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Abstract 

The porous gas diffusion layers (GDLs) are key components in hydrogen fuel cells. 
During their operation the cells produce water at the cathode, and to avoid flooding, 
the water has to be removed out of the cells. How to manage the water is therefore 
an important issue in fuel cell design. In this paper we investigated water flow in the 
GDLs using a combination of the lattice Boltzmann method and X-ray computed 
tomography at the micron scale. Water flow in the GDL depends on water–air 
surface tension and hydrophobicity. To correctly represent the water–gas surface 
tension, the formations of water droplets in air were simulated, and the water–gas 
surface tension was obtained by fitting the simulated results to the Young–Laplace 
formula. The hydrophobicity is represented by the water–gas fabric contact angle. 
For a given water–gas surface tension the value of the contact angle was 
determined by simulating the formations of water droplets on a solid surface with 
different hydrophobicity. We then applied the model to simulate water intrusion into 
initially dry GDLs driven by a pressure gradient in attempts to understand the impact 
of hydrophobicity on water distribution in the GDLs. The structures of the GDL were 
acquired by X-ray micro-tomography at a resolution of 1.7 microns. The simulated 
results revealed that with an increase in hydrophobicity, water transport in GDLs 
changes from piston-flow to channelled flow.  
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1. Introduction 

Hydrogen fuel cells have attracted increased attention over the past few years 
because of their zero emission. During their operation, the cells produce water at the 
cathode. Whilst the presence of some water in the cathode is essential to keep the 
cell membrane humid so as to efficiently conduct protons from the anode to the 
cathode, excessive accumulation of water could result in flooding at the cathode and 
hence deteriorate the cell’s performance. As such, how to effectively manage the 
water is an essential issue in fuel cell design. 

The key components in fuel cells are porous gas diffusion layers (GDLs). The GDLs 
provide not only mechanical support to the cells, but also pathways for gases to 
move from gas-supply channels to catalyst layers where the electrochemical 
reactions take place to release the electrons from hydrogen. For the GDL at the 
cathode, it also needs to drain liquid water produced during the electrochemical 
reaction. Therefore, the cathode GDL has to provide pathways for both liquid water 
and gases to move simultaneously but in opposite directions. In practice, the GDL is 
often made hydrophobically heterogeneous so as to force water into a few channels, 
thereby leaving some space for gases to move through in the opposite direction from 
the gas-supply channel to the catalyst layer. As a result, spatial distribution of the 
water in the GDL controls gas flow and hence fuel cell performance. Because of its 
opaque nature, water distribution in GDLs is difficult to visualise. The existing work 
on water management in fuel cells is largely based on macroscopic models to predict 
saturation [1]. Whilst the saturation tells the percentage of pores that are filled by 
water, what controls gas flow in GDLs is the connectedness of the pores that remain 
unoccupied by water. The development in imaging technology over the past decade 
has been overcoming this barrier, and there has been increased research in the use 
of neutron imaging to visualise liquid water distribution in operating cells [2]. In our 
previous work, we have successfully visualised the 3D structure of the GDL at a 
resolution less than one micron using both computed X-ray tomography and FIB 
technology [3]. This, in combination with computational fluid dynamics, such as the 
lattice Boltzmann (LB) method and smooth particle hydrodynamic methods, has 
made simulation of water flow and water distribution in GDLs feasible at scales as 
fine as a few hundred nanometers [4]. 

Several LB models have been developed since the 1980s to simulate two-phase flow. 
The earliest lattice-type two-phase model is the approach proposed by Rothman and 
Keller [5] (referred to as the RK model hereafter) based on the lattice gas algorithm 
(LGA). Because of its nature, the RK model inherited some drawbacks of the LGA 
such as numerical noises. Gunstensen et al. [6,7] developed the LGA-based RK 
model into the LB model based on the concept of McNamara and Zanetti [8] using a 
linearised collision operator proposed by Higuera and Jimenez [9]. The RK model 
used two coloured particles to represent the two phases, and a perturbation to 
approximately recover Laplace’s law at the fluid interface; it overcomes some 
drawback of the original RK model, including lack of Galilean invariance and 



statistical noise. The drawback of this model is that it is not rigorously based upon 
thermodynamics and is thus difficult to incorporate microscopic physical processes 
[10]. In addition, the pressure in this model is velocity-dependent, and the linearised 
collision operator is not computationally efficient [11]. Recently, Ahrenholz et al. has 
combined the RK model with the multiple-relaxation time LB model to simulate 
unsaturated water flow in glass bead columns [12]. 

