normalised curvature of menisci in ith-rod standard arrangement (c.f. chap 8)
C,. reduced normalised curvature of menisci in irh-rod standard arrangement (c.f. chap 8)
C normalised curvamre in a standard cell

C, normalised curvature of a meniscus in a cylindrical capillary tube (= 2)

D rod-plate spacing {c.f. chap. 11)

d half depth of rectangular duct (c.f. sect. 9.2), half rod-plate spacing (c.f, sect. 9.3)
F Free (available) energy

F(g) function of aspect ratio (c.f. sect. 9.2)

F(r) functional relationship for radius of curvature

fr function of radius of curvature

F(RR) function describing variation of r with parameter RR

G Gibbs free energy

g acceleration due to gravity

Gy, gradient of rod line (¢ f. chap. §)

G, gradient of tube line (¢ f. chap. 8)

Gr, gradient of tube line with heights of rise corrected for gravity distortion (c.f. chap. 8)
H enthalpy

Hy contact angle hysteresis =6, -6,

h height of rise from a planar liquid surface 1o the bottom of a meniscus

Jurin correction to height of rise

&-?‘




h, extrapolated height of rise in reservoir indicator cell (¢.f. chap. 8)

h, extrapolated height of rise in reservoir indicator cell corrected for gravity distortion (¢ f. chap.
8) '

by, height of rise in ith-rod standard (¢ f. chap. 8)

Ah, height of rise in standard cell

Ah, height of rise in test cell

J meniscus curvature = (Ur, +1ir)

#(S,) Leveret j-function (c.f. eq. 3.13)

k permeability

L lengths in MS-P analysis

! length

N, dimensionless Leverett number (¢ f. eq. 3.14)
n unit normal vector

n, number of moles of the ith component

P pressure (c.f. chap. 2} A
P perimeter (not chap. 2)

P° satrated vapour pressure

P, capillary pressure

P; breakthrough pressure

P, effective perimeter of a meniscus

P, P liquid and solid perimeters

Pyw, Py  non-wetted and wetted perimeters

P_,P,  non-wetting and wetting phase pressures

C er recoverable heat =TdS§

R radius ]

R width of rectangular tube (c.f. sect. 9.2)

R, hydraulic radius of tube = A/pP

R, rod radius in ith-rod standard (c.f. chap. 8)

R, thermoporometric radius

R, pore radius

R,.R, standard and test rod radii

Ry tube radius

R, equivalent tube radius (c.f. chap. 8)

RR variable parameter for computational interpolation in MS-P calculations
r mean radius of curvature ‘
rn,r, principle radii of curvamre

r Kelvin radius




= S <

S

xy.z

Greek

D T MR ™R

@

-

=~

.mlpﬂcg

rF o

& a9 g o H

roughness factor

entropy
fractional saturation of wetting fluid

temperature
critical temperature of adsorbate
adsorbed film thickness

internal energy

volume

bulk volume cf a porous sample

volume of wetting phase

partial molar volume of the ith component

work
work of adhesion

distances along axes

angles in MS-P analysis

comer angle of polygon (c.f. chap. 6)

angle of slope of liquid wedges (c.f. chap. 8)
angles in MS-P analysis

aspect ratio of rectangular tube =d/R (c.f. sect 9.2)
contact angle

advancing and receding contact angles
apparent contact angle

composite surface contact angle

contact angle on a single fibre

intrinsic contact angle

contact angle obscrved at a rough surface
chemical potential of the ith component
film pressure

density

interfacial tension

height (c.f. chap. 2)

comner angle (¢ f. sect. 9.4), half angle of three rod arrangements (¢.f. chap. 11)
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APPENDIX A

Two unequal rods contacting a plate

The following paper was presented at a poster session at the Intemnational Union
of Pure and Applied Chemistry conference on the characterisation of porous solids. The
particular geometry has no particularly special features and the motive for presenting
the paper was to make workers in the field of porous materials more aware of the power
of the MS-P method.

The paper gives an idea of the geometric analysis required to use the MS-P method
and the experimental results confirm the analysis.
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CAPILLARY PROPERTIES OF PORES FORMED BY TWO UNEQUAL
PARALLEL RODS AND A PLATE

Geoffrey Meson, Norman R. Morrow (*) and Tip Walsh.

Dept. Chemical Endineering, Loughborough University of Technology,
Loughborough, Leicesterchire, England.

* New Mexico Petroleum Recovery Research Centre, New Mexico
Institute of Mining and Technology, Socorro,
New Mexico 87801, 0.S.A.

It is @ometimes necessary to calculate the curvature of
liquid menisci in non-axisymmetric pores. The method attributable
to Mayer and Stowe - Princem can often be used sucessfully. The
meniscus curvature of a wetting liquid in the spare between two
unequal contacting rods and a plate is calculated by this method.
Experiments with accurately assembled model systems verify the
theoretical predictions for rod radius ratios of up to 7:1.

INTRODUCTION

Liguid interfaces in porous wmaterisls produce a
significant pressure difference. This pressure can be measured and
used to determine pore sizes. If the interfacial temsion is known,
the key step in the process is obtaining the curvature of the
meniscus in an aversge pore shape as the meniscus curvature
depends upon the shape of the pore as well as on its size.
Frequently it is assumed that the pore has a circular
cross-section which . has a normalised curvature of two. In the pore
space of a sphere packing however, the pores are nearer triangular
in shape amd this affects their normalised curvature. Pores in a
porous material are also converging-diverging and it is the
pressure required to force the meniscus through the neck of the
pore that is usually measured in some way.

There is no exact analysis of meniscus curvature in
non-exisymmetric converging—diverging geometries. There is however
an analysis of penisci in uniform non-axisymmetric geometries
which appraximates to the comstrictions and widenings in an actual
pore space. The technique is known as the Mayer and Stowe-Princen
{ M5-P ) method. It was put forward by Mayer and Stowe { 1 } and
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The théory will be demonstrated
and then experimentally velidated using the case of a

later developed by Princen { 2 }.
pore forwmed

by two unequal parallel rods snd a flat plate.

FUNDAMENTALS

the

of gravitational effects,'form part

In a siwple cylindrical capillary tube liquid

surface will, in the absence
of a sphere. This surface has constant
the

boundary with a particulsr contact angle but,

mean curvature and gives

mimimum surface energy. The 1liquid usually mweets a solid

in order to keep the

analysis simple, only perfectly wetting systems are considered
here.

Liquid menisci in pores of complex configurations are
denerally complex themselves. In describing the basic form of

these menisci the terms arc menisci and terminal penisci are used.
Arc menisci occur in the wedge 1like
two rods in contact { Fig. 1a ), by two flat plates contacting at
an angle ( Fig. 1b ) or by two contacting rods against a plate
{ Fig. 1lc ). in wmathematical terms,
long and of constant volume per unit length. The terminal meniscus

spaces or corners formed by

Arc menisci are, infinitely

.

. ' 1 D
: I s
' A pihy
1 IR
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! |
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(a) [{:)] {¢)
Fig. 1. { a ) Arc meniscus formation between two contacting
rods. {( b ) Arc meniscus formation in the angle between two

flat plates. ( ¢ ) Arc menisci end the terminal meniscus in

the space between two contacting rods and a plate.
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spans the tubular pore space unoccupied by the liquid wedges. With
a cylindrical capillary tube there are no arc mpenisci, so a
terminal meniscus will occupy the entire tube cross-section. With
a pore formed by two rods against a plate { Fig. 1lc ) the terminal
meniscus merges into three arc menisci. As pentioned earlier, the
arc and terminal menisci are surfaces of coostant mean curvature
in the absence of gravitational effects { so they must have
identical curvatures ). Thus the curvature of the arc menisci, and
hence the total curveture, is set by the terminal meniscus.

The basis of the MS-P wmethod is the equating of the
curvature of the arc menisci to the curvature of the terminal
meniscus. Put together with a virtual work { or force balance )

equation the curvature of the terminal meniscus can be found.
THEORY
The objective of the theory is to find the curvature of

the terminal meniscus. Consider the meniscus formed between two
unequal rods and a flat plate ( Fig 2 ).

A
Z
E

Fig. 2. Cross-section of a uniform tube formed by two raods
and a plate with a perfectly wettingd 1liquid, it contains
three arc menisci of radius r, in the corners Z, Z' and Z2°°.
The shaded area represents the terminal memicus.

Let area ABCDEF be A, and perimeter ABCDEF be P. A virtual work
balance for a displacement dx alongd the tube axis gives

R Adx = oPdx (1)

where P is the capillary pressure, & is the interfacial
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2./]R,

/AREA 4 AREA 9

AREA 5 AREAI0 .
H A/ z

AREA 4 AREA 9

i~ Rusin a,—-g[‘“‘“ S ARERINY +—Rysin a1 §
r i\
- AREA 8 I-cosa,)
R(1—-cos a,)# AREA 3 3 ¥ _F!,(

! AREA 2 AREA 7 ‘
R,

a, Ra

A

L+

Fig. 3. Cross-section of the pore formed by two rods against
a plate showing how expressions for area and perimeter are
gonerated in the curvature calculation. The sections through
the wedge menisci are arcs of circles of the same radius r.
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tension. The curvature C, is given by
C=2R/c (2)
s0 ( 1 ) reduces to
AC=p {( 3)

Normealising the curvature with respect to B, we obtain

A r
RP R, (4
Which is the normalised MAYER AND STOWE - PRINCEN equation.

Both P and A independently depend on r in =a simplg
geometrical manner. The lengths and areas in equation ( 4 ) are
given by arcs of circles or straight lines, and straight forward
but tedious geometry 4gdives the following equations for the
rerimeter and area in terms of the angles a,, @, , g and a, ( see
Fig. 3 ).

ANGLES

a = arccos {{(R=r)* (R, +R)™ (R41)) /2 (R 4R, )R + 1)}

- arcain{(R,-R) /(R + r.)} (5)
a;= arceon{(R-r)/(R, + 1)} (6)
a, = arccos {((nz— r)’+(Rr, +R,) - (R +r)")/! 2(R.+n2)(n¢rr)}

- arcsin{(Re= R,/ (R, +R,)} | € 7)
aq= arccos{(Ra—l’)/(Ra+r)} (8)
PERIMETER

P=FA +« BC + DE + FE + DC + AB

= r{(r—ag) +{r-aJ+ (r-a.-—a,)} +R(z/2-a,-a,)

+R(wr/2~as—a.) + 2/RR; = (R;+r)sinaz~ (R, +r)sin as (9)
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AREA

A = arenZZ’0’0 + A4 + AS + AD + AlO + A12 - Al - A2 - A3 - AB - A7
- AB -All

s (R.+Rz)ﬁ.ﬂz+ r2/2{('ll’-¢z)+G°Sdgl|nﬂz+('lf"'¢4)
+ cos a.tinu4+(r-a.-¢3)} + Rfla{(r-a.-aa)*'c'u daalncz}
=R {1-cosa.) (R +r)sina, - néla{(r-ara.Hcos a.slncu}
-R,{1 ~cos a,) (R, +r)eina, - wz{(nl+r)(nz+r)stn(c.+a,)} { 10)
These simultaneous equations can be solved either
numerically or by graphical solution as in Fig. 4. A graph of

¥y = A/R,P against ¥y = r/R, can be plotted. The intersection of
the line y = r/R, with y = A/R,P gives the value of r/R, which is

0-2-
Mre AR p-R = 0
&
S
&: -
1
S
ON
O r
R
ROD & PLATE SYSTEM
R/R, =2
] LI
0 o 02 03

normalised radius, r/R,

Fig. 4. Example of the graphical solution for R|/r for a
perfectly wetting liquid. The solution is where the y = B, /T
line cuts the y = A/R,P line. This occours at maximum A/B; P.

]
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the solution to the equations. The intersection value of A/R P is
also its waximum possible ( and thus the wmaximum value of r ).
So as might be expected at equilibrium the meniscus has minimum
curvature ( mwmaximum radius of curvature ) for the particular
boundary conditions. This is always true, irrespective of the tube

section.
EXPERIMERT

The experiments to validate the theory principally
involved measuring the heights of capillary rise in capillaries of
constant cross-—-section made up of two rods and a plate. The
apparatus was 8 compromise between using small rods which maximise
capillary rise but leave the geometry affected by dimensional
errors, and large rods which minimise the dimensional errors but
introduce errors because menisci become distorted by gravity.
Previcus work { 3 } had shown thet capillary rise greater than
about 10 mm ( equivalent to a rod diameter less than 10 @mm or
3/8" ) made gravitational effects negligible and that dimensional
errors only became apparent with rod sizes less than about 1 mm
{ 1/32" ).

