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Abstract. A methodology is proposed for estimating damage accumulation due to fatigue in 

the entire body of a metallic structure using output-only vibration measurements from a sen-

sor network installed at a limited number of structural locations. This method can also be 

seen as a tool  for a life-time prognosis within SHM concepts. Available frequency domain 

stochastic fatigue methods based on Miner’s damage rule, S-N fatigue cycle curves and 

Dirlik’s probability distribution of the stress range are used to predict the expected fatigue 

accumulation of the structure in terms of the power spectral density of the stress processes. In 

predicting the damage and fatigue lifetime, it is assumed that the unmeasured excitations can 

be modeled by stationary stochastic processes. The power spectral densities of stresses at 

unmeasured locations are estimated from the response time history measurements available 

at the limited measured locations using Kalman filter and a model of the structure. The pro-

posed formulation is demonstrated using a MDOF spring-mass chain model arising from 

structures that consist of members with uni-axial stress states. 
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1 INTRODUCTION 

Damage accumulation due to fatigue is an important safety-related issue in metallic struc-

tures. The linear damage accumulation law introduced by [1] is often used to evaluate fatigue 

damage using available methods for cycle counting per stress level in measured stress re-

sponse time histories. Available S-N fatigue curves [2] are used to predict the fatigue damage 

at different stress levels for harmonic stress time histories. The damage accumulation predic-

tions are based on measurements taken from a sensor network, consisting usually of strain ro-

settes, attached to the structure and are only applicable for the locations where measurements 

are available. Due to practical and economical considerations, the number of sensors placed in 

a structure during operation is very limited and in most cases they do not cover all critical lo-

cations. Moreover, there are locations in the structure that one cannot install sensors such as 

underwater locations in offshore structures (oil refinery structures, offshore wind turbines, 

offshore steel jackets, etc.), within the body of solid structures, and non-approachable areas of 

extended structures. Available fatigue prediction methods based only on measurements cannot 

be used to predict fatigue damage accumulation at the locations where measurements are not 

available. In order to infer damage due to fatigue at structural members where measurements 

are not available, one needs to predict the stress response time histories in these structural 

members using the available measurements obtained from the sensory system. In limited cir-

cumstances, such predictions can be possible if one combines the available measurements 

with the information obtained from a model (e.g. a finite element model) of the structure.  

The methods for fatigue damage accumulation have been extended to treat the case the ex-

citations can be represented by a stochastic vector process with known correlation characteris-

tics. Assuming that the structure behaves linearly and the excitation is modeled by a Gaussian 

stochastic vector process, the stress response at any point is a stochastic process that can be 

completely defined using the correlation characteristics of the stochastic excitations [3]. The 

fatigue damage accumulation at a structural location can then be computed using the charac-

teristics of the stochastic processes of the components of the stress sensor at such location. 

Methods for fatigue accumulation for Gaussian narrow band stress processes have been first 

introduced (e.g. [4]) and then extended to the case of wide-band Gaussian stress processes 

(e.g. [5]). A review and comparison of spectral methods for stochastic fatigue analysis based 

on wide-band Gaussian stochastic processes can be found in the work by Benasciutti and 

Tovo [6]. The formulations depend on the probability distribution of stress cycles correspond-

ing to different stress levels in a stress response time history signal and the expected number 

of peaks per unit time of a stress process. Results for the expected fatigue damage accumula-

tion predicted by the Miner linear rule have been presented in terms of the spectral moments 

of the stress process which are readily obtained from the power spectral density of the stress 

components involved. For the important case of wide band processes encountered often in 

applications, simulation-inspired Dirlik approximation [5] is widely used and is considered to 

be the most accurate formula for modeling the probability of stress cycles in terms of the 

spectral moments of the stress process. It is worth noting that the aforementioned frequency 

domain methods based the power spectral densities use no information available from a sen-

sor network. Instead, their predictive accuracy depend on the assumptions employed for the 

stochastic excitation characteristics and the models representing structural behavior. However, 

these prediction fail to integrate the information provided by a network of sensors. Such sen-

sor information is expected to update and improve the fatigue predictions, making them con-

sistent with the available measurements.  