Another two-phase LB model is the method proposed by Shan and Chen [13,14] 
(referred to as the SC model hereafter) and its modified versions [15,16]. In the SC 
model, a nonlocal interaction force between particles of different fluids at 
neighbouring lattices is introduced, similar to the van der Waals attraction between 
fluid particles. Phase separation occurs when the attractive interaction is strong 
enough. Hou et al. [17] compared the RK and SC models, finding that the SC model 
is superior to the RK model in reducing numerical noise and handling fluids with 
contrasting densities. Recent development in the RK model has shown that such 
spurious noise can be reduced or even eliminated by using Latva-Koko’s operator in 
the re-recolour step [18]. This could make the RK model more competitive than the 
SC model as revealed in a comparative study by Huang et al. [19]. Both the RK 
model and the SC model are based on the same lattice Boltzmann equation, thus 
they are efficient for parallelisation and easy to handle complicated boundaries. The 
SC model is a phenomenally-based model and does not conserve momentum locally. 
As such, some key parameters such as fluid–fluid surface tension cannot be derived 
a priori, and have to be estimated based on numerical experiments. Also, the SC 
model cannot handle fluids with large density ratios. 

The third two-phase LB model is the free-energy approach developed by Swift et al. 
[20,21]. In this model, the equilibrium distribution function in the classical LB model 
for ideal gases is modified so as to make it capable of simulating two-phase flow. 
The free-energy LB model conserves mass and momentum both locally and globally, 
and is formulated to account for the equilibrium thermodynamics of non-ideal gases. 
The major drawback of this model is the unphysical non-Galilean invariance for the 
viscous terms in the macroscopic Navier–Stokes equation. 

The above three models are widely used in the literature to simulate two-phase flow 
with each having pros and cons as they are not directly derived from the kinetic 
theory. He et al. proposed a two-phase model by linking the LB model to the 
Boltzmann equation in the kinetic theory [22]. However, numerical experiences 
revealed that this method is susceptible to numerical instability, particularly for fluids 
with large density and viscosity ratios. To improve its numerical stability, Lee and Lin 
[23] developed a stable discretisation method to solve the lattice Boltzmann equation 
proposed by He et al. [22]; results showed that the improved discretisation method 
significantly enhances stability and can hence handle fluids with density ratios as 
high as 1:1000. Other two-phase models developed over the past decade for 
simulating fluids with high density ratios include the method of Zheng et al. [24] and 
of Inamuro [25]. One drawback of these methods is that they need to calculate 



spatial derivatives up to second order, making them cumbersome to simulate two-
phase flow in porous media because of the complicated fluid–solid boundary. 
Furthermore, most two-phase flow in porous media is dominated by capillary forces. 
As a result, both the RK and SC models can offer good solutions and are widely 
used in practice. 

There has been an increase in the use of LB models to simulate two-phase flow in 
fuel cells over the past few years. For example, Mukherjee and Wang [26] studied 
the influence of pore structure and GDL wettability on water transport and interfacial 
dynamics in stochastically constructed catalyst layers and gas diffusion layers in fuel 
cells. Niu et al. [27] did similar work in attempts to examine water flow in 
stochastically reconstructed GDLs and the dependence of relativepermeability for 
both air and water on water saturation. For water flow in the gas-supply channel, 
Hao and Cheng [28] simulated the dynamic behaviour of a water droplet under 
different flow conditions. The purpose of this paper is to investigate the impact of 
hydrophobicity on water intrusion in the GDLs using the SC model. The paper is 
organised as follows. We first describe the SC model in Section 2, and then explain 
how we determined the water–gas surface tension and the contact angle in Section 
3. The implication and limitations of the model are discussed in Section 4. 

