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Abstract:  

Using high-speed Schlieren and Shadow photography, the instabilities of outwardly 

propagating spherical hydrogen-air flames have been studied in a constant volume 

combustion bomb. Combustion under different equivalence ratios (0.2 ~ 1.0), temperatures 

(298 K ~ 423 K) and pressures (1.0 bar ~ 10.0 bar) is visualized. The results show that 

flames experience both unequal diffusion and/or hydrodynamic instabilities at different 

stages of propagation. The critical flame radius for such instabilities is measured and 

correlated to the variations of equivalence ratio, temperature and pressure. Analysis 

revealed that equivalence ratio affects unequal diffusion instability via varying the Lewis 

number, ; increased temperature can delay both types of instabilities in the majority of tests 

by promoting combustion rate and changing density ratio; pressure variation has minor effect 

on unequal diffusion instability but is responsible for enhancing hydrodynamic instability, 

particularly for stoichiometric and near-stoichiometric flames.  
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1. Introduction 

The Hydrogen-fuelled Internal Combustion Engine (HICE) offers the potential of solving the 

energy crisis and engine-out emission problems. The performance and emission 

characteristics of a spark ignition HICE are dominated by the premixed turbulent combustion 

process. Laminar flames can be used to validate the chemical reaction mechanisms and to 

gain a fundamental understanding of the turbulent combustion process. Therefore, it is 

necessary and essential to study the characteristics of hydrogen-air laminar flames. 

Many researchers have investigated the hydrogen-air laminar combustion. Edmonds et al. [1] 

reported the laminar burning velocity of hydrogen-air flames under different equivalence 

ratios; Stephenson et al. [2] did measurements on a wider range of the laminar burning 

velocity at atmospheric pressure; Law et al. [3] measured the laminar burning velocity of 

hydrogen-air flames with hydrocarbon dilutions using Laser-Doppler anemometry and 

Schlieren photography from a constant-velocity nozzle burner under 1 bar; Milton et al. [4] 

and Iijima et al. [5] extracted the laminar burning velocities from pressure measurements in a 

constant volume combustion bomb under different initial equivalence ratios, temperatures 

and pressures. The flame stretch effects were ignored in the above experimental research. 

Koroll et al. [6] measured the burning velocity of hydrogen-air-steam jet flames using the 

double-kernel technique and Schlieren photography；Tse et al. [7] studied hydrogen-oxygen 

flames under elevated temperatures and pressures；Dahoe et al. [8] measured the burning 

velocity from pressure variations in a windowless explosion vessel. llbas et al. [9] studied the 

hydrogen-methane-air flames under ambient temperature and different equivalence ratios 

using combustion bomb with optical access. The rig comprises a 250 mm long cylindrical 

stainless steel explosion bomb enclosed at one end with a stainless steel plug which houses 

an internal stirrer to allow mixing. The other end is sealed with a 120 mm diameter round 

quartz window. Numerically, Williams et al. [10] developed a model that offered a new 
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perspective on laminar flame propagation of lean hydrogen-air mixtures diluted by highly 

diffusive fuels.  Although some of the above research takes into account the relationship 

between laminar burning velocities and flame stretch effect, some of the flame speed 

characteristics still cannot be properly explained. The theories of flame instabilities were not 

included in these laminar flame propagation studies.  

Flame instabilities play an important role in spherical outwardly propagating flames, 

particularly in lean hydrogen-air flames [ 11 , 22]. Faeth et al. [ 12 , 13 , 14 ] studied the 

conditions that caused the destabilization of stable flames and categorized three kinds of 

instabilities whose effects are the most significant; Bradley et al. [15,16,17], Tang et al. [18] 

and Hu et al. [19] did further research on the formation schemes of cellular flame structures, 

the critical radius and the Peclet numbers during spherical flame propagation; Kwon et al. 

[20] reported major parameters that affect flame instabilities. However, these studies did not 

make further investigations into the regularity of flame instabilities under a wider range of 

experimental conditions.  

The present work focuses on the systematic studies of the onset of hydrogen-air flame 

instabilities, which is defined by the critical flame radius, and its relationships with 

equivalence ratio, temperature and pressure. The aim of current research is to: 

(1) Experimentally identify the critical radius for the onset of instabilities of hydrogen-air 

flames, and, 

(2) Systematically examine the effects of temperature, pressure and equivalence ratio on the 

variation of the critical radius. 

