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Abstract

Description of the interaction of a shallow-water wave with variable topography is a classical

and fundamental problem of fluid mechanics. The behaviour of linear waves and isolated

solitary waves propagating over an uneven bottom is well understood. Much less is known

about the propagation of nonlinear wavetrains over obstacles. For shallow-water waves,

the nonlinear wavetrains are often generated in the form of undular bores, connecting two

different basic flow states and having the structure of a slowly modulated periodic wave

with a solitary wave at the leading edge.

In this thesis, we examine the propagation of shallow-water undular bores over a nonuni-

form environment, and also subject to the effect of weak dissipation (turbulent bottom

friction or volume viscosity). The study is performed in the framework of the variable-

coefficient Korteweg-de Vries (vKdV) and variable-coefficient perturbed Korteweg-de Vries

(vpKdV) equations. The behaviour of undular bores is compared with that of isolated soli-

tary waves subject to the same external effects. We show that the interaction of the undular

bore with variable topography can result in a number of adiabatic and non-adiabatic ef-

fects observed in different combinations depending on the specific bottom profile. The

effects include: (i) the generation of a sequence of isolated solitons – an expanding large-

amplitude modulated solitary wavetrain propagating ahead of the bore; (ii) the generation

of an extended weakly nonlinear wavetrain behind the bore; (iii) the formation of a tran-

sient multi-phase region inside the bore; (iv) a nonlocal variation of the leading solitary

wave amplitude; (v) the change of the characteristics wavelength in the bore; and (vi)

occurrence of a “modulation phase shift” due to the interaction. The non-adiabatic effects

(i) – (iii) are new and to the best of our knowledge, have not been reported in previous

studies. We use a combination of nonlinear modulation theory and numerical simulations

to analyse these effects. In our work, we consider four prototypical variable topography

profiles in our study: a slowly decreasing depth, a slowly increasing depth , a smooth

bump and a smooth hole, which leads to qualitatively different undular bore deformation

depending on the geometry of the slope. Also, we consider (numerically) a rapidly varying

depth topography, a counterpart of the “soliton fission” configuration. We show that all

the effects mentioned above can also be observed when the undular bore propagates over

a rapidly changing bottom .

We then consider the modification of the variable topography effects on the undular bore

by considering weak dissipation due to turbulent bottom friction or volume viscosity. The

dissipation is modelled by appropriate right-hand side terms in the vKdV equation.
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The developed methods and results of our work can be extended to other problems involving

the propagation of undular bores (dispersive shock waves in general) in variable media.

Keywords: undular bore, solitary wave, Korteweg-de Vries equation, Whitham equations,

variable topography, Riemann invariants, adiabatic and non-adiabatic deformations.
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Abbreviations

KdV – Korteweg-de Vries

vKdV – variable-coefficient Korteweg-de Vries

pKdV – perturbed Korteweg-de Vries

vpKdV – variable-coefficient perturbed Korteweg-de Vries

KdVB – Korteweg-de Vries-Burgers

vKdVB – variable-coefficient Korteweg-de Vries-Burgers

DSW – Dispersive shock waves

MOL – Method of Lines

ODEs – Ordinary differential equations

PDEs – Partial differential equations
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Chapter 1

Introduction

The “great wave of translation” or solitary wave was first observed by John Scott Russell

while he was riding on horseback along the Edinburgh-Glasgow canal. He observed that

a smooth, bell shaped crest about half a meter high emerged at the front of a boat when

the boat stopped suddenly after been hit by an underwater obstruction. He reported his

observations to the British Association in his “Report on Waves” (Russell, 1845) and did

extensive laboratory experiments to study this phenomenon more carefully (Miles, 1980,

1981).

The first mathematical theory to explain the observation by Russell was done by Boussinesq

(1872) followed by Lord Rayleigh (1876). Later, Korteweg & de Vries (1895) derived a

nonlinear evolution equation governing long one dimensional, small amplitude, surface

gravity waves propagating in a shallow water channel of constant depth and found solitary

wave solutions (Miles, 1980, 1981). This equation is now commonly known as the Korteweg-

de Vries (KdV) equation although Boussinesq (1877) appeared to derive it first.

When Zabusky & Kruskal (1965) integrated the KdV equation numerically while they were

investigating the Fermi, Pasta and Ulam (FPU) problem, they discovered that these solitary

wave solutions have a remarkable property of retaining their shapes and speeds after the

pairwise interaction, i.e. the interaction of the KdV solitary wave is elastic with some

additional spatial phase shift. Therefore, they coined the term ‘soliton’ which is today

used as a synonym for solitary wave in integrable model.

In real world problems, nonlinear waves are often propagating through a nonuniform en-

vironment, e.g. shallow water waves approaching a beach. The first notable experimental

work on shoaling and breaking of solitary waves was done by Ippen & Kulin (1954) and nu-

merical studies were performed by Peregrine (1967) and Madsen & Mei (1969). To derive

the appropriate mathematical model for this type of problem, one has to take into ac-

count the effect of the varying depth. For surface water waves, the appropriate model was

derived independently by Kakutani (1971) and Johnson (1973b) in the framework of the

variable-coefficient KdV equation. The detailed analysis of the behaviour of solitary wave

over variable topography was carried out by Grimshaw (1970, 1971); Johnson (1973b,a).

Now, the theory behind the solitary waves propagation in uniform and nonuniform envi-

ronments is well-developed and the effects of variable topography on the free-surface and
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internal solitary waves evolution are well-understood (Grimshaw, 2004, 2005, 2007a).

However, the analogous theory for nonlinear wavetrain propagation in a variable environ-

ment is not so well-developed. In the context of water waves, nonlinear wavetrains are

often generated in the form of undular bores, which connect two different basic flow states

and exhibit solitary waves at one of the edges. Undular bores can be generated as the

result of dispersive resolution of a shock or an initial discontinuity in fluid depth/ velocity

(Smyth & Holloway, 1988; El et al., 2006; Esler & Pearce, 2011). Another way to form

an undular bore is through the resonant interaction of a fluid flow with variable topog-

raphy (Grimshaw & Smyth, 1986; El et al., 2009). So, the principal aim of the thesis is

to study the effects of variable topography and/ or bottom friction on the propagation of

shallow-water undular bores.

In a weakly nonlinear and weakly dispersive medium, a shallow-water undular bore is

described by a slowly modulated periodic solution of the constant-coefficient KdV equa-

tion with solitary wave at the leading edge and linear sinusoidal wave at the trailing

edge. The corresponding asymptotic solution was obtained and studied thoroughly by

Gurevich & Pitaevskii (1973, 1974) using the Whitham modulation theory. It was shown

in Khruslov (1976) (see also Claeys & Grava, 2010) that at large time, the leading soli-

tary wave of undular bores represents asymptotically a genuine isolated KdV soliton, not

constrained by the interaction with the remainder of the bore. However, in a variable en-

vironment, the evolution of the leading solitary wave in the undular bore could be strongly

affected by the interaction with the wavetrain behind it. One of the objectives of this thesis

is to study the behaviour of the leading solitary wave of undular bores when propagating

over variable topography and to understand how it differs from the evolution of an isolated

solitary wave propagating in the same environment. This is also relevant to many physical

problems involving the propagation of dispersive shock waves/ undular bores in weakly

inhomogeneous media, e.g. the modelling of near-shore tsunami propagation (Grue et al.,

2008; Madsen et al., 2008) or the description of dispersive shock waves in expanding Bose-

Einstein condensates (Hoefer et al., 2006).

The structure of the thesis is as follows: first, in Chapter 2, we introduce the Whitham

modulation theory, which will be our principal tool throughout the entire work. We describe

briefly how the modulation equations for the KdV equation are derived by averaging the

KdV conservation laws as originally proposed by Whitham (1965). In the same chapter, we

also present a modern approach to derive the modulation equations based on the associated

spectral problem. This approach was originally proposed by Flaschka et al. (1980) for

multi-phase averaging of the KdV equation and then adapted by Kamchatnov (1997) for
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single-phase averaging of integrable equation belonging to the AKNS hierarchy. We employ

Kamchatnov’s method to recover the Riemann invariant form of the KdV modulation

system, originally developed by Whitham (1965). We then continue by discussing the

classical Gurevich & Pitaevskii (1973, 1974) modulation solution describing the evolution

of a dispersive shock wave (undular bore). This asymptotic result will be used extensively

in our work.

Chapter 3 discusses the propagation of solitary waves over varying depth regions. We start,

following Grimshaw (2007a), with a brief outline of the derivation of the governing equa-

tion, which is the variable-coefficient KdV equation. We then present a detailed analysis on

how solitary waves behave when they propagate over various types of varying topography,

e.g. rapidly changing bottoms and slowly varying slopes. The results are important for

our work later.

The main results of the thesis are presented in Chapters 4 and 5. In Chapter 4, we

consider the propagation of undular bores over variable topography using the mathematical

model outlined in Chapter 3. However, now we shall consider our initial condition for the

governing equation to be in the form of a smooth step, which leads to the generation of an

undular bore. The initial step is placed far before the slope so that the generated undular

bore is fully developed when it enters the sloping region. Using the modulation theory and

detailed numerical simulations, we study the adiabatic and non-adiabatic deformations

of the undular bore when propagating over slowly varying topography. We consider four

prototypical configurations for variable topography region: slowly decreasing depth, slowly

increasing depth, a smooth bump and a smooth hole. Also, we consider numerically the case

when the undular bore propagates over a region of rapidly varying depth, an undular bore

counterpart of the “soliton fissioning” setting. We are particularly interested in looking at

how the behaviour of the leading solitary wave of the undular bore differs from that of an

isolated single solitary wave described in Chapter 3.

In Chapter 5, we extend the problem considered in Chapter 4 by including the effects of

weak dissipation (bottom friction or volume viscosity), which are modelled by the addi-

tional perturbation term in the variable-coefficient KdV equation. Here, we consider three

different types of weak dissipation: (a) Chezy bottom friction, (b) linear bottom friction

and (c) Burgers friction (volume viscosity), and examine the impact of these types of dissi-

pation on the evolution of solitary waves and undular bores over the depth varying regions.

Most of the results in this chapter are numerical, although we also use the analytical in-

sights from the Chapter 4 to interpret the modifications of the wave structure due to the

dissipative effects.
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The final chapter provides the summary and reviews the main conclusions of the thesis.

Here, we also give some insights on how our work can be extended for a future study.

The detailed description of the numerical method used throughout the entire work is in-

cluded in the Appendix.
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Chapter 2

Whitham modulation theory and undular bores

In this chapter, we will look at the Whitham modulation theory, which is the main analytical

tool used in the thesis. We start by finding the periodic solution of the KdV equation. Next,

we give a brief outline of the general procedure of obtaining the modulation equations as

suggested by Whitham (1965). After that, we present an alternative approach for deriving

the KdV-Whitham equations developed by Kamchatnov (1997, 2000). Then, we give a

brief overview on dispersive shock waves, their occurrences in the natural world and the

dispersive shock wave solution of the KdV equation as studied by Gurevich & Pitaevskii

(1973, 1974). At the end of this chapter, we discuss briefly about the perturbed modulation

equations as obtained by Kamchatnov (2004) when there is a small perturbation term in

the KdV equation. Also, we show the two qualitatively different types of behaviour of the

leading solitary wave of the undular bore as the result of the external perturbation in the

KdV equation (El et al., 2007).

2.1 Periodic solution of the KdV equation

The KdV equation in the canonical form is

ut + 6uux + uxxx = 0. (2.1)

To find the periodic solution, we seek the solution in the form of u = u(ξ) where ξ = x−V t
and V is the phase velocity. Hence (2.1) reduces to

uξξξ = V uξ − 6uuξ. (2.2)

After integrating twice, we obtain

1

2
u2ξ = −A+Bu+

1

2
V u2 − u3

≡ f(u) = −(u− b1)(u− b2)(u− b3),



 (2.3)

where A and B are integration constants.

Equation (2.3) has real bounded solutions if f(u) has three real roots denoted by b1 >

b2 > b3. The real oscillating solution corresponds to the motion of u between b2 ≤ u ≤ b1,
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2.1. PERIODIC SOLUTION OF THE KDV EQUATION

where f(u) ≥ 0. Thus, the three constants, A,B and V are related to the three roots by

A = −b1b2b3, −B = b1b2 + b2b3 + b1b3, V = 2(b1 + b2 + b3). (2.4)

We can rewrite equation (2.3) as

du

dξ
= ±

√
2(b1 − u)(u− b2)(u− b3), (2.5)

so that the periodic solution of the KdV equation is given implicitly by

√
2ξ =

∫ b1

u

du′√
(b1 − u′)(u′ − b2)(u′ − b3)

. (2.6)

By introducing new variables

u′ = b1 − (b1 − b2) sin
2 φ′, and sinφ′ =

√
b1 − u′

b1 − b2
, (2.7)

equation (2.6) becomes

√
2ξ =

2√
b1 − b3

∫ φ

0

dφ′√
1−m sin2 φ′

,

=
2√

b1 − b3
F (φ,m), (2.8)

where

m =
b1 − b2
b1 − b3

, 0 ≤ m ≤ 1, (2.9)

is the modulus, and F (φ,m) is the incomplete elliptic integral of the first kind. As the

result of these transformations, the periodic solution u(ξ) of the KdV equation is given by

u(x, t) = b2 + (b1 − b2)cn
2(
√

2(b1 − b3)(x− V t),m), (2.10)

where cn(ξ,m) is the Jacobi elliptic sine function. Equation (2.10) is known as cnoidal

wave solution. The wavelength of the cnoidal wave (2.10) is given by

L =

∫ L

0
dξ = 2

∫ b1

b2

du′√
2(b1 − u′)(u′ − b2)(u′ − b3)

,

=
2
√
2K(m)√
b1 − b3

, (2.11)

where K(m) is the complete elliptic integral of the first kind. The waveform specified by

equation (2.10) depends on the value of the modulus m (see Figure 2.1). When m → 0

(i.e. b1 → b2), equation (2.10) becomes a small-amplitude harmonic wave solution

u(x, t) = a cos2
[
2

√
a

m
(x− V t)

]
+ b2, (2.12)

propagating against the background b2. On the other hand, when m → 1 or b2 → b3, we

obtain a solitary wave solution

u(x, t) = 2a sech2
[√
a(x− V t)

]
+ b3, (2.13)

propagating on the background b3.
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2.2. WHITHAM METHOD

m = 1

m = 0.98

m = 0.64

m = 0.1

Figure 2.1: Periodic solution of the KdV equation with different values of m

2.2 Whitham method

If one allows the parameters b1, b2 and b3 of the periodic solution of the KdV equation

(2.1) to be functions of x and t on a large spatio-temporal scale, then the periodic solution

(2.10) will be slowly modulated, i.e. these parameters change little in one wavelength. As

a result, we have encountered the problem of deriving the equations describing the slow

evolution of these parameters. Formally, we would write bi = bi(X,T ) where X = εx,

T = εt and ε≪ 1. However, we are not going to introduce the small parameter explicitly.

Instead, we shall assume that x and t vary on a large scale in the modulation equations.

These modulation equations are commonly known as the Whitham modulation equations.

They can be obtained by using multiple-scale perturbation method, which involves some

extensive calculations.

A more convenient formal approach was proposed by Whitham (1965) (see also Whitham,

1974; Kamchatnov, 2000). Whitham proposed simply to average conservation laws over the

periodic family rather than derive the modulation equations via multiple-scale expansions.

Later, the Whitham prescription was rigorously justified using formal perturbation the-

ory (Luke, 1966; Dobrokhotov & Maslov, 1982) and also the inverse scattering transform

(Lax et al., 1994).

Generally, let us suppose that we have the evolution equation in the form

Φ(u, ut, ux, utt, utx, uxx, . . .) = 0, (2.14)

and we want to seek the periodic solution in the form of

u = u(ξ), ξ = x− V t.
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2.2. WHITHAM METHOD

Assume that (2.14) can be reduced into

u2ξ = F (u, V,Ai), (2.15)

where Ai = Ai(b),b = bi are integration constants obtained when reducing (2.14) into

(2.15). Let b1 and b2 denote the zeros of F (u) where F (u) ≥ 0. The periodic solution

corresponds to oscillations of u between b2 and b1. The wavelength is given by

L = 2

∫ b1

b2

du√
F (u;V,Ai)

.

Suppose that we have a set of conservation laws for (2.14),

∂Pi

∂t
+
∂Qi

∂x
= 0, i = 1, 2, 3, . . . , N, (2.16)

which, in general, can be deduced from the evolution equations. Equation (2.16) is then

averaged over a period of the travelling wave solution according to the averaging formula

〈F 〉 = 1

L

∫ L

0
F dξ,

so that the modulation equations are

∂

∂t
〈Pi〉+

∂

∂x
〈Qi〉 = 0, i = 1, 2, 3, . . . , N. (2.17)

Note that x and t in equation (2.17) vary on a much larger scale than in equation (2.16).

If det[∂〈Pi〉/∂bj ] 6= 0, then equations (2.17) represent a hydrodynamic type system for

bi(x, t). These equations can then be handled by the using general theory of hyperbolic

quasi-linear systems and the theory of characteristics in particular.

For the KdV equation (2.1), we need to average any three independent conservation laws

from the infinite set of conservations laws (Miura et al., 1968). The first two conservation

laws are (Drazin & Johnson, 1989)

ut + (3u2 + uxx)x = 0,(
1

2
u2
)

t

+

(
2u3 + uuxx −

1

2
u2x

)

x

= 0.

For the third conservation law, the ‘conservation of waves’ equation, kt+ωx, can be used to

obtain the modulation equations. Whitham (1965) showed that by introducing symmetric

combinations

λ1 = −b1 + b2
2

, λ2 = −b1 + b3
2

and λ3 = −b2 + b3
2

, (2.18)

the modulation equations reduce to the diagonal form

∂λi
∂t

+ vi
∂λi
∂x

= 0, (2.19)
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2.3. DERIVATION OF THE WHITHAM EQUATIONS FOR THE KDV
EQUATION VIA SPECTRAL APPROACH

where

vi = −2(λ1 + λ2 + λ3) +
2L

∂L/∂λi
,

=

(
1− L

∂iL
∂i

)
V, ∂i ≡

∂

∂λi
, i = 1, 2, 3.

λi are known as Riemann invariants and vi are characteristics velocities, which can be

expressed explicitly as

v1 = −2(λ1 + λ2 + λ3) +
4(λ3 − λ1)(1 −m)K(m)

E(m)
,

v2 = −2(λ1 + λ2 + λ3) +
4(λ3 − λ2)(1 −m)K(m)

E(m)− (1−m)K(m)
,

v3 = −2(λ1 + λ2 + λ3) +
4(λ3 − λ2)K(m)

E(m)−K(m)
,

where E(m) and K(m) are the complete integrals of the first and second kind respectively.

The modulus m is given by

m =
λ3 − λ2
λ3 − λ1

.

Generally, the Whitham method can be applied to any nonlinear wave equations, which has

periodic traveling wave solutions, e.g. nonlinear Schrödinger equation (Kamchatnov et al.,

2002), Kaup-Boussinesq equation (El et al., 2001, 2005) and Su-Gardner equation (El et al.,

2006). However, the Riemann invariant form can be obtained only in exceptional cases

when the original equation is completely integrable.

2.3 Derivation of the Whitham equations for the KdV equa-

tion via spectral approach

The transformation of the KdV modulation system to the Riemann invariant form involves

rather complicated and ingenious algebra (see Whitham, 1965; Kamchatnov, 2000). A

simpler approach to derive Whitham modulation equations directly in Riemann invariants

was proposed by Kamchatnov (1997) (see also Kamchatnov, 2000). His general method

applies to the equations belonging to the AKNS hierarchy and makes essential use of

the associated spectral problem. We shall use the Kamchatnov’s method to recover the

Riemann invariant form (2.19) of the KdV-Whitham equation.

The integrability of the equations of the AKNS hierarchy is based on the possibility of

presenting the evolution equations as compatibility conditions of two linear systems with

9



2.3. DERIVATION OF THE WHITHAM EQUATIONS FOR THE KDV
EQUATION VIA SPECTRAL APPROACH

spectral parameter. The 2×2 matrix form of the linear problem equivalent to the Lax pair

is given by

Ψx = UΨ, Ψt = VΨ, (2.20)

where

Ψ =

(
ψ1

ψ2

)
, U =

(
F G

H −F

)
, and V =

(
A B

C −A

)
.

The matrix elements depend both on the field variable u(x, t) of the equations under

consideration and on the spectral parameter λ. The compatibility condition Ψxt = Ψtx of

the systems (2.20) yields at once the evolution equations in general form

Ft −Ax +CG−BH = 0,

Gt −Bx + 2(BF −AG) = 0,

Ht − Cx + 2(AH − CF ) = 0.

Another common form of linear equations associated with nonlinear integrable equations

can be written as

ψxx = Aψ, (2.21)

ψt =
1

2
Bxψ + Bψx. (2.22)

The coefficients A and B depend on the field variables and the spectral parameter λ. By

applying the compatibility condition, (ψxx)t = (ψt)xx on both equations (2.21) and (2.22),

we obtain

At − 2BxA−BAx +
1

2
Bxxx = 0. (2.23)

We take two basis solutions ψ+ and ψ− of (2.21) and construct the so-called ‘squared basis

function’ from them

g = ψ+ψ−.

It can be shown that it satisfies the equation

gxxx − 2Axg − 4Agx = 0.

Multiplying the above equation by g/2 and integrating once yields

1

2
ggxx −

1

4
g2x −Ag2 = P (λ). (2.24)

The dependence of g on time t is obtained from the equation

gt = Bgx −Bxg, (2.25)
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2.3. DERIVATION OF THE WHITHAM EQUATIONS FOR THE KDV
EQUATION VIA SPECTRAL APPROACH

which follows from (2.22)

For the KdV equation (2.1), there is only one field variable u(x, t) and

A = −(u+ λ), B = 4λ− 2u. (2.26)

By substituting (2.26) into (2.23), we will have the KdV equation (2.1). Also, equation

(2.24) becomes
1

2
ggxx −

1

4
g2x + (u+ λ)g2 = P (λ), (2.27)

where the integration constant denoted by P (λ) can depend on spectral parameter λ.

From the finite-gap integration theory (see Novikov et al., 1984), it is known that periodic

solutions are distinguished by the condition that P (λ) be a polynomial in λ. For the KdV

equation (2.1), it is a polynomial of third degree. Thus in our case, we take

P (λ) = (λ− λ1)(λ− λ2)(λ− λ3),

= λ3 − s1λ
2 + s2λ− s3,

where
s1 = λ1 + λ2 + λ3,

s2 = λ1λ2 + λ1λ3 + λ2λ3,

s3 = λ1λ2λ3.





(2.28)

The right-hand side of equation (2.27) contains only λ, so we have to look for g in the form

of a polynomial in λ. The simplest nontrivial solution corresponding to the first degree

polynomial is

g = λ− µ(x, t), (2.29)

where µ(x, t) is an unknown variable. On substitution (2.29) into (2.27), we obtain

− 1

2
(λ− µ)µxx −

1

4
µ2x + (u+ λ)(λ− µ)2 = λ3 − s1λ

2 + s2λ− s3. (2.30)

By equating the coefficient for λ2, we have

u(x, t) = 2µ− s1,

= 2µ− (λ1 + λ2 + λ3). (2.31)

Next, after substitution of (2.26) and (2.29) into (2.25), we obtain

µt = (4λ− 2u)µx + 2(µ − λ)ux. (2.32)

If we put the spectral parameter λ = µ, equations (2.30) and (2.32) can be rewritten as

µx = 2
√

−P (µ), (2.33)

µt = (4µ − 2u)µx = 2s1µx. (2.34)
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2.3. DERIVATION OF THE WHITHAM EQUATIONS FOR THE KDV
EQUATION VIA SPECTRAL APPROACH

From (2.34), µ depends on x and t only in the combination ξ = x+2s1t, that is the phase

velocity V is connected with the zeros of the polynomial P (λ) by the relation

V = −2s1,

= −2(λ1 + λ2 + λ3). (2.35)

From (2.33), we have the cnoidal wave solution of the KdV equation directly as a function

of λ1, λ2, λ3

u(ξ) = λ3 − λ1 − λ2 − 2(λ3 − λ2)sn
2(
√
λ3 − λ1ξ,m). (2.36)

Both equations (2.35) and (2.36) coincide with (2.4) and (2.10) respectively if one intro-

duces Riemann invariants λ1 ≤ λ2 ≤ λ3 through the relations in (2.18).

Since the parameters defining the periodic solution are roots of the polynomial P (λ), we

can obtain the Whitham equations directly in the diagonal Riemann form. By dividing

both sides by g2, (2.25) can be rewritten as
(
1

g

)

t

=

(B
g

)

x

.

This is the generating function for conservation laws. By making a change g → g/
√
P (λ),

the above equation becomes

∂

∂t

(√
P (λ) · 1

g

)
=

∂

∂x

(√
P (λ) · 2u− 4λ

g

)
.

With the help of (2.29) and (2.31), we have

∂

∂t

(√
P (λ) · 1

λ− µ

)
+

∂

∂x

[√
P (λ) ·

(
−4− 2s1

λ− µ

)]
= 0.

On substitution of (2.30) and averaging over a period, the above equation becomes

∂

∂t

(
√
P (λ) · 1

L

∮
dµ

2(λ− µ)
√

−P (µ)

)

+
∂

∂x

[
√
P (λ)

(
−4− 2s1 ·

1

L

∮
dµ

2(λ− µ)
√

−P (µ)

)]
= 0, (2.37)

where the wavelength, L is equal to

L =

∮
dµ

2
√

−P (µ)
, (2.38)

provided the integration is taken over the cycle around the gap λ2 ≤ µ ≤ λ3. In (2.37),

the zeros λi of the polynomial P (λ) are slow functions of x and t, which have to be

differentiated. Thus, we obtain terms with

1√
λ− λi

∂λi
∂t

and
1√

λ− λi

∂λi
∂x

,
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2.3. DERIVATION OF THE WHITHAM EQUATIONS FOR THE KDV
EQUATION VIA SPECTRAL APPROACH

which are singular as λ→ λi. As a result, for the equation (2.37) to be satisfied, the slow

evolution of λi must obey the equations

1

L

∮
dµ

2(λi − µ)
√

−P (µ)
· ∂λi
∂t

+

(
−4− 2s1

1

L

∮
dµ

2(λi − µ)
√

−P (µ)

)
· ∂λi
∂x

= 0. (2.39)

From (2.38), we have
1

2L

∮
dµ

(λi − µ)
√

−P (µ)
= − 2

L

∂L

∂λi
.

Consequently, (2.39) becomes
∂λi
∂t

+ vi
∂λi
∂x

= 0, (2.40)

where

v1 = −2(λ1 + λ2 + λ3) +
4(λ3 − λ1)(1−m)K(m)

E(m)
,

v2 = −2(λ1 + λ2 + λ3) +
4(λ3 − λ2)(1−m)K(m)

E(m)− (1−m)K(m)
,

v3 = −2(λ1 + λ2 + λ3) +
4(λ3 − λ2)K(m)

E(m)−K(m)
.





(2.41)

To study the Whitham equations when m → 0 and m → 1, we need asymptotic formulae

for the complete elliptic integrals (Gradshteyn & Ryzhik, 2007):

m ≪ 1 : K(m) ∼= π

2

(
1 +

1

4
m+

9

64
m2 + · · ·

)
,

E(m) ∼= π

2

(
1− 1

4
m− 3

64
m2 + · · ·

)
,

(1−m) ≪ 1 : K(m) ∼= 1

2
ln

16

1−m
,

E(m) ∼= 1 +
1

4
(1−m)

(
ln

16

1−m
− 1

)
.

When m → 0 or λ2 = λ3, we have v1 = −6λ1 and v2 = v3 = 6λ1 − 12λ3. Thus the

Whitham equations become

∂λ1
∂t

− 6λ1
∂λ1
∂x

=0,

∂λ3
∂t

+ 6(λ1 − 12λ3)
∂λ3
∂x

=0.





(2.42)

On the other hand, we have v2 = v1 = −(4λ1 + 2λ3) and v3 = −6λ3, when m → 1 or

λ2 = λ1. Hence the Whitham system reduces to

∂λ1
∂t

− (4λ1 + 2λ3)
∂λ1
∂x

=0,

∂λ3
∂t

− 6λ3
∂λ3
∂x

=0.





(2.43)
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2.4. DISPERSIVE SHOCK WAVES/ UNDULAR BORES

Figure 2.2: Structure of an undular bore

One can see that in both limits, one of the Whitham equations reduces to the Hopf equation

which is also dispersionless limit of the KdV equation (2.1) and the remaining two merge

into one Riemann invariant along a double characteristic.

2.4 Dispersive shock waves/ Undular bores

Dispersive shock waves (DSW) have been observed in many applications, e.g. plasma

physics (Taylor et al., 1970), nonlinear optics (Wan et al., 2007), Bose-Einstein conden-

sates (Hoefer et al., 2006), morning glory atmospheric phenomena (Reeder et al., 1995;

Porter & Smyth, 2002), etc. In the context of water waves, they are commonly known as

undular bores. An undular bore represents a slowly modulated nonlinear periodic wave-

train with a solitary wave at the leading edge and a linear wave packet at the trailing edge

(see Figure 2.2). The leading solitary wave travels with velocity, s1, while the velocity for

the trailing edge is s2. In general, s1 6= s2. As a result, the structure of the undular bore

will expand as time increases.

Examples of shallow-water undular bores include Severn bore in England (see Figure 2.3)

and Dodgorne bore in France (see Figure 2.4). Also, there are some observations of undular

bores made in certain tsunamis caused by earthquakes in deep ocean (see Figure 2.5).

This may happen when the fronts of nonlinear long waves become very steep and turn

into undular bores when propagating into shallow water, as was observed in the 1983

Nihonkai-Chubu tsunami (Shuto, 1985) and the 2004 Indian Ocean tsunami (Grue et al.,

2008; Madsen, 2010). In some cases, tsunami waves ascended into several rivers in the form

of undular bores, as reported in Tsuji et al. (1991) (see Figure 2.6). In all these cases, the

undular bore propagation occurs over variable topography.
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2.4. DISPERSIVE SHOCK WAVES/ UNDULAR BORES

Figure 2.3: Undular bore of the Severn River in England in April 2007. Courtesy of Mark Humpage.