This work addresses the problem of estimating the expected damage accumulation due to 

fatigue in the entire body of a structure using output-only vibration measurements at a limited 
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number of locations provided by a sensor network installed in the structure. The measure-

ments may consist of response time histories such as e.g. strain, acceleration, velocity, dis-

placement, etc. The proposed methodology is applicable for the case where the responses can 

be modeled by stationary processes and the measured response time histories are long enough 

so that they can be considered to approach stationary processes. The excitation in the structure 

is considered to be unknown. However, for most operational condition of structures for which 

the measured response is approaching a stationary process, the excitation can be considered to 

be a Gaussian stationary stochastic process with unknown intensity and frequency content.  

The expected fatigue damage accumulation in the entire structure is obtained by integrating 

(a) methods for predicting strain/stress response time histories and their correlation/spectral 

characteristics in the entire structure from output-only measured response time histories avail-

able at limited locations in the structure, and (b) frequency domain methods for estimating 

fatigue damage accumulation using the spectral characteristics of the predicted strain/stress 

response time histories. The idea is to use prediction methods such as Kalman filter [7] meth-

ods to predict the strain/stress response time histories at various locations within structural 

components using the measurements available at a limited number of locations. Such predic-

tions are restricted here to the case of excitations that can be adequately represented by Gauss-

ian stationary stochastic processes.  

This work is organized as follows. In Section 2, the frequency domain formulation for pre-

dicting damage due to fatigue in structural elements subjected to uniaxial stress state in linear 

structures under Gaussian stochastic excitations is reviewed. The formulation is applicable to 

Gaussian wide-band stress processes, often encountered in engineering applications, and it 

depends on the spectral moments of the power spectral densities of the stress process at the 

location of a structure. Section 3 presents the formulation for predicting the strain/stress re-

sponse time histories and the associated power spectral densities at the corresponding loca-

tions of the structure using Kalman filter and the measured time histories at a limited number 

of locations in the structure. Section 4 demonstrates the effectiveness of the proposed meth-

odology using a chain-like mass-spring MDOF structure and measured data that are simulated 

using white noise excitations. Conclusions are summarized in Section 5. 

2 SPECTRAL METHOD FOR FATIGUE ESTIMATION  

The Miner rule [1] is used to predict the damage accumulation due to fatigue.  According to 

this rule, a linear damage accumulation law at a point in the structure is defined by the formu-

la 

 
m

i

i i

n
D

N
  (1) 

where in  is the number of cycles at a stress level i , iN  is the number of cycles required for 

failure at a stress level i , and m  is the number of stress levels identified in a stress time his-

tory.  Available S-N fatigue curves [2] are used to describe the number of cycles iN  required 

for failure given a stress level i . The number of cycles in  at a stress level i  are usually 

obtained using available stress cycle count methods, provided that the stress time histories are 

available through measurements. Alternatively, frequency domain methods based on spectral 

methods can be used to predict the expected damage due to fatigue using the linear damage 

law (1). The methodology assumes that the power spectral density of the stress process is 

available. For linear systems excited by time-varying loads that can be modeled by stationary 
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stochastic processes, these power spectral densities can be straightforward computed using 

available random vibration results [3].  

The methodology for estimating the fatigue accumulation at a point assuming a uni-axial 

stochastic stress state is next reviewed. For multi-axial stress states one can refer to the work 

by You and Lee [8] and Pitoiset and Preumont [9] to extend the applicability of the present 

methodology. Let ( )t  be the uni-axial stress at a point in a structural element. The stress is 

considered to be a stationary Gaussian stochastic process. This is the case encountered in line-

ar structures that are subjected to stationary Gaussian stochastic processes. Let ( )S   be the 

power spectral density of the stationary Gaussian stochastic process ( )t  and  

 ( )
i

i S d   



   (2) 

be the spectral moments of the stress process. Using frequency domain methods for fatigue 

estimation under stochastic excitations and the linear damage accumulation law  (1), the ex-

pected fatigue damage accumulation for a uni-axial stochastic stress process is given by [6]  