The apparatus consisted of precisely machined cells or
channels into which ground steel rods were placed such that they
Just touched a glass plate. Four cells were used, the test cell, s
standard c¢ell with two equal contacting rods and a plate ( whose
characteristics were known ) and two reservoir cells, 1/2" square.
All the cells were connected via PIFE +tubing to a main
reservoir containing isococtane, the test liquid for the zero

reservor test standard

Yy

e

< 7

R, Rs
O L/

Fig. 5. Diagram of the various heights which were used in
the analysis of the results.
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contact angle experiments. The reservoir was raised or lowered to
dive appropriate heights in the cells. After the liquid levels had
settled heights of rise were measured with a cathetometer accurate
to 0.01 co.

For any shaped capillaries

hypg = Co/R, ' (11 )
hsp g = C;0/Rg (12 )
Combining ( 11 ) and ( 12 ) gives
by _CRs ( 13 )
hs R, G

So with the characteristics of the standard cell known C /R, can
be found. R, is memsured to give C . The standard cell used twoc
1/16" rods against a plate. A previous study by Mason, Nguyen, and
Morrow { 3 } had determined the normalised curvature of this
system as 6.88+0.02. By conducting the experiments in this way
the effects of atnospbéric coxlitions on interfacial temsion and
density were avoided.

Rod radius ratios from 1 to about 7 were used. The
rods had diameters of ca. 3/64, 1/16, 5/64, 3/32, 1/8, 5/32, 5/16,
/4, and 5/16 inches while their actual diameters were 1.184,
1.585, 1.971, 2.377, 3.167, 3.950, 4.755, 6.342 and 7.932 mn

respectively.
RESULTS

The experimental results are given as a graph of
meniscus curvature vs rod radius ratio ( Fig. 6 ). All the results
show excellent agreement with .the theoretical curve, most to
within 1X, and all within 2%. These errors arise from fabrication
and measurement. The results provide excellent evidence of the
accuracy of the MS-P method. Other studies have shown that the
MS-P wethod works well for pores formed by two equal rods and a
plate with liquids of <finite contact angle { 3 }, s0o long as due
attention is given to contact angle hysteresis. It is relatively
simple to extend the theory to include variatiom of contact angle.
The method bas also been sucessfully applied to rectangular ducts
by Lenormand { 4 }, and rod in a corner systems { 5 }, capillary
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— Theory

114
.

Experiment

NORMALISED CURVATURE

O I 2 3 4 5 6 1
ROD RADIUS RATIO R,/R.

Fig. 6. Graph of normalised curvature against rod ra@ius
ratio for the two rods and plate menisci. The small scatter
of points is caused by dimensional variations in the
machining of the cells.

pore throats formed by spheres { 6 } and various cther rod -
plate systews by Mason et al.

SUMMARY

The MS-P method of calculating meniscus properties was
used to calculate meniscus curvatures in capillaries formed by two

-
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unequal parallel rods and a flat plate. For completely wetting
systems theoretical results were in excellent agreement with

measured values of capillary rise.
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APPENDIX B

Standard configurations

Table B.1 Mercury thread sizes of capillary tubes

Nominal  Weight Weight Weight First Second Length Tube
diameter empty with of point point of radius
mercury  mercury thread mean

w L R
(mm) (2) (g} (8 {(mm) (mm} (mm) (mm)
0.50 3.683 3.901 0.218 13.069 6.232 6.837 0274
3.893 0.210 13.293 6.539 6.754 0.270

3.909 0.226 13.289 6.062 7.227 0.271
0.272
0.60 5.900 6.287 0.387 14.802 5.466 9.336 0.312
6.373 0.473 14,958 3.382 11.576 0310

6.369 0.469 14,211 2.806 11.405 0.311
0.311

0.78 6.734 7.240 0.506 14.451 6676 7.775 0.391
7.198 0464 13.763 6.704 7.059 0.393
6.987 0.253 10.533 6.600 3.933 0.389

0.391
0.80 5.209 5.623 0414 10.704 5.435 5.269 0.430
5.622 0413 10.857 5.613 5.244 0.430

5.655 0446 10.850 5.207 5643 - 0431

0.430
1.20 8.615 10.193 1.578 13.373 2.791 10.582 0.592
10.194 1.579 13379 2.791 10.588 0.592
9.643 1028 9522 2678 6.844 0.594

0.593

R =W/2prL where p=0.13546 g/mm’




Table B.2 Experimental results for the two rod standard. Heights of rise and curvatures are shown both with and without application of the Jurin correction.

o —
Run no. Rod rise Ak, (bold), Ay, {mm) Tube rise Ah, (boid), Ahr, (mm) Linear Regressions Curv.
A
Tube size | 1/16 2 25 3 35 4 5 0.5 0.6 0.78 0.80 120 Rod line Tube line c
R;(imm) | 0791 0999 1249 1498 1.749 1999 2498 | 0272 0311 0391 0430 0593 § Grad. Int. Gl Int, C;
h; (mm) 008 001 0.12 0.14 0.17 (.19 0.24 0.09 0.10 0.13 0.14 0.20 G, ho Gy hy
-t
] 2375 18.68 1496 1237 10.52 9.10 7.13 | 1988 17.28 1368 1237 882 | 1918 048 | 554 051 | 6.93
2383 1878 1508 1251t 1069  9.29 737 | 1997 1738 1381 1251 902 } 1901 -021 548 023 1 693
2. 2378 1870 1496 1238 10,55 9.12 7.14 | 1987 1729 1375 1235 880 | 1920 -047 | 554 052 | 693
2386 1880 1508 1252 1072 931- 738 | 1996 17.39 1388 1249 902 | 19.03 020 | 548 021 | 694
3 2366 18.61 1484 1230 1048 9.02 709 | 1980 1724 1367 1236 878 [ 19.14 -0.52 | 551 -048 | 694
2374 1871 1496 1244 1065 921 733 | 1989 1734 1380 1250 898 | 1897 024 | 546 021 | 695
4 2372 18.72 1491 1235 10.54 9.04 7.0 | 1982 1725 1368 1237 879 1921 052} 552 048 | 6.96
2380 1882 1503 1249 1071 923 734 | 1991 1735 1381 1251 899 | 1904 -024 | 547 -021 | 697
5 2369 1870 1495 1233 1054 9.09 7.10 | 19.80 1727 1366 1232 883 | 19.16 -048 | 551 -046 | 6.96
2377 1880 1507 1247 1071 928 734 | 1989 1737 1379 1246 903 | 1899 -020 | 545 0.19 | 696
Mean 2372 18.68 1492 1235 1052 907 7.11 | 1983 1727 1369 1235 880 | 19.18 -049 | 553 -049 | 694
2380 1878 1504 1251 10,70 9.26 7.35 1992 1737 1382 1249 9.00 19.02 -0.24 547 -0.22 6.95
All 19.18 -(1.49 LR -0.49 6.94
pointy 01 022 1 st 021 ] 698
P A —

C =2G4/Gy, C;=2G, Gy, Ah; = b+ hyy b= a¥(Ah;+0.5)/3 and a*= 5.511 mm?®,




Table B.3 Experimental results for the three rod standard.

Run no. Rodrise Ak, (bold), Ak, (mm) Tuberise Ahy (bold), Ahy, {mm) Linear Regressions Curv.
Tube size 62 56 1/16 2 2.5 3 3.5 0.5 0.6 0.78 0.80 1.20 Rod line Tube line C
R, (mm) | 0480 0588 0791 0999 1249 1498 1749 | 0272 0311 0391 0430 0593 § Grad. Int. Grad, Int. o
B (mm) [ 011 013 018 023 029 035 040 | 009 010 013 014 020 | G, ko Gy ho

1 16.70 13.60 9.94 7.68 6.10 4.86 4.19 1990 17.27 1380 1235 8.80 8330 -0.62 | 5548 -0.52 | 3.003
16.81 13.73 10.12 791 6.39 5.21 4.59 19.99 1738 1393 15.50 9.00 B8.146 -0.16 | 5496 -0.24 2.964

2 16.59 13.57 992 7.64 6.04 4,84 4,14 198¢ 17.24 13.76¢ 1229 8.78 8.302 -0.63 | 5521 -049 { 3.007
16.70 13.70 10.10 1.87 6.33 5.19 4.54 19.89 17.35 13.89 12.44 8.98 8.117 -0.18 5.468 -0.21 2.969

r 3 16.74 13.51 10,01 7.68 6.10 488 4.21 19.92 17.32 13.78 12.33 888 8324 -0.60 5.551 -0.51 2.999
16.85 13.64 10,19 191 6.39 520 4.61 20.01 1743 13.91 12.48 9.05 B.140 -0.15 5498 -0.23 2.961

4 16.64 1347 9.93 7.66 6.07 490 4.19 1990 1732 1368 1238 8.83 8260 -0.56 | 5.549 052 | 297
16.75 1360 10.11 789 636 5.25 4,59 1999 1743 1381 12.53 9.03 8.075 -0.11 5496 -0.24 | 2939

5 16.64 13.60 9.95 7.76 6.08 4.83 4.18 1986 17.28 1372 1236 8.84 8309 -0.60 5.520 -045 | 3.010
16.75 13.73 10.13 7.99 6.37 5.18 4.58 19.95 17.39  13.85 12.51 9.04 8.125 -0.14 5468 -0.18 | 2.972

Mean ‘16.66  13.55 995 7.68 6.08 4.86 4.18 1988 1729 1365 1234 8.82 8304 -0.60 | 5.541 -0.50 | 2.997
16.77 1368 10.13 7.91 6.37 5.21 4.58 1997 1740 1388 1249 9.02 8119 -0.15 | 5488 -0.23 | 2959

All ' 8305 -0.60 | 5538 -0.50 | 2.999
points 8121 -0.15 | 5485 -022 | 2961

C=2G,/Gr, C;=2G;/Gr, Ok =bhi+h, h=a"l(0h+0.5)3 and a’=5.511mm’




APPENDIX C

Rectangular ducts

Table C.1 details the MS-P predictions, the solutions rof the quadratic equation
9.6) shown were used to draw the graph shown in section %.2. Table C.2 shows the
experimental results.

Table C.1 MS-P predictions for the rectangutar tubes covering the range of aspect ratios investigated.

Aspect Ratio Curvature Aspect Ratio Curvature Aspect Ratio Curvature
d/R

d/R Cusr d/R Cuss Cuss
8.00 1.148 4.50 L260 1.50 - 1.748
7.50 1.158 4.00 1.292 1.25 1.891
7.00 1.169 3.50 1.332 1.00 2,102
6.50 1.182 3.00 1.385 0.75 2,450
6.00 1,196 2.50 1.459 0.50 3.137
5.50 1.124 2.00 1.568 0.25 5.166
5.00 1.235 . 175 1.646 0.00 oo

Table C.2 Experimental results for rectangular ducts. Observed curvature: are shown in terms of the tube
aspect ratio and compared 1o the MS-P predictions.

Half Half Aspect Standard Test Expt MS-p %
width depth ratio rise rise curvatore  curvature dev.
d R d/R An, Ah, Com Cus.r
(mm) (mm) (R/d) {mm) {mm) (%)
1.186 0.158  7.483 24.55 20.59 1.153 1.159 0.50
0.815 5.142 21.78 1220 1.229 -0.75
0.610 3.849 2285 1.280 1.303 -1.82
1.186 0.200 5915 24.57 1697 1.201 1.199 +0.17
0.815 4.065 18.14 1.284 1.287 0.25
0.610 3.042 19.08 1350 1.380 2220
1.186 0.270 4.385 24.57 13.01 1.242 1.267 -1.99
0.815 3.013 14.39 1374 1.383 -0.66
0610 2255 15.30 1.461 1.507 316
1.186 0471 2518 24.48 8.52 1.422 1.456 239
03815 1.730 9.61 1.604 1.653 -3.06
(0.578) . 2,773 2.859
0610 1.295 10.77 1.798 1.861 -3.53
: ©.772) 2329 2.409
1.186 1270 0.934 24.50 4,57 2.05% 2.176 -591
. (1.071) 1.917 2.032
0.815 0.642 5.75 2.58% 2.683 -3.79
(1.558) 1.659 1.722
0.610 0.480 691 3.106 3.221 -3.69
(2.083) : 1.492 1.547

Experimental curvatures calculated from C,, = 6.94 (Ah, R/Ah, R,)whereR, = 0.800mm Ah, = Ah, +0.5
and Ah,_= Ak, +0.5




APPENDIX D

One rod away from a plate

Table D.1 MS-P predictions for the single-rod-and-plate arrangement in terms of the

normalised spacing.
Normalised Subtended Effective Effective Curvature
Spacing Angle Area Perimeter
d/R o Ag Py Cyse
(deg.) (rod units?) (rod units)

0.01 489 0.003 0.270 0.8401
0.02 8.04 0.010 0416 0.7956
0.03 10.76 0.021 0.532 0.7637
0.04 13.25 0.034 0.630 0.7380
0.05 1547 0.050 0.717 0.7160
0.07 19.86 0.089 0.866 0.6792
0.10 25.68 0.165 1.051 0.6349
0.15 34.27 0.336 1.293 0.5773
0.20 41.85 0.558 1.483 0.5316
0.25 48.68 0.831 1.639 0.4934
0.30 5495 1.159 1.778 0.4604
0.35 - 6060 1.533 1.891 0.4316
0.40 65.70 1.952 1.981 0.4059
045 70.46 2428 2.066 0.3828
0.50 74 94 2.969 2.149 0.3620
0.55 79.01 3.554 2.216 0.3430
0.60 82.77 4,194 2276 0.3256

Table D.2 Experimental results for the single-rod-and-plate arrangement.