Figure 2.4: Undular bore of the Dordogne River in France on 27 September 2008

Figure 2.5: Undular bore of the 2004 Indian Ocean tsunami reaching the island of Koh Jum, Thailand

(Copyright Anders Grawin)
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2.4.1 Gurevich-Pitaevskii problem and the matching conditions for the
Whitham equations

Figure 2.6: An undular bore ascended along the small channel in Noshiro Port, Akita Prefercture during

1983 Japan Sea tsunami (Tsuji et al., 1991).

2.4.1 Gurevich-Pitaevskii problem and the matching conditions for the

Whitham equations

To study the evolution of undular bores, let us consider a smooth large-scale initial dis-

tribution u(x, 0) = u0(X) where X = εx, ε ≪ 1 for the KdV equation (2.1). At the early

stage of wave evolution, |ux| ∼ ε, |uxxx| ∼ ε3. Thus, |uxxx| ≪ |uux|. So, at this stage, the

dispersive effect can be ignored as the nonlinear term has dominant role. Consequently,

the KdV equation (2.1) reduces to the Hopf equation

ut + 6uux = 0. (2.44)

The smooth evolution of the initial profile governed by the Hopf equation (2.44) leads to

the wave steepening due to the effects of nonlinearity. At some point xb at time tb, the

distribution u(x, t) has a vertical tangent line, that is ux → −∞, uxx → 0. The point (xb, tb)

is called the wave breaking point. At this stage of wave evolution, we can no longer ignore

the dispersive term in the KdV equation. Thus, the steepening wave starts to oscillate due

to the dispersive effect. Thus, an undular bore forms, which occupies an expanding region

x−(t) < x < x+(t) (see Figure 2.7).

According to Gurevich & Pitaevskii (1974), the solution u(x, t) in the region x− < x < x+

is asymptotically described by the modulated cnoidal wave solution (2.36), which is con-

sidered to be locally periodic. The modulation provides a gradual change of the waveform

from the linear wave (m = 0) at the trailing edge, x = x−(t), to the solitary wave at the

leading edge, x = x+(t). At x = x±, the solution (2.36) must match with the solution

of the Hopf equation (2.44), which remains valid outside the oscillating region (see Figure

2.8).
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Figure 2.7: Evolution of a smooth initial condition.

Figure 2.8: Splitting of the xt-plane in the Gurevich- Pitaevskii problem

The Whitham equations (2.40) were obtained for the “spectral” variables, λ1, λ2 and λ3.

Here, it is more convenient to introduce new Riemann invariants as follows:

r3 = −λ3, r2 = −λ2, r1 = −λ1, r3 ≤ r2 ≤ r1,

which will match the physical variable u(x, t) at the edges x± of the undular bore. There-

fore, the cnoidal wave solution (2.36) becomes

u(x, t) = r1 + r2 − r3 − 2(r2 − r3)sn
2(
√
r1 − r3(x− V t),m), (2.45)

where

V = 2(r1 + r2 + r3), m =
r2 − r3
r1 − r3

.
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2.4.2 Decay of an initial discontinuity

The wavelength (2.38) in the new parameterisation is

L =
2K(m)√
r1 − r3

.

and the Whitham equations (2.40) assume the form

∂ri
∂t

+ vi
∂ri
∂x

= 0, (2.46)

where the characteristic velocities are given by

v1(r1, r2, r3) = 2(r1 + r2 + r3) +
4(r1 − r3)(1−m)K(m)

E(m)
,

v2(r1, r2, r3) = 2(r1 + r2 + r3)−
4(r2 − r3)(1−m)K(m)

E(m)− (1−m)K(m)
,

v3(r1, r2, r3) = 2(r1 + r2 + r3) +
4(r2 − r3)K(m)

E(m)−K(m)
.





(2.47)

To describe the undular bore, Gurevich & Pitaevskii (1974) proposed special matching

conditions for the Whitham equations

at the trailing edge, x = x− : r2 = r3, r1 = r,

at the leading edge, x = x+ : r2 = r1, r3 = r,
(2.48)

where r(x, t) satisfies the Hopf equation

rt + 6rrx = 0,

with the KdV initial condition r(x, 0) = u0(x). Conditions (2.48) ensure the continuous

matching of the mean flow ū in the undular bore region with the smooth, non-oscillating

solution outside the undular bore.

2.4.2 Decay of an initial discontinuity

To illustrate the outlined theory, we consider the following initial-value problem for the

KdV equation (2.1)

u(x, 0) = u0(x) =

{
∆ : x < 0

0 : x > 0
, (2.49)

where ∆ > 0. Since the initial condition (2.49) and the Whitham equations (2.46) are

invariant with respect to scaling transformation

x→ Cx, t→ Ct,
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2.4.2 Decay of an initial discontinuity

where C is an arbitrary constant, then the solution of the Whitham equations must be

self-similar, that is

ri = ri(s) where s =
x

t
.

Hence, the Whitham equations (2.46) reduce to a system of ordinary differential equations

dri
ds

(vi − s) = 0, i = 1, 2, 3. (2.50)

Also, the Gurevich-Pitaevskii matching conditions become

at the trailing edge, s = s− : r2 = r3, r1 = ∆,

at the leading edge, s = s+ : r2 = r1, r3 = 0.

The solution of equation (2.50) satisfying the above matching condition has the form

r3 = 0, r1 = ∆, v2(∆, r2, 0) = s. (2.51)

Using the explicit expression for v2(r1, r2, r3), the last equation of (2.51) determines the

dependence of the self-similar variable s = x/t

s =
x

t
= 2∆

[
1 +m− 2m(1−m)K(m)

E(m)− (1−m)K(m)

]
. (2.52)

The velocities, s∓ of the trailing and leading edges of the undular bore can be obtained by

letting m→ 0 and m→ 1 respectively in the solution (2.52).

x−
t

= s− = s(0) = −6∆,
x+
t

= s+ = s(1) = 4∆. (2.53)

Therefore, the undular bore is confined to an expanding zone −6∆t ≤ x ≤ 4∆t. The

amplitude of the solitary wave at the leading edge is a = 2(r1− r3) = 2∆, which is twice of

the initial jump. In Figure 2.9, we present the plot of an undular bore solution generated

from an initial jump with ∆ =1 together with the corresponding behaviour of the Riemann

invariants. At the leading edge where we have solitary wave, r1 = r2 while at the trailing

edge, r2 = r3.

If ∆ < 0, then the initial condition (2.49) will not generate an undular bore. Instead, it

will produce a rarefaction wave (see Figure 2.10)

u(x, t) =





0; x > 0
x

6t
; 6∆t < x < 0

∆; x < 6∆t

. (2.54)
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2.5. PERTURBED MODULATION SYSTEM
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Figure 2.9: Left: Analytical solution for undular bore, u(x, t) – modulation theory; Right: behaviour of

the Riemann invariants, r1 ≥ r2 ≥ r3.
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Figure 2.10: Analytical plot of a rarefaction wave where ∆ = −1 at t = 4

2.5 Perturbed modulation system

So far, we have only considered wave propagation over a flat bottom, which is governed

by the constant-coefficient KdV equation (2.1), and the corresponding Whitham equations

are given by (2.46). However, in the presence of slowly varying topography or/ and weak

dissipation (i.e. bottom friction), the wave dynamics is generally governed by the perturbed

KdV (pKdV) equation

ut + 6uux + uxxx = σR(u, ux, · · · ), (2.55)

where σ ≪ 1. We stress that the independent variables x and t in (2.55) are not necessarily

physical space and time variables. For the wave propagation over variable topography

without bottom friction, the term σR is given by −9ht
4h u (see equation (4.3) in Section

4.1), where the small parameter σ ∼ ht is determined by the slow depth variations. The

specific forms of the perturbation term in (2.55) when different types of dissipation are
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2.5. PERTURBED MODULATION SYSTEM

taken into account will be presented in Chapter 5. The formal approach for perturbed

modulation theory was proposed by Forest & McLaughlin (1984), where they suggested

averaging the conservation laws for the perturbed KdV equation (2.55) over the (quasi-)

periodic solution of the unperturbed equation. This procedure in general is quite technical,

but for a single-phase (periodic) case, another, more convenient and effective method was

proposed by Kamchatnov (2004), where he extended the spectral approach to the single-

phase averaging described in Section 2.3 to the perturbed integrable equations belonging

to the AKNS hierarchy. The corresponding perturbed Whitham equations for (2.55) have

been obtained by Kamchatnov (2004) in terms of “spectral” variables, λi (see Section 2.3)

∂λi
∂t

+ vi
∂λi
∂x

=
σL

∂L/∂λi

〈(2λi − s1 − u)R〉
4
∏

j 6=i(λi − λj)
, i = 1, 2, 3, (2.56)

where s1, u, L and vi are given by (2.28), (2.31), (2.38) and (2.41) respectively. When

R ≡ 0, the system (2.56) transforms into the standard unperturbed Whitham system in

the Riemann invariant form (2.40). Here, we present the explicit form of the perturbed

Whitham system (2.56) for the waves propagating over an uneven bottom without bottom

friction (El et al., 2007)

∂λi
∂t

+ vi
∂λi
∂x

= σCiAi, i = 1, 2, 3, (2.57)

where

σ = −9ht
4h

, (2.58)

C1 =
1

E(m)
, C2 =

1

E(m)− (1−m)K(m)
, C3 =

1

E(m)−K(m)
; (2.59)

and

A1 =
1

3
(5λ1 − λ2 − λ3)E(m) +

2

3
(λ2 − λ1)K(m),

A2 =
1

3
(5λ2 − λ1 − λ3)E(m)− (λ2 − λ1)

(
1

3
+

λ2
λ3 − λ1

)
K(m),

A3 =
1

3
(5λ3 − λ1 − λ2)E(m)−

[
λ3 +

1

3
(λ2 − λ1)

]
K(m),





(2.60)

where E(m) and K(m) are the complete integrals of the first and second kind respectively.

When m = 0 (linear waves), the perturbed modulation system reduces to

λ2 = λ3,

∂λ1
∂t

− 6λ1
∂λ1
∂x

= λ1σ,

∂λ3
∂t

+ (6λ1 − 12λ3)
∂λ3
∂x

=
1

3
(4λ3 − λ1)σ.





(2.61)
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Figure 2.11: Behaviour of the Riemann invariants in the vicinity of the leading edge of the undular bore.

(a) Weak soliton interaction (b) Strong soliton interaction

When m = 1 (soliton), we obtain from (2.57)

λ2 = λ1,

∂λ1
∂t

− (4λ1 + 2λ3)
∂λ1
∂x

=
1

3
(4λ1 − λ3)σ,

∂λ3
∂t

− 6λ3
∂λ3
∂x

= λ3σ.





(2.62)

Note that equations (2.61) and (2.62) reduce to (2.42) and (2.43) respectively when there

is no perturbation term on the right-hand side.

2.6 Leading solitary wave: local vs. nonlocal behaviour

For flat bottom propagation, the leading edge of the undular bore is given by x+ = 4U0t.

The behaviour of the Riemann invariants, ri(x, t) = −λi(x, t), i = 1, 2, 3, near the leading

edge can be readily obtained from the modulation solution (2.52) by expanding it for

(1 −m) ≪ 1. The typical behaviour is shown in Figure 2.9b. In the presence of a small

perturbation term due to external perturbation, e.g. variable topography and/ or bottom

friction, the asymptotic analysis of the perturbedWhitham equations (2.56) for (1−m) ≪ 1

reveals two qualitatively different possibilities for the behaviour of the Riemann invariants,

r1, r2 near the leading edge (soliton), x = x+(t) (El et al., 2007):

(a) “local (weak soliton interaction) scenario”: if limx→x+ |dri/dx| < ∞, i = 1, 2, then the

leading solitary wave in the undular bore behaves as an isolated, adiabatically varying

solitary wave (see Figure 2.11a), and

(b) “nonlocal (strong soliton interaction) scenario”: if limx→x+ |dri/dx| = ∞, i = 1, 2, then

the evolution of the leading solitary wave is determined not only by the local variations
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2.6.1 Behaviour of the leading solitary wave: an example

of the topography or/and the presence of bottom friction but also by the interaction

with the entire nonlinear wavetrain behind it (see Figure 2.11b).

For the evolution of undular bores over variable topography, the threshold between the

“weak interaction” and “strong interaction” scenarios can also be determined by the asymp-

totic behaviour of the wavenumber, k near the leading edge, x = x+ implied by (4.9) and

(4.11) of Gurevich & Pitaevskii (1974)

k ∼ 1

ln(1/δ)
, (2.63)

where δ =
x+ − x

x+ − x−
≪ 1, (2.64)

x− being the trailing edge of the undular bore. The formula (2.63) is obtained by expanding

(2.9) and (2.11) for (1−m) ≪ 1. If k . 1/ ln(1/δ), then the solitary wave interactions near

the leading edge are weak, and the lead solitary wave of the undular bore behaves as an

isolated soliton. However, if k ≫ 1/ ln(1/δ) near the leading edge, then the propagation

of the lead solitary wave is strongly affected by its interaction with the remainder of the

wavetrain.

2.6.1 Behaviour of the leading solitary wave: an example

In order to illustrate the qualitatively different types of behaviour of the solitary wave near

the leading edge of the undular bore in the two different scenarios mentioned above, let us

consider the Korteweg-de Vries-Burgers (KdVB) equation

ut + 6uux + uxxx = νuxx, (2.65)

where 0 ≤ ν ≪ 1 is the viscosity coefficient.

Figure 2.12 shows the numerical plots of the solution to the KdVB equation (2.65) with

the initial condition in the form of a step

u = (1− tanh(x/10))/4, (2.66)

where the size of the step is ∆ = 0.5 for different values of ν. When there is no dissipation,

i.e. when ν = 0, equation (2.65) reduces to the KdV equation (2.1). Thus, we have an

unsteady DSW or undular bore solution (dashed green line) of the KdV equation. The

undular bore will continue to expand as time increases. The leading solitary wave has

amplitude twice of the jump, 2∆ (see Section 2.4.2 for detailed explanation). The typical

behaviour of the Riemann invariants, r1, r2, in the vicinity of the leading edge is shown
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Figure 2.12: Comparison of the shock profile for the KdVB equation (2.65) for different values of ν: ν = 0

– dashed green line, ν = 0.05 – solid blue line and ν = 2 – solid red line.

in Figure 2.9b, which corresponds to the local interaction scenario (see Figure 2.11a).

Indeed, Khruslov (1976) and Claeys & Grava (2010) showed that the leading solitary wave

of undular bore of the KdV equation at large time represents asymptotically a genuine

isolated KdV soliton, not constrained by the interaction with the remainder of the bore.

When ν = 0.05 (i.e. when (2.65) becomes the KdVB equation), we have weakly dissipative

(or viscous) DSW (solid blue line). Unlike the undular bore solution of the KdV equation,

the undular bore solution of the KdVB equation is asymptotically (t → ∞) steady and

propagates as a whole with the classical shock speed (cf. the smooth shock solution for

ν = 2 in Figure 2.12). The leading wave is asymptotically close to the solitary solution

of the KdV equation (Johnson, 1970; Gurevich & Pitaevskii, 1987; Avilov et al., 1987).

However, in contrast to the inviscid, ν = 0, case, the amplitude of the leading solitary

wave is 1.5∆, which is smaller than in the DSW solution of the KdV equation. This

amplitude is constant in time (for t≫ 1).

One can see that the behaviour of the leading solitary wave in the undular bore solution

of the KdVB equation is markedly different from the behaviour of an isolated solitary

wave. The leading solitary wave amplitude of the undular bore solution for the KdVB

equation stays constant at 1.5∆. However, for an isolated solitary wave, its amplitude keeps

decreasing over time (see Section 5.4.1.1) due to dissipation. The physical explanation of

such drastic difference in the behaviour of an isolated solitary wave and a lead solitary wave

in the undular bore for the same weakly dissipative KdVB equation is that the action of

weak dissipation on an expanding undular bore is twofold: on the one hand, the dissipation

tends to decrease the amplitude of the wave locally but, on the other hand, it ‘squeezes’ the

undular bore so that the interaction (i.e momentum exchange) between separate solitary

waves within the bore becomes stronger than in the absence of the dissipation and this acts
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Figure 2.13: Schematic illustration of the behaviour of the Riemann invariants for the undular bore of

the KdVB equation.

as the amplitude-increasing factor. This implies that we have a strong soliton interaction

scenario in the vicinity of the leading edge (El et al., 2007). The exact modulation solution

for the steady undular bore of the KdVB equation was obtained by Gurevich & Pitaevskii

(1987) and Avilov et al. (1987). The behaviour of the Riemann invariants in this solution is

schematically shown in Figure 2.13. One can see that near the leading edge, the behaviour

of the Riemann invariants indeed corresponds to the “strong interaction” scenario described

in the previous subsection (see Figure 2.11b).

Finally, if we have strong dissipation, ν = 2, we do not have an oscillatory structure at all.

Instead, we have a steady monotonic shock transition (solid red line in Figure 2.12), also

propagating with the classical shock speed.

2.7 Concluding remarks

In this chapter, we have discussed the general procedure for the derivation of the modulation

equations as proposed by Whitham (1965). Then, we presented an alternative method by

Kamchatnov (1997) to derive the Whitham equations via the spectral problem associated

with the equations belonging to the AKNS hierarchy. Also, we have discussed the general

idea of a dispersive shock wave (undular bore) in the context of water waves where an

undular bore can be generated from an initial distribution in the form of sharp step. We

have derived the classical Gurevich-Pitaevskii modulation solution (2.52) for the undular

bore. Finally, we have described the qualitative behaviour of the leading solitary wave in

the undular bore in two different scenarios as proposed by El et al. (2007). The Gurevich-

Pitaevskii solution and the discussion of the solitary wave behaviour near the leading edge

of the undular bore will be used extensively in the subsequent chapters of the thesis.
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Chapter 3

Solitary wave propagation over variable topography

In this chapter, we first give a brief outline of the derivation of the variable-coefficient

Korteweg-de Vries equation, which can be found in the literature. Next, we examine how

solitary waves evolve when they propagate over different types of varying bottom profiles.

Some numerical results will also be presented. The results of this chapter will be used

later for comparison with corresponding results for undular bores propagating over variable

topography.

3.1 Introduction

In many physical problems, waves propagate over variable depth regions. Therefore, the

effect of varying depth has to be taken into consideration when deriving the appropriate

mathematical model. Grimshaw (1970), Kakutani (1971) and Johnson (1973b) were among

the first who derived the variable-coefficient Korteweg-de Vries (vKdV) equation to model

the propagation of weakly nonlinear waves over an uneven bottom. There are many versions

of the derivation of the vKdV equation given in the literature, depending on the physical

problem under consideration. Here we give a brief outline of the derivation following

Grimshaw (2007a).

3.2 Derivation of the variable-coefficient Korteweg-de Vries

equation

Consider two-dimensional gravity waves, which propagate on the free-surface of a fluid layer

with a variable bottom surface represented by z = −h(x) (see Figure 3.1). We suppose

that the fluid is inviscid and incompressible with constant density, ρ. The velocity field

u = (u,w) is assumed to be irrotational so that u = ∇φ, where φ(x, z, t) satisfies Laplace’s
equation

φxx + φzz = 0. (3.1)

Since the fluid is assumed to be inviscid, the fluid can only flow parallel to the bottom
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Bottom Surface : z = -hHxL

x

z
free surface: z = ³Hx, tL

undisturbed free-surface

Figure 3.1: Geometrical configuration of the propagation of surface water waves over an uneven bottom

surface. Thus we have the boundary condition at the rigid bottom

φz + hxφx = 0 at z = −h. (3.2)

On the other hand, the boundary conditions at the free-surface are given by (Kawahara,

1975; Grimshaw, 2007a)

φz = ζt + φxζx at z = ζ, (3.3)

φt +
1

2
(φ2x + φ2z) + gζ = 0 at z = ζ, (3.4)

Equation (3.3) is the kinematic condition, while (3.4) expresses the continuity of pressure

at the free-surface, which arises from Bernoulli’s theorem (the dynamic condition). The

effect of surface tension is ignored since we consider waves of long wavelength.

To obtain the vKdV equation, we need to apply a multi-scale asymptotic expansion. Hence,

a small parameter ε ≪ 1 is introduced and we assume the usual KdV balance, where the

amplitude scales with ε2. Next, we rescale the horizontal coordinate and the time, so that

X = εx, T = εt. (3.5)

We seek an asymptotic expansion of the form

ζ = ε2ζ(1)(X,T ) + ε4ζ(2)(X,T ) + · · · . (3.6)

The depth is assumed to vary slowly on a spatial scale of ε−3. Thus, we may formally write

h = h(χ), where χ = ε2X. For convenience, we define the depth-averaged mean flow

U(X,T ) =
1

h+ ζ

∫ ζ

−h
u(X,T, z) dz. (3.7)

The conservation of mass implies that

ζT + (U(h + ζ))X = 0. (3.8)
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Thus, at the leading order, we have

ζ
(1)
T + hU

(1)
X = 0, (3.9)

U
(1)
T + gζ

(1)
X = 0. (3.10)

The general solution of this system is the sum of waves propagating in both directions,

i.e. in the positive and negative X-direction with the phase speed for linear shallow water

waves, c =
√
gh which depends on the slow variable χ, c = c(χ).

We choose a wave propagating in the positive X-direction so that to leading order we have

ζ(1) =
h

c
U (1) = A(σ, θ), (3.11)

where

T ∗ =

∫ X dX

c
, θ = T ∗ − T, σ = ε2T ∗. (3.12)

Here, we have anticipated that, as the wave propagates to the right with speed c, it also

evolves on the long spatial scale of ε−3, and the slow variable σ is introduced. At the next

order, we obtain

ζ
(2)
T + hU

(2)
X = F (2), (3.13)

U
(2)
T + gζ

(2)
X = G(2), (3.14)

where

F (2) = −ζ(1)σ − 1

c
(U (1)ζ(1))θ −

cσ
c
ζ(1), (3.15)

G(2) = − c

h
ζ(1)σ − 1

c
U (1)U

(1)
θ − h

3c
ζ
(1)
θθθ. (3.16)

Note that, to leading order, ζ
(1)
X = ζ

(1)
θ /c. From (3.11), the inhomogeneous terms are

functions of σ and θ. Thus, this system of equations reduces to

− cζ
(2)
θ + hU

(2)
θ = F (2), (3.17)

−cU (2)
θ + gζ

(2)
θ = G(2). (3.18)

The homogeneous version of the above system has a non-trivial solution, namely the right-

propagating wave ζ(1) and U (1) given by (3.11). Hence, the inhomogeneous terms on the

right-hand side must be orthogonal to the non-trivial solution of the homogeneous adjoint

system to drop the secular terms. This is readily found to be (c, h) and so the required

compatibility condition is

cF (2) + hG(2) = 0. (3.19)
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Next, we substitute the expressions (3.11) into (3.19) and after some simplifications and

obtain

Aσ +
cσ
2c
A+

3

2h
AAθ +

h2

6c2
Aθθθ = 0. (3.20)

Using the transformation (3.5) and (3.12) and replacing ε2A with A this becomes

At + cAx +
cx
2
A+

3c

2h
AAx +

ch2

6
Axxx = 0. (3.21)

Equation (3.21) is the vKdV equation for water waves propagation over a variable depth.

3.3 Transformation of a solitary wave over variable topog-

raphy

In this section, we will look at the evolution of solitary waves over two different types

of varying topography, namely rapidly varying depth and slowly varying depth. So, the

governing equation is the vKdV equation (3.21). The first two terms in (3.21) are the

dominant terms, and by themselves describe the propagation of a linear long wave with

speed c. The remaining terms represent, respectively, the effect of varying depth, weakly

nonlinear effects and weak dispersion. As a reminder, equation (3.21) is derived using the

usual KdV balance in which ∂/∂t ∼ ∂/∂x ∼ ε ≪ 1, A ∼ ε2. Here, a weak inhomogeneity

is added to this balance so that cx/c scales as ε3. Equation (3.21) can be asymptotically

transformed into

Aτ +
hτ
4h
A+

3

2h
AAX +

h

6
AXXX = 0, (3.22)

where

τ =

∫ x

0

dx′

c(x′)
, X = τ − t. (3.23)

Here h = h(x(τ)) explicitly depends on the variable τ , which describes the evolution along

the path of the wave. Formally, we write A(x, t) = Ã(X, τ) and h(x) = h̃(τ) but then omit

the “tilde” in (3.22). The balance of terms in (3.22) is ensured by ∂/∂τ ∼ ε3, ∂/∂X ∼
ε,A ∼ ε2. So, unlike in the original vKdV equation (3.21), where both independent

variables x and t vary on the same scale ∼ 1/ε, in (3.22), the “time” τ is a slow variable

relative to the “spatial” coordinate X. Equations (3.21) and (3.22) are asymptotically the

same, but differ with respect to terms of O(ε7), which is the same as the error terms in

both equations.

We shall suppose that the depth varies according to

h(x) = h0 = 1 for x < x0, and h(x) = h1 for x > x1,

29
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Figure 3.2: Schematic illustration for the solitary wave propagation over variable topography.

where h0, h1 are constant and varies monotonically in the region x0 ≤ x ≤ x1. We assume

that x0 ≥ 0 and x1 − x0 ≫ 1. In this chapter, we consider four different types of the

variable topography regions in the interval x0 ≤ x ≤ x1:

(a) a gentle monotone slope where h′(x) < 0, |h′(x)| ≪ 1 (slowly decreasing depth, h1 < 1),

(b) a gentle monotone slope where h′(x) > 0, |h′(x)| ≪ 1 (slowly increasing depth, h1 > 1),

(c) a sharp step where h′(x) = ∞, h0 > h1 (rapidly decreasing depth, h1 < 1), and

(d) a sharp step where h′(x) = ∞, h0 < h1 (rapidly increasing depth, h1 > 1).

Note that in cases (c) and (d), x0 = x1.

An initial condition in the form of

A(x, t = 0) = A0(x) = a0 sech
2(γ0x), 4γ20 = 3a0, (3.24)

for the vKdV equation (3.21) is placed at x = 0 so that initially, we have a solitary wave

having an amplitude of a0. Our aim is to look at how the solitary wave evolves as it

moves through the varying depth region, x > x0. A schematic of the problem is illustrated

in Figure 3.2. In terms of new variables (3.23), the initial condition for equation (3.22)

becomes

Ã(X(t = 0) = τ, τ) = A0(x),

where x(τ) is given by (3.23). However, because τ is a slow variable relative to X (recall

that ∂/∂τ ∼ ε3 and ∂/∂X ∼ ε), we have Ã(X, τ) = Ã(X, 0) +O(ε5). So, within the error

inherent in the derivation of the original model (3.21), the initial condition for (3.22) is

A(X, τ = 0) = A0(X, 0),
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where we have again omitted “tilde” for A. Equation (3.22) can be rewritten as the vKdV

equation

Bτ + α(τ)BBX + β(τ)BXXX = 0, (3.25)

where B = h1/4A, α(τ) =
3

2h5/4
, β(τ) =

h

6
. (3.26)

Equation (3.25) has two integrals of motion with the densities proportional to B = h1/4A

and B2 = h1/2A2, which commonly referred to conservation laws for “mass” and “momen-

tum”. Note that the equations (3.22) and (3.25) are exactly equivalent. The variable τ is

referred as “time” even though it describes the evolution along the path of the wave. The

initial condition for equation (3.25) is

B(X, τ = 0) = B0(X) = A0(X).

In terms of the new variables B(X, τ), we will consider that h(τ) = 1 for 0 < τ < τ0 and

varies monotonically in the interval τ0 < τ < τ1 to h(τ) = h1 when τ > τ1.

3.3.1 Rapidly varying depth: soliton fission

When a solitary wave travels from a constant depth to another shallower constant depth,

where the depth changes rapidly, it will disintegrate into several solitary waves of different

sizes, followed by small radiation tail depending on the depth variation. This has been

proven numerically and experimentally by Madsen & Mei (1969). The process of soliton

disintegration is called soliton fission, analogous to nuclear fission. The analytical expla-

nation was done by Tappert & Zabusky (1971) and Johnson (1973a).

To explain soliton fission, let us suppose that the coeficients α(τ) and β(τ) in the vKdV

equation (3.21) vary rapidly with respect to the wavelength of a solitary wave. So, we

consider that these coefficients make a rapid transition from the values α− and β− in

τ < τ0 region to the values α+ and β+ in τ > τ0 region. Thus, a solitary wave solution in

the region τ < τ0, is given by

B = b sech2(γ(X −Wτ)) where W =
α−b

3
= 4β−γ

2. (3.27)

The initial solitary wave will propagate through the transition zone τ ≈ τ0 without change.

However, it is no longer a solution of (3.21) when it emerges onto another flat bottom at

τ > τ0, which now yields constant coefficients α+ and β+ in (3.21). Instead, (3.27) at

τ = τ0 becomes an initial condition for the new constant-coefficient KdV equation. The
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Figure 3.3: Soliton fission

new solution in τ > τ0 region can be constructed using inverse scattering transform. The

result is that the initial solitary wave fissions into N solitons, trailed by an oscillatory

tail depending on the depth variation. The number of secondary solitary waves and the

parameters of the oscillatory tail can be determined from the inverse scattering transform

(Gardner et al., 1967). The schematic illustration of soliton fission is shown in Figure 3.3

The number of N solitons produced is determined by the ratio of the coefficients

R =
α+β−
α−β+

. (3.28)

If there is no change in polarity of solitary waves, R > 0, then N = 1+ [(
√
8R + 1− 1)/2].

When the polarity changes, then R < 0. In this case, no solitons are produced and the

entire solitary wave decays into a radiation (see e.g. Johnson, 1997; Grimshaw, 2007a).

For water waves, where a solitary wave is propagating from constant depth h0 into another

constant depth h1, the ratio of coefficients, R is given by

R =

(
h0
h1

)9/4

. (3.29)

Here R > 0. If h0 > h1, the solitary waves propagates over a decreasing depth, that is into

a shallower water, N ≥ 2, and at least one or more solitary waves are generated. On the

other hand, if h1 > h0, then the solitary wave propagates over an increasing depth or into

a deeper region, then N = 1 and no other solitons are produced.
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3.3.1 Rapidly varying depth: soliton fission
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Figure 3.4: A soliton fissions into two solitons followed by an oscillatory tail when the depth decreases

rapidly.

3.3.1.1 Numerical results

For numerical simulations, we will solve the vKdV equation (3.21) numerically using the

method of lines (see Appendix A). First we consider the depth h(τ) decreases rapidly,

h(τ) =

{
h0 = 1.0 : τ < 100,

h1 = 0.7 : τ > 100.
(3.30)

The initial condition is taken as

B(X, 0) = sech2(γX), γ = (3/4)1/2. (3.31)

Figure 3.4 shows the numerical simulation of a soliton fissioning into two solitons followed

by an oscillatory tail.

On the other hand, Figure 3.5 shows the evolution of a solitary wave over a rapidly in-

creasing depth region. Here, no fission of solitary waves is observed. Instead, the solitary

wave decays rapidly and produces a radiation tail. The depth profile is taken as

h(τ) =

{
h0 = 1.0 : τ < 100,

h1 = 1.3 : τ > 100,
(3.32)

with the same initial data as in (3.31).
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3.3.2 Slowly varying depth
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Figure 3.5: No soliton fission when a solitary wave propagates into deeper region where the depth changes

rapidly

3.3.2 Slowly varying depth

Now we will consider the opposite situation, where the solitary wave is propagating over a

slowly changing topography, i.e. when the coefficients α(τ) and β(τ) in the vKdV equation

(3.21) vary slowly with respect to the “wavelength” of a solitary wave. To find the slowly

varying solitary wave solution, one has to use a multi-scale perturbation expansion with

the leading term given by

B ∼ b sech2γ(X −
∫ τ

τ0

W dτ), W =
αb

3
= 4βγ2. (3.33)

Here, the wave amplitude b(τ) and the coefficients α(τ), β(τ) are slowly varying functions.

