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ABSTRACT 

 

Theoretical and computational issues arising in the selection of the optimal sensor 

configuration in structural dynamics are addressed. The information entropy is 

introduced to measure the performance of a sensor configuration. Asymptotic 

estimates are used to rigorously justify that selections of optimal sensor configurations 

can be based solely on nominal structural models, ignoring the time history details of 

the measured data that are not available in the initial experimental design stage. 

Heuristic algorithms are proposed for constructing effective sensor configurations that 

are superior, in terms of computational efficiency and accuracy, to the sensor 

configurations provided by available algorithms suitable for solving general 

optimisation problems. The theoretical developments and the effectiveness of the 

proposed algorithms are illustrated by designing the optimal configuration for an array 

of acceleration sensors placed on a bridge structure.  

 

 

INTRODUCTION 

 

Structural model identification using measured dynamic data has received much 

attention over the years because of its importance in structural model updating, health 

monitoring, damage detection and control. The quality of information that can be 

extracted from the measured data for structural identification purposes depends on the 

type, number and location of sensors. The objective in this work is to optimise the 

number and location of sensors in the structure such that the resulting measured data 

are most informative for estimating the parameters of a family of mathematical model 

classes used for structural identification and damage detection.  

Information theory based approaches [e.g. 1-5] have been developed to provide 

rational solutions to several issues encountered in the problem of selecting the optimal 

sensor configuration. In references [1-2] the optimal sensor configuration is taken as 

the one that maximizes a norm (determinant or trace) of the Fisher information matrix 

(FIM). Reference [4] treats the case of large model uncertainties expected in model 
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updating. The optimal sensor configuration is chosen as the one that minimizes the 

expected Bayesian loss function involving the trace of the inverse of the FIM for each 

model. Papadimitriou et al. [4] introduced the information entropy norm as the 

measure that best corresponds to the objective of structural testing, which is to 

minimize the uncertainty in the model parameter estimates. Specifically, the optimal 

sensor configuration is selected as the one that minimizes the information entropy 

measure since it gives a direct measure of this uncertainty. It has been shown [5] that, 

asymptotically for very large number of data, the information entropy depends on the 

determinant of the Fisher information matrix. An important advantage of the 

information entropy measure is that it allows us to make comparisons between sensor 

configurations involving a different number of sensors in each configuration. 

Furthermore, it has been used to design the optimal characteristics of the excitation 

(e.g. amplitude and frequency content) useful in the identification of linear and 

strongly nonlinear models [6]. The methodology has also been extended in [7] to 

design optimal sensor locations for updating multiple model classes useful for damage 

detection purposes. Finally, heuristic algorithms [5,7] have been proposed that are 

computationally much more effective and accurate for selecting the optimal sensor 

location. 

In this work, the problem of optimally placing the sensors in the structure is 

revisited and the information entropy approach is used to design the optimal sensor 

configurations for two type of problems: (i) identification of structural model (e.g. 

finite element) parameters or modal model parameters (modal frequencies and modal 

damping ratios) based on acceleration time histories, and (ii) identification of 

structural model parameters based on modal data. Analytical expressions are 

developed that show the relative effect of model and measurement error on the design 

of the optimal sensor configuration. Results on a four-span bridge structure are used to 

illustrate the theoretical developments.  
 
 

STRUCTURAL IDENTIFICATION METHODOLOGY 
 

Consider a parameterized class Μ  of structural models (e.g. a class of finite 

element models or a class of modal models) chosen to describe the input-output 

behavior of a structure. Let 
N

R  be the vector of free parameters (physical or 

modal) in the model class. A Bayesian statistical system identification methodology 

[8,9] is used to estimate the values of the parameter set  and their associated 

uncertainties using the information provided from dynamic test data. For this, the 

uncertainties in the values of the structural model parameters  are quantified by 

probability density functions (PDF) that are updated using the dynamic test data. The 

updated PDF is then used for designing the optimal sensor configuration.  