2. Methodology 

The lattice Boltzmann method consists of two steps: The first step is to calculate the 
collision between fluid particles, and the second step is to stream the fluid particles. 
In this paper, we consider two fluids and the evolution of the fluid–particle distribution 
functions for each fluid is described by the following equation [29]: 

∫ (𝑥𝑖 + 𝑐𝑎∆𝑡, 𝑡 + ∆𝑡)𝑘
𝑎 − ∫ (𝑥𝑖, 𝑡)

𝑘
𝑎 = −𝑀𝑀𝑀−1 �∫ (𝑥𝑖, 𝑡)

𝑘
𝑎 − ∫ (𝑥𝑖, 𝑡)

𝑘(𝑒𝑒)
𝑎 �   (1) 

where 𝑥𝑖 is a position vector, 𝑡 is time, ∫ (𝑥𝑖, 𝑡)
𝑘
𝑎  is the particle distribution function of 

fluid 𝑘 , moving in the 𝑎 th direction with velocity 𝑐𝑎 , ∫ (𝑥𝑖, 𝑡)
𝑘(𝑒𝑒)
𝑎  is the equilibrium 

distribution functions of fluid 𝑘, ∆𝑡 is a time step during which the particle moves from 
one lattice into another. In this paper, we used the D3Q19 model in which, as shown 
in Fig. 1, the lattice velocity  𝑐𝑎 is defined as follows: 
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where 𝑐 is the side length of each cubic lattice. In Eq. (1), 𝑀 = −𝑀−1𝑀𝑘𝑀 is a matrix 
describing the collision between fluid particles, whereM is a transform matrix that 
transforms the distribution functions into moments, and 𝑀𝑘  is a diagonal matrix to 
perform the relaxation collision in moment space. The terms of 𝑀𝑘 are given by 



𝑀𝑘 = 𝑑𝑑𝑎𝑑�𝑀0𝑘, 𝑀1𝑘, … , 𝑀18𝑘 �         (3) 

where 𝑀1𝑘, 𝑀2𝑘, 𝑀9𝑘, 𝑀10𝑘 , 𝑀11𝑘 , 𝑀12𝑘 , 𝑀13𝑘 , 𝑀14𝑘 , 𝑀15𝑘  are related to the kinematic viscosity of 
fluid 𝑘12]. As proven in the literature, a good choice for the values of the relaxation 
parameters in Eq. (3) are [30,31]: 

𝑀0𝑘 = 𝑀2𝑘 = 𝑀5𝑘 = 𝑀7𝑘 = 0
𝑀1𝑘 = 𝑀3𝑘 = 𝑀9𝑘 = 𝑀10𝑘 = 𝑀11𝑘 = 𝑀12𝑘 = 𝑀13𝑘 = 𝑀14𝑘 = 𝑀15𝑘 = 1/𝜏𝑘
𝑀4𝑘 = 𝑀6𝑘 = 𝑀8𝑘 = 𝑀16𝑘 = 𝑀17𝑘 = 𝑀18𝑘 = 8�(2 − 1/𝜏𝑘)/(8− 1/𝜏𝑘)�

       (4) 

where 𝜏𝑘 is a dimensionless parameter that is related to the viscosity of fluid 𝜇𝑘 in 
that 𝜇𝑘 = 𝑐2(𝜏𝑘 − 0.5)/3Δ𝑡. In the above LB model, the collision was calculated in the 
moment space as follows: 

∫ (𝑥𝑖 + 𝑐𝑎∆𝑡, 𝑡 + ∆𝑡)𝑘
𝑎 = ∫ (𝑥𝑖, 𝑡)

𝑘
𝑎 − 𝑀−1𝑀𝑘 �𝑚𝑎
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Where 𝑚𝑎
𝑘 = 𝑀 × ∫𝑘𝑎  is the moment and 𝑚𝑎

𝑘(𝑒𝑒) = 𝑀 × ∫𝑘
(𝑒𝑒)

𝑎 . The transformation 
matrix 𝑀 was given in detail in [29]. The equilibrium distribution functions for the 
D3Q19 model are given by 

∫ = 𝜔𝑎𝜌𝑘 �1 −
3
2
𝑢𝑘
𝑒𝑒∙𝑢𝑘

𝑒𝑒

𝑐𝑠2
�𝑘(𝑒𝑒)

𝑎     𝑎 = 0,

∫ = 𝜔𝑎𝜌𝑘 �1 + 3 𝑐𝑎𝑢𝑘
𝑒𝑒

𝑐𝑠2
+ 9

2
�𝑐𝑎𝑢𝑘

𝑒𝑒�
2

𝑐𝑠2
− 3

2
𝑢𝑘
𝑒𝑒∙𝑢𝑘

𝑒𝑒

𝑐𝑠2
�𝑘(𝑒𝑒)