 1

0 0

( )
[ ] [ ] ( )

( )

an
E D d c TE P p d

N


   



 
    (3) 

where ( ) [ ] ( )n TE P p d    is the number of cycles at stress levels within the stress interval 

[ , ]d   ,  

 ( )N c     (4) 

is the number of cycles for failure that correspond to a specific harmonic stress level of ampli-

tude   obtained from available S-N curves [2], [ ]E P  is the expected number of peaks per 

unit time for the stress process, ( )p   is the probability distribution of the stress cycles at 

stress levels within [ , ]d   , and T  the period of observation. The parameters c  and   

are constants obtained from fatigue test experiments and depend on the material of the test 

specimen.  

The expected time of failure due to fatigue (fatigue lifetime) lifeT  corresponds to a critical 

expected damage value [ ] crE D D  which is often set equal to unity ( 1crD  ). Using (3), the 

fatigue lifetime is given by   

 cr
life

D
T

D
  (5) 

where D  is the expected damage rate given by  

 1

0
[ ] ( )D c E P p d  


   (6) 

For Gaussian stochastic stress processes, the probability distribution of the stress cycles at 

stress levels within [ , ]d    is given by the Dirlik formula [5,10-11] as  

 

2 2

2

( ) ( ) ( )

1 2 2 2
32

0

( )
( )

( )
2

Z Z Z

Q R
E E Z

e e E Z e
Q R

p

  







    
  

   (7) 

where 
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0

( )
2

Z






   (8) 

max min      is the range of the stress process, and 1E , 2E , 3E , R  and Q  are specific 

algebraic functions of the spectral moments 0 , 1 , 2 , 4 , given by  

 
 2 2

2 2 1 1
1 2 3 1 22

2

2 1
, , 1
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
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 
 (9) 
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 (10) 
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1 2 1 2

1 2 1 2

0 4 0 2 0 4

, ,mx
   

   
     

 
    

 
 (11) 

This is a semi-empirical probability density which is a mixture of one exponential and two 

Rayleigh distributions. It has been derived by fitting the shape of a rain-flow range distribu-

tion via minimizing the normalized error between the rain-flow ranges and the above density 

model. The spectral moments 4210 ,,,   constitute a base for the construction of the approx-

imate closed-form Dirlik formula for the probability density of the stress range. The Dirlik 

formula constitutes an extension of the Rayleigh distribution to non-narrow band processes. It 

is widely used for fatigue crack estimation under wide-band Gaussian stationary applied stress. 

Extension to non-Gaussian stress processes requiring the skewness and kurtosis of the stress 

process are available in the work by [12].  

Using results from random vibration theory, the expected number of cycles [ ]E P  per se-

cond for a stochastic process is given by the spectral moments of the process in the form  

 4

2

1
[ ]

2
E P



 
  (12) 

Substituting (12) into (6) and using the fact that ( ) ( ) / 2 (2 ) / 2p p p     , one obtains 

the expected damage rate in the form  

 1 4

0
2

(4 ) (2 )D c p d
   




   (13) 

Using the Dirlik formula (7) and carrying out the integration analytically, the expected dam-

age rate simplifies to [6] 

 
1 / 2 / 24

0 1 2 3

2

(8 ) (1 ) 2 1 ( | | )
2

aD c D Q D R D   
  



   
        

  
 (14) 

It is clear from the aforementioned formulation and equations (5) and (14) that the ex-

pected fatigue damage rate and, consequently, the fatigue accumulation during a time interval 

T  at a point in the structure depends only on the spectral moments i , 1,0,2,4i  , of the 

stress process ( )t . Using the definition of the spectral moments in (2), the spectral moments 

and the fatigue predictions at a point of a structure eventually depend only on the power spec-
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tral density ( )S   of the stress process ( )t . The power spectral densities of the stress re-

sponse processes at a point can be calculated from measurements, provided that these meas-

urements are long enough to be considered stationary.  