2. Cellular Instabilities of Spherical Flames 

According to the mechanism that triggers the instabilities of laminar flames two main kinds of 

instabilities are defined and studied: unequal diffusion instability and hydrodynamic instability 

[11-19]. A third category, buoyant instability, caused by gravitational effect, can also be 
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found in previous research [20,21]. It is often neglected as its effect on rapidly propagating 

flames is minor compared to the other two categories of instabilities. 

2.1 Unequal diffusion instability 

The unequal diffusion instability is often referred to as thermal-diffusive instability. During the 

flame propagation process, both mass and thermal diffusions exist across the flame surface. 

The energy ratio of the two kinds of diffusion is expressed by the Lewis Number, : 

           (1) 

where  is the thermal diffusivity of the unburnt mixture: 

           (2) 

where is the unburnt gas thermal conductivity,  is the unburnt gas density and  is the 

specific heat at constant pressure. And,  is the mass diffusivity of the deficient reactant 

(e.g. fuel in lean flames, oxygen in rich flames): 

                                                                                                            (3) 

where  indicates the limiting reactant,  is the volume fraction of species  and  is the 

mass diffusivity of the deficient reactant relative to the species . 

When , the thermal diffusion exceeds the mass diffusion and the swelling parts of the 

flame surface lose heat energy more rapidly than the mass diffusion of the deficient reactant 

can compensate for. Therefore the net energy flow would be negative. As a result, the flame 

temperature gradually falls below the adiabatic temperature and the burning velocity reduces. 

The concave parts, on the contrary, gain positive net energy due to stronger mass diffusion 

of the deficient reactant than the energy loss by thermal diffusion. Consequently, flame 

temperature and burning velocity both increase. In general, the decelerating and 
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accelerating effects induced, respectively, in the swelling and concave parts cancel each 

other out, and the flame surface maintains its smoothness and stability [22].On the other 

hand, when , both the swelling and concave parts will be enhanced, and therefore the 

flame rapidly loses its surface smoothness .Such instability often occurs in the early stage of 

flame propagation when  andcan be identified by irregular distortions of the flame 

surface (Fig. 1) 

2.2 Hydrodynamic instability 

In some occasions, although the flame can maintain it still undergoes cellular 

instability in the later stage of its propagation. This instability was first studied by Darrieus 

and Landau [23]. In their research the flame is seen as a density discontinuity and the 

formation mechanism of such instability is described as the interactions between the 

hydrodynamic disturbances generated by the flame and the flame itself. Additionally, 

hydrodynamic instability is also responsible for flame surface wrinkling [20]. Such instability 

can be distinguished when the flame radius is large enough and the diffusion stability cannot 

offset its effect. It can be identified by the regular cellular distortions of the flame surface (Fig. 

2).  

During any flame propagation processes, hydrodynamic instability always exists. Its intensity 

is directly proportional to density ratio, , of the burned and the unburnt gas, and inversely 

proportional to flame thickness . 

            (4) 

            (5) 

where  is unburnt gas kinematic viscosity;  is unstretched laminar burning velocity.   

3. Experimental Studies 
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The experimental rig used for current research is composed of six main parts: the constant 

volume combustion bomb (with a temperature control device); optical access system 

(Schlieren and Shadow photography system); fuel and oxidizer intake system; ignition 

system; data acquisition and control system and high-speed photography system as 

illustrated in Fig. 3. The stainless steel combustion bomb has a 400 mm inner diameter and 

extensive optical access through a pair of quartz windows of 100 mm diameter. Fresh 

mixtures in the combustion bomb can be uniformly heated by resistance wires inside. The 

combustible mixture is spark ignited using spark plug. The optical system is arranged into a 

Z-shape, comprising two curved primary mirrors of 100 mm diameter and focal length of 100 

cm. Gas temperature inside the bomb is obtained from two chrome–alumel thermocouples. 

Pressure is measured during the explosion with a Kistler pressure transducer. Flame images 

are recorded by a TRI Phantom v7.3 camera which is capable of a maximum speed of 

200,000 frames per second. 