Half Rod Norm. Standard Test Expt. MS-P %
Spacing Radius Spacing Rise Rise Curvature  Curvature Dev.
d R diR M‘ Ah‘ Cu, Cus.p
(mm) (mm) (R/d) ¢ ¢ (%)
(mm) (mm)
0.102 3.175 0.032 16.59 21.35 0.764 0.758 +0.79
0.102 1.992 0.051 16.49 19.93 0.717 0.714 +0.42
0.102 1.468 0.069 16.50 19.1 0687 0.681 +0.87
0.102 1.243 0.082 16.54 18.65 0.669 0.660 +1.35
0.152 1.581 0.096 16.56 12,01 0.646 0.640 +0.93
0.102 0.983 0.103 1641 17.57 0.635 0.631 +0.63
0.102 0.790 0.129 1643 16.67 0.602 0.600 +0.33
0.102 0.591 0.172 1647 1547 0.557 0.556 +0.18
0.152 0.790 0.193 1646 9.96 0.539 0.538 +0.19
0.190 0.790 0.241 16.39 7.37 0.500 0.500 +0.00
0.102 0.391 0.260 1645 13.73 0.495 0.486 +1.82
0.190 0.592 0.322 16.39 6.57 0.446 0447 -0.22
0.152 0.390 0.391 16.41 7.54 0.409 0410 -0.24
0.190 0.395 0.485 1643 5.57 0.377 0.368 +2.39

Experimental curvatures calculated from C,,, = 6.94 (Ah, R/Ah, R,)whereR, = 1,188 mm,Ah,, = Ah, +0.5
and Ah, = Ak, +0.5




APPENDIX E

One rod in a corner

Table E.1 MS-P curvature predictions in terms of the comer angle for the rod-in-a-comer

arrangement.
Corner Angle Curvature Corner Angle Curvature Corner Angle Curvature
b Cusr ¢ Cuss o Cuse
(deg.) (deg.) (deg.)
5 1.478 - 658 5841 125 26.435
10 1.762 70 6.469 130 31.703
15 2.030 75 7.179 135 38.711
20 2.301 80 7.987 140 48.430
25 - 2,583 85 8.914 145 62.144
3 2.881 90 9.986 150 83.602
35 3.200 95 11.235 158 116.883
40 3.544 100 12.705 160 177.750
45 - 3919 105 14.459 165 305.749
50 4.329 110 16.572 170 659.365
55 4,781 115 19.156 180 0o
60 5.282 120 22367

Table E.2 Comer angle measurements by rotating microscope and rod methods, as described

in section 9.4.
Nominal Rotating Standard Rod(s) Standard Mean
Corner Microscope  Deviation Method Deviation Corner
Angle Average Average Angle
(deg.) (deg.) (deg.) (deg.)
3’ 30.23 0.172 30.11 0.084 30.17
90° 90.06 0.153 90.06

110° 109.72 0221 109.95 0.313 109.83




Table E.3 Experimental results for the rod-in-a-comer arangement.

Corper Stand. Stand.  Siwand. Test Test Test Expt. MS-P %
Angle Rod Jurin Rise Rod Jurin Rise Curv.  Curv. Dev,
Radius  Com. Radius  Corr. Mean Stand.
R, h; ah, R, ; Ah, Coe Cus.r Dev.
(deg)  (mm) ! ° (mm) ' ‘
! (mm)  (mm}) © (mm)  (mm}
30.17 1.188 0.11 16.30 0.864 021 8.95 2.872 -0.66
16.35 0.947 022 8.49 2877 049
1640 0995 0.23 8.06 2.864 0.94
16.20 1.049 0.24 793 2.890 -0.00
16.35 1.098 025 7.32 2.876 052
16.20 1.185 027 6.71 2.873 -0.62
16.18 1.298 0.30 6.10 2.863 -0.98
16.20 1.398 0.32 5.69 2.873 062
16.14 1.582 0.37 5.02 2878 0.45
16.17 1.594 037 5.00 2.884 0.24
23875 2.891 0.608
90.06 1.188 0.11 16.20 1.046 0.07 2634 9954 042
16.34 1.578 0.10 1769 9994 -0.00
16.23 3.169 021 3.73 9.972 0.24
9.973 999  0.020 .
109.83  0.792 0.08 24,13 1.586 0.06 28.79 16408 -0.43
24.10 2.370 0.09 1921  16.380 0.60
24.13 3.169 0.12 1427 16250 -1.40
16.346 16479  0.084

C,p =6.958h, R/AK, R, where Ah,_=Ah+h +021 and Ah,_=Ak+h, +0.21




APPENDIX F

Two unequal rods and a plate

Table F.1. MS-P predictions in terms of the rod radius ratios for the
unequal-rods-and-plate arrangement.

Rod Radius Effective Effective Curvature
Ratio Area Perimeter
RJ/R, Ay Py Cuss

(rod units?) (rod units)

11.00 2.059 5.778 2.806
10.50 2.001 5.688 2.842
10.60 1.942 5.595 2.881
9.50 1.881 5.498 2.923
9.00 1.818 5.397 2.968
8.50 1.753 5.291 3.018
8.00 1.686 5.180 3.073
7.50 1.616 5.063 3.132
7.00 1.544 4.940 3.199
6.50 1,469 4.810 3.274
6.00 1.391 4.672 3.358
5.50 1.309 4.524 34558
5.00 1.223 4.365 3.566
4.50 1,134 4,193 3.697
4.00 1.039 4.006 3854
3.50 0.939 3.799 4.046
3.00 0.831 3.568 4.289
2.75 0.775 3.442 4.437
2.50 0.717 3.306 4.609
2.25 0.656 3.159 4812
2.00 0.593 3.000 5.056
L75 0.527 2.826 5.357
1.50 0458 2.632 5.740
1.25 0.386 2415 6.250
1.00 0310 2.164 6970
0.80 0.247 1.932 7.813
0.60 - 0.181 1.658 9.124
0.40 0.114 1.322 11.523
0.20 0.048 0.873 17.832

0.00 =




Table F.2. Experimental results; curvanures are calculated both with and withou: the
application of the Jurin correction (bold figures are the coordunates of points shosn
on the graph in section 9.5).

Radius  Stiand. Test Test Test Expt. MS-P %
Ratio Rise Rod Jurin Rise Curv. Curv. Dev.

Radius  Com.
R/R, Ah, R, h; Ah, Con Cus.p
(R./Ry) i
(mm)  (mm) (mm) (mm) (mm) (%)
10.139  16.59 3.966 - 20.74 2.857 2.870 -0.51
1641 0.09 20.54 2.863 0.24
8.107 16.58 3.171 - 21.98 3.029 3.060 -1.01 -
16.40 0.08 21.77 3.037 -0.75
6.699 16.54 3.966 - 1548 3.237 3.243 -0.19
16.36 0.12 1531 3.241 -0.06
6.061 16.58 2377 - 2399 3306 3.348 -1.27
16.40 0.08 23.78 3.318 -0.88
5.004 16.58 3.966 - 12.60 3518 3.566 -1.33
16.40 0.15 12.46 3.522 -1.21
4.009 16.61 3.167 - 13.77 3.826 3.851 -0.65
{0.249) - 15388 15439
16.43 0.14 13.62 3.830 3.851 -0.54
15354 15439
3.001
(0.333). 16.57 2370 - 15.25 4247 4289 -0.99
- 12745 12871
16.39 0.12 15.08 4252 4289 -0.86
2.500 12.760 12.871
(0.400)
16.55 1.975 - 1643 4582 4609 -0.59
- 11453 11.522
1.998 16.37 0.11 16.25 4588 4.609 -0.46
(0.500) 11470 11.522
16.51 1.583 - 1795 5.033 5.058 -0.50
1L.607 - 10.057 10.106
(0.622) 1633 0.10 17.76 5.043 5.058 -0.29
1007¢ 10.106
1.332 16.51 1.583 - 15.87 5.534 5.565 -0.56
{0.751) - 8892 8943
16.33 0.12 15.70 5.542 5.565 041
8.905 8.943
1.000 '
(1.600) 16.51 1.583 - 14.35 6.035 6.066 -0.51
- 8.040 8.080
16.33 0.13 14.19 6.040 6.066 -0.44
8.045 B8.080
16.51 1.583 - 12.36 6925 6970 -0.64
16,33 0.15 12.22 6.931 6.970 -0.55

Standard rod radius, R, = 1.188 mm and a Jurin correction, &; , of 0.11 mm applies
to heights of rise in the standard. Also:
=6.94Ah, RJAR, R, where Ah, =Ah +050 and Ah_=Ah,+0.50

=6.954h R/Ah R, where Ah, =Ah+#, +0.21 and Ak, =&k +h 4021

an

Cong




APPENDIX G

One rod away from a plate - non-zero contact angle

Generation of the data for the 3-D graph of section 10.2 required extensive use of
the above program, producing over twenty pages of print-out. Hence, the only MS-P
predictions given below are those that have a direct bearing on the experiments, i.e. for
d/R = 0.1. Table G.2 details the experimental results.

Table G.1 MS-P predictions of normalised meniscus curvature in terms of the liquid/solid
contact angle for the case of one rod away from a plate.

Contact Angle Angle . Effective Effective Curvature
Arca Perimeter
] o Ay Py Cusr
(deg.) (deg.) (rod units?) (rod units)

0 25.68 0.1655 1.0510 0.6349

5 24.96 0.1650 1.0475 0.6349
19 23.93 0.1607 1.0195 0.6345
15 22.72 0.1540 0.9748 0.6330
20 21.32 0.1453 09148 0.6298
25 19.80 0.1351 0.8424 0.6236
30 18.20 0.1240 0.7601 0.6130
35 16.55 0.1125 06713 0.5968
40 14.93 0.1011 0.5799 0.5735
45 13.38 0.0904 04900 0.5421
50 11.96 0.0807 0.4050 0.5020
55 10.67 0.0721 0.3270 0.4535
60 9.54 0.0647 0.2571 0.3972
65 8.56 0.0585 0.1955 03342
70 7172 0.0533 0.1414 0.2654
75 6.99 0.0490 0.0940 0.1920
80 6.36 0.0454 0.0522 0.1151
85 5.81 0.0425 0.0151 0.0356
86 5.71 0.0419 0.0082 0.0195
87 5.61 0.0414 0.0017 0.0033
87.13 5.60 0.0414 0.0005 0.0012

WOAMs meet

back-to-back




Table G.2 Experimental results for the partially wetted arrangement of one rod awav from a
plate.

Contact  Standard Test  Comparative Physical MS-P %
Angle Rise Rise Method Properties Curvature Dev.
Curvamre Curvature
(mean) {mean)
(deg.) (mm) {(mm)
Iso.
4.6 12.97 11.27 0.636
T 1291 11.12 0.631
13.08 11.30 0.633
0.633+.003 0.635 -0.31
29.6 13.08 1091 0.611
a 13.10 11.05 0.617
13.12 11.09 0.619
13.10 11.02 0.615 :
0.6151.004 0614 +0.11
n-Do.
228 1598 11.71 0.536 0.541
r 15.95 12.03 0.552 0.556
15.97 11.91 0.545 0.550
15.97 11.93 0.547 0.551
0.545+.009 0.550+.009 0.626 -12.14
479 11.30 0.522
a 10.96 0.506
10.53 0.486
10.55 0.487
0.500+022 0.519 -3.66
n-Tet :
25.1 16.38 12.95 0.579 0.583
r 16.33 13.29 0.597 0.598
16.35 13.39 0.599 0.603
16.36 12.65 0.566 0.569
0.585+.019 0.588+£019 0.623 -5.62
50.2 10.57 0.476
a 10.53 0.474
10.47 0.471
10.43 0.469
0.472+.004 0.500 -5.60
Dioc.
30.8 15.99 13.16 0.602 0.658
r 15.95 13.26 0.608 0.663
16.03 13.38 0.611 0.669
1598 12.82 0.587 0.641

0.602+015 0.658+.017 0.610 -1.30

continued...



Table G.2 concluded.