𝑎     𝑎 = 1, … ,18
    (6) 

where 𝜔𝑎 =  1/1/3, 𝜔1,…,6 = 1/18, 𝜔7,…,18 = 1/36, 𝑐𝑠2 = 𝑐2/3∆𝑡2 . The equilibrium 
velocity 𝑢𝑘

𝑒𝑒 in Eq. (6) for fluid 𝑘 is determined by: 

𝜌𝑘𝑢𝑘
𝑒𝑒 = 𝜌𝑘𝑢′ + 𝜏𝑘𝐹𝑘          (7) 

where 𝑢′  is bulk velocity and is calculated by 

𝑢′ = ∑ 𝜌𝑘𝑢′/𝜏𝑘𝑘
∑ 𝜌𝑘/𝜏𝑘𝑘

           (8) 

in which 𝜌𝑘 is the density of fluid 𝑘 and calculated by 𝜌𝑘 = ∑ ∫𝑘𝑎
18
𝑖=0 , and 𝑢𝑘 is the 

velocity of fluid 𝑘 and calculated by  𝜌𝑘𝑢𝑘 = ∑ ∫ 𝑐𝑎
𝑘
𝑎

18
𝑖=0 . 𝐹𝑘 is the net force acting on 

fluid 𝑘, including fluid–fluid interaction 𝐹1𝑘 and fluid–solid interaction 𝐹2𝑘. That is, 

𝐹𝑘 = 𝐹1𝑘 + 𝐹2𝑘           (9) 

The fluid–fluid reaction is calculated as follows: 

𝐹1𝑘(𝑥) = −𝜌𝑘(𝑥)∑ ∑ 𝐺𝑘𝑘(𝑥, 𝑥′)𝜌𝑘(𝑥′)(𝑥′ − 𝑥)𝑘𝑘′       (10) 



 

Figure 1: Structure of the D3Q19 LB model 

where 𝐺𝑘𝑘(𝑥, 𝑥′) is the Green’s function and satisfies 𝐺𝑘𝑘(𝑥, 𝑥′) = 𝐺𝑘𝑘(𝑥, 𝑥′). In this 
paper, it is calculated by 

𝐺𝑘𝑘(𝑥, 𝑥′) = �
𝑑𝑘𝑘|𝑥 − 𝑥′| = 𝑐

𝑑𝑘𝑘/2|𝑥 − 𝑥′| = √2𝑐
0 𝑜𝑡ℎ𝑒𝑒𝑒𝑑𝑒𝑒

        (11) 

where 𝑑𝑘𝑘  represents the strength of the fluid–fluid reaction. The fluid–solid reaction 
is modelled by 

𝐹2𝑘(𝑥) = −𝜌𝑘(𝑥)𝐺𝑘𝑠(𝑥, 𝑥′)𝑛𝑠(𝑥′)(𝑥′ − 𝑥)       (12) 

where 𝑛𝑠(𝑥′) is a non-zero constant at the fluid–solid interface and zero otherwise. 
𝐺𝑘𝑠(𝑥, 𝑥′) represents fluid–solid interaction strength and defines the wall wettability. 
To ensure consistency with the fluid–fluid interaction, the fluid–wall interactive 
strength is described by 

𝐺𝑘𝑠(𝑥, 𝑥′) = �
𝑑𝑘𝑠|𝑥 − 𝑥′| = 𝑐

𝑑𝑘𝑠/2|𝑥 − 𝑥′| = √2𝑐
0 𝑜𝑡ℎ𝑒𝑒𝑒𝑑𝑒𝑒

        (13) 

The sign of 𝑑𝑘𝑠 describes a hydrophobic or hydrophilic solid. 

A material in a 3D image acquired by X-ray tomography is represented by a number 
of cubic elements. The 3D image is a gray photo with each element represented by 
an attenuation number ranging from 0 to 255, depending on the components in the 
element. A binary 3D structure is obtained from the gray image using the threshold 
method in which any elements with attenuation number less than the threshold are 
thought of as pores, and those with attenuation number higher than the threshold are 
classified as fabric solid. Because of this nature of tomography, any curved solid 
surface is approximated by a staircase surface in the 3D X-ray image; 



mathematically, this is a first-order approach. Efforts have been made over the past 
few years to rebuild smooth solid surface based on the zigzag surface in 
reconstructed images of porous materials for LB simulations [32]. However, for 
complicated porous materials like the GDLs investigated in this paper, the X-ray 
images always have errors to represent the void–solid surface due to the resolution 
limitation of imaging technology. As a result, we did not reprocess the binary X-ray 
images so as to make the staircase solid surface smooth. Instead, all the simulations 
used the original binary structures in which both pore and solid were represented by 
cubes each with a side length of 1.76 μm. All the distribution functions were defined 
at the centre of the cube, and the fluid–solid boundary was solved by the bounce 
back method. Because all cubic elements are the same, any particle in an element 
with its moving direction adjacent to a solid wall will move back to the element after 
the bouncing-back. Such a treatment is the special case of the method proposed by 
Bouzidi et al. [33] with the parameter q (Eq. (6) in [33]) being 1/2. 