In most flame propagation processes, two distinctive instants at which flame surfaces lose 

initial smoothness can be found: 

• Large cracks on the flame surface begin to branch and the formation of cracks in new 

directions, as illustrated by the 4th images of Fig. 4. The reason for the formation of these 

cracks can be unequal diffusion instability, un-even distribution of spark energy and local 

unburnt mixture inhomogeneity.  

• Sudden and spontaneous appearance of a large number of small cells over the entire 

flame surface (the 5th image of Fig. 4). The characteristic length scale of such cells is 

significantly smaller than that of those large cracks. The appearance of these small cells 

is caused by hydrodynamic instability. 

In the analysis below, the second instant will be used primarily as the onset of flame 

instability, unless significant unequal diffusion instability can be identified earlier. The reason 

being: firstly, unlike the unequal diffusion instability, hydrodynamic instability occurs in 
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almost all flame propagations. Secondly, compared to the gradual growth and branching of 

the large cracks, the hydrodynamic instability occurs with very high intensity, i.e. small cells 

grow across the entire flame surface spontaneously, making it relatively easier to accurately 

identify the exact onset timing. Additionally, the values of Le, σ and δ are calculated based 

on initial temperature, pressure and equivalence ratio prior to ignition.  

4. Results and Discussion 

The following effects of fuel to air equivalence ratio, temperature, and pressure have been 

measured and discussed. In order to eliminate the effect of difference in bomb size, the 

critical timing of onset of instabilities is represented by ‘normalised critical flame radius’ 

which is defined as the ratio of critical flame radius and the bomb radius: Rf/Rbomb. 

4.1 Effect of Fuel to Air Equivalence Ratio 

Fig. 5 to Fig. 7 shows the measured effect of equivalence ratio on the flame instabilities. A 

common characteristic found in all three figures is that, despite the increase in initial 

temperature, the flame tends to lose stability earlier under leaner conditions and becomes 

progressively more stable as the equivalence ratio moves towards stoichiometry. Such 

behaviours are expected as lean and stoichiometric/rich hydrogen-air flames, respectively, 

are naturally unequal diffusion instable (Le > 1) and stable (Le <1).  

Fig. 8 shows the variation of the Lewis number, calculated using Equation (1), under 

different equivalence ratios, temperatures and pressures. Lean hydrogen-air mixtures have 

low Lewis numbers and therefore are prone to unequal diffusion instability, especially when 

 that the propensity to destabilize is so strong such that the flame stretch effect 

cannot offset the destabilization effect and stabilizes the flame; the flame surface loses 

uniformity at a very early stage of propagation as shown in Fig. 2.  

Equivalence ratio affects the flame instabilities primarily by reducing and enhancing the 

propensity to unequal diffusion instability. For lean hydrogen-air flames unequal diffusion 



Page 9 of 21 
 

instability occurs in the early stage of flame propagation before any signs of the 

hydrodynamic instability can be observed. On the other hand, stoichiometric and rich 

hydrogen-air flames naturally have Lewis numbers that are greater than unity and thus have 

higher resistance to unequal diffusion instability. In experimental observations, these flames 

can maintain uniformity to a later stage of propagation before hydrodynamic instability is 

triggered. In general, equivalence ratio affects the flame instability under lean-burn 

conditions and at the early stage of flame propagation. Flame stability becomes less 

sensitive to equivalence ratio when  gradually moves towards stoichiometry.   

4.2 Effect of Temperature 

The effects of temperature on the flame instabilities are shown in Fig. 9 and Fig. 10. 

Graphically these effects can be split into two categories: effect on lean flames ( ) 

and effect on near-stoichiometric to stoichiometric flames ( ). For lean flames, the 

increased temperature can, especially under lower pressure, delay the occurrence of 

unequal diffusion instability. The reason could be that very lean flames ( ) always 

suffer from slow burning speed. Such slow propagation gives cracks that are formed by 

either initial spark defects and local inhomogeneity or unequal diffusion effect plenty of time 

to grow and branch. By increasing the temperature the combustion is greatly intensified, so 

is the burning speed. This increase in burning speed is particularly significant in very lean 

flames. It greatly reduces the time for the cracks to form and grow. Therefore the flames 

retain their relative smoothness for a longer time (‘relative’ means that very lean flames are 

often ‘born’ with large cracks due to unequal diffusion instability).  