Contact  Standard Test Comparative Physical MS-P %
Angle Rise Rise Method Properties  Curvature Dev.
Curvature Curvature
(mean) (mean)
e Ah'c Ahzﬁ CB’P‘T CP
(deg.) {mm) {mm)
Dioc.
559 Meanof 10.37 0475 0.518
a above used  10.09 0.462 0.504
10.20 0.467 0.510
10.13 0.464 0.507 :
0.467+.008 0.510+£.021 0.443 +541
Hexa. :
43.3 10.03 7.85 0.572 0.569
r 10.01 7.61 0.557 0.552
10.05 7.7 0.568 0.559
10.12 7.67 0.555 0.556
0.563£.009 0.559+.017 0.553 +1.08
68.4 4.13 0.299
a 428 0.310
430 0312
422 0.306
0.307+.008 0.288 +6.63
o-Br.
58.1 1361 8.06 0.450 0.429
[ 13.08 791 0443 0421
13.21 8.26 0.458 0.439
13.11 798 0446 0.425
0449+:009  0.428+.011 0419 +2.15
83.2 321 0.171
a 3.04 0.162
3.31 0.176
293 0.156
0.166+.010 0.064 +2.58

Cexpr = 6.94Ah, R /AR, R, and C, = 2Ah, R /a* where R, = 1.580 mm and R, = 1.498 mm.




APPENDIX H

Two equal rods and a plate - non-zero contact angle

H.1 COMPUTER PROGRAM

Listed overleaf is the program used to generate the results for these arrangements
and for the two unequal rods and plate arrangement (section 9.5). Esse ntially the routines
are those of the standard solution program discused in section 6.4.2.1, with the relevent
expressions for angles, arcas and perimeters added. However the mixed wettability
systems creates added complexities and requires a second iteration for an angle in
addition to that for the curvature. The program is written in BBC basic.




LOCH FENIH 3350980090606 306 00 0 00 0 0B JEIE BT I 0003
110 REM%*#CURV CALC FOR TWO RODS AGAINST A FLATE#*s«
120 REM##VARIAEBLE IN RADIUS RATIO OR CONTACT ANGLE#+
L33 FEM# R # %44 ¥ v £t d R ARG 4 ¢4 N R AL HER S+ L FLAULFRRECRELYF

1l CLS:A41=0

LON0 FROCIMNIT

1020 J=1

1070 FOR RR = RI TO RYX+55/2 STEFP S5

1040 IF AE="A" THEN T=RADRR:IF RR>F0 THEN T=RAD{180-RR)

1050 IF Af="R" THEN RZ=1:R1=RR

1060 IF J=1 THEN RE=0:G0TO1490

1070 IF J=2 THEN PROCJZ2:GOTO1090

1080 PROCJS

1090 PROCSFLIT

1100 NEXT

1110 END

1120 DEF PROCSPLIT

1130 R=(W1+k2) /2: PROCCURY

1140 IF F>RS THEN Wl=R:R=(Wi+W2)/2:PROCCURV:G0TO 1140

1150 IF F<R& THEN W2=R:R={(W1+W2) /2: FROCCURV: G0TD 1140

1150 RA=RE:; RE=R:;C=R2/R:C=INT(C*10000+,5) /1O000: S=INTS#1Q000+, 5) /10000 V=TNT {1+
1GO00+,S) /10000 AS=INT{DEG{(A4} #1000+, / 100: RR=INT (RR#1000+.3) /1000

1170 YDU2:PRINT TAB(LO) sRR TAB(20):C TAB(30) ;8 TAB(40);V TAR(SO) ;AS: VDUZ

1180 J=J+1:ENDPROC

119¢ DEF PROCCURV

1200 REM##x%%%%2 rods + plate contact angle Txesssxsuw

1210 REMExdarttanglestsrisssess

12720 K1=R*COS(T) :E2=R*SIN(T) 1 K3=(R1+K 1) /{(R1-K1) :K4=F2/ (K1-R1) i KO=K3/ (K3#E3+ de1
4y~.5: IF KS>,999999 THEN KS=1

1230 A1=ASN(KS) —ASN {1/ {K3I#KI3+K4#K4) ", 3)

1240 KI=(R2+K1) /(RZ-K1}1K4=K2/ (K1-R2) 1 IF K5>.999999 THEN kKG=1

1250 A3Z=AGN(KS) -ASN {1/ (KI#KI+KA*K4) . D)

1260 IF AR41<>0 THEN 1280

1270 INFUTYA41 (DEG)";R41:INPUT"A42“;A42:A41-RAD(A4!):A42=RAD(A42)

1280 A43=A41:1A4=A4]; PROCANGLE:El=R-RF

1290 Ad4=A42:A4=R42: PROCANGLE: E2=R-RF

1300 IFE1<0 OR E2>O THEN PRINT“E1";El:PRINT"E2";E2:60T01270

1310 Ad=(A43+A44) /2: PROCANGLE

1320 IF E»R7 THEMN A43=A4:A4=(A43+A44) /2:PROCANGLE: GOTOL32G

1330 IF E<RB THEN Ad44=A41A4=(A4T+A44) /2: PROCANGL.E: GOTO1 320

1340 G=ASN({(RI-R2})/{R1+R2))

1350 REME®EXEXKAreateKedisiey

1360 ST=(R1+R2) *COS(6) *R1 —.S* (R1-R2} * (R1+R2) *COS (G}

1370 S1= —.S*RI*RI*SIN(AI)*CDS(AI)—RI'RI*SIN(AI)*(I—DDS(AI))~R*Rl*(l—COS(A1))tS
IN(AI*T)+.S*R?R*SIN(T)kCUS(T)+.5*R*R'SlN(A1+T)*COS(A1+T)+.5*RiR*(PI-A1~2*T)

1380 S2= —.SER2*RI*SIN(AZ) #CO5 (AT) ~R2*»R2*SIN(AS) ¥ {1 -COS(AZ) ) —R*RZ2# (1-COS(AT) 123
IN{AS+T) +, SxRER®SIMN(T) #COS(T) +. S*R#R*SIN(AS+T) *COS (A3+T) +, S*R¥RR (P ~AT-2#T)

1390 §3= - (R1+R2-R1+4COS{AZ) ~R2%C0OS (A4} ) ®* (R1%SIN(A2)+R*SIN(A2+T) )} +R*R* (COS (AZ+T)
*SIN(AZ+T) +COS(A4+T) *SIN(AG+T) + (P1-2#T-A2-A4) ) /2~ , S*R1*R1*SIN(AZ) #COS(AZ) ~. S+R2+
RI2+SIN(A4) #C0S (A4)

1400 S4= —,S*R1*R1#(FI1/2-G-A1-A2)~.S*R2+*R2» (F1/2+G-A3-A4)

13410 S=5T+51+82+53+54

1420 REM#%*##x¥Forimeter#Es ik es i

1430 Vi=(R1+K2) *COS(G) — R1#SIN(A1) — RZ*SINCAT) — R¥(SIN(T+AL)}+SIN(T+A3) ) ~ =+
R*SIN(T)

144C¢ V2=R# (6% (FPI1/2-T)-~A1-A2-AJ-A4)

1450 VE=RI#(FI/2~G-A1-A2) + RI#(FPI/2+G-A3-A4)

1460 V=(V1+V3) #COS(T) + V2

1470 F=S/V~R:R5=.0001 #RiRb=—.QQC1 *K

1480 ENDFROC

1490 DEF FPROCANGLE

1500 IF T=0 THEN E=0:G0T01520

1510 B=ATN(R#SIN(T) /(R1+R*COS(T)))

1570 AP=ASNI(R7?*STN(AZY +REASIN(AS+TI NV / {{R#SINI(T) ) 2+ (Ri+R#C0OS(T))~2)~.9) -B: AZ=AR




S LA
15330 RE=(RI# (1-C224A2) ) +R2% (1-COS(A4) 1) Z/(COS(A2+T) +CO8 2 2+T )
1340 E=R-RP:R7=,- . 1#R:RB=-_001 =R
1830 ENDFROC
15&6C DRDEF FPROCJZ2
1570 RA=R:&=,05
1580 REFPEAT: Q=0+, (%: W1=RA+0*RA: W2=RA-D*RA
1590 IF Fi<F2 THEN W1=W2:1W2=RA+0#RA:0=0-, 05
1600 R=W1:PROCCURL'; F1=F )

1510 R=W2: PROCCURY: F2=F

1620 UNTIL Fi>0 apnbg F240

1520 EMDFROC

1640 DEF PROCJIZ

1850 W=R+ (RE-RA): E.=W: PROCCURY

1660 0=, 02

1670 IFF4O THEN 17314

1680 REPEAT: O=0+. bl i Wi=W; W2=W+0eR: R=W2: FROCCURY
1690 UNTIL F<G

1700 GOTOL1730

1710 REPEAT: Q=0+l W2=W: W1=W-G*R: R=W1: PROCCURV
1720 UNTIL F>Q

1730 ENDPROC

1740 DEF FROCINIT

1730 PRINT: PRINT: PRINT: INPFUT"Do yvou want RADIUS RATIO or CONTACT ANGLE variatio

n (R/A) ";A%3IF As="R" THEN 1B10Q
1760 PRINT) INPUT"Radius Ratio R1/R2 "sR1:R2=1
1770 PRINT: INPUT"Min contact angle (deqg?!";RI
1780 PRINT: INFUT"Rax contact angle {(deg)":RX
1790 RR=RI:T=RADRR: IF RR>90 THEN T=RAD(!80-RR)

1800 'GOT0O185¢

1810 PRINT:FRINT: INFUT"CONTACT ANGLE (DEG{ "$Ts T=RADI(T)
1820 PRINT: INFUT"MIN RI/RZ "IRT

1830 PRINT: INPUT"MAX R1/R2 ";RX

1840 RR=RI:R1=RF:F2=1

1850 PRINT: INFUT"Step size ";GS

1860 CLS:PRINT ™ #5383 50 3% % 00 5 5 8 5000896 3 9 9 36 3 38 % 9 3 % % 4 % 1

1870 PRINT"##%xx#++ CURVATURE CALCULATION®*%x"

1880 FPRINT " #AN#F R+ H kAR AL ERERERR SRR

1890 PRINT:PRINT:FRINT"GUESS TWO WEDGE RADII (ROD UNITS)™
1900 PRINT: FRINT: INFPUT"ONE ABOVE GUESS - ( +ive error } 3
1940 FRINT: INPUT"ONE BELOW BUESS - ( -ive error ) " W2
1920 R=W1;:PROCCURY

1230 F1=F:R=W2:PROCCURY

1940 F2=F:PRINT:PRINT:PRINT: FRINT"GUESS (1) - ERROR = "iFi
1950 PRINT:PRINT"GUESS (2) ~ ERROR = ";F2
1960 PRINT:PRIMT:FEINT'CONTINUE — (Y/N) "

1970 getE=GETS

1980 IF get#¥="N"THEN 18560

1990 IF gets{>"¥Y"AiDget {>"N"THEN1970

2000 CLS:PRINT:PRINT: INPUT"HEADINGS (Y/N) "i1EE: IF RECHUYTTHEN2OSC

2010 WDU2: FRINT:PRINT:PRINT: FRINT"CURVATURE CALCULATIONS FOR TWO RODS AGAINST

A PLATE":IF A$="R” THEN PRINT:PRINT:PRINT"CONTACT ANGLE = *;DEG(T):FRINT:FRINT:G
C0TO 20440
2020 PRINT:PRINT: PRINT"RADIUS RATIO = ":;R1:PRINT:PRINT
2030 PRINT" CONTACT ANGLE CURVATURE AREA FERIMETER A" :FRINT: PRINT: VD
UZ: GOTO2050
2040 PRINT" RADIWS RATIO CURVATURE AREA FERIMETER Q4"=pRINT=pRINT.VD
Uz

2050 ENDPROC



H.2 THEORETICAL RESULTS

Tables H.1 to H.3 show the MS-P predicted curvatures for the three partially wetted
systems investigated. The results given by the above program were used to plot the curves
shown in section 10.3.

Table H.1 MS-P predictions for the two equal rod arrangement with all components partially
wetted (8, =6, =0,).

Contact Angle Angle Effective Effective Curvature
Area Perimeter
eI' e2’ e! G’J Ad P ff CMS-P
(deg.) (deg.) (rod units?®) (rod units)
0 29.02 0.3105 2.1641 6.970
5 28.36 03113 21649 6.956
10 27.69 0.3132 2.1637 6.908
15 26.99 03162 2.1586 6.827
20 26.24 0.3202 2.1479 6.708
25 2546 0.3250 2.1287 6.551
30 2564 0.3306 20993 6351
35 23.78 0.3368 2.0573 6.108
40 22.84 0.3438 2.0017 5.822
45 21.82 0.3515 1.9303 5491
50 20.70 0.3598 1.8405 5116
55 19.46 0.3688 1.7306 4.693
60 18.03 0.3785 1.5980 4.222
65 16.37 0.3888 1.4390 3.7
70 14.38 0.3997 1.2492 3.125
75 11.92 04107 1.0217 2.488
80 8.80 0.4207 0.7466 1.775
85 481 04276 04103 0.959
90 0.00 0.0000 0.0000 0.000




Table H.2 Mixed wetiability MS-P predictions for the two equal rod arrangement with the
plate and one rod partially wetted with the other rod perfectly wetted (68, = 0).