However, there is a limited number of points that can be instrumented in the structure. For 

the points where measurements are not available, one has to make predictions of the stress 

process and subsequently the power spectral density of the stress process, given the measure-

ments at other locations. This issue is addressed at the next section. Once these measurements 

and predictions of the stresses are estimated at measured and unmeasured locations, the power 

spectral densities and the corresponding damage accumulation due to fatigue are obtained, 

using (5) and (14), everywhere in the structure. In this way, fatigue damage accumulation 

maps for the entire structure are constructed from limited number of vibration measurements.  

3 RESPONSE PREDICTIONS IN THE ENTIRE STRUCTURE USING 

VIBRATION MEASUREMENTS 

The objective of this section is to predict the stress response at all points (or DOFs) in a 

structure using the measurements at a limited number of locations (or DOFs). This is achieved 

using Kalman filter [7]. For convenience and without loss of generality, it is assumed in the 

analysis that sensors that are placed in the structure measure the strains. 

Consider the dynamic response of a linear structural system subjected to deterministic and 

random excitations. Using a spatial discretization method, such as finite element analysis, the 

equations of motion for a linear structure are given by the following set of n  second order 

differential equations  

 ( ) ( ) ( ) ( ) ( )u wMq t Cq t Kq t L u t L w t     (15) 

where 
1

( ) outN
q t


  is the displacement vector, M , C  and n nK   are respectively the 

mass, damping and stiffness matrices, , 1
( ) u inN

u t


  and , 1
( ) w inN

w t


  are the deterministic 

and stochastic excitation vectors applied respectively at ,u inN  and ,w inN  DOFs, and 

,u inn N

uL


  and ,w inn N

wL


  are matrices comprised of zeros and ones that maps the ,u inN  

and ,w inN  excited DOFs to the n  output DOFs. Throughout the analysis, it is assumed that the 

system matrices M , C  and K  are symmetric. Let ( )y t  be the vector that collects all meas-

urements at different locations of the structure at time t . These measurements are collected in 

general from sensors such as accelerometers, strain gauges, etc.   

Introducing the state vector  

 
q

x
q

 
  
  

 (16) 

the equation of motion can be written in the state space form  

   ( )c c cx A x B u t G w t    (17) 

the measured output vector  y t  is given by the observation equation  

    y t H x Du t   (18) 

where cA , cB  and cG  are the state transition and observation matrices given by  
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1 1

0
c

I
A

M K M C 

 
  

  
 (19) 

 
1 1

0 0
      and     c c

u w

B G
M L M L 

   
    

    
 (20) 

respectively.  

3.1 Kalman filter approach   

Since measurements are available in digitized form, the presentation of the Kalman filter is 

next given in discrete time. Using the sampling rate 1/ t , the discrete-time state space model 

corresponding to (17) and (18) is  

 11 1kk k kx Ax Bu Gw     (21) 

 kk k ky Hx Du v    (22) 

where ( )kx x k t   and ( )ky y k t  , 1, ,k N , are the digitized state and output vectors, 

and  

 cA t
A e


  (23) 

is the state transition matrix for the discrete formulation. The random variables kw  and kv  

represent the stochastic excitation and the measurement noise, respectively. They are assumed 

to be independent, white and following normal probability distributions ( ) (0, )kp w N Q  and 

( ) (0, )kp v N R , where Q  and R  are the stochastic excitation and the measurement noise 

covariances assumed to be constant, independent of time.  

Kalman filter is used to estimate the state ˆkx  of the system described by (21) using the 

measurements in the vector ky  in (22). Specifically, in the prediction step, an apriori state es-

timate ˆkx  of the state vector kx  of the system is estimated from equation [7]  

 1 1
ˆ ˆ
k k kx Ax Bu

    (24) 

In the correction step, the measured value ky  is used to calculate an a posteriori state estimate 

ˆ
kx , weighting the measured and estimated signals by the Kalman filter gain matrix kK . This 

is formulated by the equation  

 ˆ ˆ ˆ[ ]k k k k k kx x K y Hx Du      (25) 

where the Kalman gain factor is given by  

 1[ ]T T

k k kK P H HP H R    (26) 

and, for steady state response, the error covariance matrix [ ( ) ]T

k k kP P E e e   , where 

ˆ
k ke x x    is the a priori error estimate, satisfies the discrete time Riccati equation:  

 1( )T T T T TP APA APH HPH R HPA GQG     (27) 
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Let k  be a vector containing the digitized stresses at various locations of the structure. 