For stoichiometric and near stoichiometric flames ( ) the above-mentioned 

delaying effect of increasing temperature is also noticeable. These flames are either 

naturally unequal diffusional stable or have much stronger resistance to unequal diffusion 

instability compared to leaner flames; therefore, it is logical to say that increased 

temperature stabilizes flames from the hydrodynamic instability. The calculated density ratio, 
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σ, using Equation (4) and shown in Fig. 11, revealed that σ is inversely proportional to 

temperature, which means that propensity to hydrodynamic instability is reduced as the 

temperature is increased.        

Contradictorily, when the combustion occurs in a more highly compressed environment the 

delaying effect is completely levelled off for very lean flames or even reversed for 

stoichiometric and near stoichiometric flames. It suggests that temperature is not the 

dominant factor for the onset of flame instabilities. 

4.3 Effect of Pressure 

Under lower pressure (1 bar), flames of different equivalence ratios show good consistence 

in terms of unequal diffusion instability i.e., lean hydrogen flames ( ) lose stability 

very early; when the mixture is enriched to the flame shows much better resistance 

to unequal diffusion instability, but still loses surface smoothness much sooner than 

stoichiometric flame which is naturally unequal diffusional stable and eventually breaks up 

due to hydrodynamic destabilization, as shown in Fig. 12. 

As the pressure builds up all flames exhibit much earlier destabilization, particularly the 

stoichiometric and near-stoichiometric flames. Very lean flames ( ) experience 

relatively less advances in destabilization. That is to say, it is the hydrodynamic instability 

rather than the unequal diffusion instability that has been more significantly enhanced. 

However, since the Lewis number, , and density ratio, , are almost unchanged with 

pressure variation (shown in Fig. 8 and Fig. 11 respectively), neither unequal diffusion nor 

hydrodynamic instability, in theory, should be enhanced by the increase of pressure. 

Therefore another parameter must be responsible for the advance in destabilization. Fig. 13 

shows the variations of flame thickness, , calculated by Equation (5). It can be clearly seen 

that  is stable against temperature change but is more sensitive to pressure increase i.e., 

the flame becomes thinner as pressure increases. A thinner flame usually indicates 
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intensified combustion and faster flame speed but it also results in lower tolerance to both 

internal and external disturbances, making the flame more vulnerable to destabilization. The 

same characteristic was also summarized in the work by Law et al. [20]. Therefore it is 

logical to say that thinner flames tend to promote early hydrodynamic instability, as shown in 

Fig. 14. Also found from Fig. 14 is that as the flame front becomes thinner the number of 

cells increases and the average size of cells decreases.        

5. Conclusions 

The onset of flame instabilities of laminar hydrogen-air spherical premixed flames has been 

studied in a constant volume combustion bomb using high-speed Schlieren and Shadow 

photography techniques. The effects of equivalence ratio, temperature and pressure were 

identified and analysed. The following conclusions can be drawn based on the analysis of 

experimental results:  

• Outwardly propagating spherical flames experience two categories of instabilities: 

unequal diffusion instability caused by unequal mass and thermal diffusion, and 

hydrodynamic instability caused by interactions between the flame and external 

disturbances. 

• Unequal diffusion instability can be visually identified by the gradual growth and 

branching of the large cracks. Its appearance is governed by the Lewis number. 

Stoichiometric hydrogen flames are naturally stable to unequal diffusion instability.  

• Hydrodynamic instability can be visually identified by the sudden and spontaneous 

appearance of small cells across the entire flame surface. Changes to certain 

parameters can only delay the appearance but not totally eliminate it.  

• The onset of flame instabilities is identified by the means of measuring critical flame 

radius. The critical radius is proven to be under the influences of equivalence ratio, 

temperature and pressure. 
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• Equivalence ratio governs the value of the Lewis number, , and therefore decides 

whether the flame is naturally stable or instable to unequal diffusion instability. When 

, cells induced by unequal diffusion effect grow instantaneously at the beginning of 

flame kernel formation.  