Contact Angle Angles Effective Effective Cervature
Area Perimeter
0, 6, Oy 0y Ay Py Cuser
{deg.) {deg.) (rod units?) (rod units)

0 2902 29.02 0.310s 21641 6.970
5 2839 2900 03111 2.1620 6.960
10 2777 2898 0.3124 2.1638 6.927
15 27.17 2894 0.3145 2.1603 6.869
20 26.59 2891 03172 2.1524 6.785
25 2601 28.86 0.3205 2.1389 6.674
3 2545 28.82 0.3242 2.1181 6.533
35 2491  28.78 0.3283 2.0890 6.363
40 2438 28.75 0.3327 2.0500 6.161
45 2387 28.74 0.3374 2.0004 5529
50 2337 28.75 0.3423 1.9389 5.665
55 2289 28.718 0.3472 1.8641 5.368
60 2244 2886 0.3522 1.7752 5.040
65 2201 2898 0.3571 1.6708 4.679
70 2161 29.19 0.3617 1.5490 4,283
75 2125 29.51 0.3655 1.4078 3851
80 2095 30.00 0.3682 1.2421 379
85 20,74  30.78 0.3687 1.0538 2.858
90 2069 30.08 0.3656 0.8312 2.274

Table H.3 Mixed wetability MS-P predictions for the two equal rod arrangement with only
the plate partially wetted and both rods perfectly wetted (0, = 0, = 0).

Contact Angle Angle Effective Effective Curvature
Area Perimeter _
6, 0y Ag Py Cuse
(deg.) (deg.) (rod units?) (rod units)

0 29.02 0.3105 2.1641 6.970
5 . 29.03 0.3108 2.1641 6964
10 29.06 0.3116 2.1639 6.944
15 29.12 0.3128 2.1617 6911
20 2921 03143 2.1573 6.363
25 29.34 0.3162 2.1494 6.798
30 29 .49 0.3182 2.1376 6.717
35 29.68 0.3204 21213 6.620
40 29.92 0.3228 2.0996 6.505
45 30.19 0.3252 2.0724 6.373
50 30.51 0.3276 2.0390 6.223
55 30.87 0.3301 1.9995 6.058
60 31.29 - 03325 1.9534 5876
65 31.76 03348 1.9008 5.679
70 32.29 0.3369 1.8415 5.465
75 32.89 0.3389 1.7758 5240
80 33.55 0.3407 1.7039 5001
85 34.29 0.3422 1.6260 4,752

90 3512 03433 1.5424 4.492




- H.3 EXPERIMENTAL RESULTS
Tables H.4 and H.5 contain the detailed experimental results for the wholly partially

wetted system and each of the mixed wettability systems investigated with the two rods

and a plate arrangement.

Tabte H.4 Experimental results for the mixed wettability arrangements. The readings relating
to the one and two wetted rod systems were obtained together using a joint standard.

Contact  Standard Test Comparative Physical MS-P %
Angle Rise Rise Method Properties ~ Curvamre Dev.
Curvature Curvature
(mean) {mean)
6 Ah, Ak, Coxer C,
(deg.) (mm) {mm)
Iso.
4.6 13.09 12.67 6.950
r 12.87 12.57 6.950
12.98 '12.60 6.961
12.92 12.55 6.959 6.958 -04
6.955+.006 '
29.6 11.44 6412
a 11.55 6474
11.43 6.407
11.59 6.496 6.368 +1.28
6.447.049
n-Do.
228 1596 13.99 6.287 6328
r 15.98 13.74 6.166 6215
15.90 13.65 6.157 6.174
15.93 14.06 6.330 6.360 6.625 -537
6.235+.095 6.269+.095
479 11.90 5.383
a 12.12 5482
11.65 5.270
11.87 5.369 5.279 +1.80
5.3761.106
n-Tet.
25.1 16.41 1441 6.298 6.351
r 1639 1449 6.340 6.386
16.37 14.25 6243 6.281
16.34 14.59 6.404 ) 6.430 6.546 -2.81
6321+.083  6.3624.081
50.2 12.13 5.346
a 12.18 5.368
12.20 5377
12.09 5.329 5.010 +6.40
5.355+.026
Dioc.
308 1599 14.36 6441 7.030
r 16.03 14.31 6402 7.006
15.98 14.40 6.463 7.050
16.01 14.46 6477 7079 6.315 +2.07
6.446+.044 7.0411£.038

continued...




Table H.4 concluded.

Test

Contact  Standard Comparative Physical MS-P %
Angle Rise Rise Method Properties Curvature Dev.
Curvature Curvature
(mean) (mean)
0 Ak, Bh, Cexer Cr
(deg.) (mm) (mm)
559  mean of 10.80 4.843 5.287
a above used  10.83 4.856 5.302
10.77 4.829 5.273
10.86 4.870 5.317 4.611 +5.22
4.852+.023
Hexa.
433 9.98 7.83 5.627 5.556
r 10.01 7.59 5438 5.386
9.97 7.75 5.575 5.500
10.05 7.83 5.587 5.556 5.605 -1.88
5.557+.149 54961117
68.4 494 3.506
a 490 3477
477 3.385
438 3.463 3.315 +4,31
3.458+.073
a-Bro.
58.1 13.06 8.51 4.673 4433
r 13.09 8.44 4,624 4396
13.1] 8.49 4,644 4422
13.08 8.60 4715 4480 4.406 +0.60
4.664+.051 4.4331.047
83.2 432 2.250
a 441 2297
426 2219
437 2276 1267  +78.50
2.261+.042

Cexer = 6.94Ah, R /AR, R, and C, = 24k, R /a® where R, = 1.547 mm and R, = 1,497 mm.




Table H.5 Experimenta! results for the mixed wettability arrangements. The readings relating 1o the one
and two wetted rod systems were obtained together using a joint standard.

Two Rods Weited One Rod Wetted

Contact Standard Test Comp. Physical MS-P Test Comp. Physical MS-P
Angle  Rise Rise Method  Properties Curv. Rise Method  Propertier Curv.

Curvature  Curvature Curvature  Curvature
{mean) {mean) (mean) {mean)
2] Ah,, Ah, Corr C % Ah,‘ Ceoerr Cp %
(deg) (mm) (mm) Dev. (mm) Dev.
Iso. r
4.6 1296 12.33 6.968 6964 1233 6.968 6.960
1280 1220 6.932 1221 6.938
1283 1216 6.942 12.15 6.936
12.87 1225 6.972 12.23 6.960
6.954+.022 -0.14 6.95130.017 -0.13
a
29.6 1293 1205 . 6.826 6.725 1170 6.628 6.546
1290 12.00 6314 11.69 6.637
1283 11.89 6.788 11.60 6.622
1293 11.97 6.781 11.61 6.577
6.802+.024 . +1.14 6.616+,039 +1.07
n-do. r
228 1594 14.43 6.631 6671 6828 14.13 6493 6532 6726
1593 1442 6.630 6.666 1422 6.538 6.574
1595 1447 6.645 6.689 14.23 6.535 6.578
1580 1439 6.629 6.652 14,10 6.495 6.518
6.634+.016 6.669+.037 -2.84 6.515+040 6.551+.060 -3.14
a
479 1595 1384 6.356 6398 6.288 12.97 5.956 5996 5.780
1589 13.77 6.347 6.366 12.90 5.946 5.963
1590 13.86 6.385 6.407 12.98 5979 6.000
1592 13.80 6.349 . 6.379 12.94 5953 5982
6.359+022 6.387+.022 +1.13 5.958+.022 5985+.022 +3.08
n-tetr
25.1 16.14 1483 6.730 6680 6797 1439 6.530 6482 6.672
1627 1493 6.721 6.725 14.50 6.528 6.531
1625 14.85 6.693 6.689 14.49 6.531 6.527
1633 1485 6.661 6.689 14.56 6.531 6.558
6.701£.040 6.696+.029 -1.41 6.530£.002 6.524+.042 .2.13
a
50.2 16.35 14.01 6.276 6310 6217 13.04 5.842 5874 5654
16.23  13.87 6.260 6.247 1293 5.835 5824 :
16.16 13.82 6.264 6225 12.88 5838 5.802
1625 1392 6.274 6.270 12.97 5.846 5.842
6.268+.008 6.263+.047 +0.82 5.840+.006 5.836£.040 +3.29
Dioc. r
30.8 1602 14.52 6.639 6703 14.15 6.469 6508
16.03 1460 6.671 14.40 6.580
16.03 1440 6.580 14.11 6.447
16.04 1461 6.672 14.20 6.484
6.640+.060 -0.94 6.495+.085 0.20

continued...




Table H.5 Concluded.

Two Rods Wetted

One Rod Wetted
Contact Standard Test Comp. Physical MS-P  Tewu Comp. Physical MS-P
Angle Rise Rise Method  Properties Curv. Rise Method  Propertics Curv,
Curvature  Curvature Curvature  Curvature
{mean) {mean) {mean) (mean)
0 Ah, Ah, Coxrr Ce % Ah, Coerr Ce %
(deg.) (mm) (mm) Dev. {(mm) Dev.
a
559 1606 13.02 5.938 6.026 11.88 5418 5312
1603 1294 5912 11,79 5.3187
1606 13.12 5.984 12.18 5.555
16.06 13.02 5938 1193 5441
5.943+.041 -1.38 . 5.450+.063 +2.60
Hexa.r
433 10.10 8.85 6.418 6418 6419 819 5939 5940 6.012
10.04 8.80 6.420 6.382 8.15 5.946 5.911
10.06 879 . 6400 6.375 8.n 5.905 5.882
10.01 8.72 6.381 6.324 8.18 5.985 5.932
6.405+.024 6.375+£.051 -2.18 59444041 5916+.034 -1.13
a .
68.4 9.77 7.78 5642 5535 628 4554 4414
967 7.87 5.708 6.47 4.692
9.64 7.83 5679 6.35 4.605
9.63 7.90 5.729 642 4.656

5.689+.048 +2.78

4.627+.065 +4.82

Coxpr =6.94Ah, R /AR, R, and C, = 2Ah, R /a® where R, = 1.581 mm and R, = 1.498 mm,




APPENDIX I

Three rods and a plate

L1 COMPUTER PROGRAM

The solution program for this system differs somewhat from those for the other
arrangements. The system was investigated early in the study period and a Commodore
PET was used for the programming; the procedures of section 6.4.2.1 being replaced by
broadly similar subroutines. The program, which is listed overleaf, is also more involved
as there are eight possible TM configurations, each with its own set of equations. The
initialisation routine enables the user to select a configuration for given rod sizes.
Maximum and minimum possible values of the half angle, ¢, and outer rod spacing, L,,
are given to guide the user when selecting limits for the interpolation. Single predictions
may also be obtained. All inpunted information in addition to the curvatures of menisci
at selected ¢ values are given on a hard printout.




EERDY.

1
1808 REPSESSEEEEEEEEEEEREE RN EE e
1e1@ REM#% CAFPILLARY RISEACURYATURE #*%
1920 REM$¢ THREE UHEQURL RODS+PLATE ##
1630 REr®s TIM MALSH — AUG 1235 *¥
1840 REMESSEEEEEEEEEEEEREEREREEREEE ¥
1850 GOoTo2FeB
1888 IFX, 93933THEH Y=2:607TQ 1630
1873 IF MJI-, 999593 THEW Y=q:6G0T01698
18&a ?=-HTH&?JEZR'—‘#“+1"+H 2
1828 RETURH
18595 REM###$SUCCESSIVE BISECTIOHS##%

1198 DOEF FHACCY )=—RTHIRASER —H$N+1 2 0 +a 2 :GOTOZTER :

1118 Wi=R :R=2{W1+H20 /2 :OHHHSOSHERI 228, 1480, 1770, 1358 . 2670, 2318, 2620 1 RETURN
1za Mz=RiR=01+H2 2 A2 10HMHGOSUB I 228, 1428, 1770, 1558, 2870 . 2214, 28523 :RETURH
1138 R=0CI+WE A2 30H MM GUOSUR 1226, 145360, 17 70, 15350, 2678, 2213 . 2520

114/ IFFFRSTHEM SOSUB111@:GOTOY 146

1128 IFF<RETHEH SOSHEI1IZ0:G0TO1144

1166 RA=REB:RE=FREM PRINT FIRSTH*#dEEEs

1178 RPR=R1/R:TH=IHTCTH#I @8+, 507100 ;RR=IHTCRE# 1 ot SO /10008 s L=THT (L¥1adia+,

1136 L=L 100G :FRIHTH#2.TH:L; FR,:;?

J=J+1 :GOTO4 130 /
FEMsf$RFOUR WEDGES — TYPE E#siss
FEMESEERMHGLE S $s

A=l +R2 iE=R2+R tC=R1+R 1 X= CAEA+ B¥E-CH0 D /2B i GOSUE L B8R : Ad=Yy
B=k 1 +F (=R 2+R =5 A¥A+BHE—CHC 3 /2 /A d GUSUE 1 3s0 s RZ=Y

A=RE2+R I BRI +R s =R E3+E s = ER+AREE— 1B 2 GOEUE 1 RSE s BE=T

H=RZ+R3 1B= D USEEHR s AR RRE -CHO DS 2R s G0SUB 1868 tAT=Y
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L2 THEORETICAL RESULTS

Tables 1.1 through 1.23 detail the MS-P predicted curvatures for each of the four
systems studied. The results, obtained from the computer program above, were used to
plot the graphs of chapter 11.