 

Identification Based on Response Time History Data 

 

Let 0
0ˆ{ ( ) ,  1, , ,  1, , }N

j DD x k t R j N k N  be the measured 

sampled response time history data from a structure, consisting of acceleration, 

velocity or displacement response at 0N  measured DOFs, where DN  is the number of 

the sampled data using a sampling rate t . The measured DOFs are usually referred 



to translational DOFs. Let also { ( ; ) ,  1, , ,  1, , }Nd
j d Dx k R j N k N , 

where dN  is the number of model degrees of freedom (DOF), be the predictions of 

the sampled response time histories obtained from a particular model corresponding to 

a specific value of the parameter set . The prediction error ( )je k  between the 

sampled measured response time histories and the corresponding response time 

histories predicted from a model, for the j th measured DOF and the k th sampled 

data, is given by the prediction error equation 

  ˆ( ) ( ) ( ; )j j je k x k x k  (1) 

where 01,...,j N  and 1,..., Dk N . The predictions errors at different time 

instants are modeled by independent (identically distributed) zero-mean Gaussian 

variables. Specifically, the prediction error ( )je k  for the j th measured DOF is 

assumed to be a zero mean Gaussian variable, 2( ) (0, )j je k N  with variance 2
j . 

The model prediction error is due to modeling error and measurement noise. 

Applying the Bayesian system identification methodology [8,9], assuming 

independence of the prediction errors ( )je k , the updating PDF ( , | )p D  of the 

parameter sets  and 1( , , )No
, given the measured data D  and the class of 

models Μ , takes the form:  

 
0

( , | ) exp ( ; )  ( ) ( )
22 ( )

D

D

N N

N Nc
p D J  (2) 

where 
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2
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j j j j
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J D J J x k x k
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 (3) 

is the overall weighted measure of fit between measured and model predicted 

response time histories for all measured DOFs, 
0

1

( ) D

N
N
j

j

 is a scalar function of 

the prediction error parameter set , ( )  and ( )  are the prior distribution for 

the parameter sets  and , respectively, 0N N  and c  is a normalizing constant 

chosen such that the PDF in (2) integrates to one.  

 

Identification Based on Modal Data 

 

The methodology is next extended to the case where the dynamic data consist of 

modal data. Let 0( ) ( )ˆ{ˆ , , 1, , , 1, , }k k N
r r DD R r m k N  be the measured 

modal data from a structure, consisting of modal frequencies ( )ˆ kr  and modeshape 

components ( )ˆ k
r  at 0N  measured DOFs, where m  is the number of observed modes 

and DN  is the number of modal data sets available. Let also 

{ , , 1, , }dN
r r R r m  be the predictions of the modal frequencies and 

modeshapes obtained for a particular value of the model parameter set  by solving 

the eigenvalue problem corresponding to the model mass and stiffness matrices.  



The prediction error ( ) ( ) ( )[  ]k k k
r r r

ee e  between the measured modal data and the 

corresponding modal quantities predicted by the model is given separately for the 

modal frequencies and the modeshapes by the prediction error equations:  

 ( ) ( ) ( ) ( ) ( )
0

ˆˆ ( ) and ( )
r r

k k k k k
r r r r re Le  (4) 

1, ,r m , where ( )

r

ke  and ( ) d

r

k NRe  are respectively the prediction errors for the 

modal frequency and modeshape components of the r -th mode, 1, , Dk N , 

( ) ( )ˆ /k k T T
r r r r r  is a normalization constant that accounts for the different 

scaling between the measured and the predicted modeshape, and 0L  is a 0 dN N  

matrix of ones and zeros that maps the model DOFs to the measured degrees of 

freedom. The model prediction error is due to modeling error and measurement noise.  

The prediction error ( )

r

ke  for the r -th modal frequency is assumed to be a zero 

mean Gaussian variable, ( ) 2 ( )2~ (0, ˆ )k k
rr r

e N , with standard deviation ( )ˆ krr
. The 

prediction error for the r -th truncated modeshape vector ( ) 0k N

r
Re  is also assumed 

to be zero mean Gaussian vector, ( ) ( )~ ( , )
r r

k kN C0e , with diagonal covariance matrix 

2
( ) 2 ( ) 0 0

0
ˆk k N N
r Nr r

C I R , where 
2 2

( ) ( )
00

ˆ ˆ /k k
r rN

N ,  is the usual 

Euclidian norm and I  is the identity matrix. The parameters 
r
 and 

r
, represent 

the prediction error estimates of the measured modal frequencies and modeshapes 

involved in D . 

Applying the Bayesian identification, assuming independence of the prediction 

errors ( )

r

ke  and ( )k

r
e , the updating PDF ( , | )p D  of the parameter sets  and 

{ , ,
r r

r  1, , }m , given the data D  and the class of models Μ , takes the 

form (2), where  
2
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represents the weighted measure of fit between the measured modal data and the modal 

data predicted by a particular model within the selected model class, 0 1N m N  is the 

number of measured data per modal set, and 0

1

( ) ( ) ( )D D

r r

m
N N N

r

 is a function of 

the prediction error parameters .  