Water intrusion through the image was simulated by applying a pressure drop in one 
direction; the pressure drop was simulated by imposing one prescribed pressure at 
the inlet boundary and one prescribed pressure at the outlet boundary, respectively; 
the other four sides of the 3D image were treated as periodic boundaries in which 
any particle exiting the image from one side re-enters the image from the opposite 
side with its mass and momentum remaining unchanged. The prescribed pressures 
were solved using the method proposed by Zou and He [34]. 

 

Figure 2: Change of pressure drop across the bubble surface with bubble radius 

3. Simulation and results analysis 

The measurable parameters at macroscopic scale which control water intrusion in 
GDL are fluid–fluid surface tension and the fluid–fluid–solid contact angle, whilst the 
input parameters to the LB model are the fluid–fluid reaction strength parameter 𝑑𝑘𝑘 
and the fluid–solid reaction strength parameter gks, which are not measurable. For a 
given two fluids, their surface tension is fully determined by 𝑑𝑘𝑘 , but there is no 
analytical expression for them. The same applies to the dependence of contact angle 
on 𝑑𝑘𝑘  and 𝑑𝑘𝑠. To establish these relationships, a series of numerical experiments 



were carried out to numerically calculate the dependence of the surface tension on 
𝑑𝑘𝑘  and the dependence of contact angle on 𝑑𝑘𝑘  and 𝑑𝑘𝑠. 

3.1. Surface tension 

To establish the relationship between surface tension and 𝑑𝑘𝑘 the formation of water 
droplets with different diameters was simulated in a domain consisting of 50 × 50 ×
50 cubic cells; all the boundaries were treated as periodic boundaries. After the two 
fluids reached steady state, the pressure drop across the fluid–fluid interface was 
measured. The relationship between the pressure drop Δ𝑃 and the radius of the 
water droplet R is described by the following equation: 

Δ𝑃 = 𝜎
𝑅
           (14) 

where 𝜎 is the surface tension, and Δ𝑃 is the pressure difference across the fluid–
fluid interface. 

One limitation of the SC model is that it is unable to deal with fluids with large density 
ratios. For the water–air system investigated in this paper, the density and viscosity 
ratios are 1: 800 and 1: 15, respectively, which is beyond what the SC model can 
handle. Water transport in the GDLs is controlled by several forces and to determine 
which force is in dominance, we estimated the Bond number (ratio of gravity to 
interfacial tension force), capillary number (ratio of viscous force to interfacial force) 
and Reynolds number (ratio of inertial force to viscous force). The average pore size 
in the GDLs is approximately 10 μm. As a result, the ranges of the three numbers 
are: 1.6 × 10−4  for the Bond number, 2.47 × 10−8 − 1.92 × 10−7  for the capillary 
number, and 2.12 × 10−4 − 1.65 × 10−4 for the Reynolds number. This reveals that 
water flow in the GDL is dominated by the capillary force. For numerical stability, in 
all the simulations we used 𝜌1 = 0 and 𝜌2 = 1.0 inside the initial bubbles and 𝜌1 = 1.0 
and 𝜌2 = 0 outside the bubbles. The two dimensionless relaxation-time parameters 
were set to be 𝜏1 = 1.0  and 𝜏2 = 1.2  and the dimensionless fluid–fluid interaction 
coefficient 𝑑𝑘𝑘 was set to be 0.001 in all the simulations. Steady state was deemed 
to have been achieved when the relative difference of the overall fluid velocity 
between two adjacent time steps was less than 10−6. Fig. 2 shows the change of 
pressure drop across the fluid–fluid interface as the radius of the bubbles decreases. 
It is nicely fitted by Eq. (14); the resulting surface tension is 0.366 in lattice units. 