1.2.1 Three equal rods and a plate - R, = R, =R,

Table I.1 MS-P predictions for the three equal rod arrangement containing a type E
™.

Half Angle QOuter Rod Effective Effective Curvature
spacing Area Perimeter
6 L, Ay Py Cuse

(deg) (rod units) (rod units) (rod units)

min
30.00 2.000 0.499 5.049 10.106

.31.00 2.060 0.592 4914 8.583
32.00 2120 0.642 4805 7.476
33.00 2179 0.710 4717 6.641
34,00 2.237 0.775 4.646 5.993
35.00 2.294 0.837 4589 5.477
36.00 2.351 0.898 4544 5.059
38.00 2463 1.011 4.484 4,432
40,00 2571 1.116 4456 3.989
4200 2.667 1.213 4.453 3.670
44,00 2779 1.301 4 469 3.435
46.00 2.877 1.379 - 43501 3.262
48,00 2.925 1.449 4.545 3.136
50.00 3.064 1.509 4.600 3.047
52.00 3.152 1.559 4.662 2.989
54.00 3.236 1.600 4732 2956
56.00 3316 1.631 4.808 2.947
58.00 3.392 1.652 4889 2.959
60.00 3464 1.663 4975 2.990
62.00 3532 1.664 5.065 3.043
64.00 3.595 1.656 5.159 3.115
66.00 3.654 1.637 5257 3.210
68.00 3.709 1.609 . 5359 3.329
70.00 3.759 1.572 5465 3475
72.00 3.804 1.525 5575 3.653
74.00 © 3845 1470 5.65%0 3.368
76.00 3.881 1.407 5811 4.129
78.00 3.913 1.335 5938 4.446
80.00 3939 1.256 6.073 4.835
82.00 3.961 1.169 6217 5317
84.00 3.978 1.075 6372 5925
85.00 3.985 1.026 6455 6.291
86.00 3.990 0.975 6541 6.708
87.00 3.995 0.922 6632 7.189
88.00 3.998 0.868 6.727 7.7147
89.00 3.999 0.812 6827 8.400
90.00 4.000 0.755 6935 9.178

max




Table 1.2 MS-P predictions for the three equal rod arrangement containing a fype A
TM. ,

Half Angle Outer Rod Effective Effective Curvature
spacing Area Perimeter
6 L, Ay Py Cusz

{dep) (rod units) (rod units) (rod units)

30.00 2.000 0310 2.164 6970

31.00 2.060 0.348 2.292 6.577

32.00 2.120 0.390 2.426 6.218

33.00 2.179 0436 2.569 5886

34.00 2237 0.488 2,724 55879

35.00 2294 0.547 2.896 5.294

36.00 2351 0.616 3.097 5.026

37.00 2407 0.707 3375 4,771

Table 1.3 MS-P predictions for the three equal rod arrangement containing a type B
™.

Half Angle Quter Rod Effective Effective Curvature
spacing - Area Perimeter
¢ Ll Acﬂ' Ptﬂ' C.H'S-P
(deg) (rod units) (rod units) (rod units)
30.00 2.000 0.117 1.325 11319
30.50 21030 0.126 1.379 10.896
31.00 2.060 0.137 1.438 10.487
31.50 2.090 0.148 1.501 10.093
32.00 2120 0.161 1.571 9.712
32.50 2.149 0.176 1.649 9314
33.00 2.179 0.193 1.740 8.979
33.50 2208 0214 1.852 8.622
34.00 2237 0.245 2025 8.263
34.50 2.266 0.276 2177 7.888

35.00 2.294 0.288 2177 7.554




Table 1.4 MS-P predictions for the three equal rod arrangement containing a type D

T™.
Half Angle Outer Rod Effective Effective Curvature
spacing Areca Perimeter
& L, Ag Py Cuse

(deg) (rod units) (rod units) (rod units})

30.00 2.000 0.152 2619 17.169
30.50 2.030 0.172 2495 14.497
31.00 2.060 0.190 2.379 12.519
31.50 2090 0.206 2.268 11.001
32.00 2.120 0.220 2.162 9,798
32.50 2.149 0.233 2.059 8.823
33.00 2.179 0.244 1.960 8.019
33.50 2.208 0.253 1.864 7344
34.00 2.237 0.261 1.770 6.769
34.50 2.266 0.267 . 1679 6.275
3500 2.294 0.271 1.589 5845
35.50 . 2.323 0.274 1.501 ‘ 5.468
36.00 2351 0275 1414 5.136
36.50 2.379 0.274 1.329 4.839
37.00 2407 0.272 1.245 4.574

Table 1.5 MS-P predictions for the three equal rod amrangement containing a type F
T™.

Half Angle QOuter Rod Effective Effective Curvature
spacing Area Perimeter
o L, Ay Py Cuss
(deg) {rod units) (rod units) (rod units)
80.00 3939 0.595 3.126 5.255
81.00 3.951 0.547 2.967 5.416
82.00 3.961 0.508 2.837 5.578
83.00 3.970 0474 2.725 5.741
84.00 3.978 0444 2.625 5.906
85.00 3.985 0417 2.534 6.074
86.00 3.990 0.392 2450 6.245
87.00 3.995 0.369 2372 6.420
88.00 3.998 0.348 2.299 6.599
89.00 : 3.999 0.328 2.230 6.782

90.00 4,000 0.310 2.164 6.970




Table 1.6 MS-P predictions for the three equal rod arrangement containing a nype G
™.

Half Angle Outer Rod Effective Effective Curvatare
spacing Area Perimeter
o Ag Py Cusr
{deg) (rod units) (rod units) (rod units)
83.00 3.970 0.234 1.171 4.987
83.50 3.974 0.206 1.127 5.460
84.00 3.978 0.179 1.082 6.017
84.50 3982 0.154 1.033 6.682
85.00 3.985 0.131 0.982 7.488
85.50 3.988 0.109 0.928 8.484
86.00 3.990 0.089 0.870 9.742
86.50 3.993 0.0M 0.808 11.39
87.00 3.995 0.054 0.742 13.589
87.50 3.996 0.039 0.668 16.728
88.00 3.998 0.027 0.587 21.507
88.50 31999 0.016 0.495 29.606
89.00 3.999 0.008 0.388 46.145
89.50 4.000 0.002 0.253 97.126




1.2.2 Three Unequal rods and a plate, symmetrical - R, = 0.5R, = R,

Table 1.7 MS-P predictions for the three unequal rods symmetrically arranged
(R,/R,=0.5) containing a type E TM.

Half Angle Outer Red Effective Effective Curvature
spacing Area Perimeter
J L, A,J P & Cuse
(deg) (rod units) (rod units}) {rod units)
min

19.47 2.000 0.561 5.401 9.622
19.50 2.003 0.565 5.394 9.543
21.00 2.150 0.755 5.135 6.793
22.50 2.296 0.936 4.990 5326
24.00 2440 1.110 4922 4.43)
25.50 2.583 1.277 4909 3844
27.00 2.724 1.437 4938 3435
28.50 2.863 1.591 4998 3.141
30.00 3.000 1.738 5.083 2.924
31.50 3.135 1.878 5.187 2,762
33.00 3.268 2.009 5.307 2.640
34.50 3.398 2132 5440 2.551
36.00 3.527 2,246 5.583 2,485
37.50 3.653 2.349 5.735 2,441
39.00 3.776 2.442 5.894 2413
40.50 3.897 2.524 6.060 2.400
42,00 4,015 2,595 6.230 2,401
43.50 4.130 2.653 6.406 2414
45.00 4243 2.700 6.586 2.439
46.50 4352 2.733 6.770 2476
48.00 4459 2.754 6.957 2.525
49.50 4,562 2,762 7.148 2.587
51.00 4.663 2757 7.343 2.662
52.50 4.760 2739 7.541 2,753
54.00 4,854 2.707 7.743 2.860
55.50 4,945 2.662 7.949 2.985
57.00 5.032 2.604 8.159 3.132
58.50 . 5116 2.532 8.374 3306
60.00 5.196 2447 8.594 3511
61.50 5.273 2.349 8.821 3.754
63.00 5.346 . 2238 9.056 4,045
64.50 5416 2.115 9.299 4.396
66.00 5.841 1.978 9.552 4.827
67.50 5.543 1.829 9818 5.365
69.00 5.601 1.668 10.100 6.052
70.50 5.656 1.495 10.401 o 6955
70.53 5.657 1.491 10.407 6977

max




Table 1.8 MS-P predictions for the three uncqual rods symmetrically arranged
(R/R,=0.5) containing a type A TM.

Half Angle Quter Rod Effective Effective Curvature
spacing Area Perimeter
¢ L? Acﬂ' Paﬂ CIS-?
(deg) (rod units) (rod units) (rod units)
19.47 2.000 0310 2.164 6970
19.50 2.003 0312 2.170 6950
20.00 2.052 0.343 2274 6.628
20.50 2.101 0.376 2.383 6326
21.00 2.150 0413 2.499 6.042
21.50 2.199 0.453 2.622 5776
22.00 2248 0.498 2.755 5524
22,50 2.296 0.549 2.901 5285
23.00 2344 0.607 3.070 5.057
21.50 2.392 0.679 3.286 4838
24.00 2440 0.788 3.642 44616
24,50 2.488 0.834 3.681 4411
25.00 2536 0.880 3.722 4227

Table 1.9 MS-P predictions for the three unequal rods symmetrically arranged
(R/R,=0.5) containing a type B TM.

Half Angle Outer Rod Effective Effective Curvature
spacing Arca Perimeter
b L, Ay Py Cosr
(deg) {rod units) (rod units) (rod units)
19.47 2.000 0.172 1610 9324
19.50. 2.003 173 1.615 9293
20.00 2.052 0.194 1.710 8.794
20.50 2.101 0217 1814 8325
21.00 2.150 0.244 1.929 7.881
21.50 2.199 0.276 2.063 7.456
22,00 2.248 0316 - 2229 7.049
22.50 2.296 0.375 2.499 6.648
23.00 2.344 0426 2.659 6242
23.50 2.392 0453 2.674 5897
24,00 2440 0.480 2.690 5.603
24.50 2488 0.506 2.708 5351
2500 2.536 0.531 2.726 5.134




Table I.10 MS-P predictions for the three unequal rods symmetrically arranged
(R,/R,=0.5) containing a type D TM.

Half Angle Outer Rod Effective Effective Curvature
. spacing Area Perimeter
¢ Ag ‘P‘g CM‘S-P

(deg) (rod units) (rod units) (rod units)

1947 2.000 0220 - 3025 13.693
19.50. 2.003 0223 3014 13.498
20.00 2,052 0259 2831 10.894
20.50 2.101 0.292 2.662 9.098
2100 2.150 0.321 2.503 7.789
21.50 2.199 0.346 2353 6.794
22.00 2.248 0.367 2209 6.012
22,50 2.296 0.384 2.070 5.384
23.00 2344 0.397 1936 4.869
23.50 2392 0.407 1.806 4438
24.00 2.440 0.412 1.679 4.074
24.50 2488 0413 1.555 3.762
25.00 2.536 0.410 1.434 3492
25.50 2.583 0403 1314 3.256
26.00 2.630 0.392 1.196 3.048
26.50 2.677 0.377 1.080 2.864
27.00 2,724 0.357 0.965 2.699
27.50 2770 0.333 0.852 2.552
28.00 2.817 0.305 0.739 2419
28.50 2.863 0.273 0.627 2.298
29.00 2.909 0.236 0.517 2.188
29.50 2.955 0.194 0.406 2.088
30.00 3.000 0.149 0.297 1996




Table 1.11 MS-P predictions for the three unequal rods symmerically arranged
(R/R,=0.5) containing a type F TM.