Since the vKdV equation (3.21) possesses momentum (action flux) conservation law
∫ ∞

−∞
B2 dX = constant, (3.34)

we can determine the variations of the amplitude b with time τ . Substitution of (3.33) into

(3.34) shows that

b = b0

(
h0
h(τ)

)3/4

, (3.35)

where b0 and h0 are initial solitary wave amplitude and local depth respectively. Using

(3.26), which provides the relationship between B(X, τ) and the physical surface elevation

A(x, t), we recover the classical Boussinesq result for the amplitude of the shallow-water

solitary wave propagating over variable depth

a =
a0h0
h(x)

. (3.36)
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3.3.2 Slowly varying depth

Figure 3.6: Initial solitary wave travelling into varying topography (top figure), formation of trailing shelf

(middle figure) and generation of undular bore or secondary solitary wave on the shelf (bottom figure)

Although the momentum of the solitary wave is conserved, the mass of the wave is not con-

served (Grimshaw, 1970, 1971; Knickerbocker & Newell, 1985). Thus, we need to introduce

a trailing shelf behind the solitary wave. The trailing shelf, Bs, has a small amplitude, but

long length scale. Since the vKdV equation (3.21) also has a conservation law for mass,

we have ∫ φ

−∞
Bs dX +

2b

γ
= constant, (3.37)

where φ =
∫ x
x0
Wdτ is the location of the solitary wave and the second term represents the

mass of the solitary wave (3.33) (Knickerbocker & Newell, 1980; Grimshaw, 2005).

Therefore, under these circumstances, the solitary wave generally itself will deform adia-

batically. At the same time, there is a non-adiabatic response in the form of an extended

small-amplitude secondary structure or a shelf, which can have a positive or negative po-

larity and which will travel behind the solitary wave. This is shown schematically in Figure

3.6. Also, in a general two-wave setting, a reflected wave which travels away in the opposite

direction to the solitary wave and the trailing shelf will be created. In this case, one needs

to use the Boussinesq equation. However, in this thesis, the reflection wave is ignored so

that we can use the uni-directional KdV equation (Miles, 1979; Knickerbocker & Newell,

1985).

On a very long time-scale, the trailing shelf leads to the generation of an undular bore. This

is due to the nonlinear effects which eventually will lead to steepening and thus the disper-

sive effects will be invoked. The leading wave of the trailing shelf undular bore can be inter-
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3.3.2 Slowly varying depth

preted as a secondary solitary wave (El & Grimshaw, 2002; Grimshaw & Pudjaprasetya,

2004) reconciling thus this effect with the soliton fission described earlier.

3.3.2.1 Numerical results

In Figure 3.7, we present the numerical plot of a solitary wave propagating over a slowly

increasing slope for the vKdV equation (3.21). The depth, h(τ) is described by

h(τ) =





1.0 : τ < 100

(1− α(τ−100)
2 )2 : 100 < τ < 766.67

0.64 : τ > 766.67

, α = 0.0006. (3.38)

Figure 3.8 shows the generation of a small-amplitude trailing shelf behind the solitary wave

as it propagates over the sloping region.

Figure 3.9 shows the comparison for the solitary wave amplitude adiabatic variation pre-

dicted by formula (3.35) (circles) and the numerical data (solid line). A good agreement

is found between numerics and the analytical prediction.
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Figure 3.7: A solitary wave propagating over a slowly increasing slope. Its amplitude increases adiabati-

cally.
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Figure 3.8: A trailing shelf of positive polarity is generated behind the solitary wave as it propagates over

a slowly decreasing depth region.
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Figure 3.9: Comparison for the amplitude of adiabatically changing solitary wave described by the formula

(3.35) with h0 = 1 and a0 = 1 (solid line) and numerically obtained solitary wave amplitude (circles).
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Figure 3.10: A solitary wave propagating over a slowly decreasing slope. Its amplitude decreases adia-

batically
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Figure 3.11: A trailing shelf of negative polarity is generated behind the solitary wave as it propagates

over a slowly increasing depth region.

On the other hand, Figure 3.10 shows the numerical simulation of the propagation of
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3.4. CONCLUDING REMARKS

solitary wave into a deeper region. The depth profile, h(τ) is given by

h(τ) =





1.0 : τ < 100

(1 + α(τ−100)
2 )2 : 100 < τ < 660.7

1.3 : τ > 660.7

, α = 0.0005. (3.39)

One can see the generation of a small-amplitude trailing shelf behind the solitary wave (see

Figure 3.11).

The comparison for the amplitude of the solitary wave obtained numerically (circles) and

from formula (3.35) (solid line) is shown in Figure 3.12. Again, there is an excellent

agreement between numerics and formula (3.35).
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Figure 3.12: Comparison for the amplitude of adiabatically changing solitary wave described by the

formula (3.35) with h0 = 1 and a0 = 1 (solid line) and numerically obtained solitary wave amplitude

(circles).

3.4 Concluding remarks

In this chapter, we have looked into solitary wave propagation over a variable bottom

surface. We have considered the configuration where the water depth changes rapidly

and slowly. When the depth decreases rapidly, solitary wave can fission into few solitons

followed by an oscillatory tail. On the contrary, no soliton fission is observed when the

depth increases rapidly. Instead, solitary waves decay and produce linear radiation. If the

bottom profile varies gradually, the solitary wave will deform adiabatically over the slope

and a trailing shelf is formed. Its amplitude variation is given by (3.35). For a gradually

decreasing depth, the trailing shelf will also decompose into secondary solitons, which is

similar to the soliton fission scenario, albeit on a much larger temporal scale. Thus, the

propagation of the solitary wave over slowly varying topography leads to a non-adiabatic

response regardless of the smallness of the bottom slope variation.
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Chapter 4

Undular bore propagation over variable topography

This chapter focuses on the propagation of an undular bore over variable topography. Here,

we consider six different configurations for the varying depth regions: slowly decreasing

depth, slowly increasing depth, a smooth hole, a smooth bump, rapidly decreasing depth and

rapidly increasing depth. Using modulation theory and detailed numerical simulations, we

study the effect of slowly varying depth on the evolution of an undular bore in a nonuniform

environment. We show that a number of adiabatic and non-adiabatic deformations occur

as the undular bore propagates over the sloping region.

4.1 Mathematical model

In this chapter, we concentrate on the transformation of undular bores under the effect of

varying depth. The governing equation will be the same vKdV equation (3.21) with variable

coefficients determined by the depth profile h(x). However, in this chapter, instead of the

initial condition (3.24) in the form of a solitary wave, we shall consider an initial condition

in the form of a step,

A(x, t = 0) = A0(x) for x < 0, A(x, t = 0) = 0 for x > 0. (4.1)

We shall consider the same typical depth profiles as described in Section 3.3, so that the

depth variations are confined to some interval [x0, x1], where x0 > 0. The step (4.1) is

placed at x = 0, i.e. in the region of flat bottom, so that initially, it generates an undular

bore solution of the constant-coefficient KdV equation. Our aim is to look at how the

undular bore evolves as it moves through varying depth region, x > x0. A schematic of

the problem is illustrated in Figure 4.1.

In addition to the varying depth regions mentioned in Section 3.3, we will consider two

more types of variable topography:

(a) a smooth hole where h(x) ≥ 1, (h1 = h0), and

(b) a smooth bump where h(x) ≤ 1, (h1 = h0),

Besides the vKdV equation (3.25), we can also recast equation (3.22) into the standard
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4.1. MATHEMATICAL MODEL
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Figure 4.1: Schematic illustration for the undular bore propagation over variable topography.

constant-coefficient KdV equation form, modified by certain perturbation terms, by intro-

ducing new variables

u =
3

2h2
A =

3

2h9/4
B, S =

1

6

∫ τ

0
h(τ ′) dτ ′ =

1

6

∫ x

0
h(x′)1/2 dx′, (4.2)

so that (3.22) becomes

uS + 6uuX + uXXX = −9hS
4h

u. (4.3)

Equation (4.3) has the integrable KdV equation on the left-hand side while the term on

right-hand side represents the effect of varying depth.

Yet another convenient form for equation (3.22) is given by

UT + 6UUX + β(T )UXXX = 0, (4.4)

where

β(T ) = h9/4(T ), (4.5)

by making transformation

U =
3B

2
and T =

1

6

∫ τ

0

dτ ′

h5/4(τ ′)
=

1

6

∫ x

0

dx′

h7/4(x′)
. (4.6)

In this formulation, we will consider that β(T ) = 1 for 0 < T < T0 and β(T ) = β1 for

T > T1 with a monotonic variation in the interval T0 < T < T1. Note that the equations

(3.22), (3.25), (4.3) and (4.4) are exactly equivalent. The variables τ, S, T are referred as

“time” even though they describe the evolution along the path of the wave.

The initial condition for equations (4.3) and (4.4) are

u(X,S = 0) = u0(X) = U(X,T = 0) = U0(X) =
3

2
A0(X).
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4.2. TRANSFORMATION OF AN UNDULAR BORE OVER SLOWLY
VARYING SLOPE

4.2 Transformation of an undular bore over slowly varying

slope

4.2.1 Flat bottom

First, we consider the case when the bottom is flat, which is the case for the times before

undular bore encounters the varying depth region. So, we let β = 1 in the vKdV equation

(4.4). As was mentioned in Chapter 2, a discontinuous initial condition in the form of

U(X, 0) = U0H(−X), where U0 = 3A0/2 > 0, leads to the generation of an undular bore,

which is described by the slowly modulated periodic solution (2.45) of (4.4). Here, we

present this solution in a more physically transparent form

U = a

{
b(m) + cn2

(
q

β1/2
(X −X0 − V T );m

)}
+ d, (4.7)

where

b =
1−m

m
− E(m)

mK(m)
, a = 2mq2,

and

V = 6d+ 2a

{
2−m

m
− 3E(m)

mK(m)

}
.

Here, cn(x;m) is the Jacobi elliptic function of modulus m (0 < m < 1) and K(m), E(m)

are the complete elliptic integrals of the first and second kind respectively; a is the wave

amplitude, d is the mean level, V is the phase velocity, and X0 is a constant defining the

initial phase. The relationships between the parameters in (2.45) and (4.7) are:

a = 2(r2 − r3) , q =
√
r1 − r3 , V = 2(r1 + r2 + r3),

d = r3 + r2 − r1 + 4(r1 − r3)
E(m)

K(m)
.





(4.8)

Note that equation (4.7) also enables one to include the case when β 6= 1. If the character-

istic scale for slow variations of β with time is much greater than that of the modulation

parameters in the undular bore, then the expression (4.7) remains asymptotically valid

for βT 6= 0. The value β1/2/q is the width of the wave humps, while their spatial period

(wavelength) is given by

L =
2β1/2K(m)

q
.

When m → 1, the solution (4.7) becomes a solitary wave riding on a background level d.

On the other hand, as m → 0, cn(x, ;m) → cos x. So in this case, the cnoidal wave (4.7)

becomes a linear sinusoidal wave.
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4.2.2 Slowly varying topography

From Section 2.4.2, we know that the similarity solution for the Whitham equations corre-

sponding to the KdV equation (4.4) is given by (2.52) (Gurevich & Pitaevskii, 1973, 1974).

In terms of the parameters used in (4.7), this solution assumes the form

X

T
= 2U0

{
1 +m− 2m(1−m)K(m)

E(m)− (1−m)K(m)

}

for − 6U0 <
X

T
< 4U0, (4.9)

a = 2U0m, d = U0

{
m− 1 +

2E(m)

K(m)

}
, q = U0

1/2 . (4.10)

Note that the value of β does not affect the modulation solution (4.9) and affects only

the wavelength of the underlying periodic wave (4.7). The wavenumber distribution in the

undular bore is then given by

k =
2π

L
=

πU
1/2
0

β1/2K(m)
. (4.11)

The leading wave of the undular bore is a solitary wave of amplitude 2U0 relative to a

mean level of 0. This solitary wave propagates with velocity X/T = 4U0. Here, m → 1,

a → 2U0 and d → 0. Ahead of the wavetrain where X/T > 4U0 , U = 0. At the trailing

edge, the wavetrain is sinusoidal, propagating with the group velocity X/T = −6U0. The

wavelength at the trailing edge is L = π(β/U0)
1/2, so all waves behind the undular bore

have the same spatial wavelength for β = const. Otherwise, the wavelength varies slowly

with T . Also, behind the wavetrain where X/T < −6U0, U = U0 and at this end, m→ 0,

a→ 0.

4.2.2 Slowly varying topography

First, the topography is assumed to be varying slowly, so that we consider a very gentle

slope, hT ≪ 1 in the vKdV equation (4.4). Then, it is natural to expect the undular bore

will change adiabatically and retain its structure as a slowly modulated nonlinear periodic

wave train with a soliton at the leading edge and the linear wave at the trailing edge. As

we shall see, this assumption implies that the amplitude of the leading solitary wave in the

bore after the slope has the same value as in the initial bore. This conclusion, however, is

in apparent contradiction with both local and nonlocal scenarios of the lead solitary wave

propagation over uneven bottom (see Section 2.6). In the following subsections, we shall

explore the implications of this contradiction.
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4.2.2 Slowly varying topography

4.2.2.1 Jump conservation

One can infer from the vKdV equation (4.4) that depth variations would not affect the

jump, [U ] across the undular bore after the slope. To show this, let us define the jump,

[U ] as

[U ] =

∫ Xb(T )

Xa(T )
UX(X,T ) dX, (4.12)

and suppose that the undular bore is confined to the region Xa(T ) < X < Xb(T ), so that

[U ] = U(Xb)− U(Xa). Therefore from (4.12), the jump variation over time is given by

[U ]T =
d

dT

∫ Xb

Xa

UX dX. (4.13)

From the vKdV equation (4.4), we have

∫ Xb

Xa

UXT dX +

∫ Xb

Xa

(3U2 + UXX)XX dX = 0. (4.14)

Using the fact that

d

dT

∫ Xb

Xa

UX dX =

∫ Xb

Xa

UXT dX + UX |X=Xb
Ẋb − UX |X=XaẊa, (4.15)

we obtain from (4.14) and (4.15)

[U ]T = 0,

provided UX = UXXX = 0 at X = Xa,b(T ). Since the undular bore propagates into the

undisturbed depth region, U(Xb) = 0, we have

[U ] = −U0 for all T > 0. (4.16)

Note that the result (4.16) is unaffected by the varying coefficient β(T ). Thus, once the

undular bore emerges onto another constant depth with β = β1, the jump, [U ], across

the transformed bore remains the same. Therefore, assuming that the structure of the

bore as a modulated wavetrain remains unchanged, the amplitude of the leading solitary

wave of the transformed bore must be 2U0, i.e. unchanged from the incident bore. The

modulation solution for the transformed undular bore will have the same form (4.9), but

with X generally replaced by X − χ(m), where χ(m) is some function depending on the

the variable coefficient β(T ) since it is no longer a centred fan but rather a more general

simple-wave solution of the Whitham equations and can only be found from the full solution

of the perturbed Whitham equations (2.57) (El et al., 2007). The constant initial phase

X0 in the periodic wave solution (4.7) is then generally replaced by some function X0(m),

which can be viewed as a “modulation phase shift” acquired by the undular bore due to its
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4.2.2 Slowly varying topography

interaction with variable topography. The functions X0(m) and χ(m) are related to each

other. The calculation of the phase shift requires solution of the full perturbed Whitham

system (2.57) and is beyond the scope of the thesis. We also note that a similar phase shift

also arises in the interactions of dispersive shock waves with rarefaction waves (El et al.,

2012), which is to some degree analogous to the present problem of the transformation of

the undular over sloping bottom.

4.2.2.2 Slowly decreasing depth

4.2.2.2.1 The leading edge

Now, we will look at the propagation of undular bores over a slowly decreasing depth to-

pography, i.e. βT < 0 in the vKdV equation (4.4). We first assume that the leading solitary

wave of the undular bore evolves as an isolated soliton (the “weak soliton interaction” sce-

nario) when the depth decreases slowly (this will be later confirmed by the analysis of the

behaviour of the modulation Riemann invariants near the leading edge of the undular bore

from numerical simulations). This assumption immediately implies that the amplitude of

the leading solitary wave must vary adiabatically to conserve the action flux (momentum).

As was mentioned in Chapter 3, when a single soliton propagates over a slowly changing

bottom surface, it deforms adiabatically such that its amplitude changes proportionally to

h−1. Here, it is instructive to derive the counterpart of this result for the vKdV equation

(4.4), which possesses the conservation law of wave action flux

d

dT

∫ ∞

−∞
U2 dX = 0. (4.17)

The slowly varying solitary wave solution for (4.4) is given by

U ∼ a sech2(γ(X − Φ(T ))) , V = ΦT = 2a = 4βγ2 , (4.18)

where the amplitude a etc. are slowly varying function of T . Substituting (4.18) into (4.17)

yields
a2

γ
= 2β2γ3 = constant . (4.19)

From the above equation, we have γ ∼ β−2/3 and a ∼ β−1/3. With the help of (4.5), we

obtain a ∼ h−3/4. Since U = h1/4A, so the result follows.

The amplitude of the leading solitary wave in the undular bore before the slope is 2U0. As

it propagates over a slowly decreasing depth region, it will behave as if detached from the
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4.2.2 Slowly varying topography

undular bore. Thus, its amplitude must vary according to a = 2U0β
−1/3 for T0 < T < T1.

Once it emerges onto the shallower shelf, T > T1, its amplitude is a = 2U0β
−1/3
1 > 2U0.

The trajectory of the solitary wave is

X = Φ(T ) =

∫ T

0
4U0β(T

′)−1/3 dT ′. (4.20)

This clearly contradicts to our original assumption in the previous subsection that a single

undular bore with the leading solitary wave having an amplitude of 2U0 will emerge onto the

shelf after the slope. To resolve the above inconsistency, an additional solitary wavetrain

should be added at the front of the undular bore to provide a gradual increase of the

amplitude from 2U0 at the leading edge of the undular bore to the value of 2U0β
−1/3

implied by the momemtum conservation for an isolated solitary wave.

Thus, the propagation of an undular bore over a broad region of slowly decreasing depth

would lead to a non-adiabatic effect: the generation of a solitary wavetrain in front of the

bore. The adiabatic deformation of the bore itself is twofold:

(a) the change of the characteristic scale of the oscillations in the bore due to the change

of the dispersion coefficient β in (4.4);

(b) the occurrence of the additional slow ‘modulation phase shift’ X0(m) throughout the

bore so that the relevant modulation solution generally represents a non-centred simple

wave of the Whitham equations.

All the described adiabatic and non-adiabatic deformations of the undular bore on a slope

will be confirmed numerically.

4.2.2.2.2 The trailing edge

At the trailing edge of the undular bore, the amplitude of the modulated wave vanishes

and it transforms into a linear wave packet. At the initial stage of the evolution (i.e.

0 < T < T0 for the vKdV equation (4.4)), the linear wave packet at the trailing edge of the

undular bore propagates over the background, U = U0 and the amplitude varies according

to the Green’s law. Thus, the linear dispersion relation for this wavepacket is given by

ω = 6kU0 − β(T )k3 , (4.21)

where β(T ) = 1 for 0 < T < T0. The velocity of the trailing edge, s− = −6U0, following

from the modulation solution (4.9), must coincide with the linear group velocity ∂ω/∂k.
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4.2.2 Slowly varying topography

Thus, we have
∂ω

∂k
= 6U0 − 3k20 = −6U0, (4.22)

which gives the value of the wavenumber at the trailing edge, k0 = 2U
1/2
0 . This is valid for

the initial stage of the evolution, 0 < T < T0. Note that this result is in agreement with

the modulation formula (4.11) when we consider m→ 0. As we have established in Section

4.2.2, the modulation solution (4.9) and the jump (4.16) across the bore are not influenced

by the variations of β(T ). Therefore, if the structure of the bore is to remain unchanged,

the velocity of the trailing edge must also remain the same, i.e. −6U0 for T > T1, i.e. when

the bore emerges onto the constant shelf with β = β1 < 1 (for the decreasing depth).

Now, we consider the equation for the conservation of waves

kT + ωX = 0, (4.23)

which is always valid for modulation dynamics (Whitham, 1974) and is consistent with

the perturbed modulation system (2.56) regardless of the specific form of the perturbation

term. On substitution of (4.21) into (4.23), we have

kT + (6U0 − 3β(T )k2)kX = 0. (4.24)

Solving (4.24) using the method of characteristics, we obtain

k = k0 on
dX

dT
= 6U0 − 3β(T )k2.

So, when the undular bore emerges onto the new shelf, β(T ) = β1, the group velocity of

the trailing edge becomes

s∗− = 6U0 − 3β1k
2
0 = 6U0(1− 2β1). (4.25)

For slowly decreasing depth, β1 < β0 = 1 and (4.25) implies that s∗− > s− = −6U0. Thus,

the “new” trailing edge will be located inside the “main” undular bore restoring its original

structure after the interaction with the sloping bottom. This implies the simultaneous

occurrence of two waves in the region close to the trailing edge of the transformed bore.

Hence, the splitting of the linear group velocity characteristic, shown in Figure 4.2, has

an important implication in terms of the structure of the undular bore. Indeed, due to

this splitting, one expects that the undular bore propagation over slowly decreasing depth

region will exhibit a multi-phase (presumably two-phase) behaviour near the trailing edge.

This will be confirmed by direct numerical simulations.
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Figure 4.2: The linear group velocity characteristics plot for flat bottom and decreasing depth propagation.

4.2.2.2.3 Evolution of the undular bore over a region of slowly decreasing

depth: numerical simulation

In the right panel of Figure 4.3, we present the evolution of an undular bore over a slowly

decreasing depth region obtained from numerical simulations of the vKdV equation (3.25)

(see Appendix A.2) with the following depth profile:

h(τ) =





1.0 : τ < 400(
1− α(τ−400)

2

)2
: 400 < τ < 844.44

0.64 : τ > 844.44

, α = 0.0009. (4.26)

The initial condition is taken as

B(X, 0) =
1

4
(1− tanh(

X

10
)), (4.27)

so that an undular bore is fully developed before the slope, τ < 400. As a comparison,

the left panel of the Figure 4.3 shows the undular bore propagation over a flat bottom,

h(τ) = 1.

In plot 4 in the right panel of Figure 4.3, one can clearly see that there is a solitary

wavetrain attached to the front of the undular bore when the transformed bore emerges

onto a shallower shelf. The leading solitary wave of the undular bore itself has the same

amplitude as in the incident bore, i.e. 2U0. One can also see the multi-phase behaviour at

the rear part of the bore as shown in plot 3 in the right panel of Figure 4.3 (see also Figure

4.4 for a clearer illustration). This multi-phase behaviour continues for some time after the

bore emerges onto the shelf. The bore will restore its single-phase slowly modulated wave

behaviour throughout the entire bore at sufficiently large time. The multi-phase behaviour
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does not affect the front part of the bore, which retains its single-phase structure all the

time.
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Figure 4.3: Numerical solution of the vKdV equation (3.25) with the initial condition (4.27). Left panel:

propagation of an undular bore over a constant bottom; Right panel: propagation of an undular bore over

a slowly decreasing depth topography with the profile h(τ ) given by (4.26).
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Figure 4.4: The occurrence of multi-phase behaviour at the rear part of the undular bore when the bore

propagates over a slowly decreasing depth region.
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Figure 4.5: X-T plane of the evolution of an undular bore over a slowly decreasing depth region according

to the vKdV equation (4.4). The undular bore and the solitary wavetrain are confined to [X−(T ),X+(T )]

and [X+(T ), Xs(T )] respectively. One can see the spatial shift of X±(T ) due to the interaction with the

slope.

Figure 4.5 illustrates the boundaries of the undular bore, X±(T ) obtained from the numer-

ical simulation of the vKdV equation (4.4), which is exactly equivalent to (3.25), and will

be used in our analytical construction below. The initial condition considered here is

U(X, 0) =
1

4

(
1− tanh

x

10

)
. (4.28)

The depth profile is taken in the form of

h(T ) =
9

50

(
1− tanh

(
T − 450

150

))
+ 0.64,

so that the variable coefficient β(T ) = h9/4 will have a very smooth transition between

β = 1 and β ≈ 0.367 over the interval ∆T ≈ 1100. Xs is the position of the leading soliton

in the solitary wavetrain, which was the leading solitary wave of the initial undular bore.

Figure 4.6 shows the comparison for the numerically obtained velocity of the linear wavepacket

at the trailing edge of the undular bore and the linear group velocity predicted by formula

(4.25). One can see that the velocity of the trailing edge of the incident bore increases

due to the interaction of the linear wave packet with the slope as predicted by the linear

wave group velocity (4.25) before it restores to the value of −6U0. This non-monotonic

behaviour of the trailing edge of the undular bore (see the curve X−(T ) in Figure 4.5) is

another feature of the propagation of undular bore over a slope besides the formation of

the solitary wavetrain ahead of the bore. This behaviour is not clear in Figure 4.3.
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Figure 4.6: Comparison for the numerically obtained velocity of the trailing edge of the undular bore

propagating over a slowly decreasing depth region – circles; and the linear group velocity predicted by the

formula (4.25) over the same slope – solid line.

So far, we can make three conclusions based on our analysis and confirmed by our numerics

presented in Figures 4.3 – 4.5:

(a) the propagation of undular bore into the region of slowly decreasing depth leads to

generation of a large-amplitude solitary wavetrain ahead of the bore,

(b) the asymptotic values of the velocities of the trailing and leading edges of the undular

bore, X ′
−(T ) = cot(θ1) and X ′

+(T ) = cot(θ2) remain unchanged after the interaction

with variable topography (see Figure 4.5 ),

(c) there are spatial shifts in the position of the trailing and leading edge of the transformed

undular bore relative to the initial bore, and

(d) the occurrence of the multi-phase behaviour near the trailing edge.

We note that a similar observation to (a) was made by Ablowitz et al. (2009) in one of the

cases where an undular bore interacts with a rarefaction wave, producing a soliton wave-

train in front of the undular bore. They also observed a transient multi-phase behaviour

at the rear part of the undular bore. These similarities between two apparently different

problems are not surprising when one observes that, in our present formulation, the undu-

lar bore essentially propagates through the “rarefaction region” of the decreasing depth.

The essential difference is, of course, that in our problem the profile h(x) of the “rarefaction

region” is fixed and described by the variable coefficients in the vKdV equation, while the

evolving profile of the hydrodynamic rarefaction wave in Ablowitz et al. (2009) is given by

the relevant solution (2.10) of the constant-coefficient KdV equation.
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4.2.2 Slowly varying topography

4.2.2.2.4 Formation and evolution of the solitary wavetrain

Here, we will construct the asymptotic description for the solitary wavetrain generated in

front of the undular bore when entering a slowly decreasing depth region. In general, the

local solitary wavetrain can be described, up to a constant phase shift, by an asymptotic

expression (Grimshaw, 1970; Whitham, 1974)

0 < X < 1/κ : U ∼ a sech2(γΘ) , ΘT = −κV ,ΘX = κ , (4.29)

where V = 2a = 4βγ2κ2 ; (4.30)

U(Θ + 1) = U(Θ) .

The term “locally” here implies distances comparable with a single spatial period L = 1/κ.

In a modulated solitary wavetrain, a and κ are slowly varying functions of X and T (i.e.

they vary on the scale much larger than 1/κ) so that (4.29) can be viewed as a natural

extension of (4.18) for a single slowly varying soliton, and it reduces (within each period)

to that expression when one sets κ = 1. Here, the initial phase is not fixed in (4.29) as we

are only interested in the behaviour of slow modulations of a(X,T ), and κ(X,T ).

The modulation equations for the amplitude a and the soliton train wavenumber κ are

given by

{
a2

κγ

}

T

+ V

{
a2

κγ

}

X

= 0 , (4.31)

κT + (V κ)X = 0 . (4.32)

The system (4.31), (4.32) was obtained by Grimshaw (1979) using a multiple-scale ex-

pansion of the vKdV solution with the leading term in the form (4.29). The amplitude

equation (4.31) can also be obtained directly, using averaging of the KdV ‘mass’ conser-

vation law via the averaged Lagrangian approach (Whitham, 1974). It is not difficult to

show that the amplitude equation (4.31) is consistent with the soliton limit (m → 1) of

the full perturbed Whitham modulation equations (2.62) derived in El et al. (2007) for the

perturbed KdV equation (4.3) (note the change of independent variables). We also need

to stress that equation (4.32) is valid only asymptotically for 1 −m ≪ 1, i.e. within the

range of validity of the approximation (4.29).

Using the relation (4.30), we can rewrite equations (4.31) and (4.32) as

Aσ + 2AAX = 0 , (4.33)

κσ + (2Aκ)X = 0 , (4.34)
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where

σ =

∫ T

0
β(T

′
)−1/3dT

′
, (4.35)

A =

{
a2√
2κγ

}2/3

= aβ1/3. (4.36)

The system (4.33) and (4.34) for A(X,σ) and κ(X,σ) has the same form as the system

(4.31, 4.32) for a(X,T ) and κ(X,T ) in the case when β = β0 = constant (and so a =

4β0γ
2κ2), i.e. for the constant-coefficient KdV equation.

A, κ are constants when there is no X-variation and we recover the result (4.19). By using

the method of characteristics, the general solution for (4.33) and (4.34) is

A = constant , on
dX

dσ
= 2A , (4.37)

and
dκ

dσ
= −2AXκ =

Aσ

A κ . (4.38)

Note that the system (4.37), (4.38) has only one multiple characteristic family and all the

characteristics are straight lines in the X-σ plane.

Now, let us define the position of the trailing edge of the solitary wavetrain as the line

X = X+(T ) where a = 2U0. This definition is consistent with the location of the leading

edge of the undular bore for the flat bottom propagation case. Let the initial velocities for

both the trailing edge of the solitary wavetrain and the leading edge of the undular bore be

X ′
+(T0) = 4U0. In the current problem for the varying bottom case, the line X = X+(T ) is

not associated with the trajectory of a particular solitary wave. This is because the solitary

waves must be allowed to cross this boundary to enable the formation of the advancing

modulated solitary wavetrain. Thus we have

0 < X ′
+(T ) < 4U0 for T0 < T < T1 . (4.39)

So the boundary condition for the solitary wavetrain amplitude equation (4.33) is

A = 2U0β
1/3 on X = X̄(σ) , (4.40)

where X̄(σ) = X+(T (σ)). T (σ) is the inverse relation of (4.35), so that σ(T (σ)) = σ.

The latter relationship requires that β(T ) varies monotonically from 1 at T = T0 to β1 at

T = T1.