3.2. Contact angle 

For a given 𝑑𝑘𝑘  and hence surface tension, the water–air–solid contact angle is 
determined by 𝑑𝑘𝑠. To establish the dependence of the contact angle on 𝑑𝑘𝑠, a water 
droplet with a radius of eight lattice units was placed on a solid wall in the 𝑧 direction; 
we then simulated its settlement on the wall by using different fluid–solid reaction 
parameters 𝑑𝑘𝑠 . Periodic boundaries were applied to other sides of the 
computational domain. Simulations were carried out using various 𝑑𝑘𝑠 ranging from 



−0.002  to 0.002 ; other parameters remain the same as in the surface-tension 
simulations. Once the two fluids reached steady state, the water–air–solid contact 
angle was calculated as follows: 

tan𝜃 = 𝐿
2(𝑅−𝐻)          (15) 

 

Figure 3: Impact of gks on the shape of the droplets. (a) Initial state; (b) θ > 90° for hydrophobic solid; (c) 
θ = 90° for neutral solid; (d) θ < 90° for hydrophilic solid. (e)–(h) Density contours associated with (a)–(d) 

 

Figure 4: Evaluation of a water droplet in slits. (a)–(c) In hydrophobic slit: (a) initial state, (b) after 5000 
time steps and (c) after 5000 time steps. (d)–(e) In hydrophilic slit: (d) initial state, (e) after 5000 steps and 
(f) after 5000 time steps 

The final radius R is evaluated from H and L by 

𝑅 = 𝐻
2

+ 𝐿2

8𝐻
           (16) 

where 𝐿 is the length of the contact area between the droplet and the solid surface, 
and 𝐻 is the height of the drop. Fig. 3 shows three contact angles obtained using 
different fluid–solid interaction parameters 𝑑𝑘𝑠 and the associated density contours of 
the droplets. The contact angle increases with 𝑑𝑘𝑠; when 𝑑𝑘𝑠 is negative, the contact 
angle is less than 90° and the solid is hydrophobic; when 𝑑𝑘𝑠 is positive, the contact 
angle is greater than 90° and the solid is hydrophilic; when 𝑑𝑘𝑠 is zero, the solid is 
neutral and the associated contact angle is 90°. 



Fig. 4 shows the water distribution in narrow slits simulated using the model for both 
hydrophobic and hydrophilic slits. 

3.3. Water flow in GDLs 

The GDLs used in the simulations were acquired by X-ray micro-tomography at a 
resolution of 1.76 μm. Because of the limitation of computational power, we only 
simulated a small portion of the acquired image. The image is shown in Fig. 5, and 
the size of the image was 50 × 50 × 150 voxels. To mimic water flow in GDLs during 
cell operation, a pressure drop was applied in the z direction in an initially dry GDL. 
Driven by the pressure drop, water moved into the GDLs, but the intrusion speed 
and water distribution in the GDLs change with the pressure drop and the 
hydrophobicity. The pressure drop was maintained by applying a constant water 
pressure and zero air pressure at the inlet, and a constant air pressure and zero 
water pressure at the outlet. Fig. 5(b) shows the initial setup of the simulations. 

To investigate the impact of hydrophobicity, we simulated water intrusion into both 
hydrophobic and hydrophilic GDLs. Figs. 6–9 show the water distribution and the 
invasion pattern driven by different pressure drops. It is evident that the water 
intrudes faster as pressure drop increases. Fig. 6 shows the water distribution in 
both hydrophobic and hydrophilic GDLs driven by a pressure drop of 0.594 kPa. It 
reveals that at low pressure drop, the invading front of the water overcomes the 
barrier pressure only at some preferential locations due to the resistance of the 
capillary force. 

It is evident that as the applied pressure drop increases, the water intrudes deep in 
both hydrophobic and hydrophilic GDLs as shown in Figs. 7–9. However, the water 
distribution in hydrophobic GDLs differs noticeably from that in hydrophilic GDLs. As 
the pressure drop increases, water intrusion in the hydrophilic GDLs likes piston-flow, 
occupying almost all the available pore space as shown in Fig. 9(a), whilst in the 
hydrophobic GDLs, the water was channelled, leaving a significant space for the air 
to flow. This has important implications in fuel cell design.  