Half Angle Outer Rod Effective Effective Curvature
spacing Area Perimeter
® L, Ay Py Cuse

(deg) (rod units) (rod units) {rod units)

60.00 5.196 1.187 4.547 3829
60.50 5222 1.127 4.382 3.887
61.00 5.248 1.077 4.250 3944
61.50 5.273 1.033 4,136 4.001
62.00 5.298 0.994 4034 4.087
62.50 5322 0.958 3.942 4114
63.00 5.346 0.925 3.858 4171
63.50 5.370 0.894 3.780 4227
64.00 5.393 0.865 3.706 4.284
64.50 5416 0.837 3.637 4340
65.00 5.438 0.812 3,751 4397
65.50 5.460 - 0.787 3.509 4458
66.00 5.841 0.764 3.450 4.513
66.50 5.502 0.742 3.392 4.571
67.00 5.523 0.720 3.338 4.630
67.50 5.543 0.700 3285 . 4.688
68.00 5.563 0.681 3234 4.748
68.50 5.583 0.662 3.185 4.808
69.00 5.601 0.644 3.137 4.868
69.50 5.620 0.627 3.091 4.929
70.00 5.638 0.610 3.046 4.990
70.50 5.656 0.594 3.003 5.052

Table 1.12 MS-P predictions for the three unequal rods symmetically arranged
(R\/R,=0.5) containing a rype G TM.

Half Angle Outer Rod Effective Effective Carvature
spacing Area Perimeter
L L, Aq P o Cussr
(deg) (rod units) (rod units) (rod units)
64.00 5.393 0440 1.861 4221
64.50 5.416 0.385 1.784 4.627
65.00 5438 0333 1.703 5.109
65.50 5.460 0.284 1.617 5.693
66.00 5.841 0.238 1.526 6.411
66.50 5.502 0.195 1430 7316
67.00 5.523 0.156 1.327 8.489
67.50 5.543 - 0.120 1216 10.067
68.00 5.563 0.089 1.095 12.293
68.50 5.583 0.061 0.962 15.659
69.00 5.601 0.038 03812 21.310
69.50 . 5620 0.019 0638 32.645
70.00 5.638 0.006 0.422 66,185

70.50 5.656 0.000 0.003 = oo




1.2.3 Three Unequal rods and a plate, symimetrical - R, = 2R, = R,

Table I.13 MS-P predictions for the three unequal rods symmetrically arranged
{R,/R, = 2) containing a rype E TM.

Half Angle Outer Rod Effective Effective Curvature
spacing Area Perimeter
) L, . Ay Pg Cusr
{deg) (rod units) (rod units) {rod units)
min
41.81 2,000 0.445 4.658 10.453
42.00 2.007 0454 4.638 10.215
43.50 2.065 0.517 4.499 8.688
45.00 2.121 0.577 4.383 7.593
46.50 2.176 0.632 4287 6.775
48.00 2229 0.684 4,206 6.146
49,50 2.281 0.732 4138 5.651
5100 2.331 0.776 4,080 5256
52.50 2.380 0.816 . 4031 4935
54.00 2427 0.853 3.990 4.674
55.50 2472 0.887 3.955 4.458
57.00 2.516 0.917 3926 T 4.280
58.50 2.558 0944 3902 4.133
60.00 2.598 0.967 3.882 4.013
61.50 2.636 0.987 3.866 3915
63.00 2673 1.004 3.853 3.836
64.50 2.708 1.018 3.844 A8
66.00 2.741 1.028 3836 3.730
67.50 2.772 1.036 3.831 3.698
69.00 2.801 1.040 3.829 3.679
70.50 2.828 1.042 3.828 3.673
72.00 - 2853 1.040 3.828 3.678
73.50 2876 1.036 3.831 3.696
75.00 2.898 1.029 3.835 A4
76.50 2917 1.020 3840 3.764
78.00 2934 1.008 3847 3817
79.50 2.950 0.993 3.855 3.880
81.00 2.963 0976 3.865 3.957
82.50 2.974 0.957 3.876 4.047
84.00 2984 0.936 3.888 4.152
85.50 2.991 0913 3.902 4274
87.00 2.996 0.887 3917 - 4412
88.50 2.999 0.860 3934 4571
90.00 3.000 0.832 3953 4.752
91.50 2.999 0.801 3.974 4.958
93.00 2.996 0.769 3.998 5193
94.50 2991 0.736 4023 . 5462
96.00 2.984 0.702 4.052 5717
97.50 2974 0.666 ' 4.083 6.126
99.00 2.963 0.629 4.118 6.537
100.50 2.950 0.592 4.157 7.019
102.00 2934 0.553 ) 4.200 7.584
103.50 2917 0.514 4.249 8.256
105.00 2.898 0474 4303 9.066
106.50 2.876 0434 4.365 - 10,053
108.00 2.853 0393 4434 11.278
109.47 2.828 0352 4.511 12.79%6

max




Table 1.14 MS-P predictions for the three uncqual rods symmetrically arranged
(R,/R, = 2) containing a rype A TM.

Half Angle Outer Rod Effective Effective Curvature
spacing Area Perimeter
o L1 ) Alﬂ_ P;J CH"
(deg) (rod units) (rod units) (rod units;
4181 2.000 0.310 2164 6970
42,00 2.007 0.315 2.179 6919
43.00 2.046 0.339 2.261 6.667
44,00 2.084 0.364 2344 6431
45.00 2.121 0.391 2430 6.208
46.00 2.158 0419 2.518 5.999
47.00 2.194 0.449 2.609 5.802
43.00 2229 0.481 2,703 5.616
49.00 2.264 0.515 2.803 5441
50.00 2.298 0.551 2.908 5278
51.00 2.331 0.590 3.022 5117
52.00 2.364 0.634 3.150 4.967
5300 2.396 0.685 3.305 4822
5400 2.427 0.798 3.598 4.680

55.00 2457 0.804 3.655 4.541

Table 1.15 MS-P predictions for the three unequal rods symmetrically arranged
(R,/R,=2) containing a type B TM.

Half Angle QOuter Rod Effective Effective Curvature
spacing Area Perimeter
0 L; Ag Py Cise
“(deg) (rod units) (rod units) (rod units)
4181 2.000 0.068 1.014 14.812
42.00 2.007 0.070 1.027 14.647
43.00 2.046 0.079 1.098 13.800
44.00 2.084 0.090 1.182 12.993
45.00 2121 0.105 - 1,283 12.213
46.00 2.158 0.124 1.424 11.447
47.00 2.194 0.157 1.677 10.644
48.00 2.229 0.167 1.661 9.924
49.00 2.264 0.175 1.646 93585
50.00 2.298 0.183 1.631 8.905
51.00 2.331 0.189 1.617 8.549
52.00 2.364 0.193 1.602 8.271
53.00 2.396 0.197 1.587 8.059
54.00 2427 0.198 1.572 7.906

55.00 2457 0.199 1.556 7.807




Table 1.16 MS-P predictions for the three unequal rods symmetrically arranged
(R,/R, = 2) containing a type D TM.

Half Angle Quter Rod Effective Effective Curvature

spacing Area Perimeter
o Aqy_ P o Cuss

(deg) (rod units) {rod units) (rod units)
4181 2.000 0.091 2.155 23.529
42.00 2.007 0.095 2.121 22.162
43.00 2.046 0.115 1.950 16936
44,00 2.084 0.131 1.793 13.672
45.00 2.121 0.143 1.645 11.446
46.00 2.158 0.153 1.505 9.836
47.00 2.194 0.158 1.369 8618
48.00 2.229 0.161 1.238 7.667
49.00 2.264 0.160 1.111 6.904
50.00 2.298 0.157 0.987 6.281
51.00 2.331 0.150 0.865 5.761
52.00 2.364 0.140 0.746 5.322
53.00 2.396 0.127 0.629 4,946
54.00 2427 0.111 0.514 4.622

55.00 2457 0.092 0.400 4339

Table I.17 MS-P predictions for the three unequal rods symmetrically arranged
(R,/R;=2) containing a type F TM.

Half Angle Quter Rod Effective Effective Curvature
spacing Arca Perimeter
o . A.wr_ P o . Cuss
(deg) (rod units) (rod units) {rod units)
90.00 3.000 0.484 2.630 5434
91.00 3.000 0.470 2.621 5.568
92.00 2.998 0457 2612 5715
93.00 2996 0.443 2.603 5875
94.00 2993 0428 2.593 6.050
95.00 . 2989 0413 2.584 6.242
96.00 2984 0.399 2.575 6.453
97.00 2978 0.383 2.566 6.684
98.00 2.971 0.368 2.557 6.939
99.00 2963 0319 2.296 7.198
100.00 2954 0.289 2.158 7.450
101.00 2.945 0.266 2.053 - 1.703
102.00 2934 0.246 1.963 7.959
103.00 2923 . 0.229 1.885 8.223
104.00 2911 0.213 1.814 8.491
105.00 2.898 0.199 1.748 8.767
106.00 2.884 0.186 1.687 9.051
107.00 - 2.869 0.174 1.629 9345
108.00 2.853 0.163 1.575 9.647
109.00 2.837 0.152 1.523 9,961

109.47 2.828 0.148 1.500 10.112




Table 1.18 MS-P predictions for the three unequal rods symmetrically arranged
(RJR, =2} containing a type G TM.

Half Angle Outer Rod Effective Effective Curvature
spacing Area Perimeter
¢ L2 Ac‘ﬂ' Plf CM’SQ.
(deg) (rod units) (rod units) (rod units)

102.00 2.934 0.125 0.724 5.758
102.05 2.929 0.111 0.700 6.307
103.00 2.923 0.097 0.675 6.949
103.05 2917 0.084 0.649 7.708
104.00 2911 0.072 0.621 8.617
104.05 2.904 0.060 0.591 9,721
105.00 2.898 0.050 0.560 11.091
105.05 2.891 0.041 0.526 12.929
106.00 2.884 0.032 0.489 15.103
106.05 2.876 0.024 0.449 18.186
107.00 2.869 0.017 0.405 22.539
107.08 2.861 0.012 0.357 29351
108.00 2.853 - 0.007 0.301 40937
108.05 2845 0.003 0.235 65.035
109.00 2.837 0.001 0.151 142.743
109.47 2.828 0.000 0.076 = oo




1.2.4 Three Unequal rods and a plate, non-symmetrical - R,=R,=12R,

Table 1.19 MS-P predictions for the three unequal rods non-symmetrically arranged

(R/Ry = 2) containing a type E TM. £
Haif Angle QOuter Rod Effective Effective Curvature
Spacing Area Perimeter
o L, A.J P o Cuss
{deg) {rod units) {rod units) (rod units)
min
24.09 1414 0.252 3.599 14271
24.50 1.437 0271 3.554 13.108
26.00 1.519 0.338 3428 10.12%
27.50 1.600 0403 3.348 8.301
29.00 1.679 0.465 3.30 7.089
30.50 1.758 0.525 3279 6.238
32.00 1.836 0.583 3.277 5.617
33.50 1.912 0.638 3.291 5.151
35.00 1.987 0.691 3317 4.795
36.50 2.061 0.742 3.353 4.519
38.00 2133 0.789 3.308 4.303
39.50 2.203 0.834 3450 4.136
41.00 2273 0.875 3.508 4.006
42.50 2.340 0.913 3571 3.908
44.00 2.406 0.948 3639 3.835
45.50 2471 0.979 3.709 3.786
47.00 2.533 1.006 3.783 3.757
48.50 2.594 1.030 3.860 3.746
50.00 2.654 1.049 3939 3.752
51.50 2711 1.065 4.021 3778
53.00 2.767 1.076 4.104 3.813
54.50 2.820 1.083 4189 3866
56.00 2872 1.086 4276 3936
57.50 2922 1.084 - 4.365 4.024
59.00 2.969 1.079 4456 4,128
60.50 3.015 1.069 4.548 4.253
62.00 3.059 1.055 4642 4.399
63.50 3.100 1.036 4,739 4570
65.00 3.140 1.014 4.837 4.768
66.50 3.177 0.987 4938 4.999
68.00 3212 0.957 5.042 5.266
69.50 3.245 0922 5.149 5.579
71.00 3.275 0.884 5.259 5.947
72.50 3.304 0.842 5.374 6.381
74.00 3.330 0.796 5493 6.900
75.50 3.354 0.746 5.618 7.525
77.00 3.375 0.693 5.750 8.293
78.50 3.395 0.636 5.890 9.250
80.00 3411 0.576 5.040 10.472
80.26 3414 0.566 5.067 10.718
max




Table L.20 MS-P predictions for the three unequal rods non-symmeirically arranged _1/
(R /R, = 2) containing a type F TM between R, and R,. !