The solution for A in (4.37) is

A = A0(σ0) = 2U0β
1/3(T (σ0)) , X − X̄(σ0) = 2A0 · (σ − σ0) , (4.41)
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σ0 ∈ [0, σ1] is a parameter on the curve X = X̄(σ). Formally, elimination of the parameter

σ0 from (4.41) yields A as a function of X and σ. The solution (4.41) is defined for

X̄(σ) < X < Xs, where Xs = 4U0σ is the trajectory of the leading soliton in the solitary

wavetrain (see (4.20)), having amplitude a = 2U0β
−1/3, i.e. A = 2U0. Ahead of the solitary

wavetrain, where X > 4U0σ, we have A = 0.

From the first equation in (4.41), the derivative AX is given by

AX =
dA
dσ0

∂σ0
∂X

= A′
0(σ0)

∂σ0
∂X

. (4.42)

Note that AX is a partial derivative. The expression ∂σ0
∂X can be obtained from the second

equation in (4.41) by implicit differentiation

1− X̄ ′(σ0)
∂σ0
∂X

= 2A′
0(σ0)

∂σ0
∂X

· (σ − σ0)− 2A0(σ0)
∂σ0
∂X

. (4.43)

Thus, from (4.42) and (4.43), the derivative AX is

AX =
A′

0(σ0)

2A′
0(σ0)(σ − σ0) + [X̄ ′(σ0)− 2A0(σ0)]

. (4.44)

With the help of (4.39), we have the relation [X̄ ′(σ0)−2A0(σ0)] < 0. Therefore, in order to

guarantee the existence of the obtained solution for all X and σ, we must have A′
0 < 0. This

implies that β′(T ) < 0 from (4.35) and (4.41). Then our solution represents a rarefaction

fan emanating from the curve X = X̄(σ0). Therefore, the condition β′(T ) < 0 (decreasing

depth) can be viewed as the condition of the formation of an expanding solitary wavetrain

in front of the bore. This confirms our initial assumption that the leading solitary wave

of the undular bore behaves as an isolated solitary wave when the bore advances into the

decreasing depth region.

The corresponding general solution for κ can be found by substituting (4.44) into (4.38),

which gives
dκ

dσ
=

−2κA′
0(σ0)

2A′
0(σ0)(σ − σ0) + [X̄ ′(σ0)− 2A0(σ0)]

. (4.45)

The above equation can be integrated to give

κ = κ0

{
1 +

2A′

0(σ0)(σ − σ0)

X̄ ′(σ0)− 2A0(σ0)

}−1

, (4.46)

where κ0 is the value of κ on the curve X = X+(T (σ0)) = X̄(σ0) and σ0(X,σ) is defined

by (4.41).

To find the curve X = X+(T ) for T0 < T < T1, it is instructive to assume that

X ′
+(T ) ≪ 4U0 for T0 < T < T1 , (4.47)
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and thus X̄ ′(σ0) ≪ 2A0(σ0). This behaviour can be formally justified for functions β(T )

varying sufficiently fast on a typical time scale of the solitary wavetrain modulations (but

still being slow functions on the time scale of a single soliton). Indeed, since X ′
+(T0) = 4U0,

in order to satisfy (4.39), one must have X ′′
+(T ) < 0 ( it is clear that signX ′′

+(T ) =

sign β′(T )). Then the result follows as an asymptotic behaviour of X+(T ) for sufficiently

large T . Thus we have

X+(T ) ≃ X+(T0) = 4U0T0 for T0 < T < T1. (4.48)

Our numerical simulations show that behaviour (4.48) establishes itself quite quickly even

for rather slow functions β(T ). This is shown in Figure 4.5, which corresponds to βT ∼
5 · 10−4. For larger values of βT , say βT ∼ 10−3 − 10−2, the boundary X+(T ) becomes

stationary almost immediately as variations of β begin at T = T0. X+ resumes its motion

at T = T1 and gradually restores its initial velocity 4U0. Thus (4.47) and (4.48) can be

safely used in the solution (4.41), (4.46) for a broad range of the slope values specified in

terms of β(T ). The schematic behaviour of the boundaries X+(T ) and Xs(T ) illustrating

the asymptotic formulation of the problem of the generation of the solitary wavetrain on

the given boundary X = X+(T ) = X+(T0) for T0 < T < T1 is shown in Figure 4.7.

Figure 4.7: Schematic behaviour of the boundaries X+ and Xs of the solitary wavetrain generated at the

leading edge of the undular bore on a slope.

Thus, using (4.47), we have to leading order

κ ≃ κ0

{
1− A′

0(σ0)(σ − σ0)

A0(σ0)

}−1

= κ0

{
1− 2

3

β′(σ0)

β(σ0)
(σ − σ0)

}−1

, (4.49)

where β(σ0) ≡ β(T (σ0)) so that β′(σ0) = βTβ
1/3(σ0) < 0 and therefore the solution (4.49)

exists for all X and σ. Then the leading edge of the undular bore, that is also the trailing

edge of the solitary wavetrain, emerging on the shelf is X+(T ) ≃ 4U0T0 + 4U0(T − T1) for
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T > T1 and the phase shift ∆+ = χ(1) can be estimated as ∆+ ≃ −4U0(T1 − T0). Of

course, one can guarantee the linear behaviour of X+(T ) ∼ 4U0T only for T ≫ T1 when

the slowly modulated structure of the undular bore fully adjusts itself to the shelf region

with β = β1.

Let σ1 = σ(T1). Then, on the shelf, where T > T1 , σ > σ1, we have β = β1 , σ =

σ1+(T −T1)β−1/3
1 . The leading edge of the solitary wavetrain on the shelf is Xs = 4U0σ =

4U0(σ1 + (T − T1)β
−1/3
1 ). We note that for T > T1, both boundaries X+(T ) and Xs(T )

confining the expansion fan are characteristics and the total number of solitary waves in

the train for T > T1 does not change with time.

The wavenumber in the bore is given by the formula (4.11),

k =
πU

1/2
0

β1/2K(m)
. (4.50)

If we consider the solitary wavetrain as a small wavenumber asymptotic of the modulated

cnoidal wave we must have (see Whitham, 1974)

1−m≪ 1 : κ ≃ k

2π
, (4.51)

which suggests a continuous matching between k/(2π) in the undular bore and κ = κ0 in

the solitary wavetrain at the leading edge X+(T ) of the undular bore. This continuous

matching, however, is not possible for the following reason.

The asymptotic behaviour of k in the modulation solution (4.9) near the leading edge

X = X+(T ) is (Gurevich & Pitaevskii, 1974)

k ∼ 2π

β1/2
U0

1/2

ln(1/(s+ − s))
, (4.52)

where s = X/T , s+ = X+/T = 4U0. This implies that |kX | → ∞ while k → 0 when

X → X+. Thus the wavenumber varies rapidly near X = X+. On the other hand, the

typical spatial scale of the variations of modulations in the advancing solitary wavetrain is

much greater than that in the undular bore. Therefore, it is natural to require matching

of κ with the mean value of k/(2π) across the undular bore front, which one can naturally

define as the (soliton) part of the bore propagating to the right, i.e. 0 < X < X+ (note

that X = 0 is the characteristic of the modulation system separating the “rightward and

leftwards propagating” parts of the characteristic fan (4.9)). The mean value of k across

the bore front is then

k =
1

X+

X+∫

0

kdX =
1

4U0

1∫

m∗

k(m) ·
(
ds

dm

)
dm , (4.53)
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where s(m) is given by the modulation solution (4.9) and m∗ ≈ 0.6415 — the value of m

on the characteristic X = 0 — is the root of the equation s(m) = 0. Then, using (4.50) we

obtain

k =
πU

1/2
0

2β1/2
I, (4.54)

where

I =

1∫

m∗

W ′(m)

K(m)
dm ≈ 0.6569 , (4.55)

W (m) = 1 +m− 2m(1−m)K(m)

E(m)− (1−m)K(m)
. (4.56)

Thus we have

κ0 =
k

2π
=

U
1/2
0

4β1/2
I , where I ≈ 0.6569. (4.57)

Now, from (4.30) and (4.36), we have γ(X,T ) = κ−1β−1/3(A/2)1/2 and so the slowly

varying solitary wavetrain (4.29) is fully defined. As T → ∞, σ ∼ Tβ
−1/3
1 , X+ ∼ 4U0T ,

Xs ∼ 4U0β
−1/3
1 T and the asymptotic solution is,

4U0T < X < 4U0β
−1/3
1 T : A ∼ X

2σ
, or a ∼ X

2T
, (4.58)

κ ∼ g(X/(2T ))

σ
∼ g(A)

σ
, or κ ∼ G(a)

T
. (4.59)

Here g(A) = 3κ0β(σ0)/(2β
′(σ0)), where σ0(A) is found from the solution A = 2U0β

1/3(σ0)

(see (4.41)). As a matter of fact, g(A) is only defined for the variable coefficient region

0 < σ0 < σ1, where β
′(σ) 6= 0 and where the generation of the solitary wavetrain occurs.

The function G(a) = g(aβ
1/3
1 ) has the meaning of the distribution function over amplitude

in the solitary wavetrain so that G(a)da is the number of solitons with amplitudes in the

interval [a, a + da] (Whitham, 1974). Since the total number of solitons N in the train

remains constant for T > T1 it can be estimated by the formula

N ≃
∫ 2U0β

−1/3
1

2U0

G(a) da . (4.60)

From our solution (4.49), when βT > 0, the interaction of the solitary wavetrain with

the increasing depth topography would increase the density of solitary waves. This will

enhance their interaction and eventually rendering invalid the basic assumption about the

isolated character of solitary waves in the wavetrain. Also, the amplitude profile specified

by the solution (4.41) with β′(T ) > 0 will develop a breaking singularity at some σ = σc

also making this solution physically invalid. All this suggests that one should not expect

the generation of the chain of individual non-interacting solitons in front of the bore if
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Figure 4.8: Schematic behaviour of the Riemann invariants in the modulation solution. (a) Regular

undular bore (before the slope, T < T0); (b) Undular bore with an advancing soliton train confined to

[X+, Xs] (after the slope, T ≫ T1)

β′(T ) > 0. Instead, this case appears to be relevant to the realisation of the second

(nonlocal) “strong interaction” scenario of the undular bore evolution.

The transformation of an undular bore over a slowly decreasing depth region can be il-

lustrated in terms of Riemann invariants, rj, j = 1, 2, 3 of the Whitham equations. The

schematic illustrations of the behaviour of the Riemann invariants before and after the

slope are shown in Figure 4.8. In the solitary wavetrain region, we have r1 = r2. This

behaviour will be confirmed by numerical results in the following section.

4.2.2.2.5 Numerical Results

Now, we will use numerical results to confirm our fundamental assumptions used in the

modulation analysis in the previous subsections:

(a) an undular bore on a slope can be described by a slowly modulated periodic solution

of the KdV equation,

(b) the leading solitary wave in the undular bore behaves as an isolated KdV soliton as

described by the “weak interaction scenario”, and

(c) a solitary wavetrain is formed at front of the undular bore.

For the numerical simulations, we will use the vKdV equation of the form (3.25). The

depth profile, h(τ) is given by (4.26) and the initial condition is (4.27). As mentioned in

the beginning of this chapter, the vKdV equation (3.25) is exactly equivalent to the vKdV
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equation (4.4), which was used for our asymptotic analysis. The present form (3.25) is

slightly more convenient for numerical simulations as it produces fewer waves for the same

running time interval. The initial condition is taken in the form of a smooth step (4.27).

The results of our numerical simulations are presented in Figures 4.9 – 4.13. Each of the

Figures 4.9 – 4.12 corresponds to a particular value of time, τ = τi and consists of three

plots: the top plot shows the numerical solution for B(X, τi), the middle plot shows the

spatial behaviour of the numerical “Riemann invariants” rj and the bottom plot shows the

behaviour of the numerically determined value of the modulus m.

The parameters r1, r2 and r3 in the middle plots are found in the following way. Assume

that a locally undular bore is described by the periodic solution (4.7) (assumption (a)

above). Then, from the numerical data for B(X, τi), we can find the values of the basic

wave parameters b1, b2 and b3 (see Chapter 2)

b1 ≡ Bmax, b2 ≡ Bmin, (4.61)

and the third parameter b3 can be obtained from the numerical values of the local spatial

period (wavelength) L, which for the vKdV equation (3.25) is given by the formula

L =
4h9/8K(m)√
3(b1 − b3)

where m =
b1 − b2
b1 − b3

. (4.62)

Using the values of b1, b2 and b3, we construct

r3 =
b2 + b3

2
, r2 =

b1 + b3
2

, and r1 =
b1 + b2

2
, (4.63)

which would play the role of the modulation Riemann invariants in the perturbedWhitham

system (2.56).

Now, if the “numerical” distributions of r1, r2 and r3 qualitatively agree with those im-

plied by our modulation analysis (in particular, for the shoaling bores, we would expect to

obtain the distributions schematically shown in Figure 4.8), this would be a strong confir-

mation of our basic assumption that the transformed undular bore retains its structure as

a slowly modulated single-phase wave, which can be described by the relevant solution of

the Whitham equations.

The plot for the modulusm will then give a convenient information of the detailed waveform

of the oscillatory structure, and, in particular, will allow one to identify the region of the

solitary wavetrain where m = 1.

In Figure 4.9, we present the initial undular bore before the slope, τ = 400. This agrees

with the Gurevich-Pitaevskii solution (4.7) with β = 1 and the modulus m is in the range
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of 0 to 1 (bottom plot). The distribution of the numerical values of the Riemann invariants

agrees with Figure 4.8a.
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Figure 4.9: Initial undular bore (before the slope), τ = 400. Upper plot: B(X); Middle plot: the

modulation Riemann variables r3 ≤ r2 ≤ r1 obtained from the plot for B(X) assuming a local representation

of the wave in the form of a cnoidal periodic solution of the constant-coefficient KdV equation; Bottom

plot: the modulus m = (r2 − r3)/(r1 − r3) as function of X.

Figure 4.10 shows the evolution of the undular bore on the slope, τ = 800. We can see the

formation of the solitary wavetrain in front of the undular bore. This can be confirmed by

the presence of the region where r1 = r2 or m→ 1.
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Figure 4.10: Same as in Figure 4.9 but for τ = 800 (undular bore on the slope). One can see the solitary

wavetrain (m → 1 and r1 = r2) is formed between X ≈ 350 and X ≈ 500. The behaviour of the Riemann

invariants near the leading edge is characteristics of the “weak interaction” (local) scenario (see Figure

2.11a).

In Figure 4.11, we present the plot of the undular bore “shortly” after the slope, τ = 1400.

We can observe that the solitary wavetrain retains its structure at the front part of the

undular bore. Also, note the occurrence of the new multi-phase (presumably two-phase)

region in the rear part of the undular bore. In this region, the modulus m is not defined

(see the bottom plot).
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Figure 4.11: Same as in Figures 4.9, 4.10 but for τ = 1400 (shortly after the slope). The solitary wave

train is located between X ≈ 700 and X ≈ 1200. A multi-phase behaviour can be seen around X = 100.

Figure 4.12 corresponds to the long-time behaviour of the transformed bore after the slope.

It is clear that we have a combination of two distinct wave structures in the transformed

bore. At the front part, we have a solitary wavetrain joined by an undular bore behind

it. The leading solitary wave amplitude of the undular bore has the same value as in the

initial bore. The corresponding distribution of the Riemann invariants (the middle plot)

agrees with our theoretical predictions as shown in Figure 4.8b.
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Figure 4.12: Same as in Figures 4.9, 4.10, 4.11 but for τ = 3400 (long-time behaviour after the slope).

The Riemann invariants distribution matches the schematic of the theoretical prediction in Figure 4.8b ).

Note that the behaviour of the Riemann invariants near the leading edge of the bore in

all the plots is similar to the diagram shown in Figure 2.11a, where |dr1/dX| < ∞ and

|dr2/dX| <∞. This confirms our assumption that the leading solitary wave of the undular

bore behaves as an isolated soliton in the propagation over a decreasing depth region, which

corresponds to the “weak soliton interaction” scenario. Therefore, the leading solitary wave

must change adiabatically and behaves as a separate single soliton. The appearance of

multi-valued regions in the distribution of modulus, m (the bottom plot), in Figures 4.9

– 4.12 are due to numerical artifact and it is not an indication of the presence of multi-

phase interaction in the wavetrain. For the actual multi-phase interaction wavetrains, the
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Figure 4.13: Comparison for the amplitude of the adiabatically varying solitary wave on a slowly decreas-

ing depth region (formula (4.64) with h0 = 1, a0 = 1 ) – solid line; and the numerical data for the leading

solitary wave in the modulated wavetrain (initially, a single undular bore on the same slope) – circles.

modulus, m is undefined, which is manifested in the numerical plots as chaotic collection

of points. The same multi-valued regions of the same nature also present in the long-time

numerical simulations for the flat-bottom propagation described by the constant-coefficient

KdV equation. However, in this case an exact global single-phase modulation solution

exists, which rules out the possibility of the multi-phase behaviour.

In Figure 4.13, we present a comparison for the amplitudes of the adiabatically varying

isolated solitary wave on a slope with the numerical values of the leading solitary wave

amplitude in the modulated wavetrain (initially a single undular bore) propagating over

the same slope. In both cases, they have the same initial amplitude, a = 1.

Finally, we note that for the vKdV equation (3.25), the adiabatic variations of the solitary

wave amplitude is given by the formula

a = a0

(
h0
h(τ)

)3/4

, (4.64)

where h0 and a0 are the initial depth and the solitary wave amplitude respectively. Re-

lationship (4.64) is an exact counterpart of the relationship (4.19) for the slowly varying

solitary wave of the vKdV equation in the form (4.4). One can see that there is an excel-

lent agreement between the numerics and formula (4.64). This provides direct quantitative

confirmation of our assumption that the leading solitary wave of the undular bore evolves

as an isolated solitary wave over the slowly decreasing depth region when h′(τ) < 0.
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4.2.2 Slowly varying topography

4.2.2.3 Slowly increasing depth

4.2.2.3.1 The leading edge

Now, we will assume that the depth slowly increases, i.e. βT > 0 in the vKdV equation

(4.4). As our modulation analysis of the solitary wavetrain on a slope shows (see Section

4.2.2.2.4), the interaction of undular bores with slowly increasing depth topography must

lead to the second interaction scenario described by El et al. (2007), which is “strong soliton

interaction” (see Figure 2.11b). This will later be confirmed by the analysis of the Riemann

invariants’ behaviour obtained from the numerical simulations. Now, the evolution of the

leading solitary wave cannot be found locally using the action wave conservation, as it was

done in Section 4.2.2.2.1. In this case, in addition to local variations due to topography,

one needs to take into account the interaction of the lead solitary wave with the wavetrain

behind it. This would require the knowledge of the solution of the full perturbed Whitham

system, which is generally unavailable at present. Thus, we only present some qualitative

interpretation of the wave dynamics and perform numerical simulations to confirm our

conclusions.

Because of the depth variations, the leading solitary wave amplitude of the initial undular

bore decreases when it enters the variable topography region. Hence, in this case, there

will be no formation of a solitary wavetrain ahead of the transformed bore. However, the

nonlocal interaction near the leading edge will prevent the leading solitary wave dimin-

ishing further. Instead, it will cause the leading solitary wave to grow. Since the jump,

[U ] across the bore remains unchanged (see (4.16)), the leading wave amplitude will even-

tually increase to the value of 2U0, which is the same as in the incident bore. Once this

is achieved, the soliton interaction near the leading edge becomes weak again. This is

because the leading solitary wave is now asymptotically close to the KdV soliton solution

of the constant-coefficient KdV equation and is not constrained by the interaction of the

wavetrain behind it (Khruslov, 1976; Claeys & Grava, 2010). The amplitude of the the

leading solitary wave remains constant after that.

4.2.2.3.2 The trailing edge

When the depth is slowly increasing, β1 > β0 = 1, equation (4.25) implies that s∗− < s− =

−6U0. Therefore, the trailing edge of the incident bore with initial velocity s− = −6U0

would travel slower, s∗− < −6U0 when it advances through the slope. Since the bore restores
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Figure 4.14: The linear group velocity characteristics plot for flat bottom and increasing depth propaga-

tion.

its structure when it emerges on a deeper shelf (an assumption to be confirmed by numerical

simulation), the velocity of the trailing edge of the bore must remain −6U0. Therefore,

we need to insert an additional wave structure between the trailing edge of the undular

bore travelling with velocity s− = −6U0 and the new trailing edge propagating with slower

velocity s̃ < −6U0. The reasoning here is very similar to that used in Section 4.2.2.2.1,

when we introduced solitary wavetrain ahead of the bore. Now, however, the required wave

structure would be a weakly nonlinear wavetrain with the amplitude vanishing at the (new)

trailing edge X̃ = s̃T and stretching up to the point where its amplitude will match with

the amplitude at some point near the trailing edge of the undular bore. The comparison

for the behaviour of the linear group velocity over a slowly decreasing depth and that for

a flat bottom is shown in Figure 4.14.

4.2.2.3.3 Evolution of the undular bore over a region of slowly increasing

depth: numerical simulation

In the right panel of Figure 4.15, we present the evolution of an undular bore according to

the vKdV equation (3.25) over a slowly increasing depth topography described by

h(τ) =





1.0 : τ < 400(
1 + α(τ−400)

2

)2
: 400 < τ < 960.7

1.3 : τ > 960.7

, α = 0.0005. (4.65)

The initial condition is given in (4.27) so that an undular bore is fully developed before

the slope, τ < 400. The left panel of the Figure 4.15 shows the same bore propagating

over a flat bottom. When the undular bore is on the slope, the leading wave amplitude
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4.2.2 Slowly varying topography

decreases due to the depth variations (see plot 2 in the right panel of Figure 4.15). One

can see the generation of new undular bore at the front part of the transformed bore in

plot 3 in the right panel of Figure 4.15. In plot 4 in the right panel of the same figure, it is

clear that the transformed bore consists of two distinct wave structures. At the front part

of the transformed bore, we have an undular bore with the leading solitary wave of the

undular bore is trying to reach the value of 2U0, and the rear part is a weakly nonlinear

wave structure, which was part of the initial bore.
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Figure 4.15: Numerical solution of the vKdV equation (3.25) with the initial condition (4.27). Left panel:

propagation of an undular bore over a constant bottom; Right panel: propagation of an undular bore over

a slowly increasing depth region with the profile h(τ ) given by (4.65).

Figure 4.16 shows the boundaries of the undular bore obtained from the numerical simu-

lations of the equivalent vKdV equation (4.4) used in our preliminary analysis in Section

4.2.2.3.2. The initial condition is taken in the form (4.28) and the depth profile is described
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4.2.2 Slowly varying topography

by

h(T ) =





1 : T < 300

1 + α(T − 300) : 300 < T < 1100

1.2 : T > 1100

, α = 0.00025.

One can see that the leading solitary wave, X+, of the undular bore, as was predicted, slows

down after the slope (solid line) compared to the case when the bottom is flat (dashed blue

line) due to the decrement in amplitude. Also, the velocity of the trailing edge of the initial

bore decreases slowly on the slope as predicted by (4.25) (see also Figure 4.17).
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Figure 4.16: X-T plane of the evolution of an undular bore over a slowly increasing depth region according

to the vKdV equation (4.4). The undular bore is confined to the region [X−(T ),X+(T )] while the trailing

wavetrain is bounded in the region [X̃(T ),X−(T )].

0 500 1000 1500 2000 2500 3000
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

T

T
h
e
v
e
lo
c
it
y
o
f
t
h
e
t
r
a
il
in
g
e
d
g
e
,
s
∗ −

Figure 4.17: Comparison for the numerically obtained velocity of the trailing edge of the undular bore

propagating over a slowly increasing depth region – circles; and the linear group velocity predicted by the

formula (4.25) over the same slope – solid line.

Thus far, based on our analysis, we can make three qualitative conclusions:

(a) the propagation of an undular bore over a broad range of slowly increasing depth
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region leads to a non-adiabatic response, which is the generation of a weakly nonlinear

wavetrain at the rear part of the bore,

(b) the asymptotic values of the velocities of the trailing and leading edges of the undular

bore remain unchanged after the interaction with variable topography, and

(c) there are spatial shifts in the position of the trailing and leading edge of the transformed

undular bore relative to the initial bore.

Again, similar observation to (a) was made in one of the cases studied by Ablowitz et al.

(2009), where an undular bore interacts with a rarefaction wave producing a weakly non-

linear trailing wavetrain behind the bore in the framework of constant-coefficient KdV

equation. In our current problem setting, the undular bore is propagating through the

“rarefaction region” of the increasing depth.

4.2.2.3.4 Numerical results

Now, we will use detailed numerical results to confirm our assumptions so far:

(a) the wave dynamics near the leading edge of the undular bore is governed by the “strong”

(nonlocal) interaction scenario described by El et al. (2007), and

(b) a weakly nonlinear wavetrain is formed at the rear part of the transformed bore.

For numerical simulations, we will consider the vKdV equation (3.25). The depth profile

is described by (4.65) and the initial condition is given by (4.27). The results are shown in

Figures 4.18 – 4.21. The numerical result for the initial undular bore before the slope at

τ = 400, which agrees with the Gurevich-Pitaevskii solution, is similar to those presented

in Figure 4.9.

Figure 4.18 corresponds to the undular bore propagation on the slope (τ = 900). One can

see that the amplitude of the leading wave decreases. However, it does not decrease as much

as a single soliton, which is described by the formula (4.64). This is shown in Figure 4.21.

Also, from the behaviour of the Riemann invariants (the middle plot), we have a nonlocal

interaction scenario near the leading edge (see Figure 2.11b). Moreover, the distribution

of the Riemann invariants shows that the structure is now a weakly nonlinear wavetrain.

This also also be confirmed from the distribution of the modulus, m, where the modulus

does not appear to approach 1 at the leading edge. This suggests that the wavetrain is not

a classical bore structure.
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Figure 4.18: Undular bore on the slope, τ = 900. One can see that the amplitude of the leading solitary

wave decreases. The behaviour of the Riemann invariants near the leading edge is characteristics of the

“strong interaction” (nonlocal) scenario (see Figure 2.11a).

In Figure 4.19, we present the evolution of the undular bore on a deeper shelf, β(T ) =

β1 > β0 at τ = 1400. It is clear that the leading wave of the transformed bore is growing.

At this moment, we still have “strong soliton interaction” scenario near the leading edge,

where the lead wave is interacting ‘strongly’ with the rest of the nonlinear wavetrain (see

the middle plot).

Figure 4.20 shows the plot for the transformed bore at τ = 9900, which corresponds to

the long-time behaviour after the slope. One can see clearly that the structure of the
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transformed bore is a combination of two distinct wave structures. At the front part is

the undular bore generated as the result of the nonlocal interaction at the leading edge

when the bore is propagating over the slope. On the other hand, at the rear part, there

is a weakly nonlinear trailing wavetrain, which was part of the incident bore. Also, the

amplitude of the leading solitary wave in the transformed bore has reached the value of

2U0. Now, the soliton interaction at the leading edge has become weak again (compare the

middle plot with Figure 2.11a). The multi-valued regions in the distribution of modulus,

m (the bottom plot), in Figures 4.18 – 4.20 are due to numerics and it is not an indication

that there is a multi-phase interaction in the bore.
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Figure 4.19: Undular bore after the slope at τ = 1400. One can see that the leading wave is growing.

The soliton behaviour at the leading edge is still governed by the “strong soliton interaction” scenario (see

Figure 2.11b).
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Figure 4.20: Long-time behaviour of the transformed bore after the slope at τ = 9900. The leading

solitary wave amplitude is twice of the initial jump, 2U0. One can observe two distinctive structures: an

undular bore at the front part with trailing edge travelling with velocity, s= − 6U0 joined by a trailing

wavetrain, where the velocity of the trailing edge is smaller than s̃ < −6U0.

Figure 4.21 is the comparison of the amplitudes for the adiabatically varying single solitary

wave on a slope described by the formula (4.64) and the numerical values of the leading

wave amplitude propagating over the same slope. At the initial stage, in both cases, they

have the same amplitude. While on the slope, it is clear that the leading wave of the

undular bore has greater amplitude compared to the isolated solitary wave, although both

of them decrease. This validates our assumption that the “strong soliton interaction”

scenario occurs near the leading edge. After some time, the amplitude of the leading wave
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Figure 4.21: Comparison for the amplitudes of the adiabatically varying single solitary wave over a slowly

increasing depth region described by formula (4.64) with h0 = 1, a0 = 1 – solid line, and the numerical data

for the leading solitary wave in the undular bore – circles.

starts to increase and reaches the value of a = 2U0. The amplitude of the lead wave stays

constant afterwards. This is clearly different from the evolution of an isolated solitary

wave over an increasing depth region, where the solitary wave decays on the slope and the

amplitude of the solitary wave remains the same after that. Note that the behaviour of the

Riemann invariants near the leading edge during the evolution corresponds to the second

scenario described by El et al. (2007), which is “strong soliton interaction”. This scenario

continues for a significant amount of time after the slope until the amplitude of the leading

solitary wave becomes twice of the jump, for which the soliton interaction near the leading

edge becomes “weak” again.

4.2.2.4 Smooth hole

Now, we will look at the evolution of an undular bore over a hole with gently sloping walls

and a wide bottom shelf on the bottom surface. Since a hole consists of both increasing and

decreasing depth regions, we would expect to see all the effects discussed in Section 4.2.2.2

and 4.2.2.3. In this case, initially we have an increasing depth topography. Therefore,

the leading solitary wave is expected to diminish initially before it grows again due to the

strong soliton interaction at the leading edge. When the bore is on a deeper flat region, the

leading wave continues to grow, asymptotically restoring its original amplitude 2U0. Before

it happens, though, the undular bore encounters the opposite slope of the hole, i.e. the

decreasing depth region. When the bore enters the decreasing depth region, the leading

wave will behave as an isolated solitary wave and we, again, have the local interaction

behaviour at the leading edge. Thus, after the hole, we would expect to see the formation
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of a solitary wavetrain at the front of the transformed bore. The leading solitary wave

amplitude of the undular bore after the slope remains the same as in the incident bore.
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Figure 4.22: Propagation of an undular bore over a smooth hole described by (4.66) with initial condition

(4.27)

In Figure 4.22, we present the evolution of an undular bore according to the vKdV equation

(3.25) over a smooth hole given by

h(τ) =





1 : τ < 400

(1 + α(τ − 400)/2)2 : 400 < τ < 773.80

1.3 : 773.80 < τ < 973.80

(
√
1.3 − α(τ − 773.80)/2)2 : 973.80 < τ < 1347.60

1 : τ > 1347.60

, (4.66)

where α = 0.00075. The initial condition is given by (4.27). The evolution profile matches

the description given earlier. In plot 5, one can see the formation of an advancing solitary
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4.2.2 Slowly varying topography

wavetrain ahead of the bore, multi-phase region and a trailing wavepacket (less pronounced)

at the rear part of the bore.