• Increased temperature has a strong delaying effect on the appearance of unequal 

diffusion cells, particularly for very lean flames. The reason could be enhanced 

combustion rate and flame speed that allow less time for the cells to appear and grow. 

For stoichiometric flames, temperature increase reduces the density ratio, , and 

therefore weakens the hydrodynamic instability. 

• Experimental results revealed that pressure is the most dominant of the three 

parameters under investigation in terms of the onset of flame instability. Although 

pressure variation barely affects either  or  which means it does not enhance unequal 

diffusion and hydrodynamic instabilities, but it affects the flame in a more direct manner: 

by changing the flame thickness. Increased pressure significantly weakens the flame 

front making it more vulnerable to destabilization. Higher pressure also induces a larger 

number of cells of smaller average size.   

 

FIGURE LEGEND: 

Fig.1 Evolution of unequal diffusion instability at 298K, 1bar, Φ=0.2 

Fig.2 Evolution of hydrodynamic instability at 298K, 1bar, Φ=1.0 

Fig.3 Schematic diagram of experiment devices setup. 

Fig.4 Serial images of propagation process of hydrogen-air flame at 298K, 1bar, Φ=1.0 

Fig.5 Normalized Critical Flame Radius under different equivalence ratio at an initial 

temperature of 298K 

Fig.6 Normalized Critical Flame Radius under different equivalence ratio at an initial 

temperature of 348K 
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Fig.7 Normalized Critical Flame Radius under different equivalence ratio at an initial 

temperature of 423K 

Fig.8 Calculated Lewis Number under different equivalence ratio, temperature and pressure 

Fig.9 Critical Flame Radius under different temperature at an initial pressure of 1 bar 

Fig.10 Critical Flame Radius under different temperature at an initial pressure of 2 bar 

Fig.11 Calculated density ratio under different equivalence ratio, temperature and pressure 

Fig.12 Critical Flame Radius under different equivalence ratios and pressures at an initial 

temperature of 298K 

Fig.13 Measured Flame Thickness at different equivalence ratio, temperature and pressure 

Fig.14 Schlieren photographs of burning sequences of stoichiometric hydrogen-air flames at 

298K 1bar (upper row) and 2bar (lower row) at the same time after ignition: 1ms, 1.4ms, 

2.5ms and 3ms 
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FIGURES: 

 

Fig.1 Evolution of unequal diffusion instability at 298K, 1bar, Φ=0.2.  

Measurement times are (from left to right): 0.0069s, 0.013s and 0.030s.  

 

 

Fig.2 Evolution of hydrodynamic instability at 298K, 1bar, Φ=1.0. 

Measurement times are (from left to right): 0.0014s, 0.0029s and 0.0036s. 
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Fig.3 Schematic diagram of experiment devices setup. 

 

 

Fig.4 Serial images of propagation process of hydrogen-air flame at 298K, 1bar, Φ=1.0. 

Measurement times are (from left to right): 0.00038s, 0.00077s, 0.0015s, 0.0030s, 0.0038s 
and 0.0045s. Black arrows in 4th image indicate ‘large cracks’. 

 

 

Fig.5 Normalized Critical Flame Radius under different equivalence ratio at an initial 

temperature of 298K 
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Fig.6 Normalized Critical Flame Radius under different equivalence ratio at an initial 

temperature of 348K 

 

 

Fig.7 Normalized Critical Flame Radius under different equivalence ratio at an initial 

temperature of 423K 
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Fig.8 Calculated Lewis Number under different equivalence ratio, temperature and pressure 

 

 

Fig.9 Critical Flame Radius under different temperature at an initial pressure of 1 bar 
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Fig.10 Critical Flame Radius under different temperature at an initial pressure of 2 bar 

 

 

Fig.11 Calculated density ratio under different equivalence ratio, temperature and pressure 
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Fig.12 Critical Flame Radius under different equivalence ratios and pressures at an initial 

temperature of 298K 

 

 

Fig.13 Measured Flame Thickness at different equivalence ratio, temperature and pressure 
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Fig.14 Schlieren photographs of burning sequences of stoichiometric hydrogen-air flames at 

298K 1bar (upper row) and 2bar (lower row) at the same time after ignition: 1ms, 1.4ms, 

2.5ms and 3ms 
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