Using structural mechanics theory, these stresses in the vector k  are related to the state vec-

tor through a linear transformation k kx   , where   is the transformation matrix that asso-

ciates the state vector to the desired stresses in the entire structure. Consequently, an estimate 

of the stresses ˆk  at time t k t   is related to the state vector estimate ˆkx  through the trans-

formation:  

 ˆ ˆ
k kx    (28) 

Herein, the response prediction vector ( )t  is restricted to stresses at elements subjected to 

uni-axial stress states required in lifetime fatigue estimation as described in Section 2.  

Using the definition of the cross power spectral density and the Kalman filter equations (24) 

and (25), the cross power spectral density ˆ ( )S   of the stress response vector ˆ
k  is given 

with respect to the cross power spectral density ( )yS   of the measurement vector ky  in the 

form  

 1

ˆ ( ) ( ) ( ) ( ) ( )T T T T

x yS S E j KS K E j             (29) 

where ( )E j  is the matrix given by  

 ( ) ( )j tE j Ie I KH A     (30) 

and I  is the identity matrix. Equation (29) relates the power spectral densities of the stresses 

at various structural locations with the power spectral densities of the measured quantities in 

ky  available at the limited number of measured locations. This relation depends on the model 

(e.g. a finite element model) used to represent the behavior of the structure and the assump-

tion that the excitation vector is broad-band so that the excitations can be modeled by zero-

mean stationary white noise processes with spectral density described by [ ]T

k l klE w w Q , 

where kl  is the Kronecker delta.  

It should be noted that in order to apply (27), an estimate of the zero-lag covariance Q  of 

the unknown input stochastic process has to be provided. This estimate is obtained using the 

measurements ( )y t  and the relation ( )yy yyQ Q Q  between the covariance matrix yyQ  of the 

measurement vector ( )y t  and the covariance matrix Q  of the excitation process. Using (22) 

with 0D  , this relation is given by  

 T

yy xxQ HQ H  (31) 

where xxQ  is given by the discrete time Lyapunov equation in the form  

 0T T

xx xxA Q A Q GQG    (32) 

The optimal values of the entries of the covariance matrix Q  can be obtained by minimizing 

the difference between the covariance matrix ( )yy yyQ Q Q  predicted by the linear model giv-

en Q  and the covariance matrix 
1

1ˆ N T

yyQ y y
N

 
   obtained from the measurements in y , 

1, , N  . That is, the optimal value optQ  is obtained by minimizing the objective function  
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 2 2ˆ ˆ( ) || ( ) || / || ||yy yy yyJ Q tr Q Q Q tr Q   (33) 

with respect to the elements in Q . The optimal value optQ  of Q  is then substituted in (27) to 

completely define the Riccati equation (27). The solution P  of the Riccati equation is substi-

tuted in (26) in order to find K  which is needed in (29).   

3.2 Estimation of power spectral densities of stresses   

The cross power spectral density matrix ( )yS   of the sampled measurement vector ky , in-

volved in (29), can be obtained using available signal processing techniques such as the 

Welch technique [13]. Once ( )yS   has been estimated from the measurements, equation (29) 

is used to estimate the cross power spectral density ˆ ( )S   of the stress response vector ˆk . 

Alternatively, the PSD ˆ ( )S   of the stress response vector ˆk  is obtained by using equations 

(24) and (25) for the Kalman filter to provide estimates ˆkx  of the system state vector which 

are then used in equations (28) to estimate the stress vector ˆk . Finally, available signal pro-

cessing techniques such as the Welch technique are used to compute the PSD ˆ ( )S   from the 

sampled stress response vector ˆ
k . The length of the sampled time history should be suffi-

cient large in order for the estimates to be accurate.  