4.2.2.4.1 Numerical results

Again, all numerical results are based on the vKdV equation (3.25) with initial condition

and the hole description given by (4.27) and (4.66) respectively. All results are presented

in Figures 4.23 – 4.26. The corresponding plot for the initial undular bore before the slope

at τ = 400 is the same as in Figure 4.9.
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Figure 4.23: Undular bore on the deeper region of the hole at τ = 960. Note that the leading wave is

growing and nonlocal interaction at the leading edge of the bore (see Figure 2.11b).
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Figure 4.23 shows the undular bore on the deeper shelf of the hole. The amplitude of the

leading solitary wave decreases but note the growth of the leading wave as predicted by

the results in Section 4.2.2.3. Also, the behaviour of the Riemann invariants indicates that

the soliton interaction near the leading edge is described by the nonlocal interaction (see

Figure 2.11b).
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Figure 4.24: Undular bore after the hole at τ = 3400. The multi-phase behaviour is present near X ≈ 400.

Also, the soliton interaction at the leading edge now follows the local interaction scenario (see Figure 2.11a)

so that a solitary wavetrain is formed, where r1 = r2.

Figure 4.24 corresponds to the undular bore evolution after the hole at τ = 3400. One can

see the multi-phase behaviour around X ≈ −400. The values for the Riemann invariants
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and the modulus m are undefined in this region. Note that the behaviour of the Riemann

invariants at the leading edge (see the middle plot) describes the weak soliton interaction

scenario by El et al. (2007) (see Figure 2.11a). This is anticipated from our discussion in

Section 4.2.2.2. Also, a solitary wavetrain is generated ahead of the bore (r1 = r2 in the

middle plot).
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Figure 4.25: Long-time behaviour of the undular bore after the hole at τ = 9400. Notice the formation

of a solitary wavetrain (m → 1 and r1 = r2) at the front of the undular bore and multi-phase behaviour at

the rear part of the undular bore, −4200 < X < −2000.

In Figure 4.25, we present the plot of the transformed bore at a larger time after the hole,

τ = 9400. One can see that the multi-phase behaviour is still present at the rear part of
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Figure 4.26: Comparison for the amplitudes for an adiabatically varying single solitary wave over a smooth

hole given by the formula (4.64) with h0 = 1, a0 = 1 – solid line, and the numerical data for the amplitude

of the leading solitary wave in the modulated wavetrain over the same hole – circles.

the transformed bore. We would expect the transformed bore to restore its single-phase

interaction throughout the entire bore at larger time and then the Riemann invariants

distribution will be similar to those illustrated in Figure 4.8b. Note that at the leading

edge of the transformed bore, the soliton interaction has changed from strong interaction

scenario to weak interaction scenario. Also, from the values of Riemann invariants, the

amplitude of the leading solitary wave in the bore is equivalent to those of the incident

bore, a = 2(r1 − r3).

Figure 4.26 shows the comparison for the amplitudes of the adiabatically varying isolated

solitary wave over a hole predicted by the formula (4.64) with the numerical values of

the leading wave amplitude propagating over the same hole. In both cases, the initial

amplitude is the same. One can see that the leading solitary wave amplitude of the bore

is greater than that of a solitary wave when the bore propagates over the increasing depth

region of the hole. Then, the amplitude of the leading solitary wave continues to increase

on the flat bottom of the hole. As the result, it is not surprising that the amplitude of

the leading soliton in the solitary wavetrain is greater than that predicted by the (local)

formula (4.64) although the leading solitary wave already behaves as an isolated soliton.

4.2.2.5 Smooth bump

In this section, we consider a smooth bump with gently sloping walls and wide bottom on

the bottom surface. Again, a smooth bump is a combination of decreasing and increasing

depth regions. Thus, we would expect to see all the transformations presented in Sections

4.2.2.2 and 4.2.2.3. The first part of the interaction of the undular bore with the bump
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4.2.2 Slowly varying topography

involves a slowly decreasing depth region. So, a sequence of an isolated solitary waves will

be generated when the bore emerges onto a shallower shelf on the bump. The amplitude

of the leading solitary wave in the undular bore remain the same as in the incident bore.

The second part of the evolution involves a slowly increasing depth region. All the solitons

in the solitary wavetrain would deform adiabatically according to the formula (4.64) when

the wavetrain propagates through the slope. After the bump, the amplitude of the leading

soliton in the solitary wavetrain decreases to the value of 2U0. For the leading solitary

wave of the undular bore behind the solitary wavetrain, the amplitude also decreases when

it propagates through the increasing depth region. However, as was mentioned in Section

4.2.2.3, the leading wave in the bore will interact with the rest of the nonlinear wavetrain as

the result of the interaction of the bore with the varying topography. Thus, the nonlocal

interaction near the leading edge will push the leading solitary wave to grow until the

amplitude reaches the value of 2U0. Because of the growth at the leading edge of the

undular bore, which leads to the energy differences between the bore and solitons in the

solitary wavetrain, the undular bore will start to overtake the solitons in the solitary

wavetrain. Over time, we would expect the undular bore will overtake all the solitons in

the solitary wavetrain except the leading soliton. This is because both the leading soliton

in the solitary wavetrain and the leading solitary wave in the undular bore would have the

same velocity.

Figure 4.27 illustrates the evolution of an undular bore over a smooth bump described by

h(τ) =





1 : τ < 400

(1− α(τ − 400)/2)2 : 400 < τ < 844.44

0.64 : 844.44 < τ < 1044.44

(
√
0.64 + α(τ − 1044.44)/2)2 : 1044.44 < τ < 1488.88

1 : τ > 1488.88

, (4.67)

where α = 0.0009 according to the vKdV equation (3.25) with the initial condition (4.27).

In plot 4 of the Figure 4.27, we can see a solitary wavetrain is formed ahead of the bore.

At the same time, the leading wave of the undular bore behind the solitary wavetrain is

growing. In plot 5 of the same figure, one can see clearly there are three wave structures

in the transformed bore. At the front part, we have a solitary wavetrain, followed by an

undular bore with the leading solitary wave having an amplitude of 2U0. The undular

bore is seen to overtake solitons in the solitary wavetrain. At the rear part, we have a

weakly nonlinear trailing wavetrain generated as the result of the interaction of the bore

with increasing depth region as presented in Section 4.2.2.3.
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Figure 4.27: Propagation of an undular bore over a smooth bump described by (4.67) according to the

vKdV equation (3.25).

4.2.2.5.1 Numerical results

For the numerical simulations, as usual, we consider the vKdV equation (3.25) with the

bump described by (4.67) and the initial condition is taken as in (4.27). All numerical

results are presented in Figures 4.28 – 4.32.

Figure 4.28 shows the transformation of the bore on the decreasing depth region of the

bump (τ = 800). Here, it is clear that there is a formation of solitary wavetrain at the
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front of the bore. This is confirmed by the behaviour of the Riemann invariants, r1 = r2

or the modulus, m→ 1 as shown in the middle and bottom plots respectively.
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Figure 4.28: Undular bore on the decreasing depth region of the bump, τ = 800. One can see the

formation of the solitary wavetrain (m → 1, r1 = r2) between X ≈ 350 and X ≈ 500.

On the other hand, we present the plot of the evolution of the bore over the increasing depth

region of the bump (τ = 1400) in Figure 4.29. Notice that the amplitude of the leading

soliton in the solitary wavetrain decreases. Also, multi-phase interaction is observed at

the rear part of the bore. Another interesting observation is that we still have “weak

soliton interaction” scenario near the leading edge of the bore even though the bore is

on the increasing depth region (see middle plot of Figure 4.29). We can see the effect of

the increasing depth on the bore some time after the bump. At this moment, the soliton

interaction near the leading edge is in the process of changing from the weak interaction

scenario to the strong interaction scenario. Figure 4.30 shows the undular bore after the
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bump at τ = 3400. From the behaviour of the Riemann invariant, it is clear that there is

a nonlocal interaction near the leading edge.
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Figure 4.29: Undular bore on the increasing depth region of the bump, τ = 1400. The solitary wavetrain

is located at X ≈ 700 and X ≈ 1100. Notice that there is multi-phase behaviour around X = −100.

In Figure 4.31, we present the long-time evolution of the bore after the bump at τ = 15400.

Clearly, the leading solitary wave of the undular bore has the value of twice of the jump.

At the front part of the undular bore, there is a multi-phase interaction region due to the

interaction of the bore with the solitons in the solitary wavetrain. One can see that the

number of solitons in the solitary wavetrain has reduced as the result of the bore overtaking

the solitary wavetrain. As τ → ∞, we would expect that only the leading soliton in the
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solitary wavetrain is left as the amplitude of the leading soliton in the solitary wavetrain

has the same amplitude with the leading solitary wave of the undular bore. Again, the

multi-valued regions in the distribution of modulus, m, in Figures 4.28 – 4.31 are not an

indication that a multi-phase interaction present in the transformed bore.
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Figure 4.30: Undular bore after the bump at τ = 3400. The solitary wavetrain is located at X ≈ 1300

and X ≈ 1800. Note that we have nonlocal interaction near the leading edge of the undular bore around

X ≈ 1300 (see Figure 2.11b).
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Figure 4.31: Long-time behaviour of the undular bore after the bump, τ = 15400. One can see that the

leading wave of the bore is slowly overtaking the solitary waves in the solitary wavetrain.

The comparison for the amplitudes for an isolated solitary wave and the leading solitary

wave of the initial undular bore is shown in Figure 4.32. Clearly, there is an excellent

agreement between the theoretical prediction and numerical data. This shows that the

leading solitary wave of the incident bore behaves like a separate isolated soliton when

the bore is propagating over a slowly decreasing depth region and continues to deform

adiabatically according to the formula (4.64) afterwards.
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Figure 4.32: Comparison for the amplitudes for an adiabatically varying solitary wave over a smooth

bump (formula (4.64) with h0 = 1, a0 = 1) – solid line; and the numerical data for the leading solitary wave

in the initial undular bore over the same bump – circles.

4.3 Transformation of an undular bore over rapidly varying

slope

Now, we will focus on the transformations of the undular bore over a rapidly varying slope.

This is an undular bore counterpart of the “soliton fissioning” setting (Johnson, 1973b).

Due to the abrupt change in depth, the undular bore is not expected to deform adiabatically

over the slope. Also, the sudden change in depth would cause some irregularities across the

bore during the evolution. However, if the entire wave structure is allowed to ‘settle down’,

then we would still expect an undular bore described by the modulation solution (4.9)

at large time. Since the depth variations have no influence on the jump, [U ], across the

bore (see equation (4.16)), the amplitude of the leading solitary wave in the transformed

bore is expected to be 2U0, i.e. twice of the jump across the bore. Since the Whitham

modulation theory, which is our main analytical tool in the description of undular bores, is

not applicable when rapid changes of the KdV coefficients are present, the problem will be

investigated numerically. At the same time, as we shall see, our insights from the problem

with slowly varying depth will be relevant.

4.3.1 Rapidly decreasing depth

As was shown in Section 4.2.2.2, the interaction of an undular bore with decreasing depth

topography promotes the weak soliton interaction scenario near the leading edge where the

leading solitary wave of the undular bore behaves as an isolated soliton. Therefore, for a

rapidly decreasing depth region, the leading solitary wave is also expected to behave like a
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single solitary wave. As mentioned in Section 3.3.1, when a single soliton advances through

a rapidly decreasing depth region, it will disintegrate into a few solitons, i.e. soliton fission

will occur depending on the depth variation. The same process would also happen to some

part of the wavetrain at the leading edge as the wavetrain crosses the boundary to form

a sequence of isolated solitary waves. However, a number of smaller solitons generated

due to the fissioning process as the front part of the wavetrain of the undular bore crosses

over the slope would interact with the remainder of the bore, causing it to form a multi-

phase interaction region. If one allows the multi-phase behaviour to settle down at larger

time, then the single-phase behaviour will persist and an undular bore solution of the

constant-coefficient KdV equation, where β = β1 < β0 in the vKdV equation (3.25), will

be established with the leading solitary wave having an amplitude of 2U0. The amplitude

of the leading soliton in the solitary wavetrain (which was the leading solitary wave of the

initial bore after the slope) must be equal to that of a single solitary wave, as presented in

Section 3.3.1.

Therefore, the propagation of an undular bore over a broad range of rapidly decreasing

depth region is also expected to lead to a long-time non-adiabatic deformation, similar to

that in the slowly decreasing depth case, i.e. the generation of a solitary wavetrain in front

of the undular bore.

In Figure 4.33, we present the evolution profile of an undular bore propagating over a

rapidly decreasing depth region described by

h(τ) =

{
1.0 : τ < 400

0.7 : τ > 400
. (4.68)

The initial condition is taken in the form of (4.27). In plots 3 and 4 of the figure, one can

see the multi-phase interaction region at the rear part of the transformed bore caused by

the sudden change in water depth. Clearly, there is a solitary wavetrain at the front of the

transformed bore (see plot 5). Also, a small-amplitude wavetrain is found to be attached

to the rear part of the transformed bore. Although the modulation theory is not applicable

in this case, we will analyse the behaviour of the modulation Riemann invariants, rj, in

this region as a tool in order to determine the nature of this structure. This will be done

in the following subsection.

85



4.3.1 Rapidly decreasing depth

−10000 −8000 −6000 −4000 −2000 0 2000 4000

0

0.2

0.4

0.6

0.8

1

1.2

τ = 400

X

B

−10000 −8000 −6000 −4000 −2000 0 2000 4000

0

0.2

0.4

0.6

0.8

1

1.2

τ = 500

X

B

−10000 −8000 −6000 −4000 −2000 0 2000 4000

0

0.2

0.4

0.6

0.8

1

1.2

τ = 800

X

B

−10000 −8000 −6000 −4000 −2000 0 2000 4000

0

0.2

0.4

0.6

0.8

1

1.2

τ = 1400

X

B

−10000 −8000 −6000 −4000 −2000 0 2000 4000

0

0.2

0.4

0.6

0.8

1

1.2

τ = 4400

X

B

Figure 4.33: Propagation of an undular bore over a rapidly decreasing depth region described by (4.68).

4.3.1.1 Numerical results

We will use numerical results to confirm our assumptions as follows:

(a) the leading solitary wave in the undular bore behaves like a separate single solitary

wave so that we have the weak interaction scenario at the leading edge, and

(b) there is a solitary wave train generated at the front of the undular bore as the result

of the interaction of the undular bore with the decreasing depth topography.

All numerical results are based on the vKdV equation (3.25) and are presented in Figures

4.34 – 4.37. The plot for the initial undular bore before the slope is shown in Figure 4.9.
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Figure 4.34: Undular bore after a rapidly varying slope at τ = 500. A solitary wavetrain is generated

ahead of the transformed bore. At the same time, we have multi-phase behaviour at the rear part of the

transformed bore.

In Figure 4.34, we present the undular bore right after the slope at τ = 500. One can

see the formation of a solitary wavetrain between X ≈ 180 and X ≈ 300 (r1 = r2 and

m → 1). Note the occurrence of multi-phase behaviour behind the solitary wavetrain. In

this region, the (single-phase) Riemann invariants and the modulus m are not defined.
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Figure 4.35: Undular bore after a rapidly varying slope at τ = 800. The solitary wavetrain is located

between X ≈ −300 and X ≈ 600.

Figure 4.35 shows the undular bore after the slope at τ = 800. The solitary wavetrain is

located between X ≈ 400 and X ≈ 600. The amplitude of the leading solitary wave of the

undular bore is twice of the jump, 2U0 (i.e. 2(r1− r3)), as predicted. Note the multi-phase

behaviour between X ≈ −200 and X ≈ 100. Also, there is a weakly nonlinear wavetrain

at the rear part of the transformed bore.
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Figure 4.36: Undular bore after a rapidly varying slope at τ = 8400. The transformed bore has restored

its single-phase dynamics throughout the entire bore.

Figure 4.36 corresponds to the long-time behaviour of the undular bore after the slope at

τ = 8400. Ahead of the transformed bore, we have a solitary wavetrain (r1 = r2,m → 1)

followed by an undular bore, and at the rear part, we have a linear wavetrain, r2 = r3.

This is another non-adiabatic effect of the propagation of the undular bore over a rapidly

decreasing depth region, an analogue to the oscillatory tail when soliton fission occurs for a

single solitary wave. Note that at this moment, the transformed bore has restored its single

phase structure throughout the entire bore. Also, the transformed bore is not an multi-

phase wavetrain although there are multi-valued regions in the distribution of modulus, m,

in Figure 4.36.
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4.3.2 Rapidly increasing depth
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Figure 4.37: Comparison for the amplitudes for the leading solitary wave of the initial bore (blue circles)

and an isolated solitary wave (red crosses).

The comparison for the numerically obtained amplitudes for the leading solitary wave of

the initial bore and an isolated single solitary wave is shown in Figure 4.37. In both cases,

the initial amplitude is the same. Clearly, in both cases, we have a very good agreement.

This confirms our assumption that the leading solitary wave of the initial bore was indeed

behaving like a separate isolated solitary wave when propagating over a region of rapidly

decreasing depth.

4.3.2 Rapidly increasing depth

Now, we will consider the opposite case where the depth is increasing rapidly. Then

the leading solitary wave and some part of the wavetrain of the undular bore will decay

immediately when it emerges onto a deeper shelf. Unlike the case for a slowly increasing

depth where the nonlocal interaction scenario is slowly achieved, in this case, however, the

rapid change in the amplitude of the leading wave and also the wavetrain behind it leads

to the nonlocal interaction scenario near the leading edge almost immediately after the

slope. Therefore, the strong interaction at the leading edge will push the leading wave to

grow until the amplitude reaches the value of 2U0. At the trailing edge, we would expect

to see a nonlinear trailing wavetrain generated (which was part of the initial bore) and to

be attached to the rear part of the transformed bore, similar to our results presented in

Section 4.2.2.3 for the slowly increasing depth case. The sudden change of the depth would

also cause some irregularities across the bore during the evolution.

In Figure 4.38, we present the evolution profile of an undular bore propagating over a
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4.3.2 Rapidly increasing depth

rapidly increasing depth region described by

h(τ) =

{
1.0 : τ < 400

1.3 : τ > 400
, (4.69)

and the initial condition is given by (4.27). In plot 2 of the figure, we can see clearly the

irregularities in the undular bore. Also, one can see that the amplitude of the leading wave

decreases. In plot 3, the leading wave is growing and its amplitude will reach the value of

2U0 (see plot 5). At larger time, we have an undular bore generated due to the nonlocal

interaction at the leading edge while at the rear part, we have a trailing wavetrain similar

to those presented in Section 4.2.2.3.
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Figure 4.38: Propagation of an undular bore over a rapidly increasing depth region described by (4.69).

4.3.2.1 Numerical results

In a similar manner to those described in previous sections, we will use numerical results to

confirm our description mentioned above, which was based on the following assumptions:
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4.3.2 Rapidly increasing depth

(a) the soliton interaction near the leading edge of the undular bore is described by the

nonlocal interaction scenario, and

(b) a nonlinear trailing wavetrain is generated at the rear part of the transformed bore.

Again, all the numerical results are obtained from numerical simulations of the vKdV

equation (3.25). The depth profile and the initial condition are given by (4.69) and (4.27)

respectively. The results for the undular bore after the slope are presented in Figure 4.39

– 4.42.
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Figure 4.39: Undular bore after the slope at τ = 500. The amplitude of the leading wave decreases.
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4.3.2 Rapidly increasing depth

Figure 4.39 shows the undular bore after the slope at τ = 500. Clearly, the amplitude

of the leading wave decreases. One can see that the behaviour of the Riemann invariants

near the leading edge indicates the strong interaction scenario (see Figure 2.11b). Note

the multi-phase behaviour across the bore during the evolution, which is caused by the

abrupt change in depth. In this region, the Riemann invariants and the modulus, m are

not defined.
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Figure 4.40: Undular bore after the slope at τ = 800. Clearly, the leading wave near the leading edge is

growing.

Figure 4.40 presents the undular bore after the slope at τ = 800. The leading wave of the

transformed bore is growing. From the behaviour of the Riemann invariants, we have a
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4.3.2 Rapidly increasing depth

nonlinear trailing wavetrain at the rear part of the transformed bore, similar to our results

in Section 4.2.2.3. Also, the distribution of the Riemann invariants indicates that we still

have the nonlocal interaction scenario at the leading edge.
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Figure 4.41: Long-time behaviour of the undular bore after the slope at τ = 8400. The structure of the

transformed bore is similar to those presented in Section 4.2.2.3.

In Figure 4.41, we present the long-time behaviour of the transformed bore at τ = 8400.

Clearly, the structure of the transformed bore is similar to those presented in Section

4.2.2.3. At the front, we have an undular bore with the leading solitary wave having an

amplitude of 2U0, and a nonlinear trailing wavetrain at the rear part. Now, the soliton

interaction at the leading edge is considered to be weak (see Figure 2.11a).
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4.4. DISCUSSION

Figure 4.42 shows the comparison for the amplitudes of the leading solitary wave of the

initial bore and an isolated solitary wave. One can see that the amplitude of the leading

solitary wave of the initial bore right after the slope is the same as in the case for a single

solitary wave . However, unlike the case for a single solitary wave, the amplitude of the

leading wave of the transformed bore will increase over time until it reaches the value of

2U0.
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Figure 4.42: Comparison for the amplitudes for the leading solitary wave of the initial bore (blue circles)

and an isolated solitary wave (red crosses).

4.4 Discussion

In this chapter, we have looked at the transformations of fully developed undular bores over

different types of varying regions, i.e. a slowly decreasing depth, a slowly increasing depth,

a smooth hole, a smooth bump, a rapidly decreasing depth and a rapidly increasing depth

in the framework of the vKdV equation. It was shown that the propagation of undular

bores over variable topography leads to a number of adiabatic and non-adiabatic effects:

(a) the generation of an advancing solitary wavetrain in front of the bore,

(b) the generation of a weakly nonlinear trailing wavetrain behind the bore,

(c) the occurrence of transient multi-phase behaviour,

(d) the occurrence of a modulation phase shift, and

(e) the change of the characteristic wavelength in the bore,

depending on the geometry of the slope. The non-adiabatic effects (a) – (c) are new results.
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4.4. DISCUSSION

First, we have demonstrated that when an undular bore propagates over a broad range

of slowly decreasing depth regions, the leading solitary wave will behave as an isolated

solitary wave, which is described by the local interaction scenario (El et al., 2007) (see

Figure 2.11a). As a result, a sequence of isolated solitary waves, which is an expanding

modulated solitary wavetrain is formed which propagates ahead of the bore. All solitons in

the solitary wavetrain have amplitudes greater than the leading solitary wave in the undular

bore. During the propagation of the bore over the slope, transient multi-phase behaviour is

observed at the rear part of the bore. This is due to the increment in velocity of the linear

wave packet at the rear part of the bore when propagating over the slope, which ‘pushes’

the linear wave packet to move forward, and thus interact with the wavetrain in front of it.

The transformed bore will restore its single-phase behaviour throughout itself at a larger

time. Also, there are spatial shifts in the position of the trailing and leading edges, X±,

of the transformed bore relative to the incident bore. The velocities of the leading and

trailing edges of the undular bore after the slope remain the same as in the incident bore

before the slope.

On the other hand, when an undular bore advances into a slowly increasing depth region,

the evolution of the leading solitary wave is determined not only by the local variations of

the topography, but also the interaction with the entire nonlinear wavetrain behind it, i.e.

nonlocal interaction scenario (see Figure 2.11b) (El et al., 2007). As for the linear wave

packet at the trailing edge of the incident bore, it will evolve adiabatically on the slope

and the velocity decreases, s̃ < −6U0. However, the velocity of the trailing edge of the

undular bore must be s− = −6U0. Consequently, the incident bore becomes a nonlinear

trailing wavetrain, attached to the rear part of the new undular bore generated by the

nonlocal interaction in the transformed bore. Note that the leading and trailing edges of

the transformed bore also experience some spatial shift compared to the incident bore.

The propagation of an undular bore over a smooth hole or a smooth bump is much more

complicated because the evolution involves the adiabatic and non-adiabatic effects men-

tioned above. The final outcome of the structure of the transformed bore depends very

much on the interaction of the bore with the final part of the topography. If the last section

of the bottom surface is a slowly decreasing depth region, then we would expect a solitary

wavetrain to be generated. Otherwise, a trailing wavetrain would be formed.

For the case where the depth changes rapidly, all the non-adiabatic effects of the interaction

of the undular bore with slowly varying topography are also observed. In addition to

that, a small amplitude linear wavetrain appeared to be attached to the rear part of the

transformed bore when the undular bore propagates over a rapidly decreasing depth region
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4.4. DISCUSSION

So far, in this chapter, we have only considered the incoming undular bore as fully de-

veloped at the moment it enters the slowly varying sloping region. However, this is not

a pre-requisite to see all the adiabatic and non-adiabatic effects exhibited by the inter-

action of fully developed undular bores with slowly varying topography. Our numerical

simulations show that all the key features presented in this chapter can be seen even for

the case where the initial discontinuity is placed right before the slope, in which case the

generation of the undular bore and the interaction of the bore with variable topography

occurs simultaneously.
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Chapter 5

Weak dissipation effects

In this chapter, we extend the problem considered in previous chapters by taking into con-

sideration the effects of weak dissipation induced by various types of bottom friction or by

volume viscosity. Here, we consider three different types of dissipative terms in the variable-

coefficient KdV equation and examine the impact of weak dissipation (bottom friction in

particular) on the propagation of solitary waves and undular bores over variable topogra-

phy. Here, we only consider slowly varying topography. Using numerical simulations, we

show that when an undular bore propagates over a gently sloping region, it also exhibits the

non-adiabatic deformations mentioned in the previous chapter, depending on the parameter

values of the topography and dissipation.

5.1 Mathematical model

We now consider an extension to the problem considered in the previous chapters by

including the effects of weak dissipation, which can be modelled by additional perturbation

terms in the vKdV equation (3.21). Thus, the suitable mathematical model to model

the propagation of weakly nonlinear waves over a gradual varying slope, simultaneously

subject to friction is the variable-coefficient perturbed Korteweg-de Vries (vpKdV) equation

(Grimshaw, 2007b ; El et al., 2007)

At + cAx +
cx
2
A+

3c

2h
AAx +

ch2

6
Axxx = F (A), (5.1)

where F (A) is generally a functional of A(x, t). Of particular interest here are

(a) Chezy friction: F (A) = −CD
c
h2 |A|A,

(b) linear friction: F (A) = −CD
c
hA, and

(c) volume viscosity (Burgers’ friction): F (A) = CDchAxx.

Here, CD is a non-dimensional drag coefficient, which is different for different types of

friction. The Chezy friction (Miles, 1983a ,b; El et al., 2007) and the linear friction (Brink,

1988; Myint & Grimshaw, 1995; Grimshaw et al., 2003) terms have been derived to model
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5.2. CHEZY FRICTION

the turbulent bottom boundary layer, while the Burgers friction term was derived by

Johnson (1970, 1972) to model the effects induced by volume viscosity. For convenience,

we shall refer to “the dissipative terms” in all three cases as to friction terms.

In this chapter, we only consider the depth topography to be slowly varying. In a similar

manner to those described in Chapters 3 and 4, we consider two different types of initial-

value problem for the vpKdV equation (5.1).

(a) A solitary wave of a given amplitude a0 initially propagating over a flat bottom without

friction. Thus we specify

A0(x) = a0 sech
2(γ0x), 4γ20 = 3a0.

So, at the initial stage, we have a soliton described by the unperturbed constant-

coefficient KdV equation.

(b) An undular bore with the leading solitary wave of a given amplitude a0 initially prop-

agating over a flat bottom without friction. Therefore, we specify

A(x, t = 0) = A0(x) for x < 0, A(x, t = 0) = 0 for x > 0.

Hence, at the initial stage of evolution, an undular bore solution of the constant-

coefficient unperturbed KdV equation is generated.

Our main interest is to look at the impact of bottom and volume friction on the propagation

of solitary waves and undular bores by comparing the results obtained numerically with

the results presented in Chapters 3 and 4.

5.2 Chezy friction

First, we consider our friction term to be Chezy friction. So, our governing equation is

(Miles, 1983a ,b; El et al., 2007)

At + cAx +
cx
2
A+

3c

2h
AAx +

ch2

6
Axxx = −CD

c

h2
|A|A. (5.2)

By following similar transformation procedures mentioned in Sections 3.2 and 4.1, equation

(5.2) can be asymptotically recast into the following vpKdV equations:

Bτ +
3

2h5/4
BBX +

h

6
BXXX = − CD

h7/4
|B|B, (5.3)
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5.2.1 Adiabatic deformation of a solitary wave

uS + 6uuX + uXXX = F (S)u−G(S)|u|u, (5.4)

where F (S) = −9hS
4h

and G(S) =
4CD

h1/2
, (5.5)

UT + 6UUX + β(T )UXXX = −4
CD

h1/2
|U |U, (5.6)

where β(T ) = h9/4(T ), (5.7)

when one introduces the new variables B(X, τ), u(X,S) and U(X,T ) through (3.23), (3.26),

(4.2), (4.6). Note that equations (5.3), (5.4) and (5.6) are exactly equivalent.

5.2.1 Adiabatic deformation of a solitary wave

First, we look at the adiabatic transformation of a solitary wave propagating over variable

topography with Chezy bottom friction. One can obtain the slowly varying solitary wave

solution by a multiple-scale perturbation expansion. Now, suppose that we have a very

gentle slope, hS << 1 and small friction coefficient, CD << 1 in the vpKdV equation (5.4).

Then the slowly varying solitary wave solution at the leading order is given by

u(X,S) = 2γ2sech2[γ(X − φ(S))], (5.8)

where
dφ

dS
= Vs = 4γ2. (5.9)

We can derive the “momentum” balance equation for the vpKdV equation (5.4)

PS = 2F (S)P −G(S)Q, (5.10)

where

P =

∫ ∞

−∞

u2

2
dX and Q =

∫ ∞

−∞
|u|3dX. (5.11)

Substituting (5.8) into (5.10) yields a first-order differential equation for γ(S),

dγ

dS
=

2

3
F (S)γ − 16

15
G(S)γ3, (5.12)

which can be integrated to give

1

γ2
= h3

(
C0 +

64

45
CD

∫ x

0

dx′

h3

)
, (5.13)

where C0 is an integration constant. By picking a reference point at x = 0 where h = h0

and a = a0, the constant of integration is given by C0 = 4/(3a0h0). From (5.8), the

amplitude of the solitary wave is 2γ2 and with the help of (5.13), we obtain the formula
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5.2.1 Adiabatic deformation of a solitary wave
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Figure 5.1: Surface elevation amplitude of the solitary wave described by formula (5.14) where a0 =

1, h0 = 1, CD = 0.0001 for different kinds of topography: slowly decreasing depth – solid line, slowly

increasing depth – dashed line.

describing the amplitude variations of slowly varying solitary waves over an uneven bottom

with Chezy friction

a = a0

(
h0
h

)[
1 +

16

15
CDa0h0

∫ x

0

dx′

h3

]−1

, (5.14)

where a0 and h0 are the initial solitary wave amplitude and local depth respectively. The

formula in (5.14) was obtained by a different method in Miles (1983a ,b) and then in El et al.