 

 

OPTIMAL SENSOR LOCATION BASED ON INFORMATION ENTROPY 

 

The marginal updated PDF ( | )p D  specifies the plausibility of each possible 

value of the structural model parameters. It provides a spread of the uncertainty in the 

structural model parameter values based on the information contained in the measured 

data. A unique scalar measure of the uncertainty in the estimate of the structural 

parameters  is provided by the information entropy, defined by [4]: 



  , ln lnH D E p D p D p D dδ  (6) 

The information entropy depends on the available data ( )D D δ  and the sensor 

configuration vector δ .   

An asymptotic approximation of the information entropy, valid for large number 

of data ( DN N ), is available [5] which is useful in the experimental stage of 

designing an optimal sensor configuration. The asymptotic approximation is obtained 

by substituting ( | ) ( , | ) p D p D d  and (2) into (6) and observing that the 

resulting integral can be re-written as Laplace-type integrals which can be 

approximated by applying Laplace method of asymptotic approximation [10]. 

Specifically, it can be shown that for a large number of measured data, i.e. as 

DN N , the following asymptotic results hold for the information entropy [5]  

 
1 1ˆ ˆˆ ˆ( , ) ( ; , ) ln(2 ) ln[det ( , ; )]
2 2

H D H Nδ δ h δ  (7) 

where ˆ ˆ( , ) arg min ( ; )D J Dδ  is the optimal value of the parameter set  that 

minimizes the measure of fit ( ; )J D  given in (3), 2ˆ  is the optimal prediction error 

given by 
0

2

1
ˆ ˆˆ [ ( ; ), , ( ; )]NJ D J D , and ˆ ˆ( , ; )h δ  is an N N  positive 

definite matrix defined and asymptotically approximated by  

 
ˆ

ˆ ˆˆ ˆ( , ; ) ln[ ( ; )]   ( , , )        as   DN NT

DJ D N Nh δ Q δ  (8) 

in which 1[ / , , / ]T

N  is the usual gradient vector with respect to the 

parameter set . For response time history data, the matrix ( , )Q δ  appearing in (8) 

is a positive semi-definite matrix of the form  

 ( )

2
1

1ˆ ˆˆ( , , ) ( )
ˆ2

dN

jD
j

j j

N
Q δ P  (9) 

known as the Fisher information matrix [1] and containing the information about the 

values of the parameters  based on the data from all measured positions specified in 

. The matrix ( ) ( )j
P   is a positive semi-definite matrix given by  

 ( )

1

( ) ( ; ) ( ; )
DN

j T

j j

k

x k x kP  (10) 

containing the information about the values of the parameters  based on the data 

from one sensor placed at the j -th DOF. For given excitation characteristics, the 

matrix ( ) ( )j
P  depends only on the response of the optimal model at the particular 

DOF j , while it is independent of the sensor configuration vector δ .  

The only dependence of the resulting asymptotic value of the information entropy 

(7) on the data comes implicitly through the optimal values ˆ ˆ( , )Dδ  and the 

prediction errors 2 ˆˆ ( ; )j jJ D . Consequently, the information entropy (7) is 

completely defined by the optimal value ˆ  of the model parameters and the optimal 

prediction error 2 ˆˆ ( ; )j jJ D , 01, ,j N , expected for a set of test data, while the 

time history details of the measured data do not enter explicitly the formulation. The 



prediction errors can be written in the form 2 2 2

1 2
ˆ ˆˆ ( ; ) ( )j j jJ D s s g , where 2

1s  

gives the contribution from measurement error assumed to be constant for all 

measurements, and 2

2s  gives the contribution from model error assumed to be 

proportional to the average strength 2

1

ˆ ˆ( ) (1/ ) ( ; )
DN

j D j

k

g N x k  of the response at 

the j -th  DOF. The optimal sensor location depends on the optimal model ˆ  and the 

values of 2

1s  and 2

2s  assumed for the measurement and model errors, respectively.  

For modal data, following a similar analysis, the matrix ( , )Q δ  is a positive 

semi-definite matrix given by  

 
0 0

22 2 2 2 2
1 11 2 1 2 0 0

( ) ( )( ) ( )
( , )

2 ( ) ( ) /

d
TNTm

jr jrD r r
j

r jr r

L LN

s s s s L N
Q δ  (11) 

containing the information about the values of the model parameters  based on the 

modal data from all sensors placed in the structure.  