The diagonal elements ˆ[ ( )]diag S   of the cross power spectral density matrix ˆ ( )S   giv-

en in (29) contain the power spectral density estimates required for fatigue predictions using 

equations (5) and (14).  

4 APPLICATION 

The applicability and effectiveness of the methodology is illustrated using simulated 

“measurements” from a simple spring mass chain-like model of a structure. The stress state at 

critical locations are uni-axial and the fatigue prediction methodology can be directly applied. 

The measurements are assumed to be strain measurements. These measurements are simulat-

ed from the model of the structure using wide-band excitation resembling white noise.  

Consider the class of N -DOF spring mass chain-like model fixed at the two ends as 

shown in Figure 1. The model is used to represent a structure consisting of a series of bar and 

body elements as shown in Figure 2. The structure consists of N  bodies with the i -th body 

having mass im . The 1i   and the i  bodies are connected by elastic bar element which pro-

vide the stiffness ik  to the system. The number of bar (or spring) elements of the chain model 

is 1N  . The material of the bar elements is considered to be steel. For steel bar elements, the 

values of the fatigue constants in equation (4) are taken to be 884.06 10c    and 9.82   for 

steel samples.  The i -th bar element has length iL , cross-sectional area iA  and modulus of 

elasticity iE .  For simplicity, each bar element is represented by a spring element with stiff-

ness /i i i ik E A L  as shown in Figure 1. Also, the nodal mass im  in Figure 1 includes the ef-

fect of the i  body mass and the lumped mass arising from the bar elements connected to node 

i . The i  component ( )iq t  of the vector ( )q t  corresponds to the displacement of the node i  of 

the model. The system is subjected to an unmeasured excitation applied at node e .  
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Figure 1: N -DOF spring mass chain-like model. 

 

 

Figure 2: Structure consisting of N  masses and 1N   bar elements. 

 

Property 

Type 

Property 

Value Units 

Material Steel   

Modulus of 

Elasticity, E  2.1e11 2/N m  

Radius 3.5e-3 m  

Length 300e-3 m  

Stiffness 

1 6k k   2.7e7 /N m  

Mass 1m  21 Kg  

Mass 1m  15 Kg  

Mass 1m  12 Kg  

Mass 1m  15 Kg  

Mass 1m  21 Kg  

Table 1: Geometric and material properties. 

For demonstration purposes, the excitation vector kw  is assumed to be broadband and is 

modeled by Gaussian stationary white noise vector process with constant spectral density ma-

trix. White noise provides a good approximation of the input whenever the correlation time of 

the input is sufficiently small compared to the system time constants. The discrete state space 

formulation of the equations of motion is used to simulated response time history data as well 

as compute estimates of the covariance responses and the power spectral density of the re-

sponses using the white noise excitation applied at node e . In particular, the strain and stress 

response time histories k  and k , respectively, are simulated at all bar elements using the 

state space formulation. The time discretization step used in simulated the sampled data is 
30.5 10t     seconds. The simulated strain and stress response time histories are the refer-
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ence stress response time histories that are considered to be the exact stress response time his-

tories for the excitations used. These response time histories and the corresponding power 

spectral densities can be used with the fatigue prediction methodology to compute the lifetime 

of the structure due to fatigue failure. Such predictions constitute the reference (exact) predic-

tions against which the predictions from the proposed Kalman filter approach should be com-

pared to for assessing the accuracy of the proposed methodology.  

Let o  be the set that contains the bar element numbers where the strains are measured. The 

simulated sampled time history of the strain responses k  associated with the nodes or DOFs 

included in the set o  are included in the measurement vector ( )o

k ky  . In practice, these 

measurements are collected using appropriate sensors such as strain gauges. Let p  be the set 

that contains the bar element numbers where the stresses will be predicted. The set p  is se-

lected to be {1, , 1}p n  , i.e. it is assumed that stresses are predicted at all bar elements.  