(2007). Note that the factor 16CD/15 in El et al. (2007) is different from Miles (1983a ,b)

due to different definition of CD used in their work. When CD = 0, this reduces to

a ∼ h−1. The amplitude variations for the solitary wave for different types of varying

slopes are shown in Figure 5.1. The trajectory of the solitary wave is obtained from (5.9)

and (5.13)

Xs =
a0h0
2

∫ x

0
dx′ h−5/2(x′)

[
1 +

16

15
CDa0h0

∫ x′

0

dz

h3(z)

]−1

. (5.15)

5.2.1.1 Numerical results

In this section, we compare the analytical results for solitary wave propagation over different

types of slowly varying slopes with Chezy friction with those obtained from direct numerical

simulations.
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5.2.1 Adiabatic deformation of a solitary wave
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Figure 5.2: Propagation of a solitary wave over a slowly decreasing depth region described by (5.16) with

Chezy friction.

5.2.1.1.1 Slowly decreasing depth

First, we consider that a solitary wave is propagating over a slowly decreasing depth region.

Thus, we would expect the solitary wave to grow due to the decreasing depth topography.

However, the friction has an opposite effect to the amplitude variation. The outcome

depends on the relative magnitude of the slope and friction terms in the vpKdV equation.

In Figure 5.2, we present the numerical simulations for the evolution of a solitary wave

according to the vpKdV equation (5.3) (see Appendix A.4.1) over a slope described by

h(τ) =





1.0 : τ < 400(
1− α(τ−400)

2

)2
: 400 < τ < 1066.67

0.64 : τ > 1066.67

, α = 0.0006. (5.16)

The initial condition is

B(X, 0) = sech2(γX) where γ = (3/4)1/2. (5.17)
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5.2.1 Adiabatic deformation of a solitary wave
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Figure 5.3: Comparison for the amplitudes for the solitary wave propagating over a slowly decreasing

depth region with Chezy friction: formula (5.19) with h0 = 1, a0 = 1, CD = 0.0001 – red line, formula (5.19)

with h0 = 1, a0 = 1, CD = 0.0005 – blue line; numerical data with CD = 0.0001 – diamonds; numerical

data with CD = 0.0005 – circles; numerical data with CD = 0 – dashed line.

The drag coefficient, CD is given by

CD =

{
0 : τ < 400

0.0001 : τ > 400
, (5.18)

i.e. the bottom friction “switches on” when the solitary wave reaches the variable region.

The drag coefficient is chosen in this form so that the bottom friction would not dominate

the undular bore propagation.

Figure 5.3 shows the comparison for the amplitudes of the solitary wave obtained numeri-

cally with the theoretical prediction given by the formula

a = a0

(
h0
h(τ)

)3/4 [
1 +

16

15
CDa0h

3/4
0

∫ τ

0

dτ

h5/2

]−1

. (5.19)

Here, a0 and h0 are the initial amplitude and depth respectively. The formula (5.19) is the

exact counterpart of (5.14) for the vpKdV equation (5.3). Clearly, the amplitude growth

of the solitary wave in the shoaling region is less than the case when there is no friction

(dashed line). After reaching the flat bottom region at τ = 1066.67, the amplitude decays

under the sole effect of bottom friction. If CD > 0.0001, say CD = 0.0005, then the solitary

wave will not grow at all despite the decreasing depth (circles). In general, whether or not

the amplitude increases is determined by the combination of the effects of the slope, the

depth and the bottom friction.
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5.2.1 Adiabatic deformation of a solitary wave

5.2.1.1.2 Slowly increasing depth

Now, we consider the depth to be slowly increasing. In this case, the solitary wave am-

plitude will decrease when it encounters the varying depth region. However, due to the

effect of friction, the decrement of the solitary wave amplitude is much higher than the

case when CD = 0.

In Figure 5.4, we present the numerical simulations for the propagation of a solitary wave

over a slowly increasing depth region. The numerical solution is obtained for the vpKdV

equation (5.3). The h(τ) profile is given by

h(τ) =





1.0 : τ < 400(
1 + α(τ−400)

2

)2
: 400 < τ < 960.7

1.3 : τ > 960.7

, α = 0.0005. (5.20)

The initial data and the drag coefficient are given by (5.17) and (5.18) respectively.
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Figure 5.4: Propagation of a solitary wave over a slowly increasing depth topography described by (5.16)

with Chezy friction.

Figure 5.5 shows the comparison for the numerically found amplitude of the solitary wave

propagating over an increasing depth region with formula (5.19). Diamonds are the solitary

wave amplitude over the slope with CD = 0.0001, while circles are for the case when

CD = 0.0005. Again, we have excellent agreement between the numerical simulations
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5.2.2 Transformation of an undular bore over variable topography with Chezy
friction

(diamonds, circles) and the corresponding theoretical prediction (solid lines). The dashed

line shows the propagation of solitary waves over the same slope without friction. In both

decreasing and increasing depth cases, the solitary wave amplitude continues to decrease

on the shelf after the slope due to the presence of bottom friction.
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Figure 5.5: Comparison for the amplitudes for the solitary wave propagating over a slowly increasing depth

region with Chezy friction: formula (5.19) with h0 = 1, a0 = 1, CD = 0.0001 – red line, formula (5.19) with

h0 = 1, a0 = 1, CD = 0.0005 – blue line; numerical data with CD = 0.0001 – diamonds; numerical data

with CD = 0.0005 – circles; numerical data with CD = 0 – dashed line.

5.2.2 Transformation of an undular bore over variable topography with

Chezy friction

In this subsection, we will look at the simultaneous effects of varying slope and bottom fric-

tion on the evolution of undular bores. In the previous chapter, where the effect of bottom

friction was ignored, the interaction between undular bores and the varying topography

had no impact on the jump, [U ], across the bore. However, this is not true when friction

is present. To illustrate this, let us use the same definition of the jump, i.e.

[U ] =

∫ Xb(T )

Xa(T )
UX(X,T ) dX , (5.21)

= U(Xb)− U(Xa), (5.22)

where the undular bore is confined in the region Xa(T ) < X < Xb(T ). From the vpKdV

equation (5.6), we have

[U ]T =
∂

∂T

∫ Xb(T )

Xa(T )
UX dX, (5.23)

=
4CD

h1/2(T )
U2
0 , (5.24)
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where UX = UXXX = 0 at X = Xa,b(T ). Here, we have assumed that the undular bore

propagates into the undisturbed depth region, U(Xb) = 0. Thus, we obtain

[U ] = −U0

[
1− 4CDU0

∫ T

T0

h−1/2(T ′) dT ′
]

for all T > 0. (5.25)

We can see that the jump, [U ], varies with time. This will later be confirmed by direct

numerical simulations. Since the jump, [U ], does not remain the same, this implies that

the amplitude of the leading solitary wave of the undular bore is changing with time and

no longer has the same value as in the incident bore, 2U0. Instead, we would generally

expect that the leading solitary wave amplitude of the bore will decrease as time increases.

5.2.2.1 Slowly decreasing depth

First, we assume that the depth decreases slowly, βT < 0 in the vpKdV equation (5.3). In

the previous chapter, we have shown that the leading solitary wave of the undular bore

behaves as a separate, isolated, adiabatically varying solitary wave when the bore interacts

with a shoaling slope. The interaction between the undular bore and the decreasing depth

region generates a train of solitary waves ahead of the bore. The leading solitary wave

amplitude in the soliton wavetrain will be proportional to the inverse of the local depth.

Thus, in the current problem, we would expect to see the formation of a soliton train as

well as the result of the interaction of the bore with the slope, provided the friction effect

is smaller than the effect of the slope. However, the amplitude of the leading solitary wave

in the solitary wavetrain will no longer be proportional to the inverse of the water depth.

Instead, it will vary according to the formula

a = a0

(
h0
h(T )

)3/4 [
1 +

64

15
CDa0h

3/4
0

∫ T

0

dT

h5/4

]−1

(5.26)

due to the friction effect. Here, again, h0 and a0 are the initial depth and solitary wave

amplitude respectively. Equation (5.26) is the exact counterpart of equation (5.14) for the

vpKdV equation (5.6).

In Figure 5.6, we present the profile of the evolution of an undular bore over a slowly

decreasing depth region with bottom friction obtained by solving the vpKdV equation

(5.3) numerically. The depth profile is described by (5.16). The initial condition is taken

as in (4.27). Also, the drag coefficient, CD is given by (5.18) so that an undular bore is

fully developed before the slope, τ < 400. In plot 3 of the Figure 5.6, one can see the

formation of a solitary wavetrain ahead of the bore. The effect of bottom friction still has

impact on the propagation of the transformed bore after the slope. Thus, all the solitary
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waves in the soliton wavetrain will continue to decay after the slope. Similarly, the bottom

friction also affects the entire structure of the undular bore, which leads to the strong

interaction scenario at the leading edge. Consequently, the nonlocal interaction near the

leading edge will push the leading wave to grow (El et al., 2007). However, the growth will

not last since the mean level across the bore is decreasing over time. Due to the difference

between the amplitude of the leading wave in the transformed bore and solitons in the

solitary wavetrain, the bore will overtake the solitary wavetrain. This process is shown in

plots 4 and 5 of the Figure 5.6. Strictly speaking, at large time, the transformed bore is

no longer an undular bore but a nonlinear wavetrain. However, for convenience, we still

refer to it as a bore.

At the trailing edge of the bore, the linear wave packet at the trailing edge travels faster

once it enters the sloping region as described by (4.25) and will restore to the value of

−6U0 again, similar to our discussion in Chapter 4. At larger time, the entire structure of

the transformed bore will transform into a small-amplitude nonlinear wavetrain before the

wave structure collapses entirely.

Figure 5.7 shows the characteristic plots for the leading soliton in the solitary wavetrain,

Xs(T ), and the trailing edge of the transformed bore, X−(T ), obtained by solving numer-

ically the vpKdV equation (5.6). The slope profile is given by

h(T ) =





1.0 : T < 300

(1− α(T − 300)) : 300 < T < 800

0.64 : T > 800

, α = 0.00072. (5.27)

The initial condition is taken as in (4.28) and the drag coefficient, CD is given by (5.18).

One can see that the leading soliton in the solitary wavetrain continue to slow down due

to the bottom friction.
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Figure 5.6: Propagation of an undular bore over a slowly decreasing depth region with Chezy friction,

where the profile h(τ ) is given by (5.16).
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Figure 5.7: The characteristics plots for the leading soliton in solitary wavetrain, Xs(T ) and the trailing

edge of the bore, X−(T ).
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5.2.2.1.1 Numerical results

In this section, we will look at the numerical results for the vpKdV equation (5.3) where

the variable topography and the friction coefficient, CD are given by (5.16) and (5.18)

respectively in order to confirm our assumptions:

(a) the wave dynamics near the leading edge of the undular bore on the slope is governed

by the weak soliton interaction scenario (El et al., 2007),

(b) there is a formation of a solitary wavetrain ahead of the undular bore after the slope

due to the interaction of the undular bore with the shoaling region,

(c) the amplitude of the leading soliton in the solitary wavetrain is smaller than the case

when there is no friction during the entire evolution process,

(d) the occurrence of a transient multi-phase behaviour at the rear part of the undular

bore during the evolution,

(e) the jump, [U ], across the bore is changing with time after the slope is encountered,

and

(f) at large time, the entire structure of the transformed bore is a small-amplitude non-

linear wavetrain.

All the numerical results are illustrated in Figures 5.8 – 5.13. In each of the Figures 5.8

– 5.12, we have three plots at a particular value of time, τ = τi: the top plot shows

the numerical solution for B(X, τi), the middle plot shows the behaviour of the Riemann

invariants, rj corresponding to the top plot and the bottom plot correspond to the value

of the modulus, m, obtained numerically.

Figure 5.8 shows the initial bore before the slope, τ = 400. As expected, both the Riemann

invariants behaviour and the distribution of the modulus m agree with the Gurevich-

Pitaevskii solution.
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Figure 5.8: Initial undular bore before slope, τ = 400. Upper plot: B(X); Middle plot: the modulation

of Riemann variables, r3 ≤ r2 ≤ r1 obtained from the plot for B(X); Bottom plot: the distribution of the

modulus m.

Figure 5.9 corresponds to the undular bore propagation “shortly” after the slope, τ = 2400.

Clearly, there is a solitary wavetrain in front of the bore since r1 = r2 (the middle plot)

and m → 1 (the bottom plot) in that region. Note that at this moment, we have the

“weak soliton interaction” scenario near the leading edge of the bore (see Figure 2.11a).

Also present is the multi-phase behaviour near the trailing edge of the bore. In this region,

the modulus m is not defined. All these observations are similar to and coincide with

the results discussed in Chapter 4 when friction effect was neglected. In this case, the

amplitudes of the leading soliton in the solitary wavetrain and the leading solitary wave of

110



5.2.2 Transformation of an undular bore over variable topography with Chezy
friction

the bore after the slope continue to decrease due to the sole effect of the bottom friction.
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Figure 5.9: Same as Figure 5.8 but for τ = 2400 (after the slope). One can see the solitary wavetrain

(m → 1 and r1 = r2) forming between X ≈ 1300 and X ≈ 1900. Also, multi-phase interaction is observed

at X ≈ −200.

In Figure 5.10, we have the plot of the bore after the slope, τ = 5400. Here, the soliton

interaction near the leading edge is starting to change from the “weak interaction” scenario

to the “strong interaction” scenario due to the frictional effect. This is clear from the

plot of the Riemann invariants distribution (the middle plot). The amplitudes of all the

solitons in the solitary wavetrain continue to decrease due to bottom friction. Note that

the transformed bore has restored its single-phase interaction throughout the bore at this
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moment.
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Figure 5.10: Same as Figures 5.8, 5.9 but for τ = 5400 (after the slope). One can see “strong soliton

interaction” near the leading edge, X ≈ 2900 and formation of solitary wavetrain between X ≈ 2900 and

X ≈ 3600.

Figure 5.11 shows the long-time behaviour of the bore after the slope, τ = 13400. We can

see that the leading wave of the bore is growing due to the nonlocal interaction near the

leading edge. Since the leading wave amplitude of the bore is greater than all solitons in

the solitary wavetrain, we expect the bore to overtake the solitary wavetrain. From the

behaviour of the Riemann invariants, we can see that the bore behind the solitary wave is

actually a nonlinear wavetrain.
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Figure 5.11: Same as Figures 5.8, 5.9, 5.10 but for τ = 13400 (long-time after the slope). One can see

the bore is overtaking the solitary wavetrain.

In Figure 5.12, we present another plot for the long-time behaviour of the bore after the

slope, τ = 23400. Here it is clear that the nonlinear wavetrain has overtaken the soliton

wavetrain. Also, we still have the “strong interaction” scenario near the leading edge of

the bore (see the middle plot). Despite the nonlocal interaction near the leading edge, the

entire bore is decaying due to the collapse of the jump, [U ], across the bore. The entire

wave structure is now a nonlinear wavetrain as indicated by the behaviour of the Riemann

invariants. The presence of the multi-valued regions in the distribution of the modulus, m,

in Figures 5.8 – 5.12 does not indicate that the transformed bore is a multi-phase wavetrain.

These regions are due to numerical artifact.
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Figure 5.12: Same as Figures 5.8, 5.9, 5.10, 5.11 but for τ = 23400 (long-time after the slope). The entire

structure now represents a small-amplitude nonlinear wavetrain.

Figure 5.13 shows the comparison of the amplitudes for the leading soliton in the solitary

wavetrain, which was part of the initial undular bore, for different values of the friction

coefficient. It is clear that without the frictional effect, the leading soliton in the solitary

wavetrain grows more compared to the case when friction is present. With a stronger

friction coefficient, the leading wave amplitude of the bore decreases on the slope despite

the decreasing depth topography. We can see that the numerical data matches well with

the theoretical prediction (5.19), proving that the leading solitary wave of the initial bore

is behaving like a single soliton, as described by the weak interaction scenario (El et al.,

2007) when advancing in the direction of decreasing depth topography (see Section 4.2.2.2).
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Figure 5.13: Comparison for the amplitudes for the leading solitary wave of the undular bore propagating

over a slowly decreasing depth region with Chezy friction: formula (5.19) with h0 = 1, a0 = 1, CD = 0.0001

– red line, formula (5.19) with h0 = 1, a0 = 1, CD = 0.0005 – blue line; numerical data with CD = 0.0001 –

diamonds; numerical data with CD = 0.0005 – circles; numerical data with CD = 0 – dashed line.

400 600 800 1000 1200 1400 1600 1800 2000 2200
0

0.1

0.2

0.3

0.4

0.5

τ

|[
B
]|

Figure 5.14: Comparison for the variations of the absolute value of jump, |[B]| across the undular bore.

Circles corresponds to the numerical data and the solid line to the analytical prediction (5.28).

Figure 5.14 shows the comparison for the variations of the absolute value of the jump, |[B]|,
across the undular bore. For the vpKdV equation (5.3), the jump, [B], across the bore is

given by

[B] = −B0

[
1− CDB0

∫ τ

τ0

h−7/4(τ ′) dτ ′
]

for all τ > 0. (5.28)

Here, B0 is the initial jump across the bore before the slope. Note that equations (5.25)

and (5.28) are exactly equivalent. One can see that there is a good agreement between the

numerical simulation and analytical prediction. This confirms our result that the bottom

friction will influence the jump across the bore.
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5.2.2.2 Slowly increasing depth

Now, we consider the propagation of an undular bore over a slowly increasing depth to-

pography with Chezy friction. From our discussions in the previous chapter, no solitary

wavetrain would be generated in this case. Instead, the amplitude of the leading solitary

wave starts to decrease after it enters the negative slope region. This leads to wave de-

celeration and, therefore, enhancedx interaction with the rest of the nonlinear wavetrain.

Consequently, the leading wave starts to grow. However, the growth of the leading wave

would be smaller than the case when CD = 0. Since the bottom friction is still in force,

the bore will start to decay again after some growth.

For the rest of the propagation, the leading edge would be in the “strong soliton interaction”

scenario due to the frictional effect. However, this does not lead to more growth at the

leading edge as the mean flow across the bore is collapsing.

As mentioned earlier in Section 4.2.2.3, the linear wave packet at the trailing edge of the

incident bore travels slower when it advances through the slope. Therefore, part of the

initial bore will now become a nonlinear trailing wavetrain and it will attach to the trailing

edge of the new undular bore generated due to the strong interaction near the leading edge.

In Figure 5.15, we present the evolution profile of an undular bore propagating over a

slowly increasing depth region with Chezy friction. The h(τ) profile is described by (5.20)

while the initial data is given by (4.27). In plot 4, one can see clearly that the transformed

bore consists of an undular bore at the front part and nonlinear trailing wavetrain at the

rear part, which is similar to our observation made in Section 4.2.2.3.

Figure 5.16 shows the characteristic plots for the leading and trailing edges of the undular

bore propagating over the topography described by

h(T ) =





1.0 : T < 300

(1 + α(T − 300)) : 300 < T < 800

1.2 : T > 800

, α = 0.0004, (5.29)

according to the vpKdV equation (5.6). One can see that the key features of the interaction

of an undular bore with a slowly increasing depth topography is preserved as well in this

case. The velocity of the leading edge continues to decrease over time due to the effect of

bottom friction.
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Figure 5.15: Propagation of an undular bore over a slowly increasing depth region with Chezy friction,

where the profile h(τ ) is given by (5.20)
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Figure 5.16: Characteristics plots for the leading and trailing edges of an undular bore propagating over

a slowly increasing depth topography with Chezy friction, CD = 0.0001.
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5.2.2.2.1 Numerical results

Now, we will use numerical results to confirm the evolution scenario described earlier, which

was based on the following assumptions:

(a) the evolution of the undular bore is influenced not only by local variations of the

topography or/ and bottom friction, but also by the nonlocal interaction at the leading

edge, which is the description of the strong soliton interaction scenario mentioned in

El et al. (2007),

(b) the mean flow across the bore decreases over time,

(c) there is a nonlinear trailing wavetrain generated at the rear part of the transformed

bore after the slope, and

(d) at larger time, the transformed bore becomes a weakly nonlinear wavetrain.

All numerical results are based on the numerical solution of the vpKdV equation (5.3)

where the depth profile and initial condition are given by (5.20) and (4.27) respectively.

The results are presented in Figures 5.17 – 5.21. The plot for the initial bore before the

slope is the same as in Figure 5.8.

Figure 5.17 shows the undular bore on the slope with friction at τ = 900. The leading wave

amplitude of the bore decreases once it enters the varying region. Note that the behaviour

of the Riemann invariants near the leading edge in the middle plot indicates the presence

of strong interaction scenario (see Figure 2.11b).
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Figure 5.17: Undular bore after the slope at τ = 900. The amplitude of the leading wave is decreasing.

Note the strong soliton interaction near the leading edge.

Figure 5.18 corresponds to the bore “shortly” after the slope, τ = 1400. Again, the

behaviour of the Riemann invariants indicates that we have strong interaction scenario

near the leading edge (see Figure 2.11b). One can see that the nonlocal interaction near

the leading edge pushes the leading wave to grow.
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Figure 5.18: Undular bore after the slope at τ = 1400. The leading wave starts to grow due to the strong

interaction in the vicinity of the leading edge.

In Figure 5.19, we present the long-time behaviour of the transformed bore after the slope,

τ = 8400. Clearly, there are two distinct wave structures in the bore. At the front part of

the transformed bore, we have an undular bore, followed by a trailing wavetrain at the rear

part of the bore. Note that the amplitude of the leading wave in the bore is still decreasing

due to the presence of friction.
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Figure 5.19: Long-time behaviour of the transformed bore after the slope at τ = 8400. Two distinctive

wave structures are observed here.

Figure 5.20 shows another plot for the long-time behaviour of the undular bore after the

slope at τ = 16400. Even though the shape of the transformed bore (the top plot) is

similar to the one shown in Figure 5.19, from the behaviour of the Riemann invariants we

can see that the undular bore at the front is slowly becoming a nonlinear wavetrain, which

confirms our assumption. On the other hand, the wave structure at the rear part of the

transformed bore is a linear wavetrain. This can be confirmed by the behaviour of the

Riemann invariants where r2 = r3 in this region.
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Figure 5.20: Long-time behaviour of the transformed bore after the slope at τ = 16400. The behaviour

of the Riemann invariants indicates that the wave structure now is slowly becoming a nonlinear wavetrain.

Figure 5.21 shows the comparison for the amplitudes for the leading solitary wave in the

initial bore propagating over a slowly increasing depth region with different values of the

friction coefficient and formula (5.19) for an isolated solitary wave. One can see that the

leading wave of the bore can have some growth before it starts to decay again compared

to the propagation of a single solitary wave where its amplitude decreases for all time. If

there is no friction after the slope, the leading wave will continue to grow until it reaches

the same amplitude as the incident bore.
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5.3. LINEAR FRICTION
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Figure 5.21: Comparison for the amplitudes for the leading solitary wave of the undular bore propagating

over a slowly increasing depth region with Chezy friction: formula (5.19) with h0 = 1, a0 = 1, CD = 0.0001

– red line, formula (5.19) with h0 = 1, a0 = 1, CD = 0.0005 – blue line; numerical data with CD = 0.0001 –

diamonds; numerical data with CD = 0.0005 – black circles; numerical data with CD = 0 – blue cirlces.

Figure 5.22 presents the comparison for the variations of the absolute value of the jump,

|[B]|, across the undular bore. One can see that the numerical data agrees with the

theoretical prediction given by equation (5.28). Again, this confirms our assumption that

the bottom friction will influence the jump across the bore.
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Figure 5.22: Comparison for the variations of the absolute value of jump, |[B]| across the undular bore.

Circles corresponds to the numerical data and the solid line to the analytical prediction (5.28).

5.3 Linear friction

Another relevant type of bottom friction is described by a linear perturbation term in

the vpKdV equation (5.1) (Brink, 1988; Myint & Grimshaw, 1995; Grimshaw et al., 2003).

Linear friction is justified as a linearization for some nonlinear friction when the system
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5.3.1 Adiabatic deformation of a solitary wave

being studied has small amplitudes. So, now our governing equation is

At + cAx +
cx
2
A+

3c

2h
AAx +

ch2

6
Axxx = −CD

c

h
A. (5.30)

The linear friction term is chosen to contain c, h so that CD is dimensionless in order for us

to use the same value (5.18) for CD as for the Chezy friction. By following similar steps to

those described in Sections 4.1 and 5.2, equation (5.30) can be recast asymptotically into

several forms equivalent to (5.30):

Bτ +
3

2h5/4
BBX +

h

6
BXXX = −CD

c

h
B, (5.31)

uS + 6uuX + uXXX = F (S)u, (5.32)

where F (S) = −9hS
4h

− 6
CD

h3/2
, (5.33)

UT + 6UUX + β(T )UXXX = −6CDh
3/4U, (5.34)

where β(T ) = h9/4(T ), (5.35)

by introducing the new variables B(X, τ), u(X,S) and U(X,T ) through (3.23), (3.26),

(4.2), (4.6). One should bear in mind that equations (5.31), (5.32) and (5.34) are exactly

equivalent.

5.3.1 Adiabatic deformation of a solitary wave

If the slope is slowly varying, hS << 1, and the friction coefficient is small, CD << 1, in

the vpKdV equation (5.32), then to leading order, the slowly varying solitary wave solution

is given by (5.8) and the velocity of the solitary wave is (5.9). Proceeding now in a similar

manner to Section 5.2.1, but for the vpKdV equation (5.32), the adiabatic variation of the

solitary wave amplitude over a varying slope with linear friction is given by

a = a0

(
h0
h(x)

)
exp

[
−4

3
CD

∫ x

0

dx′

h(x′)

]
. (5.36)

The amplitude variations of a solitary wave propagating over different types of slopes with

linear friction is shown in Figure 5.23. The trajectory of the solitary wave can be found as

Xs =
a0h0
2

∫ x

0
dx′ h−5/2(x′) exp

[
−4

3
CD

∫ x′

0

dz

h(z)

]
. (5.37)

Similar to (5.14), when CD = 0, the solitary wave amplitude varies proportionally to the

inverse of the local depth.
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Figure 5.23: Surface elevation amplitude of the solitary wave described by formula (5.36) where a0 =

1, h0 = 1, CD = 0.0001 for different kinds of topography: slowly decreasing depth – solid line, slowly

increasing depth – dashed line.

5.3.1.1 Numerical results

All numerical results for the propagation of solitary wave over varying depth region with

linear friction are presented in this section.

5.3.1.1.1 Slowly decreasing depth

First we consider the case of slowly decreasing depth. Following the description similar

to that presented in Section 5.2.1.1.1, in this case, a solitary wave is expected to deform

adiabatically according to the formula (5.36). Hence, the solitary wave will initially grow

once it enters the shoaling region. The growth, however, depends on the relative magnitude

of the effects of the slope and bottom friction. After the slope, the solitary wave continues

to diminish due to the presence of bottom friction.

In Figure 5.24, we present the plot of the evolution of a solitary wave over a slowly de-

creasing depth topography with linear friction. The results are based of the numerical

simulations of the vpKdV equation (5.31) (see Appendix A.4.2). The depth profile h(τ)

and the drag coefficient, CD are given by (5.16) and (5.18) respectively.

Figure 5.25 shows the comparison for the solitary wave amplitude variations over the slope

with different values of CD. For the vpKdV equation (5.31), the solitary wave amplitude

variation is given by

a = a0

(
h0
h(τ)

)3/4

exp

(
−4

3
CD

∫ τ

0

dτ ′

h1/2(τ ′)

)
, (5.38)
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Figure 5.24: Propagation of a solitary wave over a slowly decreasing depth region described by (5.16)

with linear friction given by (5.18)
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Figure 5.25: Comparison for the amplitudes for the solitary wave propagating over a slowly decreasing

depth region with linear friction: formula (5.38) with h0 = 1, a0 = 1, CD = 0.0001 – red line; formula (5.38)

with h0 = 1, a0 = 1, CD = 0.0005 – blue line; numerical data with CD = 0.0001 – diamonds; numerical

data with CD = 0.0005 – circles; numerical data with CD = 0 – dashed line.

where a0 and h0 are the amplitude and local depth before the slope. The relationship

(5.38) is the exact counterpart of (5.36) for the vpKdV equation (5.31). We can see there

is an excellent agreement between the analytical predictions and the numerical data. The

dashed line shows the amplitude of the solitary wave over the same slope without friction

obtained from numerical simulations.
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Figure 5.26: Propagation of a solitary wave over a slowly increasing depth region described by (5.20)

where linear friction given by (5.18)

5.3.1.1.2 Slowly increasing depth

When the depth is slowly increasing, then the solitary wave will not grow at all. Instead,

it will diminish once it moves into the deeper region and continue to decay henceforth.

Similarly, the solitary wave amplitude varies adiabatically according to the formula (5.36).

The evolution profile of the solitary wave propagating over a slowly increasing depth region

with linear friction according to the vpKdV equation (5.31) is illustrated in Figure 5.26.

The variable topography is described by (5.20) while the friction coefficient, CD, is given

by (5.18).

The comparison for the surface elevation between the analytical formula (5.38) and nu-

merical data for different values of CD is shown in Figure 5.27. Again, there is excellent

between the numerical data and the analytical predictions. The dashed line corresponds

to the amplitude variation for solitary wave propagatiio over the same slope without fric-

tion. When friction is absent, the solitary wave amplitude is greater than in the case when

friction is present.
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Figure 5.27: Comparison for the amplitudes for the solitary wave propagating over a slowly increasing

depth region with linear friction: formula (5.38) with h0 = 1, a0 = 1, CD = 0.0001 – red line; formula (5.38)

with h0 = 1, a0 = 1, CD = 0.0005 – blue line; numerical data with CD = 0.0001 – diamonds; numerical

data with CD = 0.0005 – circles; numerical data with CD = 0 – dashed line.