Based on the asymptotic analysis, two heuristic sequential sensor placement (SSP) 

algorithms, the forward (FSSP) and the backward (BSSP), were proposed [5,6] for 

constructing predictions of the optimal and worst sensor configurations. According to 

FSSP, the positions of 
0N  sensors are computed sequentially by placing one sensor at 

a time in the structure at a position that result in the highest reduction in information 

entropy.  The BSSP algorithm is used in an inverse order, starting with dN  sensors 

placed at all DOFs of the structure and removing successively one sensor at a time 

from the position that results in the smallest increase in the information entropy. The 

computations involved in the SSP algorithms are an infinitesimal fraction of the ones 

involved in the exhaustive search method and can be done in realistic time, 

independently of the number of sensors and the number of model DOFs. It was found 

that for essentially the same accuracy, genetic algorithms, well-suited for solving the 

resulting discrete optimization problem, require significantly more computational 

effort than the heuristic SSP algorithms. In almost all cases considered, the estimate 

from the GA algorithm did not improve the estimate provided by the SSP algorithms. 

Thus, although the SSP algorithms are not guaranteed to give the optimal solution, 

they were found to be effective and computationally attractive alternatives to the GAs. 

In particular, SSP algorithms provide with minimal computational effort the variation 

of the lower and upper bounds of the information entropy as a function of the number 

of sensors. Such bounds are useful in evaluating the effectiveness of a sensor 

configuration as well as in guiding the cost-effective selection of the number of 

sensors, trading-off information provided from extra sensors with cost of 

instrumentation. 

 

 

ILLUSTRATIVE EXAMPLE 

 

In order to demonstrate the theoretical developments and illustrate the 

effectiveness of the proposed algorithms the methodology is applied to the design of 

the optimal configuration for an array of acceleration sensors placed on the 180-

meter-long 13-meter-wide four-span bridge structure, located at Kavala (Greece). The 



deck of the bridge, consisting of four prestressed beams supporting the 20-cm thick 

deck, “floats” on laminated elastomeric bearings located at the top of the three piers 

and the abutments. A 900-DOF finite element model of the bridge consisting of 3-d 

beam elements is shown in Fig. 1. The structure is parameterized using three 

parameters, with the first parameter modeling the stiffness of the deck, the second 

parameter modeling the stiffness of all bearings and the third parameter modeling the 

stiffness of the three columns of the bridge. The nominal structure stiffnesses are 

chosen such that the 1
st
 (0.54 Hz), 3

rd
 (0.67 Hz), 4

th
 (1.07 Hz), 5

th
 (1.77 Hz), 6

th
 (2.08 

Hz) and 8
th
 (2.72 Hz) modes are transverse, the 2

nd
 (0.58 Hz) mode is longitudinal, the 

7
th
 (2.50 Hz) is local bending mode of the central pier, and the 9

th
 to 12

th
 modes are 

closely spaced (2.80, 2.824, 2.825 and 2.84 Hz) bending modes of the deck.  

The optimal sensor locations for 1-12 sensors based on modal data, for the case of 

model error only ( 1 0s and 2s s ) are shown in Figs. 1(a) and 1(b) for 4 and 12 

observable modes, respectively, while for the case of measurement error only 

( 1s s and 2 0s ) the optimal sensor locations are shown in Figs. 2(a) and 2(b) for 4 

and 12 observable modes, respectively. The minimum and maximum information 

entropy values as a function of the sensors computed by the exhaustive search method 

(exact method) for up to two sensors and the FSSP and BSSP algorithms are shown in 

Figs. 3(a) and 3(b) for 4 and 12 observable modes, respectively. 
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Fig. 1. Optimal locations for 1 to 12 sensors assuming model error for 4 and 12 observable modes. 
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 Fig. 2. Optimal locations for 12 sensors assuming measurement error for 4 and 12 observable modes. 
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Fig. 3. Minimum and maximum information entropy values for 4 and 12 observable modes.  

 

 

CONCLUSIONS 
 

A rigorous formulation of the optimal sensor placement problem for structural 

identification was presented based on the information entropy measure of parameter 

uncertainty for two type of problems: (i) identification of structural model (e.g. finite 

element) parameters or modal model parameters (modal frequencies and modal 

damping ratios) based on acceleration time histories, and (ii) identification of 

structural model parameters based on modal data.  An asymptotic estimate, valid for 

large number of data, was derived and used to justify that the sensor placement design 

can be based solely on a nominal model, ignoring the details in the measured data. 

Analytical expressions and numerical results showed the effect of model and 

measurement error on the design of the optimal sensor configuration. The analysis 

also showed that the lower and upper bounds of the information entropy values, 

corresponding respectively to the optimal and worst sensor configuration, is a 

decreasing function of the number of sensors.  
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