Results demonstrating the effectiveness of the proposed methodology are presented for a 

five degree of freedom system ( 5N  ) shown in Figure 1. The nodal masses as well as the 

geometric and material properties of the bars are listed in Table 1. The damping matrix C  in 

the equations of motion is chosen assuming that the system is classically damped. Rayleigh 

damping is assumed, i.e. C aM bK  . A single excitation is considered which is applied at 

node 5e  . The strain response time histories ( )o

k ky   at the measured DOFs are used to 

predict the stress response time histories at all bar elements identified in the set p  using the 

proposed Kalman filter approach. 

 

Figure 3: Comparison between reference and estimated from Kalman filter stress response time histories. 
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Comparison between the reference (exact) stress time histories simulated by the model and 

the estimated time histories from the Kalman filter are given in Figure 3 for all bar elements 

in the set p , assuming that the measured strains are at bar elements {2,4}o  . Similar com-

parisons for the power spectral densities of the stress time histories are shown in Figure 4. It 

can be seen that the estimated stress time history and the power spectral densities of the stress 

at the bar elements 2 and 4, where measurements are available, coincides with the correspond-

ing reference stress time histories and stress power spectral densities simulated by the model. 

At the other bar elements, there is a discrepancy between the estimated and reference (exact) 

stress time histories or power spectral densities. These differences are due to the estimation 

error associated with the Kalman filter. However, it should be noted that the predictions from 

the Kalman filter approach are quite good, especially for the high amplitudes around the reso-

nance peaks which mainly contribute to the fatigue process.  

 

Figure 4: Comparison between reference and estimated from Kalman filter power spectral densities of the stress 

responses. 

Lifetime predictions due to fatigue are shown in Figure 5 for all six bar (spring) elements 

of the structure as a function of the intensity Fs  of the input white noise, where Fs  is the 

standard deviation of the input. The lifetime values in the Figure are obtained using the fa-

tigue prediction formula (5). For each bar element, there are two lifetime fatigue predictions. 

The first prediction is based on the reference time histories simulated by the model and it is 

used as the exact value against which to study the accuracy of the predictions from the pro-

posed methodology. The second fatigue-based lifetime estimate is the one predicted by the 

methodology based on the use of Kalman filter approach to estimate the stress response time 

histories at all bar elements.  
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Figure 5: Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the Kalman 

filter as a function of the excitation amplitude for the 5N   DOF model. 

To study the effect of the number and location of sensors (measurement points) on the ac-

curacy of the predictions, Figures 6a and 6b presents predictions in the entire structure (all six 

bar elements) using two sensors placed at bar elements {2,4}o   and {2,3}o  , respectively, 

while Figures 6c and 6d present predictions using three and four sensors placed at bar ele-

ments {1,2,4}o   and {1,2,3,6}o  , respectively.  

 

 

 

Figure 6: Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the Kalman 

filter for the 5N   DOF model. 
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It can be seen that the estimates based on the Kalman filter predictions are quite close to 

the reference fatigue values obtained from the actual simulations. Comparing the fatigue life-

time predictions in Figures 6a-d, it becomes clear that the accuracy of the predictions depend 

on the number and location of sensors in the structure. One can improve the estimates consid-

erably using optimal sensor location methodologies [14].  

5 CONCLUSIONS  

A methodology for estimating damage due to fatigue on the entire body of a structure us-

ing spectral methods and output only vibration measurements at a limited number of locations 

was presented. The fatigue predictions presented in this work are limited to structural mem-

bers subjected to a uni-axial stress state. These predictions can be extended using available 

methods to structural members subjected to multi-axial stress state. Kalman filter is used for 

predicting the power spectral densities of the stresses in the entire body of the structure using 

the available measurements and a model of the structure. These predictions can be used to 

construct fatigue accumulation and lifetime prediction maps consistent with measurements 

provided by a monitoring system. The results from the proposed methodology are useful for 

designing optimal maintenance strategies for metallic structures using information for the ac-

tual condition of a structure, collected from a sensor network placed at limited number of lo-

cations.  
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