5.3.2 Transformation of an undular bore over variable topography with

linear friction

In this section, we will look at the impact of linear friction on the undular bores propagation

in a nonuniform environment. Previously in Section 5.2.2, we have shown that the Chezy

friction would affect the mean level across the bore during the evolution. In a similar

manner, we can show that the linear friction will have a similar effect on the jump, [U ]

across the bore. Indeed, this can be shown from the vpKdV equation (5.34) and the

definition (5.21), we obtain

[U ]T =
∂

∂T

∫ Xb(T )

Xa(T )
UX dX, (5.39)

= 6CDh
3/4U0, (5.40)

where UX = UXXX = 0 at X = Xa,b(T ). Again, we have assumed that undular bore

propagates into an undisturbed depth region, U(Xb) = 0, so that

[U ] = −U0

[
1− 6CD

∫ T

T0

h3/4(T ) dT

]
for all T > 0. (5.41)

Clearly, the jump, [U ], across the bore varies over time. Again, this will later be confirmed

by direct numerical simulations. Thus, the leading wave amplitude of the undular bore

after the slope would continue to change as time increases.
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5.3.2 Transformation of an undular bore over variable topography with linear
friction

5.3.2.1 Slowly decreasing depth

First, we let the depth to be slowly decreasing. By following the descriptions and results

presented in Sections 4.2.2.2 and 5.2.2.1, the leading solitary wave of the incident bore

should behave as separate isolated solitary wave when the bore interacts with the slope,

and thus forms a train of solitary waves ahead of the bore, provided the slope a has more

dominant effect compared with the bottom friction. The leading soliton in the solitary

wavetrain, which is the leading solitary wave of the initial bore should deform adiabatically

on the slope according to formula (5.38).
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Figure 5.28: Propagation of an undular bore over a slowly decreasing depth region with linear friction

where the profile h(τ ) is given by (5.16)

In Figure 5.28, we present the evolution profile of an undular bore propagating over a

slowly increasing slope described by (5.16) with linear friction, where the drag coefficient,

CD is given by (5.18). In plot 3 of the Figure 5.28, one can see that a sequence of isolated

solitary waves is generated, similar to plot 4 of the Figure 4.3. Next, in plot 4 of the same
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Figure 5.29: Characteristics plots for the leading soliton, Xs in the solitary wavetrain and the trailing

edge of the transformed bore, X−.

figure, it can be seen clearly that the leading wave in the transformed bore is growing.

Moreover, note that the transformed bore and the solitary wavetrain are diminishing due

to the sole effect of bottom friction. However, unlike the results presented in Figure 5.6

for Chezy friction, in this case, the leading wave in the transformed bore apparently does

not have enough time to overtake the solitary wavetrain before the entire structure of the

bore and solitary wavetrain collapses. This is shown in plot 5 of the same figure.

On the other hand, Figure 5.29 shows the characteristic plots for the trailing edge, X−

of the transformed bore and the leading soliton, Xs in the solitary wavetrain, which was

the leading solitary wave of the initial bore. The numerical data was obtained by solving

the vpKdV equation (5.34). The variable topography is described by (5.27) and the initial

condition is given by (4.28). Clearly, the leading soliton in the solitary wavetrain, Xs

decelerates over time. As for the trailing edge, X−, it travels faster when it encounters the

shoaling region as discussed in section 4.2.2.2.

5.3.2.1.1 Numerical results

Again, we use numerical results to confirm our theoretical description discussed in Section

5.3.2.1, which were based on assumptions similar to those used in Section 5.2.2.1.1. For

the numerical simulations, we will use the vpKdV equation (5.31). The function describing

the depth variations is given in (5.16) and the drag coefficient, CD, is described by (5.18).

The initial condition is taken in the form (4.27). One should bear in mind that the bottom

friction only “switches on” on the slope. All numerical results are presented in Figures 5.30

– 5.33. The plot for the initial bore before the slope at τ = 400 is similar to that in Figure
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5.8, which agrees with the solution obtained by Gurevich & Pitaevskii (1973, 1974).
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Figure 5.30: Undular bore after the slope at τ = 2400. A train of solitary waves is generated at the front

of the undular bore between X ≈ 1100 and X ≈ 2000. Multi-phase behaviour at the rear part of the bore.

Figure 5.30 shows the undular bore “shortly” after the slope, τ = 2400. It is clear that

a train of solitary waves is formed in front of the transformed bore. This is confirmed by

the existence of the region r1 = r2 (the middle plot) or m → 1 (the bottom plot). Also,

multi-phase behaviour is observed at the rear part of the bore. In this region, the modulus,

m is undefined. Note that we have the weak soliton interaction scenario near the leading

edge of the undular bore(see the middle plot), as predicted by our discussion in Section

4.2.2.2.
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Figure 5.31: Undular bore after the slope at τ = 7400. A solitary wavetrain is formed between X ≈ 3500

and X ≈ 5000.

Figure 5.31 is the plot for the undular bore after the slope at τ = 7400. Notice that the

amplitude of all solitons in the solitary wavetrain and the leading wave of the bore are

decreasing as the result of the bottom friction effect. Also, at this moment, the solitary

wave at the leading edge of the bore starts to interact strongly with the wavetrain behind

it (see the middle plot and Figure 2.11b). Again, for convenience, we refer the nonlinear

wavetrain as a bore. Note that the bore has restored its single-phase behaviour throughout

the structure.
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Figure 5.32: Long-time behaviour of the undular bore after the slope at τ = 14400. The undular bore is

seen to be overtaking the solitary wavetrain.

Figure 5.32 corresponds to the long-time behaviour of the undular bore after the slope

at τ = 14400. Here, we can see that the bore is overtaking the soliton wavetrain slowly.

Whether the bore can successfully overtaken all solitons in the solitary wavetrain depends

on the amount of time it has before the entire structure collapses. In this simulation,

the bore apparently does not have sufficient time to overtake the entire solitary wavetrain

before the whole structure collapses. Again, the multi-valued regions in the distribution of

modulus in Figures 5.30 – 5.32 are due to numerical artifact.
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Figure 5.33: Comparison for the amplitudes for the leading solitary wave of the undular bore propagating

over a slowly decreasing depth region with linear friction: formula (5.38) with h0 = 1, a0 = 1, CD = 0.0001 –

red line; formula (5.38) with h0 = 1, a0 = 1, CD = 0.0005 – blue line; the numerical data with CD = 0.0001

– diamonds; the numerical data with CD = 0.0005 – circles; the numerical data with CD = 0 – dashed line.

Figure 5.33 shows the comparison for the surface elevations for the leading wave in the

incident bore for different values of CD over the same slope. Again, we have excellent

agreement between the numerical data and the formula (5.38). This confirms our assump-

tion that the leading solitary wave in the initial bore is not influenced by interaction with

the nonlinear wavetrain behind it, i.e. it behaves as a separate single solitary wave when

it propagates over the slope.
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Figure 5.34: Comparison for the variations of the absolute value of jump, |[B]| across the undular bore.

Circles corresponds to the numerical data and the solid line to the analytical prediction (5.42).

Figure 5.34 shows comparisons for the variations of the absolute value of the jump, |[B]|,
across the undular bore. For the vpKdV equation (5.31), the jump, [B], across the bore is
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given by

[B] = −B0

[
1− CD

∫ τ

τ0

h−1/2(τ ′) dτ ′
]

for all τ > 0, (5.42)

where B0 is the initial jump across the bore before the slope. One should bear in mind

that equations (5.41) and (5.42) are exactly equivalent. Note that there is good agreement

between the numerical simulations and the analytical prediction. Similar to the results

presented for the Chezy friction, this confirms our assumption that the linear friction term

also influences the jump across the bore.

5.3.2.2 Slowly increasing depth

When the depth is slowly increasing, we have shown in Sections 4.2.2.3 and 5.2.2.2 that no

solitary wavetrain is generated ahead of the transformed bore. Instead, a nonlinear trailing

wavetrain, which was part of the initial bore is generated. So, in this case, we expect to

see the same behaviour. Due to the presence of the bottom friction, the jump of the mean

flow across the bore decreases over time. Therefore, the growth at the leading edge will

not last despite the nonlocal interaction scenario near the leading edge. The amplitude

of the leading wave of the bore decreases over time after experiencing some growth for a

short time-span.

In Figure 5.35, we present the evolution of an undular bore for the vpKdV equation (5.31)

over a slowly increasing depth region described by (5.16). The drag coefficient, CD and the

initial condition are given by (5.18) and (4.27) respectively. In plot 2 of the same figure,

one can see that the amplitude of the leading wave decreases. Also, we can see that there

is some growth at the leading edge of the bore in plot 3 in the same figure.

Figure 5.36 shows the characteristics plot for the leading wave, X+, of the transformed

bore and the trailing edge, X̃, of the trailing wavetrain. One can see that all the features

in the interaction of the undular bore with the slowly increasing depth region as discussed

in Section 4.2.2.3 are preserved. The leading wave continues to decelerate due to the

continuous presence of the bottom friction.

5.3.2.2.1 Numerical results

The undular bore evolution scenario mentioned earlier was based on assumptions similar

to those listed in Section 5.2.2.2.1. Thus, in order to confirm our assumptions, we turn

to numerical simulations of the vpKdV equation (5.31). The depth profile is described
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by (5.20) and the initial distribution is given by (4.27). The drag coefficient, CD is taken

in the form (5.18). All numerical results are presented in Figures 5.37 – 5.39. Again,

the plot for the initial undular bore before the slope at τ = 400, which is described the

Gurevich-Pitaevskii solution, is shown in Figure 5.8.
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Figure 5.35: Propagation of an undular bore over a slowly increasing depth region with linear friction

where the profile h(τ ) is given by (5.20)
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Figure 5.36: Characteristics plots for the leading wave, X+ and the tailing edge of the trailing wavetrain,

X̃.
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5.3.2 Transformation of an undular bore over variable topography with linear
friction
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Figure 5.37: Undular bore after the slope at τ = 2400. Note the growth near the leading edge.

Figure 5.37 shows the undular bore “shortly” after the slope, τ = 2400. From the behaviour

of the Riemann invariants (the middle plot), we can confirm that the wave dynamics near

the leading edge is dominated by the strong (nonlocal) interaction scenario El et al. (2007)

(see Figure 2.11b). Consequently, the leading wave of the bore is growing. At the rear

part, we have a trailing wavetrain as the result of the interaction of the undular bore with

the slowly increasing topography.
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5.3.2 Transformation of an undular bore over variable topography with linear
friction
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Figure 5.38: Undular bore after the slope at τ = 7400.One can see clearly two distinctive structures in

the transformed bore: undular bore at the front part and nonlinear wavetrain at the rear part. Note that

the jump, [U ], of the bore is decreasing.

Figure 5.38 corresponds to the long-time behaviour of the undular bore after the slope at

τ = 7400. Even though the nonlocal interaction at the leading edge contributes to some

growth in amplitude, this tendency will not last due to the fact that the jump across the

bore is decaying. Note that, from the behaviour of the Riemann invariants, the entire

structure of the transformed bore is slowly becoming a nonlinear wavetrain.
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5.3.2 Transformation of an undular bore over variable topography with linear
friction
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Figure 5.39: Comparison for the amplitudes for the leading solitary wave of the undular bore propagating

over a slowly increasing depth region with linear friction: formula (5.38) with h0 = 1, a0 = 1, CD = 0.0001 –

red line; formula (5.38) with h0 = 1, a0 = 1, CD = 0.0005 – blue line; the numerical data with CD = 0.0001

– diamonds; the numerical data with CD = 0.0005 – black circles; the numerical data with CD = 0 – blue

circles.

The comparison for the amplitude variations is shown in Figure 5.39. One can see that

for each different value of CD, the amplitude of the leading wave in the undular bore is

greater than those of the single solitary wave described by formula (5.38). This is due

to the growth gained by the leading wave as the result of the strong interaction near the

leading edge. When friction is present, clearly the amplitude is smaller than the case when

friction is absent.

Figure 5.40 corresponds to the comparison for the variations of the absolute value of the

jump, |[B]|, across the undular bore. Again, there is an excellent agreement between the

numerical simulations and analytical prediction (5.42). As expected, the jump across the

bore decreases over time due to the effect of bottom friction.
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Figure 5.40: Comparison for the variations of the absolute value of jump, |[B]| across the undular bore.

Circles corresponds to the numerical data and the solid line to the analytical prediction (5.42).
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5.4. BURGERS’ FRICTION

5.4 Burgers’ friction

Finally, we consider the last form of the dissipative term mentioned in Section 5.1, which

describes volume viscosity or, for convenience, we call it Burgers’ friction, so that our

governing equation now becomes the variable coefficient KdV-Burgers (vKdVB) equation

At + cAx +
cx
2
A+

3c

2h
AAx +

ch2

6
Axxx = CDchAxx. (5.43)

Again, the Burgers friction term is chosen to contain c, h so that CD is dimensionless in

order for us to use the same value (5.18) for CD as for the Chezy friction. By following a

similar course as in Sections 4.1, 5.2 and 5.3, equation (5.43) can be asymptotically recast

into the following vKdVB equations:

Bτ +
3

2h5/4
BBX +

h

6
BXXX = CD

h

c
BXX . (5.44)

uS + 6uuX + uXXX = F (S)u+G(S)uXX , (5.45)

where F (S) = −9hS
4h

and G(S) = CD
6

h1/2
, (5.46)

UT + 6UUX + β(T )UXXX = 6CDh
7/4UXX (5.47)

where β(T ) = h9/4(T ), (5.48)

when, as earlier, one introduces the new variables B(X, τ), u(X,S) and U(X,T ) through

(3.23), (3.26), (4.2), (4.6). Again, equations (5.44), (5.45) and (5.47) are exactly equivalent.

5.4.1 Adiabatic deformation of a solitary wave

Assuming that hS << 1 and CD << 1 in the vKdVB equation (5.45), the slowly varying

solitary wave solution at the leading edge is given by (5.8), with the velocity given by

(5.9). By repeating the same procedures as in Sections 5.2.1 and 5.3.1, we obtain a formula

describing the amplitude variation A(x, t) of the solitary wave

a = a0

(
h0
h

)[
1 +

4

5
CDa0h0

∫ x

0

dx′

h3(x′)

]−1

, (5.49)

where a0 and h0 are the initial solitary wave amplitude and local depth. Figure 5.41 shows

the surface elevation of the solitary wave propagating over different types of sloping bottom

with Burgers’ friction. The trajectory of the solitary wave is given by

Xs =
a0h0
2

∫ x

0
dx′ h−5/2(x′)

[
1 +

4

5
CDa0h0

∫ x′

0

dz

h3(z)

]−1

. (5.50)
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5.4.1 Adiabatic deformation of a solitary wave
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Figure 5.41: Surface elevation amplitude of the solitary wave described by formula (5.49) where a0 =

1, h0 = 1, CD = 0.0001 for different kinds of topography: slowly decreasing depth – solid line, slowly

increasing depth – dashed line.

5.4.1.1 Numerical results

This section is devoted to the numerical results for the solitary wave propagation over

different types of varying regions with Burgers’ friction.

5.4.1.1.1 Slowly decreasing depth

First we consider slowly decreasing depth. Similar to our previous discussions so far, a

solitary wave will grow when it propagates over a slowly decreasing depth region with

small friction. However, the growth magnitude is smaller compared with the frictionless

case. Also, the strength of the friction will influence the growth of the solitary wave.

We present the numerical simulations for the transformation of a solitary wave over slowly

decreasing depth according to the vKdVB equation (5.44) (see Appendix A.4.3) in Figure

5.42. The variable topography is given by (5.16) and the initial condition by (5.17). The

Burgers’ friction coefficient is described by (5.18).
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5.4.1 Adiabatic deformation of a solitary wave
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Figure 5.42: Propagation of a solitary wave over a slowly decreasing depth region described by (5.16)

with Burgers’ friction given by (5.18)
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Figure 5.43: Comparison for the amplitudes for the solitary wave propagating over a slowly decreasing

depth region with Burgers’ friction: formula (5.51) with h0 = 1, a0 = 1, CD = 0.0001 – red line; formula

(5.51) with h0 = 1, a0 = 1, CD = 0.0005 – blue line; numerical data with CD = 0.0001 – diamonds;

numerical data with CD = 0.0005 – circles; numerical data with CD = 0 – dashed line.

The comparison for the solitary wave amplitude for propagation over a slowly decreasing

depth region with different values of CD is presented in Figure 5.43. For the vKdVB

equation (5.44), the amplitude variation of a solitary wave is given by

a = a0

(
h0
h(τ)

)3/4 [
1 +

4

5
CDb0h

3/4
0

∫ τ

0

dτ ′

h5/2(τ ′)

]−1

. (5.51)

The formula (5.51) is the exact counterpart of (5.49) for the vKdVB equation (5.44).
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5.4.1 Adiabatic deformation of a solitary wave

Clearly, the numerical simulations agree with the analytical formula (5.51) and the be-

haviour of the solitary wave matches with our theoretical description in Section 5.4.1.

5.4.1.1.2 Slowly increasing depth

Now, we consider the depth increasing gradually. So the solitary wave will start losing its

amplitude from the moment it enters the varying region. This is clearly seen in Figure

5.44, which corresponds to numerical simulations for a solitary wave propagating over

slowly increasing depth (5.20) for the KdVB equation (5.44). The initial condition and the

drag coefficient, CD considered here are (5.17) and (5.18) respectively.
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Figure 5.44: Propagation of a solitary wave over a slowly increasing depth region described by (5.16) with

Burgers’ friction given by (5.18)

In Figure 5.45, we present the comparison for the amplitude variations between the an-

alytical predictions described by the formula (5.51) and the numerical data for different

values of CD. The dashed line shows the solitary wave amplitude when the friction effect

is ignored.
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction
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Figure 5.45: Comparison for the amplitudes for the solitary wave propagating over a slowly increasing

depth region with Burgers’ friction: formula (5.51) with h0 = 1, a0 = 1, CD = 0.0001 – red line; formula

(5.51) with h0 = 1, a0 = 1, CD = 0.0005 – blue line; numerical data with CD = 0.0001 – diamonds;

numerical data with CD = 0.0005 – circles; numerical data with CD = 0 – dashed line.

5.4.2 Transformation of an undular bore over variable topography with

Burgers’ friction

So far, we have seen that the presence of Chezy friction and linear friction terms affects

the jump, [U ], across the bore. Now, we would like to see whether Burgers’ friction term

has a similar effect on [U ]. By following similar steps to those described in Sections 4.2.2,

5.2.2 and 5.3.2, we obtain

[U ]T =
∂

∂T

∫ Xb(T )

Xa(T )
UX(X,T ) dX = 0, (5.52)

provided UX = UXX = UXXX = 0 at X = Xa,b(T ). Therefore, we have

[U ] = −U0 for all T > 0, (5.53)

since the undular bore is propagating into undisturbed depth. Thus, we have shown that

from the vKdVB equation (5.47), Burgers’ friction has no influence on the jump, [U ], of

the mean level across the bore. Again, this will be confirmed later by direct numerical

simulations.

One should bear in mind that the friction term only comes into effect on the slope. So,

the entire evolution of undular bore can be divided into two parts: (a) the undular bore

is described by the solution of the unperturbed constant-coefficient KdV equation before

the slope, and (b) after the slope, the transformed bore will asymptotically become the

well-known steady undular bore solution of the constant-coefficient KdVB equation with

the leading solitary wave having an amplitude of 1.5U0 (see Section 2.6.1).
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction

5.4.2.1 Slowly decreasing depth

When the depth is slowly decreasing, the interaction of the bore with the slope is bound to

produce a solitary wavetrain, provided the effects of friction are small enough. All solitons

in the solitary wavetrain will deform adiabatically according to the formula (5.51). In a

similar manner to those described in Sections 5.2.2.1 and 5.3.2.1, after the slope the effect

of friction leads to the nonlocal interaction scenario at the leading edge of the undular bore

and consequently the lead wave grows. However, unlike previous cases where the leading

wave will decay after some growth, in this case, the leading wave amplitude will reach the

value of 1.5U0 and remain constant after that. Since it is propagating over a flat bottom

after the slope, it is expected that the solution will asymptotically become the steady

undular bore solution of the KdVB equation (Gurevich & Pitaevskii, 1987; Avilov et al.,

1987).

−6000 −4000 −2000 0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

1.2

X

B

τ = 400

−6000 −4000 −2000 0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

1.2

X

B

τ = 2400

−6000 −4000 −2000 0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

1.2

X

B

τ = 6400

−6000 −4000 −2000 0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

1.2

X

B

τ = 10400

−6000 −4000 −2000 0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

1.2

X

B

τ = 16400

Figure 5.46: Propagation of an undular bore over a slowly decreasing depth topography with Burgers’

friction where the profile h(τ ) is given by (5.20)

145



5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction

In Figure 5.46, we present the evolution profile of an undular bore propagating over a slowly

decreasing depth region with Burgers’ friction. The topography is described by (5.16) and

the friction drag coefficient is given by (5.18). The initial condition is taken as (4.27). In

plot 2 of the Figure 5.46, one can see the formation of the solitary wavetrain ahead of the

transformed bore. The leading solitary wave of the undular bore is growing, whilst the

solitons in the solitary wavetrain are decaying. Thus, the bore will overtake the solitary

wavetrain (see plot 3). In plot 4, it is clear that the undular bore has overtaken the solitary

wavetrain.
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Figure 5.47: Characteristics plots for the leading soliton, Xs in the solitary wavetrain, which was part of

the initial undular bore and the trailing edge, X− of the transformed bore.

Figure 5.47 shows the characteristic plots for the leading soliton, Xs, in the solitary wave-

train, which is the leading solitary wave of the initial bore, and the trailing edge of the

transformed bore for the vKdVB equation (5.47). The depth profile is given by (5.27).

The initial condition and the drag-coefficient, CD are described by (4.28) and (5.18) re-

spectively. One can see that the key features of the interaction of the undular bore over

a slowly decreasing depth are preserved. Note that the leading soliton, Xs, in the solitary

wavetrain is decelerating due to the effect of the bottom friction.
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction

5.4.2.1.1 Numerical results

This section is devoted to numerical simulations of the undular bore propagating over a

slowly decreasing depth with Burgers’ friction based on the vKdVB equation (5.44). The

depth profile and drag coefficient are given by (5.16) and (5.18) respectively. The numerical

results are used to confirm the following assumptions made to describe the evolution of an

undular bore over a slowly decreasing depth region with Burgers’ friction:

(a) the wave dynamics of the undular bore near the leading edge is governed by the weak

soliton interaction scenario (El et al., 2007),

(b) a sequence of solitary waves will be formed ahead of the bore after the slope,

(c) the occurrence of transient multi-phase behaviour at the rear part of the bore as the

result of the undular bore propagating over slowly decreasing topography,

(d) at large time, the transformed bore after the slope will asymptotically become the

steady undular bore solution of the constant-coefficient KdVB equation with the lead-

ing solitary wave amplitude 1.5U0. The behaviour of the corresponding Riemann in-

variants is similar to the description given by Avilov et al. (1987), and

(e) the Burgers friction has no influence on the jump, [U ] across the bore, i.e. [U ] remains

the same for all time.

All results are presented in Figures 5.48 – 5.51. The plot for the initial bore before the

slope, τ = 400 is the same as in Figure 5.8.
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction

−200 0 200 400 600 800 1000 1200 1400 1600

0

0.2

0.4

0.6

0.8

1

1.2

X

B

τ = 1900

−200 0 200 400 600 800 1000 1200 1400 1600
−0.1

0

0.1

0.2

0.3

0.4

0.5

X

 

 

r
3

r
2

r
1Weak soliton interaction

−200 0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

m

Solitary
wavetrain

Undular bore

Multi-phase region

Trailing
wavepacket

Figure 5.48: Undular bore after the slope at τ = 1900. Note the generation of solitary wavetrain (r1 = r2

and m → 1) ahead of the bore between X ≈ 1000 and X ≈ 1550. Multi-phase behaviour is observed at the

rear part of the bore between X ≈ 0 and X ≈ 100.

In Figure 5.48, we present the plot for the undular bore after the slope, τ = 1900. Clearly,

there is a solitary wavetrain generated at the front of the bore, which is confirmed by the

existence of the region r1 = r2 (the middle plot) and m→ 1 (the bottom plot) at the front

of the bore. Also present is multi-phase behaviour at the rear of the bore. Note that at

this moment, we have the weak soliton interaction scenario near the leading edge of the

bore (see Figure 2.11a), as predicted by our discussion in Section 4.2.2.2.
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction
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Figure 5.49: Undular bore after the slope at τ = 4400. The leading wave of the transformed bore is

growing and overtaking solitons in solitary wavetrain.

Figure 5.49 shows the undular bore after the slope at τ = 4400. From the behaviour of

the Riemann invariants, clearly, we have the strong soliton interaction scenario near the

leading edge (see Figure 2.11b). Thus, the leading wave in the bore is growing again due

to the nonlocal interaction near the leading edge. Also, there is multi-phase behaviour at

the leading edge due to the interaction between the bore and the solitons in the solitary

wavetrain when the bore is overtaking the solitary wavetrain. In this region, the modulus

m is not defined. At larger time, the transformed bore is expected to overtake the entire

solitary wavetrain due to velocity differences between the leading wave of the bore and

solitons in the solitary wavetrain.
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction
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Figure 5.50: Long-time behaviour of the undular bore after the slope at τ = 1900. The undular bore has

transformed into the undular bore solution of the constant-coefficient KdVB equation.

Figure 5.50 presents the long-time behaviour for the undular bore after the slope, τ =

16400. Here, it is clear that the undular bore has overtaken the solitary wavetrain. Since it

is now propagating over a flat bottom, it is expected that the solution will asymptotically

become the steady solution of the constant-coefficient KdVB equation. Indeed, one can

see that the amplitude of the leading wave matches the analytical prediction, which is

1.5U0 (Gurevich & Pitaevskii, 1987; Avilov et al., 1987). The qualitative behaviour of the

Riemann invariants also agrees with the analytical results of Gurevich & Pitaevskii (1987)

and Avilov et al. (1987) (see Figure 2.13). Similarly to the results presented in the previous

sections, the multi-valued regions in the distribution of modulus in Figures 5.48 – 5.50 are
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction

due to numerics and it is not an indication that the transformed wavetrain is a multi-phase

wavetrain.

Figure 5.51 shows the comparison for the amplitude variations of the leading wave in the

initial bore for different values of CD. When the bore is on the slope, it behaves as a

separate isolated solitary wave. So its amplitude varies according to the formula (5.51).

Due to the friction effect, the leading wave in the transformed bore will grow or decay

until it reaches the value of 1.5U0 and thus, it will overtake the solitary wavetrain. With

stronger friction, the transformed bore only needs a shorter time span to overtake the

solitary wavetrain (circles).

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.5

τ

a

Figure 5.51: Comparison for the amplitudes for the leading solitary wave of the undular bore propagating

over a slowly decreasing depth region with Burgers friction: formula (5.51) with h0 = 1, a0 = 1, CD = 0.0001

– red line; formula (5.51) with h0 = 1, a0 = 1, CD = 0.0005 – blue line; numerical data with CD = 0.0001 –

diamonds; numerical data with CD = 0.0005 – circles; numerical data with CD = 0 – dashed line.
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Figure 5.52: Comparison for the variations of the absolute value of jump, |[B]| across the undular bore.

Circles corresponds to the numerical data and the solid line to the analytical prediction.
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction

Figure 5.52 shows comparisons for the variations of the absolute value of the jump, |[B]|,
across the bore. One can see that there is good agreement between the numerical simula-

tions and the analytical prediction. This confirms our assumption that the Burgers friction

has no impact on the jump across the undular bore.

5.4.2.2 Slowly increasing depth

Finally, we consider the case where the depth is slowly increasing. In this case, the de-

scription of the undular bore evolution is similar to our discussion in Sections 5.2.2.2 and

5.3.2.2, i.e. a weakly nonlinear trailing wavetrain will be generated after the slope. The

only difference in this case is that the leading solitary wave amplitude after the slope will

reach the value of 1.5U0 and remain constant after that. The structure of the transformed

bore will asymptotically become the steady undular bore solution of the KdVB equation.
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Figure 5.53: Propagation of an undular bore over a slowly increasing depth region with Burgers’ friction

where the profile h(τ ) is given by (5.20)

152



5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction

In Figure 5.53, we present the evolution profile of an undular bore propagating over a

slowly increasing depth region described by (5.20) with the initial condition (4.27). The

drag coefficient, CD is given by (5.18). In plot 4, one can see clearly the generation of a

small-amplitude nonlinear wavetrain. At larger time, the undular bore is described by the

solution of the KdVB equation.
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Figure 5.54: Characteristics plots for the leading edge, X+, and the trailing edge, X̃ of the undular bore.

Figure 5.54 shows the characteristic plots for the leading edge, X+, and the trailing edge,

X̃ of the transformed bore. The numerical data was based on the numerical solution of

the vKdVB equation (5.47) with the depth profile given by (5.29). Again, all the features

of the interaction of the undular bore are preserved in this case.

5.4.2.2.1 Numerical results

Numerical results are, again, used to confirm the following assumptions made earlier to de-

scribe the evolution of an undular bore over a slowly increasing depth region with Burgers’

friction:

(a) the interaction of the undular bore with the increasing depth topography leads to the

strong soliton interaction scenario described by El et al. (2007),

(b) the mean flow across the bore remains constant for all time,

(c) a weakly trailing wavetrain is generated after the slope, and

(d) at large time, the transformed bore after the slope will asymptotically become the

steady undular bore solution of the constant-coefficient KdVB equation.
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction

All numerical results are based on the numerical solution of the vKdVB equation (5.44)

and are presented in Figures 5.55 – 5.58. The variable topography is given by (5.20) with

the same initial condition (4.27) as considered before. Again, the drag coefficient is given

by (5.18). The plot for the initial bore, which matches the Gurevich-Pitaevskii solution, is

again similar to Figure 5.8.
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Figure 5.55: Undular bore on the slope at τ = 900. One can see that the amplitude of the leading wave

decreases.

Figure 5.55 shows the undular bore on the slope, τ = 900. Clearly, the amplitude of

the leading wave decreases, which leads to the strong soliton interaction scenario near the

leading edge, as indicated by the distribution of the Riemann invariants in the middle plot

(cf. Figure 2.11b).
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction
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Figure 5.56: Undular bore after the slope at τ = 7400. Note that there is strong interaction scenario near

the leading edge (see Figure 2.11b).

In Figure 5.56, we present the transformed bore after the slope at τ = 7400. The behaviour

of the Riemann invariant (middle plot) near the leading edge indicates the presence of

the strong soliton interaction scenario as described by El et al. (2007) (see Figure 2.11b).

Notice that we have a small-amplitude nonlinear trailing wavetrain at the rear part of the

bore.

155



5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction
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Figure 5.57: Long time behaviour of the transformed bore at τ = 18400. The numerical solution, B(X)

represents undular bore solution for the KdVB equation. The behaviour of the Riemann invariants matches

the description given by Avilov et al. (1987).