Half Angle Outer Rod Effective Effective Curvature
spacing Area Perimeter
Y L, A.J P o Cusr
(deg) (rod units) (rod units) {rod units)
65.00 3.140 0.750 3672 4.895
66.00 3.165 0.697 3507 5.028
67.00 3.189 0.631 3253 5.155
68.00 3.212 0.587 3.099 5.280
69.00 3234 0.550 2977 - 5.404
70.00 3.255 0.519 2.873 5.530
71.00 3.275 0.491 2.780 5.658
72.00 3.295 0.465 2.695 5.788
73.00 3313 0.442 2.617 5.920
74.00 3.330 0.420 254 6.055
75.00 3.346 0.399 2475 6.191
76.00 3.361 0.380 2411 6333
77.00 3.375 0.362 2349 6.477
78.00 3.388 0.345 2289 6.623
79.00 3.400 0.329 2233 6.774
80.00 3411 0314 2.178 6.927
80.26 3414 0.310 2.164 6.970
Table .21 MS-P predictions for the three unequal rods non-symmetrically arranged
(R,/R,=12) conlaining a type F TM between R, and R,. iz
Half Angle Quter Rod Effective Effective Curvature
spacing Area Perimeter
o L Aqf P & Cuss
(deg) ~ {rod units) (rod units) (rod units)
65.00 3.140 0.391 2426 6.191
66.00 3.165 0.386 2453 6.347
67.00 3.189 0.380 2480 6.526
68.00 3.212 0372 2.505 6.732
69.00 3234 0.363 2.531 6.969
70.00 3.255 0.353 2.555 7.239
71.00 3.275 0.316 2389 7.541
72.00 3.295 0276 2.162 7824
73.00 3313 0.250 2.025 8.096
74.00 3.330 0.229 1.920 8367
75.00 3.346 0212 1.831 8.638
76.00 3.361 0.196 1.754 8910
77.00 3.375 0.183 1.686 9.186
78.00 3.388 0.171 1.623 9.465
79.00 3400 0.160 1.566 9.748
80.00 3411 0.150 1.513 10.036

80.26 3414 0.140 1.500 10.112




Table 1.22 MS-P predictions for the three unequal rods non-symmetrically arranged
(R/Ry = 2) containing a type G TM.

Half Angle Outer Rod Effective Effective Curvature
i Area Perimeter
o L, ) Aqy P o Cuse
(deg) (rod units) (rod units) (rod units)
70.00 3.255 0315 1274 4.044
71.00 3275 0.264 1.212 4578
72.00 3295 0.218 1.146 5250
73.00 3313 . 0175 1.073 6.120
74.00 3.330 0.136 . 0.994 7.287
75.00 1346 0.101 0.906 8.929
76.00 3.361 0.071 0.808 11.384
77.00 3.375 0.045 0.696 15.428
78.00 3388 0.024 0.564 23,230
79.00 3400 0.009 0.399 44.006

Table 1.23 MS-P predictions for the three unequal rods non-symmetrically arranged

(R /Ry =2) containing a type H TM between R, and R,. A7
Half Angle Outer Rod Effective Effective Curvature
spacing Area Perimeter
0 L, A.ﬂr P o Cusr

(deg) (rod units) (rod units) (rod units)

65.00 3.140 0.358 1.605 4475
66.00 3.165 0.366 1.723 4.706
67.00 3.189 0.371 1.840 4.961
68.00 3212 0.373 1.958 5247
69.00 3234 0.372 2075 5.566
70.00 3255 0.370 2,193 5927
71.00 3275 0.364 2311 6.337
72.00 3.295 0357 2430 6.806
73.00 3313 0.346 2.549 7.349
74.00 3330 0.334 2.669 7.983
75.00 31346 0.319 2.791 8.733
76.00 3361 0.302 2914 9.634
77.00 3375 0.283 3.040 10.732
78.00 3.388 0.261 3.168 12.105
79.00 3.400 0.238 3.300 13.862
80.00 3411 0.212 3436 16.186

80.26 3414 0.205 3472 16.920




L3 EXPERIMENTAL RESULTS

Table 1.24. Experimental results for the three equal rods and plate system.

Half Standard Test Standard Test Expt. MS-p %
Angle radius radii rise rise curvature  curvalre dev.
P R: RJ A'h.l: Ahrc Cu,pl' CHS-.P
(deg) (mm) (mm) (mm) (mm) (%)
31.01 0.800 1.582 23.11 11.03 6.548 6.577 04
3162 0.800 1.189 24.11 14.87 6.363 6.352 +0.2
33.40 0.800 1.148 24.30 14.17 5304 5.761 +0.7
18.51 7.581 7479 +14
3454 0.800 1.496 24.08 10.20 5.494 5434 +1.1
11.56 6.226 6.270 0.7
35.66 0.800 1.470 24.12 9.70 5.125 5.114 +0.2
3793 0.800 1.190 23.18 9.94 4.424 4.440 04
40.16 0.800 1.396 24.24 7.97 3974 3.961 +0.5
4091 0.800 1.386 24.21 7.82 3.880 3.830 +1.2
43.10 0.800 1.347 23.99 7.26 3.534 3.533 +0.0
51.88 0.800 1.243 24.10 6.60 2951 2.990 -1.3
56.96 0.800 1,197 2403 6.91 2984 2950 +1.1
6282 0.800 1.148 2383 7.27 3.033 3.070 -1.2
70.76 0.800 1.100 23.87 8.86 3.540 3.540 0.0
72.58 1.583 1.586 12.29 6.59 3.728 3713 +0.4
74.63 0.800 1.190 24,13 9.28 3.967 3.950 +0.5
77.79 1.583 1.586 12,32 7.83 4.419 4411 +0.2
78.36 0.800 1.190 o247 10.73 4.480 4.510 -0.7
79.71 1.583 1.586 12.27 8.54 4.839 4.780 +1.2
8328 1.583 1.587 12.29 9.93 5.618 5.690 -1.2
83.52 1.583 1.586 12,16 10.01 5.724 3.770 0.8
83.84 1.583 1.587 12.22 10.30 5.861 5.873 0.2
84.07 1.583 1.587 12.24 1042 5919 5918 +0.0
85.22 1.583 1.587 12.21 10.74 6.116 6.112 +0.0
15.15 8.581 7.926 +8.3
8587 1.583 1.587 12.29 11.06 6.257 6.223 +0.5
17.22 9.742 9415 +3.3
86.79 1.583 1.587 12.19 11.16 6.369 6.383 02
22.68 12.937 12.661 +2.1
86.83 1.583 1.587 12.25 11.25 6.386 6.390 0.1
87.02 1.583 1.587 12.28 11.27 6.385 6420 -0.5
87.80 1.583 1.587 12.18 1143 6.529 6.563 0.5
90.00 1.583 1.587 12.17 12.18 6.598 6.970 -0.2

Cope=6.94AK, R/AR, R, where Ah, = Ah, + Q.S




Table 1.25 Experimental results for three unequal rods symmetrically arranged against a plate with R /R,
=05.

al

Half  Standard Test Radius  Standard Test Expt. MS-P %
Angle  radius radii ratio rise rise curvature curvature  dev.
9 R, R, RR, Ah, Ah,, Con Cisr

(deg)  (mm) (mm) (mm}) {mm) (%)

22.51 0.800 1.129 0.502 24,17 13.16 5.330 5285 +0.8

25.90 (.800 1.046 0499 24.02 9.97 3.766 3.735 +0.8

28.07 0.800 0.997 0.500 24.03 8.87 3.192 3.225 -1.0

31.28 0.800 1.251 0.497 2398 -6.13 2,772 2.786 0.5

34,14 0300 1.186 0.498 24.06 595 2.546 2572 -1.0

37.04 . (.800 1.128 0.501 24.05 598 2435 2454 -0.8

42,62 0.800 1.044 0.498 24,22 6.44 2.399 2406 03

45,14 0.800 0.996 0.500 2422 6.95 2.481 2442 +1.6

4731 0.800 0.983 0.498 2392 6.96 2.480 2502 09

57.56 0.800 0.889 0.500 24.20 10.00 3.184 3.197 -04

60.65 1.583 0.789 0.500 12.22 12.89 3.651 3616 +0.1
13.24 3.750

61.57 1.583 0.789 0.500 12.27 13.25 3.768 3.767 +0.0
. 13.62 3.868

62.19 1.583 0.789 0.500 12.21 13.72 3.889 3888 +0.0
14.19 4.022

62.53 1.583 0.789 0.500 12.20 13.99 3.969 3915 +1.4
1442 4.091

63.20 0.800 0.657 0.499 23.98 17.22 4.090 4092 -0.0

63.64 1.583 0.789 0.500 12.27 14.84 4.186 4.195 0.2
15.67 4420

64.19 1.583 0.789 0.500 12.26 1547 4.367 4323 +1.0
16.79 4.740

64.60 1.583 0.789 0.500 12.24 1544 4.366 4351 +0.3

' 17.08 4.823 4723 +2.2

65.28 1.583 0.789 0.500 12.27 15.69 4.426 4429 -0.1

19.67 5.549 5436 +2.0

66.82 1.583 0.789 0.500 12.24 1648 4.660 4.609 +1.1

28.72 8.116 8.066 +0.6

69.14 1.583 0.789 0.500 12.28 17.27 4.868 4885 0.3

70.14 1.583 0.789 0.500 12.23 17.98 5.060 5.014 4+0.9

Cope = 6.94AM, R /AR, R, where Ah, =Ak +0.5




Table 1.26 Experimental results for three unequal rods symmetrically arranged against a plate with R /R,

=20and R,/R; = 1.0.

Half  Standard Test Radius  Standard Test Expt. MS-P %
Angle  radius radii ratio rise rise curvature curvature  dev.
Q R, R, R/R, Ah, Ah, Cope Cuse
(deg)  (mm) (mm) (mm) {mm) (%)
4980  0.800 1.183 1.998 24.39 1247 524 5.308 -12
51.60  0.800 1.183 1.998 2433 12.16 5.126 5.027 +1.9
52.51 0.800 1.183 1.998 2437 11.59 4.878 4.893 0.3
5687  0.800 1.183 1.998 24.33 10.08 4.249 4295 -1.0
60.09  0.800 1.183 1.998 2427 9.57 4.044 4.007 +0.9
60.84  0.800 1.183 1.998 24.40 %47 3.981 3958 +0.5
6222 0800 1.183 1.998 24.26 9.23 3.902 3.877 +0.6
64.76  0.800 1.183 1.998 2437 8.98 3779 3.767 +0.3
70.38 0.800 1.183 1.998 24.28 8.65 3.654 3.675 -0.6
70.63 0.800 1.183 1.998 24.29 8.74 3.690 3675 +0.4
7385  0.800 1.183 1.998 2427 8.73 3.689 3.702 -04
7890  0.800 1.183 1.998 24.33 9.09 3832 3.855 0.6
C e = 6.948h, R/AK, R, where Ak, =Ah, +0.5

Table 1.27 Experimental results for three unequal rods non-symmetrically arranged against a plate with
R)/Rz = 1.0 al'ld R‘-IRJ = 2.0.

MS-P

Half  Standard Test Radius  Standard Test Expt. %
Angle  radius radii ratio rise rise curvature curvature  dev.
¢ R Il R ! R .I'I R 3 Ah.lc M,‘ Cup‘ CI‘S—P

(deg) (mm)  (mm) (mm) (mm) (%)
46.44 1.188 1.588 1.994 1642 6.64 3.748 3.768 0.3
47.07 1.188 1.580 2.000 16.40 6.62 3.725 3.756 08
51.90 1.188 2.247 1.996 16.35 464 3.725 3.785 -16
5721 1.188 1.795 2.002 16.57 6.27 3.967 3978 -0.3
60.83 1.188 2.094 2.000 16.50 5.67 4.203 4285 -19
63.75 1.188 1.587 1.994 16.37 8.14 4.609 4,603 +0.1
66.54 1.188 1.587 1.994 16.54 887 4971 5.006 -0.7
69.19 1.188 1.587 1.994 1647 9.63 5.420 5.428 -0.2
7025 1.188 1.587 1.994 16.45 9.86 5556-F; 5562 -0.1

10.81 6.080+, 6.029 +0.8
71.24 1.188 1.587 1.994 16.40 10.05 5.680-F, 5.689 0.2

11.52 6511+, 6450 +.9
7238 1.188 1.587 1.994 16.55 10.36 5.802 1, 5.838 0.6

12.76 11474, 7012 +1.9
74.14 1.188 1.587 1.994 16.48 10.74 6.041 ¢, 6.074 -0.6

14.48 8.144-.. 8.088 +0.7
75.56 1.188 1.587 1.994 16.53 11.12 6.236-7, 6.271 06

15.72 88157, 8790 +0.3

19.49 10.929 ~ 10304 +5.7
77.08 1.188 1.587 1.994 16.57 11.61 6489~ 6489 0.0

16.52 9.234-x, 9208 +.3
78.21 1.188 1.587 1.994 16.49 11.80 6.628-¢ 6.655 04

17.02 9.559-F, 9524 +0.4
80.32 1.188 1.587 1.994 16.45 12.41 6.969 - 7, 6.969 -0.0
(max) 18.04 10.130~ Foy 10.112 +0.2

Come =6.94Ah, R/AK, R, where Ak, = Ah,+0.5

/