 

 



 

Figure 5: (a) Reconstructed GDL image. (b) Initial condition for water intrusion into a dry GDL 

 

Figure 6: Water intrusion into hydrophilic GDL (a), and hydrophobic GDL (b) under a pressure drop of 
0.594 kPa 

 

Figure 7: Water intrusion into hydrophilic GDL (a), and hydrophobic GDL (b) under a pressure drop of 
2.97 kPa 

Fig. 10 further demonstrates the change of saturation under different pressure drops 
when water intrusion reached steady state in both hydrophobic and hydrophilic GDLs. 
The results indicated that the saturation increases with the pressure drop for both 



hydrophilic and hydrophobic GDLs. However, at low pressure drop, the saturation in 
the hydrophobic GDL is much lower than the saturation in hydrophilic GDL, and as 
the pressure drop increases, the difference between hydrophilic and hydrophobic 
GDLs decreases. 

 

Figure 8: Water intrusion into hydrophilic GDL (a), and hydrophobic GDL (b) under a pressure drop of 
5.94 kPa 

 

Figure 9: Water intrusion into hydrophilic GDL (a), and hydrophobic GDL (b) under a pressure drop of 
11.88 kPa. 

 

Figure 10: Comparison of water saturation in hydrophilic and hydrophobic GDLs under different pressure 
drops 



4. Summary and conclusions 

In this paper we investigated numerically the impact of hydrophobicity on water 
intrusion in GDLs used in the hydrogen fuel cell industry. The numerical simulations 
were based on the multiple-relaxation time lattice Boltzmann model. In the 
simulations, the dependence of water–air surface tension and water–air–solid 
contact angle on the LB model parameters was established by simulating the 
formation of water droplets in air and on the top of a solid wall respectively. 
Simulated results revealed that, under high pressure drop, water intrusion in 
hydrophobic GDLs is likely to be channelled, bypassing some pores, whilst in the 
hydrophilic GDLs, water intrusion likes a piston-flow in which water occupies all the 
pore space. Under low and medium pressure drops, because of the capillary barrier, 
water in both hydrophilic and hydrophobic GDLs is unsaturated, but water 
distribution in them is different. In hydrophobic GDLs, the water exists in large pores, 
whilst in hydrophilic GDLs the water intrudes into small pores first. 

We used the SC two-phase model to simulate water intrusion. The SC model is a 
phenomenal model, solving the fluid–fluid interface by the diffused interface method 
in which the interface thickness spans several lattices. Therefore, spatial resolution 
needs to be sufficiently high in order to accurately represent the fluid–fluid interface. 
For example, a recent study of Yu and Fan [31] reveals that the surface tension 
estimated by the SC model using different spatial resolutions not only differs 
significantly but also depends on the value of the relaxation parameters. In fuel cell 
design, what is interesting is the water distribution when flow reaches a steady state. 
Furthermore, since water flow in GDLs is dominated by capillary, the two relaxation 
parameters we used for both fluids were close to unity in the simulations; the water–
air surface tension is recovered by adjusting the time step. This naturally overcomes 
the dependence of surface tension on the relaxation parameters. For the impact of 
the spatial resolution, the porosity of a typical GDL is approximately 0.8 and the 
average pore size is 10 μm. The X-ray images were acquired at a very high 
resolution, 1.7 μm, which should be sufficient for LB simulations. Because of the 
heterogeneous nature of GDLs, however, it is likely that some fine pores in the GDLs 
might have been poorly represented in the X-ray image; the impact of such pores on 
the accuracy of the simulated results is an issue that needs further investigation. In 
all 3D simulations, there is always a trade-off between solution accuracy and the size 
of the sample which should be big enough to be representative. Yu and Fan 
proposed an adaptive mesh method which could be useful to solve this dilemma, 
using a fine mesh in fine pores and a coarse mesh in big pores [31]. Nonetheless, 
the results presented in this paper provide some insights into the impact of 
hydrophobicity on water intrusion in GDLs. The results show that manufacturing 
hydrophobic GDLs is able to force water into channels, but hydrophobicity makes 
water difficult to move from GDLs to the gas supply channel. Therefore, in designs, 
fully hydrophobic GDLs might not be able to improve water management. An 
alternative is to make GDLs heterogeneously hydrophobic in that some areas are 



hydrophilic and some areas are hydrophobic. As such, liquid water can be 
channelled under both high pressure and low pressure. How to experimentally 
quantify the heterogeneous hydrophobicity of GDLs and its effect on water flow is 
under development, and we will present the results in future publications. 
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