Figure 5.57 corresponds to the long-time behaviour of the transformed bore after the slope

at τ = 18400. One can see that the transformed bore is now asymptotically a steady

undular bore solution of the constant-coefficient KdVB equation. Indeed, one can see

that the leading solitary wave has amplitude 1.5U0, as predicted by the analytical solu-

tion (Gurevich & Pitaevskii, 1987; Avilov et al., 1987). The qualitative behaviour of the

Riemann invariants (the middle plot) also agrees with the analytical description given by

Gurevich & Pitaevskii (1987) and Avilov et al. (1987) (see Figure 2.13).
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5.4.2 Transformation of an undular bore over variable topography with
Burgers’ friction

Figure 5.58 shows the comparison for the amplitude variations for the leading solitary wave

in the initial bore with the formula (5.51) with different values of CD. For every value of

CD considered, one can see that the leading wave of the transformed bore after the slope

continues to grow, unlike the results presented for Chezy and linear frictions. At larger

time, the amplitude of the leading solitary of the transformed bore for both CD = 0.0001

and CD = 0.0005 will reduce to 0.75 or 1.5U0. This is shown in Figure 5.58 for CD = 0.005

(black circles) but not for CD = 0.001 (black diamonds) as it takes much longer time before

the lead soliton amplitude reaches 0.75.
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Figure 5.58: Comparison for the amplitudes for the leading solitary wave of the undular bore propagating

over a slowly increasing depth region with Burgers friction: formula (5.51) with h0 = 1, a0 = 1, CD = 0.0001

– red line; formula (5.51) with h0 = 1, a0 = 1, CD = 0.0005 – blue line; numerical data with CD = 0.0001 –

diamonds; numerical data with CD = 0.0005 – black circles; numerical data with CD = 0 – blue circles.

Figure 5.59 shows comparisons for the variations of the absolute value of the jump, |[B]|,
across the bore. One can see that there is good agreement between the numerical simu-

lations and the analytical prediction. This confirms our assumption that Burgers’ friction

has no impact on the jump across the undular bore.
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Figure 5.59: Comparison for the variations of the absolute value of jump, |[B]| across the undular bore.

Circles corresponds to the numerical data and the solid line to the analytical prediction.
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5.5. DISCUSSION

5.5 Discussion

In this chapter, we have discussed the propagation of solitary waves and undular bores

over different kinds of varying depth regions with the effects of weak dissipation induced by

bottom friction or volume viscosity included. In our problem configuration, the dissipative

terms only come into effect on the slope. Therefore, the evolution of solitary waves and

undular bores on the slope are influenced by the effects of varying depth and dissipation

simultaneously. After the slope, the evolution is affected only by dissipation.

For all the dissipative terms considered in this chapter, when a solitary wave propagates

into a shoaling region, the outcome depends on the relative magnitude of the effects of

the slope and dissipation. If the slope is stronger than dissipation, then the solitary wave

will deform adiabatically with some growth in amplitude on the slope before it starts to

decay after that. On the other hand, if the magnitude of the friction effect is greater than

the slope, then the solitary wave dissipates once it encounters the sloping region despite

the decreasing depth. When the solitary wave enters deeper region with friction, then the

solitary wave decays almost instantaneously. The amplitude of the solitary wave decays

faster than the case when friction is absent.

For undular bores, the evolution process is much more complicated than for solitary waves.

When an undular bore propagates into a shallower region, the outcome also depends on

the relative values of the slope and bottom friction. These two effects will compete with

each other and this greatly influences the behaviour of the leading front of the bore. From

our numerical results with CD = 0.0001, a train of solitary waves is generated ahead of

the bore when the bore interacts with the slowly decreasing depth region. However, for

greater values of CD, e.g. CD = 0.0005 or 0.001, no solitary wavetrain or a fewer number

of isolated solitary waves in the solitary wavetrain are generated. The increment in CD

apparently pushes the leading wave of the transformed bore to interact with the wavetrain

behind it sooner and reduce the amount of time needed for the transition from the weak

soliton interaction scenario to the strong soliton interaction scenario. The reduction of

the transition time prevents the generation of more isolated solitary waves ahead of the

bore. Moreover, with stronger effects of bottom friction, the undular bore collapses faster.

However, for Burgers’ friction term, the undular bore will not collapse at all and the time

for the KdV undular bore to transform asymptotically into the viscous bore solution of the

constant-coefficient KdVB equation is reduced greatly for greater values of CD. On the

other hand, when an undular bore propagates into a deeper region, then a weakly nonlinear

trailing wavetrain is formed attached to the rear part of the transformed bore. This is
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5.5. DISCUSSION

similar to our results in Chapter 4. At large time, the entire structure of the transformed

bore after different types of varying topography will become a weakly nonlinear wavetrain

due to the continuous effects of bottom friction after the slope, with an exception for

Burgers’ friction term, where a qualitatively steady undular bore solution of the constant-

coefficient KdVB equation is formed.
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Chapter 6

Conclusions and future work

In this thesis, we have studied the propagation of shallow-water undular bores over various

types of variable topography, and also subject to different kinds of weak dissipation effects

in the framework of the vKdV and vpKdV equations. The study was performed using a

combination of analytical methods (multiple-scale expansions, Whitham modulation the-

ory, method of characteristics) and detailed numerical simulations. The results obtained

for undular bores have been compared with the respective results for isolated solitary waves

propagating over variable topography and also subject to weak dissipation.

(a) Slowly varying depth

We have shown that the propagation of an undular bore over a slowly varying topography

results in a number of new adiabatic and non-adiabatic effects depending on the geom-

etry and magnitude of the topography variations. The classification of these effects was

performed on the basis of a detailed analytical and numerical study of two general config-

urations: the propagation of an undular bore over (i) decreasing and (ii) increasing depth

regions. In both cases, it was assumed that the bore eventually emerges onto a shelf with

constant depth. One of the main objectives was a comparison of the behaviour of the

leading solitary wave in the undular bore with the behaviour of an isolated solitary solitary

wave of the (initially) same amplitude.

(i) Slowly decreasing depth

We have shown that, when the undular bore advances into a gradually decreasing depth

region, its interaction with the varying topography results in the formation of a sequence

of isolated solitary waves, an expanding modulated solitary wavetrain propagating ahead

of the bore and having an amplitude greater than that of the leading solitary wave in

the undular bore. Unlike other mechanisms for the soliton train generation for the vKdV

equation, such as soliton fission (Madsen & Mei, 1969; Johnson, 1973b), soliton caustics

(Malomed & Shrira, 1991) or the formation of secondary solitons in the trailing shelves

(Kaup & Newell, 1979; Kivshar & Malomed, 1989; El & Grimshaw, 2002), the presented

new mechanism is essentially related to non-adiabatic deformations of modulated cnoidal

waves, rather than transformations/ decay of individual solitons.

160



Using several assumptions about the structure of the undular bore propagating over a

sloping bottom, we have constructed an asymptotic modulation solution describing the

generation and propagation of the solitary wavetrain ahead of the undular bore. Our an-

alytical predictions were compared with the results of numerical simulations to validate

the theoretical assumptions underlying our modulation analysis. In particular, we have

shown that the leading solitary wave in the generated solitary wave train has an amplitude

coinciding with that predicted by the well known adiabatic theory for isolated solitary

waves. This has confirmed one of our key assumptions that decreasing depth propagation

is governed by the “weak interaction scenario” (El et al., 2007). Another key assumption

that the undular bore itself retains its structure as a modulated periodic wavetrain while

propagating over a gentle slope was investigated by a detailed study of the behaviour of

certain parameters in the numerical solution, which play the role of the Riemann invariants

in the corresponding modulation analysis (provided our assumptions were correct). The

obtained behaviour of these parameters has fully confirmed our hypotheses. In a more gen-

eral context, this can be viewed as a confirmation of the relevance of perturbed modulation

theory (Forest & McLaughlin, 1984; Kamchatnov, 2004) for the description of a dispersive

shock wave propagating in slowly varying media. We note that so far the perturbed mod-

ulation theory has been considered as a formal extension of the classical Whitham method

and its applicability to problems of the type considered here was far from obvious due to

the presence of several competing small parameters in the problem.

The adiabatic deformations of an undular bore propagating over variable topography are:

(i) the change of the characteristic scale of the oscillations in the bore due to the change of

the dispersion coefficient, β in the vKdV equation (4.4), and (ii) the occurrence of spatial

shifts in the position of the trailing and leading edges of the transformed undular bore

relative to the undular bore. Another non-adiabatic effect of the interaction of the undular

bore with a gentle positive bottom slope observed in our numerical simulations was the

occurrence of a transient multi-phase behaviour in the rear part of the bore during the

evolution. We have proposed a simple theoretical explanation of this effect by studying the

behaviour of the linear group velocity characteristic of the modulation system, defining the

trailing edge of the undular bore.

(ii) Slowly increasing depth

When an undular bore propagates over a gently sloping bottom from one constant depth

to another, deeper, shelf region, no advancing solitary wavetrain is formed. Instead, the

main effect has been shown to be the generation of a small-amplitude weakly nonlinear

wavetrain behind the undular bore. This wavetrain is not part of the bore and its generation
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constitutes another non-adiabatic effect occurring in the propagation of undular bores over

variable topography. The amplitude of the trailing wavetrain vanishes at its trailing edge

and the train stretches up to the point where its amplitude will match with the amplitude

of the undular bore at a certain point close to its own trailing edge determined by the

Gurevich-Pitaevskii solution.

We have shown that the behaviour of the leading edge of the undular bore is now dominated

by the nonlocal “strong interaction scenario” (El et al., 2007) when the behaviour of the

lead solitary wave is affected by its interaction with the remainder of the wavetrain in the

bore. Due to the enhanced interaction of solitary waves near the leading edge, the lead

solitary wave amplitude is expected to be somewhat larger than that of a “test” isolated

soliton. Gradually, as time increases, modulation theory predicts that the lead solitary

wave amplitude must restore its original value. Again, detailed numerical simulations have

fully confirmed our theoretical description.

Using the descriptions of an undular bore propagating over decreasing and increasing depth

regions as “building blocks”, we were able to explain the complicated wave patterns occur-

ring in the propagation of an undular bore over a smooth bump and a smooth hole.

(b) Rapidly varying depth

We then performed numerical simulations for undular bore propagation over rapidly chang-

ing depth regions – a counterpart of the classical “soliton fission” configuration. We have

shown that, if the depth changes rapidly, all the non-adiabatic deformations mentioned

above are also observed. In addition, a linear wave packet will be generated when an

undular bore propagates over a rapidly decreasing depth region.

(c) Effects of weak dissipation

Then, the effect of bottom friction or dissipation was taken into account in the problem

configuration. We have considered three kinds of dissipative or frictional terms, i.e. Chezy

friction, linear friction and Burgers friction. In the problem setting, the bottom friction

“switches on” only on the slope and the slope is assumed to be slowly varying. Generally,

under the influence of weak dissipation, similar non-adiabatic effects as mentioned above

were observed, provided the effect of varying depth is stronger than the bottom friction.

After the slope, the undular bore is under the sole effect of the bottom friction, which

then leads to the strong interaction scenario near the leading edge (El et al., 2007). This

contributes to some growth at the leading edge. If there is a solitary wavetrain ahead of

the bore, then the bore would overtake the solitary wavetrain. The effect of the bottom
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friction also caused the mean level across the bore to decrease over time. Consequently,

the bore will become a nonlinear wavetrain and collapse at large time despite the nonlocal

interaction at the leading edge. However, if one considers a Burgers friction term, it has no

impact on the mean flow across the bore. Thus, the bore will transform into the solution

of the constant-coefficient KdVB equation with the amplitude of the leading solitary wave

remaining constant at 1.5U0, where U0 is the size of the jump.

(d) Perspectives/ Future work

The approach described in this thesis is not confined to the dynamics of the KdV equation

and it can be applied to other systems describing the propagation of undular bores (or

dispersive shock waves in general) through nonuniform environments. For example, it could

be used for the description of the generation of solitary wavetrains by internal undular bores

in the ocean, where the waves typically are propagating on a background whose properties

vary in the wave propagation direction. The relevant model here is the extended KdV

(Gardner) equation, which is often used to model oceanic internal solitary waves over

bottom shelves. A similar study can also be undertaken for systems where the initial

evolution of the undular bore is described by a non-integrable dispersive equation, e.g. the

propagation of a fully nonlinear shallow-water undular bore over a slope in the framework

of the appropriate variable-coefficient Su-Gardner equation.
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Appendix A

Numerical methods

A.1 The method of lines

Throughout our work, all our governing equations are solved using the method of lines

(MOL). MOL is an alternative and powerful method to solve partial differential equations

(PDEs). It involves making an approximation to the space derivatives and reducing the

problem into a system of ordinary differential equations (ODEs). Then this system can be

solved using a time integrator. In general, MOL can be divided into two steps:

• The spatial derivatives are first discretised using finite difference, finite volume, finite

element or other algebraic approximations to reduce the problem to a system of

ODEs.

• Next, the ODE system can be solved using a time integrator such as Runge-Kutta

scheme.

The essence of MOL is to approximate PDEs by ODEs. Therefore, one of the advantages of

MOL is that one can use all kinds of ODE solvers and techniques to solve the semi-discrete

ODEs directly.

MOL has been used to solve many PDEs describing nonlinear wave phenomena, e.g. the

KdV equation (Schiesser, 1991; Jiang, 1993; Schiesser, 1994) and the extended KdV equa-

tion (Marchant & Smyth, 1996).

A.2 Numerical scheme for the vKdV equation

All our numerical results illustrated in Chapters 3 and 4 are based on the vKdV equation

Bτ +
3

2h5/4
BBX +

h

6
BXXX = 0. (A.1)

We rewrite equation (A.1) as

Bτ = − 3

2h5/4
BBX − h

6
BXXX . (A.2)
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A.3. TESTING NUMERICAL SCHEME

We then apply central finite difference formulae to discretise spatial derivatives

B ≈ Bj+1 +Bj +Bj−1

3
,

BX ≈ Bj+1 −Bj−1

2△X
,

BXXX ≈ Bj+2 − 2Bj+1 + 2Bj−1 −Bj−2

2(△X)3
,





(A.3)

where j is the index denoting the position along X-axis and △X is the spacing along the

axis. X−interval is divided into M points with j = 0, 1, 2, . . . ,M − 2,M − 1. Therefore,

MOL approximation of (A.2) is given by

dBj

dτ
= − 1

4△Xh5/4(τ)
(Bj+1 +Bj +Bj−1) (Bj+1 −Bj−1)

− h(τ)

12(△X)3
(Bj+2 − 2Bj+1 + 2Bj−1 −Bj−2) ≡ f(Bj). (A.4)

Notice that (A.4) is written as an ODE since there is only one independent variable, which

is τ . Equation (A.4) also represents a system of M ODEs. The initial condition for (A.4)

after discretisation is given by

B(Xj , τ = 0) = B0(Xj), j = 0, 1, 2, . . . ,M − 2,M − 1. (A.5)

For the time integration, we will use a fourth-order Runge-Kutta method. Thus, the

numerical solution at time τi+1 is

Bi+1,j = Bi,j +
1

6
(ai,j + 2bi,j + 2ci,j + di,j), (A.6)

where

ai,j = △τf(Bi,j),

bi,j = △τf(Bi,j +
1

2
ai,j),

ci,j = △τf(Bi,j +
1

2
bi,j),

di,j = △τf(Bi,j + ci,j).





Here, △τ is the stepsize of the temporal coordinate.

A.3 Testing numerical scheme

The constant-coefficient KdV equation has an infinite number of conserved quantities

(Miura et al., 1968). During numerical time integration, these quantities are not numeri-

cally conserved due to the unavoidable numerical errors (Grava & Klein, 2007). Thus, in
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A.3. TESTING NUMERICAL SCHEME

order to check the quality of our numerical results, we will examine to which extent these

quantities are conserved numerically using our scheme. Here, we will only compare the

conservations of mass and energy defined as (Schiesser, 1991)

M =

∫ ∞

−∞
B dX and E =

∫ ∞

−∞
B2 dX. (A.7)

To test our numerical scheme, we let the depth, h(τ) in the vKdV equation (A.1) to be

constant, h = 1. We consider three different types of initial conditions:

(a) one-soliton solution, B(X, 0) = sech2
(√

3
2 x
)
,

(b) two-soliton interaction, B(X, 0)) = 3sech2
(
3
2 (x+ 50)

)
+ sech2

(√
3
2 x
)
, and

(c) humplike/ rectangular initial condition, B(X, 0) = 1
4(1 − tanh(x/10))(1 + tanh((x +

100)/10)).

Figure A.1 shows the propagation of one soliton described by (a). The comparison of mass

and energy is shown in Table A.1 with different stepsize for spatial and temporal variables.

From the table, clearly the numerical errors produced are small.

−100 −50 0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

X

B

τ = 0

(a)

−100 −50 0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

X

B

τ = 200

(b)

Figure A.1: Propagation of a soliton over a flat bottom. (a) τ = 0, (b) τ = 200.
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A.3. TESTING NUMERICAL SCHEME

Table A.1: Mass and energy conservation of the propagation of one-soliton

△X △τ Before integration After integration Error

0.1 0.005
M = 2.3094002 M = 2.3094291 2.89 × 10−5

E = 1.5396006 E = 1.5396008 2.55 × 10−7

0.2 0.005
M = 2.3094004 M = 2.3095683 1.68 × 10−4

E = 1.5396008 E = 1.5396013 4.53 × 10−7

0.2 0.002
M = 2.3094004 M = 2.3090927 3.08 × 10−4

E = 1.5396008 E = 1.5396012 3.46 × 10−7

0.2 0.002
M = 2.3094002 M = 2.3094799 7.96 × 10−5

E = 1.5396006 E = 1.5396008 2.48 × 10−7
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Figure A.2: Two-soliton interaction. (a) τ = 20, (b) τ = 100, (c) τ = 200

For two-soliton interaction described by the initial condition (b), solitons will interacts with each other and regain its identity after

the interaction (see Figure A.2). In this case, the total mass and energy should be conserved throughout the time integration. The

comparison is shown in Table A.2. Again, the errors produced are small.

Table A.2: Mass and energy conservation of two-soliton interaction, △X = 0.1, △τ = 0.005

Before integration, τ = 0 After integration, τ = 20 After integration, τ = 100 After integration, τ = 200

(Before interaction) (Before interaction) (During interaction) (After interaction)

M = 6.3093999 M = 6.3091562 M = 6.3093531 M = 6.3087624
E = 9.5396007 E = 9.5396003 E = 9.5396013 E = 9.5395997

Error M = 2.44 × 10−4 M = 4.69 × 10−5 M = 6.38 × 10−4

(After integration – Before integration) E = 3.87 × 10−7 E = 5.74 × 10−7 E = 1.00 × 10−6
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Figure A.3: Propagation of a humplike initial condition. (a) τ = 0, (b) τ = 40, (c) τ = 500

Table A.3: Mass and energy conservation of the evolution of a humplike initial condition, △X = 0.1, △τ = 0.005

Before integration, τ = 0 After integration, τ = 40 Error After integration, τ = 500 Error

M = 99.9999949 M = 99.9999953 4× 10−7 M = 99.9999950 1× 10−7

E = 90.0000019 E = 89.9999974 4.58 × 10−6 E = 89.9999991 2.81 × 10−6

Figure A.3 shows the evolution of a humplike initial data.The nonlinearity will cause the data to steepen up. Upon reaching breaking

point, the dispersive effect would produce an oscillatory structure at the leading edge. As time increases, eventually we will have a train

of solitons. This is shown in Figure A.3. Table A.3 shows the comparison of the mass and energy conservations. Similarly, the errors are

small.
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A.4. NUMERICAL SCHEME FOR THE VPKDV EQUATION

A.4 Numerical scheme for the vpKdV equation

A.4.1 Chezy friction

The governing equation is given by the vpKdV equation (5.3)

Bτ +
3

2h5/4
BBX +

h

6
BXXX = − CD

h7/4
|B|B. (A.8)

With the help of (A.3), after spatial discretisation yields

dBj

dτ
= − 1

4△Xh5/4(τ)
(Bj+1 +Bj +Bj−1) (Bj+1 −Bj−1)

− h(τ)

12(△X)3
(Bj+2 − 2Bj+1 + 2Bj−1 −Bj−2)

− CD

9h7/4(τ)
| (Bj+1 +Bj +Bj−1) | (Bj+1 +Bj +Bj−1) ≡ f(Bj) (A.9)

Thus, the numerical solution at time τi+1 is given by (A.6) and (A.7).

A.4.2 Linear friction

The governing equation is given by the vpKdV equation (5.31)

Bτ +
3

2h5/4
BBX +

h

6
BXXX = − CD

h1/2
B. (A.10)

After spatial discretisation, we have

dBj

dτ
= − 1

4△Xh5/4(τ)
(Bj+1 +Bj +Bj−1) (Bj+1 −Bj−1)

− h(τ)

12(△X)3
(Bj+2 − 2Bj+1 + 2Bj−1 −Bj−2)

− CD

3h7/4(τ)
(Bj+1 +Bj +Bj−1) ≡ f(Bj) (A.11)

The numerical solution at time τi+1 can be found from (A.6) and ((A.7)).

A.4.3 Burgers’ friction

The governing equation is given by the vKdVB equation (5.44)

Bτ +
3

2h5/4
BBX +

h

6
BXXX = CDh

1/2BXX . (A.12)
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A.4.3 Burgers’ friction

With the help of (A.3) and

BXX ≈ Bj+1 − 2Bj +Bj−1

(△X)2
, (A.13)

after spatial discretisation gives

dBj

dτ
= − 1

4△Xh5/4(τ)
(Bj+1 +Bj +Bj−1) (Bj+1 −Bj−1)

− h(τ)

12(△X)3
(Bj+2 − 2Bj+1 + 2Bj−1 −Bj−2)

+
CDh

1/2(τ)

(△X)2
(Bj+1 − 2Bj +Bj−1) ≡ f(Bj) (A.14)

The numerical solution at time τi+1 can be obtained through (A.6) and (A.7).
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A.5 Numerical code

In order to compute the corresponding numerical data for equations (A.1), (A.8), (A.10) and (A.12), we use C programming. Here, we
only include one example of the codes that we used throughout the entire work.

/∗

∗ vkdv B . c

∗ Created by Wei King Tiong .

∗

∗ So l v e s t he vKdV equa t i on (A. 1 )

∗/

#include <s t d i o . h>

#include <math . h>

#include <s t d l i b . h>

#define Xmin −9000 // minimum va lu e f o r X

#define Xmax 4000 // maximum va lu e f o r X

#define N 130000 // number o f X−s u b i n t e r v a l s

#define dx 0 . 1 // s t e p s i z e in x

#define dt 0.005 // s t e p s i z e in t

#define Tmin −400 // minimum va lu e f o r T

#define Tmax 4001 // maximum va lu e f o r T

#define M 880200 // Tmax−Tmin/ d t

#define Tm 600.00 // end po i n t f o r t he s l o p e

#define h0 1 . 0 // l o c a l d ep t h b e f o r e t he s l o p e

#define h1 1 . 3 // l o c a l d ep t h a f t e r t he s l o p e

#define M1 80000 // 0−Tmin/ d t

#define M2 192140 // Tm−Tmin/ d t

double t , dummy; // v a r i a b l e s d e c l a r a t i o n

double hh1 ; // v a r i a b l e s d e c l a r a t i o n

int i , j ; // v a r i a b l e s d e c l a r a t i o n

double f (double tt , double y [ ] , int i , double h2 ) ; // f u n c t i o n f o r d e r i v a t i v e s

double f (double tt , double y [ ] , int i , double h2 )

{

double b1=0.5;

i f ( i==0) {return (−(((y [ i +1]+y [ i ]+b1 )∗ ( y [ i +1]−b1 ) )/(4∗ dx∗pow(h2 , 1 . 25) ) ) − ( h2∗(y [ i +2]−2∗y [ i +1]+2∗b1−b1 )/(12∗pow(dx , 3 ) ) ) ) ; }

i f ( i==1) {return (−(((y [ i +1]+y [ i ]+y [ i −1])∗( y [ i +1]−y [ i −1] ))/(4∗dx∗pow(h2 , 1 . 25) ) ) − ( h2∗(y [ i +2]−2∗y [ i +1]+2∗y [ i −1]−b1 )/(12∗pow(dx , 3 ) ) ) ) ; }

i f ( i==N−2){return (−(((y [ i +1]+y [ i ]+y [ i −1])∗( y [ i+1]−y [ i −1] ))/(4∗dx∗pow(h2 , 1 . 25) ) ) − ( h2∗(−2∗y [ i +1]+2∗y [ i −1]−y [ i −2])/(12∗pow(dx , 3 ) ) ) ) ; }

i f ( i==N−1){return (−(((y [ i ]+y [ i −1])∗(−y [ i −1] ))/(4∗dx∗pow(h2 , 1 . 25) ) ) − ( h2∗(2∗y [ i −1]−y [ i −2])/(12∗pow(dx , 3 ) ) ) ) ; }

else {return (−(((y [ i +1]+y [ i ]+y [ i −1])∗( y [ i +1]−y [ i −1] ))/(4∗dx∗pow(h2 , 1 . 25) ) ) − ( h2∗(y [ i +2]−2∗y [ i +1]+2∗y [ i −1]−y [ i −2])/(12∗pow(dx , 3 ) ) ) ) ; }
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}

double H( int j , double t ) ; // f un c t i o n f o r t he s l o p e

double H( int j , double t )

{

double alpha=(h0−h1 )/600 ;

i f ( j<=M1) return ( h0 ) ;

i f ( j>=M1+1 && j<=M2) return (pow( sq r t ( h0 )−(0.5∗ alpha∗ t ) , 2 ) ) ;

i f ( j>=M2+1 && j<=M) return ( h1 ) ;

}

int main ( int argc , const char ∗ argv [ ] )

{

double ∗x = mal loc (N ∗ s i zeo f (double ) ) ; // d e c l a r i n g p o i n t e r

double ∗y = mal loc (N ∗ s i zeo f (double ) ) ; // d e c l a r i n g p o i n t e r

double ∗yy = mal loc (N1 ∗ s i zeo f (double ) ) ; // d e c l a r i n g p o i n t e r

double ∗xx = mal loc (N1 ∗ s i zeo f (double ) ) ; // d e c l a r i n g p o i n t e r

FILE ∗output1 , ∗output2 , ∗ f i n ;

output1=fopen ( ”vUB15May121 . txt ” , ”w” ) ; // open f i l e f o r sa v in g numerica l data

output2=fopen ( ”maxvUB15May121 . txt ” , ”w” ) ; // open f i l e f o r sa v i n g t he amp l i t u de f o r t he l e a d i n g wave

// I n i t i a l Condt ions

double b ,w;

b=0.5;w=10.0;

gamma=sqr t ((3∗ b)/(4∗pow(h0 , 2 . 2 5 ) ) ) ;

for ( i =0; i<N; i++)

{

x [ i ]=Xmin+i ∗dx ; // d e f i n i n g X−i n t e r v a l

y [ i ]=b/pow( cosh (gamma∗x [ i ] ) , 2 ) ; // i n i t i a l c on d i t i o n f o r a s o l i t a r y wave

y [ i ]=0.5∗b∗(1−tanh (x [ i ] /w) ) ; // i n i t i a l c on d i t i o n f o r a s t e p

}

for ( i =0; i<N; i++) f p r i n t f ( output1 , ”%f \ t ” , x [ i ] ) ; // s av i ng X data

f p r i n t f ( output1 , ”\n ” ) ;

for ( i =0; i<N; i++) f p r i n t f ( output1 , ”%f \ t ” , y [ i ] ) ; // sa v in g i n i t i a l c on d i t i o n

f p r i n t f ( output1 , ”\n ” ) ;

t=Tmin+dt ;

j =1;

//Runge−Kutta I n t e g r a t o r

while ( t<=Tmax) // t ime loop

{

double h=dt /2 . 0 ,m,m1; // the midpoint

double ∗ t1 = mal loc (N ∗ s i zeo f (double ) ) ; // temporary s t o r a g e ar ray s f o r Runge−Kutta
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double ∗ t2 = mal loc (N ∗ s i zeo f (double ) ) ; // temporary s t o r a g e ar ray s f o r Runge−Kutta

double ∗ t3 = mal loc (N ∗ s i zeo f (double ) ) ; // temporary s t o r a g e ar ray s f o r Runge−Kutta

double ∗k1 = mal loc (N ∗ s i zeo f (double ) ) ; // temporary s t o r a g e ar ray s f o r Runge−Kutta

double ∗k2 = mal loc (N ∗ s i zeo f (double ) ) ; // temporary s t o r a g e ar ray s f o r Runge−Kutta

double ∗k3 = mal loc (N ∗ s i zeo f (double ) ) ; // temporary s t o r a g e ar ray s f o r Runge−Kutta

double ∗k4 = mal loc (N ∗ s i zeo f (double ) ) ; // temporary s t o r a g e ar ray s f o r Runge−Kutta

// sa v i n g amp l i t u de o f t h e l e a d i n g wave f o r t he bore

m=y [ 0 ] ;

for ( i =1; i<N−1; i++){

i f ( y [ i ]−y [ i −1]> 0 . 0 && y [ i+1]−y [ i ]< 0 . 0 && y [ i ] >0.02){

m=y [ i ] ;

}

}

f p r i n t f ( output2 , ”%f %f \n” , t ,m) ;

hh1=H( j , t ) ;

// Runge−Kutta i n t e g r a t o r

for ( i =0; i<N; i++) t1 [ i ]=y [ i ]+0.5∗ ( k1 [ i ]=dt∗ f ( t , y , i , hh1 ) ) ;

for ( i =0; i<N; i++) t2 [ i ]=y [ i ]+0.5∗ ( k2 [ i ]=dt∗ f ( t+h , t1 , i , hh1 ) ) ;

for ( i =0; i<N; i++) t3 [ i ]=y [ i ]+ ( k3 [ i ]=dt∗ f ( t+h , t2 , i , hh1 ) ) ;

for ( i =0; i<N; i++) k4 [ i ]= dt∗ f ( t+dt , t3 , i , hh1 ) ;

for ( i =0; i<N; i++) y [ i ]+=(k1 [ i ]+2∗k2 [ i ]+2∗k3 [ i ]+k4 [ i ] ) / 6 . 0 ;

// sa v i n g numerica l data f o r eve ry T=20

i f ( j % 4000==0) {

for ( i =0; i<N; i++) f p r i n t f ( output1 , ”%f \ t ” , y [ i ] ) ;

f p r i n t f ( output1 , ”\n” ) ;

}

// f r e e p o i n t e r

f r e e ( t1 ) ; f r e e ( t2 ) ; f r e e ( t3 ) ; f r e e ( k1 ) ; f r e e ( k2 ) ; f r e e ( k3 ) ; f r e e ( k4 ) ;

t1=NULL; t2=NULL; t3=NULL; k1=NULL; k2=NULL; k3=NULL; k4=NULL;

t+=dt ;

j+=1;

}

// f r e e p o i n t e r

f r e e ( x ) ; f r e e ( y ) ; f r e e ( xx ) ; f r e e ( yy ) ;

x=NULL; y=NULL; xx=NULL; yy=NULL;

// c l o s i n g ou tpu t f i l e s

f c l o s e ( output1 ) ;

f c l o s e ( output2 ) ;

return ( 0 ) ;

}
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Boussinesq, J. 1872 Théorie des ondes et des remous qui se propagent le long d’un canal

rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses

sensiblement pareilles de la surface au fond. Journal de Mathmatique Pures et Appliques

17, 55–108.
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